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1 Introduction: The Triggering Model
as a Markov structure

Recently, Gibson and Wexler ([1]. GW) have begun to
formalize the notion of language learning in a (finite)
space whose grammars (and languages) are character-
ized by a finite number of parameters or 1-dimensional
Boolean-valued arrays. n long. A grammar in this space
is stmply a particular n-length array of 0's and 1's; hence
there are 2" possible grammars (languages). One of Gib-
son and Wexler's aims is to establish that under some
simple hill-climbing learning regimes. namely. single-step
gradient ascent, some linguistically natural, finite. spaces
are unlearnable, in the sense that positive-only examples
lead to local marima——incorrect hypotheses from which
a learner can never escape. More broadly. they wish to
show that learnability in such spaces is still an inter-
esting problem, in that there is a substantive learning
theory concerning feasibility. convergence time, and the
like, that must be addressed beyond traditional linguis-
tic theory and that might even choose between otherwise
adequate linguistic theories.

In this paper. we choose as a convenient starting point
their Triggering Learning Algorithm (TLA) to focus our
investigation of parameter learning. Our central resuit
is that the performance of this algorithm is completely
modeled by a Markov chain. The remainder of the cur-
rent paper is devoted to exploring the basic consequences
of this fact.

Let us first review the GW model and the TLA. Fol-
lowing Gold (2] the basic framework is that of identifi-
cation in the limit. The learner (child) starts out in an
arbitrary state= some setting of the n parameter val-
ues. The learner (child) receives a (countably infinite)
sequence of positive example sentences drawn from some
target language. L;. After each presentation. the learner
can either (i) stay in the same state; or (ii) move to a new
hypothesis state, using the algorithm given below. If af-
ter some finite number of examples the learner converges
to the correct target language (= parameter settings)
and never changes state, then it has correctly identified
the target language: otherwise, it does not converge.

In addition, in the GW model the language learner
obeys two fundamental constraints: (1) the single-value
constraini—the learner can change only 1 parameter
value at a time: and (2) the greediness constraint—if.
the learner is given a positive example it cannot recog-
nize {accept). and if the learner changes one parameter
value and finds that it can accept the example, then the
learner retains that new parameter value. Finally, we
also recall GW's definition of a lecal trigge r(minor nota-
tional changes aside): given values for all parameters but
one, a local trigger for value v of parameters p;, pi(v). is
a sentence s from the target grammar (/1 such that s is
grammatical iff p;(r) = v. GW then state their TLA as
follows:

o [Initialize] Step 1. Start at some random point in
the (finite) space of possible parameter settings,
specifying a single hvpothesized graminmar with its
resulting extension as a language:;

e [Process input sentence] Step 2. Receive a positive

example sentence s; at time #; (examples drawn
from the language of a single target grammar.
L((4)). from a uniform distribution on the lan-
guage (we shall be able to relax this distributional
constraint later on):

¢ [Learnability on error detection] Step 3. If the cur-
rent grammar parses (generates) s;, then go to Step
2: otherwise, continue.

e [Single-step gradient-ascent] Select a single param-
eter at random. uniformly with probability 1/n.
to flip from its current setting., and change it (0
mapped to 1, 1 to 0) iff that change allows the cur-
rent sentence o be analyzed: otherwise go to Step
2

Of course. this algorithm never halts in the uvsual
sense. GW aim to show under what conditions this al-
gorithm converges “in the limit"—that is. after some
number, n., of steps, where n is unknown. the correct
target parameter settings will be selected and never bhe
changed. Their central claim is stated as their Theorem
1 (p. 7 in their manuscript).!

Theorem 1 As long as the probability is always greater
than a lower bound b (b > 0) that the learner will 1) en-
counter a local trigger for some incorrectly-sel parameter
P. and 2) then reset P accordingly to the target value. it
turns out that the target grammar can always be learned
using the Triggering Learning Algorithm.

1.1 The Markov formulation

From the standpoint of learning theory, however, GW
leave open several questions that can be addressed by
a more precise formalization of this model in terms of
Markov chains (a possible formalization suggested but
left unpursued in footnote 9 of GW). We can picture
the hypothesis space. of size 2", as a set of points. each
corresponding to one particular array of parameter set-
tings (languages, grammars). Call each point a hypothe-
sts state or simply state of this space. As is conventional,
we define these languages over some alphabet T as a sub-
set of ¥*. One of them is the target language (grammar).
We arbitrarily place the (single) target grammar at the
center of this space. Since by the TLA the learner is re-
stricted to moving at most 1 binary value in a single step.
the theoretically possible transitions between states can
be drawn as (directed) lines connecting parameter arrays
{hypotheses) that differ by at most 1 binary digit (a 0
or a 1 in some corresponding position in their arrays).
Recall that this is the so-called Hamming distance.

We may further place weights on the transitions from
state i to state j corresponding to the nonzero b’s men-
tioned in the theorem above; these correspond to the
probabhilities that the learner will move from hypothe-
sis state i Lo state j. In fact, as we shall show below,
given a distribution over L((7), we can further carry out
the calculation of the actual b's themselves, Thus, we

'Note that the notion of “trigger” does not enter into the
statement of the TLA or the constraints the TLA employs,
but only into the statement of the theorem.




can picture the TLA learning space as a directed. la-
beled graph V" with 2" vertices.> More precisely, we can
make the following remarks about the TLA system GW

describe.

Remark. The TLA system is memoryless. that is, given
a sequence s of sentences up to time ¢;, the selection
of hypothesis h depends only on sentence s;. and not
(directly) on previous sentences, i.e.,

plh(si) S alet).t <tioy} = Pletti) < wile(tn 1)}

In other words, the TLA system is a classical dis-
crete stochastic process. in particular, a discrete Markor
process or Markov chain. We can now use the theory of
Markov chains to describe TLA parameter spaces(3]. For
example, as is well known. we can convert the graphical
representation of an n-dimensional Markov chain M to
an n x n matrix T, where each matrix entry (¢, ) rep-
resents the transition probability from state / to state
J- A single step of the Markov process is computed via
the matrix multiplication 7 x T'; n steps is given by T".
A 17 entry in any cell (i, j) means that the system will
converge with probability 1 to state j, given that it starts
in state 7.

As mentioned, not all these transitions will be pos-
sible in general. For example, by the single value hy-
pothesis, the system can only move 1 Hamming bit at
a time. Also, by assumption, only differences in surface
strings can force the learner from one hypothesis state to
another. For instance, if state i corresponds to a gram-
mar that generates a language that is a proper subset
of another grammar hypothesis j, there can never be a
transition (nonzero b) from j to i, and there must he
one from i to j. Further, by assumption and the TLA,
it is clear that once we reach the target grammar there
is nothing that can move the learner from this state,
since all remaining positive evidence will not cause the
learner to change its hypothesis. Thus, there must be a
loop from the target state to itself, with some positive
label b, and no exit arcs. In the Markov chain literature,
this is known as an Absorbing State (AS). Obviously, a
state that only leads to an AS will also drive the learner
to that AS. Finally, if a state corresponds to a gram-
mar that generates some sentences of the target there
is always a loop from any state to itself, that has some
nonzero probability. Clearly, one can conclude at once
the following learnability result:

Theorem 2 Given a Markov chain (' corresponding 1o
a GW TLA learner. 3 exactly 1 AS (corresponding lo
the target grammar/language) iff C' is learnable,

Proof. <. By assumption, (' is learnable. Now assume
for sake of contradiction that there is not exactly one
AS. Then there must be either 0 AS or > 1 AS. In the
first case, by the definition of an absorbing state, there
is no hypothesis in which the L arner will remmain forever.

2(GiW construct an identical transition diagram in the de-
scription of their computer program for calculating local max-
ima. However. this diagram is not explicitly presented as a
Markov structure: it does not include transition probabilities.
Of course, topologically both structures must be identical.

Therefore €' is not learnable, a contradiction. In the
second case, without loss of generality. assume there are
exactly two absorbing states, the first S corresponding
to the target parameter setting. and the second S’ corre-
sponding to some other setting. By the definition of an
absorbing state. in the limit ' will with some nonzero
probability enter 57, and never exit S’. Then (' is not
learnable. a contradiction. Hence our assumption that
there is not exactly 1 AS must be false,

=>. Assume that there exists exactly 1 AS i in the
Markov chain Al. Then. by the definition of an absorbing
state. after some nuimber of steps n. no matter what the
starting state. Al will end up in state i, corresponding
to the target grammar. I

Note that this approach avoids a crucial flaw in the
proof given in GW (pp. 7-8 in manuscript):

That is. if the learner never goes through
the same state twice. then she is bound to end
up in the target state at some point, because
the parameter space is finite in size. Thus the
probability of avoiding the target state for-
ever is equivalent to the probability of cyeling
forever through some ordered set of states (a
cycle).

We can divide the parameter space into a
finite set of minimal cycles, where each min-
imal cycle contains no cycles as a subpart.
Because the parameter space is finite. the set
of minimal cycles in the parameter space is
also finite. For each minimal cycle, we can
now calculate the probability that the learner
remains in that cycle forever. .. the probabil-
ity of staying in the [minimal pm/rcb] cycle
in the limit (forever) is zero. The same is true
for all of the finitely-many minimal cycles. so
that the probability of staying in any of these
cycles in the limit is also zero. Thus the prob-
ability of ending up at the targct state i the
limit is one.

In brief. GW attempt to show that the probability of
the learner avoiding the target forever is zero by showing
that the fact that some minimal cycle occurs infinitely
often makes the probability of the infinite sequence zero.
In other words every way in which the learner avoids
the target has probability zero. Thus they conclude that
probability of the event

Event = Learner avoids target forever
is zero, more precisely. they claim.
Priul,] =0

where each 1, is a path avoiding the target and UW’,
is set of all such paths. However, as is well known. this
union computation is true iff it is taken over a countable
nuber of elemients. In the example at hand. the crucial
omission in the argument is that the there are an un-
countable number of ways in which the learner can avoid
the target. This is because there are an uncountable
number of sequences of numbers between 1 and Af ~ 1.
The base M — | expansion of any real number in the




interval[0, 1) would vield such a sequence (e.g.. consider
an irrational expansion such as the square root of 2).
Since there are an uncountable number of ways in
which the event of avoiding the target forever can he
realized. the fact that each such way has probability zero
does not imply that the total event has probability zero
as well. To see this consider a random variable X' with
a uniform distribution on [0. 1]. Now consider the event,

Event: X < 1/2

There are many ways in which this event could occur e.g
X =1/4.X = 1/3.X = 0.234 etc. Each of these ways
has probability zero ie.. PLX = 1/4] =0, P[X = 1/3] =
0... and so on. However we know that the probability
of the event X' < 1/2 is 1/2 not zero. This is because
there are an uncountable number of ways in which the
event X < 1/2 could take place. Thus the proof as given
in [1] is incorrect. One correct way to formulate the
proof is by resorting to an explicit Markov formulation,
as suggested but not executed in GW's footnote 9, and
as we established above. A similar conceptual difficulty
seemingly leads to their failure to note that there may be
other states besides local maxima, for which convergence
may not occur.

Corollary 1 Given a Markov chain corresponding to a
(finite) family of grammars in a GW learning system. if
there exist 2 or more AS, then thal family is not learn-
able.

Erample.

Consider the GW 3-parameter system. Its binary pa-
rameters are: (1) Spec(ifier) first (0) or last (1); (2)
Comp(lement) first (0) or last (1); and Verb Second (V2)
does not exist (0) or does exist (1). By Specifier GW fol-
low the standard linguistic convention of whether there
is part of a phrase that “specifies” that phrase, roughly,
like the old in the old book: by Complement GW roughly
mean a phrase’s arguments, like an ice-cream i John ate
an ice-cream ot with envy in green with envy. There are
also 7 possible "words™ in this language: S. V. O, Ol,
02. Adv, and Aux, corresponding to Subject. Verb, Ob-
Ject. Direct Object, Indirect Object, Adverb, and Ad-
jective. ‘There are 12 possible surface strings for each
(-V2) grammar and 18 possible surface strings for each
(+V2) grammar if we restrict ourselves to unembedded
or “degree-0" examples for reasons of psychological plau-
sibility (see GW for discussion). Note that the “surface
strings” of these languages are actually phrases such as
Subject, Verb, and Object. Figure (3) of GW summa-
rizes the possible binary parameter settings in this sys-
tem. For instance. parameter setting (5) corresponds to
the array [0 [ 0]= Specifier first. Comp last. and —V2.
which works out to the possible basic English surface
phrase order of Subject-Verb-Object (SVO). As shown
in GW's figure (3), the other possible arrangements of
surface striugs corresponding to this parameter setting
include SV; SV 01 02 (two ohjects, as in give John an
tce-cream); S Aux V (as in John is a nicc guy; S Aux V
O: 8 Aux V Ol 02; Adv S V (where Adv is an Adverb,
like quickly; Adv SV O; Adv S VOI 02 Adv S Aux V:
Adv S Aux V O; and Adv § Aux V O1 02,

3

Suppose SOV (setting #5=[0 I 0]) is the target gram-
mar (language). With the GW 3-parameter system,
there are 23 = & possible hypotheses, so we can draw
this as an 8-point Markov configuration space, as shown
in the figure ahove. The shaded rings represent increas-
ing Hamming distances from the target. Each labeled
circle is a Markov state, a possible array of parameter
settings or granunar, hence extensionally specifies a pos-
sible target language. Each state is exactly 1 hinary
digit away from its possible transition neighbors. Each
directed arc between the points is a possible (nonzero)
transition from state i to state j: we shall show how to
compute this immediately below. We assume that the
target granmmar, a double circle, lies at the center. This
corresponds to the (English) SOV language. Surround-
ing the bulls-eye target are the 3 other parameter arrays
that differ from [0 1 0] by one binary digit each: we pic-
ture these as a ring 1 Hamming bii away from the target:
[0. 1, 1]. corresponding to GW’s parameter setting #6
in their figure 3 (Spec-first. Comp-final. +V2, basic or-
der SVO+V2): [0 0 0]. corresponding to GW's setting
#7 (Spec-first, Comp-first, —V2). basic order SOV and
[110]. GW's setting #1 (Spec-final. Comp-final, —1°2].
basic order VOS.

Around this inner ring lie 3 parameter setting hy-
potheses, all 2 binary digits away from the target: [0
0 1). [1 00}, and [1 1 1] (granunars #2, 3. and & in GW
figure 3). Note that by the Single Value hypothesis that
the learner can only move one grey ring towards or away
from the target at any one step. Finally, one more ring
out. three binary digits different from the target. is the
hypothesis [1 0 1], corresponding to target grammar 4.

It is easy to see from inspection of the figure that
there are exactly 2 absorbing states in this Markov chain,
that is. states that have no exit arcs. One AS is the
target grammar (by definition). The other AS is state 2.
Finally, state 4 is also a sink (a so-called “closed state™
in the Markov terminology) that leads only 1o state 4 or
state 2. These two states correspond to the local maxima
at the head of GW's figure 4. Hence this system is not
learnable. In addition to these local maxima, the next
section below shows that there are in fact other states
from which the learner can never reach the target.

2 Derivation of Transition Probabilities
for the Markov TLA Structure

The computation of the transition probabilities from the
language family can be computed by a direct extension
of the procedure given in GW. Let the target language
L, consist of the strings sy, 54, ..., i.e.,

L= {sl .89, 83. }

Let there be a probability distribution P on these strings.
Suppose the learner is in a state corresponding to the
language L.. Suppose it now receives the string s;. It
will do so with probability P(s;). There are two cases to
examine depending upon whether or not the string s; is
analyzable by the grammar corresponding to the current
parameter setting.

Case L. Suppose the learner can syntactically analyze
the received string s;. By the TLA, it will not change its




parameter values. In the Markov chain formulation, the
learner remains in the same state. Remember that this
state corresponds to the language L,. Also note that
this situation arises only when s; is in the language L.
Therefore the probability of the learner remaining in the
state s is P(s;).

Case IL. Suppose the learner cannot syntactically an-
alyze the string. Then s; € L,. By the TLA. the learner
chooses a parameter at random, flips it, and if the new
parameter setting makes s; analyzable, it retains this
value and moves to the corresponding state; otherwise it
remains in its original state s. Let us examine this situa-
tion using the Markov chain formulation. The learner is
in state s. It has n neighboring states each at a Hamming
distance of 1 from itself. The learner picks one of these
uniformly at random. Imagine that n; of these neigh-
boring states correspond to languages which contain s;.
If the learner picks any one of these n; states (which of
course it does with probability nj/n), it would stay in
that state. If the learner picks any of the other states
(with probability (n — n;)/n) then it remains in state s.
Note that n; of course could be 0 which means that none
of the neighboring states would allow the string to be an-
alyzed. The maximum value n; could take is n. Thus we
see that the probability that the learner remains in state
sis P(s;)((n —nj)/n). The probability that it moves to
each of the other n; states is P(s;)(1/n).

Clearly this allows us to compute the probability that
the learner will remain in its original state s as the sum
of the probabilities of the above two cases, namely the
following expression:

Z P(sj) + Z (1 —nj/n)P(s;)

s, €L, €L,

The above expression is still a little untidy because it has
the n;’s in it. We would like to clean it up alittle. To do
this consider the way we would compute the transition
probability of state s to some other neighboring state
say k in the chain. From the above analysis, we see
that such a tranmsition will occur with probability 1/n
for all the strings s; that are in the language L; but not
in the language L,. The strings themselves occur with
probability P(s;) each and so the transition probability

B Pls — k] = >

$,€L1.5,€L.s,€ELy

(1/n)P(s))

Note that the above sumimation is done over all strings
8; € (LN Li)\ L. where \ is the set difference symbol.
It is easy to see that

si €(LiNL)\ L, & s; € (LiNnL)\ (L NOL,).
Thus we can rewrite the transition probability as
Pls — k] = Z (1/n)P(s;)
SELNLyN(LNL,)

Since we have shown this in generality where for any
given target, we can compute the transition probabilities
between any two states in the Markov chain formulation
of the parameter space, the self-transition probability

can now he given as,

Pls —s]=1- Z

k is a neighboring state of »

Pls — k]

Finally, given any parameter space with n parame-
ters. we have 2" languages. Fixing one of them as the
target language L, we obtain the following procedure for
constructing the corresponding Markov chain. Note that
this is the GW procedure for finding local maxima. with
the addition of a probability measure on the language
family.

e (Assign distribution) First fix a probability mea-
sure P on the strings of the target language L,.

¢ (Enumerate states) Assign a state to each language
i.e..each L;.

o (Normalize by the target language.) Intersect all
languages with the target language to obtain for
each i. the language L, = L; N L;. Thus with state
i associated with language L;. we now associate the
language L}

o (Take set differences.) Now for any two states i
and k, if they are more than 1 Hamming distance
apart, then the transition P[i — k] = 0. If they
are 1 Hamming distance apart then P[i — k] =
P(Li\ L}).

This model captures the dynamics of the TLA com-
pletely.

Erample.

Consider again the 3-parameter system in the pre-
vious figure with target language 5. We can calculate
the following set differences to build the Markov figure
straightforwardly.

1. LynLs = 0 (no strings in common between L; and
target Ls).

2. LaNLy ={SV.SVO,SVO102 S Aux V. S
Aux VO, SAux VO102}.

3. Lsnls;=0.

4. LynLs; ={SV,SVO.S Aux V}.

5. LynNLy = Ls.

6. LeNLy ={SV.SVO.SVO] 02 SAux V. §
Aux V O, S Aux V O] 02}

T.L:NL;={SV, AdvSV }.

B. LgyNLs ={SV,SVO, S Aux V}.

From these values alone. we can draw the figure illus-
trated. and find the local maxima. For example, since
the normalized state set for state 1 is the emptyset. the
set difference between states 1 and 5 gives all of the tar-
get language; so there is a (high) transition probability
from state | to state 5. Similarly. since states 7 and &
share some target language strings in common, such as
S V. and do not share others, such as Adv S and S V O,
the learner can move from state 7 to 8 and back again.

Many additional properties of the triggering learning
system now become evident once the mathematical for-
malization has heen given. It is easy to imagine other




alternatives to the TLA that will avoid the local max-
ima problem. For example, as it stands the learner only
changes a parameter setting if that change allows the
learner to analyze the sentence it could not analyze be-
fore. If we relax this condition so that in this situa-
tion the learner picks a parameter at random to change,
then the problem with local maxima disappears. because
there can be only 1 Absorbing State, namely the target
grammar. All other states have exit arcs. Thus. by our
main theorem, such a system is learnable.

Or consider for example the possibility of noise—that
is. occasionally the learner gets strings that are not in
the target language. GW state (fn. 4. p. 5) that this
is not a problem: the learner need only pay attention
to frequent data. But this is of course a serious prob-
lem for the model. Unless some kind of memory or
frequency-counting device is added, the learner cannot
know whether the example it receives is noise or not.
This being so. then there is always some finite proba-
bility. however small, of escaping a local maximum. It
appears that the identification in the limit framework as
given is simply incompatible with the notion of noise,
unless a memory window of some kind is added.

We may now proceed to ask the following questions
about the TLA more precisely:

1. Does it converge?

2. How fast does it converge? How does this vary with
distributional assumptions on the input examples?

3. Can we now compute the dynamics for other “natu-
ral” parameter systems, like the 10-parameter sys-
tem for the acquisition of stress in languages devel-
oped by [4]?

4. Variants of TLA would correspond to other Markov
structures. Do they converge? If so, how fast?

o

How does the convergence time scale up with the
number of parameters?

6. What is the computational complexity of learning
parametrized language families?

-1

. What happens if we move from on-line to batch
learning? C'an we get PAC-style bounds [6]?

8. What does it mean to have non-stationary (noner-
godic) Markov structures? How does this relate to
assumptions about parameter ordering and matu-
ration?

9. What other parametrizations can we consider?

In the remainder of this paper we shall consider these
and other questions. We turn first to the question of
convergence and convergence times.

3 Convergence Times for the Markov
Chain Model

The Markov chain formulation gives us some distinct
advantages in theoretically characterizing the language
acquisition problem. First, we have already seen how
given a Markov Chain one could investigate whether or
not it has exactly one absorbing state corresponding to

the target grammar. This is equivalent to the question of 5

whether any local maxima exist. One could also look at
other issues (like stationarity or ergodicity assumptions)
that might potentially aflect convergence. Later we will
consider several variants to TLA and see how these can
all be formally analyzed within the Markov formulation.
We will also see that these variants do not suffer from
the local maxima problem associated with GW’'s TLA.

Perhaps the significant advantage of the Markov chain
formulation is that it allows us to also analyze conver-
gence times. Given the transition matrix of a Markov
chain, the problem of how long it takes to converge has
heen well studied. This question is of crucial importance
in learnability. Following GW. we helieve that it is not
enough to show that the learning problem is consistent
L.e., that the learner will converge to the target in the
limit. We also need to show, as GW point out. that the
learning problem is feasible, i.e., the learner will converge
in “reasonable” time. This is particularly true in the case
of finite parameter spaces where consistency might not
be as much of a problem as feasibility. The Markov for-
mulation allows us to attack the feasibility question. It
also allows us to clarify the assumptions about the be-
havior of data and learner inherent in such an attack.
We begin by considering a few ways in which one could
formulate the question of convergence times.

3.1 Some Transition Matrices and Their
Convergence Curves

Let us begin by following the procedure detailed in the
previous section to actually obtain a few transition ma-
trices. Consider the example which we looked at infor-
mally in the previous section. Here the target grammar
was grammar 5 and the L’ languages have already been
obtained. For simplicity. let us first assume a uniform
distribution on the strings in Ls, i.e., the probability the
learner sees a particular string s; in Ls is 1/12 because
there are 12 {(degree-0) strings in L;. We can now com-
pute the transition matrix as the following, where 0's
occupy matrix entries if not otherwise specified:

Ll L._, L3 Ly Ls LG L: Ls
Lily % 3
La 1
Ls R i
Ly 1
L L3
i £ " 2o
L. oL 1
<& 12 36 9

Notice that both 2 and 5 correspond to absorbing
states; thus this chain suffers from the local maxima
problem. Note also (following the previous figure as
well) that state 4 ouly exits to either itself or to state
2, hence is also a local maximum. More precisely, if T
is the transition probability matrix of a chain, then #;;.
i.e. the element of T in the ith row and jth column is
the probability that the learner moves from state ¢ to
state j in one step. It is a well-known fact that if one




considers the corresponding ¢, j element of T™ then this
is the probability that the learner moves from state i
to state j in m steps. For learnability to hold irrespec-
tive of which state the learner starts in. the probability
that the learner reaches state 5 should tend to 1 as m
goes to infinity. This means that column 5 of 7™ should
contain all 1's, and the matrix should contain (s every-
where else. Actually we find that 7" converges to the
following matrix as m goes to infinity:

LT
11‘_) l .
Ll
Ly 1

Ls ]
Lﬂ l
L: 1
Lg 1

Examining this matrix we see that if the learner starts
out in states 2 or 4. it will certainly end up in state 2 in
the limit. These two states correspond to local maxima
grammars in the GW framework. If the learner starts in
either of these two states, it will never reach the target.
From the matrix we also see that if the learner starts in
states 5 through 8. it will certainly converge in the limit
to the target grammar.

The situation regarding states 1 and 3 is more inter-
esting. If the learner starts in either of these states, it
will reach the target grammar with probability 2/3 and
reach state 2, the other absorbing state with probability
1/3. Thus we see that local maxima are not the only
problem for learnability. GW (p. 26 in manuscript)
focuses exclusively on local maxima, and indirectly im-
plies that these are the only difficult states: “most of
the source grammars have local triggers that enable the
learner to get to the target...however, there exist pairs
of source and target grammars from the parameter space
given in the table in Figure 3, such that no data from
the target grammar will ever shift the learner out of the
source grammas. .. There are six such pairs of source lo-
cal maximum and target grammars™ They then go on
to list in their figure 4, two such local maxima for the
target grammar 5. corresponding to states 2 and 4.

While this statement is strictly true, it does not ez-
haust the set of source states that never lead to the target
grammar. As we see from the transition matrix, while
it is true that states 2 and 4 will, with probability 1,
not converge to the target grammar, it is also true that
states 1 and 3 will not converge to the target. Thus, the
number of “bad™ initial hypotheses is significantly larger
than that presented in Figure 4 of GW. This difference is
again due to the new probabilistic framework introduced
in the current paper, and in fact is related to the diffi-
culty found earlier with the central convergence proof:
looking just at minimal paths and cycles in fact misses
some possible learning paths. In the appendix of this pa-
per. we provide a complete list of all starting states which
might result in non-learnability. While the implication of
the existence of additional non-learnable starting states
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is not clear, presumably the issue of learnability even in
the 3-parameter case deserves re-examination in light of
this possibility.

Obviously one can examine other details of this par-
ticular system. However, let us now look at a case where
there is no local maxima problem. This is the case when
the target languages have verb-second (V2) movement
in GW's 3-parameter case. Consider the transition ma-
trix obtained when the target language is L;. Again we
assume a uniform distribution on strings of the target.

Ll Lf_: L3 Lq L5 LG LT LS
L] 1
L.l ¥ 2
L;; 5 " 2 L
P R A
4 3 3% &
Ly | ! # L
5 5 36 3'1‘
ILJ'; 3% ¥ o4
7 [EN 3
Ls s =

Here we find that 7™ does indeed converge to a matrix
with 1's in the first column and 0's elsewhere. Consider
the first columm of 7. It is of the form:

[ m(m) ]
p2(m)
pa(m)
pa(m)
ps(m)
pe(m)
pr(m)
L ps(m) .I

Here p; denotes the probability of being in state 1
at the end of m examples in the case where the learner
started in state i. Naturally we want

hm pi(m) =1

ti AR
and for this example this is indeed the case. The next
figure shows a plot of the following quantity as a function
of m, the number of examples.

p{m) = mindp;(m)}

The quantity p(m) is easy to interpret. Thus p(m) =
0.95 means that for every initial state of the learner the
probability that it is in the target state after m exam-
ples is at least 0.95. Further there is one initial state (the
worst initial state with respect to the target, which in our
example is Lg) for which this probability is exactly 0.95.
We find on looking at the curve that the learner con-
verges with high probability within 100 to 200 (degree-0)
example sentences, a psychologically plausible number.
(One can now of course proceed to examine actual tran-
scripts of child input to calculate convergence times for
“actual” distributions of examples, and we are currently
engaged in this effort.)

As one example of the power of this approach, we
can compare the convergence time of TLA to other al-
gorithms. Perhaps the simplest is random walk: start
the learner at a random point in the 3-parameter space.




e

and then, if an input sentence cannot be analyzed. move
randomly from state to state. Note that this regime can-
not suffer from the local maxima problem. since there
is always some finite probability of exiting a non-target
state.

To satisfy the reader’s curiosity, we provide the con-
vergence curves for a random walk algorithm (RWA) on
the 8 state space. We find that the convergence times
are actually faster than for the TLA: see figure 2. Since
the RWA is also superior in that it does not suffer from
the same local maxima problem as TLA, the conceptual
support for the TLA is by no means clear. Of course.
it may be that the TLA has empirical support, in the
sense of independent evidence that children do use this
procedure (given by the pattern of their errors. etc.). but
this evidence is lacking, as far as we know.

Now that we have made a first attempt to quantify the
convergeiice time, several other questions can be raised.
How does convergence time depend upon the distribu-
tion of the data? How does it compare with other kinds
of Markov structures with the same number of states?
How will the convergence time be affected if the num-
ber of states increases. i.e the number of parameters in-
creases?” How does it depend upon the way in which
the parameters relate to the surface strings? Are there
other ways to characterize convergence times? We now
proceed to answer some of these yuestions.

3.2 Distributional Assumptions

In the earlier section we assumed that the data was uni-
formly distributed. We computed the transition matrix
for a particular target language and showed that conver-
gence times were of the order of 100-200 samples. In this
section we show that the convergence times depend cru-
cially upon the distribution. In particular we can choose
a distribution which will make the convergence time as
large as we want. Thus the distribution-free convergence
time for the 3-parameter system is infinite.

As before. we consider the situation where the target
language is L;. There are no local maxima problems
for this choice. We begin by letting the distribution be
parametrized by the variables a.b, ¢, d where

a = P(A4={Adv VS})

b = P(B={Adv VOS5, Adv Aux V §})

¢ = PC={AdvVOl02S Adv Aux VOS.
Adv Aux V 01 02 8}))

d = P(D={VS})

Thus each of the sets A, B.(" and D contain different
degree-0 sentences of L. Clearly the probability of the
set LN{AUBUCUD}isl—(a+b+c+d). The
elements of each defined subset of L, are equally likely
with respect to each other. Setting positive values for
a.b.c.d such that a + b+ ¢+ d < | now defines a unique
probability for each degree(0) sentence in Ly. For exam-
ple. the probability of AdvV OS is b/2, the probability of
AdvAurVOSis ef/3. that of VOS is (1 —(a+b+c+d)) /6
and so on.

We can now obtain the transition matrix correspond-
ing to this distribution. This is shown in Table 1.

Compare this matrix with that obtained with a uni-

section. This matrix has non-zero elements (transition
probabilities) exactly where the earlier matrix had non-
zero elements. However, the value of each transition
probability now depends upon a.b.c. and d. In particu-
lar if we choose @ = 1/12,b = 2/12,¢ = 3/12.d = 1/12
(this is equivalent to assuming a uniform distribution)
we obtain the appropriate transition matrix as before.
Looking more closely at the general transition matrix.
we see that the transition probability from state 2 to
state 1is (1 — (a + b+ ¢))/3. Clearly if we make « arbi-
trarily close to I, then this transition probability is arbi-
trarily close to 0 so that the number of samples needed
to converge can be made arbitrarily large. Thus choos-
ing large values for a and small values for b will result in
large convergence times.

This means that the sample complexity cannot be
bounded in a distribution-free sense. because by choos-
ing a highly unfavorable distribution the sample com-
plexity can be made as high as possible. For exam-
ple. we now give the convergence curves calculated for
different choices of a.b,c.d. We see that for a uni-
form distribution the convergence occurs within 200 sam-
ples. By choosing a distribution with ¢ = 0.9999 and
b = ¢ = d = 0.000001, the convergence time can be
pushed up to as much as 50 million samples. (Of course,
this distribution is presumably not psychologically real-
istic.) For a = 0.99.b = ¢ = d = 0.0001. the sample
complexity is on the order of 100,000 positive examples.

3.3 Absorption Times

In the previous sections. we computed the transition ma-
trix for a variety of distributions and showed the rate of
convergence. In particular we plotted p(m), (the prob-
ability of converging from the most unfavorable initial
state) against m (the number of samples). However, this
is not the only way to characterize convergence times.
Giiven an initial state, the time taken to reach the ab-
sorption state (known as the absorption time) is a ran-
dom variable. One can compute the mean and variance
of this random variable. For the case when the target
language is L;. we have seen that the transition matrix

has the form:
1 0
r=(# o)

Here @ is a 7-dimensional square matrix. The mean
absorption times from states 2 through & is given by the
vector (see Isaacson and Madsen (3])

p=(-Qr"

where 1 is a T-dimensional column vector of ones. The
vector of second moments is given by

po=(-Q) (2 -1).

Using this result. we can now compute the mean and
standard deviation of the ahsorption time from the most
unfavorable initial state of the learner. (We note that
the second moment is fairly skewed in such cases and so
is not symmetric about the mean, as may be seen from

form distribution on the sentences of L) in the earlier _ the previous curves.)
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Learning Mean abs. St. Dev.
scenario tinge of abs. time
TLA (uniform) 343 2.3
TLA (a = 0.99) 45000 33000
TLA (a = 0.9999) | 4.5 x 10° 3.3 x 10°
RW 9.6 10.1

3.4 Eigenvalue Rates of Convergence

In classical Markov chain theory, there are also well-
known convergence theorems derived from a consider-
ation of the eigenvalues of the transition matrix. We
state without proof a convergence result for transition
matrices stated in terms of its eigenvalues,

Theorem 3 Let T be an n x n transition matrir with
n lmearly independent Iefl eigenvectors Xy....Xs cor-
responding to cigenvalues Ay, . ... An. Let xo (an n-
dimensional vector) represent the starting probability of
bemg i each stale of the chain and w be the limiting
probability of being in cach statc. Then after k iransi-
tions, the probability of being in cach state xoT* can be
described by

n n
I xoTr == lI=li Z /\f'x()yfx; i< 21%1,_22\", I/\,’Ik Z | xoyix;

i=1 i=2

where the y; s are the right cigenvectors of T.

This theorem thus bounds the rate of convergence to
the limiting distribution = (in cases where there is only
one absorption state, = will have a | corresponding to
that state and 0 everywhere else). Using this result we
can now bound the rates of convergence (in terms of
number & of samples) by:

Learning scenario
TLA (uniform)
TLA(a = 0.99)

TLA(a = 0.9999)

RW

Rate of Convergence
0(0.94%)
O((1 — 107%)¥)
O((1 — 10-°)%)
0(0.89%)

This theorem also helps us to see the connection be-
tween the number of examples and the number of pa-
rameters since a chain with »n states (corresponding to
an n x n transition matrix) represents a language family
with log,(n) parameters.

4 Batch Learning Upper and Lower
Bounds: An Aside

So far we have discussed a menioryless learner moving
from state to state in parameter space and hopefully con-
verging to the correct target in finite time. As we saw
this was well-modeled by our Markov formulation. In
this section however we step back and consider upper
and lower bounds for learning finite language families if
the learner was allowed to remember all the strings en-
countered and optimize over them. Needless to say this
might not be a psychologically plausible assumption, but
it can shed light on the information-theoretic complexity
of the learning problem.

Consider a situation where there are n languages
Ly,La,...L, over an alphabet ©. Each language can

be represented as a subset of X7 e,
Li = {wil.win. .. .}:.s;j ey

The learner is provided with positive data (strings that
belong to the language) drawn according to distribu-
tion P on the strings of a particular target language.
The learner is to identify the target. It is quite possible
that the learner receives strings that are in more than
one language. In such a case the learner will not be
able to uniquely identifv the target. However, as more
and more data becomes available, the probability of hav-
ing received only ambigious strings becomes smaller and
smaller and eventually the learner will be able to identify
the target uniquely. An interesting question to ask then
is how many samples does the learner need to see so that
with high confidence it is able to identify the target. e
the probability that after seeing that many samples. the
learner is still ambigious about the target is less than é.
The following theorem provides a lower hound.

Theorem 4 The learner needs to draw al least M =
max;z, m In(1/8) samples (where p; = P(L N Lj))
in order to bc able to identify the targcd with confidence
greater than 1 —é.

Proof. Suppose the learner draws m (less than
Al) samples. Let & = argmaxjz,p;. This means 1)
M = m—l’/mln(l/é) and 2) that with probability py
the learner receives a string which is in both L; and
L;. Hence it will be unable to discriminate between
the target the the kth Janguage. After drawing m sam-
ples, the probability that all of them belong to the set
Le N Ly is (pe)™. In such a case even after seeing m
samples. the learner will be in an ambiguous state. Now
(Pe)™ > (pe)M since m < A and py < 1. Finally
since M In(1/pr) = Wn((1/pi)M) = In(1/8). we see that
(i)™ > 6. Thus the probability of heing ambiguous af-
ter m examples is greater than ¢ which means that the
confidence of being able to identify the target is less than
1-6.1

This simple result allows us to assess the number of
samples we need to draw in order to be confident of cor-
rectly identifying the target. Note that if the distribution
of the data is very unfavorable, that is, the probability
of receiving ambiguous strings is quite high. then the
number of samples needed can actuaily be quite large.
While the previous theorem provides the number of sam-
ples necessary to identify the target. the following theo-
rem provides an upper bound for the number of samples
that are sufficient to guarantee identification with high
confidence.

Theorem 5 If the learner draws more than M =
In(1/6) samples. then it will identify the tar-

( Here by =

1
/(=61
gel with confidence greater than 1 — 6.
P(L¢\UjzL))).

Proof.  Consider the set L = L, \ UjgLj. Any ele-
ment of this set is present in the target language L, but
not in any other language. (‘onsequently upon receiving
such a string, the learner will be able to instantly iden-
tify the target. After m > A samples, the probability
that the learner has not received any member of this set
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is (1= P(LY)™ = (1 = b)) < (L = b)Y = 2. Hence
the probability of seeing some member of L in those mn
samples is greater than 1 — &. But seeing such a member
enables the learner to identify the target so the prob-
ability that the learner is able to identify the target is
greater thau | — ¢ if it draws more than A/ samples. 8

To summarize. this section provides a simple upper
and lower bound on the sample complexity of exact iden-
tification of the target langnage from positive data. The
& parameter that measures the confidence of the learner
of being able to identify the target is suggestire of a
PAC' [6] formulation. However there is a crucial differ-
ence. In the PAC formulation. one is interested in an «-
approximation to the target language with at least | —#
confidence. In our case. this is not so. Since we are not
allowed to approximate the target. the sample complex-
ity shoots up with choice of unfavorable distributions.
There are some interesting directions one could follow
within this batch learning framework. One could try
to get true PAC-style distribution-free bounds for vari-
ous kinds of language families. Alternatively one could
use the exact identification results here for liuguistically
plausible language families with “reasonable™ probabil-
ity distributions on the data. 1t might be an interesting
exercise to recompute the bounds for cases where the
learner receives both positive and negative data. Finally
the bounds obtained here could be sharpened further.
We intend to look into some of these questions in the
future.

5 Variants of the Learning Model

We have so far focused on the TLA scheme for learn-
img. TLA observes the single value and greediness con-
straints. There could be several variants of this learning
algorithm and many of these are captured completely
by our Markov formulation. We consider the following
three simple variants by dropping either or hoth of the
Single Value and Greediness constraints:

Random walk with neither grecdiness nor single
value constraints: We have already seen this exam-
ple before. The learner is in a particular state. Upon
receiving a new sentence, it remains in that state if the
sentence is analvzable. 1f not. the learner moves uni-
formly at random to any of the other states and stays
there waiting for the next sentence. This is done without
regard to whether the new state allows the sentence to
be analyzed.

Random walk with no greediness but with single
value constraint: The learner remains in its original
state if the new <cntence is analyzable. Otherwise, the
learner chooses one of the parameters uniformly at ran-
doni and flips it thereby moving to an adjacent state in
the Markov structure. Again this is done without regard
to whether the new state allows the sentence to be ana-
lyzed. However since only one parameter is changed at
a time, the learner can only move to neighboring states
at any given time.

Random walk with no single value constraint but
with greediness: The learner remains in its original

state if the new sentence is analyzable. Otherwise the
learner moves uniformly at random to any of the other
states and stays there ifl the sentence can be analyzed.
If the sentence cannot be analyzed i the new state the
learner remains in its original state.

Fig. 1 shows the convergetice times for these three al-
gorithms when Ly is the target langnage. Interestingly.
all three perform better than the TLA for this task. Fur-
ther they do not suffer from lo~al maxima probleins. 1t
should be pointed out, however, that the differences from
TILA are marginal and this convergence has heen shown
only for L, as the target language. ldeally the conver-
genee rates have to be computed for each target language
and then either a worst case or average case rate should
be decided upon to characterize the convergence times
for the algorithm on the language family as a whole.

6 Conclusion, Open Questions, and
Future Directions

As the number of parameters n increases, the size of the
corresponding Markov matrix grows as 2", Thus in the
case of a 10 parameter system as found in models of En-
glish stress ([4]) the corresponding Markov structure will
be a 1024 x 1024 matrix. We are currently conducting
an analysis of this larger system to fiud its Jocal maxima.
analyze its convergence times. and see if its convergence
times correspond to what one might find in practice with
real stress svstems.

Additional questions remain to be answered. One is-
stie has to do with the “smoothness™ relation between
the parameter settings and the resulting surface strings.
In principles-and-parameters theory. it has often been
suggested that a small parameter change could lead to
a large deductive change in the granunar, hence a large
change in the surface language generated. In all the ex-
amples considered so far there is a smooth relation be-
tween surface sentences and paraieters, in that switch-
g from a V2 to a non-V2 system. for instance. leads
us to a Markov state that is not too far away from the
previous one. If this is not so. it is not so clear that
the TLA will work as before. In fact. the whole ques-
tion of how to formulate the notion of “smoothness™ in
a language - grammar framework is unclear. We know
in the case of continuous functions. for example. that
if the learner is allowed to choose examples (which can
be simulated by selective attention). then such an “ac-
tive” learner can approximate such functions much more
quickly than a “passive” learner. like the one presented
in GW. Is there an analog to this in the discrete, digital
domain of language” How can one approximate a lan-
guage? Here 100 mathematies may play a helpful role.
Recall that there is an analog to a functional analysis
of languages -namely, the algebraic approach advanced
by Chomsky and Schutzenberger ([5]). In this model, a
language is described by an (infinite) polyvnotial gener-
ating function, where the coefficients on the polynomial
term & gives the nutber of ways of deriving the string
r. A (weak. string) approximation to a language can
then be defined in terms of an approximation to the
generating function.  If this method can be deployed.




then one might be able to carry over the results of func-
tional analysis and approximation for active vs. passive
learners into the ~digital” domain of language. If this

is possible, we would then have a very powerful set of

previously underutilized mathematical 100ls 10 analyze
language learnability.
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Appendix

A Learnable Grammars: The Full Story
A.1 Problem States

We provide in Table 2 a complete list of problem states.
In other words we list all the initial starting grammar-
target grammar pairs for which the learner is not guar-
anteed to converge to the target with probability 1. In
fact, assuming a uniform distribution on the strings for
the target grammar. it is possible to compute the prob-
ability of not converging to the target for each of these
pairs. Note that this probability is non-zero for the pairs
listed.

A.2 Remarks

1. We have provided a complete list of initial start-
ing grammars from which some target is not learn-
able (i.e. learnable with probability 1). We no-
tice that there are three kinds of such problem
starting states. Some states correspond to sinks
in the Markov Structure with respect to some tar-
get grammar. Here the learner gets stuck. never
leaves it and correspondingly never converges to
the target. Then there are states which are not
sinks (OVS+V2 when the target is SVO-V2) but
which can only move to some non-target sink. and
so never converge to the target. These two kinds
of problem states (starred in our table) have been
listed by Gibson and Wexler in Fig. 4 (pg. 27 of
manuscript). Finally there are states which are not
sinks. but which can with a non zero probability
converge to some non-target sink. They can also
with a non-zero probability converge to the target
and in this respect are distinguished from problem
states of type 2.

2. We would like to observe that of the 56 possible
initial grammar-target grammar combinations pos-
sible. 12 result in nou-learnable situations in the 3-
parameter system investigated here. This is a fairly
high density of unfavourable initial configurations.
It would be interesting to see how this changes with
other lingual subsystems with a larger nuniber of
parameters,

3. We also did an analysis of convergence times under
uniform distribution for the each target grammar.
We find that the results are similar to the results
displayed in the paper for the case when the target
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grammar is (VOS-V'2). For cases when the tar-
get is learnable. the learner converges to the target
in 100-200 samples with high (greater than 0.99)
probability.  Further. the variants of the TLA all
outperform the TLA in terms of convergence times.
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Figure 1: The 8 parameter settings in the GW example, shown as a Markov structure, with transition probabilities
omitted. (Without transition probabilities. this diagram corresponds exactly to that in GW’s appendix. as mentioned
above.) Directed arrows between circles (states) represent possible nonzero (possible learner) transitions. The target
grammar (in this case, number 5, setting [0 1 0]). lies at dead center. Around it are the three settings that differ
from the target by exactly one binary digit: surrounding those are the 3 hypotheses two binary digits away from the
target: the third ring out contains the single hypothesis that differs from the target by 3 binary digits. Note that
the learner can either cycle or step in or out one ring (binary digit) at a time, according to the single-step learning
hypothesis: but some transitions are not possible because there is no data to drive the learner from one state to the
other under the TLA.

L Lo L3 Ly Ly Ls L; Ly
L 1
L. l—@=b=r 24a4bt:
2 3 3
Ly l—a=d 24-atd=b 13
L 3 ° 3—:2—
1 3 3 3 o
I n l ==a a
-5 3 3 g
Ls L:IJ: 3_3—r
L- atd 3—-2a-d a
] 3 s 3 33,
Lx 3 3

Table 1: Transition matrix corresponding to a parametrized choice for the distribution on the target strings. In this
case the target is L; and the distribution is parametrized according to Section 3.2.
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Figure 2: Convergence as function of number of examples. The horizontal axis denotes the number of examples
received and the vertical axis represents the probability of converging to the target state. The data from the target
is assumed to be distributed uniformly over degree-0 sentences. The solid line represents TLA convergence times
and the dotted line is a random walk learning algorithm (RWA). Note that random walk actually converges faster
than the TLA in this case.
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Figure 3: Rates of convergence for TLA with L; as the target language for different distributions. The y-axis plots the
probability of converging to the target after m samples and the r-axis is on a log scale, i.e.. it shows log(m) as m varies.
The solid line denotes the choice of an "unfavorable” distribution characterized by a = 0.9999:b6 = ¢ = d = 0.000001.
The dotted line denotes the choice of @ = 0.99:6 = ¢ = d = 0.0001 and the dashed line is the convergence curve for
a uniform distribution. the same curve as plotted in the earlier figure.
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Figure 4: Convergence rates for different learning algorithms when L, is the target language. The curve with the
slowest rate (large dashes) represents the TLA. The curve with the fastest rate (small dashes) is the Random Walk
(RWA) with no greediness or single value constraints. Random walks with exactly one of the greediness and single
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value constraints have performances in between these two and are very close to each other.

Initial Grammar | Target Grammar | State of Initial Grammar Probability of Not
(Markov Structure) Converging to Target
(SVO-V2) (OVS-V2) Not Sk 0.5
(SVO+V2)* (OVS-V2) Sink 1.0
(SOV-V2) (OVS-V2) Not Sink 0.15
(SOV+V2)* (OVS-V2) Sink 1.0
(VOS-V2) SVO-V2) Not Sink 0.33
(VOS+V2)* SVO-V2) Sink 1.0
(OVS-V2) (SVO-V2) Not Sink 0.33
(OVS+V2)* (SVO-V2) Not Sink 1.0
(VOS-V2) (SOV-V2) Not Sink 0.33
(VOS+V2)* (SOV-V2) Sink 1.0
(OVS-V2) (SOV-V2) Not Sink 0.08
(OVS+V2)* (SOV-V2) Sink 1.0

Table 2: Complete list of problem states, i.e., all combinations of starting grammar and target grammar which result
in non-learnability of the target. The items marked with an asterisk are those listed in the original paper by Gibson

and Wexler [1].
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