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Abstract

In a recent, seminal paper. Gibson and Wexler ([1]. GW) take important steps to formalizing the notion of
language learning in a (finite) space whose grammars are characterized by a finite number of paranifIrs.
One of their aims is to characterize the complexity of learning in such spaces. For example. they demon-
strate that even in finite spaces, convergence may be a problem since it is possible under some single-step
gradient ascent methods to remain at a local maximum. From the standpoint of learning theory, how-
ever. GW leave open several questions that can be addressed by a more precise formalization in terms of
Markov structures (a possible formalization suggested but left unpursued in a footnote of GW). In this
paper we explicitly formalize learning in a finite parameter space as a Markov structure whose states are
parameter settings. Several important results that follow directly from this characterization, include (1) A
corrected version of GW's central convergence proof: (2) an explicit formula for calculating the transition
probabilities between hypotheses and the existence of "problem states" in addition to local maxima: (3)
an explicit calculation of the time needed to converge, in terms of number of (positive) examples: (4)
the convergence and comparison of several variants of the GW learning procedure, e.g., random walk: (5)
batch- and PAC-style learning bounds for the model.
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1 Introduction: The Triggering Model exaliple sentence si at time 1i (examples drawn
as a Markov structure froni the language of a single target grammar.

L(G(;)). front a uniforim distribution oil t he ]an-
Recently, Gibson and Wexler ([1]. GV) have begun to guage (we shall be able to relax this distributional
formalize the notion of language learning in a (finite) constraint later on):
space whose grammars (and languages) are character-
ized by a finite number of parameters or I-dimensional [Learnahility on error detection] Step " If the cur
Boolean-valued arrays, n long. A grainimar in this space rent granunar parses (generates) si, then go to Stepis simply a particular n-length array of O's and l's: hence 2: otherwise, continue.
there are 2" possible grammars (languages). One of Gib- [Single-step gradient-ascent] Select a single param-
son and Wexler's aims is to establish that under some eter at random, uniformly with probability 1/n.
simple hill-climbing learning regimes. namely. single-step to flip from its current setting, and change it (0
gradient ascent, some linguistically natural, finite. spaces mal)ped to 1. 1 to 0) if[ that changy allows th/ cur-
are unlearnable, in the sense that positive-only examples r at s nt ac to bf analyz(d: otherwise go to Step
lead to local maxima--incorrect hypotheses from which 2:
a learner can never escape. More broadly, they wish to
show that learnability in such spaces is still an inter- Of course, this algorithm never halts in the usual
esting problem, in that there is a substantive learning sense. (W aim to show under what conditions this al-
theory concerning feasibility. convergence time, and the gorithlm converges "in the limit"--that is. after some
like. that must be addressed beyond traditional linguis- number. a, of steps, where a is unknown, the correct
tic theory and that, might even choose between otherwise target parameter settings will be selected and never be
adequate linguistic theories, changed. Their central claim is stated as their Theorem

In this paper, we choose as a convenient starting point 1 (p. 7 in their manuscript).'
their Triggering Learning Algorithm (TLA) to focus our Theorem 1 As long as I& probability is always gratcr
investigation of parameter learning. Our central result,
is that the performance of this algorithm is completely tha a loc rb d (6 > 0) that th ar r anil )iby aMarkv cain.The emain~lr ofthecountnr a local tr'iggcr for some lncorr~ctly-s~t parameter
modeled by a P.arkov chain. T)e remainder of the cur-
rent, paper is devoted to exploring the basic consequences Pt and o) thatn rts P accordinggy to thc largl t balur, it

of this fact. turns out that th( target grammar can always b( lfarn~d

Let us first review the GW model and the TLA. Fol- using th( Triggering Learning Algorithm.

lowing Gold [2] the basic framework is that of identifi- 1.1 The Markov formulation
cation in the limit. The learner (child) starts out in an
arbitrary state= some setting of the n parameter val- From the standpoint, of learning theory, however, GW
ties. The learner (child) receives a (countably infinite) leave open several questions that can) be addressed by
sequence of positive example sentences drawn from some a more precise formalization of this model in terms of
target language. Lt. After each presentation. the learner Markov chains (a possible formalization suggested but
can either (i) stay in the same state: or (ii) move to a new left unpursued in footnote 9 of (\,W). We can picture
hypothesis state, using the algorithm given below. If af- the hypothesis space, of size 2", as a set of points, each
ter some finite number of examples the learner converges corresponding to one particular array of parameter set-
to the correct target language (= parameter settings) tings (languages, grammars). Call each point, a hypoth(-
and never changes state, then it has correctly identified sis state or simply state of this space. As is conventional,
the target language; otherwise, it, does not converge, we define these languages over somte alphabet E as a sub-

In addition, in the GW model the language learner set. of E*. One of them is the target language (grammar).
obeys two futidamental constraints: (1) the sOigle.value We arbitrarily place the (single) target grammar at. the
constraint-the learner can change only I parameter center of this space. Since by the TLA the learner is re-
value at a time: and (2) the grecdiness constraint-if. stricted to moving at most 1 binary value in a single step,
the learner is given a positive example it cannot recog- the theoretically possible transitions between states can
nize (accept.), and if the learner changes one parameter be drawn as (directed) lines connecting parameter arrays
value and finds that it caii accept the example, then the (hypotheses) that differ by at most 1 binary digit (a 0
learner retains that new parameter value. Finally, we or a 1 in some corresponding position in their arrays).
also recall (WV's definition of a local trigger(minor nota- Recall that this is the so-called Hamming distance.
tional changes aside): given values for all parameters but We may further place weights on the transitions from
one. a local trigger for value t of parameters pi, pi(t). is state i to state j corresponding to the nonzero b's men-
a sentence s from the target grammar (GT such that s is tioned in the theorem above, these correspond to the
grammatical iff pi(r) = r. (WV then state their TLA as probabilities that the learner will move from hypothe-
follows: sis state i to state j. In fact, as we shall show below,

"* [Initialize] Step 1. Start at some random point in given a (list ribut ion over L((;). we can further carry out
the (finite) space of possible parameter settings, the calculation of the actual b's themselves. Thus, we
specifving ra •ingh hypothesized grammar with its Note that the notion of "trigger" does not enter into the
resulting extension as a language: statement of the TLA or the constraints the TLA employs,

"* [Process input, sentence] Step 2. Receive a positive I but only into the statement of the theorem.



can picture the TLA learning space as a directed, la- Therefore C is not learnable, a contradiction. In the
beled graph V with 2" vertices.' More precisely, we can second case, without loss of generality, assume there are
make the following remarks about, the TLA system GW exactly two absorbing states, the first. S corresponding
describe, to the target parameter setting. and the second .S' corre-
Remark. The TLA system is mnimmorylhss. that is. given sponding to some other setting. By the definition of an
a sequence s of sentences up to time 4t, the selection absorbing state, in the limit C' will with some nonzero
of hypothesis h depends only on sentence si, and not probability enter S', and never exit .Y. Then C is not
(directly) on previous sentences, i.e., learnable, a contradiction. Hence our assumption that

there is not exactly I AS must be false.
=>. Assume that there exists exactly 1 AS i in the

I,{h(si) < .xi k(t), t < ti-l = P{X(t;) < xi. I(t,_- I)} Markov chain 11. Then. by t lie definition ofan absorbingstate, after sonie number of steps mm. no matter what the
In other words, the TLA system is a classical dis-

gril stochastic proc(ss. in particular, a discrete Alarkor starting state. 1l will end up in state i, corresponding
process or Ntarkov chain. We can now use the theory of to the target grammar. I
Markov chains to describe TLA parameter spaces[3]. For Note that this approach avoids a crucial flaw in the
example, as is well known, we can convert the graphical proof given in GW (pp. 7-8 in manuscript):
representation of an n-dimensional Markov chain Al to That is. if the learner never goes through
an n x n matrix T, where each matrix entry (ij) rep- the same state twice, then she is bound to end
resents the transition probability from state i to state up in the target state at some point, because
j. A single step of the Markov process is computed via the parameter space is finite in size. Thus the
the matrix multiplication T x T; n steps is given by T". probability of avoiding the target state for-
A '-I entry in any cell (i, j) means that the system will ever is equivalent to the probability of cycling
converge with probability I to state j, given that it, starts forever through some ordered set of states (a
in state i. cycle).

As mentioned, not all these transitions will be pos- We can divide the parameter space into a
sible in general. For example, by the single value hy- finite set. of minimal cycles, where each min-
pothesis, the system can only move I Hamming bit at imal cycle contains no cycles as a subpart.
a time. Also, by assumption, only differences in surface Because the parameter space is finite, the set
strings can force the learner from one hypothesis state to of minimal cycles in the parameter space is
another. For instance, if state i corresponds to a gram- also finite. For each minimal cycle, we can
mar that generates a language that is a proper subset now calculate the probability that the learner
of another grammar hypothesis j, there can never be a remains in that cycle forever.., the probabil-
transition (nonzero b) from j to i, and there must, be ity of staying in the [minimal pm/rcb] cycle
one from i to j. Further, by assumption and the TLA, in the limit (forever) is zero. The same is true
it. is clear that, once we reach the target grammar there for all of the finitely-many minimal cycles. so
is nothing that can move the learner from this state, that the probability of staying in any of these
since all remaining positive evidence will not cause the cycles in the limit is also zero. Thus the prob-
learner to change its hypothesis. Thus, there must be a ability of ending up at the target state in Ih&
loop from the target. state to itself, with some positive linlil is one.
label b', and no exit arcs. In the Markov chain literature, In brief. GW attempt to show that the probability ofthis is known as an Absorbing Statc (AS). Obviously, a I reG tep oso httepoaiiyostatethis iskownly least an AbSorbing Staleo ( bio , lear the learner avoiding the target forever is zero by showing
state that only leads to an AS will also drive the learner that the fact. that. some minimal cycle occurs .infinitely
to that AS. Finally, if a state corresponds to a gram-
mar that generates some sentences of the target, there often makes the probability of the iifinite sequence zero.

In other words every way in which the learner avoidsis always a loop from any state to itself, that has some the target has probabilityvzero. Thus they coiclude that
nonzero probability. Clearly, one can conclude at once ilit of the event
the following learnability result.:

Theorem 2 Given a Markor chain (C corresponding to Event. = Learner avoids target forever
a GIl' TL., learner. 3 exactly I AS (corresponding to
the target grammar/lantuage) iff C is learnabl,.

Proof. 4=. By assumption, (' is learnable. Now assume Pr[uW, = 0
for sake of contradiction that, there is not exactly one where each WI,, is a path avoiding the target and U11
AS. Then there must. be either 0 AS or > 1 AS. In the is set of all such paths. However, as is well known, this
first, case, by the definition of an absorbing state, there union computation is true iff it is taken over a countable
is no hypothesis in which the I. arm-ir will r-main forever. numbur uf elcnients. In the example at hand, the crucial

26;W construct an identical transition diagram in the de- omission in the argument. is that the there are an un-
scription of their computer program for calculating local max- countable number of ways in which the learner can avoid
ima. However. this diagram is not explicitly presented as a the target. This is because there are an uncountable
Markov structure: it does not. include transition probabilities, number of sequences of numbers between I and Al - 1.
Of course, topologically both structures must be identical. The base Al - I expansion of any real number in the



Sinterval[0, 1) would yield such a sequence (e.g.. consider Suppose SOV (setting #5=[0 1 0e) is the target gram-
an irrational expansion such as the square root, of 2). mar (language). With the (GW 3-paranieter system,

Since there are an uncountable number of ways in there are 2 3 = 8 possible hypotheses, so we can draw
which the event of avoiding the target forever can be this as an 8-point Nlarkov configuration space, as shown
realized, the fact that each such way has probability zero in the figure above. The shaded rings represent increas-
do(s not imply that the total event, has probability zero ing Hamming distances from the target. Each labeled
as well. To see this consider a random variable X with circle is a Markov state, a possible array of parameter
a uniform distribution on [0, 1]. Now consider the event. settings or grammar, hence extensionally specifies a po10-

sible target language. Each state is exactly 1 binary
Event,: N < 1/2 digit away from its possible transition neighbors. Each

There are maty ways in which this event. could occur e. directed arc between the points is a possible (nonzero)There are 1 a4 v1/.vs in which this event. Ecou occs w transition from state i to state j: we shall show how t.o
X = 1/4. X 1/3. N = 0.234 etc. Each of these ways
has probability zero i.e., P[X = 1/4] = 0, P[,Y = 1/3:] = compute this immediately below. We assume that the

0... and so on. However we know that the probability target grammar, a double circle, lies at the center. This
of the event N < 1/2 is 1/2 not zero. This is because corresponds to the (English) SOV language. Surround-ofther arevaneontaXle/2 iiuii2notero. Th'iws in wichse ing the bulls-eye target, are the 3 other parameter arraysthere are an uncoun~tabif nuniber of ways in which tihe ta lfe lo 010 voebnr ii ah ep

event X < 1/2 could take place. Thus the proof as given that, differ from [0 1 0] by one binary digit each: we pic-

in [1] is incorrect. One correct way to formulate the ture these as a ring t Haminug biW away from the target:

proof is by resorting to an explicit iarkov formulation, [0. 1, 1). corresponding to G\V's parameter setting #6
s isuggest bu nesortingtoa exe licuted in aov footr .atnd in their figure 3 (Spec-first, Comp-final, +V2, basic or-a-, suggested but, not executed in GW's footnote 9, and dier SVO+\,2): [0 0 0]. corresponding to GW's setting

as we established above. A similar conceptual difficultvySOV) 0( 1 ore~nigtoG' etn
asemingly lesadstothei faboe ilure tonotepthat. dthereum y e #7 (Spec-first. Comp-first. -V2). basic order SOV: andseemingly leads to their failure to note that there may be [1 1 0], GW's setting #1 (Spec-final. Comnp-final, -1'2].other states besides local maxima, for which convergence basic order VOS.
may not occur. Around this inner ring lie 3 parameter setting by-

Corollary 1 Given a Markor chain corresponding to a potheses, all 2 binary digits away from the target: [0
(finite) family of grammars in a GW learning system, if 0 1], [1 0 0], and [I 1 1 (grammars #2, 3, and 8 in GW
there exist 2 or more AS, then that family is not learn- figure 3). Note that by the Single Value hypothesis that
able. the learner can only move one grey ring towards or away

from the target at any one step. Finally, one more ringEraminpl. out., three binary digits different from the target, is the
Consider the GW 3-parameter system. Its binary pa- hypothesis [1 0 13, corresponding to target, grammar 4.
rameters are: (1) Spec(ifier) first, (0) or last (1); (2) It is easy to see from inspection of the figure that
Comp(lenment) first (0) or last (1); and Verb Second (V2) there are exactly 2 absorbing states in this Markov chain,
does not exist. (0) or does exist (1). By Specifier GW fol- that, is. states that, have no exit arcs. One AS is the
low the standard linguistic convention of whether there target grammar (by definition). The other AS is state 2.
is part. of a phrase that. "specifies" that. phrase, roughly, Finally, state 4 is also a sink (a so-called "closed state"
like the old in the old book: by Complement GW roughly in the Markov terminology) that leads only to state 4 or
mean a phrase's arguments, like an ice-cream in John ate state 2. These two states correspond to the local maxima
an ice-cream or with envy in green with (nry. There are at the head of GW's figure 4. Hence this system is not
also 7 possible "words" in this language: S. V. 0. 01, learnable. In addition to these local maxima, the next,
02, Adv, and Aux. corresponding to Subject, Verb, Ob- section below shows that there are in fact. other states
ject, Direct Object, Indirect Object, Adverb, and Ad- from which the learner can never reach the target.
jective. There are 12 possible surface strings for each
(-V2) grammar and 18 possible surface strings for each 2 Derivation of Transition Probabilities
(+V2) grammar if we restrict, ourselves to unembedded
or "degree-f!' examples for reasons of psychological plan- for the Markov TLA Structure
sibility (see GW for discussion). Note that. the "surface The computation of the transition probabilities from the
strings" of these languages are actually phrases such as anhguage family can be computed by a direct extension
Subject, Verb, and Object.. Figure (3) of (W sumuma- of the procedure given in GW. Let the target language
rizes the possible binary parameter settings in this sys- L, consist of the strings si, s ,. i.e.,
tent. For instance, parameter setting (5) corresponds to = .8. 8.
the array (0 1 0]= Specifier first, Comp last. and -V2.
which works out, to the possible basic English surface Let there be a probability distribution P on these strings.
phrase order of Subject-Verb-Object. (SVO). As shown Suppose the learner is in a state corresponding to the
in GOW's figure (3), the other possible arranlgempnts of language L. Suppose it now receives the string .j. It
surface strings 'corresponding to this parameter setting will do so with probability P(sj). There are two cases to
include SV; SV 01 02 (two objects, as in givr John an examine depending upon whether or not tlte string sj is
ice-cream); S Aux V (as in John is a nice guy; S Aux V analyzable by the grammar corresponding to the current
0; S Aux V 01 02: Adv S V (where Adv is an Adverb, parameter setting.
like quickly; Adv S V 0; Adv S V 01 02: Adv S Aux V: Case, I. Suppose the learner can syntactically analyze
Adv S Aux V 0; and Adv S Aux V 01 02. t[ie received string sj. By tlte 'I'LA, it. will not chamtge its

•~~: 1 .,



p. arameter values. In the Markov chain formulation, tile can now be given as,
learner remains in the same state. Remember that this
state corresponds to the language L,. Also note that, P[.- s] = 1 - - k]
this situation arises only when sj is in the language L,. k is a neighboring state of,,
Therefore t lie probability of the learner remaining in the Finally. given any parameter space with n parame-
state s is P(sj). ters. we have 2" languages. Fixin ga one with ela sthe

Case II. Suppose the learner cannot syntactically an- tarwet languages.e F o fing o iofenm asfor

alyze the string. Then sj~ ý L,. By the TLA, the learner t~argelaggeL we obtain the following lprocedure for
constructing the corresponding Markov chain. Note that

chooses a parameter at. random, flips it, and if the niew this is the (,V procedure for finding local maxima., with
parameter setting makes sj analyzable, it retains this the addition of a probability measure on the language
value and moves to the corresponding state; otherwise it family.
remains in its original state s. Let us examine t his situa-
tion using the Markov chain formulation. The learner is * (Assign distribution) First. fix a probability mea-

in state s. It, has it neighboring states each at. a Hamming sure P on the strings of the target language Lt.

distance of 1 from itself. The learner picks one of these * (Enumerate states) Assign a state to each language
uniformly at random. Imagine that nj of these neigh- i.e., each Li.
boring states correspond to languages which contain si. * (Normalize by the target language.) Intersect all
If the learner picks any one of these nj states (which of languages with the target language to obtain for
course it does with probability nj/n), it. would stay in each i. the language LP = Li fl Lt. Thus with state
that state. If the learner picks any of the other states i associated with language Li, we now associate the
(with probability (i - nj )/n) then it. remains in state s. language LV
Note that nj of course could be 0 which means that none

of the neighboring states would allow the string to be an- * (Take set. differences.) Now for any two states i

alyzed. The maximum value nj could take is in. Thus we and k, if they are more than 1 Hamming distance

see that the probability that, the learner remains in state apart., then the transition P[i - k] = 0. If they

s is P(sj)((n - nj.l)/). The probability that it. moves to are 1 Hamming distance apart then P[i - k] =

each of the other nj states is P(sj)(l/n). P(L, \ Lý).

Clearly this allows us to compute the probability that This model captures the dynamics of the TLA corn-
the learner will remain in its original state s as the sum pletely.
of the probabilities of the above two cases, namely the Exanipc.
following expression:

\' P(,sj) + E (I - nConsider again the 3-parameter system in the pre-
s j n/n)P(sL) vious figure with target language 5. We can calculate

sEL ,t the following set differences to build the Markov figure

The above expression is still a little untidy because it, has straightforwardly.
the nj's in it.. We would like to clean it up a little. To do 1. L 1 fI L5 = 0 (no strings in common between LI and
this consider the way we would compute the transition target. LO).
probability of state s to some other neighboring state 2. L.,fL 5 ={S V,SVO,SNV0O1 02, S Aux V,S
say k in the chain. From the above analysis, we see
that, such a transition will occur with probability 1/n Aux \:OSAuxVOl 02).

for all the strings sj that are in the language Lk but not 3. L3 fl L5 = 0.
in the language L. The strings themselves occur with 4. L4 n L5 = {S V, S V O. S Aux V}.
probability P(sj) each and so the transition probability 5. L5 n L.5 = L5 .
is:

P[s-- k]= (l/n)P(sj) 6. L6 nL 5 ={SV. SV0, SV0102. SAuxV, S

s,EL,.s,,L..s,,EL, Aux V 0, S Aux V 01 02}

Note that the above summation is done over all strings 7. L7 n L, = {S V.', Adv S V }.

sj E (Lt n Lk) \ L, where \ is the set difference symbol. 8. L fn L,, = {S V, S V 0, S Aux V}.
It is easy to see that From these values alone, we can draw the figure illus-

trated. and find the local maxima. For example, since
.j e (L1 fl Lk) \ L, €, 5 j E (L1 l Lk.) \ (Lt fl L.). the normalized state set for state I is the enmptyset. the

Thus we can rewrite the transition probability as set, difference between states 1 and 5 gives all of the tar-
get language: so there is a (high) tranuition probability

P[s - k) = (1/n)P(sj) from state 1 to state 5. Similarly, since states 7 and 8
sEiLtnLA,.\cLfnL,j share some target. language strings in common, such as

S V, and do not share others, such as Adv S and S \ 0,
Since we have shown this in generality where for any the learner can move from state 7 to 8 and back again.

given target, we can compute the transition probabilities Many additional properties of the triggering learning
between any two states in the Markov chain formulation system now become evident once the mathematical for-
of the parameter space, the self-transition probability 4 realization has been given. It, is easy to imagine other



4 alternatives to the TLA that. will avoid the local max- whether any local maxima exist. One could also look at
ima problem. For example, as it stands the learner only other issues (like stationarity or ergodicity assumptions)
changes a parameter setting if that change allows the that, might potentially affect convergence. Later we will
learner to analyze the sentence it could not analyze be- consider several variants to TLA and see how these can
fore. If we relax this condition so that in this situa- all be formally analyzed within the Markov formulation.
tion the learner picks a parameter at random to change, We will also see that these variants do not suffer from
then the problem with local maxima disappears, because the local maxima problem associated with GWA's TLA.
there can be only I Absorbing State, namely the target Perhaps the significant advantage of the Markov chain
grammar. All other states have exit. arcs. Thus. by our formulation is that it allows us to also analyze conver-
main theorem, such a system is learnable. gence times. Given the transition matrix of a Markov

Or consider for example the possibility of noise-that chain, the problem of how long it takes to converge has
is. occasionally the learner gets strings that. are not in been well studied. This question is of crucial importance
the target language. GW state (fin. 4. p. 5) that this in learnability. Following GW, we believe that it is not
is not a problem: the learner need only pay attention enough to show that the learning problem is consistent
to frequent, data. But this is of course a serious prob- i.e., that the learner will converge to the target in the
lem for the model. Unless some kind of memory or limit. We also need to show, as GW point out. that the
frequency-counting device is added, the learner cannot learning problem is ftasibit, i.e., the learner will converge
know whether the example it receives is noise or not. in "reasonable" time. This is particularly true in the case
This being so. then there is always some finite proba- of finite parameter spaces where consistency might not
bility. however small, of escaping a local maximum. It be as much of a problem as feasibility. The Markov for-
appears that the identification in the limit framework as mulation allows us to attack the feasibility question. It
given is simply incompatible with the notion of noise, also allows us to clarify the assumptions about the be-
unless a memory window of some kind is added. havior of data and learner inherent, in such an attack.

We may now proceed to ask the following questions We begin by considering a few ways in which one could
about the TLA more precisely: formulate the question of convergence times.

1. Does it converge? 3.1 Some Transition Matrices and Their
2. How fast does it converge? How does this vary with Convergence Curves

distributional assumptions on the input examples? Let. us begin by following the procedure detailed in the
3. Can we now compute the dynamics for other -natu- previous section to actually obtain a few transition ma-

ral" parameter systems, like the 10-parameter sys- trices. Consider the example which we looked at infor-
temn for the acquisition of stress in languages devel- mally in the previous section. Here the target grammar
oped by [4]? was grammar 5 and the L' languages have already been

4. Variants of TLA would correspond to other Mlarkov obtained. For simplicity, let us first assume a uniform
structures. Do they converge? If so, how fast? distribution on the strings in L5 , i.e., the probability the

learner sees a particular string sj in L5 is 1/12 because
5. How does the convergence time scale up with the there are 12 (degree-0) strings in L5 . We can now com-

number of parameters? pute the transition matrix as the following, where 0's

6. What, is the computational complexity of learning occupy matrix entries if not, otherwise specified:
parametrized language families?

7. What, happens if we move from on-line to batch
learning? Can we get PAC-style bounds [6]? L1  L2  L3  L4  L5  L6  L7 L8

8. What does it, mean to have non-stationary (noner- 6 3

godic) Markov structures? How does this relate to L2  1I
assumptions about. parameter ordering and matu- L3  4 I_
ration? L4 12 4 1

9. What other parametrizations can we consider? L5

In the remainder of this paper we shall consider these L7
and other questions. We turn first to the question of Ls _ r
convergence and convergence times. 'i ,

3 Convergence Times for the Markov Notice that both 2 and 5 correspond to absorbing
Chain Model states; thus this chain suffers from the local maxima

problem. Note also (following the previous figure as
The Markov chain fornmulation gives us some distinct, well) that state 4 only exits to either itself or to state
advantages in theoretically characterizing the language 2, hence is also a local maximum. Niore precisely, if T
acquisition problem. First, we have already seen how is the transition probability matrix of a chain, then ti.
given a Markov Chain one could investigate whether or i.e. the element of T in the ith row and jthli column is
not it has exactly one absorbing state corresponding to the probability that the learner moves from state i to
the target grammar. This is equivalent. to the question of state j in one step. It is a well-known fact that if one



considers the corresponding i, j element of 7'" then this is not clear, prestinlial)ly the issue of learnability even in
is the probability that the learner moves from state i the 3-paranmeter case deserves re-examination in light of
to state j in in steps. For learnability to hold irrespec- this p)ossibility.
tive of which state the learner starts in. the probability Obviously one can examine other details of this par-
that the learner reaches state 5 should tend to I as in ticular system. However. let us now look at. a case where
goes to infinity. This means that colunin 5 of T." should there is no local maxima problem. This is tlie case when
contain all I's, and the matrix should contain 0"s every- the target languages have verb-second (V2) movement
where else. Actually we find that T.'" converges to the in G\V's 3-parameter case. Consider the transition ma-
following matrix as in goes to infinity: trix obtained when the target language is Li. Again we

assume a uniform distribution on strings of the target.

L, L., L 3  L4 L 5  LI L7  Ls
Li I Li L, L 3  L 4  L5  L6 L7  Ls

L4 I Li I

L3  IL. _538 3
L4 I L 3  i

L L 4  
3

Le, L 5  ,- . _,

L7  I Lm) 76 i
L, I L 7  i

Examining this matrix we see that if the learner starts L 8 18

out in states 2 or 4. it will certainly end up in state 2 in Here we find that. T.. does indeed converge I.o a matrix
the limit.. These two states correspond to local maxima with I's in the first. column and 0's elsewhere. Consider
granmmars in the GW framework. If the learner starts in the first colunmi of T". It is of the form:
either of these two states, it. will never reach the target.
Fromn the matrix we also see that if the learner starts in (i)
states 5 through 8, it will certainly converge in the limit. p2(0)
to the target grammar. P3 (m)

The situation regarding states 1 and 3 is more inter- p4(?n)
esting. If the learner starts in either of these states, it p5(m)
will reach the target, grammar with probability 2/3 and p,(-1)
reach state 2, the other absorbing state with probability p7(n)
1/3. Thus we see that local maximna are not the only ps(i)
problem for learnability. GW (p. 26 in manuscript) Here pi denotes the probability of being in state 1
focuses exclusively on local maxima, and indirectly ira- at. the end of in examples in the case where the learner
plies that these are the only difficult states: "most of started in state i. Naturally we want
the source grammars have local triggers that enable the
learner to get to the target... however, there exist, pairs lim pi(in) = I
of source and target grammars from the parameter space

given in the table in Figure 3, such that. no data from and for this example this is indeed the case. The next
the target. grammar will ever shift the learner out of the figure shows a plot of the following quantity as a function
source grammar... There are six such pairs of source lo- of in, the number of examples.
cal maximum and target grammars" They then go on p(m) = innpi(m)}
to list in their figure 4, two such local maxima for the
target grammar 5. corresponding to states 2 and 4. The quantity p(In) is easy to interpret. Thus pI(m) =

While this statenment is strictly true, it does not (Y- 0.95 means that for every initial state of the learner the
haust the set. of source states that. never lead to the target probability that it. is in the target. state after in exam-
grammar. As we see from the transition matrix, while pies is at least. 0.95. Further there is one initial state (the
it is true that states 2 and 4 will, with probability 1, worst. initial state with respect, to the target, which in our
not converge to the target. grammar. it is also true that example is Ls) for which this probability is exactly 0.95.
states I and 3 will not converge to the target. Thus, the We find on looking at the curve that the learner coil-
number of "bad" initial hypotheses is significantly larger verges with high probability within 100 to 200 (degree-0)
than that presented iii Figure 4 of GW. This difference is example sentences, a psychologically plausible number.
again due to the new probabilistic framework introduced (One can now of course proceed to examine actual tran-
in the current, paper. and in fact. is related to the diffi- scripts of child input to calculate convergence times for
culty found earlier with the central convergence proof: "actual" distributions of examples, and we are currently
looking just. at. minimal paths and cycles in fact misses engaged in this effort.)
some possible learning paths. In the appendix of this pa- As one example of the power of this approach, we
per, we provide a complete list, of all starting states which can compare the convergence time of TLA to other al-
might result in non-learnability. While the implication of goritfhms. Perhaps the simplest is random walk: start
the existence of additional non-learnable starting states the learner at a random point in the 3-paramneter space.



and then, if an input, sentence cannot. be analyzed. move section. This matrix has non-zero elements (transition
randomly from state to state. Note that this reginme can- probabilities) exactly where the earlier matrix had non-
not suffer from the local maxima problem, since there zero elements. lowever, the value of each transition
is always some finite probability of exiting a Uoti-target probalbili(y now depends upon a. b. (-. an(d d. in part icu-
state. lar if we choose a = 1/12, b = 2/12, c = 3/12.d = 1/12

To satisfy the reader's curiosity, we provide the con- (this is equivalent to assuming a uniform distribution)
vergence curves for a random walk algorithm (RWA) on we obtain the appropriate transitioni matrix as before.
the 8 state space. We find that the convergence times Looking more closely at. the general transition matrix.
are actually faster than for the TLA: see figure 2. Since we see that. the transition prol)ability from state 2 t.o
the RWA is also superior in that it does not suffer from st ate I is ( I - (a + b + c))/3. (learly if we make a arbi-
the same local maxima problem as TLA, the conceptual trarily close to 1, then this transition probability is arbi-
support for the TLA is by no means clear. Of course, trarily close to 0 so that Itlie niuimber of samples needed
it. may be that the TLA has empirical support, in the to converge can be nmade arbitrarily large. Thus choos-
sense of independent evidence that children do use this ing large values for a and small values for b will result in
procedure (given by the pattern of their errors, etc.). but large convergence times.
this evidence is lacking, as far as we know. This means that the sample coml)lexity cannot be

Now that we have made a first attempt to quantify the bounded in a (listribut ion-free sense, because by choos-
convergence time, several other questions can be raised. ing a highly unfavorable distribution the sample coin-
How does convergence tinme depend upon the distribu- plexity can be made as high as possible. For exam-
tion of the data? How does it compare with other kinds ple, we now give the convergence curves calculated for
of Markov structures with the same number of states? different choices of a, b,c.d. WVe see that for a uni-
How will the convergence tinme be affected if the num- form distribution the convergence occurs within 200 sam-
ber of states increases. i.e the number of parameters in- pies. By choosing a distribution with a = 0.9999 and
creases? How does it depend upon the way in which b = c = d = 0.000001, the convergence time can be
the parameters relate to the surface strings? Are there pushed up to as nmuch as 50 million samples. (Of course,
other ways to characterize convergence times? We now this distribution is presumably not psychologically real-
proceed to answer some of these questions. istic.) For a = 0.99,b = c = d = 0.0001. the sample

3.2 Distributional Assumptions complexity is on the order of 100,000 positive examples.

In the earlier section we assumed that the data was uni- 3.3 Absorption Times
formly distributed. We computed the transition matrix In the previous sections. we computed the transition ma-
for a particular target language and showed that conver- lifgence times were of the order of 100-200 samp~les. inl thifs trix for a variet~y of distributions and showed the rat~e of
sectims we show that the convergence times depend cru- convergence. In particular we plotted p(m), (the prob-section we strationehgepartimes depend chos ability of converging from the most. unfavorable initial
cially upon the distribution. In particular we can choose state) against (the number of samples). However, this
a distribution which will make the convergence time as is not the only way to characterize convergence times.
large asr we w at. Tusythedstrmibstion-free. coGiven an initial state, the time taken to reach the ab-
time for the : n-parameter sy'stuem is infinite, sorption state (known as the absorption time) is a ran-

As before, we consider the situation where the target dnivral.Oecncptethmanndaine

language is L 1 . There are no local maxima problems dora variable. One can compute the mean and variance

for this choice. We begin by letting the distribution be of this random variable. For the case when the target
parametrized by the variables a. b, c, d where language is L 1, we have seen that, the transition matrix"p e has the form:

a = P(A = {Adv V S})
b = P(B = {Adv V OS, Adv Aux V S}) T 1 0
c = P((C'= {Adv V 01 02 S. Adv Aux VO S.

Adv Aux V 01 02 S}) Here Q is a 7-dinmensional square matrix. The nmean
d = P(D = {V S}) absorption timies from states 2 through 8 is given by the

Titus each of the sets .4, B.(C and D contain different vector (see Isaacson and Madse, [31)

degree-0 sentences of LI. Clearly the probability of the
set L 1 \4{A uB UB CU D} is I - (a+ b+ c+ d). The =
elements of each defined subset of L1 are equally likely where 1 is a 7-dinmensional colunun vector of ones. The
with respect to each other. Setting positive values for vector of second moments is given by
a. b,c. d such that. a + b + c+ d < I now defines a unique
probability for each degree(0) sentence in Li. For exam- = (I - Q)-(2ji - 1).
pie. the probability of Adrl'OS is b/2, I he probability of
AdrAiui'iOS is c/3, that of V'OS is (I -(a+b+c+d))/6 Using this result., we can now compute the mean and
and so on. standard deviation of (lie absorption tinie from the niost

We can now obtain thie transition matrix correspond- unfavorable initial state of the learner. (We note that
ing to this distribution. This is shown in Table 1. the second inonient is fairly skewed in such cases and so

(Compare this matrix with that obtained with a ini- is not symmetric about the mnean, as may be seeu from
formi distribution on the sentences of Li in the earlier the previous curves.)



Learning Mean abs. St. l)ev. be represented as a subset of !" i.e.
scenario time of abs. time

TLA (uniform) 4 .8 22.3 Li = {1;i I ,:i_ .... *c'j E E'
TLA (a = 0.99) 45000 33000 The learner is provided with positive data (strings that

TLA (a = 0.9999) 4.5 x 10'' ".3 x 10'I belong to tlite language) drawin according to distribu-
RW 9.6 10.1 tion P on flie, strings of a particular target language.

'lite learner is to identif It lie target . 1t is quite possible
3.4 Eigenvalue Rates of Convergence that ithe learner receives strings that are in liore than

In classical Markov chain theory, there are also well- one language. In such a case thlie learner will not Ie

known convergence theorems derived from a consider- able to uniquely identify the target. However. as more

ation of the eigenvalues of the transition matrix. We and more data beconJes available. thie probability of hav-
state without proof a convergence result for transition ing received only ambigious strings beconies smaller andmatrices stated ip terms of its eigenvalues, smaller and eventually thie learner will be able to ideniif,the target uniquely. An interesting questlion to ask then
Theorem 3 LeI T be an Ii x it transition iiahnru tnrith is how many samples does the learner need to see ,so that
U linearly/ indqptnd til left tiginr(clors x. .... x,2 cor- with high confidence it is able to identify ithe target. i.e.
responding to uig nvaut(s A1 . A,. WI x, (an n- the probability that after seeing that many samples. the
dinu nsional rcclor) r~prsf it thl starting probability of learner is still ambigious about the target is less than b.
b ing in each slat( of the chain and 7r b( the hiniling The following theorem provides a lower bound.
probability, of bring in (ach slat. Thin afltr k hransf-
tions. thI probability of being in (ach slate xj" can be Theorem 4 The larner niids to drawr at least l 1
described by Maxj#t T-1 ln(1/6) Sawpl(s ( wiure pj = P(LI f) L)

in order to be able to identify th/ large I with confid(nc(

xOT k- r A= xyx, ý,1 max I" II x0yixi 11 greater than 1 - 6.
"" < < n Proof. Suppose the learner draws in (less than

a i) samnples. Let k = arg maxj 1tpj. This means 1)
-- = t1ah h1tT). In(l1/b) and 2) that with probability pA.

This theorem thus bounds the rate of convergence to the learner receives a string which is in both Lt. and
the limiting distribution -r (in cases where there is only Lt. Hence it will be unable to discriminate between
one absorption state, 7r will have a 1 corresponding to the target the the kth language. After drawing in saim-
that state and 0 everywhere else). Using this result we pies, the probability that all of thlem belong to the set
can now bound the rates of convergence (in terms of Lt nl Lk, is (pk)"'-. li such a case even after seeing in
number k of samples) by: samples, the learner will be in aii ambiguous state. Now

Learning scenario Rate of Convergence (p0.). > (pt.)M since in < M and Pt. < 1. Finally

TLA (uniform) 0 (0 .9 4 k) since Al hi(l/p\) = ln((I/pf. )) = ln(1/6), we see that

TLA(a = 0.99) O(( _ 10-4)k) (M.k)." > 6. Thus the probability of being ambiguous af-
T a= 0.9999) O((1 - A0 -)) ter in examples is greater than 6 which means that the

TLA(a =0.9 0 0 -) confidence of being able to identify the t.arget is less than
RW 0 (0 .891) 1 - 6. 1

This theorem also helps us to see the connection be- This simple result allows us to assess the number of
tween the number of examples and the number of pa- samples we need to draw in order to be confident of cor-
rameters since a chain with ii states (corresponding to rect-ly identifying the target. Note that ifthe distribution
an i x it transition matrix) represents a language family of the data is very unfavorable, that is, the probability
with log2(n) parameters. of receiving ambiguous strings is quite high, then the

number of samples needed can actually be quite large.
4 Batch Learning Upper and Lower While the previous theorem provides tlie number of sam-

Bounds: An Aside pies necessary t-o identify the target, the following theo-
rem provides an upper bound for the number of samples

So far we have discussed a memoryless learner moving that. are sufficient to guarantee identification with high
from state to state in parameter space and hopefully con- confidence.
verging to the correct target in finite time. As we saw Theorem 5 If the ikarner draws more than ! =
this was well-nmodeled by our Markov formulation. In In(1/6) sanples. then it will identify t/i tar-
this section however we step back and consider upper t ' -)) It

and lower bounds for learning finite language families if qet with confidencc greater than I - 6. ( Hlri t, =

the learner was allowed to remember all the strings en- P(LI \ Ujt Lj)).

countered and optimize over them. Needless to say this Proof. Consider the set L = Lt \ Uj~,Lj. Anuy ehe-
might not. be a psychologically plausible assumption, but ment of this set is present. in the target language Lt but
it can shed light, on the information-theoretic complexity not in any other language. Consequently upon receiving
of the learning problem. such a string, the learner will be able to instantly iden-

Consider a situation where there are a languages tify the target.. After in > M samples, the probability
L1 , L 2,.. .L, over an alphabet. E. Each language can that the learner has not received any member of Ihis set



* is (I - P( L))... = (1 - b,)... <_ (I -b,)"J H Ienice state it' I lie flew senltence is aiialyzable. Ot herwise tble
the probablility oseeiing sonme tineiber of' L in) those ill learner nioves niiiiforiilv at raiiioii to anyv of Ihle ot her
samples is greater I haii I - 6. But seeing suich a miember stales aiid st avs t here iff the sentence -anl he aijalvzed.
enables the learner to ident ifyv the target so flth- prob- If the senitenice cannot b~e aiialzed iii flie, new state, thle
ability that flih- leartier is able to identify fifthe target is learner remiainis fii its original s1tate.
greater thain I - th if it draws miore thlaii M samples. I Fig. I1 shows the conivergenice tlimes for t hese thiree al-

To suinularize. t his sect ion provides a simple tiipper gorit liiis when L, is t lie target language. Inlt erestitigly.'
atid lower botiid on thle samiple coimplexit y of exact iden- all thIiree perforim better than lie TLA for (hIiis task. Fuir-
tificat ion of f lie, target language fronti positive dlat a. The t her t hey (1o hot stiffer fronii lo-al imaximia problemis. It
th paramei~ter t hat mevasur-es life conflidence of thle learnier shouild be poilitedout . however. that t lie, differenices froii
of being able to identit fy t lie, target is .s.igg shrc of' a '[LA are miarginial aiid t his conivergence liat4 Ibeenl showin
PAC [61] fortiutlat ion. However there is a crucial differ- on ly for' L, as lie( target laiiguage. Ideally Ilie conver-
eiice. Int flie, PAC( forni ni at iou. onie is init erest ed il(if) an' enlce rates hiave to be compi i tiid for each Ii a rget I aiigniage,
aplproxiiiat ion toI li the target language wit Ii at least I - ik alid thlen eit her a worst case or average case rate 5110111(
confidenice. lIn ouir case. t his is not so. Sinice We are [lot be decided uipoii to cliaract erize t lie conivergenice linm's
allowed to appiroximuate f lie- target. tflie, samiple compillex- for thle algorit lini oin thle language family as a whole.
it v shot)s tip withI choice of' tn fa vora I le (list rib iit ions.
T here are somie initeresting dlirectionis owe co)illd follow 6 Conclusion, Open Questions, and
w itini this batcli learninig framiework. Otte couild try

to get t rite lPA( -51 ve dlist ribtit ion-free boitinds for vani-Fu reD ecin
otis kinds of latignage families . Alternat ively one cotild stemme fprmtr nicesslh ieo l(
uise f lie, exact identit ficat ion resuilts here for lili~gist icall% Aothespoidinge of ark ianrie ers w tinrases". T flie sizeo thle
plansibke language famiilies with -ireasoniable- 1 rolbabil- corn soiiding0 paramete sytmat rigows as 2".dehs in iEn
it v dlist ributtions onl thle (hat a. It miiiiht be aui interest Inig ca(oaI Praf'trsyem sfoidimdlsfE-
exercise to recoiiljtite flthe hounds 0for cases where thi ghlih st ress ([4]) t he corresponiiniug NIarkov st ructutre will

learnier receives hot Ii posit ive aiid tiegat ive data. F inall% be a 1024 x 1024 mnat rix. W~e are cuirrent ly condticting
li bound anayi oftis larger systemi to filld its local maxima.the o olds obaiiied here couild bie sharpened ftirt her. atalvz -its coftrgnc Iie.adsei t ovrec

W~e initenid to look into somie of t hese qunestin in Ilic ayeis ovrec nis idsei iscueglc
fitl fire. tinmes corresp~onid to what one( muighit finid in p~ract ice withI

real stress systemts.

5 Variants of the Learning Model Additionial (1Inestiolis remain to be answered. Otte is-
sue( has to (10 with thle *'smoot liuiess" relat ion between

We have so far focused oii thle ILA scheime for learin- t he p~arameifter settings atid fthe resultinig suirface st rinigs.
ing. TLA observes tile single value and( greediness coii- lit l)riiicipl4'(s-aiidI-Iaranlieters theory. it has oft en been
st raints. Th'lere couild be several varianltr.s of thlis learining suiggested t hat a smlall par'amleter change cotild lead to
algorit hmn anid many of t hese art, captujred complletely a large (ledluct ive chianige in the( granmiar, hience a large
by ouir Nlarkov forintilat ion. We consider thle followiing change in t lie suirface language generated. lit all thle ex-
three simiple variants by dropping either or hothI of tflie, amtples considered so far there is a smuoot h relat ion be-
Single Value aiid G reediness constraints: tweeii suirface seniteinces atid paramieters. in t hat switcli-

inig froiii a V2 to a tion-V2 systemi. for instance, leadis
flatdoni walk with nfeither greedinifess nor shigle uts to a Nlarkov state that is not too far away fronii the
value coixstraiijits: We have already seen this exami- previons onie. If ( his is not so. it is not so'clear that
ph' before. 'Tle learner is iti a lparticuilar state. Upoin thle TLA will work as before. lii fact. f lie, whole (tInes-
receivinig a iiew sentenice. it remiains in i hat state if t he t iou of flow to forniiilate tfie not ion of *'siioot hiiess" ili
senitenice is analyzable. If hot. flthe learner mloves5 lul- a laiiguage grammnar framework is inclear. W e know
foriily at randoim to aii\. of' lie, ot her states aiid stays iii thle case of cont iliious fuincirions, for exampille. t hat
t here waiting for thle next sententce. '1hiis is donle with lioi if flie, learner is allowed to choose examples ( which caii
regard to whether f lie, new state, allows f lie, senutencie to he silimiuhat ed by selective at temition ). t heiiuli Stich ac-

he analzed. tive" learnier caii approximlat e suich futict iols itiuch imore

Random walk with no greediness but with single qiiickly thian a "passive" learne~r, like I lie one( p~resenitedl
value constraint: The learner remains in its originial in MV. Is t here ami analog to t his in t lie discrete'. digital
state if ithe iiew~ -nltemice is aimalvzable. Othlerwise, the (loiiaiii of lamigiage'? lHow~ caii one appiroximnat e a hait-
learnier chooses one of thle parameit ers tiiiiforinly at ran- gnage'? Here too mat henmat ics iiia%. play a helpful role.
doni aiid flips it I hereby mmovinig to aii adljace'tt st ate fil Recall t hat thiere is ani anialog to a fuiict ional analysis
t~he Nlarkov sI riictnure. A~gain this is d[otie withioii regardI of languiages -naiiiely. the algebraic appIroachi adlvancedl
t~o whether thle niew~ state allow~s thle sentenice to be amia- by ( 'loniskv aiid Scliut zetuberger ([5]). lii t his miodlel, a
lyzed. However sinice onlyv oiie par-iliet4r is chlaniged at laigtiage is describedl by anl ( infiniite) polynomiial genier-
a timne. flthe learner call onmly miove to ne4ighblorinig states at ing fl'umict iou., Where t he coefficient s Oil the polynmiiial

at any iveti titiie.t ermi x gives thle iminiiier of ways of derivinig (lthe st ring
x', A (weak, st riing) approximat~ion t.o a language cali

Rlandom walk with no single value constraint but themi be (leliliei iii terms of aiu approximiationl to f lit,
with greediness: The learnier remiains iii its origitial 9genei4ratinig fund cion. If this mlet hod call be dleployed.



then olie might be able to carry over I lie results of fuiic.- grailiiilar is (VOS-V2). For cases when the( tar- 9
tional analysis and approximia tion for active vs. passive get is learniable. t ie learner converg~es to thle target
learners into thie --digit al- domain of language. If' his ini 100-200 samples with high (greater than 0.99)
is possible. we wvould thlen have a very p~owerfuil set of' 1 rolbabjlit y. lurt her. thle variants of lie '[LA all
previously tniideruitilized mathematical tools to analyze out perlorii t he 1'LA in I ernis of convergence t imies.
laiiguage learnabilit y.
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target grammiar pa~irs for which thle learner is not guar- PormigadFra ytm.NrhHlad
anteedl to converge to t he target with probability 1. In Anmsterdam, 1963. 53-77.
fact. assuming- a uiniforni dlist ribut ion on tlie( strings for [)L .Vlat hoyo h eral.Po.o
the target gramniiar. it is possible to comiptte tlie prob- [6] ( L. 8 T.C Valiant A 436-4o4teLerabe5Irc.o

ability of not coiiverging to the target for each of these l194SO,94,13-4
pairs. Notev t hat t his probabilit y is noni-zero for thle pairs
listed.

A.2 Remarks

1. We have provided a complete list of initial start-
ing grammars froni which some target is not learn-
able (ije. learnable wit]) probabifity 1), We nto-
tice that there are three kinds of suich problemn
starting states. Sonie states correspond~ to sinks
in the( \larkov St ruicture with respect to some' tar-
get grauilimar. Here the learnter gets stuck, never
leaves it aiid corresp~ondinigly inever converges to
lie target . Thieii there are st ates which are not

sinks (0\'S±\'2 wheii the target is SVO-V2) but
which cani oiilv- move to somie non-target sink. and~
so inever converge to the target . These two kinds
of hproblenti st ates (st arred in otir table) have beeii
listed by Gibsoni and~ Wexler in Fig. 4 (p~g. 27 of
inianscript ). Finally t here are, st at es wvhich are not
sinks. buit which can withI a non zero probability
converge to somie non-t arget sink. They can also
withI a noti-zero probability converge to t lie, target
aid~ in t his respect are (list inguishied froiii problem
states of type 2.

2. We woulid like to observe t hat of lie 56 possible
iiiit ial gratminiar-t arget granimar comiibinat ionis pos-
sible. 12 resuilt ini noii-learimabb' situiat ions in the 3-
paramnet er system inivest igat ed here. This is a fairly
high densityv of uinfavourable intit ial con figurations.
It would be itnterest ing to see htow thiis chiangeswl'itI
ot her lhitgual suibsystemts with a larger number of
paramuete'rs.

:I. We also dlid ani analysis of convergence t imes iuuider
umiiiorni dit rihuttioun for t he each target grammnar.
We ititd t hat the resilts are, similar to the restilts
dhisplayed in t lie piaper for I lIe( case, wle ii t lie t a rget 1
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Figure 1: The 8 parameter settings in the G(W example, shown as a Markov structure, with transition probabilities
omitted. (Without transition probabilities. this diagram corresponds exactly to that in GW's appendix, as mentioned
above.) Directed arrows between circles (states) represent, possible nonzero (possible learner) transitions. The target
grammar (in this case, number 5, setting [0 1 0]), lies at, dead center. Around it are the three settings that differ
from the target by exactly one binary digit: surrounding those are the 3 hypotheses two binary digits away from the
target: the third ring out contains the single hypothesis that differs from the target, by 3 binary digits. Note that
the learner can either cycle or step in or out, one ring (binary digit) at a time, according to the single-step learning
hypothesis: but some transitions are not possible because there is no data to drive the learner from one state to the
oilier under the TLA.

Ll L,_, L L4  L.r Lr, L7  Ls
Lt

L., o-2b-.r 2+a+h+'
L32+a+d-b h-

33
L4  I I 3

L. 3-a a

3,3 t- 3-1--
L,3 a+d 3 3-9a-d a

L,4 3 3 3 .
3 3

Table 1: Transition matrix corresponding to a parametrized choice for the distribution on the target strings. In this

case the target is Ll and the distribution is paranietrized according to Section 3.2.
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Figure 2: Convergence as function of number of examples. The horizontal axis denotes the number of examples
received and the vertical axis represents the probability of converging to the target state. The data from the target
is assumed to be distributed uniformly over degree-0 sentences. The solid line represents TLA convergence times
and the dotted line is a random walk learning algorithm (RWA). Note that random walk actually converges fashr
than the TLA in this case.

C--------------------------------S

SJ
0t

0 1'0 20 30 4 10

Lag(Nwftwe al Swnples)

Figure 3: Rates of convergence for T LA wit h L I as the target language for differen t d ist ribu tions. The y-axis plot s thle
probability of converging to the target. after iii samples and thex~-axis is on a log scale, i.e., it shows log(mi) as I?# varies.
The solid line denotes the choice of an "unfavorable distributioni characterized by a = 0,9999; b = r = d = 0.000001.
The dotted line denotes the choice of a = 0.99;b = r = d = 0.0001 and the dashed line is the convergence curve for
a uniform distribution. the same curve as plotrted in the earlier figure.
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Figure 4: Convergence rates for different, learning algorithms when L 1 is the target, language. The curve with the
slowest rate (large dashes) represents the TLA. The curve with the fastest rat~e (small dashes) is the Random Walk
(AWA) with no greediness or single value constraints. Random walks with exactly one of the greediness and single
value constraints have performances in between these two and are very close to each other.

initial Grammar Target Grammar State of Initial Grammar Probability of Not

(Markov Structure) sonverging tVo Target.
(SVO-V2) (OVS-V2) Not, Sink 0.5

(SVO+V2)* (OVS-V2) Sink 1.0
(SOV-V2) (OVS-V2) Not. Sink 0.15

(SOV+V2)* (OVS-V2) Sink 1.0
(VOS-V2) (SVO-V2) Not Sink 0.3-3

(VOS+V2)* (SVO-V2) Sink 1.0
(OVS-V2) (SVO-V2) Not Sink 0.33

(,OVS+lV2)* (SVO-V2) Not Sink 1.0
(VOS~-V2 ,SOV-V2) Not. Sink 0.33

(VOS+V2)* (SOV-V2) Sink 1.0
(OVS-V2) (SOV-V2) Not Sink 0.08

(OVS+V2)* (SOV-V2) Sink 1.0

Table 2: Complete list of problem states, i.e., all combinations of starting grammar and target grammar which result
in non-learnability of the target. The items marked with anl asterisk are those listed in the original paper by Gibson
and Wexler [1].
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