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1. TECHNICAL SUMMARY

The goal of this project conducted by SRI International (SRI) is to develop consistency
modeling technology. Consistency modeling aims to reduce the number of improper
independence assumptions used in traditional speech-recognition algorithms so that the resulting
speech-recognition hypotheses are more self-consistent and, therefore, more accurate.
Consistency is achieved by conditioning HMM output distributions on state and observations
histories, P(x/s,H). The technical objective of the project is to find the proper form of the
probability distribution P, the proper history vector, H, and the proper feature vector, x, and to
develop the infrastructure (e.g. efficient estimation and search techniques) so that consistency
modeling can be effectively used.

During the first year of this effort, SRI focused on developing the appropriate base
technologies for consistency modeling. We developed genonic hidden Markov model (HMM)
technology, our choice for P above, and Progressive Search technology for HMM systems which
allows us to develop and use complex H-IMM formulations in an efficient manner. Papers
describing these two techniques are included in the Appendix of this report, and are briefly
summarized below. This report also describes other accomplishments of Year 1, including the
initial exploitation of discrete and continuous consistency modeling and the development of a
scheme for efficiently computing Gaussian probabilities.

All of our work that is aimed at improving the word accuracy of speech x,.cognition
systems is regularly evaluated using standard test sets. Table 1 shows our progress in terms of
reduced word error rate. Our overall error rate was reduced by 41%.

We performed two studies aimed at removing independence assumptions from HMM
systems. Our initial attempt, local discrete-density HMMs, did not provide us with an
improvement in accuracy. A subsequent study, local continuous-density consistency modeling,
made clear some of the problems with the initial approach (e.g. poor choices of context and output
distribution type) and shows great promise for future reductions in speech recognition error rates.

2. SPEECH RECOGNITION ACCURACY IMPROVEMENTS

Table 1 shows the reduction in error rate we achieved on ARPA's November 1992 Wall or
Street Journal (WSJO, 5K bigram test). We evaluated SRI's Decipher1 technology as it existed at& &i
the start of this project in ARPA's November 1992 evaluation. It was a tied-mixture 1MM using 3
SRI's phone set and a combination of SRI's and Dragon's WSJ pronunciation dictionaries. We ed 0
achieved a 13% error rate. In June 1993, after improving our system and conducting regular .........
progress checks with other development materials (using different speakers than the November
1992 test set), we reevaluated our speech recognition system on the November 1992 test set.2

Avninability Codes

Avail and / or
1. Decipher is a trademark of SRI International. Dist Sp.cidl



Table 1 shows that improvements made on the choice of phonetic units, the dictionary (supplied

Table 1: Speech Recognition Accuracy Improvement

System Word Error (%) Sentence Error (%)

SRI Nov. 1992 13.0 73.9

PTM + Cepstral Mean Removal 9.0 60.6
+ Phone-set + Dictionary

Genones + above improvements 7.7 53.0

by LIMSI), a cepstral mean removal front-end, and, in particular, the use ofTphonetically tied
mixtures (PTM, see the Appendix) reduced our system's error rate by 3 1%.. An additional 14%
reduction was achieved by the introduction of genone technology, making the overall
improvement 41%. We expect that genone technology will be even more effective with the
increased amount of training data available in Fall 1993 (WSJ1).

3. GENONE-BASED HMM TECHNOLOGY

SRI has developed a new type of hidden Markov model speech recognition technique
called genonic mixtures, or genones. In this type of system, Gaussian mixture components are
shared among groups of states. These groupings are automatically determined using
agglomerative clustering techniques. This technique automatically balances the modeling
resolution/robustness trade-off depending on the amount of training data. As we stated in the
previous section, by using this and other techniques, SRI has reduced its word error rate on
ARPA's November 1992 baseline 5,000 word Wall Street Journal bigram evaluation set from
13.0% to 7.7%, a change of 41%.4

The genone technique is important for consistency modeling because we plan to base our
consistency modeling systems on conditional Gaussian output distributions. Because of limited
training data, these high dimensional distributions will require us to use parameter smoothing to
maintain a careful balance between high resolution and robustness. The genone technique should
permit us to achieve the best performance possible given the training data available. A paper
describing this technique has been included in the Appendix.

4. PROGRESSIVE-SEARCH TECHNOLOGY

Another technique called Progressive Search has been developed that allows recognition
experiments to be run over several hundred sentences in a few hours instead of a day or more.

2. The November 1992 test set was only used twice, once in November 1992 and the second time in June
1993. Because the particular errors made in November 1992 were not examined, we consider this second
test to be a relatively fair evaluation of our progress.
3. Our development data experiments suggest that about one half of the 31% improvement is due to PTM.
4. An error rate reduction of 25% was due sclely to genone technology.
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Progressive Search is a multiple-pass technique, with each pass using a progressively more
accurate (and costly) algorithm. The output of each pass is a grammar (word lattice) which is used
to constrain the next pass's search space (instead of a less efficient N-best sentence list). It allows
evaluation of computationally demanding algorithms (N-grams, more complex HMMs). It also
facilitates developing real-time high-accuracy large-vocabulary recognition.

A Progressive Search technique has been applied to a standard cross-word tied-mixture
5K bigram HMM recognizer for ARPA's Wall Street Journal dictation task. It improved
recognition development time by an order of magnitude (from 46 x real time to 5.6 x real time)
when precomputed first-pass lattices were stored.

Another important application of the Progressive Search technique has been for trigram
language models. In this case, the grammar output by an initial bigram-based recognizer was
converted into a trigram grammar by replicating those states in the grammar where trigram word
transition probabilities existed. This approach to trigram language modeling increased decoding
time only slightly from that of bigram (15% increase), with only a mindmal increase to the
grammar size (since most of the trigrams were not represented). This approach is much more
powerful than using an N-best approach to implementing N-gram language models since more of
the correct words exist in the lattice than the top N sentences. For example, in a recent experiment
using bigram language models for a 5,000-word Wall Street Journal speech recognition system, a
system that achieved approximately a 10% word-error rate5 on our development set achieved only
an approximately 5% N-best error rate6 for N = 1000, whereas the relatively compact grammar
generated by this system had a 1% lattice error rate.7 This reduced error rate gives the language
model the opportunity to repair errors that the N-best system could not overcome. A paper
describing this technique has been included in the Appendix.

5. EFFICIENT COMPUTATION OF GAUSSIAN PROBABILITIES

Our genonic HFIM systems represent about 25,000 Gaussian distributions per feature
when implementing a 5,000-word WSJ speech recognition system. In this case, evaluating
Gaussian distributions in training and recognition dominates computation times. We have
developed a decision-tree-based scheme, similar to a tree vector quantizer, in which Gaussian
distributions are evaluated only if there is good reason to believe their probability density is high
for the current observations. This technique significantly reduces the number of Gaussian
evaluations, and should easily extend to the conditional segmental Gaussian distributions
proposed above. This scheme is also very important when reducing computation times in
decoding.

5. A 10% bigram error on our development set is roughly equivalent to a 7% word error using bigrams on
the official November 1992 evaluation set, approximately the same as the best bigram-based performance
reported at the January 1993 ARPA meeting.
6. The N-best word error rate is defined as average error of the best of the N sentence hypotheses.
7. The lattice error rate is the average of the error rate associated with the best path through the lattices.
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6. LOCAL DISCRETE-DENSITY CONSISTENCY MODELING

Local-consistency modeling attempts to remove the independence assumption of nearby
frames, but not frames across the entire input sentence. The spectral input to the HMM system at
neighboring frames is highly correlated because (1) the speech signal is sampled faster (every 10
ms) than the vocal tract changes, and (2) the spectral analysis between neighboring frames uses
overlapping windows (25.6 ms). Therefore, the HMM independence assumption is clearly
violated; the goal is to modify the HMM model to capture this correlation between neighboring
frames.

Our goal is to replace the standard output distribution p(xt / sj) with a model that can
account for the previous acoustic history p(xg / Ht, sj), where Ht is the summary of the previous
acoustic input. A straightforward implementation is to represent the summary of the previous
acoustics Ht by xt.-. The current frame is highly correlated with the previous acoustic frame, and
although prediction of the current frame using a longer history and spectral dynamics is
theoretically better, a good first-order approximation that uses only the last observation may be
sufficient.

In a discrete density system, the goal is therefore to compute the state conditional output
probabilities shown in Eq. (1):

p (qt I qt- 1 , s j)1

where qt is the vector-quantized speech signal at time t. To compute this quantity directly would
be extremely difficult and would require the estimation of a very large number of parameters
((num_states = 10,000) x (codebook-size = 256)2 - 650 million parameters per feature). To
reduce the number of parameters, we need some type of model of the relationship between
parameters at neighboring frames. The model we have developed is shown in Eq. (2):

p (qtI qt_l1 , s)

p (qtI qt- 1 ,s) = p (qtI s.) x t (2)
P(qt IS)

We can approximate the likelihood ratio denoted by the second term in Equation 2 by
replacing the context dependent state sj with its corresponding context independent state ci. The
approximation of the conditional distributions can be computed as:

p (qt I qt- I , ci)

pp(qtI s) x
P~ (qqt It s. ' ) P (qt I qt- I Q i (3)

•_•p~qt[ 1) )
S in p (qt I Y 1
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The above approximation reduces the number of parameters that need to be computed
dramatically ((numstates = 180) x (codebook.size = 256)2= 12 Million parameters per feature).
The number of states is 180 because there are 60 context-independent phones with 3 states each.
Each context dependent state uses the local-dependency information from its corresponding
context-independent state. This approach was tested on one of our Wall Street Journal
development test sets; the results are summaiized in Table 2.

Table 2: Word Error for WSJ Male 5K Closed Verbalized Punctuation Development Test

Model Standard Recognizer Recognizer with Co-Occurrence
Local Consistency

Context-Independent 46.2 41.8

Context-Dependent 20.7 22.0

While the context-independent model results improved, the context-dependent model
performance worsened. We believe that this result is due to the poor estimation of the likelihood
ratio parameters because of the large number of parameters (12 million/feature). The number of
parameters increases proportionately with the square of the codebook size. It is, therefore,
essential to reduce the codebook size, and this can be achieved with phonetically tied mixtures or
genones (described in the Appendix). We estimate that this will allow us to reduce the number of
parameters by an order of magnitude-reduction from 256 VQ probabilities to 50 Gaussian
mixture weights will reduce the number of parameters by a factor of 25.This approach can be
combined with our continuous-distribution approach described in the next section.

7. LOCAL CONTINUOUS-DENSITY CONSISTENCY MODELING

For a given HMM state sequence, the observed features at nearby frames are highly
correlated. Modeling time correlation can significantly improve speech recognition performance
for two reasons. First, dynamic information is very important [Furui86], and explicit time-
correlation modeling can potentially outperform more traditional and simplistic approaches like
the incorporation of cepstral derivatives as additional feature streams. Second, sources of
variability such as microphone, vocal tract shape, speaker dialect, and speech rate will not
dominate the likelihood computation during Viterbi decoding by being rescored at every frame.

The output-independence assumption is not necessary for the development of the HMM
recognition (Viterbi) and training (Baum-Welch) algorithms. Both of these algorithms can be
modified to cover the case when the features depend not only on the current HMM state, but also
on features at previous frames [Wellekens87]. However, with the exception of our earlier work
[Digalakis93a] that was based on segment models, explicit time-correlation modeling has not
improved the performance of HMM-based speech recognizers [Brown87, Kenny90].

To investigate these results, SRI conducted a study to estimate the potential improvement
in recognition performance when using explicit correlation modeling over more traditional
methods like time-derivative information. We used information-theoretic criteria and measured
the amount of mutual information between the current HMM state and the cepstral coefficients at
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a previous "history" frame. The mutual information was always conditioned on the identity of the
left phone, and was measured under three different conditions:

" I(h,s)-unconditional mutual information between the current BMM state and a
cepstral coefficient at the history frame; a single, left-context-dependent Gaussian
distribution for the cepstral coefficient at the history frame was hypothesized,

" I(h,s/c)--conditional mutual information between the current H1MM state and a
cepstral coefficient at the history frame when the same cepstral coefficient of the
current frame is given; a left-context-dependent, joint Gaussian distribution for the
cepstral coefficients at the current and the history frames was hypothesized,

"* I(h,s/c,d)-same as above, but conditioned on both the cepstral coefficient and its
corresponding derivative at the current frame.

The results are summarized in Table 3 for history frames with lags of 1, 2, and 4 and a
variable one. In the variable case, we condition the mutual information on features extracted at the
last frame of the previous BMM state, as located by a forced Viterbi alignment. We can see from
Table 3 that in the unconditional case, the cepstral coefficients at frames closer to the current one
provide more information about the identity of the current phone. However, the amount of
additional information that these coefficients provide when the knowledge of the current cepstra
and their derivatives is taken into account is smaller. In addition, the additional information in this
case is larger for lags greater than 1, and is maximum for the variable lag.

Table 3: Mutual information (in bits) between HMM state s at time t and cepstral coefficient
h at time t-d for various lags. Included is the conditional mutual information when the

corresponding cepstral coefficient and its derivative at time t are given.

Information Lag d 0 1 2 4 Variable

I(h, s) 0.28 0.27 0.25 0.19 0.25

I(h, s I c) 0 0.13 0.15 0.15 0.21

I(h, s I c, d) 0 0.11 0.14 0.13 0.20

Our results would predict that the previous frame's observation is not the optimal frame to
use when conditioning a state's output distribution. To verify this, and to actually evaluate
recognition performance, we incorporated time-correlation modeling in SRI's most accurate
recognition system that uses genonic mixtures [Digalakis93b]. The tying of Gaussian mixtures
across different HMM states in that system is determined automatically using clustering
procedures, and its recognition performance evaluated on the official November 92 Wall Street
Journal evaluation set is comparable to that of the best reported results. Specifically, we
generalized the Gaussian mixtures to mixtures of conditional Gaussians, with the current cepstral
coefficient conditioned on the corresponding cepstral coefficient of the history frame. We either
replaced the original unconditional distributions of the cepstral coefficients and their derivatives
with the conditional Gaussian distributions, or we used them as additional output distributions.
The results are summarized in Table 4 for fixed-lag history frames. We can see that the
recognition results are in perfect agreement with the behavior predicted by the mutual-
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information study. The improvements in recognition performance over the system that does not
use conditional distributions are actually proportional to the measured amount of conditional
mutual information at the various history frames. However, these improvements are moderate and
indicate that the derivative features model the local dynamics effectively. According to the mutual
information results, we should expect a significant improvement in recognition performance when
modeling the dependencies between the current frame and the last frame of the previous state, i.e.,
when we model the dynamics across the whole subphonetic segment. Thus, modeling segmental
dependencies effectively requires conditioning the output HAM distributions not only on the
previous output frames, but also on the segment start time [Ostendorf89].

Table 4: Recognition rates on WSJ corpus with conditional distributions replacing the
unconditional ones or used in parallel

Conditional Only Parallel Use I(h, s I c, d)Delay Word Error (%) Word Error (%)

0 10.32 - 0

1 10.98 10.19 0.11

2 10.50 9.65 0.14

4 10.32 9.83 0.13

The observation that modeling the segment dynamics can improve recognition
performance is consistent with previous results by other researchers. The improvement in phone-
recognition performance that we previously reported [Digalakis93a] was based on a model that
captured the temporal dependencies across the whole phonetic segment through a
computationally expensive dynamical system formalism. State-of-the-art recognition
performance on the Texas Instruments isolated word database has recently been reported by a
dynamic-time-warp-based system that uses segmental features to model the segment dynamics
[Algazi93]. We believe that the incorporation of segmental features and the modeling of segment
dynamics can significantly improve large vocabulary recognition performance.

7.1 Other Accomplishments

Other accomplishments during the reporting period are described below.

Reducing time required to train HMM systems. SRI's software currently supports
computing and storing probabilistic HMM state alignments as computed by the forward-
backward algorithm during training. We have found that when we invent new algorithms, we can
use alignments that were previously generated by our best system instead of recomputing the
alignments with the new algorithms. This saves computation time. Once significant algorithmic
improvements have been made, then new alignments should be computed and stored. This
approach has reduced our experiment turnaround time by a factor of 2 to 3.

Software infrastructure. We have improved SRI's Decipher speech recognition software
by replacing the software that dealt with hidden Markov model state-output distributions with a
much more modular software package. This software facilitates experimentation with new state-
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output distributions, and, therefore, will be an important tool in developing consistency models
for speech recognition. The software package has been completed and is now installed in the
Decipher system.

We have also implemented a software package for clustering output distributions. This
tool is currently being used to reduce the parameters in our system by tying different states to the
same output distribution. This is very important in consistency modeling, since the models that
we are investigating have a significantly larger number of parameters than conventional ones. The
same tool is also used to define groups of output distributions that share the same Gaussian
mixture, as explained in the Appendix.

8. LISTS OF PUBLICATIONS, PRESENTATIONS AND REPORTS

8.1 Refereed papers submitted but not yet published

Digalakis, V. and H. Murveit, "An Algorithm for Optimizing the Degree of Mixture-Tying
in a Large-Vocabulary HMM-Based Speech Recognizer," submitted to the IEEE International
Conference on Acoustics, Speech and Signal Processing, 1994.

L. Neumeyer, V. Digalakis, M. Weintraub, "Training Issues and Channel Equalization
Techniques for the Construction of Telephone Acoustic Models Using a High-Quality Speech
Corpus," to appear in IEEE Trans. Speech and Audio Processing, Special Issue, Spring 1994.

8.2 Refereed papers published8

Murveit, H., J. Butzberger, V. Digalakis and M. Weintraub, "Large-Vocabulary Dictation
Using SRI's Decipher Speech Recognition System: Progressive-Search T echniques,"
Proceedings ICASSP-93.

Murveit, H., J. Butzberger, V. Digalakis and M. Weintraub, "Progressive Search for Large
Vocabulary Speech Recognition," Proceedings of the ARPA Human Language Technology
Workshop, March 1993.

8.3 Invited presentations

H. Murveit, "Progressive Search Techniques," ARPA Spoken Language Systems
Technology Workshop, January 1993, Massachusetts Institute of Technology, Cambridge,
Massachusetts.

M. Weintraub, "SRI's Stress-Test Benchmark," ARPA Spoken Language Systems
Technology Workshop, January 1993, Massachusetts Institute of Technology, Cambridge,
Massachusetts.

Demonstration of a 20,000-word continuous speech recognition in ARPA's Wall Street
Journal domain, ARPA Spoken Language Systems Technology Workshop, January 1993,
Massachusetts Institute of Technology, Cambridge, Massachusetts.

8. Actually, these papers had extended abstracts that were refereed; the papers themselves were not refereed.
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M. Cohen, V. Digalakis, H. Murveit, P. Price, M. Weintraub, "Speech Recognition: an
Overview, Examples and Demonstration," presented at Information Systems Laboratory,
Stanford University, February 1993.

H. Murveit, Overview and summary talk for the demonstration session of the ARPA
Human Language Technology Workshop, March 22, 1993, Plainsboro, New Jersey.

M. Weintraub, "Progressive Search for Large Vocabulary Speech Recognition," ARPA
Human Language Technology Workshop, March 22, 1993, Plainsboro, New Jersey.

Murveit, H., J. Butzberger, V. Digalakis and M. Weintraub, "Large-Vocabulary Dictation
Using SRI's DecipherTM Speech Recognition System: Progressive-Search Techniques," ICASSP-
93, April 1993.

V. Digalakis, "Search and Modeling Issues in Large-Vocabulary Speech Recognition"
presented at Xerox PARC, August 1993.

9. TRANSITIONS AND DoD INTERACTIONS

We were active participants in the 6-week Robust Speech Processing workshop sponsored
by NSA at Rutgers in July-August 1993. Our two researchers there, Leo Neumeyer and Vassilios
Digalakis, focused on training issues and channel equalization techniques for acoustic modeling
of telephone speech. Their work at the workshop will be included in a special issue of the IEEE
Transactions on Speech and Audio Processing scheduled for publication in spring 1994.

SRI's Decipher speech recognition technology is being transitioned to Boston University
for joint research funded by NSF and ARPA, and we are currently arranging to modify our
Decipher technology on SRI internal funds so that ARPA-sponsored research at the Center for
Aids Industrial Productivity in collaboration with the David Sarnoff Research Center can take
advantage of this technology for research on robust front-end signal processing. In addition, we
are discussing with Nancy Chinchor at SAIC, the possibility of using Decipher's technology in
work to be conducted for ARPA and for NASA.

Several applications based on Decipher technology were demonstrated at Spoken
Language Technology Applications Day last April. This event was attended by over 300 people,
about equally divided among government and commercial representatives. Our participation in
this event was sponsored by internal funds.

To further the transfer of Decipher technology, SRI has invested significant internal
resources toward the development of robust, portable speech recognition software and tools for its
use. Several commercial clients are using the resultant technology in their own research or in field
trials.

10. SOFTWARE AND HARDWARE PROTOTYPES

The algorithms and software that are developed in this project will be incorporated into
the Decipher speech recognition system. We are attempting to commercialize speech recognition
based on Decipher and based on tools and other extensions to it that were funded by SRI's IR&D
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support. SRI currently has several commercial clients that are in the process of evaluating speech
recognition products based on Decipher.

11. APPENDIX

"An Algorithm for Optimizing the Degree of Mixture-Tying in a Large-Vocabulary
HMM-Based Speech Recognizer," submitted to the IEEE International Conference on Acoustics,
Speech, and Signa' Processing, 1994.

"Large-Vocabulary Dictation Using SRI's Decipher Speech Recognition System:
Progressive-Search Techniques," Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1993.
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