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Abstract

We used the statistical technique of factor analysis to design binary and ternary optical

correlation filters to identify objects in the presence of unknown or nonrepeatable distor-

tions. We considered values of spatial frequencies of training set imagery as features and

used those spatial frequencies in our filter depending on their variation across a training

set. In addition, we provided general expressions for performance measures as a function

of training set imagery. The potential of our approach was evaluated with infirared sensor
imagery that varied in a unknown way. Our statistically designed filters were easily calcu-

lated and performed well in the presence of noise. Furthermore, the performance of our fll-
ters were varied by allowing for trade-offs in performance measures. Our filters reduced

the sensitivity of binary and ternary phase-only filters to changes in an object's appearance

when the input imagery varied in an unknown manner.
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1.0 Introduction

The primary difficulty with the use of binary phase-only filters (BPOFs) with sensor

imagery in an optical correlator is the filter's sensitivity to changes in a object's appear-

ance. In addition to these geometric distortions, the image of an object at a specific orien-
tation can change due to effects such as lighting, weather and, especially in infrared

imagery, the temperature differences between components of the object. The result is that

object boundaries are often ambiguous or poorly defined in sensor imagery. If the global

shape of an object is used for recognition, then changes in the imagery are often enough to

significantly degrade the performance of a binary optical correlator. 1

Because imagery from sensors often changes in an unknown way, a large number of

reference images are needed to match an image in many applications when using a BPOF.

Therefore, in an effort to make a binary optical correlator more practical, optical correla-
tion filters that recognize objects varying in an unknown way is needed; filters should rec-
ognize objects in a training set as well as outside the training set.

Much work has been performed in designing distortion-invariant correlation filters,2-4

but fewer methods exist for creating distortion-invariant BPOFs.5-7 Generally, these
approaches have been primarily used to identify or reject geometrically transformed ver-
sions of an object or to be robust in the presence of noise. Using these techniques, filters

can be created that can perform well when the distortion can be well characterized.

Statistical approaches to distortion-invariant filter design have been previously used.
For example, Kumar et al. modeled image differences of a training set as a stochastic pro-
cess to design an optimal filter.8 In another statistical approach, a linear transformation
matrix was used to cluster all training vectors from each class to a single location in a
reduced-dimensionality signal space.9 The variance of time-sequenced correlation
responses also has been examined to create a distortion-invariant filter.10 However, by
examining only the maxima of cross-correlation responses, little can be said about the

behavior occurring at individual spatial frequencies.

Correlation filters can achieve improvements in signal-to-noise ratios (SNRs) by set-

ting the filter to zero at particular spatial frequencies, which creates a ternary-valued fil-
ter.1 1'12 In addition, this approach has had success in improving the distortion range and

SNR of distortion-invariant BPOFs.13' 14 These methods set filter pixels to zero, based on
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the ratio of the spectra of the noise to the composite filter image exceeding a specified

threshold.

In contrast to previous attempts at distortion-invariant binary and ternary phase-only
filter (POF) formulation, we developed a filter using a statistical technique whose values
were determined by features of the training set. We attempted to find a filter that repre-
sented the critical characteristics of an object so that objects outside the training set could
be identified. We examined an ensemble of BPOFs to select spatial frequencies that would

recognize images outside of our ensemble. Because correlation filters are derived from the
Fourier transform of an object, we examined feature extraction in the Fourier domain. We
considered the BPOFs of input images as a set of features to recognize objects and used a

statistical approach to examine features that were invariant with respect to the training set.

Similar approaches have been used to perform feature extraction with optical proces-

sors.15,16 We retained those Fourier features that were invariant among a training set and

set to zero those that varied using a technique similar to factor analysis to design a ternary
filter. 17

In the next section we describe our approach for the statistical design of distortion-

invariant binary and ternary POFs based on features of a training set. Section 3 contains

computer simulations using our statistically designed filter, along with results from our

attempt to increase the SNR. Finally, our conclusions follow in section 4.

2.0 Statistical binary and ternary phase-only filters

2.1 Filter development

We used features of training images to design both binary and ternary POFs. To con-

struct our filter, we considered a signal space where each feature of an image was repre-

sented as an axis. The position along an axis represented the value of that feature. For a set

of training images in the same class, we examined the variance of the values of each fea-

ture. We eliminated features associated with large variances by setting the value of that

feature to zero. In this way, we formed a cluster of training images in a reduced dimen-

sionality feature space. We then chose a set of features that best represented our cluster.

Because BPOFs of objects have been sufficiently descriptive in many binary optical

pattern recognition experiments, we considered the BPOF of a training image as a collec-
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tion of characteristic features. Therefore, each axis in our signal space was represented by

a discrete spatial frequency. The position along an axis represented the coefficient of the

discrete Fourier transform (DFT) at that spatial frequency.

There are different ways to create a BPOF of an object. 18"1 9 We used a common

method to create BPOFs where the phase was set to + 1 at each pixel according to

Sli.0D<-Oi [n,m] < x

HL~n'm] = [1j4~[m] 1(1)
' -lif7<:5i[n,mI <2'c

where HJin,m] was the BPOF of the ith training image, 4[n,m] was the phase of the com-

plex conjugate of Si[n,m], and Si[n,m] was the DFT of the ith training image. If the calcu-

lated phase angle was between 0 and x, the phase at that pixel was set to +1. If the

calculated phase angle was between x and 27r, the phase at that pixel was set to -1.

The Fourier coefficients of the training images were examined over the training set on

a pixel-by-pixel basis in terms of their similarity, with the distance in signal space between

Fourier coefficients as a measure of their similarity. The smaller the distance the more

similar the coefficients. Because we used BPOFs, only two possible values existed for an

individual pixel. If values of two BPOFs corresponding to the same pixel were the same,

we described the distance between them as -1; if the values were different, we considered

the distance as +1. The distances between coefficients of two BPOFs were described as

d[,j [n, m] = Hi [n, m] (D H[n, mI, (2)

where HL~n, m] and H~{n, m] represented two BPOFs of the training set, n and m were dis-

crete spatial frequencies, and 9 was the exclusive-OR (XOR) function. The coefficient at

each pixel of the BPOFs are +1; therefore, we used +1 in Eq. (2) to represent Boolean val-

ues. In this way, the similarity of two BPOFs were determined, and dij[n,m] was repre-

sented as an array of + is.
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We measured the similarity of BPOFs across the entire training set. We measured the

distances between coefficients of BPOFs of each training image and every other training

image. We summed all the distances on a pixel-by-pixel basis and used this quantity as a

measure of the clustering of values for a particular spatial frequency. We used the criterion

function
20

N N

J[n,m] = 1W di, [n, mN ()
N i=lj=i

to measure the clustering of distances, where N was the number of images in the training

set. A more compact cluster was indicated by a more negative value at a particular n and

ML

By removing redundant calculations from Eq. (3), the clustering was ultimately repre-

sented in a simpler way. For example, the distance between a filter and itself yielded an

array of -Is. In addition, the XOR function is communative, and the distances between

two filters had to be calculated only once. We found that the clustering of distances of the

training set could be represented simply by a summation of BPOF coefficients across the

training set. The clustering was represented by the function J [n,m] as

N

J[n,m] = XHi[n,m], (4)
i= 1

where J [n,m] indicated that a more compact cluster was indicated by larger values. This

was in contrast to J[n,m], where a more compact cluster was indicated by smaller values.

Our main objective was to recognize images in the training set as well as images out-

side the training set that are of the same class. Therefore, we selected a filter that retained

features (spatial frequencies) that were most consistent across a training set. Because we

have a measure of the clustering of features in Eq. (4), we retained only those features that
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were most compactly clustered in signal space. Using this approach, we expected objects

with the same features as our training set to be recognized by our filter.

We used factor analysis 21 to retain spatial frequencies of our training set that were

more compactly clustered than others. The goal of factor analysis is to account for a pro-

cess by a reduced number of variables. The basis of factor analysis requires an assumption

that a process can Le broken down into additive parts.21 Because the process, the cross-

correlation of a training image and a composite filter Hln,m], can be written in a dis-

cretized form as the summation

Coi= X Sjkn,m]H[n,m], (5)
n~m

where c0i was the correlation peak value for the ith centered training image, the basic

assumption of factor analysis was satisfied. The spatial frequencies were variables, Hln,m]

was the factor at n and m, and Sijn,m] was the factor at n and m, in the ith variate. In factor

analysis, usually H[n,m] would be known, Si[n,m] would be estimated, and the Si[n•n]'s

that account for the most significant variation of c0l would be retained.

In contrast to factor analysis, we sought to retain variables n and m that did not signif-
icantly vary coi. Therefore, we eliminated the spatial frequencies whose coefficients had

large distances over a training set. For example, small values of J [n,m] showed that some

BPOF coefficients were not consistent over a training set. We described our resulting filter

as

{ lifJ [n, m] ->p
Ga[nm] = -lif J[n,m] !-p ' (6)

0 otherwise

where p was a threshold, and cc = p/N was a factor that indicated the minimum percentage

of features across the training set that had the same value.
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The number of possible different filters depended on the number of images in the

training set. The variable p could take values from 0 < p s N. To describe different filters

with each value of p and to avoid choosing a value for Gainmn] when 1 (nm] was 0, p

should be odd if N is odd, and p should be even if N is even. The number of different pos-

sible filters for a given N was described as

N
Niti r even

Nodd

2.2 Performance measures

We primarily considered the SNR and the peak-to-correlation energy (PCE) as mea-

sures of performance. 2 The SNR is defined as

E { Co} 12

SNR = (8)
var{co}

where co is the correlation peak value for a centered in-class image, E{) is the expected

value and var() is the variance. The SNR is often calculated using independent noise sam-

ples over several measurements because noise will make the correlation result change

between samples. In our approach, we had two independent sources contributing to the

change in the correlation result: differences between training images for unknown reasons,

and additive noise due to the sensor or correlator system. As a result, the SNR will be

finite without additive noise present. Consistent with Eq. (5), we considered S [n, m] In, m

to be a random variable with an expected value and variance. Therefore, the maximum

value of Eq. (8) without additive noise present was written in a discretized form as
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SNR-

Aj]2

X•E{S[n,m] }Ga[n,m]2

Z [G•[n'm]] 2var(s[n mI} +2X 2 G , n,m]G.[n',m']cov{S[n, ml,S[n',m']}
[G, , In, MiS, IS[ ,m

(9)

where cov( } was the covariance and n, m < n', m'. When samples of S[nm] are uncorre-

lated, Eq. (9) reduces to

E{S[n,ml }Ga[n,m] 2

SNR 2  (10)[G.,[G [n, m] ]var {IS [n, ml}

n,m

In the presence of additive noise, S[n,m] may be replaced by S[n,m] + P[n,m], where

P[n,m] is the power spectral density of the noise. Eq. (10) becomes

XE {S[n,m] }Ga[n,m] 2

SNR =(1I [Ga.[n, ml] 2var {S[n,m] } + P•Pn,m] [G.[n, ml] 2 ]"

n' MM

The PCE can be used as a measure of sharpness of the correlation peak and was

expressed as
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2L

PCE = XSi [n, m G(, nm) 1 (12)

i [n, ml I Ga [n, ml I2

for a particular Si[n,m].

3.0 Computer simulations

Infrared (IR) imagery (8-14 pm) of ground scenes from actual sensors were used to

generate and evaluate filters. Images were digitized with 128 x 128 pixels with 8 bits/

pixeL Thresholding was performed by choosing a single threshold value for the entire

image. In the imagery we examined, the background and object were easily separated;

however, edges were not well-defined. As variables such as lighting, noise, and atmo-

spheric effects within an image changed, the resulting thresholded images would have

remained similar but different. We used objects of the same scale and rotation to examine

the effects of unknown variations of the inputs.

We used 15 uncorrelated training images that came from thresholded sensor imagery

to generate different statistical filters, one for each possible value of a- Five of the 15

images are shown in Fig. 1. A total of eight filters were produced with values of a = 0.07,

0.20, 0.33, 0.47, 0.6, 0.73, 0.87, and 1.00. The support functions of the filters, the region

where the filter was transmitting, are shown in Fig. 2, where white regions indicate the

transmitting areas. The support function when a = 0.07 is not shown because all pixels

were transmitting. We evaluated our statistical filters using images from the training set

and additional imagery. We used both types of imagery, objects that were not in the train-

ing set but in the same class and noisy versions of the same images.

3.1 Test imagery performance

Using the training set, we found the SNR, PCE, normalized correlation heights, and

transmitting pixels for statistically-designed filters of different a, which are summarized

in Table 1. The correlation heights were normalized by setting the maximum correlation

height for each filter equal 100. Furthermore, the value of P3 in Eq. (12) was set to an arbi-

trary constant. In general, the SNR increased as a increased, while the maximum SNR of
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258 occurred at a = 0.73. In addition, as a increased, the PCE decreased. The results

showed that the correlation responses became broader but more consistent as a increased.

We compared the results of our statistically-designed filters to that of an fSDF filter.
An fSDF filter is an iteratively designed, equal-correlation peak filter that takes into
account spatial light modulator (SLM) modulation characteristics. 5 Therefore, an fSDF
filter was designed to produce equal correlation heights for the training set using a BPOF.

The average PCE value of the raining set using the fSDF filter was 140.7, which was

higher than the values obtained with the statistically designed filters.

For correlation filters to be the most useful with sensor imagery, they should recognize
objects in the same class as, but not in, the training set. Therefore, we used the same type

of imagery from which the training set was gathered, but we used a different photograph

to generate 10 additional test objects in the same class as the training set. Furthermore, we
used an additional nine objects that visually appeared similar to the raining set but were in

a different class to help evaluate the discrimination of our filters. We labeled those images

that were not in the same class as the training set as images 26 - 29. Four of these images
are shown in Fig 3. A summary of the cross-correlation results for this additional imagery

using the filters in the previous experiment are shown in Table 2. The data showed that the

SNRs resulting from differences in the correlation heights of the 25 in-class images gener-

ally increased as a increased and were higher than the fSDF filter's response for most val-

ues of a The average normalized correlation heights, using in-class imagery not in the

training set demonstrated similar behavior. In addition, the PCE of the statistical filters

were sometimes comparable but always lower than the fSDF filter. We used the ratio of
the averages of the normalized correlation heights of the in-class to out-of-class images as

a measure of discrimination. This ratio was always higher with the fSDF filter but compa-
rable to the statistical filters in most cases.

3.2 Noise performance

We repeated the previous experiments using the same filters but with noise added to all

test images. Ten percent of the pixels in each test image were randomly selected and

changed in value to represent noise. The previous experiments were performed with noisy

images, and the results were summarized in Table 3. We compared the performance of the
statistical filters to a ternary version of an fSDF filter specifically designed for improved

SNR values in the presence of noise (referred to as a TSDFsNR filter).14 For the statistical
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filters, the SNRs and normalized correlation heights generally increased as a increased.

The SNRs of the statistical filters were higher than the TSDFSNR filter for most values of

CL The normalized correlation heights of the training and in-class images for the statistical

filters were always higher than for the TSDFsR filters. In addition, the ratios of the in-

class to out-of-class correlation heights were more similar for the two different types of

filters than the noise-free case.

3.3 Improved SNR

We used an algorithm that has been successfully used to design optimal POFs for addi-

tive noise 12 to increase the SNR of our statistical filters. We sorted the values of

LE(S[n,m]ll after forming the product with a Gafnm]; different thresholds were used to

determine support functions for a particular a. All possible support functions were found

from each Gafn,ml and described as

RQ = {n, m;IE {S [n, m }IIjG, [n, m]I > T} (13)

where T was a threshold. We found the maximum SNR and corresponding support func-

tion. The SNR and PCE as a function of transmitting pixels according to Eq. (13) for il-

ters of different a are shown in Fig. 4. In all cases, the results show that the highest SNR

values occurred at relatively low PCE values.

In some applications the low PCE may be unacceptable. Because SNR values were

often satisfactory for a variety of transmitting pixels, a filter may be chosen that is not

optimal in terms of SNR and PCE but may yield a satisfactory compromise.

To view the filters in terms of both SNR and PCE performance, we created a scatter

diagram in Fig. 5 that showed the SNR as a function of PCE. From this diagram, the filter

that had the highest SNR for a given value of PCE can be chosen. Filters calculated from

Eq. (6) without any SNR improvement are indicated by circles around their data points in

Fig. 5. Note that these filters occurred at the maximum PCE for a given a. Furthermore,

some filters with different a's appeared to offer similar performance.
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4.0 Experiment

We used an optical correlator that is described in more detail in the appendix.

The experimental results for the statistical filter for a = 0.07 both when noise was, and

was not present are shown in Table 4. The main difference between the experimental and

simulated data was that the values of the correlation heights were more consistent in the
experimental data. It appeared that this was to due noise associated with the SLM. When

an image was written to an SLM, a small percentage of the pixels (about 5%) didn't dis-

play the values intended. This is important because of the sensitivity of the BPOF to

changes in an input. The results showed that the correlation heights of the training set were

less than expected but were more consistent.

5.0 Conclusions

The feature that contributed most to the improvement in SNR of correlation filters

when compared to other designs was the statistical design methodology. This method dif-

fers from others by using a statistical approach to identify spatial frequencies useful to

increase the probability of recognition of in-class objects, especially those not in the train-

ing set. The performance of the statistically-designed BPOFs depended on a parameter a.
The SNR and normalized correlation heights of objects generally increased as a

increased. In most cases, the SNR and normalized correlation heights of the statistically-

designed filters was higher than both the fSDF and TSDFSNR filters. Similar results were

found when the statistical filters were tested with noisy test images

Another feature of our approach that contributed to the improvement of SNR filters

was the retention of spatial frequencies based on their magnitude. By combining this

method with our statistical approach, we could maximize the SNR for a given value of

PCE.

The statistically designed filters were more easily calculated than both fSDF and

TSDFsNR filters. The statistical filters required calculating N FFTs. In contrast, the fSDF

approach required a cross-correlation between every training image and filter for every

iteration. This approach requires NI FFT calculations, where I is the number of iterations

and generally has been set to 10.2 The TSDFSNR filter required 2NI MFT calculations.
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Therefore, the time and number of operations required to calculate our statistical filters

were about an order of magnitude less than that of the fSDF and TSDFSNR filters.

The sensitivity of a BPOF to changes in an object's appearance is a significant factor

when attempting to recognize nondeterministic objects of the same class. Eliminating

properly selected spatial frequencies can reduce this sensitivity. However, this will affect

discrimination. In our experiments, the ratios of correlation heights for in-class to out-of-

class images were generally lower for the statistically-designed filters when compared to

other approaches. In addition, correlation responses were generally less sharp and the light

efficiency was lower for the statistical filters when compared to other approaches.

Correlation is a basic operation that is required by nearly all machine vision and pat-

tern recognition systems. As larger and faster input sensors are used, the speed of elec-

tronic systems is stretched to beyond its limit. By utilizing the massive parallelism and

high bandwidth offered by the optics technology, much more data can be processed at

higher rates. The optical correlator presents a nearly mature technology that needs work in

the areas of device development and system packaging for uses in either military or civil-

ian applications. A growing number of manufacturing industries are looking towards

machine vision to improve the performance and capabilities of automated assembly lines

and inspection techniques.

It is recommended that for objects to be recognized from sensor imagery using an opti-

cal correlator, emphasis should be placed on reducing the trade-offs between robustness,

and discrimination, and light efficiency.
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Appendix

This appendix describe some important charactistics of the correlator such as the

experimental apparatus, the alignment, and the controlling and displaying of images. The

correlator uses binary SLMs, so we used binary phase-only filters. Images and filters were

generated on a computer and put in the proper format for display on the SLMs. The system

is a research platform so it may need realignment from time to time, or some procedures

may seem cumbersome.

We used two set -ups that were pretty much the same in terms of performance. We first

set -up a correlator using a He-Ne laser because of the known good beam quality of this

device. Because the SLMs used were highly attenuating, the correlation result was often

dim. More powerful He-Ne lasers (>15mW) are typically quite long, so we used a cow-

pact higher power frequency-doubled YAG (1=532nm) laser in another set-up.

The laser in the first set-up was a Mellis Griot linearly polarized He-Ne operating at a

wavelength of 633nm; we measured 13mW at the output of the laser. The spatial filter

assembly was made by Newport and consisted of: a 40x microscope objective, 10mm pin-

hole, and 250mm focal length collimating lens. The correlation result can often be quite

dim, especially when using the framegrabber to capture a result; therefore, sometimes a

20x objective was used or we removed the pinhole. The mirror is oriented at about 45

degrees and is used simply to bend the beam around the optical bench. Unfortunately, the

mirror may produce an elliptically polarized reflected beam from the linearly polarized

incident beam.

The laser in the second set-up was a Adlas 200 diode-pumped, frequency doubled

YAG laser operating at a wavelength of 532nm. The spatial filter assembly was made by

Newport and consisted of: a 20x microscope objective, 10mm pinhole, and 250mm focal

length collimating lens. We found that the pinhole must be used for meaningful results.

The elliptically polarized beam can be compensated for with a quarter-wave plate (the

light entering the SLM should be linearly polarized). To determine if a quarter-wave plate

is needed, a polarizer should be placed temporarily in the beam after being reflected from

the mirror. The polarizer should be rotated so that the beam intensity is a minimum. If this

minimum is different than the minimum obtained with the polarizer placed before the mir-

ror, then the beam may need to be compensated.
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To adjust the quarter-wave plate, place the polarizer after the mirror and adjust it so

that it produces a minimum. Then place the quarter-wave plate in the path of the beam

before the mirror. Rotate the quarter-wave plate so that a minimum is obtained at the out-
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put of the polarizer. Now the light entering the input SLM is linearly polarized. The quar-

ter-wave plate produces an elliptically polarized beam that is cancelled by the mirror. We

found that for the second set-up, the quarter-wave plate was mandatory.

The input SLM is imaged onto the filter SLM by lenses 1 and 2. The calculation of the

effective focal length required and the alignment procedure will be discussed in the fol-

lowing paragraphs. The effective focal length required was 1168mm for set-up 1 and

1340mm for set-up 2. It's difficult to find a lenses of exactly these focal lengths, so we

used two lenses. In addition, the SLM should be placed a distance equal to a focal length

before the Fourier transform lens for best imaging. Our experience shows that this require-

ment can be relaxed; besides, such a system takes up more space and needs more mirrors.

We both set-ups we used an achromatic lens of f = 1000mm for lens I and a plano-con-

cave lens of f = - 250mm for lens 2.

The input SLM is operated in a maximum contrast mode. That means that the back-

ground of an image displayed on the SLM is adjusted (with the polarizer on the SLM) so

that a minimum of light comes through.

The filter SLM is operated in a phase-only mode. To adjust the filter SLM to operate in

the phase-only mode, the light from the input SLM must be incident on the filter SLM.

When rotating the polarizer on the filter SLM, there is a region where the pattern on the
filter SLM quickly "flips"; regions on the SLM that were transmitting become opaque and

vice versa. The point in between these different contrast modes where there is no contrast

is the phase-only point of operation.

The correlator is a relatively simple device; however, its alignment is critical. The

most critical factor in its alignment is the imaging of the input SLM onto the filter SLM.

The rule that governs this part of the alignment is that the highest spatial frequency of the

input SLM should be imaged onto the edge of the filter SLM. Therefore, the focal length

of the Fourier Transform lens should be23

f = Nd2dl)A (14)
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where Nis the number of pixels along a side of the filter SLM (128), d2 and dl are the cen-

ter-to-center spacing of the pixels of the filter and input SLMs respectively (76mm), and X

is the wavelength of light being used. The highest spatial frequency grid should be placed

on the input SLM. The grid will be rows of dark, light, dark, light, etc. The input SLM and

the lenses should be adjusted so that the first diffraction order due to the pattern on the

input SLM is on the edge of the filter SLM.

filter SLM 0q-
diffracton fatro m pixel

should be on of input SLM

first row of SLM

efo grid on input
SLM

Sshould be just •
beyond las row *

a ial.rtibu pattern froisgrid on input SLM

The two Semetex SLMs the correlator uses art made by the same company but share
little between them. The devices use different software, are driven by different cards, and

accept different types of file formats for images that may be displayed on them. Ile SLM

in the filter plan is an "older" device of 128 x 128 pixels and the SLM in the input plane is

a "newer" device 256 x 256 pixels. The newer devices do not display an intricate pattern

as reliably as the old devices do. This is important for a filter SLM because the pattern is

usually intricate. Therefore, we use the old device in the filter plane. In addition, the image

displayed on the input SLM should only occupy 128 x 128 pixels or distortion and an

overlapping of the correlation responses will result. Finally, it's not clear what must be
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done to drive both devices from the same computer. There may be a conflict with the

driver boards but this problem should not prove too difficult. However, we currently use a

separate computer to drive each SLM.

There exists some compatibility problems with generating an image to be displayed on

an SLM and then actually having it displayed. This problem arises because the SLMs must

be driven with IBM-compatible computers, and image manipulation and generation has

often been performed on the Macintosh. The IBM computers have generally been harder

to work with than the Mcintosh in terms of the graphics needed to generate images and fil-

ters. Maybe in the future, all development of imagery and filters could be done on the IBM

machines, but that is not the case now.

Although some compatibility problems exist, they are not prohibitive. Software has

been developed to help ease the transfer of Macintosh images to the proper format for the

IBM. Let's start with the IBM computers and examine how we can display images on the

SLMs. Well discuss the specific programs to drive the SLMs later, an important factor is

that an image to be displayed on an SLM must be in the proper format, the .bnd format for

the old device (filter plane) or the .scn format for the new device (input plane). Because

the Macintosh has been so useful in generating images, more effort has been put input

converting Macintosh images.
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TABLE I. Performance of statistically designed filters for images in training set

Sw-4fic2l filter

cýO.07 a=O-.2 a0.33 cv-0.47 capu0.6 0,,.73 cL-0.87 cc1.00

Transmimng pixels 16384 11276 7037 4220 2931 1858 1324 918

SNR of taining set 65.6 79.8 99.2 144 214 258 222 202

Avg. PCE of training set 131 136 131 113 94.6 92.5 82.3 67.4

Avg. nommalized correla- 75.1 75.7 81.4 82.9 84.0 84.8 87.2 88.9
tion height of training set _1

TABLE 2. Performance of filters for images of in-class and out-of class sets

Stanistical filter _SDF

a€_0.07 o-0.2 cu0.33 a40.47 a-0.6 1 o-0.73 au0.87 e-1.00 filter

SNR of in-class set 27.0 30.1 40.9 52.8 86.1 86.7 86.5 80.6 45.7

Avg. PCE of in-claw set 86.8 90.7 88.2 76.8 64.8 62.9 56.7 46.4 90.8

Avg. normalized correla- 48.0 49.5 59.4 65.6 72.2 76.5 76.6 75.7 58.8
tio height of in-class
images (not in training
set) I I I

Ratio of average in-class 3.88 3.97 4.67 4.82 4.49 4.11 3.76 3.39 6.00
to out-of-class correlation
heights

TABLE 3. Normalized correlation heights for filters using images with 10% noise

Statistical filter TSDFN

a=O.07 ct=0.2 a-0.33 a=0.47 a40.6 au0.73 a=0.87 c=l.00 filter

SNR of training set 53.4 68.5 80.4 110 195 209 185 200 70.1

Avg. normalized corre- 62.2 53.0 52.6 55.2 59.2 61.0 60.4 62.9 33.9
laMion height of train-
ing set

SNR of in-clas act 21.9 27.0 37.8 48.6 52.9 71.5 77.0 72.7 63.9

Avg. normalized corre- 40.0 38.7 47.4 47.2 47.4 53.3 53.8 53.9 30.9
lation height of in-class
images (not in taining
Set) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ratio of average in- 2.20 2.65 3.69 2.97 3.11 3.22 3.44 3.21 3.68
class to out-of-class
correlation heights
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TABLE 4. Experimental results for ca = 0.07

Satistical flate-
10%
noise

SNR of training set 102 65.7

Avg. normalized correla- 90.8 73.4
tion height of training set
SNR of in-clam set 32.7 30.5

Avg. normalized cofrela- 1.77 1.43
tion height of naining set
(not in U-aining set)

Image 1 Image 2 Image 3 Image 4 Image 5

FIGURE 1. Examples of images used in training set obtained from sensor data.
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FIGURE 2. Support functions for training set from Eq. (6).
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Image 26 Image 27 Image 28 Image 29

FIGURE 3. Examples of out-of-class images from sensor data.
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FIGURE 4. Graphs for different a of (a), (b) SNR as a function of transmitting pixels,

(c), (d) PCE as a function of transmitting pixels.
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FIGURE 5. Scatter diagram for SNR and PCE for different a using the taining set.

Note that circled .aw-i points indicate filters calculated directly from Eq. (6).

29



> E

al•

1-0

04)

00

U3

fl 00

4)T

FIGURE 6. Schematic diagram of optical correlator
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