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THE RADIATED NOISE FROM ISOTROPIC
TURBULENCE REVISITED.

Geoffrey M. Lilley*
Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA23665, USA.

Abstract

The noise radiated from isotropic turbulence at low Mach numbers and high Reynolds num-
bers, as derived by Proudman (1952), was the first application of Lighthill's Theory of Aerody-
namic Noise to a complete flow field. The theory presented by Proudman involves the assump-
tion of the neglect of retarded time differences and so replaces the second-order retarded-time
and space covariance of Lighthill's stress tensor, Tj, and in particular its second time deriva-
tive, by the equivalent simultaneuus covariance. This assumption is a valid approximation in
the derivation of the 92'Tj 1 /0t 2 covariance at low Mach numbers, but is not justified when that
covariance is reduced to the sum of products of the time derivatives of equivalent second-order
velocity covariances as required when Gaussian statistics are assumed. The present paper re-
moves these assumptions and finds that although the changes in the analysis are substantial,
the change in the numerical result for the total acoustic power is small.

The present paper also considers an alternative analysis which does not neglect retarded
times. It makes use of the Lighthill relationship, whereby the fourth-order Tiy retarded-time
covariance is evaluated from the square of similar second-order covariance, which is assumed
known. In this derivation no statistical assumptions are involved. This result, using distribu-
tions for the second-order space-time velocity squared covariance based on the Direct Numerical
Simulation(DNS) results of both Sarkar and Hussaini(1993) and Dubois(1993), is compared
with the re-evaluation of Proudman's original model. These results are then compared with
the sound power derived from a phenomenological model based on simple approximations to
the retarded-time/space covariance of T•1 . Finally the recent numerical solutions of Sarkar and
Hussaini(1993) for the acoustic power are compared with the results obtained from the analytic
solutions.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NASI-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681. Emeritus Professor, Department of Aeronautics
and Astronautics, University of Southampton, U.K.



1.Introduction

Following the publication by Lighthill(1952) of'The Theory of Aerodynamic Noise', Proudman(1952)
considered the problem of its application to the generation of noise from isotropic turbulence. Batch-
elor(1951) had previously considered the pressure fluctuations in isotropic turbulence, and this
proved to be an important first step in the consideration of the noise radiated from a finite volume
of isotropic turbulence embedded in an otherwise infinite compressible medium at rest. Proudman
discusses in great detail how Lighthill's Theory can be applied to this problem of isotropic turbu-
lence. The theory requires information concerning the statistical properties of isotropic turbulence,
including, in particular, the retarded-time and space covariance of the Lighthill stress tensor Tij.

Proudman considers an infinite expanse of compressible fluid containing a finite region of turbu-
lent motion, which generates sound radiating into the surrounding fluid, which is at rest, apart from
the small motions characteristic of sound. Proudman assumes that the finite region of turbulent
motion has been initially excited by some forcing function such that its initial characteristics are
isotropic, and the turbulent Reynolds number, based on the velocity and length scale of the energy
containing eddies, is very large. The turbulent kinetic energy then decays with time. Proudman
discusses the contributions to the radiated sound from eddies of different length scales and reaches
the conclusion that the generation of sound from the turbulence is mainly from two classes of
eddies, those with scales in the dissipation range and those in the energy containing range. It is
found that only the latter class of eddies make an appreciable contribution to the radiated sound
at high Reynolds numbers. Proudman finds in general there are also two main contributions to the
generated and thence radiated noise. The first arises from the decay of the turbulent kinetic energy
while the second relates to its instantaneous generation. Proudman notes that in the initial period
of decay, the effects of the retarded time between the source volume and the observer cannot be
neglected even when the Mach number of the turbulence is small. The decay in the strengths of
the equivalent acoustic sources is then so rapid that the intensity of sound outside the turbulence
is dependent on the shape of the turbulent region and the turbulent energy decay law. Proudman
suggests that the theory of aerodynamic noise, in the case of isotropic turbulence, is best applied
to cases where the intensity of the turbulence is maintained constant in time during the processes
of generation and radiation of the sound to the far-field. Also at low Mach numbers, the effects of
the retarded time are small and can be neglected. Such conditions can only apply when the initial
Reynolds number is very large. Thus the sound intensity in the far-field possesses a local time
averaged value, and similarly for the total acoustic power. Accordingly the mean total acoustic
power is a function of the time during the decay.

Proudman found to a good approximation that the total acoustic power radiated from this
embedded finite region of turbulence contained within an infinite expanse of compressible fluid, is a
function of the local time averaged kinetic energy of the turbulence per unit volume, K, and the time
averaged rate of dissipation of the kinetic energy per unit volume, c. We write u = V/< u2> as the
characteristic velocity of the energy containing eddies The corresponding characteristic length of the
encrgy containing eddies we write as 1, which is proportional to the integral scale of the turbulence,
given below as L. In what follows, we assume I is of order L. In such an approximation, we can
neglect the decay laws of the kinetic energy and the rate of dissipation of the kinetic energy and
assume K and c are functions independent of time during the calculation of the sound generation
and its radiation. Here < u2 > is 2K/3, and during the decay we may put f = 1.5u 3/L. However,
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we may consider, as does Proudman, the general case where noise is generated at any time in the
decaying nonstationary turbulence provided the initial Reynolds number is sufficiently large. In
isotropic turbulence when the flow is nearly incompressible, which is the case when the turbulent
Mach number, M = u/coo, is small and where coo is the ambient speed of sound, we can write
the simultaneous double-velocity correlation tensor between any two points A and B, distance r
apart, in the turbulent flow, at a given time, t, as

2Qj(r,t) =< uuj >=< u 2 > [--f'rirj + (f + 2f')6,,], (1.1)

where f(r, t) is a scalar function of r, the distance between A and B, and dashes denote differen-

tiation with respect to r. < u2 > is the ensemble average of the longitudinal velocity components
in the direction of A to B at either A or B. In isotropic turbulence Qij is independent of position
in the domain. We write the integral length scale as

L(t) = j f(r, t)dr. (1.2)

Here < u2 >, f(r, t), L , 1, K, c, and M are all functions of time during the decay of the turbulence

from its given initial state. Similar results are obtained when the covariance is taken at different
times at A and B. Qii and f are then functions of the time during the decay, the time separation
between the times at A and B, and their space separation. Finally Proudman finds the total
acoustic power as a function of u, L and f, only.

Proudman notes that the Lighthill theory takes full account of the propagation of sound through
the turbulence, and variations of the sound speed through the turbulence as well as the back-reaction
of the turbulence on the sound and the related, but very much weaker interaction, with the sound
on the turbulence. Also at distances of many acoustic wavelengths from the turbulence, the radia-
tion depends on the temporal differentiation of T1j, provided the Mach number of the flow is small
and the Reynolds number is large. Further at low Mach numbers the components of the turbulent
intensity at a given frequency generate noise of the same frequency, such that the smallest acoustic
wavelengths for which the acoustic energy is significantly different from zero must be very much
larger than the characteristic length scales of the components of the turbulent energy (the larger
eddies in the turbulence) generating the noise. In this case of low Mach number flows in the absence
of a mean flow velocity, the proper matching conditions between the wave-numbers and frequen-
cies in the turbulence and those in the far sound field are that the frequency of sound, w, equals
that in the turbulence, and the wave-number vector in the turbulence, k, is equal to -(x/x)(W/coo).

Proudman considers the case where the integral length scale of the turbulence, L, is very small
compared with the typical dimension, D, of the turbulent domain. Proudman argues that the
distance for the covariance to fall to zero must also be small compared with the dimensions of
the turbulent region, D, in order that 'edge effects' from the boundaries to the turbulent domain
will be relatively small. Within such a boundary layer, the turbulent intensity and vorticity fall
to zero, and remains zero everywhere outside the region of turbulent flow. Within that boundary
layer the turbulence is likely to be anisotropic and to have characteristics different from those in
the central region of turbulent motion. Its thickness will be at least of order 3 L, and for the volumr
of the bomndary region to be small compared with the total volume of turbulence, we must have
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L/D < 0(1/100), say. (Such conditions are easy to specify in dealing with the problem analytically,
but clearly present problems when considering the problem numerically.) Also the turbulence must
not decay significantly in the time the sound takes to cross the turbulent region. Since the local
eddy turnover time is K/E = O(L/u), we find the Mach number of the turbulence, M = u/c,, must
satisfy the condition, M < LID < 1, which is a very stringent condition indeed. Since the wave-
length of the sound, A,, generated by the turbulence, at a frequency, W, is given by A, = 27c./w,
the above condition is equivalent to L/A, being a very small quantity even at large values of the
frequency, w. We define the reference Strouhal number of the turbulence, ST = QL/u, which is
0(1), and where fl is the reference frequency in the turbulence, is of order of the peak frequency in
the turbulent energy spectrum. When Dll/co < 27r, the source is compact, and this is the case we
are considering here. We emphasize these are the requirements for studying isotropic turbulence at
low Mach numbers, or near incompressible flow, where, as discussed above, M < 0.01. The results
obtained for the characteristics of the radiated noise, when applied to higher Mach numbers, need
careful consideration.

Proudman finds at high Reynolds numbers that the acoustic power per unit volume of isotropic
turbulence, P, oc poEMs, and on substituting the relations for c and M above, we find

Ps PuS (1.3)

where a, which we may call the Proudman constant, is a numerical constant. Its value is found by

Proudman to depend on the shape of the longitudinal velocity scalar correlation function, f(r/l).
For f(r/l) = exp(-r 2 /12), where I = 2L/fir, Proudman found the value a = 13.5, whereas with
Heisenberg's form for f(r/L), as given by Batchelor(1953), a = 37.5. During the decay, u and L
vary with time. In self-preserving flow, where K c tC1 , and L oc t1/2 , Proudman finds Ps C t-9/2.

The theory presented below also considers the case of a very high initial turbulent Reynolds
number. The results obtained by Proudman have been re-evaluated in the present paper and are
compared with those obtained using the approach proposed by Lighthill(1992) whereby the fourth-
order velocity covariance is derived from known values of the square of the similar second-order
covariance. Results are also given using a phenomenological model for the (Tij)t covariance. Finally
the recent results of Sarkar and Hussaini(1993), based on Direct Numerical Simulations,(DNS), are
compared with the analytic results. However these (DNS) results, and some further unpublished
(DNS) results of Dubois(1993), have themselves guided to a very large extent, and in some cases
confirmed, the assumptions made in the analytic theory of the acoustic noise generation from
isotropic turbulence.

In the numerical work discussed below, the turbulence in a small unbounded region relative to
the far-field observer as in Proudman's model, is assumed to have similar characteristics to those
existing within any given box in an infinitely periodic domain. The turbulent flow in this given
box is exposed to periodic boundary conditions unlike the boundary conditions which exist in the
unbounded domain. The assumption is made that the noise generated within the given box can
be considered in isolation of the remainder of the periodic domain and propagates its noise to the
far-field observer as if the rest of the periodic domain were absent and replaced by fluid at rest of
ambient density and speed of sound. The noise generated near the boundaries of the periodic box
is not considered since the assumption is made that the turbulence in the vicinity of the boundaries
meets the requirements specified above. Now numerous previous works using (DNS) have shown
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that the overall characteristics of the turbulence, including the kinetic energy, K, and the dissipa-
tion rate, f, in such a periodic box closely resemble those determined experimentally provided the
integral scale, L, is small compared with the overall dimensions of the given box, D. However the
Reynolds number of the turbulence is strictly limited in (DNS) to low Reynolds numbers, and thus
the comparisons with the results of Proudman will be limited only to those cases where the integral
scale, L, greatly exceeds the Taylor microscale, A. We discuss below the problem that exists in
the numerical simulations when the integral scale, L, is not sufficiently small compared with the
computational box of side, D, to have no measurable effect on the longitudinal velocity correlation
function, f. Such modifications to f are sufficient to change the characteristics of the computed
acoustic power generated by the turbulence, and show, in aeroacoustics, that the demands on good
spatial resolution in all length scales in (DNS) are more extreme, than in the corresponding calcu-
lations of the global statistical properties of the turbulence.

2.The Proudman model

Proudman finds, from Lighthill's Theory of Aerodynamic Noise, that the intensity of the radiated
sound at a very large distance from an unbounded but finite domain of isotropic turbulence when
the Mach number is small and the speed of sound in the turbulence is equal to its value in the
ambient environment outside the turbulent flow, can be written

I(X, t) = P-o III J dy JJ/dz < 2 0 2 u(,JTAj 2 U2 (ZTB)>, (2.1)
OTA 'NB

where u. is the turbulent velocity component in the direction between the source and the observer.

Here the component of the Lighthill stress tensor, Tij, in the direction from source to observer,
has been assumed equal to po(u2- < u 2 >), and in the above integral the fluctuations of u2

about its local mean value during thc decay are implied. Poo and c,0 are the constant density and
speed of sound throughout the turbulent flow and in the radiation domain outside it. The retarded
times at A and B are respectively, rA = t - I z - Vi I/c., and rB = t - I z - z I/coo. Proudman
reduces the second-order space time covariance of T1j to a series of second order velocity covari-
ances on the assumption that in isotropic turbulence the velocity at two separated points in space
has a normal joint probability distribution. Proudman also invokes the Navier-Stokes equations
to convert pressure covariances into functions of the velocity covariances as well as reducing the
time gradient of the velocity covariances to spatial gradients of the two-point longitudinal velocity
correlation function, f(r, t). Finally the Tij covariance is evaluated for two different forms of the
self-preserving function, f(r/L(t)), where the integral length scale, L, is a function of time, and
this in turn determines the value of the Proudman constant, a, in Equation(1.3) above.

In Proudman's high Reynolds number model it is assumed that for isotropic turbulence in near
incompressible flow the effects of retarded time in the evaluation of the two-point covariance of
9 2T1j/8t2 can be neglected. This approximation is used throughout the analysis and, in particu-
lar, with the reduction of the above two-point covariance into the sum of covariances of the time
derivatives of the velocity components. But a time derivative at a point A inside the turbulence
differs from the time derivative at a point B and even though the differences are small they are
not negligible as can be shown in the following analysis.
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We find that the covariance of (T13 )tt between the two points A and B at times tA and tB
respectively, where the aligned velocity components are, writing u for u,, u = uA and u' = uB
respectively, and the density is assumed constant and equal to unity, is given by the scalar function,
U,

02 02 2 2

U=-<-- (u2 A 5u t )j-(B- u>> (2.2)
A B

since in isotropic turbulence < u2 > = < U2 > = < u>. Now covariances in isotropic turbulence

are normally evaluated in terms of the velocity components, ui, and their derivatives at A and B,
whereas Tij involves the quadratic components, uiuj. Thus we need to expand the derivatives in
equation (2.2). Using the notation (Ou/OtA) 2 equals U'A, and similarly with respect to the other
terms, and with UA = u, and UB = u', it follows that:

U = 4(<(utA) 2 (utB)A>- <(utA) 2 >< (u'<B) > + < (utA) 2 u'Ut'tB > -

< (utA) 2 >< U'u•,B > + < uutAtA(utB)B > - < UU,,t. >< (U,)' > +

< UUtAtAU'UBtB > - < UUtAtA >< U'UtBtB >), (2.3)

which involves a set of both fourth and second-order covariances. Proudman used a similar no-

tation, except t = tA = tB was introduced throughout. Equations(2.2) and (2.3) are the starting
points for both the analysis in this section and in the work of Proudman(1952).

Following the work of Batchelor(1951) and Proudman(1952) we assume the joint probability
distribution between the velocities at A and B is normal and so the fourth-order covariances may
be replaced with second-order covariances in pq and p'q' using the Milionshtchikov relations :

< (pq)A(p'q')B >=< pq >< p'q' > + < pp' >< qq' > + < pq' >< qp' > . (2.4)

Thus we find that:

U = 8 < UtAUtB >2 +4 < uu' >< U9AtAUtBtB > +4 < UU'tB >< utUtAtA > +

8 < uu' >< UAB > +8 < UtAU' >< UtAU'Bt> >. (2.-)

This equation differs from that given by Proudman(1952) for reasons that will be discussed below,

in this section, and also in Appendix 3. It involves only products of two-point second-order velocity
covariances. In order to clarify the further reduction of this formula we will use a different but
more compact notation.

Let A and B be the points with coordinates y and z respectively, with source times tA and tB

respectively. With this notation we find:

U = 8S2B + 4 RABTAB + 4V1 + 8(V 2 + V3) (2.6)
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where, since UA is a constant when differentiating with respect to t B and UB is a constant when

differentiating with respect to tA,

RAB =< UAUB >. (2.7a)

aUA dUB D2 RAB

SAB =< OtA OtB 82 t- t (2.7b)

#
2 UA D 2 UB DARAB

TAB =< t t >= (2.7c)

B 2A -2AB AB (2.7d)

#UB #UB # 2UA 9 DRAB #2RAB

V2 =< UA B >t < tB D 12 >= #tB tBOtA" (2.7e)

DUA > UA # 2 UB DRAB D3 RAB
V3-- UB-A ><OtA 8t2B> OtA OtA 8t2"(.f

In the case of stationary turbulent flow RAB is dependent on T = tB - t A only and then
_#___ D2 CRAB DRAB CARAB

U- 12(02 RAE )2 +4RAB OR-- + 16( • 3R). (2.8)
U- 9( 2  B&r 4  Dr Dr (.8

The corresponding result from Proudman's analysis, as shown in Appendix 3, is
U 92 RAB) 2 + 4RB 0 4RAB + 4(DRAB b3 RAB) (2.9)

U=9(+48t2 A t4 at 8t---(2.9)t3

where although the same terms arise the numerical coefficients are different from those in Equation

(2.8). The difference between the two analyses lies simply in that Proudman has put tA = tB = t

at the start of the analysis , whereas in our analysis we have introduced this approximation at the
end. To that extent both treatments are approximate, but we contend that our present analysis is
more justifiable than the earlier approximation introduced by Proudman. The differences involved
are presented and discussed at greater length in Appendix 3. In Proudman's work t is the source
time and includes both the effects of the decay time and the temporal fluctuations between A and
B in deriving Equation(2.9). If, like Proudman(1952), we neglect retarded times, then t = tA = tB,
and Equation(2.8) remains unchanged except -r must be replaced by t. The general expressions for
U, as given in Appendix 3, show greater differences. With the general expression for U we can find
the separate effects of time during the decay and time separation effects between tA and tB.

If we now evaluate the value of the Proudman constant, a, following the method used by Proud-
man(1952), but using Equation(2.8) in place of Equation(2.9) we find, as given in Appendix 3, for
the case when the two-point longitudinal velocity correlation function f(r/L) = exp(-?rr 2/4L 2),
that a = 10.96, compared with Proudman's result a = 13.5, for this same correlation function. (In
a recent revised calculation of a, based exactly on the same formula used by Proudman, we find
a = 12.5.)
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3. A Simplified Model.

An alternative, and simpler form, can be obtained for the Tj covariance and its second time
derivative when the turbulence is pseudo-stationary. In such a case we can write the intensity of
the radiated sound as follows:

I(-,t)4 P.,(y, r, d-), (3.-1)
16~r2cs X2  07 ii a

4

and from this we can find the total radiated acoustic power output per unit volume of turbulence.

Here , is the space-time covariance of (T.,.- < T.rx >), with p replaced by its approximately
constant value p,,, and which, in isotropic turbulence, is independent of the position y inside
the flow. To our approximation, as discussed above, the T,,x covariance is reduced to that of
(u'- < u' >). We assume that , beyond certain values ofI r I and r, is a decreasing
function of the separation distance r and the retarded time separation r, and falls to zero in a
distance small compared with the dimensions of the assumed large turbulence volume. In the
general case of decaying isotropic turbulence, it is also a function of the time, t, during the decay
period, since < u2 >, and the integral length scale of the turbulence, L, must both depend on t.
We assume that a physically possible form for Px,•, at sufficiently high Reynolds numbers is the
self-preserving function

PX u4 X(r//)'I'(r), (3.2)

with the non-dimensional space correlation function, $(r/l), and the non-dimensional retarded

time correlation function, 'i(Qr) being chosen so that the dominant portions of the spectra of the
velocity fluctuations are adequately resolved. Here u, 1, and 1 are respectively reference values of
the turbulent velocity, the turbulent length scale, and turbulent frequency, and, in general are all
functions of time during the period of decay. In stationary turbulence they are constants. Currently
there is little experimental evidence to provide a guide for a suitable correlation function in both
space and time, due to the technical difficulties in measuring the fourth-order velocity covariance
and both the fluctuating pressures and densities involved in Ti, in any flow field, and in particular
in isotropic turbulence. (However guidance as to appropriate functional forms for -t and IV can be
obtained by considering the similar functions relating to the two-point velocity covariances.) We do
not suggest that the self-preserving relation given in Equation(3.2), using a separation of variables,
is the most general or only possible form for P,,. even in the case, as considered here, when the
turbulence is assumed self-preserving.

The introduction of a self-preserving and separation of variables form for P•,, implies that
it would be most applicable in a domain where one type of flow prevails. This would be possible
in either of the limits of very low or very high turbulent Reynolds numbers. Here we prefer to
consider only the case of very high turbulent Reynolds numbers. We therefore assume that this
type of flow holds throughout the complete spatial domain during the total decay of the isotropic
turbulence, where the energy containing length scales of order, 1, are very large compared with the
Taylor microscale eddies of order, A. The decomposition of the far-field sound intensity into its
spectral components and the corresponding decomposition of the equivalent acoustic source func-
tion, P.,z,, into its wave-number components, k, and frequency, w, suggests an independence of
wave-number and frequency and correspondingly an independence of space and time in the char-
acteristics of P•,•. An independence principle of the space and time characteristics of P.,,
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corresponds to the approximation involving a Eeparation of variables as given by Equation(3.2). Of
course such independence is artificial in the acoustics problem since we have a coupling condition
between frequency and wave-number for sound waves in the domain outside the turbulence, and a
corresponding matching relationship exists between the wave-number and frequency components in
the four-dimensional Fourier transform of P,,, which we write in the form, P(k,w), as given in
Appendix(4) below. Correspondingly we see that the space-time covariance is connected through
the far-field retarded time relation t* = r + k.r/w, where t* is the autocorrelation time separa-
tion at the observer. Thus, by reference to Equation(3.1), we see that for each value of the space
separation we need the fourth time derivative of P evaluated at 7 = t* - k.r/•w. The contribu-
tion to the far-field intensity, and hence the total acoustic power, involves the volume integration
of the fourth-order covariance, /4 P1,9/7r4 over all values of r. Since the elemental volume is,
r 2 sin OdOdkdr, we find that the integrand peaks at a value of r distant from r = 0. At r = 0 its
value is zero. A simple example shows that near the peak in the integrand we have values of r of
order the length scale of the energy containing eddies, and the fourth time derivative, taken at this
value of r at r = t* - k.r/w, will also be related to times involving the energy containing eddies.
Thus from an inspection of the four-dimensional mapping of Pr,,,ýr in the space-time domain we
find its dominant contribution to the integrand in Equation(3.1) centres on a peak at a distance, r,
of order 1, and a time, r, of order 1/fl = 1/u with respect to the origin. Hence in the modelling of
this dominant contribution to the total acoustic power we find it is possible, as suggested above, to
reduce the space-time covariance to the product of the separate space and time covariances. If for
any reason the integrand in Equation(3.1) had peaked near r = 0, such a separation of variables
would have been physically less acceptable, but then the space-time interaction would have involved
a major contribution from small scale turbulence in that domain. At high Reynolds numbers in
unbounded domains such as are being considered here, the dominant contribution to the generation
of sound from a turbulent flow arises, as found by Lighthill(1952), from the dynamics of the highly
energetic parts of the turbulent motion, namely the energy containing scales.

In the region of final decay in isotropic turbulence, where inertial effects are small and can
be neglected, it is known, for this domain of low turbulent Reynolds numbers, that the simul-
taneous two-point longitudinal velocity correlation function is f(r,t) = exp(-r 2 /8vt), which in
self-preserving flow becomes, f(r,t) = exp(-r 2/2A 2 ), wnere A, the Taylor microscale, is a function
of time. At earlier times in the decay, f(r/L) = exp(-r/L), except at small and very large spatial
separations, where f(r/L) = exp(-c(r/L)2 ), with c a constant, and is found to approximate to the
function as measured experimentally at higher turbulent Reynolds numbers. We also note that in
the (DNS) results discussed in Section(5) the initial turbulent energy spectrum is given the distri-
bution k4 exp(-2k2 /k 2) which corresponds to f(r/L) = exp(-7r/4(r/L )2). k, is the wave-number
at the peak in the energy spectrum. One of the forms used by Proudman(1952) for f(r/L) was
also equal to this latter function. Thus, arising from these observations, and noting P involves
the velocity squared covariance, we suggest that a possible form for the space covariance, f(r/1), is
exp(-2(r/l)2 ). (A better choice at high Reynolds numbers is possibly exp(-r/1) but this has the
dis-ldvantage of not having finite curvature at r = 0, which is a necessary condition at all Reynolds
numbers since the dissipation range of wave-numbers an(' frequencies is finite. On balance the
choice of a Gaussian distribution function appears to be a better choice.) A first choice for the
temporal covariance I(fl-r) is made on similar assumptions and we put 4'(Qr) = exp(-irQ?2 r 2 /2).
This function is however a very poor approximation to the temporal covariance at times greater
than zero where the corresponding turbulent frequency spectrum has a much richer population
in the higher frequencies arising from non-linear interactions. The spectrum corresponding to
%p(flr) = exp(-_rf12 r 2 /2) does not capture the full amplitude of the higher frequencies, and the
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(DNS) simulations discussed below, show the differences between the assumed and calculated spec-
tra. This form of W(fOr) does have the merit, however, that it captures the characteristics of the
lower frequencies and near the peak frequencies in the spectrum.

Since dK/dt = -c holds throughout the decay and we assume the conditions for self preserving
flow remain throughout, we find K is proportional to t-'. This, together with two important length
scales in the turbulence, defines the dynamic behaviour of the turbulence during the decay. These
length scales are 1, the energy containing scale, and A, the Taylor microscale, which is defined from
the dissipation function, t, with

E = 15v-U (3.3)
T2 '

where v is the kinematic viscosity. A is also defined in isotropic turbulence as the radius of curvature

of the scalar longitudinal velocity correlation function, f(r, t), at the origin, or(92 1 (3.4)

Thus even at high Reynolds numbers the longitudinal velocity correlation function, f(r), near r = 0,

is a function of Reynolds number, since its curvature there depends on A, and A itself is a function
of Reynolds number. Away from the origin f(r) is a function of r/L where the integral length
scale is a measure of the scale of the energy containing eddies which are responsible for the bulk of
the noise generated from the turbulence at high enough Reynolds numbers. The time covariance
of the velocity, for any given spatial separation, has a smaller curvature near the origin, r - 0,
than that of the corresponding spatial correlation ds r - 0, since at high Reynolds numbers this
covariance has properties related to that of the pressure covariance, and hence depends on all scales
of turbulence. In this initial region, it can be shown that both A and L increase with time pro-
portional to t 1 '2 . In the final period of decay, which is viscous dominated, A continues to increase
proportional to t1/ 2 . However in this region we find L decreases with time proportional to t-1/4.

In the initial region, if the flow is self-preserving, we can use either A or L as the characteristic
length in defining the similarity forms of the spatial correlation function, since A is proportional
to L. However since in the problem of sound radiation from isotropic turbulence it appears, at
high values of the Reynolds number and in the main period of decay, that the bulk of the noise is
found to originate from scales of turbulence only slightly smaller than those containing most of the
energy, we prefer to use I as the characteristic length scale in the turbulence throughout the decay.
In the recent study of Speziale and Bernard(1992), it is shown that the conditions for decaying
self-preserving isotropic turbulence are that K should be proportional to t- 1 and RA = uA/v is
equal to a constant throughout the decay, with the so-called asymptotic final period of decay, in
which K falls as t-1/2, only being reached as t -* oo. Thus in a domain of self-preserving isotropic
turbulence we see that RL = uL/v also remains constant throughout the entire region of decay,
with u decreasing as t-'I2 and both A and L increasing as t 1 /2. The initial conditions must be
such that the flow field is initially isotropic at a sufficiently high Reynolds number, RL. The value
of the constant asymptotic Reynolds number, RA, depends critically on its initial joint probability
distribution and in particular its velocity derivative flatness and skewness. In most experiments on
the decay of isotropic turbulence the turbulence is not fully self-preserving and K falls close to t-s,
where s = 1.24 to 1.34 rather than the t-1 as found in self-preserving isotropic turbulence. This is
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also the case in the (DNS) results as will be shown below. For further details on the characteristics
of self-preserving isotropic turbulence refer to Speziale and Bernard(1992). The main characteris-
tics of isotropic turbulence are listed in Appendix 1.

With these functions Ob, T and f we find there are two parameters, or L, and R, which we
relate respectively to the length scale and frequency of the energy containing eddies. Since we have
already introduced u as the characteristic velocity of the isotropic turbulence, which we have put
equal to the root mean square velocity in any direction, it follows, as described above, that we may
write, ST = QL/u as the Strouhal number of the turbulence which we assume is independent of
space and time. In general we might expect ST to have a value of order unity. In the stationary
case, where K remains independent of time, the dominant time scale in the turbulence is 1/Q,
corresponding to that of the fluctuations of the energy containing scales. This time scale, which we
may refer to as an integral time scale, is also of order L/u, giving, as stated above, a value for ST of
order unity. In this case u, L and g are all independent of time. When the turbulence is decaying
there are now two time scales, 1/n and that associated with the time scale of the decay, which we
call, tD, and is the time for the initial values of K0 and co to fall to their vanishingly small values
at the end of the decay. Such a time tD is clearly of order Ko/Eo, and we put tD = Ko/Eo, say. If
then we write Q0 = I/tD we find n1 0 = s0/ • 0,, where wo is the initial rms vorticity, and RLo
is the initial Reynolds number. Thus when RLo is very large no is very small, and no < uo/Lo.
Thus we find tD is a long time scale. (At t = 0 we find that c0 $ 3/2u3/Lo, its equilibrium value.)
Hence at all times beyond the initialization regime, where the turbulence is readjusting itself from
its initially imposed conditions at time t = 0, we find the time scale of the dominant fluctuations
in the turbulence is the short time scale, ts = 1/Q = L/u, with ts < tD. However for small
values of the initial Reynolds number, RLo, we fail to obtain a time during the decay when a large
separation exists between t s and tD, moreover g and f0 are of similar orders of magnitude. At
high Reynolds numbers g > go. In this section we assume the Reynolds number is sufficiently high
so that in both the stationary and non-stationary cases Q >» go, except during the short initial
period following the commencement of the decay. Then, as stated above the integral time scale ts
is of order L/u and the turbulent Strouhal number, ST = 1.

However in the (DNS) simulations of Sarkar et al(1993), which are discussed in Section(5) be-
low, the Reynolds number is not large and Q and gio are of similar orders of magnitude. It has thus
proved difficult to extract, from the databank of these simulations, definitive values for 0. However
in these results we find to a good approximation, at about half the initial eddy turnover time, that
a good value for the turbulent Strouhal number is ST = 1. In the case of the (DNS) simulations
by Dubois(1993) using forced turbulence, the values of K and c remain almost constant for a large
part of the decay and for all practical purposes the turbulence may be regarded as stationary.
But in that case also it has proved difficult to find values of the integral time scale, and hence f0,
since at large separation distances and times the Tii covariance is adversely affected by the forcing
amplitude, and therefore produces a contamination on both the integral length and time scales.
These results are discussed in detail in Section(5) below.

For the reasons discussed above the space-time correlation function may be written:

P'X'XX = u4 exp (_, /(r + n2r2), (3.5)

with its four-dimensional wave-number/frequency spectrum function:
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1 u7 S ( _ 2__ '_ , (3.6)
P(kW) = 4 Q4 i-• exp 2rfJ2

and with the acoustic power spectral density, as found in Appendix 4,

po(w) = 2,r2PW4 P(k,w), (3.7)CSo
Cs00

where C = 1 + ST2u 2 /c2 , and showing a peak in the acoustic power spectrum at a frequency

Wm = vl/8f. At low Mach numbers, where u/c00 is small, C has a value of near unity. With this
wave-number/frequency spectrum function the total radiated acoustic power per unit volume of
turbulence is:

p0 0 u3 L 4104f -2- C d(
P s ST 0 exp 2 2

00 ip 0 Su
-37rp°,S s T48(3.8)

- vFLc5 C5/2'

Throughout we have assumed that the characteristic length scale of the of the T,, covariance is

approximately equal to the scale of the energy containing eddies, L.

This result makes no approximations with respect to the retarded time differences, but its value
depends critically on the distributions chosen for f and %P in P and the value of the reference
turbulent Strouhal number, ST. If ST is given the value 1.25 then the value of the Proudman
constant, a, as defined in Equation(1.3), is equal to 16.26, but if ST = 1 then a = 6.66. The results
from Proudman's model give numerically similar results with a in the range 13.5 to 37.5 depending
on the chosen form for f(r/L). In fact Proudman refers to values of a as order of magnitude values
only, since unless f(r/L) is known for the given flow any inaccuracy in f(r/L) is also reflected in the
value of a. Our experience is that small changes in f(r/L) generate large changes in the Proudman
constant, a. We found in Section 2, for the case of stationary flow, when f(r/L) = exp(-7rr 2 /4L 2 ),

10.96p00u8 (

Ps : Lc ' (3.10)

or a = 10.96.

If we had assumed space and time covariances were proportional to exponential functions we
would have found that the noise generated would have over-emphasized the contributions from the
eddies of length scales of the order of the Taylor microscale. The resulting noise would have been
of very high frequency. But as stated above, it is our contention, that the small eddies controlling
the space-time covariance near the origin of the space and time separations, do not control the
dominant regions of the space-time covariance contributing most to the generation of noise at high
turbulent Reynolds numbers. This region is displaced from the origin and is centered more towards
those eddies containing most of the energy in the turbulence. Thus in choosing empirical functions
for the non-dimensional correlation functions in space and time we concentrate only on functions
which provide an adequate representation of the space-time covariance at distances of order L and
times of order 1/fl and which vanish at large separation distances and times. But most important
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of all we choose a space-time covariance which is a function of r/L and Qlr only, with L and 0
constant in a stationary turbulent flow, and functions of time in non-stationary turbulent flows,
and which are independent of the flow Reynolds number above high enough Reynolds numbers.
In non-stationary self-preserving flows both L/u and 1/l increase linearly with time giving ST
= a constant, which we put equal to unity. Definitive values for ST have yet to be determined.
Our final values for the Proudman constant, a, are independent of Reynolds number but remain
sensitive to the turbulent Strouhal number, ST, which is a parameter which must be determined
from experiment or from further (DNS) or (LES) simulations. It seems, however, unlikely that we
will be able to construct an experiment from which ST will be found experimentally. A guide to
the selection of results from the numerical simulations in respect of the Reynolds numbers of the
Taylor microscale, RA, and the integral scales, RL, can be found in Table 3, along with the ratios
of the various turbulent length scales and turbulent frequencies. The decay laws for self-preserving
isotropic decaying turbulence are presented, as stated above, in Appendix 1 and listed in Tables 1
and 2.

If we model the acoustic spectrum as found in the (DNS) results of Sarkar et al(1993) we find, as
shown in Figure(l), that the measured spectrum increases approximately as w2 in the low frequen-
cies and falls as w- 2 in the high frequencies before falling rapidly in the dissipation range. However
due to the dependence of the temporal covariance on 094/94 the spectrum must increase as w4 at
very low frequencies. A simple analytic expression, which satisfies this low frequency condition and
fits the measured results up to the high frequency 'dissipation cut-off', is W4/(1 + W2/4f?2)3, cor-
responding to the temporal covariance (1 + 2fr + 4/3Q2 "2 ) exp(-2Qr). The comparison between
the (DNS) results and the model expression for the acoustic spectrum is shown in Figure(2) and
the corresponding temporal part of the T.r covariance is shown in Figure(3). Figure(3) also shows
the comparison with the DNS results of Dubois(1993). These are discussed in Section(5) below.
Figure(4) shows the comparison between the (DNS) spectrum and that found using the Gaussian
approximation for the temporal covariance as given in Figure(5). Although the Gaussian approx-
imation fits the peak in the spectrum it under-predicts at both the low and high frequencies. A
comparison between Figures(2) and (4) shows the improvement in agreement with the DNS results
using the 11w 2 law at frequencies greater than the peak frequency. The corresponding changes
in the temporal part of the T•:. covariance are shown in Figures(3) and (5), for the 1/w2 and the
Gaussian laws respectively. A much greater difference can be seen in the fourth time derivatives of
these covariances as shown in Figures(6) and (7) for the Gaussian and 1/w2 laws respectively. In
both cases, and indeed for all covariances, the integral over all time separations is zero. Again we
see large differences in their behaviour near the origin, the Gaussian being well-rounded whereas the
I w2 is very spikey. The total acoustic power using the Gaussian time covariance was found above
from Equation(3.9), and resulted in a Proudman constant, a = 5.32, when the turbulent Strouhal
number, ST = 1.0. For the 11w 2 spectrum function, with no truncation at high frequencies in the
dissipation range, the value of a = 6.26 fur a Strouhal Number, ST = 1.0, and a = 15.29 for a
Strouhal number, ST = 1.25. The importance of the turbulent Strouhal number in determining the
value of the Proudman constant is thus obvious and hence the results obtained from this section
must be regarded as very approximate, except where independent data on the values of the turbu-
lent Strouhal number, the longitudinal velocity correlation function and the acoustic spectrum are
available for calibration. The detailed discussion of the (DNS) results is given in Section(5) below,
where further comparison is given between the results obtained in this section together with the
results found in the next section.
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4. The Direct Evaluation of the Total Acoustic Power
using the Lighthill Relationship.

Proudman finds, from Lighthill's Theory of Aerodynamic Noise(1952), that the intensity of the
radiated sound at a very large distance from an unbounded but finite domain of isotropic turbulence
when the Mach number is small and the speed of sound in the turbulence is equal to its value in
the ambient environment outside the turbulent flow, can be written

I(X, t) = 16Po2Co 2 J Id II dz < 9 2 (y'rA)-92 U2(z'rB) >, (4.1)
T00A '9 TB

where u, is the instantaneous turbulent velocity component in the direction between the source and

the observer. Here the component of the Lighthill stress tensor, Tii, in the direction from source
to observer has been assumed equal to p.o(u2- < u2 >), and in the above integral the fluctuations
of u2 about its local mean value during the decay are implied. p,, and c,, are the constant density
and speed of sound throughout the turbulent flow and in the radiation domain outside it.1 The
retarded times at A and B are respectively, rA = t - I T - y 1/c., and rB = t - I x - z I/cm. We
base our prediction on the direct evaluation of the fourth-order covariance and not on its reduction
to the sum of products of corresponding second order covariances based on Gaussian statistics, as
assumed in Proudman's work. In the radiated sound field, the total sound power per unit volume
is given by

_Poo f
Ps = PO. Udr, (4.2)4irc5,ii

where the equivalent acoustic source function, U, is given by

,92 192
u _-< <U < >)>. (4.3)

and uA and UB are the components of the velocity at A and B respectively in the direction of

the far-field observer at z. In the case of decaying isotropic turbulence in near incompressible
flow at high Reynolds numbers, we may assume that, at any time in the decay, the turbulence is
pseudo-stationary. Noting also that the operations of averaging and differentiating permute with
quantities at B being treated as constants when differentiating with respect to zA, and TA, and
similarly with respect to quantities at A,

2 24.4U .4 < (UAUB- <U 2 >2) >, (4.4)

where we define the effective retarded time, t - x/c, = (rA + T-B)/ 2 , the retarded time separation,

= (rB-rA), and < u >=< u2 >=< u2 > is a function oft only. Also < uAU2 > is a

'The changes in the analysis to include turbulent gases of different density and temperature from that in the

ambient medium can be introduced, but then the complete form of Tj must be used, and not the approximation
made in deriving Equation(4.1).
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function of r, r and t. The retarded time separation at the source points can be chosen to find the
autocorrelation of the far-field sound intensity, and similarly for the acoustic power.

If (u,)A and (uj)B are the general components of the velocity UA and UB respectively, then
writing i = j = 1 x we find < ((Ut)2(u,)2 > - < (U.)2 >< (u 1 )4>) > can be derived from the

general form of the fourth-order isotropic tensor as given by Batchelor(1953). Thus, omitting the
dependences on time for convenience only, and writing r, for the resolved part of r in the direction
of M,

P.,.(r) =< (uAUS- <u 2 >2) >= A(r)r" + B(r)r2 + C(r) (4.5)

where the longitudinal velocity squared covariance

(u,(X) 2 uP(X + r)2)- < (u,) 2 >2 = r 4 A(r) + r 2B(r) + C(r), (4.6)

and the lateral velocity squared covariance

(u,(X) 2 u,(X + r)2)- < (u.) 2 >2= C(r). (4.7)

When the turbulence follows Gaussian statistics, as assumed by Proudman(1952), the universal

functions A(r), B(r) and C(r) for the fourth-order velocity squared covariances are related to the
corresponding functions for the second order velocity covariances, f(r) and g(r), where

up(z)up(z + r) = u2 f(r) (4.8)

and

un(z)un(z + r) = u2g(r). (4.9)

Lighthill(1992) has shown more generally that the fourth-order longitudinai velocity covariance can

be replaced by the square of the corresponding second order covariance giving

(tP(M) 2 U,(M + r)2- < U2 >2 (U,(M)U,(M +,.))2 ( -- ,(4.10)

and a similar relation holds for the fourth-order lateral covariance by replacing the suffix, p, by

the suffix, n. The relationship between the respective fourth and second-order covariances holds
for the given time t and the difference time r. The velocity flatness factor, T1 = T4/u2-2 has the
value 3 in Gaussian statistics, and is found by Townsend(1956) to be nearly 3 in decaying isotropic
turbulence. A similar result was obtained in the (DNS) results of Sarkar and Hussaini(1993) and
Dubois(1993) as presented below. However the joint probability distribution function for the ve-
locity squared at two separated points and for its second time derivative might be expected to
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be non-Gaussian and the preliminary results from the above (DNS) results indicate that T1 in the
above formulation should have a value slightly less than 3. However for the purpose of this paper we
will use the value T1 equal to 3 in deriving values of the Proudman constant given below. When the
joint probability function is Gaussian, Lighthill's relation reduces to Millionshtchikov's hypothesis
as given by Batchelor( 1953).

From these results obtained from the Lighthill relationship we find

r 4 A(r) + r2 B(r) = (T1 - 1) < u2 >2 (f(r)2 - g(r)2), (4.11)

and

C(r) (TI - 1) < u2 > g(r) 2 . (4.12)

Noting the points A and B are separated by the vector distance r, which is in a direction at angle

0 to the propagation direction x, we find from Equation(8), together with Equations(4.10),(4.11)
and (4.12),

P,,.(, r, t) = (Ti - 1) < u2 >2 (f(r, T) cos 2 0 + g(r, -r) sin2 0)2, (4.13)

with the effective acoustic source function

U = 494 P.,.(r, r, 0). (4.14)

In nonstationary turbulence u2, T1, f and g are also functions of the time t.

If the autocorrelation time difference in the far-field at x is t*, then its relation to the retarded
time difference in the source region, r, is

wt* = wr + k.r, (4.15)

where the wave-number vector in the turbulence is k = -wx/(xco,) . Hence the power spectral

density is

p,(GO) = 8 o JJ exp(-ik.r)drJ exp(-iw-r)U(r,0 : r,t)dr (4.16)

and with Equation(17) for U we find, with k =1 k ,

ps(w) = 2 Wrcj0 r 2 dr j cosw-rdr j sin 0cos(kr cos O)Px,x.(r,O: r,t)dO. (4.17)

If

11 (kr) = j sin 0 cos(kr cos 0) cos4 OdO,

15



I 2(kr) = sin 0 cos(kr cos 0) cos2 0 sin2 OdO,

and

13(kr) = sin 0 cos(kr cos 0) sin 4 OdO,

then with Equation(4.13) for , the power spectral density becomes

ps(w) = PNoW4 < u >2 (T1 - 1) r 22dr 0coswr(I f2 + 212fg + l 3g2)dr, (18)
2ircO

noting f and g are functions of r, r and t only.

In our problem of near incompressible flow, the turbulent Mach number is very small, and in
this case we may assume that the modulus of the wave-number k in the turbulence is small and
the dependence of 1,, 12, 13 and p, on k can then be neglected. We then find the integrals for I,
12 and 13 become respectively 2/5, 4/15, and 16/15. Equation(4.18) now takes the simpler form

P8(w) = POW4 <1U2 >52 (T1 - 1 r2dr0 coswr(3f 2 + 4fg + 8g2)dr. (4.19)

157rcs Jo Jo

The more general case when k is not small requires the values of 1,, 12 and 13 given by

I(kr) sin kr 4 cos kr 12 sin kr - 2 4 cos kr +24 sinkr (4.20)
l \kr (kr)2 - (kr)3  (kr)4  (kr)5+'

12(kr) = 2 2 cos kr sin kr 24 cos kr 2 4 sin ý-r (4.21)
( = (kr)2 + 10 (kr)3 + (kr)4  (kr)-(2

Ssin kr - cos kr sin kr(1(r=2 - -- 24 -- + 24 (-rS•(4.22)

(_ (r)3 (kr)4  (kr)s )

Now the relation between f(r, r, t) and g(r, r, t) in isotropic turbulence must satisfy the equation
of continuity, and as shown by Batchelor( 1953),

g(r, T, t) = f(r, r, t) + r Of(r, r, t) (4.23)

2 Or

It follows that since fo°°(3r 2 f 2 + 2r 3fOf/8r)dr = fo O(r3f 2)/Ordr = 0,
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j r 2 (3f 2 + 4fg + 8g 2 )dr = 20 r 4 (Of) dr,

and then Equation(4.19) becomes

p8 (w) = P0W 4 < u2 >2 (T 1 - 1) 2 coswrdr r4 (Lf\ 2

c5 15 jcs dj r4 dr. (4.24)

The fact that a significant part of the equivalent acoustic source function, r 2(3f 2 + 4fg + 892),

integrates to zero for all values of f has important consequences for the generation of noise from
turbulent flows.

In many cases we require the complete acoustic source distribution function, r2 (3f 2 +4fg+8 g 2),
which includes that portion which, on integration over all values of r, makes zero contribution to
the acoustic power. The complete acoustic source function as well as its positive only contribution
to the acoustic power are given in the examples below. We see that the power spectral density,
p,(w), as given by Equation(4.24), has its dominant contribution far removed from the origins of
r and r, where the longitudinal velocity correlation function has its maximum value. This reflects
on the poor efficiency of the conversion of the flow kinetic energy into acoustic energy, since away
from the origins of r and r, the magnitude of the function Of/Or will be extremely small. We
are reminded that our result is based on the assumption of pseudo-stationary turbulent flow. In
decaying isotropic turbulence the local characteristic velocity, u = u2 >, the length scale, L,
and the time scale, 1/P2, are all functions of the decay time.

We cannot proceed without introducing a distribution for f(r, r, t). We noted that the integral
in Equation(4.24) is dominated by the values of the integrand at r and r away from the origin,
and where f(r, r, t) is a very small quantity. Thus we may assume, to a good approximation as
discussed in Section(3) above, the distributions of r and r are independent, so that

f 2(r, ,t) = ir (4.25)

where L = f~o f(r, 0, t)dr is the local integral scale and 19 is the local reference frequency, propor-

tional to the peak frequency in the turbulence. Both L and Q are functions of time in the case of

turbulent decay. In the stationary case they are constants. The distribution assumed for f(r, r, t)
in Equation(4.25) is its self-preserving form, which is independent of time during the decay. The
change in the longitudinal velocity correlation function during the decay is dependent on the vari-
ations of L and fl with time. We find it convenient to define, as above, the characteristic velocity
in the turbulence as u = V u2 >, and the refereitce Strouhal number as ST = ilL/u, which we
assume is constant throughout the turbulence and is independent of time throughout the decay.
The time separation dependence in the two-point velocity space-time scalar function, f(r, r, t) has
been chosen to establish a far-field noise spectrum proportional to W 4 /(1 + (w)/Q) 2 /4) 3 . Such a
spectrum function, already discussed in Section(3) above and shown in Figure(2), is found to be
similar to the acoustic spectrum as found in the (DNS) results. The frequency at the peak in the
noise spectrum, win, is V18il. The (DNS) results are also plotted in Figure(l), where it is shown
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the spectrum changes from nearly w2 at low frequencies to w- 2 at high frequencies. However since
the total acoustic power is proportional to the fourth time derivative of T,, we have chosen the low
frequency dependence proportional to w4 rather than w2 . The corresponding temporal covariance
is shown in Figure(3) with the (DNS) results of Dubois(1993). The frequency at the peak in the
acoustic spectrum is slightly greater than that corresponding to the turbulent energy spectrum.
Thus the eddies responsible for the dominant contribution of the acoustic spectrum are slightly
smaller in scale than the energy containing eddies.

Hence the total acoustic power is found by integrating Equation(4.24) over all values of the
frequency, w. If we put f(r,0,t) = f(x) = exp(-WrX2 /4), where X = r/L, then the result is

MO =X() 2 d) (4.26)p 15t =c--oo L JM dX .

Thus the value of the Proudman constant, a, in

Poo U (.7
p8(t) = a -5 - (4.27)Lcoo

is

Sl)S 0 x4 (df )2L dx . (4.28)
15 0 d

We find
00°X fdf d= 15i dx( ) - 1 = 0.8440, (4.29)

0 dX 4V2-,r

and finally

a = 1.80(T1 - 1)ST-, (4.30)

which is the important result obtained from this section.

Thus the Proudman Constant, a, depends on the flatness factor, T1 and the fourth power of the
turbulent Strouhal numberST.

It also confirms that the source of the acoustic power, which is proportional to the fourth time
derivative of the retarded time covariance of T., is positive for all values of r and -r. However as
noted above this is mainly due to a large part of the volume integral of the T'. covariance being
exactly zero. The spatial correlation volume of the equivalent acoustic source depends on (f') 2, and
is equal to 0.8440L3 as shown in Equation(4.29). As expected the equivalent correlation length,
0.945L, is slightly smaller than the scale of the energy containing eddies. The peak in the acoustic
source distribution function occurs at X = 1.3820.
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When the Strouhal number of the turbulence, ST = 1.25 we find that a = 4.4(T1 - 1) and when
the flatness factor, T1 = 3 as found in the (DNS) results discussed below, then a = 8.8. Clearly
the value of a depends on ST, and although we know ST is of order unity, its value cannot be
determined from our analysis. When ST = 1 and T1 = 3 we find a = 3.6. If f(r/L) = exp(-r/L)
in place of f(r/L) = exp(-irr 2 /4L 2 ), covering possibly the range of likely distributions between low
and high Reynolds numbers, then with these same values of ST and T1 the value of a = 3.2. Thus
all we can say here is that, covering the range of low to high Reynolds numbers, a is likely to be
in the range 3 to 9, provided ST is in the range 1 to 1.25. These values of a are in close agreement
with those given by Proudman(1952) if ST has a value of around 1.25. This applies also to our
re-calculation of those results and in a revised analysis, in which the retarded-time is not neglected
until the conclusion of the analysis, as shown in Section(2). The lower value of a also equals the
same order of magnitude as that obtained from the (DNS) simulations, as shown below, provided ST
has the value unity. When this investigation was started it was assumed that one of the outcomes
would have been that the (DNS) results would provide a calibration for the turbulent Strouhal
number, ST. This remains a possibility although first it is necessary to establish that the (DNS)
results discussed below are an accurate guide to the evaluation of a at high Reynolds numbers and
that these simulations do not show any contamination resulting from any inadequate resolution in
both space and time of both large and small scale motions. So far it has been possible to establish
that, as expected, ST has a value of order unity, and appears to have values in the range 1.0 to 1.25.

Now during the decay

dK = -E, (4.31)

dt

where the kinetic energy, K = 3 < u2 > /2, and the rate of dissipation, c oc< u2 >3/2 /L. If

we assume L(t) oc t' and < u2 >oc t-' , then we find from the Eddy Damped Quasi-normal
Markovian(EDQNM) results of Lesieur(1990), that n = 0.31 and s = 1.38. If we use these results,
then the acoustic power, p8 , falls as t-' 8 3 , and is in fair agreement with the results of the (DNS)
simulations. Additionally we find that L/u cx t(2n+s)/ 2 oc t for all values of s and n, and hence Q
decreases with time according to t-1. Thus the turbulent Strouhal number, ST, is independent of
time in the decay, consistant with the assumption made previously. In full self-preserving flow with
s = 1.0, and n = 0.5, we find p, falls as t-A". All these results apply when the velocity and the
velocity derivative flatness factors remain constant during the decay.

Before we leave this section we might reflect on the result had we completely ignored retarded
times in the evaluation of Equation(2.2). Then the sound power per unit volume would be given
by the simultaneous fourth time derivative of the fourth order velocity covariance, all evaluated at
the same time, t. However we define U as in Equation(2.3), but with r replaced by t since r has
been put equal to zero. In self-preserving flow we then find the time differentiation operates only
on the product of u4 and L3 , with the resujt

p.,(t) = (T _1) 2!nd 4 30 4 f )' X
U L d . (4.32)

From Equation(4.32) we find that the acoustic power output depends critically on the decay laws

for u and L, especially in the initial stages of the decay. But the result, as might have been expected
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since the random temporal characteristics of the turbulence are now ignored, gives a much lower
sound power than that given by Equation(4.30).

5. Comparison with the Direct Numerical Simulations(DNS) of
Isotropic Turbulence by Sarkar and Hussaini(1993),
and Dubois(1993).

The (DNS) results are presented here in some detail, with the permission of the authors, in order
to make a detailed comparison between the results and assumptions made in the simulations and
in the analysis presented in Section(2) above.

(i) The computational range.

These (DNS) results from the modelling of isotropic turbulence were performed for an initial Taylor
microscale Reynolds number, RA, of 65 and a Mach number, based on the root mean square of
the turbulent velocity, equal to 0.05. (The value of RA quoted by Sarkar and Hussaini was 50,
but this was based on the turbulent velocity, q = 3V _U2 >, and A = q/v/< w2 > whereas we
define R\ based on A2 = 15V < U2 > /k.) A 643 spatial grid was used with a time step At equal
to 0.00275(K/c)o. Twenty such simulations were performed and each simulation was conducted
up to t = (K/E)o, where (K/c)o is the initial eddy turnover time. During these simulations the
turbulence decayed and the Taylor microscale Reynolds number fell to values approaching 20 over
one initial eddy turnover time. The simulations were then stopped for with such low values of the
Taylor microscale Reynolds number the energy containing scales of the turbulence approach the
Taylor microscale, and the dynamics of the turbulence change markedly from its characteristics
associated with higher Reynolds numbers. At less than RA = 48 approximately, the peak frequency
in the acoustic spectrum exceeds the frequency associated with the Taylor microscale eddies. Thus
for these simulations with the initial value of RA = 65, we might expect the results to display some
characteristics for the acoustic power output different from the analytic results of Proudman and
the results given in this paper, which are based on the assumption of a high Reynolds number,
where the results are independent of Reynolds number. The explicit dependence on Reynolds num-
ber of the acoustic power output from isotropic turbulence is a subject that so far has not been
investigated, although it has frequently been assumed that for values of about RL > 1000, where
RL = uL/v, the variations with Reynolds number are likely to be small.

(ii) The variation of K, E and f(r/L) during the decay.

The results of Sarkar and Hussaini(1993) are plotted and compared with the theoretical results. Fig-
ure(8) shows the decay of turbulent kinetic energy as a function of non-dimensional time, t(E/K)o
and Figure(9) shows similar results for the dissipation function. It is found that the decay of tur-
bulent kinetic energy, in these simulations, follows t-1-38 except near the initial decay period. It is
also found that the dissipation function falls as t- 2.38 except in the initial period of decay, where
it first increases rapidly to a maximum value and then falls. These results for non-dimensional
times greater than 0.4 are in agreement with (EDQNM) theory as presented by Lesieur(1990). The
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present results of Sarkar and Hussaini(1993) for the decay of K/Ko and f/Eo are similar to the
previous results of Herring et al(1973), for the same initial energy spectrum, but display different
values for the peak in the dissipation function. It is possible that the earlier results were much
less well resolved than the data obtained by Sarkar and Hussaini(1993). The present (DNS) results
also differ from the experiments of Comte-Bellot and Corrsin(1966) who found K cx t 1 26 and
Warhaft and Lumley(1978) who obtained K (x t-"a. In fully self-preserving turbulence K cx t-1
and c oc t-2 , with both A and L being proportional to t1/2 . Figure(10) shows the fall in RA with
time and again the agreement with the results from (EDQNM) theory is fair for times greater than
0.4. Figure(11) shows the comparison between the (DNS) results and the experimental results of
Stewart and Townsend(1951) in grid turbulence, for the longitudinal velocity correlation function,
f(r/L). The latter results have been corrected to provide the expected distribution appropriate
to very high Reynolds numbers. No attempt has been made to make a similar correction to the
(DNS) data to allow for the effects of the low Reynolds number. Clearly the comparison is sen-
sitive to the value chosen for the integral length scale L. The (DNS) results provide values of
L = (31r/4) Jof(E(k)/k)dk/oJ' E(k)dk as well as the component values L•,,, L,, and L Since
the (DNS) results for f(r) at small values of r approximate to a Gaussian distribution, we find it
more convenient to select a value for L such that f(l) = 0.4559, since f(r/L) = exp(-ir/4(r/L) 2)
is a fair fit with the data in the region 0 < r/L < 1. This is the longitudinal velocity correlation
function for an unbounded flow in the initial stage of decay, when the initial energy spectrum
function, E(k) = k4 exp(-2k2/k2). In most of the (DNS) results described here km = 6. In
the high Reynolds number experimental results of Stewart and Townsend f(r/L) = exp(-r/L) in
0 < r/L < 1. The low Reynolds number (DNS) results are at variance with these experimental
results at separations r/L < 1, and are notably smaller at larger separations. If the comparison
between the (DNS) results and experiment had been made at the same Reynolds number the agree-
meut between them would have been shown to be much closer. A feature of the (DNS) longitudinal
velocity correlation curve is the 'shallow bump' in the region of 3 < r/L < 4.5. At such large
spatial separations, the magnitude of the correlation function, f(r/L), is very small but not neg-
ligible. The corresponding transverse correlation function, g(r/L), is negative in this region. As
first noted by Townsend(1956) this feature of a 'shallow bump' at large spatial separations can,
in certain cases, be interpreted as the existence of a large scale structure in the turbulence having
a non-negligible fraction of the turbulent kinetic energy. Such structures, generally referred to as
regular or coherent structures, are a feature of turbulent shear flows, and are a direct result of the
flow boundary conditions. Experiments on grid turbulence do not show such features.

(iii) The variation of A and L during the decay.

Figure(12) shows for the 1281 simulation the variation of A2 with tcolKo. The expected linear vari-
ation is found when 0.4 < (tEoIKo) <_ 0.8. The variation of L,.. with time is shown in Figure(13).
The same figure shows the comparison of L,, with L.,. . The expected variation with time for
L•,, in isotropic turbulence is found between non-dimensional times of 0.4 to 0.8, and in this same
window, L,, = L,,,. Here suffix uu denotes the longitudinal scale and vv and ww denote the trans-
verse scales. But in unbounded turbulence we expect Lu, = 2L,, = 2L•w and this relationship is
not found at any time in the decay. Thus in these simulations the negative values of the transverse
correlation function, g(r), appear to be inadequately resolved. Other (DNS) simulations performed
by Sarkar and Hussalni(1993) for smaller values of Luu/D show better resolution for g(r) at large
values of r/L in the range of negative values of g(r). In these latter results g(r) develops a periodic
pattern becoming successively negative and positive with a very small amplitude of about 0.01.
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The first negative loop, on the other hand, has an amplitude of nearer 0.1.

(iv) The variations of skewness and flatness during the decay.

Figure(14) shows the variation of the velocity derivative flatness and skewness factors with time
during the decay. In the region from non-dimensional times of 0.4 to 0.8 the skewness factor, S2, is
-0.53 and the flatness factor, T2, is 4.0, but the velocity flatness factor takes on the value T1 = 3
as found in experiments.

(v) The changes in f(r/L) resulting from periodic boundary conditions in the
(DNS) results.

In the 128' simulations the Kolmogoroff length scales are not resolved and the Taylor microscale
is approximately twice the grid dimensions. Initially the energy containing scales were 1.25 times
the Taylor microscale. In the simulation the energy containing scales grow by a factor of about
1.5 times their initial value, and the Taylor microscale eddies first decrease in size and then in-
crease back towards their initial value. The initial energy wave-number spectrum is defined as
E(k) = k4 exp(-2(k/km) 2) and the velocity has a Gaussian joint probability density function.
With a low wave-number spectrum proportional to k4 we might expect, as a result of the near per-
manence of the big eddies, that this spectrum would be retained throughout the decay. However
with the use of homogeneous boundary conditions and noting that D/2L is of order 5 for the 643

and 7 for the 1283 simulations, where D is the size of the computational domain, the large eddies
responsible for the low frequency part of the spectrum will be strictly limited to eddies of scale
equal to half the width of the computational domain and the number of such eddies will be strictly
limited. Thus in comparison with unbounded turbulence, at higher Reynolds numbers, (DNS) can
only partly resolve the large eddies responsible for the low frequency part of the spectrum. An
important feature of the (DNS) results is that at low to moderate Reynolds numbers the use of
periodic boundary conditions imposes restrictions on the asymptotic form of the longitudinal ve-
locity correlation function, f(r), since it is a periodic function and is symmetric with respect to the
centre of the computational domain. It is therefore a function unlike that used in the theoretical
analysis which satisfies the asymptotic conditions of approaching zero at large values of r. Some
recent (DNS) calculations of Dubois(1993) in the same Reynolds number range as in the results of
Sarkar and Hussaini(1993), but where the turbulence is forced to prevent the rapid fall in kinetic
energy with time as found in unforced isotropic turbulence, show that although the characteristics
of the longitudinal velocity correlation function, f(r), at small separation distances, r, are similar to
those found by Sarkar and Hussaini(1993), at larger separations the function deviates greatly, being
highly dependent on the forcing frequency, the value of which dominates the low frequency part of
the spectrum at all times in the decay. The magnitude of the forcing energy f.u also has a strong
influence on the characteristics of the longitudinal velocity correlation function at large separation
distances. With strong forcing the longitudinal velocity correlation function does not tend to zero
when r -- D/2, a distance equal to the half-width of the computational domain. Its value is a
function of the forcing amplitude. The (DNS) 96' computations of Dubois(1993) show that chang-
ing the wave-number of the forcing, from an even to an odd wave number changes the sign of the
longitudinal velocity correlation function at large separations. An immediate conclusion is the ap-
parent sensitivity of f(r) to changes in the boundary conditions and consequent changes to the large
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eddy structure within the computational domain. The results of Sarkar and Hussaini(1993) show
little change between their 643 simulations compared with their 1283 simulations, but the Reynolds
numbers are similar and changes in the grid size appear to be insufficient to effect changes if] the
behaviour of f(r) at large separations in r. The results of Dubois(1993) in which the forcing is
made very weak generates values of f(r/L), as shown in Figure(l), in good agreement with the
results of Sarkar and Hussaini(1993) at small spatial separations but show marked differences at
large separations. The results of Dubois for the longitudinal velocity correlation function, at large
separations, follow more closely a Gaussian distribution as expected at very low Reynolds numbers.
(These differences between forced and unforced turbulence simulations are not surprising although
it cannot be explained why the forced results follow more closely the Gaussian distribution at large
separations than the unforced results.) When the forcing is increased, marked changes occur to
the function f(r/L). However when the effect of the forcing is removed the function reduces to
approximately that of the Gaussian distribution as found for weaker forcing. However a positive
conclusion from this work is that both the forced and unforced (DNS) at similar Reynolds numbers
have similar longitudinal velocity correlation functions at small separation distances and around
the distance r = L, where the energy containing scales are likely to make a dominant contribu-
tion. The shape of this correlation curve in this region r1L < 1 is typical of the results for low to
moderate Reynolds number but differs markedly from the the higher Reynolds numbers of Stewart
and Townsend(1951), as shown in Figure(ll). Since a conclusion of this work is that the noise
generated is dominated by the contribution made by the energy containing scales, there appears
some justification in choosing the distribution exp(-7r/4(r/L)2 ), as used in the calculations for the
acoustic power made above. This has the merit of representing the (DNS) results near r = L, and
satisfies the necessary conditions at r = 0 and r = oo. As shown in Figure(l1). such a distribution
function is a poor representation, of the results at high Reynolds numbers, at both small and large
separation distances, but we note these results only apply when the time separation effects are
equal to zero. When the full space-time separation effects are considered, however, then we find
from the (DNS) results of Dubois(1993) that the approximate spatio-temporal independence and
self-preserving form of the fourth order covariance used in Equation(3.5), gives a reasonable fit to
the computed longitudinal velocity correlation function at moderate to large values of the space
separation, r, and the time separation, r, and especially around those values equal to the scales
of the energy containing eddies. Such a result is likely to apply over a wide range of Reynolds
numbers, and well outside the limits of the (DNS) range of Reynolds numbers.

So far we have discussed the features of the low wave-number spectrum and its influelice on the
longitudinal velocity correlation function. Its high wave-number spectrum rapidly changes, from
its imposed spectrum at time t(c/K)o = 0, since as time advances the nonlinear interactions result
in populating the higher frequencies, and the production of small scales of turbulence down to
the Kolmogoroff dissipating scale, k,. At the low to moderate Reynolds numbers in these (DNS)
results an inertial subrange, with kL < k < k., cannot exist with a near k- 5/3 spectrum. The
k- 5 1 3 spectrum in the inertial sub-range would only exi-t at much higher Reynolds numbers where
the ratio between L and A was at least greater than 10. In the 64' simulations the dissipating range
of eddies is not fully resolved. Sarkar and Hussaini(1993) do include a 1283 simulation and although
this simulation resolves the Kolmogoroff scales it cannot resolve all the eddies in the dissipation
range. However it appears to improve the resolution of the larger scales. But a comparison between
the results from both simulations shows that the differences between them are small, at least for
the calculated acoustic power output.
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(vi) The acoustic power distribution.

Fig(15) shows the acoustic power distribution as predicted according to the method described in
Section(4) and in particular to the contribution to the Proudman constant, a, as a function of the
nondimensional spatial separation distance, r/L. The acoustic power distribution is comprised of
three functions two of which are positive quantities, whereas the third is negative. When integrated
with respect to r/L the first function, which peaks at r/L = 0.56, when combined with Lhe negative
function, which peaks at r/L = 1.38, is exactly zero. The remaining function, which also peaks
at r/L = 1.38, is positive and is the only contribution to the acoustic power. The value of the
Proudman constant, corresponding to the results given in Figure(15) is a = 3.6. The values for
the Proudman constant, using Proudman's equation was a = 12.5(Proudman gives the value 13.5)
and from our revised equation a = 11.0. The peak values in both estimations occur at r/L = 0.8
approximately. Proudman's results, which make no assumptions as to the value of the turbulent
Strouhal number, as shown in Figure(16), give an acoustic power distribution which is similar to
that found by us in Section(2), although the peak values differ by a factor of about 3, if we assume
a flatness factor of 3, and a turbulent Strouhal number of unity. The differences in these values of
the Proudman constant can be explained in terms of changing the values of the turbulent Strouhal
number from 1 to 1.25. However we cannot overlook the fact that the (DNS) results have shown
that, to a good approximation, the turbulent Strouhal number is approximately unity throughout
the decay. A value of a between 3 and 4.5 is in fair agreement with the results obtained from the
first (DNS) method used by Sarkar and Hussaini(1993). They obtained an average value of a = 2.6,
with a value of a = 3.5 near the commencement of the true decay, when the Reynolds number was
highest, falling to a = 1.6 near the end of the simulation when the Reynolds number was very small.
At these low Reynolds numbers the energy containing scales and the Taylor microscales overlapped.
In the second (DNS) method used by Sarkar and Hussaini(1993), they evaluated the two-point lon-
gitudinal velocity correlation function, f(r, t), and the second time derivative covariance of the
Lighthill function Tij as a function of spatial separation and the corresponding contribution to the
acoustic power distribution. This calculation represents the first occasion that a direct calculation
of the second time derivative covariance of Tij has been attempted. The results are compared with
those obtained from our model in Figure(17). We see the large peak values obtained in the (DNS)
simulations where the values peak near the origin. However the value of the Proudman constant
obtained from this result is a = 2.8, which is close to that found in our model. This result, which
was obtained at a nondimensional time of T = 0.55, where T = teo/Ko, was quoted by Sarkar and
Hussaini(1993) as giving a value equal to that obtained by their first method, which as stated above
has the average value a = 2.6. The overall accuracy of the (DNS) results in calculating the acous-
tic power distribution has not been determined, but our results from Section(2) show the extreme
difficulty to be expected in obtaining an accurate answer to the acoustic power distribution when,
as we have shown in Section(2), the dominant part of the distribution near the origin integrates to
zero as shown in Figure(15).

(vii) The comparison between the second and fourth-order covariances.

Independently Sarkar and Hussaini(1993) and Dubois(1993) have established the correctness of the
Lighthill relationship given in Equation(4.10) above, although the numerical results infer a slightly
lower value for the multiplying factor (flatness factor minus unity) than the measured values of
flatness factor as found by Townsend(1956) for the velocity, and as found in the present (DNS)
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results, both of which gave values near 3. It might have been expected that the flatness and skew-
ness factors for the velocity squared would differ from those of the velocity alone, but the (DNS)
results clearly show a value for T1 just below 3 over the complete time of the simulation. The
results of Dubois(1993) are plotted in Figures(18) and (19), respectively, for various temporal and
spatial separations and convincingly show that with T1 = 3 the measured and predicted values
of the fourth order velocity covariance are in close accord. Similar results were obtained for the
transverse covariance. In all the results quoted above for the Proudman constant we have used a
value of 3 for the flatness factor, T1.

(viii) The turbulent Strouhal number.

We have shown above the importance of the turbulent Strouhal number, ST = Lf/u, in the deter-
mination of the characteristics of the noise generated from turbulence. The results of both Sarkar
and Hussaini(1993) and Dubois(1993) show ST has a value of order unity. However in both works
fl has not been measured directly as, say, the inverse integral time scale of the turbulence in the
decay. A difficulty is that S is directly related to the ratio, u/L, which is the inverse of the local
eddy turnover time. This is similar in magnitude, at low Reynolds numbers, to the total time of
the simulation before the turbulent Reynolds number drops to unacceptably low values. In the
present simulations the total computation time is of order 3 to 5 times the local eddy turnover
time. Thus we cannot find reliable values for fl from the present (DNS) simulations of Sarkar and
Hussaini(1993) for unforced turbulence, due to the difficulty in extracting the effects of the time
decay from the time separation effects. An approximate analysis of the data shows that Q ; u/L,
corresponding to a value of ST = 0(1). If we turn to the (DNS) results of Dubois(1993) for the case
of forced turbulence during the decay, where the kinetic energy remains almost constant we find an
excellent fit with the acoustic power time covariance derived from the measured acoustic spectrum
of Sarkar and Hussaini(1993) shown in Figure(2). The comparison is given in Figure(3) where the
time covariance data from the results of Dubois only show some deviation at large values of the
separation time, r. However the data, as obtained in the simulations, is adversely affected, at large
time separations, by the degree of forcing and this part of the data has been ignored. (Since the
degree of forcing affects the integral length scale, L, we have selected a value which is consistent
with our choice of f(r/L), and the position of the minimum in the transverse correlation function,
g(r/L).) The result of this comparison is that fl z 1, when u/L = 0(1), in confirmation with the
result suggested from the Sarkar and Hussaini(1993) data, and in line with the value of ST = 1
as used in the results presented above. However the overall accuracy of our method of deriving
a value for the turbulent Strouhal number, ST, from the (DNS) results can at best be taken as
an order of magnitutude estimate only, and these values may be shown to be inappropriate for
isotropic turbulence at higher Reynolds numbers. It might be noted, that in predictions of noise
generated from shear flow turbulence, values of ST = 1.25 to 1.75 have been used to calibrate these
with experimental data. If we had used the 'uncorrected' integral length scales from the (DNS)
data of Dubois(1993), then we would have obtained values for the turbulent Strouhal number in
this same range.
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(ix) Summary.

At the Reynolds numbers used in the (DNS) calculations of Sarkar and Hussaini(1993), the ratio
of the integral length scale, L, to the half width of the computational domain was initially 0.14 and
increased to 0.21 towards the end of the simulation. Thus we might expect to see some interference
on the two-point velocity covariance at large spatial separations as a result of the finite size of
the computational domain and the use of periodic boundary conditions. Such conditions are un-
likely to affect greatly the global characteristics of the turbulence, as confirmed by previous (DNS)
simulations. However their effect on f(r) and g(r) is not negligible and will have important reper-
cussions on the characteristics of the noise generated. In Section(2) we showed the noise generated
depended on the distribution of r 2(3f 2 + 4fg + 8g 2) and in particular its values at the larger spatial
separations. Moreover, due to the dependence of g(r) on f(r), a large portion of this distribution,
when integrated to find the total acoustic power, has a value of exactly zero. In fact the total
acoustic power is a function of the square of the derivative of the longitudinal velocity correlation
function, and small deviations in the shape of the longitudinal velocity correlation function, will
change the acoustic source function by a significant amount. Of equal importance is the need to
consider the complete space-time properties of the velocity and the velocity squared covariance and
not just their distributions with respect to space and time separately. The problem is compounded
by the fact that the T,. covariance, involving, in the case of turbulence at low Mach numbers,
the velocity squared covariance, is itself of small magnitude in the region of those values of r, and
T, which contribute most to the acoustic power generated per unit volume of the turbulence. Of
course the acoustic power output is proportional not to the covariance of T_. but to 02T,./0r 2,
and this covariance is not negligibly small. One must therefore provide adequate time and space
resolution over all space and time separations, and especially at large separations, for the accurate
computation of these covariances and their derivatives, and thus of the generated noise. It is this
that makes it such a challenging task in all numerical simulations, and e(dally in any attempted
future experiments. Sarkar and Hussaini(1993) have tackled all these problems in their pioneering
study with notable success. It is clear however that further work is needed to clarify some of the
differences which remain between the numerical and analytic investigations, and their extension to
higher Reynolds numbers.

At higher Reynolds numbers, where the size of the computational domain is very large compared
with both the energy containing eddies and the dominant larger eddies, of length scale many times
L, the effects discussed above are likely to have only a small influence on the characteristics of the
turbulence. From the (DNS) computations discussed here, it would appear separation distances of
at least 8 to 10 energy containing scales are required to minimise this interference. In the present
(DNS) computations such a distance is more than half the size of the computational domain, and it
would appear the characteristics of the turbulence, especially in the larger scales will be influenced
by their interaction, which is an interaction not present in isotropic turbulence free from periodic
boundary conditions. A simple way to describe this influence of the periodic boundary conditions
at low Reynolds numbers is to assume, that as a consequence, there exists a class of weak large ed-
dies within the computational domain of size of order half the width of the computational domain.
Their effect on the physical characteristics of the turbulence may not be great for large enough
values of RL and R\, but their effect on noise generation would appear to be non-negligible owing
to two important factors. These are the resulting non-uniformity of f(r) throughout the compu-
tational domain, and the fact that the noise generation depends on the derivative squared of f(r),
where changes in its distribution are more sensitive than for f(r) itself. At higher Reynolds num-
bers these problems are likely to largely disappear for then the asymptotic form of f(r) is reached
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at distances small compared with the half-width of the computational domain. Thus when the
number of energy containing eddies within the computational domain is large enough and averages
are obtained in a volume of the computational domain at a sufficient distance from the periodic
boundaries, then the influence of the periodic boundary conditions is expected to be negligible. In
the present work of Sarkar and Hussaini(1993) the overall interference effects arising from periodic
boundary conditions and the relatively low Reynolds number of the simulations, are found to be
not negligible and hence we must allow for some, albeit small, low Reynolds number effects in
these (DNS) simulations when comparing them with the asymptotically high Reynolds results of
Proudman(1952) and the results presented here. In addition the finite intensity of the turbulence
at the domain boundaries is a problem that needs further careful consideration in any future work
on this same problem. A higher order (DNS) simulation is desirable but is not currently available.
The alternative is to use a Large Eddy Simulation(LES) and work on these lines has recently been
published by Witkowska et al(1993).

We have discussed above the need for high orders of resolution in both space and time in deriving
the fourth time derivative of the Lighthill stress tensor Tij. We have seen we require its value at
all values of space and time separation and not only at either small or large values separately.
The analysis in Section(2) has shown the extreme sensitivity in this function to small changes in
the value of the longitudinal velocity covariance. The analysis, however, cannot predict a value
for this function and we are therefore fox tunate in having, for the first time, values obtained from
the (DNS) calculations of Sarkar and Hussaini(1993). As shown above these latter results even
though obtained at low values of the turbulent Reynolds number nevertheless provide important
information with respect to the fourth-order covariance of Tij and its fourth time derivative. Using
the results of Sarkar and Hussaini(1993) for the two-point velocity covariances we are able to
obtain an independent check on the accuracy of the (DNS) simulations. Our fair agreement with
the estimates of the total acoustic power as found by Sarkar and Hussaini(1993) may be fortuitous,
but the indications are that the effects of Reynolds number may be fairly small, although the
changes in the velocity covariance at large spatial separations, resulting from test examples where
the integral scales were no longer negligible compared with the size of the computational domain,
need further investigation. Of more concern are the differences between the computational and
analytic results in the shapes of the acoustic power distribution with spatial separation. Our
analytic results based on the (DNS) results for the two-point velocity covariance, give values for the
fourth-order covariance and its fourth time derivative that follow the trends of our results obtained
in Section(2). These analytic results show clearly the dependence of the square of the derivative
of f on the acoustic power distribution, but this result is not obtained from the data obtained
by Sarkar and Hussaini(1993) from their evaluations of the second time derivative covariance of
Tij. Sarkar and Hussaini(1993) neglect retarded time in their evaluation of this covariance, but
in the light of the small difference found between our calculations and those of Proudman(1952),
it seems unlikely this would be a major source of error in these low Mach number calculations.
However the fourth time derivative of the Tij covariance does require high resolution, as suggested
by the results shown in Figures(3) and -(7) for the time separation correlation function and its
fourth derivative respectively. Sarkar and Hussaini(1993) devoted much attention to achieving that
high order of accuracy by the use of a third order Runge-Kutta time integration scheme with an
extremely small time step. Further work needs to be done however to establish the accuracy of this
scheme. It should be noted that when simultaneous time derivatives, together with ensemble or
volume averages, are taken the operations permute and we are left with an expression for the total
acoustic power similar to that given in Equation(4.32) when the turbulence is both decaying and
self-preserving. This formula gives a reduced value for the total acoustic power, and illustrates the
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extreme care needed in evaluating the Lighthill Integral, especially when introducing any form of
approximation. There is no evidence this has occurred in the work of Sarkar and Hussaini(1993)
but it is a warning to all future investigators.
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4. Conclusions

In 1952, Proudman applied Lighthill's theory of Aerodynamic Noise to the case of the radiated
noise from isotropic turbulence in near incompressible flow or flow at low Mach numbers. This
fundamental example of aerodynamic noise should be regarded as a 'benchmark' against which the
results from numerical studies of turbulence can be compared under similar flow conditions, using
the methods of Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES).

The results obtained by Proudman for the total acoustic power output per unit volume of tur-
bulence are compared with those obtained by a direct evaluation of the Lighthill Tj covariance.
We use the relationship between the resulting fourth-order covariance and the similar second-order
covariance as first proposed by LighthilU(1992), and in which no statistical assumptions are made.
The relationship is found to be in good agreement with results obtained from (DNS) calculations.
The results obtained by this method are in fair agreement with the earlier results of Proudman,
and the re-evaluated results presented here. However in our method a free parameter is the turbu-
lent Strouhal number, ST, and its value can only be obtained, say, by comparison with the (DNS)
results. These results suggest its value is of order unity. To obtain agreement between our results
and those of Proudman, however, we need a value of ST of approximately 1.25. The recent results
(DNS) results of Sarkar and Hussaini(1993) when compared with the analytic solutions suggest
a value for ST of about unity. The (DNS) results are obtained for an initially moderate, to low,
Reynolds number, RA, where the difference between the length scales of the energy containing
eddies and the Taylor microscale eddies is less than a factor of 10. In spite of this restriction,
the results for the far-field acoustic spectrum have the characteristics of noise generated at higher
Reynolds numbers, and it is unclear whether or not a significant Reynolds number effect is present
when the results for the total acoustic power output are being compared. Some differences exist
between our results and those of Proudman, and the (DNS) results of Sarkar and Hussaini(1993),
and suggest that in spite of the high resolution in space and time achieved, the demand is for still
higher accuracy in calculating numerically the fourth time derivative of the Ti covariance and its
space time properties. It is hoped that these results will assist in guiding further research in the
field of computational aeroacoustics involving the noise radiated from turbulence, and help to clar-
ify the small differences which remain between these several treatments of the problem of the noise
radiated from isotropic turbulence. Overall it is found that the numerical simulations are capable
of reproducing to a good approximation the flow physics of aeroacoustics involving turbulent flows.
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Appendix 1

The length and time scales of isotropic turbulence

We will define the following length and velocity scales in isotropic turbulence. (i) Taylor microscale
= A, (ii) Kolmogoroff dissipation scale = I., (iii) Energy containing eddy (integral) scale = L, (iv)
Velocity of Taylor microscale eddies = uA, (v) Velocity of Kolmogoroff eddies = u,, (vi) Velocity
of energy containing eddies = < u2 >= u.

Here K = 3u 2/2 = 1.5u3/1, - 1.5u 3 /1\ = 1.5u 3/L : f"(O) = -1/A 2 : L = fo7 f(r)dr. If E
is the kinematic dissipation function, then in isotropic turbulence,

U2 U3

S= 15vT - 1.5 -f (A I.1)

and so defining RL = uL/v as the flow Reynolds number based on the energy containing length

scale and velocity, we find,

A _ L (A1.2)

and if the Reynolds number of the microscale eddies is defined as R\ = uA/v then,

R\ = V('0V1L. (A1.3)

During the decay both RL and R\ vary with time but in the initial period of decay both RL and R,\

are constants. In this initial period of decay the kinetic energy of the turbulence, K is proportional
to t- 1 and both L and A increase proportional to t1/2 . In the final period of decay both RL and
RA decrease with time with K falling as t- 5 / 2. But in this final period of decay we find although A
continues to increase as t1/2 the energy containing scale L now falls as t- 1/ 4 . Eventually RL equals
RA and this occurs when RL equals 10, based on the defined quantities as given above. These
results for the initial and final decay periods in isotropic self-preserving turbulence are tabulated
in tables (1) and (2) below.

We also have the following relations. The Reynolds number of the Kolmogoroff eddies is unity,
or,

= 1. (A1.4)

The velocity flatness, T, =< u4 > / < u2 >2, and the velocity skewness, S1 =< u3 > / < u 2 >3/2,

factors as measured by Townsend in isotropic turbulence have values close to 3, and zero respec-
tively, which are the values when the joint' probability distribution is normal. Further, from these
same experiments, the velocity derivative flatness factor, T2 =< (Ou/Ox) 4 > /(< (au/ax) 2 >)2,
attains values nearer 4, and the velocity derivative skewness factor, S2 =< (8u/1x) 3 /(Ou/ax) 3 ) >

becomes negative and attains values of the order of -0.5. From Speziale and Bernard we note
S2 = A3k..(0) and, G = A4f""(0), where G is a function of the velocity derivative flatness factor.
It is also given by G = 2 < (wi 1/Oxpawj1/xj) > / < wiwi >. Here k(r/L) is the scalar triple
velocity correlation function, which is related to f(r/L) through the Karman-Howarth equation.

31



In complete self-preserving isotropic turbulence both S 2 and G remain constant. For the stationary
case, when < u2 > is a constant, RA = -2GIS 2 , and shows the large values of G, and hence of the
flatness factors, that can occur at high values of the Reynolds number.

The relation between the scales L and l1 is,

L - (A 1.5)

and,

U 1/4(A 1.6)U,

If we define the velocity corresponding to the Taylor microscale as u\ then we find,

u_\A _()1/3 =1.4678
S( - 1467 (A1.7)

u L RL'

since t = 1.5u 3/L = 1.5u3/A. Similarly we find for the ratio of the characteristic frequencies of the

Taylor microscale eddies, w\, and the energy containing eddies, WL, respectively,

WA 0.4642R/ 3 " (A 1.8)

WL

We also find that for values of RL < 226 and R\ < 48 the peak frequency, Wmax, in the acoustic

spectrum exceeds the frequency associated with the Taylor microscale eddies. The frequency of
the Kolmogoroff eddies, w,, is related to the vorticity since, W, = u,/Il, and the vorticity, w , also
has a magnitude of the order of u,/ls. As defined the Strouhal number of the Kolmogoroff eddies,
wsl/us, is unity. On the other hand the Strouhal number, SL, of the energy containing eddies is
equal to WLL/u. (We can identify the Strouhal number, SL, as equal to the turbulent Strouhal
number, ST, as used in the main text above.) We find using the relations above that,

ST = S LL -L-R'/2 (A 1.9)
U W,

and is a flow constant of order unity, which we assume here is equal to unity. Therefore W,/WL =

R1 /2 and the peak frequency in the acoustic spectrum exceeds w., when R,\ = 8.9. These are
essentially low Reynolds number limits and are approximate values only depending on the approx-
imations made above with respect to the formulas for the dissipation function and the turbulent
Strouhal number.

Other relations follow. The eddy turnover-time, a measure of the life-time of the domi-
nant eddies, is KIE = L/u = 1/wL, provided the turbulent Strouhal number, ST, is of order
unity, and is therefore proportional to the characteristic time of the energy containing eddies.
Since ST = Q1L/u = 0(1), the characteristic time of the energy containing eddies is nearly
(9)-l = L/u = KIE, the eddy turnover time. Similarly the characteristic time of the dissipat-
ing eddies is, 11w 8 = /V f . These results are tabulated in Table(3) for a large range of RL. The
values given for Wmax are equal to V8'WL.
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Table 1.

Initial Decay. (Self-preserving flow.)

U , t- 1/2 -L , t1/2
,E t-2 A , t 1/2

K .- t- 1  A-L
R,\ - RL

Table 2.

Final Period of Decay.(Self-preserving flow.)

u , t-5/4 L , t-1/4

C ,, t-7/2 A , t1/2

K ,. t-5/2 R,\ , t-3/4

RL , t-3/2

RL = R\ when RL = 10

Table 3.

Approximate Properties of Isotropic Turbulence.

RL RA AIL 1,/A Imax/WL WA/WL Wa/WA Uma1/WA

10 10 1.0 0.1778 2.83 1.0 3.16 2.83
100 31.62 0.3162 0.1 2.83 2.15 4.64 1.31
1000 100 0.1 0.0562 2.83 4.64 6.81 0.61
10000 316.23 0.0316 0.0316 2.83 10.0 10.0 0.28
100000 1000 0.01 0.0178 2.83 21.54 14.68 0.13
1000000 3162.3 0.0032 0.01 2.83 46.42 21.54 0.06

Appendix 2

Derivation of Lighthill's Integral in Homogeneous Turbulence.

Lighthill(1952) showed that the density fluctuation at a far-field observer at X at time t due to a
quadrupole distribution of T,, per unit volume at a source positions y at the source, or retarded,
time r, is given by

(pAX,t0- P.o)= 41r--- dy 02•T..(V,'A)' (A2. 1)
33/ TA)
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where rA = t- I z - V I /co. If we next find the similar expression for the density fluctuation at

z from a source position z and at an observer time of t + t* then

(p(Z,t) - p.)(p(-,t + ts) - p.)

9-T 1)2 , d( )(z , rd), ( A 2 .2 )
dyjzu"(y, TA)' -'zTB

16 T 9A OTB

where rB = t + t*- I x - z I /co. If the turbulence is homogeneous in space at any given time,

td, during the decay from some given initial state, then by defining t = td + t' , r = rB - TA,
rT = (TA + TB)/ 2 , r = z - y, we find

T. = td - X/COco, (A2.3)

and noting rA is a function of both td and t'

(p(,td + t') - p.)(p(X, td + t' + t*) - Po)

Jdy dr 24 T..(y, TA)Txx(y + r, TA + r). (A2.4)16ir2 x2 c~o

Since p and T,, are random functions of time we can find their means, or average values at any given

time, td, during the decay, by either integrating with respect to t' over a sufficient time around td,

or finding the equivalent volume integral, at the given time for each value of the separation distance
r. For homogeneous turbulence the volume integration will be over all y', surrounding the fixed
point y, of

82  92

2 T..(y + y', rA)--2 T.X(y + y' + r, TB). (A2.5)
aTA aTB

Hence the autocorrelation of the acoustic power per unit volume of turbulence at time td and time

separation t* is

PPu(td, t*) - I U(t., r, r)dr, (A2.6)

where

a4

U(t., , r) < OT ..T• (y, rA)T..(y + r, TA +,r) >, (A2.7)

and t, is related to td by Equation(A1.3) and t* to r and r. Here we have assumed that T,, may

be approximated by T, = ux. Since taking the average and differentiating with respect to TA and
T-B permute we find

a2Uat4 < (yA)U2(Z'rB) >' (A2.8)
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where <> denotes the average value, or ensemble average at the source time,t,, corresponding

to time, t d, at the observer. The assumption is also made here that the random fluctuations in
the turbulence, on average, have a continuous spectrum and similarly with respect to the far field
acoustic power spectrum. Thus we can find the power spectral density at the decay time td giving

p.(td, W) = I dr exp(-ik.r) dr exp(-iwr) 94 P2,X(t3, r, T), (A2.9)
47rcg0  i 2TAOT

where P is the covariance of u., at time, t8, and k = - /lxc,, is the wave number vector

in the turbulence in the direction of the propagation to the distant observer. Its amplitude in our
near incompressible flow is almost zero. The time differentiations with respect to rA and rB can
be replaced by differentiations with respect to T and t, and the operator

02 02 )2 _4 1 84 1 94

ar2 __-0_ - -jt 24-r
2 + " (A2.10)Olrr4 48t 0t2 +16 Ot4

In general the operator is dominated by the differentiations with respect to r. We find from the

known time dependence of the fall in the turbulent kinetic energy during the decay that the ratio
of the terms is of order (1 : 0.02 : 0.0003). In the earlier work of Proudman(1952) similar ratios
were found. Thus we can write to a good approximation

PSp(td, W) = J drexp(-ik.r)P~x,,.(t,, r, w), (A2.11)P'(d'°) -47rc---

which is the expression used in Section(3) above.

Appendix 3

Proudman's Evaluation of the Lighthill Integral

In the notation of Section(2) above we found the equivalent acoustic source scalar function U (see
Equation(2.6))

U = 8S2B + 4 RABTAB + 4V, + 8(V 2 + V3), (A3.1)

and using the values for RAB, SAB, V1 , V-2, and V/3 given in Equation(2.7) we find

= 2 + 4RA2 04RAB + 2 RAB a 2 RAB
U = 8(0t ) + 4 RAB IMtt + Mt¾ Ot +

8(ORAB 93 RAB +RAB O RAB(
OtA OtAt + &B 0tBOt (A3.2)
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If we introduce the notatiop:

tA + tB
t = 2 : T = tB - tA, (A3.3)

2
where t is the mean source time and T is the retarded time separation or difference. We need

the following transformation formulaue in order to transform our basic equations in rA and rB into

equations in t and r. These are:

a _ at a0 _r a a
+ - lot (A3.4)5tA Ot IOTA OrOa 20t Or

a a0 t 0T a a (

atB -9t -rB + Tr WTB = 20t -r (A3.5)

92  02  a2  92

Ot2 - 40t2 atar + Or2 (A3.6)

92  02  92  92

5- 42To-t-2 + +t (A3.7)

It follows that,

SAB = ' 2RAB 92RAB
41t 2  0r 2  (A3.8)

04 RAB 92 S AB _
4 RAB _ 

4 RAB 04 RAB

At At- B = AOTB 168t 4  2at 2 ar2 + r4 (A3.9)

a2 RAB 0 2 RAB - a2 RAB )2 202RAB a2 RAB 0 2 RAB 2
8t2 Ota =- aO + 4

( RAT )2 
(A3.10)

ORAB ORAB _ ORAB
ttA + t (A3.11)

dRAB 0 3RAB aRAB O3RAB

atA atAat• + atB tBat• A

aRAB 4aRAB aRAB&aRAB 9RAB a3 RAB a2 RAB a3 RAB
8at Ot3 -- 20r at2ar- 21t atOr 2 + 8 r 0r 3  (A3.12)
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The further reduction using Equations (A3.4) to (A3.12) gives, if we write here R = RAB =<
uut >,

U = 12RT, + 4RRT,?. + 16R,,,R

3 2 1
3 -RRttt - 4 R. - 2RttR.,, - 2RRtt•. + RtRtit - 4R, Rttr - 4Rt Rt,, (A3.13)

where all the terms involving derivatives with respect to t vanish when the flow is stationary. In

the stationary flow case we f nd as given in equation( 11)

U = 12k"2 + 16RkR' + 4RR"" (A3.14)

where the primes denote differentiating with respect to r. Equations (A3.13) and (A3.14) are the

main equations derived in this present analysis. In particular Equation(A3.13) has been derived
with all effects of retarded time retained.

In Proudman(1952) Lighthill's fourth-order covariance is evaluated for the case of near incom-
pressible isotropic turbulence or low Mach numbers, which is exactly the case we have considered
above. In this limit the effect of retarded-time differences between the separated points A and B
is small and is neglected by Proudman. According to Proudman's approximation tA = tB. Using
Proudman's notation, and as published,

U = 12 < utu' >2 +4 < uu' >< uitu't > +4 < (uu')t >< (utu')t > +

< > -4 < (uu)tt >< utul>, (A3.15)

where here t is equal to our t A. When we compare Equation(A3.15) with our Equation(2.5)

above, we note large differences between them, and yet both equations have been derived from
Equation(2.3). In our notation, but putting tA = tB , Proudman's Equation as given by (A3.15)
may be rewritten,

U = 9k12 + 4RR"" + 4R'R', (A3.16)

where primes denote differentiating with respect to t = tA, and differs from Equation(3.14) as

derived in our revised analysis.
The differences arise, as we will show below, in that Proudman has put the retarded time dif-

ference to zero before evaluating the time differentials, and hence the complete evaluation of the
Lighthill Integral is based on simultaneous covariances.

As stated above Proudman neglects the retarded time difference between the velocities and their
time derivatives at the separated points A and B and hence sets tA = t4 throughout his analysis.
Thus we can find U by following the above analysis leading to Eqdation(2.6), and then introducing
the assumption tA = tB. (The further reduction as performed by Proudman is simplified, if we
define t = tA.) If we now also introduce the isotropy condition that,
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< u ni > =< u'ut > , (A3.17)

then derivatives at A and B become simultaneous derivatives.

(In our treatment, with the retarded-time differences retained, we find,

<tLt >$< U'UtA >,

since,

ORAB
<UtB OiB

<U'UtA>= ORAB
U9tA

and from Equations (A3.4) and (A3.5) we see these are not equal.)

However the result given by Equation (A3.17) is true in the case of simultaneous covariances
and then we find,

'92 <UU' >2 2 2 < uu,
U2 >< Uu I t2 + 4 t utu > 4<utu > , (A3.18)4 <uu t >< -a <Uu > -4 < iut2 at2

and,

a< UU > a < Ulut >
8(< uu4 >< u'ut > + < u'ut >< utu.' >) = 4 t (A3.19)

With these two results substituted into Equation (2.5) we find that Equation (2.5) reduces to

Proudman's result given in Equation (A3.16) above.

Thus we see that Proudman's result is correct on the basis of the assumptions made regarding (i)
isotropy, (ii) joint normal probability distribution, and (iii) simultaneous space covariances, when
the latter assumption is made at the commencement of the analysis. The result is that Proudman's
assumptions lead to extra terms in U. The correct result is only obtained when the simultaneous
covariance assumption is included at the end of the analysis. In our work we replace Proudman's
Equation (A3.16) by our Equation(A3.14), which was given as Equation(2.8) above.

With the assumption of simultaneous covariances Proudman finds all the two-point covariances
in terms of the longitudinal correlation coefficient f(r, t) where r is the space separation and t
denotes the time during the decay of the isotropic turbulence.

The evaluation of the various two-point second order covariances in U in our work can also be
evaluated by use of the same derivation as found from Proudman's paper for the case where the
retarded time differences are neglected, and it is this approximation we now introduce. Proudman
shows that U depends only on three second order tensors which finally are shown to be functions
of a single scalar function, f(r), the longitudinal velocity correlation function. These second order
tensors, which are all solenoidal, are,
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8U0U 1 1

< -,-= >=< (T> [ 1 f' + ( -rf' + f)bi], (A3.21)

< ,t > [- I + - ))6 ], (A3.21)

02U a U1 02U.< t >=< ( - > - 'rir3 + ( '+ ¢)] (A3.22)

where f, 4), tP are even scalar functions of r and dashes denote differentiation with respect to r. We

note u is differentiated with respect to time tA and u' is differentiated with respect to time tB with
the ensemble averages evaluated at tA = tB, and the retarded time difference is then put equal to
zero. Thus although the covariances R and its derivatives in Equation (A3.13) are functions of r, t, r
they are reduced in this low Mach number approximation to functions of (r, t) only. When the flow
locally at any time during the decay is assumed to be stationary we see that the covariance R and
its derivatives are taken with respect to r only and then evaluated at time r equal to zero. It is these
values of R that Proudman finds can be evaluated from the Euler equations of motion, in terms of
equivalent space covariances, since at high Reynolds numbers the effects of viscosity can be ignored.

In the special case of stationary flow we find,

III Udr= 150 r4 dr (12(< (-5)2 >)20+

6,2u. 2 > 2 > u.24<u2 ><( ) >ft +165-t(<u >f)-(<(t-) > 0) . (A3.23)

The simplified forms of the solenoidal tensors in Equation(A3.23) arises from their volume
integration and noting that its integrand involves only components of the velocity aligned in the
direction between source and observer. In addition we note that,

o21r 00b in 1 r" 8r 0
dd46 sins Od j r4dr = 8"j r 44?2dr, (A(3.24)

and similarly for the tensors involving f and tP. From Proudman we find, taking the trace of

< >,

< '-i >=< DOi. D > I (r3)' (A3.25)

and using the Euler equations together with the assumption of a normal joint velocity distribution,

Ou- O-u- >= I-V2 < pp' > 2 < iujuuI U>, (A3.26)
p• Or3 O~rj

with,
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02 _ < uiujuýu• >= (< u2 >), I d [r3(ff,, f12 + 4f f)] (A3.27),COrjor--;--- 2

giving,
0u.2  plldr 1r2

< (-) > I d < pp, > _(< u2 >) 2 (f fit- _ I P +ff') (A3.28)

and,

1 < pp' >= 2(< u2 >)2 (00 )fr2 . (A3.29).

Also,
, 2 U. 2 u, 12 o2 2'I u I 12 OP Cap' Ouiuj OuXu

C It2 Ct2 >=- -< > - < > (A3.30)<o it Ft > C-rjork < at cat

and,

Ou 2  1 d <9pOpt >'p< (-k) > ¢=pT -;< cO- O-;>-

4td2 +rd (A3.31)
<U 2 >< ( O)2 > (-3f'€'+ d2s (f r ~f A.1

where,
1 ac-7cptop... 9S-•cU"2  (00 df
I -< >= 4 < u 2 >< ) >j1 - r(2 )f'lb'ýL (A3.32)

p at ait at 77

and,

19U2 2 0 , 4f" 4f' ><,,, 41" 40'
< ( )> t ) >r r2 )+ + r (A 3.33)

If we follow Proudman's notation then for the case of stationary flow we write,

PS = QP% U8 (A3.34)
00c5 L

and using the formulae above, and substituting into Equation(A3.23), we find a is equal to,

a = 8 f f 2G20 d ,
40
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-8 00 f [GI 0 fGdx + f(4fG _ 4d(fG) - d2](fG)) X4dx

TS fo ;72 X fTX )x2dz

+13 1 (3f' + xf")(7fG + d (A3.35)

and

G= + fX _f (A3.36)

This expression for a differs from that given by Proudman(1952) due to the differences in the
contributions to the function U, as given in Equation(A3.16). The reasons for these differences are

discussed fully above. When we substitute exp(-r'/12 ) for f(r/1) we find a = 12.36 compared with
the value of a = 13.5 given by Proudman for f(r/L) = exp(-irr 2/4L 2) . When we put L = l•i/2
in our result we find

lO.96p°,u 8  (A3.37)
PS - Lc5

For any given scalar longitudinal velocity distribution function, f(r/L) the values of U and a
can be found from Equations (A3.14) and (A3.35) with (A3.36) respectively.

For the non-stationary case U must be evaluated from Equation (A3.13) for the prescribed
decay law for < u2 > as a function of time. This generates additional terms in a, which, following
Proudman's results, we may assume are very small compared with those given in Equation (A3.35),
except in the immediate vicinity of the commencement of the decay before the self-preserving

domain has been established. As Proudman states, the theory, as described here, does not apply
to this region, and hence for most practical purposes the dominant sound power generated by a
field of isotropic turbulence is that due to the sound generated at any time during the decay as if
locally it were a stationary process. Hence it is independent very nearly of the decay law for the

kinetic energy.
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Appendix 4

Derivation of the Time-Dependent Fourth-Order Covariance in a
Homogeneous Flow.

We write:

P(V, t: r,r) - < (T.- < T.. >)(T..- < T., >) > (A4.1)< T> 2

where P is the noise source correlation function, and we have made the assumption that < T,, >

is equal to < T., >. Here T., is the aligned component of Tij in the direction between the source
and the distant observer, and the constant density term has been removed. P involves the fourth
order covariance between the flow properties at two separated points in space and time.

Now the acoustic power output from isotropic turbulence per unit volume in near incompressible
flow at low Mach numbers is,

p,(x,t : t*) = 4Pco dr 4 (P(y,t : r,r) < T. >2), (A4.2)

and using the results of Appendix 3. we find the fourth-time derivative of < T.x >2 p(..., r) is:

< x 2 p" d < Txx >2 P d d4 < Txx>
< 2dt 2  + 16dt4  P. (A4.3)

At low Mach numbers the frequency, 7, of noise at the observer, is equal to the frequency, w, of

noise at the source, and then for the case of stationary flow:

ps~~t: _)__2_P_ dr dr 0

= 2•r2po JfJ d J d-exp(-iwi-))exp(-ik.r) < T.T >2 (A4.4)

If P(r, T-) is a symmetric function of both r and r then the terms in odd powers of w are zero.

Thus we find,
2ir2 p < T.~>Pc5 . > 2 W4p(kw), (A4.5)

where < T,. >2 is evaluated at time,t. This expression for the power spectral density is used in

Section(3) above.
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