

PL-TR-93-2177

SIMULATION OF CO2 RELEASE AT 800 KM ALTITUDE

A. Setayesh

Radex Inc. Three Preston Court Bedford, MA 01730

August 31, 1993

Scientific Report No. 7

Approved for public release; distribution unlimited

94 2 28 268

PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 "This technical report has been reviewed and is approved for publication"

int Illais ROBERT J RAISTRICK

Contract Manager Data Analysis Division

ROBERT E. MCINERNEY 7 Director

Data Analysis Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify GL/IMA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burgen for this collection of a gathering and maintaining the data needed, a collection of information, including suggestice Davis Highway, Suite 1204, Arlington, VA 222	nformation is estimated to average 1 hour p nd completing and reviewing the collection is for reducing this burgen, to Washington i 22-302, and to the Office of Management a	per response, including the time for re of information. Send comments rega Headquarters Services, Directorate foi not Budget, Paperwork Reduction Proj	wewing instructions, searching existing data sources, raing this burden estimate or any other aspect of this rinformation Operations and Reports, 1215 Jeffersch ext (0724-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave bla	nk) 2. REPORT DATE 31 August 1993	3. REPORT TYPE AN Scientific Rep	D DATES COVERED ort No. 7
4. TITLE AND SUBTITLE	<u></u>		5. FUNDING NUMBERS
Simulation of CO ₂ Releas	se at 800 km Altitude		PE 63220C PR S321 TA 85 WU AC
6. AUTHOR(S)			Contract F19628-90-C-0191
A. Setayesh			
RADEX. Inc.	IAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Three Preston Court Bedford, MA 01730			RXR-93081
9. SPONSORING/MONITORING AG Phillips Laboratory 29 Randolph Bood	ENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Hanscom AFB, MA 01731-	-3010		PL-TR-93-2177
Contract Manager: Robert	t Raistrick/GPD		
Distribution Unlimited	κς		
13. ABSTRACT (Maximum 200 word	is)	l	
The SOCRATES contamina $CO_2(v) + O$, $O + CO_2 \rightarrow CO$ and wake directions of the sp measurable for the parameter simulations as much as 30 k highest and lowest, respective	tion-interaction code has been $O(v) + O_2$, and $CO_2 + H \rightarrow 0$ acccraft. These simulations s rs which have been used in the m from the spacecraft. The re- ely.	en used to simulate the $CO + OH(u)$ at an altitu how that the radiation fraction fraction fractions. The investigation of CO radiative intensity of CO	reactions of $O + CO_2 \rightarrow$ de of 800 km in both ram om these reactions can be vestigation carries out the (v) and OH(v) show the
14. SUBJECT TERMS			15. NUMBER OF PACES
Gas plume, CO ₂ , CO, and O rarefied flows	H emissions, Monte Carlo mo	ethod,	22 16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA	TION 20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	Unlimited
SN 7540-01-280-5500			Standard Form 298 (Rev. 2-89)

.

.

.

Standard Form 298 (Rev. 2-89) Presciona by ANSI Stal 239-18 298-102

TABLE OF CONTENTS

Sect	tion	Page
1.	INTRODUCTION	1
2.	DESCRIPTION OF THE MODEL CONFIGURATION	2
3.	DESCRIPTION OF THE SOCRATES CODE	2
4.	DISCUSSION OF RESULTS	4
5.	SUMMARY AND CONCLUSIONS	16
6.	REFERENCES	17

Acces:	ion For	
TIS	GRALI	
DTIC 7	AB	🔹 🗖 🦉
Unanno	unced	ר מיך
Justia	ication_	
Distr	bution -	
	Tail and	Vor
Dist	Special	
11	j	
		•

LIST OF FIGURES

Figure

m 1.1

Page

1.	Contour plots showing the CO ₂ vibrational excitations at 4.3 μ m	5
2.	Contour plots showing the CO vibrational excitations at 4.7 μ m	6
3.	Contour plots showing the OH vibrational excitations at 2.7 μ m	7
4.	Contour plots showing the CO_2 , CO, and OH vibrational excitations for	
	the same scale	8
5.	Contour plots showing the CO ₂ reaction rates	9
6.	Contour plots showing the CO reaction rates	10
7.	Contour plots showing the OH reaction rates	11
8.	Contour plots showing the CO_2 , CO_2 , and OH reaction rates for the same	
	scale	12
9.	Gray scale plots showing the intensity of CO_2 at the time of release .	13

LIST OF TABLES

<u>1 ai</u>		age
1. 2. 3.	Molecular Parameters Used in the Calculations	4 14 14

1. INTRODUCTION

The present work is based on simulation of CO_2 released at an altitude of 800 km in both the ram and wake directions of the spacecraft using the SOCRATES (Spacecraft/Orbiter Contamination Representation Accounting for Transiently Emitted Species) code. SOCRATES is a Monte Carlo code which calculates scattering, collisional excitations, and reactive collisions [*Elgin, et al.*, 1990]. The code will be discussed in more detail later. The primary purpose of the simulation is to study the collisional excitation of CO_2 with atmospheric oxygen and hydrogen atoms. The reactions of CO_2 with oxygen can produce the vibrational excitation of CO_2 and CO. Similarly, the CO_2 reaction with hydrogen atoms produce vibrationally-excited OH. This parametric study is a continuation of earlier work on the subject [*Setayesh*, 1991]. The current investigation carries out the simulations in two directions to a distance of as much as 30 km from the point of origin. The reactions of CO_2 with atomic oxygen and hydrogen are:

$$O_{fast} + CO_2 \rightarrow CO(\nu) + O_2 \tag{1}$$

$$H_{fast} + CO_2 \rightarrow OH(\nu) + CO \tag{2}$$

$$O_{fast} + CO_2 \rightarrow CO_2 (\nu) + O_{slow}$$
 (3)

Reaction (4) represents the collisional transfer of kinetic energy to vibrational energy. Reactions (5) and (6) are reactive collisions which do not proceed at room temperature due to large activation energies [*Elgin, et al.*, 1990].

2. DESCRIPTION OF THE MODEL CONFIGURATION

The model configuration is based on a proposed gas release experiment on the ARGOS satellite. The satellite is expected to be in a circular orbit at an altitude of approximately 800 km with an orbital velocity of 7.4 km/s. The CO₂ release experiment will be one of many experiments to be conducted onboard the satellite [Lai, et al., 1992]. A nozzle with a small diameter is assumed to be the source of the CO₂ gas released into space from a space platform. The diameter of the nozzle and mass flow rate of the CO_2 remain constant. Two conditions for the release will be considered here: one in the ram direction, and the other in the wake direction. It is also assumed that the gas release will last approximately 1.0 second (from a fraction of a second to several seconds has been proposed in the actual experiment). The temperature of the CO_2 gas at the time of the release is assumed to be about 50° C. The solution domain in the steady state (for both reactions) is taken to be a cubic space of 28,800 km³ in volume (32 by 30 by 30 km³) consisting of 8400 unevenly spaced cells. In each cell, there are 3 to 20 molecules (depending upon the density of species and cell location) for each species.

3. DESCRIPTION OF THE SOCRATES CODE

The SOCRATES contamination-interaction code has been developed to model contamination on spacecraft and to study the neighboring flow field around the shuttle [*Elgin and Sundberg*, 1988]. In the SOCRATES code, the direct simulation Monte Carlo technique has been revised and extended significantly to account for the energy dependent collision cross sections [*Bird*, 1981] and a statistical collision model for internal energy effects [*Borgnakke and Larsen*, 1975] which have been described by *Elgin and Sundberg* [1988] and *Elgin, et al.*, [1990]. In the code, the collision cross section is defined by the variable hard sphere model (VHS) which is a function of the relative velocity between two molecules. The collision cross section can be stated as

$$\sigma = \sigma_{ref} \left(\frac{v_r}{v_{ref}}\right)^{-2\omega} \tag{4}$$

where σ_{ref} and v_{ref} are the reference collision cross section and velocity, respectively [*Elgin, et al.*, 1990]. ω is a constant parameter which has a value of 0.25 for this investigation.

Reactive collisions between molecules and/or atoms (which are relevant to the present work) can be simulated directly by SOCRATES. The reaction cross section is a function of the relative collision energy as defined by Equation (4). The Monte Carlo program, in the event of collision, simulates the reaction with a probability which is related to the ratio of the reactive cross section to collision cross section at the relative velocity for the collision [*Elgin and Sundberg*, 1988].

The present work employs the option of using the Arrhenius rate constant in the code to calculate the rate of reactive collisions. The rate constant has the form of

$$k_r = A T^n e^{-\frac{E_a}{R_0 T}}$$
(5)

where A and n are constant parameters, R_o and T are gas constant and temperature, respectively, and E_a is the activation energy. In the case of the collision between two reactants, the reaction cross section is calculated, and the reaction is counted with a weighing factor W_r . The weighing factor is given by

$$W_r = W_c \frac{v_r \sigma^*}{v_r \sigma}$$
(6)

where σ^* , σ , and W_c are the reactive cross section, collision cross section, and collision weighing factor, respectively. Further discussion of the reactive collisions can be found in the report by *Elgin and Sundberg* [1988].

4. DISCUSSION OF RESULTS

The simulation for the reaction of CO_2 with O and H for the altitude of 800 km are presented in panels of tables and plots for two cases of ram and wake directions. Tables 1-3 represent the parameters used for the simulation. Figures 1-3 and 5-7 show panels of contour plots of radiation intensity and reaction rates for CO_2 , CO, and OH, respectively, in the ram and wake directions. Figures 4 and 8 show the combination of cases presented in Figures 1-3 and 5-7, respectively. Figure 9 shows the gray plot for CO_2 density distribution in the ram and wake directions. The asterisks in the figures and the text denote vibrational excitations.

Table 1 shows the reference collision cross-section σ_{ref} , reference relative collision velocity v_{ref} , number of internal degrees of freedom v_i , and heat formation for the species.

Species	σ _{ref} cm ²	v _{ref} cm/s	v _i	Heat of Formation kcal/mole
CO ₂	4.33×10^{-15}	1.71×10^{5}	3.58	-94.10
0	1.75×10^{-15}	2.49×10^{5}	0.00	59.60
Н	1.03×10^{-15}	1.09×10^{6}	0.00	52.0
$CO_{2}(4.3)$	4.33×10^{-15}	1.71×10^{5}	3.58	-87.39
CO(4.7)	3.46×10^{-15}	2.09×10^{5}	2.00	-20.29
O_2	3.17×10^{-15}	1.98×10^{5}	3.60	0.0
OH(2.7)	1.77×10^{-15}	8.00×10^{5}	2.00	9.4

TABLE 1. Molecular Parameters Used in the Calculations

Figure 1. Contour plots showing the CO₂ vibrational excitations at 4.3 μ m.

Figure 2. Contour plots showing the CO vibrational excitations at $4.7 \ \mu m$.

٦ (٢٩)

7

Figure 3. Contour plots showing the OH vibrational excitations at $2.7 \ \mu m$.

Figure 4. Contour plots showing the CO₂, CO, and OH vibrational excitations for the same scale.

Figure 5. Contour plots showing the CO₂ reaction rates.

REACTIONS/ (SEC CM²) 1.600×10¹⁰ 8.000×10⁹ 2.000×10⁹ 1.000×10⁹ 5.000×10⁸ 4.000×10⁹ ល ល ≄ ហ ហ 30 CO2 + 0 -> CO[#] + O2 VAKE 1_ S 20 (MM) X 19 M - 97, 94 10 0 Ģ Ĵ 0 ØI ØI- SIs-ST S Ø (WX) Y $CO_2 + O -> CO^{*} + O_2 RAM$ 7 0 - 10 6 45 ی۔ ح (MM) X -20 ຼັທງ ഖ - 30 01- SI-ØI SI S Ø s-

(WA) Y

Figure 6. Contour plots showing the CO reaction rates.

REACTIONS/ (SEC CM²) 1.600×10⁸ 8.000×10⁷ 4.000×10⁷ 2.000×10⁷ 1.000×10⁷ 5.000×10⁷ 5.000×10⁶ ດ ຕ 🖛 ທ ດ 30 $CO_2 + O -> OH^* + CO$ VAKE წე Figure 7. Contour plots showing the OH reaction rates. ſ с, С 20 (MM) X 0 0 ØT- ST-SI ØT S s-Ø ٦ (٢٩) RAM 0 $CO_2 + H -> OH^* + CO$ - 10 (MM) X -20 - 30 ØI- SI-SI ØĪ S S-Ø

(KM) Y

Figure 9. Gray scale plots showing the intensity of CO₂ at the time of release.

(WX) Z

Table 2 shows the values used in Arrhenius Rate Coefficients for the different reactions, where A, n, and k are constant parameters, T is temperature, and E_a is the activation energy.

Reaction	Α	n	E _a (kcal/mole)
$O_{\text{fast}} + CO_2 \rightarrow CO_2(v) + O_{\text{slow}}$ $O_{\text{fast}} + CO_2 \rightarrow CO(v) + O_2$	3.9 x 10 ⁻²⁰ 5.6 x 10 ⁻¹¹	1.8 0.0	6.71 14.21
$H_{fast} + CO_2 \rightarrow CO + OH(v)$	2.5 x 10 ⁻¹⁰	0.0	26.43

TABLE 2.	Rate Coefficient	Used in SOCRATE	S, k = A T'	ⁿ exp(- E_a/kT)
----------	------------------	-----------------	-------------	-------------------------------

Table 3 lists the other parameters that have been used in SOCRATES to simulate CO_2 released from a 5 mm diameter nozzle with a mass flow rate of 144 g/s.

Atmospheric Temperature	1002.3°K
Atmospheric Number density	$2.047 \times 10^{6} \text{ cm}^{-3}$
Altitude	800 km
Mass Flow	144.0 g/s
Exit Plane Area	$2.5 \times 10^{-1} \text{ cm}^2$
Ratio of Specific Heat	1.30
Exit Mach Number	1.40
Exit Nozzle Half Angle	22.5 degrees
Exit Plane Density	$1.789 \times 10^{-2} \text{ g/cm}^3$
Exit Plane Number Density	2.448×10^{20} molecules/cm ³
Exit Plane Velocity	410.0 m/s
Exit Plane Speed of Sound	$2.929 \times 10^4 \text{ cm/s}$
Exit Plane Temperature	350.0°K
Exit Plane Pressure	$1.18 \times 10^7 \mathrm{dyne/cm^2}$
Stagnation Temperature	451.9°K
Stagnation Pressure	$3.607 \times 10^7 \text{ dyne/cm}^2$
Thrust	18.5 lb
Velocity of Spacecraft	7.4 km/s

TABLE 3. Parameters Used in the Simulations

Figure 1 shows the emission at 4.3 μ m from vibrational excitation of CO₂ produced by collisional energy between O atoms and released CO₂ molecules. Figures 2 and 3 show the emission from the reactive collisions between CO_2 and O and H atoms, respectively. Figure 2, the CO^{*} emission at 4.7 μ m, shows one order of magnitude higher rate of emission with respect to CO_2^* in Figure 1. This is because the radiative lifetime of CO^{*} is of the order of μ s compared with CO₂^{*} whose radiative lifetime is of the order of ms. The emission rate of OH^* at 2.7 μ m in Figure 3, is smaller than the rates of CO^{*} and CO₂^{*} (Figures 1 and 2). The rate coefficient given in Table 2 was used to calculate the contours in Figures 1 and 2. The contour plots shown in the figures are in the two directions of ram and wake, where in the ram direction, the flow has a relatively larger initial upstream velocity component, and this contributes to higher-energy collisions; hence, higher levels of emission are produced. Figure 4 is a combination of the plots of Figures 1, 2, and 3 with the same scale for the energy levels. As it is seen in this figure, the emission rate (watts per steradian per cm²), of CO^{*} is much higher than that of CO_2^* and OH^* .

Figures 5, 6, and 7 show the reaction rate per sec per cm² for reactions 4, 5 and 6. As expected, the intensity of the reactions are similar to those of the emissions in Figures 1, 2, and 3, respectively. Figure 8 represents the combination of the reaction rates in Figures 5, 6, and 7, which is plotted with the same scale. As it is seen, the intensity in reaction 5 for CO^{*} is much higher than for CO₂^{*} and OH^{*} in reactions 4 and 6, respectively. Figure 9 represents the intensity of CO₂ molecule distributions per cm² at the time of release, in the two directions of ram and wake.

5. SUMMARY AND CONCLUSIONS

A bundle of CO_2 gas was assumed to be released from a nozzle with a small diameter at high altitude. The diameter of the nozzle and mass flow rate are assumed to be 5 mm and 144 g/s, respectively, in this parametric investigation. The reactions $O + CO_2 \rightarrow CO_2(v) + O$, $O + CO_2 \rightarrow CO(v) + O_2$, and $CO_2 + H \rightarrow CO + OH(v)$ were simulated for the above cases from an altitude of 800 km, using the SOCRATES contamination-interaction code. The results were presented in forms of graphs, contour, and gray scale plots for these simulations. These simulations show that the radiation from these reactions should be measurable for the parameters which have been used in these calculations.

6. **REFERENCES**

- Bird, G. A., "Molecular Gas Dynamics", Clarendon Press, Oxford, 1976.
- Bird, G. A., "Monte-Carlo Simulation in an Engineering Context", Proceeding of the 12th International Symposium on Rarefied Gas Dynamics, <u>Prog.</u> <u>Astronaut. Aeronaut.</u>, Vol. 74, pages 239-255, 1981.
- Borgnakke, C., and P. S. Larsen, "Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture", Journal of Computational Physics, Vol. 18, pages 405-420, 1975.
- Elgin, J. B., D. C. Cooke, M. F. Tautz, and E. Murad, "Modeling of Atmospherically Induced Gas Phase Optical Contamination From Orbiting Spacecraft", Journal of Geophysical Research, Vol. 95, No. A8, Pages 12197-12208, 1990.
- Elgin, J. B. and R. L. Sundberg, "Model Description for the SOCRATES Contamination Code", Technical Report, AFGL-TR-88-0308, Spectral Sciences, Inc., Burlington, MA 01803, 1988, ADA203154.
- Lai, S. T., E. Murad, and C. P. Pike, "A Proposed Gas Release Experiment on the ARGOS Satellite", Technical Report, PL-TR-92-2058, Environment Research Paper, No. 1098, 1992, ADA256182.
- Lai, S. T., E. Murad, C. P. Pike, W. J. McNeil, and A. Setayesh, "A Feasibility Study on the Xenon and Carbon Dioxide Gas Release Experiments on the ARGOS Satellite", COSPAR, The World Space Conference, Washington, DC, Aug 28-Sept 1, 1992 (Invited Paper).
- Setayesh, A., "A Parametric Study of the Release of CO₂ in Space", Phillips Laboratory, AFSC, Hanscom AFB, PL-TR-91-2052, January, 1991, ADA236271.