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Atmospheric Structure Simulation:
An Autoregressive Model For Smooth

Geophysical Power Spectra With Known
Autocorrelation Function

1. INTRODUCTION

Atmospheric fluctuations in wind speed and gravity waves are characterized by continuous
power spectral density functions. For example, one dimensional wind speed PSD's are found to
have log-iog slopes of about -5/3. Such spectra often are used in simulating an environment or
predicting atmospheric structure. Fast Fourier transform analysis provides a means for filtering
white noise with spatial filters to simulate a stationajy time or spatial data set. In many
applications the transform technique provides adequate prr-u-ing speed. For example,
repeatedly using the double precision IMSL routine DF2TCF, ý - j- . point transform averages
6.91 ms on the Phillips Laboratory Convex model 210 computer. ucophysical data however, are
multidimensional, and ofteii exceed 1024 points. Three dimensional Fourier simulation of atmos-
pheric structure that realistically allows for variable coherence length scales, RMS huctuauon
levels, and spectral slop 2s would require months of execution time on a work station.

The Phillips Laboratcry Strategic High Altitude Atmospheric Radiance Code (SHARCOI uses
first principles to calculate point-to-space and limb viewing atmospheric background infrared
radiance and transmittance. Real atmospheric infrared background perturbations occur from
fluctuations in temperature and density of the contributing molecular species. Version 4 of the
SHARC code envisions a capability to evaluate radiance structure from estimated variances in the
standard temperature and density profiles. To provide a realistic but practical two-dimensional
structure scene capability will require creative, efficient, and tested algorithms. The purpose of

this repoil is to study the possibility of producing synthetic structure from autoregression
analysis as contrasted with the common Fourier method with a view toward reducing the

Received for publication 4 FebrL.ary 1993
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computational burden. Only onecdimensional analysis is treated here but a subsequent report will
present a two-dimensional approach.

2. THEORY OF AUTOREGRESSIVWE DIGITAL SPECTRAL ESTIMATION

This section is a brief review of autoregressive digital spectral estimation as presented by S.
Lawrence Marple and Steven M. Kay3.

An autoregressive moving average (AMA) model for a discrete time series, x(n). that
approximates deterministic and stochastic processes can be represented by the filter linear
difference equation:

P q

x(n)= X0(k)x(nkh b(k)E(nk)
k=1 k=O

in which r(n) is the output sequence and S(n) a white noise input driving sequence. The a(k) and
b(k) coefficients form the autoregressive and moving average portions of the AR.MA model
respectively. A z transform analysis of the difference equation shows that the ARMA power
spectral density (PSD) is:

-I(f) 2

where,

A(f) I + a ck) exp(==27tqf7cT)
k=1

Aanu.

B(f) = 1 .•Zb(k) exp(-2mfcTkT).
k=1

T is the sampling interval and Pw is the variance of the white noise process. If all the moving
average coefficients are zero. except b(O) = 1, then

x(n) = -t a(k)x(n- k)s+ e(n)
k=I

and the process is strictly autoregressive of order p. The autoregressive PSD becomes,

2 Marple. S.L. 1987 Digttal Spectral Analysts wtth Appiicatirtn, Chapter 6. Prentice.Haill. Englewood Ckffs. New
Jersey.

3Kay. Steven M.. 1985 Modenm Spectral Esttimaton, r Theory & ApplrccnNor Prentice-HalU. Englewocd Ciffs. New
Jersey.
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PAR (f ) j2 TTro (k)evcp(-2l9kT)

where rm is the autocorrelation sequence -it k and Pw is the variance of S(n). The relationship

between the autocorrelation sequence and the pure autoregressive model is

f=±a(ktt (m- k) for m > 0
k=

r,,(m)= 1 -Xa(k0 (-k)+p, form =O

rj-rn) for m <0

This e.xression may be evaluated for 1C p-i I lag indices 0: .r' s p by:

f(r.(O) r. (-i) 1. (,, )p,

:(1) r :(0) ... : (a(,)) a( i) 0

cr. P) r.(P-'1) r.(0) 5'Ip,
This expression forms the autoregressive Yule-Walker equations. Given the autocorrelation
sequence for lags 0 to p, the autoregressive coefficients may be found from the above. Since
rxx(-k) = r'x,(k), the autocorrelation matrix is both Toeplitz and Hermitian. A standard "Levinson"
algorithm, which takes advantage of the Hermitian-Toeplitz matrix equation. was employed to
solve for the AR parameters. The same Yule-Walker equations also occur if we attempt to solve the
problem: find the "best", in a least square sense, set of equations tiat determine the coefficients

Lhat predict k from i(n) =-ia(k)x(n-k). where (i(Xr)- x(r)) = p,. In summarv, the Levinson
kt=1

recursion computes sets of coefficients {al(l), pl}. fa2 (1). a2 (2), P2) ... {ap(1), a1(2) ... , ap(p), pO
where the final set at order p is the desired solution of the Yule-Walker expressions. For the AR(p)
process. a p(: =,(i) for i = 1. 2. 3 .... p and pp is the minimum prediction error, that is, Pw Pp

Pmin = [x[n](x[n]- r[r]j)]. The algorithm is initialized by:

0.1

with the recursion for k = 2. 3. p given by

3
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ak~k>= - -

ak i]-ak-1ifAak1k~ajk- ,2. ...

The ak[ki coefficients are known as reflection coefficients.

3. APPLICATION TO ATMOSPHERIC POWER SPECTRAL DENSITIES

Atmospheric power spectral density functions often are modeled by power law functions of the
r 45forli,

PSD(k) C

(a2 +k2)v+'

The constant C is found from the definition that the total variance of the associated time series,
C2, is equal to the area under the PSD6 ,

& JPSD (k)dk = 2 C Jk a2C- Irv

so that the PSD model is

PSD(k)=- 2)

,J-rrrv )(%a2 +k-)

The relationship between the frequency domain PSD and the time or spatial domain
autocorrelation function is specified by their Fourier transform pairs. Thus the autocorrelation
function. (ACF). for the real even PSD function is

4
-ratarsk.. V.1.. 196 i Vau-c Propagaqton in a Turbulent MedftuLn McGraw-Hill..

5FIuttermam, Wi . Schweitzer. E.L. and Newt. J.E 1991 'Estimation of Scer.e Correlation Lernsfths"
Charact-rrzation. Propagation. and Simulation of Sources and Backgrounds. Proceedings SPIE • The International Society
of Optical En.inee•i-ng, 1v 486. pp 127-140. Orlando. Florida.

6 For the integral. see for example. Gradshtcvn. I.S. and Rv-zhlk. IM.. 1965 Table oflntegra!s Seres and Products. eq
3.241.4. Acadenmc Press
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ACF(x)m IFU'(P3D)0f .

The inteoral is evaluated using the Bessel function of the second kind of fractional order. Kv to
be7

ACF~x>~ (v)

Expressions for two anid three dimaensiona-1 power spectral densities can be evaluated fromn thW
mnodel alutocorrelation function by performing two and th-ree dimensional Fourier transforms of
ACF(x). For example, over' the valid range for v, the two-dimensional isotropic power spectral den-
sity Is

S2 Va 2V

F(2t) --

Vr(av2(+ f 22)"+

Thuse the largedienscaeiorrelatisontlengt powe speta de enediby intgas gA x vr oiievle

JAFxcosýF)C(Fir

An ~equvaent wiNth i97 dhefnda theY~ areanofr a fn c tioplf~~nn divided-byits centalork. ato

f (0)



"where c2 is the autocorrelation at zero separation, Obseming that the equivalent width of- a
function is equal to the inverse of the equivalent width of its transform9, the correlation length
may Le written as

PSD(O) ESD(O)

2fPSD(k)dk 20'

so that,

r2r lv a a2V +
2) ___ or

2C& Fr(V)a2v~ r4r-v

a r/
7 1.

These relationships are visually compared in Figure 1. The upl;er left quadrant of the graph shows
a log-log plot of the PSD function for a slope of -3, a2 = 0.2, Lc = 5.0 and a E 0.05. The upper right
quadrant shows a linear plot of the PSD with E. and a2 calculated from the -curve. The
autocorrelation function is plotted in the lower left quadrant and also shows Lc and a2 calculated
from the curve. Quite obviously the parameter "'a" depends upon the value of v, such that "d'
coincides with the 'roll over" or "corner frequency" of the PSD, The correlation length, on the other
hand, corresponds to a much higher frequency (and smaller PSD). As shown in the lower right
quadrant of Figure 1, the parameter "a" assumes a value near the frequency of the peak power
while 1/L. assumes a value on the far tail of the power curve,

4. IMPLEMENTATION

In practice a given power law PSD was constructed from the PSID and ACP models:

PSD(f) a-•Fv* f)+- x

,2 f(.)(a f )

ACF(x) a 2 1(2%axVK,(2 ra
P (v)

grbc:6
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-.. -where;

•• residual error

Ax n spacing

S n model parameters

f m frequency (Hz)

Then, a spatial data sequence was simulated using a normally distributed set of

pseudorandom numbers G(O). The simulation of M sequence values proceeded as follows:

Set Y(l) = Y(2) = Y(3) .. Y(N) = 0. Then for J ma N+I, N42, .. , M+1000, create Y(J) from

N

y(J)_G(J)-<YatY(J-i). The simulated sequ.-ce is then contained in Y(1001). Y(1002),.
A--i

Y(M+ 1000).

After simulating such a discrete spatial sequence of a given PSD, the PSD of the simulated

series was checked as follows, Using a forward and backward estimation methodI0 , a set of NN bI

coefficients were found to estimate the simulated PSD from the formula.

S....2(5 Ax

" 1~~ +. biej.¢

where Ax is the same spacing used to generate the synthetic series.

The forward and backward method solves the following least squares problem. Given M

discrete series values Y(J), for J= 1, 2,. M. we find b, values that minimize ERR, where,

. k, NN 2 NS.,•" ,_,,
' \ Iyul'-E bY+i)E I •. ()•bYJ i

.= K4 K - ) ) i~ /,,i

ERR bE.R

.j2 is then equal to ERR

5. RESULTS

1 0 Haykin. Simon, ed.. 1991 Advanrc.s Ui Sperun mAnalysts and Array Processtng. Vol. 1. PrentUce Hall. Englewood

C(Iffs New Jersey, . pp. 155-156.
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The following discussion is aimed at producing a practical autoregressive model of
atmospheric structure consistent with having a pre.assigned power spectral density -and
autocorrelation function. Correlation lengths and c2 variances are taken from Strugala, et.al,.1

Figure 2 shows an 8000 point sequence of Gaussian "white noise" having a spacing of 100 m,
mean of zero, and standard deviation of 0.055. Figure 3 presents a histogram of the Gaussian
data and Figure 4 shows the "flat" white noise spectra and associated autocorrelation function.
The theoretical and calculated statistics agree, with the calculated having an average of 0,000117
and a of 0,0549, Correlated sequences, histograms, PSD's and ACF's of subsequent plots may be
compared to this "unfiltered sequence."

Figure 5 is typical of all the plots in this report showing log-log PSD's in the left panel and
ACF's in the right 1panel. This and subsequent plots have PSD's measured in
(8Ternperature/ Temperature) 2 and wavenumber measured in krn-1. Three curves usually appear in

Wavenumber

each panel. The solid unmarked curves are the "theoretical" or inputted PSD or ACF. The curves
marked by an X are the autoregressive predicted PSD's and ACF's, and the curves marked by an
open square axe PSD's and ACF's derived from the simulated data sequences, Except where
otherwise noted, the data spacing is 100 m and the Nyquist frequency is 5 kin°!. The input
par eters for F)gure 5 are Lc- 1.75 km. 52 0.00102, spectral slope (S) - -5/3. Using six linear
predictor coefficients, the predicted values are Lc. 1.44 kmn from the PSD and 1.50 km from the
ACF. and a2 = 0.00107 from the area of the PSD. Using 12 coefficients to determine the simulated
results, the values for the simulated curves are Lc= 1.38 kin from the PSD and 1,44 km from the
ACF, and a2 = 0.00106 from the area of the PSD. Visually examining Figure 5, clearly shows that
using 6 coefficients for the predictor and 12 coefficients for the simulated values reproduces the
theoretical slope quite well except at the highest wavenumbers. Also, at low wavenumbers, the
predicted and simulated PSD's show a -16 percent DC bias from the theoretical. Part of the high
wavenumber divergence is due to the sharpness of the autocorrelation function at zero lag, In
fact. for the specified input spectral slope of -5/3, a sharp cusp exists at zero lag. This cusp intro-
duces an error into the estimate of the linear prediction coefficients that affect the PSD at high
wavenumbers. To test this hypothesis, the first value of the autocorrelation function at zero lag
was modified by setting it equal to a value linearly extrapolated from the second and third values.
This modification led to the curves in Figure 6. Here we see much better agreement between the
theoretical and modeled curves at high wavenumbers and improvement at low wavenuibers. Im-
provement in the spectral parameters is also evident, L. improves to 1.54 km for the predicted
PSD and 1.60 km for the predicted ACF. Figure 7 shows a sequence of 8000 data points simulated
over 800 lin. When compared with Figure 2, the -5/3 spectral filtering is obvious. To see if the
simulated data retains the Gaussian PDF, a histogram of the simulated data is examined in
Figure 8. The figure shows that the variance of the simulated data =t: 0.00102, matching the input
parameter, a2. Also, the histogram closely follows the shape of the theoretical PDF as shown by
the solid curve. The effects of using more or fewer predictor coefficients are shown in Figures 9

1 IStrugala, I.A. Newt J.E.. Futtermnan. W.I.. Schweitzer. E.L.. Herman. B.J.. and Sears. RD. 1991 Development of
High Resolution Statistically Non-statlona.'" Infrared Earthlimb Radiance Sc,nes, Chararterizatton. Propagation. and
Stnudatiorn of Sources and Backgrounds, Proceedings SPIE - The International Society for Optical Engineering, V1486. pp
176-187. Orlando. Florida.
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and 10, Figure 9 is calculated for only one predictor coefficient while Figure 10 is calculated using
20 predictor coefficients, Except for the bias at low wavenunibers, using only one coefficient for
the predictor does remarkably well for the specified input parameters. However, with the use of 20
coefficients, any difference between the theoretical, predicted, And simulated curves is practically
erased, Resultant values for the predicted and simulated spectral parameters also improve. For
example, LI improves to 1.63 kin for the simulated PSD and 1.70 km for the simulated ACF.
Figure 11 provides a visual perspective of how the 20 corresponding reflection coefficients
decrease as a function of reflection coefficient number, Ordinarily, the reflection coefficient
decreases smoothly and monotonically, However, introducing the modification to the ACE that
was mentioned above causes the second reflection coefficient to dip below the smooth value.
Evidently this helps compensate for the cusp in the ACF.

One may see the effects of increasing the value of the correlation length L0, in Figures 12-14.
These curves are calculated for Lc = 10 kin, o2 = 0.0049, and S = -5/3. Using 6 coefficients for
the predicted PSD and 12 coefficients for the simulated PSD, produces the curves of Figures 12
and 13. Figure 12 illustrates the increased difficulty in simulating a PSD and ACF having a large
Lc with a small number of coefficients. Figure 13 clearly shows the effect of the larger correlation
length on the simulated spatial sequence. As expected, greater smoothing (data correlation)
results from using the larger scale size. Figure 14 illustrates the improvement in the predicted
and simulated PSD and ACF by using 20 predictor coefficients for both the predicted and
simulated curves.

Figures 15-20 show the result of repeating the calculations for a spectral slope of -2. Figures
15-17 have inputted spectral parameters of Lc = 1.75 and c2 = 0.00102 while Figures 18-20 have
Lc l 10 and a2 t 0.0049, For a slope of -2, using i-• coefficients for the predicted PSD and 12
coefficients for the simulated PSD. gives good agreement between theoretical, predicted, and
simulated curves, even for Lc = 10. For a theoretical L.= 1.75, a2 = 0.00102, the predicted values
are Lcýr 1.73 from the PSD and 1.75 from the ACF. and a2 = 0,00104 from the area of the PSI),
The values for the simulated curves are Lc= 1.65 from the PSD and 1.67 from the ACE, and a2 =
0.00103 frim the area of the PSD. Figure 16 shows the sequence of 8000 data points simulated
over 800 km for the -2 spectral slope and L,= 1.75. When this result is compared with Figure 7,
the increased filtering is evident. Again the simulated data retains the Gaussian PDF as shown in
the histogram of Figure 17. The figure shows that the variance of the simulated data = 0.00102.
matching the input parameter, c2. As shown in Figure 18, inputting a theoretical Lc= 10 and a2

0.0049 gives the predicted values of L,= 9.98 from the PSD and 10 from the ACF, and a2

0.00491 from the area of the PSD. The values for the simulated curves are L,= 9,37 from the PSD
and 9.39 from the ACF, and 0 = 0.00472 from the area of the PSD. Figure 19 shows the se-
quence of 8000 data points simulated over 800 km for the -2 spectral slope and Lc= 10. Figure 20
again shows that the histogram of the simulated data retains the Gaussian PDF and that the
variance of the simulated data = 0.00468, approximating the input parameter, 02.

Figure 21 repeats the calculations for a theoretical specn'al slope of -3. Lc= 1.75. and a2
0.00102. Up to this point the autocorrelation function has been modified at zero lag as discussed
above. However, as evident in Figure 21, for slopes of -2 and greater. thE, modified ACF results in
a divergence of the predicted PSD at high wavenumbers whereas the unmodified ACF produces

9



_< --.- - - -_---

good fidelllt at high wavenumbers, For this reason, use of the modified ACF is appropriate only
for the --5/3 spectral slope. For slopes of -2 and larger, subsequent analysis will use the

unmodified ACF exclusively,

Figures 22-27 show the result of repeating the calculations for a spectral slope of -3. Figures
22-24 have inputted spectral parameters of Le = 1,75 and c2 = 0,00102 while Figures 25-27 have
Le m 10 and a2 -- 0.0049. For a slope of -3, using 6 coefficients for the predicted PSD and 12
coefficients for the simulated PSI), good agreement obtains between theoretical, predicted, and
simulated curves, although there is less agreement at low wavenumbers for L. = 10. For a
theoretical L,= 1.75, C2 = 0.00102, the predicted values are Lc= 1.88 from the PSD and 1.88 from
the ACF, a-nd c2 = 0.00102 from the area of the PSD. The values for the simulated curves are L,=
1.79 from the PSD and 1.79 from the ACM, and c92 1 0.00102 from the area of the PSD. Figure 23

shows the sequence of 8000 data points simulated over 800 km for the -3 spectral slope and L,=
1.75. Comparisons with Figure 16 show the -3 versus -2 increased filtering. Again the simulated
data retains the Gaussian PEJF as shown in the histogram of Figure 24, The figure shows that the
variance of the simulated data = 0,00102, matching the input parameter, 02. As shown in Figure
25, inputting a theoreLicalLc= 10 and a2 = 0.0049, gives predicted values of Lc= 16.6 from the
PSD and 16.6 from the ACF, and 02 = 0.00490 from the area of the PSI). The values for the
simulated curves are Lc= 16.1 from the PSD and 16.1 from the ACF, and a2 m 0.00473 from the
area of the PSi),1 Figure 26 shows the sequence of 8000 data points simulated over 800 km for the
-3 spectral slope and L-- 10. Figure 27 again shows that the histogram of the simulated data
retains the Gaussian PDF and that the variance of the simulated data = 0.00471, approximating
the input parameter. c2 Figure 28 shows the improvement that is made by using 12 predictor
coefficients. In this ease, the predicted values are L,= 13 from the PSD and 13 from the ACF, and
C2 = 0,00490.

The final spectral slope examined in this report is for a slope = -4. Figures 29-34 present the
results of repeating the calculations for a S = -4. Figures 29-31 have inputted spectral parameters
of L, -= 1.75 and a2 = 0.00102 while Figures 32-34 have Lc = 10 and o2 = 0.0049. In this case,
using 6 coefficients for the predicted PSD and 12 coefficients for the simulated PSD yields good
agreement between theoretical, predicted, and simulated curves. For a theoretical Lc= 1.75., 2 =

0.00102. the predicted values are Lc- 1.75 from the PSD and 1.75 from the ACF, and a2 =
0.00102 from the area of the PSD. The values for the simulated curves are Lc= 1.67 from the PSD
and 1.67 from the ACF, and a2 = 0.00102 from the area of the PSD. Figure 30 shows the
sequence of 8000 data points simulated over 800 km for the -4 spectral slope and Lc= 1.75.
Comparisons with Figure 23 show the -4 versus -3 increased filtering effect. Again the simulated
data retains the Gaussian PDF as shown in the histogram of Figure 31. The figure shows that the
variance of the simulated data = 0.00102. matching the input parameter, c2 . As shown in Figure
32. inputting a theoretical Lc= 10 and 02 -- 0.0049, gives predicted values of Lc= 9.98 from the
PSD and 9.98 from the ACF, and a2 = 0.00490 from the area of the PSD. The values for the
simulated curves are L,= 10. 1 from the PSI) and 10.1 from the ACF, and 02 = 0.00463 from the
area of the PSD. Figure 33 shows the sequence of 8000 data points simulated over 800 km for the
-4 spectral slope and Lc= 10. Figure 34 again shows that the histogram of the simulated data

10



retains the Gaussian PDF and that the variance of the simulated data = 0.00461, approximating
the input parameter, A2

Up to this point the analysis has been based on a data spacing of 100 m, The effect of
doubling the spacing is demonstrated in F'igures 35 and 36, These plots have inputted spectral
parameters of S m -5/3 and L. L 5. Figure 35, which was calculated for a data spacing of 200 m,
may be compared with Figure 36 which has a data spacing of 100 m. Of course, doubling the data
spacing from 100 to 200 m halves the spatial resolution and reduces the Nyquist frequency from
5 km"4 to 2.b /kmir. if reducing resolution is acceptable, the positive effect is the improvement in
the predicted correlation length. For example, by using 6 linear predictor coefficients, the
predicted Lc= 3,6 km for a spacing of 100 m but Lc= 4.28 km for a spacing of 200 ni.

6. CONCLUSION

Geophysical phenomena within a specified domain often are characterized by smooth
continuous power spectral densities having a negative power law slope. The association of one-,
two-, and three-dimensional geophysical spectral densities with a given autocorrelation function
was reviewed and the autoregressive methods of modem spectral estimation were explored. An
autoregressive alternative to the more common Fourier transform analysis was studied with a
goal of reducing the enormous computational burden of generating synthetic structure scenes

from Gaussian random number sets. A 6 coefficient AR run to simulate 1300 points, using the
Ph•llips Laboratory model 210 Convex computer, showed an average execution time of 0,462 ms,
an improvement of a factor of 6.91/0,462 over the fast Fourier transform.. In generating two-
dimensional synthetic arrays, greater savings would resuit due to the 8-fold symmetry of the
quarter-plane AR coefficients. It was demonstrated how the resolution and accuracy of predicted
and simulated data, their PSD's and ACF's, and their parameters, change with spectral slope.
correlation length, data spacing, and prediction order. In particular, six linear prediction coeffi-
cients are all that is necessary in many cases to generate a synthetic spatial sequence that
retains a specified power law, correlation scale, variance, and probability distribution function.
For a desired spectral slope of -5/3 one should employ an autocorrelation function having a
modified zero lag value. For an equal linear predictor order, structured data having smaller
correlation length, larger spectral slope, or reduced data resolution, have greater fidelity to
specified characteristics than those generated for small slope, larger correlation length, or higher
resolution. However, fidelity often can be reestablished by increasing the spectral order from 6
coefficients to 12 or in the worst case 20 coefficients. Since the maximum vertical correlation
length over relevant SHARC altitudes is reported to be approximately 10 .km, a vertical resolution
of 100 m can be achieved with a minimum of coefficients. However, since maximum horizontal
correlation lengths are reported to be approximately 85 km, horizontal resolution must be
sacrificed or else many more coefficients must be used to achieve fidelity at both low and high
frequencies. Where low frequency simulation is unimportant, one may retreat to a minimum
number of coefficients and still achieve fidelity at mid and high frequencies.

11



Autoregressive (AR) and autoregressive moving average (ARMA) modeling should be
considered in creating large atmospheric structured scenes. A subsequent report will address the

potential for using two-dimensional ARMA modeling to generate two and three-dimensional struc-
tured scenes.

12
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Appendix-

Extensions of AR Methods to Non.Stationat y
Data and to Two and Three Dimensions

-Al. NON_-TATIOAi&Y DATA- . _

The methods employed here easily can be extended to simulate a non-stationary discrete
spatial series. If L., o2, or spectral slope are -Alowed to vary slowly, sets of aik coefficients ard

associated a2 values for each point k can be evaluated, where ak is the ith coeicient at point k

with the simulated results starting at k L- 1, Y(k) can then be simulated by setting Y(-L) Y(-L+1) 1)
Y(L,+2) = ... = Y(-L+N1l) = 0 (where L is some number, say 100, and N is the number of
coefficients). With k - -L+N, -L+N+ 1, ..., 1, the iterative expression for Y(k) is:

Y(k) i)G(k) - V (k -
(•l

and for k > 1, Y(k) is:

Y(k) tt kG(k) , a4Y(k - i)

A2. TWO AND THREE DIMENSIONAL SIMULATIONS

The methods employed in the text can be extended to simulate horizontal and vertical data,
Assume we wish to simulate data aL altitudes k = 1, 2, .... Then using either a Fourier transform
method or the linear prediction technique, one may form a simu'ated sequence whose horizontal
PSDs are the PSD from the L. and slope at each horizontal altitude with a set to 1. In addition,
one must form simulated values at, Ititudes -L, -L+I, .,., 0 from L. and slope (horizontal) for k =1
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and for c set to 1. Let us call the resulting values Z(kj) where k is the altitude and J is a point
number ( could represent a point on a horizontal line or, by extension, a point in a two-
dimensional horizontal sheet), Then the final data having the desired horizontal and vertical
PSD's, D(kj), is formed by filtering Ztkj) as follows,

Fork = -L, -L+I, -L+2, ..., 1

F(k, j) = e,1z(k, j) - cz(k - i, j)

where al and a1 are the values found using the Levinson algorithm with r. determined from a
and the vertical values of Lc and slope at altitude tI.

Then for k > 1,

N

F(k, j) =akZkk, j)- XaZ(k -t,j)

(=1

S.. where ak and ack are the values found using the Levinson algorithm with rxx determined from a
and the vertical values of L. and slope at altitude k.

Ir the above analysis, it should be noted that with careful programming only N+I altitudes
needto be stored at any time during the computations. This can reduce the necessary storage by
a factor of 10 or more.
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