
TECHNICAL REPORT RD-GC-93-36

00

N
N REAL-TIME EXECUTIVE FOR MILITARY SYSTEMS

C APPLICATIONS USER'S GUIDE

Wanda M. Hughes
Guidance and Control Directorate
Research, Development, and Engineering Center

and 'DTIC
On-Line Applications Research .. ,C 1E
2227 Drake Avenue, Suite 10-F JN] 2 4 1994
Huntsville, AL 35805

November 1993

edeone raenjal, AljRbar"4 35898-5000

Approved for Public Release; Distribution is Unlimited,

94 1 21 11.5 Q 94-.0'1933

SMI FORM 1021, 1 AUG 85 PREVIOUS EDITION IS OBSOLETE

DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLILIO THE PROCEDURES IN
DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION
11-19 OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM
REGULATION, CHAPTER IX. FOR UNCLASSIFIED, LIMITED
DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT
DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE
DOCUMENT.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR
SOFTWARE.

UNCLASSIFIED
SECURITY CLASSIFICATION pe THIS PAGEZ

REPORT DOCUMENTATION PAGE 01101
I&. REPORT SECURITY CLASS#WIATION 11 ITI I AKG
UNCLASSIFIED

Is. SECURITY CLASSIFICATION AUTHORITY '*6TRlIJTION/AV*MLA8UTY OP niPOiRT

2b. DIISAI^INDWNGAIGSH0L Approved for Public Release; Distribution
is Unlimited.

a. PERFORMING OGnIZATION REPORTF ku"aL0) . gDaTQNG 0 rANiZAlION RIEPORT NUM8E*3r1

TR-RD-GC-93--36
'a. NAME Of PERFORMIN ORGAAIZATION Wli OFFICE SYMBOL 7a. MAWE OF MONITORING OftAN"IAiON

kc. ADDRESS (fty. State. wWi 2W Code 7b. ADDRESS (0%p SUM. an IV COW)
Commander, U.S. Army Missile Command
A1TN: AMSMI-RD--GC-S Bldg. 4381 (Wanda Hughles
RedstoneArsenal,_AL_35898-5254 _______ _______________________

go. MAMAE OF FUI6DIGISPONSORIPIG Wb OFfIE $YMBOL 9 PROCUREMENT INSTRUMENT IDINTIICAT)ON NUMSER
ORGANIZATION I 61ICA4

QC. ADDRESS (City. Sta te. And ZWPCode) 10. SURCE0 OF JNDOING NUMBERS
IRG~eTASK IWORIE UIT

ELEMENT NO. I No. jNO. rESIOIN No.

Real-Time Executive for Military Systems C Applications User's Guide
12. PERSONAL AUTHOR(S)

Wanda M. Hughes
13m. TYPE OF REPORT _T 3b. TIMIE COWERED I14. DAT!1 OF REPORT (Year, AMonC. 2a7 31. PAECONFinal IFROMm1cbUMJ TO.J=~ 93 November 1993 _T 196
16. SUPPLE44ENTARY NOTATION

I?. ~COSAlI CODES Ill. SUBJECT TERMS (ConitMue on toveirn i Wswceaty and Maduey~ by' bak awk
FIELD GROUP f-SUE-GROUP RTEMS Real-Time executive

L C Languag Intertask Communication heterogeneous
19. ABSTRACT (CoifinUN On' retvvS* If RQ9*Aavy a dndioify by block nwnber)eahr shdln

This document is a user's manual for a real-time multiprocessor executive which provides a high perfor-
mance environment for embedded military applications including such features as multitasking capabilities; homoge-
neous and heterogeneous multiprocssor systems; time event--driven, priority-based, preemptive scheduling; intertask
communication and synchronization; responsive interrupt management; dynamic memory allocation; and a high level
of user configurability. This executive, known as RTEMS (Real-Time Executive for Missile Systems) was originally
developed in an effort to eliminate many of the major drawbacks of the Ada programming language. RTEMS is
based on the RTEMS (now ORKID) proposed standard. The code is Government owned, so no licensing fees are
necessary. Thie executive is written using the 'C' programming language with a very small amount of assembly lan-
guage code. The code was developed as a linkable and/or ROMable library with the Ada programming language.
Initially RTEMS was developed for the Motorola 68000 family of processo~s. It has been ported to the Intel 80386
and 80960 families. Other processor ports are planned for the future. RTEMS documents and code are available free
of charge by contacting RTEMS, U. S. Army Missile Command, ATIN: AMSMI-RL)--GC-S, Redstone Arsenal, AL
35 898-5 25 4,

20ý DISTRIBUTHINONAVAILASIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
INUNCLASSIFIEOAJNLIMITED 10 SAME &S RPT. 0_- D)IC UMRS UNCLASSIFIED

Zia. NAME Of RESPONSIBLE INDIVIOUAL 2211. TELEPHONE (kind&V ARea CGOIN 22C. PP SYMBOL
Wanda M.- 1-luohins, 1 ~~("1MAUI- SIRDG

OD FORM 1473. s.4 MAR 113 APR edition OFA be ~ie uirtu *X106uiwed. SErCuRiTY CLASIlFICATION OF THIS PAGE
AJ I CtYr *Onions at* @010MWt.

UNCLASSIFIED

i/(ii Blank)

PREFACE

In recent years, the cost required to develop a software product has increased significantly
while the target hardware costs have decreased. Now a larger portion of money is expended in
developing, using, and maintaining software. The trend in computing costs is the complete
dominance of software over hardware costs. Because of this, it is necessary that formal disci-
plines be established to increase the probability that software is characterized by a high degree of
correctness, maintainability, and portability. In addition, these disciplines must promote practices
that aid in the consistent and orderly development of a software system within schedule and
budgetary constraints. To be effective, these disciplines must adopt standards which channel
individual software efforts toward a common goal.

The push for standards in the software development field has been met with various degrees
of success. The Microprocessor Operating Systems Interfaces (MOSI) effort has experienced
only limited success. As popular as the UNIX operating system has grown, the attempt to
develop a standard interface definition to allow portable application development has only
recently begun to produce the results needed in this area. Unfortunately, very little effort has
been expended to provide standards addressing the needs of the real-time community. Several
organizations have addressed this need during the past several years.

The Real-Time Executive Interface Definition (RTEID) was developed by Motorola with
technical input from Software Components Group. RTEID was adopted by the VMEbus
International Trade Association (VITA) as a baseline draft for their proposed standard multipro-
cessor, real-time executive interface, Open Real-Time Kernel Interface Definition (ORKID).
These two groups are currently working together with the IEEE P1003.4 committee to insure
that the functionality of their proposed standards is adopted as the real-time extensions to
POSIX.

This emerging standard defines an interface for the development of real-time software to
ease the writing of real-time application programs that are directly portable across multiple real-
time executive implementations. This interface includes both the source code interfaces and run-
time behavior as seen by a real-time application. It does not include the details of how a kernel
implements these functions. The standard's goal is to serve as a complete definition of external
interfaces so that application code that conforms to these interfaces will execute properly in all
real-time executive environments. With the use of a standards compliant executive, routines that
acquire memory blocks, create and manage message queues, establish and use semaphores, and
send and receive signals need not be redeveloped for a different real-time environment as long
as the new environment is compliant with the standard. Software developers need only concen-
trate on the hardware dependencies of the real-time system. Furthermore, most hardware depen-
dencies for real-time applications can be localized to the device drivers.

A compliant executive provides simple and flexible real-time multiprocessing. It easily
lends itself to both tightly-coupled and loosely-coupled configurations (depending on the
system hardware configuration). Objects such as tasks, queues, events, signals, semaphores, and
memory blocks can be designated as global objects and accessed by any task regardless of which
processor the object and the accessing task reside.

The acceptance of a standard for real-time executives will produce the same advantages
enjoyed from the push for UNIX standardization by AT&T's System V Interface Definition and
IEEE's POSIX efforts. A compliant multiprocessing executive will allow close coupling

iWi

between UNIX systems and real-time executives to provide the many benefits of the UNIX
development environment to be applied to real-time software development. Together they
provide the necessary laboratory environment to implement real-time, distributed, embedded
systems using a wide variety of computer architectures.

A study was completed in 1988, within the Research, Development, and Engineering
Center, U.S. Army Missile Command, which compared the various aspects of the Ada program-
ming language as they related to the application of Ada code in distributed and/or multiple
processing systems. Several critical conclusions were derived from the study. These conclusions
have a major impact on the way the Army develops application software for embedded applica-
tions. These impacts apply to both in-house software development and contractor developed
software.

A conclusion of the analysis, which has been previously recognized by other agencies
attempting to utilize Ada in a distributed or multiprocessing environment, is that the Ada
programming language does not adequately support multiprocessing. Ada does provide a mecha-
nism for multi-tasking; however, this capability exists only for a single processor system. The
language also does not have inherent capabilities to access global named variables, flags, or
program code. These critical features are essential in order for data to be shared between proces-
sors. However, these drawbacks do have workarounds which are sometimes awkward and defeat
the intent of software maintainability goals.

Another conclusion drawn from the analysis, was that the run-4ime executives being deliv-
ered with the Ada compilers were too slow and inefficient to be used in modem missile systems.
A run-time executive is the core part of the run-time system code, or operating system code,
that controls task scheduling, input/output management and memory management. Traditionally,
whenever efficient executive (also known as kernel) code was required by the application, the
user developed in-house software. This software was usually written in assembly language for
optimization.

Because of this shortcoming in the Ada programming language, software developers in
research and development and contractors for project managed systems, are mandated by
technology to purchase and utilize off-the-shelf third party kernel code. The contractor, and
eventually the Government, must pay a licensing fee for every copy of the kernel code used in
an embedded system.

The main drawback to this development environment is that the Government does not own,
nor has the right to modify code contained within the kernel. V&V techniques in this situation
are more difficult than if the complete source code were available. Responsibility for system
failures due to faulty software is yet another area to be resolved under this environment.

The Guidance and Control Directorate began a software development effort to address these
problems. A project to develop an experimental run-tire kernel was begun that will eliminate
the major drawbacks of the Ada programming language mentioned above. The Real-Time
Executive for Military Systems (RTEMS) provides full capabilities for management of tasks,
interrupts, time, and multiple processors in addition to those features typical of generic operating
systems. The code is Government owned, so no licensing fees are necessary. The code was
developed as a linkable and/or ROMable library with the Ada programming language. Initially
the library code was developed on the Motorola 68000 family of processors using the C
programming language as the development language. It has since been ported to the Intel i80386
and Intel i80960 families. Other language interfaces and processor families, including RISC,
CISC, and DSP, are planned in the future.

iv

The RTEMS multiprocessor support is capable of handling either homogeneous or hetero-
geneous systems. The kernel automatically compensates for architectural differences (byte
swapping, etc.) between processors. This allows a much easier transition from one processor
family to another without a major system redesign.

Since the proposed standards are still in draft form, RTEMS cannot and does no claim
compliance. However, the status of the standard is being carefully monitored to guarantee that
RTEMS provides the functionality specified in the standard. Once approved, RTEMS will be
made compliant.

This document is detailed design guide for a functionally compliant real--time multiproces-
sor executive. It describes the user interface and run-time behavior of RTEMS.

Accesio;i For

NTIS C '.. I

DiAt .it ,tioLi

AvWhabýty Codes

Avail and I or
Dist Special

D'Io QUtALM rMI!T-PT.ZoD 5

v/(vi Blank)

TABLE OF CONTENTS

I. OVERVIEW ... I

A. Introduction/Overview 1
B. Real-tine Application Systems
C. Real-time Executive 2
D. RTEMS Application Architecture 2
E. RRTEMS Internal Architecture 3
F. User Customization and Extensibility 4
G. Portability 4
H. Memory Requirements 4
1. Audience .. 5
J. Conventions ... 5
K. Manual Organization .. . 6

II. KEY CONCEPTS .. 8

A. Introduction ... 8
B. Objects ... 8
C. Communication and Synchronization 9
D. Time.....................................9
E. Memory Management .. 10

III. INITIALIZATION MANAGER 11

A. Introduction .. 11
B. Background ... 11
C. Operations .. 12
D. Directives ... 13

IV. TASK MANAGER .. 14

A. Introduction ... 14
B. Background ... 14
C. Operations .. 18
D. Directives ... 20

V. INTERRUPT MANAGER ... 34

A. Introduction ... 34
B. Background ... 34
C. Operations .. . 35
D. Directives ... 36

VI. TIME MANAGER ... 38

A. Introduction 38
B. Background ... 38
C. Operations ... 40
D. Directives ... 41

vii

TABLE OF CONTENTS (Continued)

VH1. SE,•,,PHORE MANAGER .. 51

A. Introduction .. 51
B. Background ... 51
(. Operations .. 52
D. Directives ... 53

VIII. MESSAGE MANAGER .. 61

A. Introduction ... 61
B. Background .. 61
C. Operations 62
D. Directives 63

IX. EVENT MANAGER .. 74

A. Introduction .. 74
B. Background .. 74
C. Operations .. . 75
D. Directives ... 76

X. SIGNAL MANAGER ... 80

A. Introduction 80
B. Background ... 80
C. Operations .. . 81
D. Directives ... 32

X]I. PARTITION MANAGER .. 86

A. Introduction ... 86
B. Background ... 86
C. Operations .. 86
D. Directives ... 87

XII. REGION MANAGER ... 94

A. Introduction .. 94
B. Background ... 94
C. Operations 95
D. Directives ... 96

XIII. DUAL-PORTED MEMORY MANAGER 102

A. Introduction ... 102
B. Background ... 102
C. Operations .. 102
D. Directives ... 103

viii

TABLE OF CONTENTS (Continued)

XIV. I/O M ANAGER .. 109

A. Introduction ... 109
B. Background .. 109
C. Operations ... 111
D. Directives11

XV. FATAL ERROR MANAGER 118

A. Introduction ... 118
B. Background .. 118
C. Operations ... 118
D. Announcing a Fatal Error 118
E. Directives ... 118

XVI. SCHEDULING CONCEPTS 120

A. Introduction ... 120
B. Scheduling Mechanisms 120
C. Task State Transitions ... 122

XVII. RATE MONOTONIC MANAGER 125

A. Introduction ... 125
B. Background ... 125
C. Operations .. 130
D. Directives ... 133

XVIII. SUPPORT PACKAGES BOARD 138

A. Introduction ... 138
B. Reset and Initialization .. 138
C. Device Drivers ... 139
D. User Extensions .. 140
E. Multiprocessor Communications Interace (MPCI) 140

XIX. USER EXTENSIONS ... 143

A. Introduction 143
B. TCREATE Extension ... 143
C. TSTART Extension ... 143
D. TRESTART Extension .. 144
E. TDELETE Extension ... 144
F. TSWITCH Extension ... 144
G. TASKEXITTED Error Extension 145
H. FATAL Error Extension . ..
I. TCB Extension ... 145

ix

TABLE OF CONTENTS (Concluded)

XX. CONFIGURING A SYSTEM 146

A. Configuration Table .. 146
B. CPU Dependent Information Table 147
C. Initiaization Task Table .. 148
D. Driver Address Table ... 149
E. User Extensions Table ... 150
F. Multiprocessor Configuration Table 151
G. Multiprocessor Communications Interface Table 152
H. Determining Memory Requirements 153

XXI. MULTIPROCESSING MANAGER 155

A. Introduction ... 155
B. Background ... 155
C. Multiprocessor Communications Interface Layer 157
D. Opera tions .. 161
E. Directives ... 161

APPENDIX A:
Directive Status Codes ... A-1

APPENDIX B:
Example Application .. B-I

APPENDIX C:
G lossary .. C-1

LIST OF ILLLUSTRATIONS

1 RTEMS Application Architecture 3

2 RTEMS Internal Architecture ... 4

3 Object ID Composition ... 8

4 Task States .. 15

5 Task M ode Constants ... 17

6 Device Number Composition ... 110

7 RTEM S State Transitions ... 122

xi/(xii Blank)

I. OVERVIEW

A. Introduction/Overview

Real-Time Executive for Military Systems, (RTEMS) is a real-time executive

(kernel) which provides a high performance environment for embedded military applications
including the following features:

* multitasking capabilities

* homogeneous and heterogeneous multiprocessir systems

"* event-driven, priority-based, preemptive scheduling

"* intertask communications and synchronization

"* responsive interrupt management

"• dynamic memory allocation

"* high level of user configurability

This manual describes the implementation of RTEMS for applications using the
C programming language. Those implementation details that are processor dependent are
provided in the C Applications Supplement documents. A supplement document which
addresses specific architectural issues that affect RTEMS is provided for each processor type
that supported.

The Assembly Language Interface definition describes how assembly language
routines may utilize RTEMS services. This definition is provided in the Assembly Language
Interface chapter of the C Applications Supplement document for the desired target CPU
platform.

B. Real-time Application Systems

Real-time application systems are a special class of computer applications. They
have a complex set of characteristics that distinguish them from other software problems. Gener-
ally, they must adhere to more rigorous requirements. The correctness of the system depends not

only on the results of computations, but also on the time at which the results are produced. The
most important and complex characteristic of real-time application systems is that they must
receive and respond to a set of external stimuli within rigid and critical time constraints referred
to as deadlines. Systems can be buried by an avalanche of interdependent, asynchronous or
cyclical event streams.

Deadlines can be further characterized as either hard or soft based upon the value
of the results when produced after the deadline has passed. A deadline is hard if the results have
no value or if their use will result in a catastrophic event. In contrast, results which are produced
after a soft deadline may have some value.

Another distinguishing requirement of real-time application systems is the ability

to coordinate or manage a large number of concurrent activities. Since software is a synchronous
entity, this presents special problems. One instruction follows another in a repeating synchronous
cycle. Even though mechanisms have been developed to allow for the processing of external
asynchronous events, the software design efforts required to process and manage these events
and tasks are growing more complicated.

The design process is complicated further by spreading this activity over a set of
processors instead of a single processor. The challenges associated with designing and building
real-time application systems become very complex when multiple processors are involved.
New requirements such as interprocessor communication channels and global resources that
must be shared between competing processors are introduced. The ramifications of multiple
processors complicate each and every characteristic of a real-time svstem.

C. Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a
cornerstone on which to build the application system. A real-time multitaskilg executive allows
an application to be cast into a set of logical, autonomous processes oi tasks which become quite
manageable. Each task is internally synchronous, but different tasks execute independently,
resulting in an asynchronous processing stream. Tasks can be dynamically paused for many
reasons resulting in a different task being allowed to execute for a period of time. The executive
also provides an interface to other system components such as interrupt handlers and device
drivers. System components may request the executive to allocate and coordinate resources, and
to wait for and trigger synchronizing conditions. The executive system calls effectively extend
the CPU instruction set to support efficient multitasking. By causing tasks to travel through
well-defined state transitions, system calls permit an application to demand-switch between
tasks in response to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now
asynchronously switch between independent streams of execution, directly responding to
external stimuli as they occur. This allows the system design to meet critical performance speci-
fications which are typically measured by guaranteed response time and transaction throughput.
The multiprocessor extensions of RTEMS provide the features necessary to manage the extra
requirements introduced by a system distributed across several processos. It removes the
physical barriers of processor boundaries from the world of the system designer enabling more
critical aspects of the system to receive the required attention. Such a system, based on an effi-
cient real-time, multiprocessor executive, is a more realistic model of the outside world or envi-
ronment for which it is designed. As a result, the system will always be more logical, efficient,
and reliable.

By using the directives provided by RTEMS, the real-time applicztions devel-
oper is freed from the problem of controlling and synchronizing multiple tasks and processors.
In addition, one need not develop, test, debug, and document routines to manage memory, pass
messages, or provide mutual exclusion. The developer is then able to concentrate solely on the
application. By using standard software components, the time and cost required to develop
sophisticated real-time applications is significantly reduced.

D. RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two crit-
ical layers of typical real-time systems. As shown i% -igure 1, RTEMS serves as a buffer
between the project d•.pendent application code and the target hardware. Most hardware depen-
dencies for real-time applications can be localized to the low level device drivers. The RTEMS
I/O interface manager provides an efficient tool for incorporating these hardware dependencies
into the system while simultaneously providing a general mechanism to the application code that
accesses them. A well designed real-time system can benefit from this architecture by building a
rich library of standard application components which can be used repeatedly in other real-time
projects.

2

Application Dependent Software

Standard Application Components

t ievice Dr irs Executive

Figure 1. RTEMS Application Architecture

E. RTEMS Internal Architecture

As illustrated in Figure 2, RTEMS can be viewed as a set of components that

work in harmony to provide a set of services to a real-time application system. The executive

interface presented to the application is formed by grouping directives into logical sets called

resource managers. Functions utilized by multiple managers such as scheduling, dispatching,

and object management are provided in the executive core. Together these components provide a

powerful run-time environment that promotes the development of efficient real-time application

systems. Subsequent chapters present a detailed description of the capabilities provided by each

of the following RTEMS managers:

"* initialization 0 signal

"* task a partition

"• interrupt • region

"• time 0 dualported memory

"* semaphore 0 1/0

"* message 0 rate monotonic

"* event • fatal error

3

primary Services

"C"" °"•.......-- -°-* * m*"•

.0 IdaImn

0

Figure 2. RTEMS Internal Architecture

The C Interface Library component is a collection of routines which allow C
application programs to invoke RTEMS directives. This extends the standard C language to
include the real-time features provided by RTEMS without modifying the C compiler.

F. User Customization and Extensibility

As 32-bit microprocessors have decreased in cost, they have become increasingly
common in a variety of embedded systems. A wide range of custom and general-purpose
processor boards are based on various 32-bit processors. RTEMS was designed to make no
assumptions concerning the characteristics of individual microprocessor families or of specific
support hardware. In addition, RTEMS allows the system developer a high degree-of-freedom
in customizing and extending its features.

RTEMS assumes the existence of a supported microprocessor and sufficient
memory for both RTEMS and the real-time application. Board dependent components such as
clocks, interrupt controllers, or I/O devices can be easily integrated with RTEMS. The custo-
mization and extensibility features allow RTEMS to efficiently support as many environments
as possible.

G. Portability

The issue of portability was the major factor in the creation of RTEMS. Since
RTEMS is designed to isolate the hardware dependencies in the specific board support pack-
ages, the real-time application should be easily ported to any other processor. The use of
RTEMS allows the development of real-time applications which can be completely independent
of a particular microprocessor architecture.

H. Memory Requirements

Since memory is a critical resource in many real-time embedded systems,
RTEMS was specifically designed to allow unused managers to be excluded from the run-time

4

environment. This allows the application designer the flexibility to tailor RTEMS to most
efficiently meet system requirements while still satisfying even the most stringent memory
constraints. As result, the size of the RTEMS executive is application dependent. The Memory
Requirements chapter of the C Applications Supplement document for a specific target
processor provides a worksheet for calculating the memory requirements of a custom RTEMS
run-time environment. The following managers may be optionally excluded:

"* signal a partition

"* region 0 time

"• dual ported memory * semaphore

"* 1/0 0 message

"• event a rate monotonic

"* multiprocessing

RTEMS utilizes memory for both code and data space. Although RTEMS' data space must be
in RAM, its code space can be located in either ROM or RAM.

I. Audience

This manual was written for experienced real-time software developers.
Although some background is provided, it is assumed that the reader is familiar with the
concepts of task management as well as intertask communication and synchronization. Since
directives, user related structures, and examples are presented in C, and basic understanding of
the C programming language is required. A working knowledge of the target processor is helpful
in understanding some of RTEMS' features. A thorough understanding of the executive cannot
be obtained without studying the entire manual because many of RTEMS' concepts and features
are interrelated. Experienced RTEMS users will find that the manual organization facilitates its
use as a reference document.

J. Conventions

The following conventions are used in this manual:

" Significant words or phrases as well as all directive names are printed in
bold type.

" Items in bold capital letters are constants defined by RTEMS. Each
language interface provided by RTEMS includes a file containing the
standard set of constants, data types, and structure/record definitions which
can be incorporated into the user application.

" A number of type definitions are provided by RTEMS and can be found in
rtems.h.

" The characters "Ox" preceeding a number indicates that the number is in
hexadecimal format. Any other numbers are assumed to be in decimal format.

" The ampersand character (&) preceeding a symbol indicates that the address
of the symbol is passed to the called routine instead of the value itself.

5

K. Manual Organization

This first chapter has presented the introductory and background material for the
RTEMS executive. The remaining chapters of this manual present a detailed description of
RTEMS and the environment, including run-time behavior, it creates for the user.

A chapter is dedicated to each manager and provides a detailed discussion of each
RTEMS manager and the directives which it provides. The presentation format for each direc-
tive includes the following sections:

"* Calling sequence

"* Input parameters

"" Output parameters

* Directive status codes
"* Description

"* Notes

The following provides an overview of the remainder of this manual:

Chapter 2: Key Concepts: presents an introduction to the ideas which are common across
multiple RTEMS managers.

Chapter 3: Initialization Manager: describes the functionality and directives provided by the
Initialization Manager.

Chapter 4: Task Manager: describes the functionality and directives provided by the Task
Manager.

Chapter 5: Interrupt Manager: describes the functionality and directives provided by the
Interrupt Manager.

Chapter 6: Time Manager: describes the functionality and directives provided by the Time
Manager.

Chapter 7: Semaphore Manager: describes the functionality and directives provided by the
Semaphore Manager.

Chapter8: Message Manager: describes the functionality and directives provided by the
Message Manager.

Chapter 9: Event Manager: describes the functionality and directives provided by the Event
Manager.

Chapter 10: Signal Manager: describes the functionality and directives provided by the Signal
Manager.

Chapter 11: Partition Manager: describes the functionality and directives provided by the
Partition Manager.

Chapter 12: Region Manager: describes the functionality and directives provided by the
Region Manager.

6

Chapter 13; Dual-Ported Memory Manager: describes the functionality and directives
provided by the Dual-Ported Memory Manager.

Chapter 14: I/O Manager: describes the functionality and directives provided by the I/O
Manager.

Chapter 15: Fatal Error Manager: describes the functionality and directives provided by the
Fatal Error Manager.

Chapter 16: Scheduling Concepts: details the RTEMS scheduling algorithm and task state
transitions.

Chapter 17: Rate Monotonic Manager: describes the functionality and directives provided by
the Fatal Error Manager.

Chapter 18: Board Support Packages: defines the functionality required of user-supplied
board support packages.

Chapter 18: User Extensions: shows the user how to extend RTEMS to incorporate custom
features.

Chapter 20: Configuring a System: details the process by which one tailors RTEMS for a
particular single-processor or multiprocessor application.

Chapter 21: Multiprocessing Manager: presents a conceptual overview of the multiprocessing
capabilities provided by RTEMS as well as describing the Multiprocessing
Communications Interface Layer and Multiprocessing Manager directives.

Appendix A: Directive Status Codes: provides a definition of each of the directive status codes
referenced in this manual. These definitions are also provided in the user include
file rtems.h which is provided in the Header F'les chapter of the C
Applications Supplement for a specific target processor.

Appendix B: Example Application: provides a template for simple RTEMS applications.

Appendix C: Glossary: defines terms used throughout this manual.

7

H. KEY CONCEPTS

A. Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful
concepts. These concepts must be understood before the application developer can efficiently
utilize RTEMS. The purpose of this chapter is to familiarize one with these concepts.

B. Objects

RTEMS provides directives which can be used to dynamically create, delete, and
manipulate a set of predefined object types. These types include tasks, message queues, sema-
phores, memory regions, memory partitions, timers, and ports. The object-oriented nature of
RTEMS encourages the creation of modular applications built upon reusable "building block"
routines.

All objects are created on the local node as required by the application and have
a RTEMS assigned ID. All objects except timers have a user-assigned name. Although a rela-
tionship exists between a object's name and its RTEMS assigned ID, the name and ID are not
identical. Object names are completely arbitrary and selected by the user as a meaningful "tag"
which may commonly reflect the object's use in the application. Conversely, object IDs are
designed to facilitate efficient object manipulation by the executive.

An object name is a unsigned 32-bit entity associated with the object by the
user. Although not required by RTEMS, object names are typically composed of four ASCII
characters which help identify that object. For example, a task which causes a light to blink
might be called "LITE". On the other hand, if a application requires 100 tasks, it would be diffi-
cult to assign meaningful ASCII names to each task. A more convenient approach would be to
name them the binary values 1 through 100, respectively.

31 16 15 0

Node Number Object Index

Figure 3. Object ID Composition

An object ID is a unique unsigned 32-bit entity composed of two parts. The most signifi-
cant 16-bits are the number of the node on which this object was created. The node number is
always one (1) in a single processor system. The least significant 16-bit form an identifier
within a particular object type. This identifier, called the object index, ranges in value from 1 to
the maximum number of objects configured for this object type (Fig 3).

The two components of an object ID make it possible to quickly locate any object in even
the most complicated multiprocessor system. Object ID's are associated with an object by
RTEMS when the object is created and the corresponding ID is returned by the appropriate
object create directive. The object ID is required as input to all directives involving objects,
except those which create an object or obtain the ID of an object.

8

The object identification directives can be used to dynamically obtain a particular object's
ID given its name. This mapping is accomplished by searching the name table associated with
this object type. If the name is non-unique, then the ID associated with the first occurrence of
the name will be returned to the application. Since object IDs are returned when the object is
created, the object identification directives are not necessary in a properly designed single
processor application.

An object control block is a data structure defined by RTEMS which contains the
information necessary to manage a particular object type. For efficiency reasons, the format of
each object type's control block is different. However, many of the fields are similar in function.
The number of each type of control block is application dependent and determined by the values
specified in the user's Configuration Table. An object control block is allocated at object create
time and freed when the object is deleted. With the exception of user extension routines, object
control blocks are not directly manipulated by user applications.

C. Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution
threads to communicate and synchronize with each other is imperative. A real-time executive
should provide an application with the following capabilities:

* Data transfer between cooperating tasks

* Data transfer between tasks and ISRs

* Synchronization of cooperating tasks

* Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication
and/or synchronization. However, managers dedicated specifically to communication and
synchronization provide well established mechanisms which directly map to the application's
varying needs. This level of flexibility allows the application designer to match the features of a
particular manager with the complexity of communication and synchronization required. The
following managers were specifically designed for communication and synchronization:

"* Semaphore 0 Event

"* Message 0 Signal

The semaphore manager supports mutual exclusion involving the synchronization
of access to one or more shared user resources. The message manager supports both communica-
tion and synchronization, while the event manager primarily provides a high performance
synchronization mechanism. The signal manager supports only asynchronous communication
and is typically used for exception handling.

D. Time

The development of responsive real-time applications requires an understanding
of how RTLMS maintains and supports time-related operations. The basic unit of time in
RTEMS is known as a tick. The frequency of clock ticks is completely application dependent
and determines the granularity and accuracy of all interval and calendar time operations.

9

By tracking time in units of ticks, RTEMS is capable of supporting interval
timing functions such as task delays, timeouts, timeslicing, the delayed posting of events, and the
rate monotonic scheduling of tasks. An interval is defined as a number of ticks relative to the
current time. For example, when a task delays for an interval of ten ticks, it is implied that the
task will not execute until ten clock ticks have occurred.

A characteristic of interval timing is that the actual interval period may be a frac-
tion of a tick less than the interval requested. This occurs because the time at which the delay
timer is set up occurs at some time between two clock ticks. Therefore, the first countdown tick
occurs in less than the compiete time interval for a tick. This can be a problem if the clock gran-
ularity is large.

The rate monotonic scheduling algorithm is a hard real-time scheduling method-
ology. This methodology provides rules which allows one to guarantee that a set of independent
periodic tasks will always meet their deadlines - - even under transient overload conditions. The
rate monotonic manager provides directives built upon the time manager's interval timer support
routines.

Interval timing is not sufficient for the many applications which require that time
be kept in wall time or true calendar form. Consequently, RTEMS maintains the current date
and time. This allows selected time operations to be scheduled at an actual calendar date and
time. For example, a task could request to delay until midnight on New Year's Eve before
lowering the ball at Times Square.

Obviously, the time manager's directives cannot operate without some external
mechanism which provides a periodic clock tick. This clock tick is typically provided by a real
time clock or counter/timer device.

E. Memory Management

RTEMS memory management facilities can be grouped into two classes:
dynamic memory allocation and address translation. Dynamic memory allocation is required by
applications whose memory requiremcnts vary through the application's course of execution.
Address translation is needed by applications which share memory with another CPU or an intel-
ligent Input/Output processor. The following RTEMS managers provide facilities to manage
memory:

"* Region

"* Dual-Ported Memory

"* Partition

RTEMS memory management features allow an application to create simple
memory pools of fixed size buffers and/or more complex memory pools of variable size
segments. The partition manager provides directives to manage and maintain pools of fixed size
entities such as resource control blocks. Alternatively, the region manager provides a more
general purpose memory allocation scheme that support. variable size blocks uf memory which
are dynamically obtained and freed by the application. The dual-ported memory manager
provides executive support for address translation between internal and external dual-ported
RAM address space.

10

III. INiTIALIZATION MANAGER

A. Introduction

The initialization manager is responsible for initiating RTEMS, creating and
starting all configured initialization tasks, and for invoking the initialization routine for each
user-supplied device driver. In a multiprocessor configuration, this manager also initializes the
interprocessor communications layer. The directive provided by the initialization manager is:

Name Directive Description

init.exec Initialize RTEMS

B. Background

1. Initialization Tasiis

Initialization task(s) are the mechanism by which RTEMS transfers initial
control to the user's application. Initialization tasks differ from other application tasks in that
they are defined in the Initialization Task Table and automatically created and started by
RTEMS as part of its initialization sequence. Since the initialization tasks are scheduled using
the same algorithm as all other RTEMS tasks, they must be configured at a priority and mode
which will insure that they will complete execution before other application tasks execute.
Although there is no upper limit on the number of initialization tasks, an application is required
to define at least one.

A typical initialization task will create and start the static set of application
tasks. It may also create any other objects used by the application. Initialization tasks which only
perform initialization should delete themselves upon completion to free resources for other tasks.
Initialization tasks may transform themselves into a "normal" application task. This transforma-
tion typically involves changing priority and execution mode. RTEMS does not automatically
delete the initialization tasks.

2. The System Initialization Task

The System Initialization Task is responsible for initializing all device
drivers. As a result, this task has a higher priority than all other application tasks to insure that
no application tasks executes until all device drivers are initialized. After device initialization in
a single processor system, this task will delete itself.

In multiprocessor configurations, the System Initialization Task does not
delete itself after initializing the device drivers. Instead it transforms itself into the Multiproces-
sing Server which initializes the Multiprocessor Communications Interface layer, verifies
multiprocessor system consistency, and processes all requests from remote nodes.

3. The Idle Task

The Idle Task is the lowest priority task in all systems and executes only
when no other task is ready to execute. This taskc consists of an infinite loop and will be
preempted when any other task is made ready to execute.

11

4. Initialization Manager Failure

The k fatal directive will be called from init-exec for any of the following
reasons:

" If no user initialization tasks are configured. At least one initialization task
must be configured to allow RTEMS to pass control to the application at the
end of the executive initialization sequence.

" If a CPU Dependent Information Table is required by the target processor
and NULLCPU TABLE is passed to init.exec.

" If the starting address of the RTEMS RAMS Workspace, supplied by the
application in the Configuration Table, is not aligned on a four-byte
boundary.

" If the size of the RTEMS RAM Workspace is not large enough to
initialize and configure the system.

" If multiprocessing is configured and the node entry in the Multiprocessor
Configuration Table is not between one and the max-nodes entry.

" If any of the user initialization tasks cannot be created or started successfully.

C. Operations

Initializing RTEMS

The init exec directive is called by the board support package at the completion
initialization sequence. RTEMS assumes that the board support package successfully completed
its initialization activities. The init-exec directive completes the initialization sequence by
performing the following actions:

"* Initializing internal RTEMS variables;

"* Allocating system resources;

"* Creating and starting the System Initialization Task;

"* Creating and starting the Idle Task-,

"* Creating and starting the user initialization task(s); and

"* Initiating multitasking.

This directive MUST be called before any other RTEMS directives. The effect
of calling any RTEMS directives before init exec is unpredictable. Many of RTEMS actions
during initialization are based upon the contents of the Configuration Table and CPU Depen-
dent Information Table. For more information regarding the format and contents of these tables,
please refer to the chapter Configuring a System.

The final step in the initialization sequence is the initiation of multitasking. When
the scheduler and dispatcher are enabled, the highest priority, ready task will be dispatched to
run. Control will not be returned to the board support package after multitasking is enabled.

12

D. Directives

This section details initialization manger's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

INIT-EXEC - Initialize RTEMS

CALLING SEQUENCE:

void init exec (conftbl, cputbl)

INPUT:

configtable *conftbl;/* configuration table pointer */

struct cpu info *cputbl; /* cPu information table pointer

OUTPUT: NONE

DIRECTIVE STATUS CODES: NONE

DESCRIPTION:

This directive is called when the board support package has completed its
initialization to allow RTEMS to initialize the application environment based upon the informa-
tion in the Configuration Table and CPU Dependent Information Table.

NOTES:

This directive MUST be the first RTEMS directive called and it DOES
NOT RETURN to the caller.

On some processors RTEMS does not require any information which is
processor dependent. In this case, the cputbi argument should be NULLCPUJTABLE.

This directive causes all nodes in the system to verify that certain configura-
tion parameters are the same as those of the local node. If an inconsistency is detected, then a
fatal error is generated.

13

IV. TASK MANAGER

A. Introduction

The task manager provides a comprehensive set of directives to create, delete,
and administer tasks. The directives provided by the task manager are:

Name Directive Description

t create Create a task

t ident Get ID of a task

t start Start a task

trestart Restart a task

t delete Delete a task

t-suspend Suspend a task

tresume Resume a task

t-setpri Set task priority

t mode Change current task's mode

t.getnote Get task notepad entry

tsetnote Set task notepad entry

B. Background

1. Task Definition

Many definitions of a task have been proposed in computer literature.
Unfortunately, none of these definitions encompasses all facets of the concept in a manner which
is operating system independent. Several of the more common definitions are provided to enable
each user to select a definition which best matches their own experience and understanding of
the task concept:

* the "dispatchable" unit.

* the entity to which the processor is allocated

* the atomic unit of a real-time, multiprocessor system.

* single threads of execution which concurrently compete for
resources.

a sequence of closely related computations which can execute
concurrently with other computational sequences.

From RTEMS' perspective, a task is the smallest thread of execution which
can compete on its own for system resources. A task is manifested by the existence of a Task
Control Block (TCB).

14

2. Task Control Block

The TCB is an RTEMS defined data structure which contains all the
information that is pertinent to the execution of a task. During system initialization, RTEMS
reserves a TCB for each task configured. A TCB is allocated upon creation of the task and is
returned to the TCB free list upon deletion of the task.

The TCB's elements are modified as a result of system calls made by the
application in response to external and internal stimuli. TCBs are the only RTEMS internal data
structure that can be accessed by an application via user extension routines. The TCB contains a
task's name, ID, current priority, current and starting states, execution mode, set of notepad loca-
tions, TCB user extension pointer, scheduling control structures, as well as data required by a
blocked task.

A task's context is stored in the TCB when a task switch occurs. When the
task regains control of the processor, its context is restored from the TCB. When a task is
restarted, the initial state of the task is restored from the starting context area in the task's TCB.

3. Task States

A task may exist in one of the following five states:

Task State Description

executing Currently scheduled to the CPU

ready May be scheduled to the CPU

blocked Unable to be scheduled to the CPU

dormant Created task that is not started

non-existent Uncreated or deleted task

Figure 4. Task States

An active task may occupy the executing, ready, blocked, or dormant state,
otherwise the task is considered non--existent. One or more tasks may be active in the system
simultaneously. Multiple tasks communicate, synchronize, and compete for system resources
with each other via system calls. The multiple tasks appear to execute in parallel, but actually
each is dispatched to the CPU for periods of time determined by the RTEMS scheduling algo-
rithm. The scheduling of a task is based on its current state and priority.

4. Task Priority

A task's priority determines its importance in relation to the other tasks
executing on the same processor. RTEMS supports 255 levels of priority ranging from 1 to 255.
Tasks of numerically smaller priority values are more important tasks than tasks of numerically
larger priority values. For example, a task at priority level 5 is of higher privilege than a task at
priority level 10. There is no limit to the number of tasks assigned to the same priority.

Each task has a priority associated with it at all times. The initial value of
this priority is assigned at task creation time. The priority of a task may be changed at any subse-
quent time.

is

Priorities are used by the scheduler to determine which ready task will be allowed
to execute. In general, the higher the priority of a task, the more likely it is to receive processor
execution time.

5. Task Mode

A task's mode is a combination of the following four components:

* preemption 0 ASR processsng

* timeslicing • interrupt level

It is used to modifying RTEMS' scheduling process and to alter the execution
environment of the task.

The preemption component allows a task to determine when control of the
processor is relinquished. If preemption is disabled (NOPREEMPT), the task will retain control
of the processor as long as it is in the ready state - - even if a higher priority task is made ready.
If preemption is enabled (PREEMPT) and a higher priority task is made ready, then the
processor will be taken away from the current task immediately and given to t' higher priority
task.

The timeslicing component is used by the RTEMS scheduler to determine
how the processor is allocated to tasks of equal priority. If timeslicing is enabled (TSLICE),
then RTEMS will limit the amount of time the task can execute before the processor is allocated
to another ready task of equal priority. The length of the timeslice is application dependent and
specified in the Configuration Table. If timeslicing is disabled (NOTSLICE), then the task will
be allowed to execute until a task of higher priority is made ready. If NOPREEMPT is selected,
then the timeslicing component is ignored by the scheduler.

The asynchronous sign,! pr-,cessing component is used to determine when
received signals are to be processed by the task. If signal processing is enabled (ASR), then
signals sent to the task will be processed the next time the task executes. If signal processing is
disabled (NOASR). then all signals received by the task will remain posted until signal proces-
sing is enabled. This component affects only tasks which have established a routine to process
asynchronous signals.

The interrupt level component is used to determine which interrupts will be
enabled when the task is executing. INTR(n) specifies that the task will execute at interrupt
level n.

16

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption *

NOPREEMPT disable preemption

NOTSLICE disable timeslicing *

TSLICE enable timeslicing

ASR enable ASR processing *

NOASR disable ASR processing

INTR(o) enable all interrupts *

INTR(n) execute at interrupt level n

Figure 5. Task Mode Constants

6. Accessing Task Arguments

All RTEMS tasks are invoked with a single argument which is specified
when they are started or restarted. The argument is commonly used to communicate some startup
information to the task. The simplest manner in which to define a task which accesses it argu-
ment is:

task user-task (arg)
unsigned32 arg;

Application tasks requiring more information may view the single argument
as a pointer to a parameter block. A task utilizing the argument in this manner may be defined as
follows:

task usertask (arg_ptr)
struct usertask-args *arg_ptr;

where the structure, user.task args is an application defined entity.

7. Floating Point Considerations

Creating a task with the FP flag results in additional memory being allo-
cated for the TCB to store the state of the numeric coprocessor during task switches. This addi-
tional memory is not allocated for NOFP tasks. Saving and restoring the context of a FP task
takes longer than that of a NOFP task because of the relatively large amount of time required for
the numeric coprocessor to save or restore its computational state.

Since RTEMS was designed specifically for embedded military applications
which are floating point intensive, the executive is optimized to avoid unnecessarily saving and
restoring the state of the numeric coprocessor. The state of the numeric coprocessor is only saved
when an FP task is dispatched and that task was not the last task to utilize the coprocessor. In a
system with only one FP task, the state of the numeric coprocessor will never be saved or
restored.

Although the overhead imposed by FP tasks is minimal, some applications
may wish to comrnetely avoid the overhead associated with FP tasks and still utilize a numeric

17

coprocessor. By preventing a task from being preempted while performing a sequence of floating
point operations, a NOFP task can utilize the numeric coprocessor without incurring the over-
head of a F7 context switch. However, if this approach is taken by the application designer, NO
tasks should be created as F7 tasks.

If the supported processor type does not have hardware floating capabilities or a
standard numeric coprocessor, RTEMS will not provide built-in support for hardware floating
point on that processor. In this case, all tasks are considered NOFP whether created as a FP or
NOFP task. A floating point emulation software library must be utilized for floating point
operations.

8. Building an Attribute Set, Mode, or Mask

In general, an attribute set, mode, or mask is built by a bitwise OR of the
desired options. The set of valid options is provided in the description of the appropriate direc-
tive. An option listed as a default is not required to appear in the option OR list, although it is a
good programing practice to specify default options. If all defaults are desired, the option
DEFAULTS should be specified on this call.

This example demonstrates the attr parameter needed to create a local task
which utilizes the numeric coprocessor. The attr parameter could be FP or LOCAL I FP. The
attr parameter can be set to FP because LOCAL is the default for all created tasks. If the task
were global and used the numeric coprocessor, then the attr parameter would be GLOBAL
FP.

The following example will demonstrate the mode and mask parameters
used with the t mode directive to place a task at interrupt level 3 and make it non-preemptible.
The mode should be set to INTR(3) I NOPREEMPT to indicate the desired preemption mode
and interrupt level, while the mask parameter should be set to INTRMODE IPREEMPT-
MODE to indicate that the calling task's interrupt level and preemption mode are being altered.

C. Operations

1. Creating Tasks

The tcreate directive creates a task by allocating a task control block,
assigning the task a user-specified name, allocating it a stack and floating point context area,
setting a user-specified initial priority, and assigning it a task ID. Newly created tasks are
initially placed in the dormant state. All RTEMS tasks execute in the most privileged mode
of the processor.

2. Obtaining Task IDs

When a task is created, RTEMS generates a unique task ID and assigns it to
the created task until it is deleted. The task ID may be obtained by either of two methods. First,
as the result of an invocation of the t create directive, the task ID is stored in a user provided
location. Second, the task ID may be obtained later using the t ident directive. The task ID is
used by other directives to manipulate this task.

3. Starting and Restarting Tasks

The t start directive is used to place a dormant task in the ready state. This
enables the task to compete, based on its current priority, for the processor and other system

18

resources. Any actions, such as suspension or change of priority, performed on a task prior to
starting it are nullified when the task is started.

With the tstart directive the user specifies the task's starting address, initial
execution mode, and argument. The argument is used to communicate some startup information
to the task. As part of this directive, RTEMS initializes the task's stack based upon the task's
initial execution mode and start address. The starting argument is passed to the task in accor-
dance with the target processor's calling convention.

The trestart directive restarts a task at its initial starting address with its original
priority and execution mode, but with a possibly different argument. The new argument may be
used to distinguish between the original invocation of the task and subsequent invocations. The
task's stack and control block are modified to reflect their original creation values. Although
references to resources that have been requested are cleared, resources allocated by the task are
NOT automatically returned to RTEMS. A task cannot be restarted unless it has previously been
started (i.e. dormant tasks cannot be restarted). All restarted tasks are placed in the ready state.

4. Suspending and Resuming Tasks

The t suspend directive is used to place either the caller or another task into
a suspended state. The task remains suspended until a tresume directive is issued. This implies
that a task may be suspended as well as blocked waiting either to acquire a resource or for the
expiration of a timer.

The t resume directive is used to remove another task from the suspended
state. If the task is not also blocked, resuming it will place it in the ready state, allowing it to
once again compete for the processor and resources. If the task was blocked as well as
suspended, this directive clears the suspension and leaves the task in the blocked state.

5 Changing Task Priority

The t setpri directive is used to obtain or change the current priority of
either the calling task or another task. If the new priority requested is CURRENT or the task's
actual priority, then the current priority will be returned and the task's priority will remain
unchanged. If the task's priority is altered, then the task will be scheduled according to its new
priority.

The t restart directive resets the priority of a task to its original value.

6. Changing Task Mode

The t mode directive is used to obtain or change the current execution
mode of the calling task. A task's execution mode is used to enable preemption, timeslicing,
ASR processing, and to set the task's interrupt level.

The t restart directive resets the mode of a task to its original value.

7. Notepad Locations

RTEMS provides sixteen notepad locations for each task. Each notepad
location may contain a note consisting of four bytes of information. RTEMS provides two
directives, t setnote and t.getnote, that enable a user to access and change the notepad loca-
tions. The t-setnote directive enables the user to set a task's notepad entry to a specified note.

19

The tgetnote directive allows the user to obtain the note contained in any one of the sixteen

notepads of a specified task.

8. Task Deletion

RTEMS provides the t-delete directive to allow a task to delete itself or
any other task. This directive removes all RTEMS references to the task, frees the task's control
block, removes it from resource wait queues, and deallocates its stack as well as the optional
floating point context. The task's name and ID become inactive at this time, and any subsequent
references to either of them is invalid. In fact, RTEMS may reuse the task ID for another task
which is created later in the application.

Unexpired delay timers (i.e., those used by tm wkafter and tm-wkwhen)
and timeout timers associated with the task are automatically deleted, however, other resources
dynamically allocated by the task are NOT automatically returned to RTEMS. Therefore, before
a task is deleted, all of its dynamically allocated resources should be deallocated by the user.
This may be accomplished by instructing the task to delete itself rather than directly deleting the
task. Other tasks may instruct a task to delete itself by sending a "delete self" message, event, or
signal, or by restarting the task with special arguments which instruct the task to delete itself.

D. Directives

This section details the task manager's directives. A subsection is dedicated to
each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

20

1. TCREATE - Create a task

CALLING SEQUENCE:

dirstatus tcreate (name, priority, stksize, mode, attr, & tid)

INPUT:

objname name; /* user-defined name */
task.pri priority; /* task priority
unsigned32 stksize; /* stack size in bytes */
unsigned32 mode; /* initial task mode
unsigned32 attr; /* task attributes *

OUTPUT:

obj-id *tid; /* id of created task */

DIRECTIVE STAl US CODES:

SUCCESSFUL task created successfully
E SIZE stack too small
E-MEMORY no memory for stack segment
E PRIORITY invalid task priority
E-NOMP multiprocessing not configured
E TOOMANY too many tasks created, or too many global objects

DESCRIPTION:

This directive creates a task which resides on the local node. It ,iiocatcs and
initializes a TCB, a stack, and an optional floating point context area. The mode parameter
contains values which sets the task's initial execution mode. The FP attribute should be specified
if the created task is to use a numeric coprocessor. For performance reasons, it is recommended
that tasks not using the numeric coprocessor should specify the NOFP attribute. If the
GLOBAL attribute is specified, the task can be accessed from remote nodes. The task id,
returned in fid, is used in other task related directives to access the task. When created, a task is
placed in the dormant state and can only be made ready to execute using the directive tstart.

NOTES:

This directive will not cause the calling task to be preempted.

Valid task priorities range from a high of 1 to a low of 255.

RTEMS supports a maximum of 256 interrupt levels which are mapped
onto the interrupt levels actually supported by the target processor.

The requested stack size should be at least MINSTKSIZE bytes. The
value of NUN STK SIZE is processor dependent. Application developers should consider the
stack usage of the device drivers when calculating the stack size required for tasks which utilize
the driver.

The following task attribute constants are defined by RTEMS:

21

CONSTANT DESCRIPTION DEFAULT

NOFP does not use coprocessor *

FP uses numeric coprocessor

LOCAL local task

GLOBAL global task

The following task mode constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption

NOPREEMPT disable preemption

NOTSLICE disable timeslicing

TSUCE enable timeslicing

ASR enable ASR processing

NOASR disable ASR processing

INTR(O) enable all interrupts

INTR(n) execute at interrupt level n

Tasks should not be made global unless remote tasks must interact with
them. This avoids the system overhead incurred by the creation of a global task. When a global
task is created, the task's name and id must be transmitted to every node in the system for inser-
tion in the local copy of the global object table.

The total number of global objects, including tasks, is limited by the
num_gobjects field in the Configuration Table.

22

2. T IDENT - Get ID of a task

CALLING SEQUENCE:

dir •status t.ident (name, node, & tid)

INPUT!

obj..name name; /* user-defined task name */
unsigned32 node; /* nodes to be searched

OUTPUTI

objid *tid; /* task id returned

DIRECTIVE STATUS CODES:

SUCCESSFUL task identified successfully
E NAME invalid task name
E7NODE invalid node id

DESCRIPTION:

This directive obtains the task id associated with the task name specified in
name. A task may obtain its own id specifying SELF or its own task name in name. If the task
name is not unique, then the task id returned will match one of the tasks with that name.
However, this task id is not guaranteed to correspond to the desirer task. The task id, returned in
tid, is used in other task related directives to access the task.

NOTES:

This directive will not cause the running task to be preempted.

If node is ALL NODES, all nodes are searched with the local node being
searched first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then
only the tasks exported by the designated node are searched.

Thi3 directive does not generate activity on remote nodes. It accesses only
the local copy of the global object table.

23

3. TSTART- Start a task

CALLING SEQUENCE:

dir.status t.start (tid, saddr, arg)

INPUT:

objid tid; /* task id
task.ptr saddr; /* task entry point /
unsigned32 arg; /* argument */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task started successfully
E ID invalid task id
ESTATE task not in the dormant state
EREMOTE cannot start remote task

DESCRIPTION:

This directive readies the task, specified by tid, for execution based on the
priority and execution mode specified when the task was created. The starting address of the task
is given in saddr. The task's starting argument is contained in arg. This argument can be a single
value or the address of a parameter block.

NOTES:

The calling task will be preempted if its preemption mode is enabled and the
task bking started has a higher priority.

Any actions performed on a dormant task such as suspension or change of
priority are nullified when the task is initiated via the t-start directive.

24

4. T RESTART - Restart a task

CALLING SEQUENCE:

dir-status trestart (tid, arg)

INPUT:
obj-id tid; /* task id */
unsigned32 arg; /* argument */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task restarted successfully
EU1) task id invalid
ESTATE task never started
EREMOTE cannot restart remote task

DESCRIPTION:

This directive resets the task specified by tid to begin execution at its orig-
inal starting address. The task's priority and execution mode are set to the original creation
values. If the task is currently blocked, RTEMS automatically makes the task ready. A task can
be restarted from any state, except the dormant state.

The task's starting argument is contained in arg. This argument can be a
single value or the address of a parameter block. This new argument may be used to distinguish
between the initial t start of the task and any ensuing calls to t-restart of the task. This can be
beneficial in deleting a task. Instead of deleting a task using the t delete directive, a task can
delete another task by restarting that task, and allowing that task to release resources back to
RTEMS and then delete itself.

NOTES:

If tid is SELF, the calling task will be restarted and will not return from this
directive.

The calling task will be preempted if its preemption mode is enabled and the
task being restarted has a higher priority.

The task must reside on the local node, even if the task was created with the
GLOBAL option.

25

5. TDELETE - Delete a task

CALLING SEQUENCE:

dir status t_delete (tid)

INPUT:

obj-id tid; /* task id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task deleted successfully
EID invalid task id
EREMOTE cannot delete remote task

DESCRIPTION:

This directive deletes a task, either the calling task or another task, as speci-
fied by tid. RTEMS stops the execution of the task and reclaims the stack memory, any
allocated delay or timeout timers, and the TCB. RTEMS does not reclaim region segments,
partition buffers, semaphores, event timers, or rate monotonic timers.

NOTES:

A task is responsible for releasing its resources back to RTEMS before dele-
tion. To insure proper deallocation of resources, a task should not be deleted unless it is unable
to execute or does not hold any RTEMS resources. If a task holds RTEMS resources, the task
should be allowed to deallocate its resources before deletion. A task can be directed to release its
resources and delete itself by restarting it with a special argument or by sending it a message, an
event, or a signal.

Deletion of the current task (SELF) will force RTEMS to select a another
task to execute.

When a global task is deleted, the task id must be transmitted to every node
in the system for deletion from the local copy of the global object table.

The task must reside on the local node, even if the task was created with the
GLOBAL option.

26

6. TSUSPEND - Suspend a task

CALLING SEQUENCE:

dir status t suspend (tid)

INPUT:

objid tid; /* task id

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task suspended successfully
E ID invalid task id
E ALREADY task already suspended

DESCRIPTION:

This directive suspends the task specified by tid from further execution by
placing it in the suspended state. This state is additive to any other blocked state that the task
may already be in. The task will not execute again until another task issues the tresume direc-
tive for this task and any blocked state has been removed.

NOTES:

The requesting task can suspend itself by specifying SELF as tid. In this
case, the task will be suspended and a successful return code will be returned when the task is
resumed.

Suspending a global task which does not reside on the local node will
generate a request to the remote node to suspend the specified task.

27

7. TRESUME - Resume a task

CALLING SEQUENCE:

dir-status t resume (tid)

INPUT:

obj-id tid; /* task id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task resumed 3uccessfully
E.ID invalid task id
E.STATE task not suspended

DESCRIPTION:

This directive removes the task specified by tid from the suspended state. If
the task is in the ready state after the suspension is removed, then it will be scheduled to run. If
the task is still in a blocked state after the suspension is removed, then it will remain in that
blocked state.

NOTES:

The running task may be preempted Jf its preemption mode is enabled and
the local task being resumed has a higher priority.

Resuming a global task which does not reside on the 'ocal node will
generate a request to the remote node to resume the specified task.

28

8. T SETPRI - Set task priority

CALLING SEQUENCE:

dir status t setpri (tid, priority, & ppriority)

INPUT:

obj id tid; /* task id
task pri priority; /* new priority

OUTPUT:

taskpri *ppriority; /* previous priority */

DIRECTIVE STATUS CODES:

SUCCESSFUL task priority set successfully
E ED invalid task id
E-PRIORITY invalid task priority

DESCRIPTION:

This directive manipulates the priority of the task specified by tid. A rid of
SELF is used to indicate the calling task. When priority is not equal to CURRENT, the speci-
fied task's previous priority is returned in ppriority. When priority is CURRENT, the specified
task's current priority is returned in ppriority. Valid priorities range from a high of 1 to a low of
255.

NOTES:

The calling task may be preempted if its preemption mode is enabled and it
lowers its own priority or raises another task's priority.

Setting the priority of a global task which does not reside on the local node will
generate a request to the remote node to change the priority of the specified task.

29

9. TMODE - Change current task's mode

CALLING SEQUENCE:

dir status tmode (mode, mask, & pmode)

INPUT-

unsigned32 mode; /* new mode values
unsigned32 mask; /* mode fields to change /

OUTPUT:

unsigned32 *pmode; /* previous mode

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive manipulates the execution mode of the calling task. A task's
execution mode enables and disables preemption, timeslicing, asynchronous signal processing,
as well as specifying the current interrupt level. To modify an execution mode, the mode
class(es) to be changed must be specified in the mask parameter and the desired mode(s) must
be specified in the mode parameter.

NOTES:

The calling task will be preempted if it enables preemption and a higher
priority task is ready .o run.

Enabling timeslicing has no effect if preemption is enabled.

A task can obtain its current execution mode, without modifying it, by call-
ing this directive with a mask value of CURRENT.

To temporarily disable the processing of a valid ASR, a task should call this
directive with the NOASR indicator specified in mode.

30

The following task mode constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption *

NOPREEMPT disable preemption

NOTSLICE disable timeslicing

TSLICE enable timeslicing

ASR enable ASR processing

NOASR disable ASR processing

INTR(O) enable all interrupts

INTR(n) execute at interrupt level n,

The following mask constants are defined by RTEMS:

CONSTANT DESCRIPTION

CURRENT obtain current mode

PREEMPIMODE select preemption mode

TSLICEMODE select timeslicing mode

ASRMODE select ASR processing mode

INTRMODE select interrupt level

31

10. TGETNOTE - Get task notepad entry

CALLING SEQUENCE:

dir-status tgetnote (tid, notepad, & note)

INPUT:

obj id tid; /* task id */
unsigned32 notepad; /* notepad location */

OUTPUT:

unsigned32 *note; /* note value

DIRECTIVE STATUS CODES:

SUCCESSFUL note obtained successfully
E ID invalid task id
E7NUMBER invalid notepad location

DESCRIPTION:

This directive returns the note contained in the notepad location of the task
specified by tid.

NOTES:

This directive will not cause the running task to be preempted.

If tid is set to SELF, the calling task accesses its own notepad.

The sixteen notepad locations can be accessed using the constants
NOTEPAD_0 through NOTEPAD_15.

Getting a note of a global task which does not reside on the local node will
generate a request to the remote node to obtain the notepad entry of the specified task.

32

11. T.SETNOTE - Set task notepad entry

CALLING SEQUENCE:

dir-status t setnote (tid, notepad, note)

INPUT:

obj-id tid; /* task id
unsigned32 notepad; /* notepad location
unsigned32 note; /* new value for note

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL task's note set successfully
EID invalid task id
ENUMBER invalid notepad location

DESCRIPTION:

This directive sets the notepad entry for the task specified by tid to the
value note.

NOTES:

If tid is set to SELF, the calling task accesses its own notepad locations.

This directive will not cause the running task to be preempted.

The sixteen notepad locations can be accessed using the constants
NOTEPAD_0 through NOTEPADI5.

Setting a notepad location of a global task which does not reside on the local
node will generate a request to the remote node to set the specified notepad entry.

33

V. INTERRUPT MANAGER

A. Introduction

Any real-time executive must provide a mechanism for quick response to exter-
nally generated interrupts to satisfy the critical time constraints of the application. The interrupt
manager provides this mechanism for RTEMS. This manager permits quick interrupt response
times by providing the critical ability to alter task execution which allows a task to be preempted
upon exit from an ISR The interrupt manager includes the following directive:

Name Directive Description

i catch Establish an ISR

B. Background

1. Processing an Interrupt

The interrupt manager allows the application to connect a C routine to a
hardware interrupt vector When an interrupt occurs, the processor will automatically vector to
RTEMS. RTEMS saves and restores all registers which are not preserved by the normal C
calling convention for the target processor and invokes the user's ISR The user's ISR is respon-
sible for processing the interrupt, clearing the interrupt if necessary, and device specific manipu-
lation.

The i catch directive connects a procedure to an interrupt vector. The inter-
rupt service routine is assumed to abide by these conventions and have the following C calling
sequence:

void isr (vector)
unsigned32 vector; /* vector number /*

The vector number argument is provided by RTEMS to allow the applica-
tion to identify the interrupt source. This could be used to allow a single routine to service inter-
rupts from multiple instances of the same device. For example, a single routine could service
interrupts from multiple serial ports and use the vector number to identify which port requires
servicing.

To minimize the masking of lower or equal priority level interrupts, the ISR
should perform the minimum actions required to service the interrupt. Other non-essential
actions should be handled by application tasks. Once the user's ISR has completed, it returns
control to the RTEMS interrupt manager which will perform task dispatching and restore the
registers saved before the ISR was invoked.

This guarantees that proper task scheduling and dispatching are performed at
the conclusion of an ISR. A system call made by the ISR may have readied a task of higher
priority than the interrupted task. Therefore, when the ISR completes, the postponed dispatch
processing must be performed. No dispatch processing is performed as part of directives which
have been invoked by an ISR.

Applications must adhere to the following rule if proper task scheduling and
dispatching is to be performed:

34

The interr-up-manager must be used for all JSRs which may
be interrupted by the highest priority ISR which involves an
RTEMS directive.

Consider a processor which allows a numerically low interrupt level to inter-
rupt a numerically greater interrupt level. In this example, if an RTEMS directive is used in a
level 4 ISR, then all ISRs which execute at levels 0 through 4 must use the interrupt manager.

Interrupts are nested whenever an interrupt occurs during the execution of
another ISR. RTEMS supports efficient interrupt nesting by allowing the nested ISRs to termi-
nate without performing any dispatch processing. Only when the outermost ISR terminates will
the postponed dispatching occur.

2. RTEMS Interrupt Levels

Many processors support multiple interrupt levels or priorities. The exact
number of interrupt levels is processor dependent. RTEMS internally supports 256 interrupt
levels which are mapped to the processor's interrupt levels. For specific information on the
mapping between RTEMS and the target processor's interrupt levels, refer to the Interrupt
Processing chapter of the C Applications Supplement document for a specific target processor.

3. Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be
executed. When these sections are encountered, RTEMS disables all maskable interrupts before
the execution of the section and restores them to the previous level upon completion of the
section. RTEMS has been optimized to insure that interrupts are disabled for a minimum length
of timer. The maximum length of time interrupts are disabled by RTEMS is processor dependent
and is detailed in the Timing Specification chapter of the C Applications Supplement docu-
ment for a specific target processor.

Non-Maskable Interrupts (NMI) cannot be disabled, and ISRs which
execute at this level MUST NEVER issue RTEMS system calls. If a directive is invoked,
unpredictable results may occur due to the inability of RTEMS' to protect its critical sections.
However, ISRs that make no system calls may safely execute as non-maskable interrupts.

C. Operations

1. Establishing an ISR

The i catch directive establishes an ISR for the system. The address of the
ISR and its associated CP-U vector number are specified to this directive. This directive installs
the RTEMS interrupt wrapper in the processor's Interrupt Vector Table and the address of the
user's ISR in the RTEMS' Vector Table. This directive returns the previous contents of the
specified vector in the RTEMS' Vector Table.

2. Directives Allowed from an ISR

Using the interrupt manager insures that RTEMS knows when a directive is
being called from an ISR. The ISR may then use system calls to synchronize itself with an
application task. The synchronization may involve messages, events or signals being passed by
the ISR to the desired task. Directives invoked by an ISR must operate only on objects which

35

reside on the local node. The following is a list of RTEMS system calls that may be made from
an ISR:

" Task Management
t.getnote, t-setnote, t suspend, I.resume

" Message Even*, and Signal Management
q_send, qurgent

ev send

as send

" Semaphore Management

sm v

" Time Management
tm_get, tmtick

" Dual-Ported Memory Management
dpext2int, dpint2ext

" Fatal Error Management

k fatal

" Multiprocessing

mpannounce

D. Directives

This section details the interrupt manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

36

I-CATCH - Establish an ISR

CALLING SEQUENCE:

void i catch (israddr, vector, & oldisr)

INPUT:

procjptr israddr; /* ISR entry point */
unsigned32 vector; 1* interrupt vector number */

OUTPUT:

procptr *oldisr; /* previous ISR entry point */

DIRECTIVE STATUS CODES:

SUCCESSFUL ISR established successfully
ENUMBER illegal vector number
EADDRESS illegal ISR entry point

DESCRIPTION:

This directive establishes an Interrupt Service Routine (ISR) for the speci-
fied interrupt vector number. The israddr parameter specifies the entry point of the ISR The
entry point of the previous ISR for the specified vector is returned in oldisr.

NOTES:

This directive will not cause the calling task to be preempted.

37

VI. TIME MANAGER

A. Introduction

The Uime manager piovides support for both clock anJ timer facilities. The
directives provided by the time manager are:

Name Directive Description

tmiset Set system date and time

tnget Get system date and time

tm-wkafter Wake up after interval

tm-wkwhen Wake up when specified

tm evafter Send event set after interval

tm..evwhen Send event set when specified

tm evevery Send periodic event set

tm delete Delete event timer

tm tick Announce a clock tick

B. Background

1. Required Support

For the features provided by the time manager to be utilized, periodic timer
interrupts are required. Therefore, a real-time clock or some kind of hardware timer is necessary
to create the timer interrupts. The tm tick directive is normally called by the timer ISR to
announce to RTEMS that a system clock tick has transpired. Elapsed time is measured in ticks.
A tick is defined to be a integral number of milliseconds which is specified by the user in the
Configuration Table.

2. Time and Date Data Structure

The dock facilities of the time manager operate upon a calendar time. These
directives utilize the following date and time structure:

struct time-info {
unsignedl6 year/* year A.D. ; greater than 1987
unsigned8 month; /month, 1 - 12 */
unsigned8 day; /* day, 1 - 31
unsignedl6 hour; / hour, 0 - 23 */
unsigned8 minute; /* minute, 0- 59
unsigned8 second; P second, 0 - 59
unsigned32 ticks; /* elapsed ticks between seconds /

38

3. Timer Types

The following types of timers are ma;ntained by the time manager:

"* sleep timers

"* event timers

"* timeouts

A sleep timer allows a task to delay fo: a given interval or up until a given
time, ad then wake and continue execution. This type of timer is created automatically by the
tm wkafter and tm wkwhen directives and, as a result, does not have a RTEMS ID. Once
activated, a sleep timer cannot be explicitly deleted. Each task may activate one and only one
sleep timer at a time.

The event timer allows a task to send a event set to itself either after a given
interval or at a given time. This type of timer is created automatically by the tm..evafter,
tm evevery, and tm evwhen directives. All event timers are assigned a unique RTEMS ID
which can be used to delete the timer. A task can have multiple event timers active simulta-
neously. The task must use the ev recelve directive to determine if the events have been posted.

Timeouts are a special type of timer automatically created when the timeout
option is used on the qreceive, en receive, smp and r.getseg directives. Each task may
have one and only one timeout active at a time. When a timeout expires, it unblocks the task
with a timeout status code.

Timers affect only the calling task, either by putting it to sleep or sending it
an event set. For any particular task, multiple event timers can be used in combination with a
single timeout or sleep timer. Under no circumstances, can a task have both a sleep timer and a
timeout active simultaneously.

A Timer Control Block (TMCB) is allocated as part of creating a timer.
The TMCB is used by RTEMS to manage the timer. TMCBs are automatically freed when the
timer expires.

4. Timeslicing

Timeslicing is a task scheduling discipline in which tasks of equal priority
are executed for a specific period of time before control of the CPU is passed to another task. It
is also sometimes referred to as the automatic round-robin scheduling algorithm. The length of
time allocated to each task is known as the quantum or timeslice.

The system's timeslice is defined as a integral number of ticks, and is speci-
fied in the Configuration Table. The timeslice is defined for the entire system of tasks, but
timeslicing is enabled and disabled on a per task basis.

The tmtick directive implements timeslicing by decrementing the running
task's time-remaining counter when both timeslicing and preemption are enabled. If the task's
timeslice has expired, then that task will be preempted if there exists a ready task of equal
priority.

39

C. Operations

1. Announcing a Tick

RTEMS provides the tm tick directive which is called from the user's real-
time clock ISR to inform RTEMS that a tick has elapsed. The tick frequency value, defined in
milliseconds, is a configuration parametLr found in RTEMS's Configuration Table. RTEMS
divides 1000 milliseconds (one second) by the number of milliseconds per tick to determine the
number of calls to the imntick directive per second. The frequency of tmtick calls determines
the resolution (granularity) for all time dependent RTEMS actions. For example, calling
tmitick ten times per second yields a higher resolution than calling tm tick two times per
second. The tn -tick directive is responsible for maintaining both calendar time and the dynamic
set of timers.

2. Setting and Obtaining the Time

The tm set directive allows a task or a ISR to set the date and time main-
tained by RTEMS. Calendar time operations will return a error code if invoked before the date
and time have been set. The tinget directive allows a task or a ISR to obtain the current date
and time.

3. Using a Sleep Timer

The tmnwkafte- directive creates a sleep timer which allows a task to go to
sleep for a specified interval. The task is blocked until the delay interval has elapsed, at which
time the task is unblocked. A task calling the tmiwkafter directive with a delay interval of
YIELD ticks will yield the processor to any other ready task of equal or greater priority and
remain ready to execute.

The tmi wkwhen directive creates a sleep timer which allows a task to go to
sleep until a specified date and time. The calling task is blocked until the specified date and time
has occurred, at which time the task is unblocked.

4. Using an Event Timer

The tin evafter directive creates an event timer which allows a task to be
sent a specified event set after a specified interval. The tmaevwhen directive creates an event
timer which is programmed to expire at a future date and time. The timevevery directive is
similar to the tm evafter directive except that the created timer is rearmed rather than automati-
cally deleted at the end of the interval. This results in a event set being sent at regular intervals
rather than just a single time.

All three directives return a unique timer ID generated by RTEMS to the
calling task.

The calling task is not blocked by either the tm evafter, tm..evevery, or the
tm.evwhen directive and must use the ev receive directive to obtain the event set.

5. Deleting a Timer

The tmn delete directive is used to delete an event timer. The timer's control
block is returned to the TMCB free list when the event timer is deleted. The timers created by
tmievevery are not automatically deleted by RTEMS and must be explicitly deleted by the
application. Other interval and event timers are automatically deleted upon expiration.

40

D. Directives

This section details the time manager's directives. A subsection is dedicated to

each of this manager's directives and describes the calling sequence, related constants, usage,

and status codes.

41

1. TMSET - Set system date and time

CALLING SEQUENCE:

dir-status tmset (&timebuf)

INPUT:

timebuffer *timebuf; /* date/time pointer */

OUTPUT: NONE

DIRECHTVE STATUS CODES:

SUCCESSFUL date and time set successfully
ECLOCK invalid time buffer

DESCRIPTION:

This directive sets the system date and time. The date, time, and ticks in the
timebuf structure are all range-checked, and an error is returned if any one is out of its valid
range.

NOTES:

Years before 1988 are invalid.

The system date and time are based on the configured tick rate (number of
milliseconds in a tick).

Setting the time forward may cause a higher priority task, blocked waiting
on a specific time, to be made ready. In this case, the calling task will be preempted after the
next clock tick.

Reinitializing RTEMS causes the system date and time to be reset to an
uninitialized state. Another call to tmnset is recquired to re-initialize the system date and time to
application specific specifications.

42

2. TM GET - Get system date and time

CALLJNG SEQUENCE:

dir status tmiget (&timebuf)

INPUT: NONE

OUTPUT:

time-buffer *timebuf; /* date/time pointer /

DIRECITVE STATUS CODES:

SUCCESSFUL current time obtained successfully
ENOTDEFINED system late and time is not set

DESCRIPTION:

This directive obtains the system date and time. If the date and time have
not been set with a previous call to tinset, then the ENOTDEFINED status code is returned.

NOTES:

This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re--initial-
izing RTEMS causes the system date and time to be reset to an uninitialized state. Another call
to tin set is required to re-initialize the system date and time to application specific specifica-
tions.

43

3. TM WKAFTER - Wake up after Interval

CALLING SEQUENCE:

dir-status tm wkafter (ticks)

INPUT

interval ticks; /* number of ticks to wait /

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive blocks the calling task for the specified number of system
clock ticks. When the requested interval has elapsed, the task is made ready. The tin_tick direc-
tive automatically updates the delay period.

NOTES:

Setting the system date and time with the tin set directive has no effect on a
tmiwkafter blocked task.

A task may give up the processor and remain in the ready state by specify-
ing a value of YIELD in ticks.

The maximum timer interval that can be specified is the maximum value
which can be represented by the unsigned32 type.

44

4. TM WK WHEN - Wake up when specified

CALLING SEQUENCE:

dir status tm wkwhen (timebuf)

INPUT:

time buffer *timebuf; /* date/time pointer

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL awakened at date/time successfully
ECLOCK invalid time buffer
ENOTDEFINED system date and time is not set

DESCRIPTION:

This directive blocks a task until the date and time specified in timebuf. At
the requested date and time, the calling task will be unblocked and made ready to execute.

NOTES:

The ticks portion of the timebuf structure is ignored. The timing granularity
of this directive is a second.

45

5. TMEVAFTER - Send event set after Interval

CALLING SEQUENCE:

dir status tm evafter (ticks, event, & tmid)

INPUT:

interval ticks; /* ticks until event
event set event; /* event set /*

OUTPUT'..

obj-id *tmid; /* id assigned to timer /*

DIRECTIVE STATUS CODES:

SUCCESSFUL event timer set up successfully
EJTOOMANY too many timers allocated

DESCRIPTION:

This directive sets up a timer directing RTEMS to send the event set, event,
to the calling task after ticks system clock ticks have elapsed. The id for the created timer is
returned in tmkl.

The calling task must call ennreceive to receive these events and will block

until the timer expires. The tin tick directive automatically adjusts the delay period.

NOTES:

This directive will not cause the calling task to be preempted.

Setting the system date and time by way of the tin set directive has no
effect on the countdown of the timer.

The maximum timer interval that can be specified is the maximum value
which can be represented by the unsigned32 type.

46

6. TMEV WHEN - Send event set when specified

CALLING SEQUENCE:

dir status tm.evwhen (timebuf, event, & tmid)

INPUT:

time buffer *timebuf; /* time/date pointer
event set event; /* event set /*

OUTPUT:

obj-id *tmid; /* id assigned to timer */

DIRECTIVE STATUS CODES:

SUCCESSFUL event timer set up successfully
E CLOCK invalid time buffer
E7NOTDEFINED system date and time is not set
ETOOMANY too many timers allocated

DESCRIPTION:

This directive sets up a timer directing RTEMS to send the event set, event,
to the calling task at the date and time specified in timebuf. The id for the created timer is
returned in tmid. The calling task must call the en receive directive to receive these events.

NOTES:

The ticks portion of the tinebuf structure is set to zero. The timing granu-
larity of this directive is a second.

47

7. TM EVEVERY - Send periodic event set

CALLING SEQUENCE:

dir status tm evevery (ticks, event, & tmid)

INPUT:

interval ticks; /* ticks between events /
event set event; /* event set

OUTPUT:

objid *tmid; /* id assigned to timer /

DIRECTIVE STATUS CODES:

SUCCESSFUL event timer set up successfully
ETOOMANY too many timers allocated
ENUMBER interval of zero is invalid

DESCRIPTION:

This directive sets up an interval timer directing RTEMS to send the event
set, event, to the calling task after every occurrence of ticks system clock ticks. The id for the
created timer is returned in tmid.

The calling task must call ev receive to receive these events and will block
until the timer expires. The tmntick directive is used to determine the period between each
sending of the event set.

NOTES:

The directive tm.delete must be used to stop the timer from sending the
event set.

This directive will not cause the calling task to be preempted.

Setting the system date and time by way of the tmnset directive has no
effect on the created timer.

The maximum timer interval that can be specified is the maximum value
which can be represented by the unsigned32 type.

48

8. TM DELETE - Delete event timer

CALLING SEQUENCE:

dir-status tm delete (tmid)

INPUT:

objid tmid; /* timer id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL event timer deleted successfully
E ID invalid timer id

DESCRIPTION:

This directive deletes the event timer specified by tmid. This event timer
was scheduled by the tm evafter, the tm evwhen, or the tm evevery directives.

NOTES:

This directive will not cause the calling task to be preempted.

49

9. TM TICK - Announce a clock tick

CALLING SEQUENCE:

dir status tm tick ()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive announces to RTEMS that a system clock tick has occurred.
The directive is usually called from the timer interrupt ISR of the local processor. This directive
maintains the system date and time, decrements timers for delayed tasks, timeouts, event timers,
rate monotonic timers, and implements timeslicing.

NOTES:

This directive is typically called from an ISR.

The zns tick and tslice parameters in the Configuration Table contain the
number of milliseconds per tick and number of ticks per timeslice, respectively.

50

VII. SEMAPHORE MANAGER

A. Introduction

The semaphore manager utilizes standard Dijkstra counting semaphores to
provide synchronization and mutual exclusion capabilities. The directives provided by the sema-
phore manager are:

Name Directive Description

sm create Create a semaphore

sm ident Get ID of a semaphore

sm delete Delete a semaphore

sm.p Acquire a semaphore

sm-v Release a semaphore

B. Background

A semaphore can be viewed as a protected variable whose value can be modified
only with the sm create, smp, and sm-v directives. RTEMS supports both binary and
counting semaphores. A binary semaphore is restricted to values of zero or one, while a
counting semaphore can assume any non-negative integer value.

A binary semaphore can be used to control access to a single resource. In partic-
ular, it can be used to enforce mutual exclusion for a critical section in user code. In this
instance, the semaphore would be created with an initial count of one to indicate that no task is
executing the critical section of code. Upon entry to the critical section, a task must issue the
smp directive to prevent other tasks from entering the critical section. Upon exit from the crit-
ical section, the task must issue the smv directive to allow another task to execute the critical
section.

A counting semaphore can he used to control access to a pool of two or more
resources. For example, access to three printers could be administered by a semaphore created
with an initial count of three. When a task requires access to one of the printers, it issues the
smp directive to obtain access to a printer. If a printer is not currently available, the task can
wait for a printer to become available or return immediately. When the task has completed
printing, it should issue the sm-v directive to allow other tasks access to the printer.

Task synchronization may be achieved by creating a semaphore with an initial
count of zero. One task waits for the arrival of another task by issuing a sm.p directive when it
reaches a synchronization point. The other task performs a corresponding sm-v operation when
it reaches its synchronization point, thus unblocking the pending task.

1. Building an Attribute Set

In general, an attribute set is buiit by a bitwise OR of the desired attributes.
The set of valid attributes is provided in the description of the sm create and sm.p directives.
An attribute listed as a default is not required to appear in the attribute OR list, although it is a
good programming practice to specify default attributes. If all defaults are desired, the attribute
DEFAULTS should be specified on this call.

51

This example demonstrates the attr parameter needed to create a local
semaphore with a task priority waiting queue discipline. The attr parameter could be
PRIORITY or LOCAL I PRIORITY. The attr parameter can be set to PRIORITY because
LOCAL is the default for all created tasks. If a similar semaphore were to be known globally,
then the attr parameter would be GLOBAL I PRIORITY.

C. Operations

1. Creating a Semaphore

The sm create directive creates a semaphore with a user--specified name as
well as an initial count. At create time the method for placing waiting tasks in the semaphore's
task wait queue (FIFO or task priority) is specified. RTEMS allocates a Semaphore Control
Block (SMCB) from the SMCB free list. This data structure is used by RTEMS to manage the
newly created semaphore. Also, a unique semaphore ID is generated and returned to the calling
task.

2. Obtaining Semaphore IDs

When a semaphore is created, RTEMS generates a unique semaphore ID
and assigns it to the created semaphore until it is deleted. The semaphore ID may be obtained by
either of two methods. First, as the result of an invocation of the sm .create directive, the sema-
phore ID is stored in a user provided location. Second, the semaphore ID may be obtained later
using the smjindent directive. The semaphore ID is used by other semaphore manager direc-
tives to access this semaphore.

3. Acquiring a Semaphore

The sm.p directive is used to acquire the specified semaphore. A simplified
version of the smp directive can be described as follows:

if semaphore's count is greater than zero
then decrement semaphore's count
else wait for release of semaphore

return SUCCESSFUL

When the semaphore cannot be immediately acquired, one of the following
situations applies:

"* By default, the calling task will K4ait forever to acquire the semaphore.

"* Specifying NOWAIT forces an immediate return with an error status
code.

" Specifying a timeout limits the interval task will wait before returning
with an error status code.

If the task waits to acquire the semaphore, then it is placed in the sema-
phore's task wait queue in either FIFO or task priority order. All tasks waiting on a semaphore
are returned an error code when the message queue is deleted.

52

4. Releasing a Semaphore

The sm.v directive is used to release the specified semaphore. A simplified
version of the smnv directive can be described as follows:

if no tasks are waiting on this semaphore
then increment semaphore's count
else assign semaphore to a waiting task

return SUCCESSFUL

5. Semaphore Deletion

The smidelete directive removes a semaphore from the system and frees its
control block. A semaphore can be dcleted by any task that knows the semaphore's ID. As a
result of this directive, all tasks blocked waiting to acquire the semaphore will be readied and
returned a status code which indicates that the semaphore was deleted. Any subsequent refer-
ences to the semaphore's name and ID are invalid.

D. Directives

This section details the semaphore manager's directives. A subsection is dedi-
cated to each of this manager's directives and describes the calling sequence, related constants,
usage, and status codes.

53

1. SM CREATE - Create a semaphore

CALLING SEQUENCE:

dir.status smicreate (name, count, attr, & smid)

INPUT:

obj_name name; /* user-defined name */
unsigned32 count; /* initial count */
unsigned32 attr; /* attributes */

OUTPUT:

obj-id *smid; /* smid assigned /*

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore created successfully
ETOOMANY too many semaphores created
ENOMP multiprocessing not configured
ETOOMANY too many global objects

DESCRIPTION:

This directive creates a semaphore which resides on the local node. The
created semaphore has the user-defined name specified in name and the initial count specified
in count. For control and maintenance of the semaphore, RTEMS ailocates and initializes a
SMCB. The RTEMS-assigned semaphore id is returned in smid. This semaphore id is used with
other semaphore related directives to access the semaphore.

Specifying PRIORITY in attr causes tasks waiting for a semaphore to be
serviced according to task priority. When FIFO is selected, tasks are serviced in First In-First
Out order.

NOTES:

This directive will not cause the calling task to be preempted.

The following semaphore attribute constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

FIFO tasks wait by FIFO *

PRIORITY tasks wait by
priority

NOLIMIT unlimited queue size

LIMIT limit queue size to
count

LOCAL local semaphore

GLOBAL global semaphore

54

Semaphores should not be made global unless remote tasks must interact
with the created semaphore. This is to avoid the system overhead incurred by the creation of a
global semaphore. When a global semaphore is created, the semaphore's name and id must be
transmitted to every node in the system for insertion in the local copy of the global object table.

The total number of global objects, including semaphores, is limited by the
num.gobjects field in the Configuration Table.

55

2. SMIDENT - Get ID of a semaphore

CALLING SEQUENCE:

dir status sm ident (name, node, & smid)

INPUT:

obj_name name; /* user-defined name */
unsigned.32 node; /* node(s) to search

OUTPUT:

obj-id *smid; /* semaphore id

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore identified successfully
E NAME semaphore name not found
ENODE invalid node id

DESCRIPTION:

This directive obtains the semaphore associated with the semaphore name.
If the semaphore name is not unique, then the semaphore id will match one of the semaphores
with that name. However, this semaphore id is not guaranteed to correspond to the desired sema-
phore. The semaphore id is used by other semaphore related directives to access the semaphore.

NOTES:

This directive will not cause the running task to be preeL-Ipted.

If node is ALL-NODES, all nodes are searched with the 'ocal node being
searched first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then
only the semaphores exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only
the local copy of the global object table.

56

3. SM DELETE - Delete a semaphore

CALLING SEQUENCE:

dirstatus sm delete (smid)

INPUT:

objid smid; /* semaphore id *

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore deleted successfully
EID invalid semaphore id
EREMOTE cannot delete remote semaphore

DESCRIPTION:

This directive deletes the semaphore specified by smid. Any tasks that are
waiting on this semaphore are unblocked with a status code for a deleted semaphore. The SMCB
for this semaphore is reclaimed by RTEMS.

NOTES:

The calling task will be preempted if it enabled by the task's execution mode
and a higher priority local task is waiting on the deleted semaphore. The calling task will NOT
be preempted if all of the tasks that are waiting on the semaphore are remote tasks.

The calling task does not have to be the task that created the semaphore.
Any local task that knows the semaphore id can delete the semaphore.

When a global semaphore is deleted, the semaphore id must be transmitted
to every node in the system for deletion from the local copy of the global object table.

The semaphore must reside on the local node, even if the semaphore was
created with the GLOBAL option.

Proxies, used to represent remote tasks, are reclaimed when the semaphore
is deleted.

57

4. SMP -Acquire a semaphore

CALLING SEQUENCE:

dir status smp (smid, options, timeout)

INPUT:

obj id smid; /* semaphore id "/
unsigned32 options; /* option set
interval timeout; /* wait interval

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCES" ?iJL semaphore obtained successfully
EUNSATISFIED semaphore not availqble
E TIMEOUT timed cut waiting for semaphore
E DELETE semaphore deleted while waiting
EID invalid semaphore id

DESCRIPTION:

This directive acquires the semaphore specified by smid. The WAIT and
NOWAIT options of the c.)tions parameter are used to specify whether the calling task wants to
wait for the semaphore to become available or return immediately. For either option, if the
current semaphore count is positive, then it is decremented by one and the semaphore is success-
fully acquired by returning immediately with a successful return code.

If the calling task chooses to return immediately and the current semaphore
count is zero or negative, then a status code indicating that the semaphore is vot available is
returned. If the calling task chooses to wait for a semaphore and the current st maphore count is
zero or negative, then it is decremented by one and the calling task is placed o 1 the semaphore's
wait queue and blocked. If the semaphore was created with the PRIORMY coption, then the
calling task is inserted into the queue according to its priority. IU-,,,ver, 'i the semaphore was
created with the FIFO option, then the calling task is placed at the rear o1 the wait queue.

The timeout parameter specifies the maximum interval th- calling task is
willing to be blocked waiting for the semaphore. If it is set to NOTIMEOUT, then the calling
task will wait forever.

NOTES:

The following semaphore acquisition option constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAUT

WAIT wait for semaphore T

NOWAIT do -OT wait for semuaphore

Attempting to obtain a global semaphore which does not reside on the local
node will generate a request to the remote node to access the semaphore. If the semaphore is not

58

available and NOWAIT was not specified, then the task must be blocked until the semaphore is
released. A proxy is allocated on the remote node to represent the task until the semaphore is
released.

59

5. SMV - Release a semaphore

CALLING SEQUENCE:

dir status smy (smid)

INPUT:

objid smid; /* semaphore id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL semaphore released successfully
EJID invalid semaphore id

DESCRIPTION:

This directive releases the semaphore specified by staid. The semaphore
count is incremented by one. If the count is zero or negative, then the first task on this sema-
phore's wait queue is removed and unblocked. The unblocked task may preempt the running task
if the running task's preemption mode is enabled and the unblocked task has a higher priority
than the ring task.

NOTES:

The calling task may be preempted if it causes a higher priority task to be
made ready for execution.

Releasing a global semaphore which does not reside on the local node will
generate a request telling the remote node to release the semaphore.

If the task to be unblocked resides on a different node from the semaphore,
then the semaphore allocation is forwarded to the appropriate node, the waiting task is
unblocked, and the proxy used to represent the task is reclaimed.

60

VII. MESSAGE MANAGER

A. Introduction

The message manager provides communication and synchronization capabilities
using RTEMS message queues. The directives provided by the message manager are:

Name Directive Description

q_create Create a queue

q_ident Get ID of a queue

q_delete Delete a queue

q_send Put message at rear of a queue

q_urgent Put message at front of a queue

q_broadcast Broadcast N messages to a queue

q_receive Receive message from a queue

q_flush Flush all messages on a queue

B. Background

1. Messages

A message is a fixed length buffer where information can be stored to
support communication. A message has a length of sixteen bytes. The information stored in a
message is user-defined and can be actual data, pointer(s), or empty.

2. Message Queues

A message queue permits the passing of messages among tasks and ISRs.
Message queues can contain a variable number of messages. Normally messages are sent to and
received from the queue in FIFO order using the qsend directive. However, the q_urgent
directive can be used to place messages at the head of a queue in LIFO order.

Synchronization can be realized because a task can wait for a message to
arrive at a queue. Also, a task may poll a queue for the arrival of a message.

3. Building an Atti butE Set

In general, a attribute set is built by a bitwise OR of the desired attributes.
The set of valid attributes is provided in the description of the qcreate and qreceive direc-
tives. An attribute listed as a default is not required to appear in the attribute OR list, although it
is a good programming practice to specify default attributes. If all defaults are desired, the
attribute DEFAULTS should be specified on this call.

This example demonstrates the attr parameter needed to create a local
message queue with a task priority waiting queue discipline. The attr parameter could be
PRIORITY or LOCAL j PRIORITY. The attr parameter can be set to PRIORITY because
LOCAL is the default for all created message queues. If a similar message queue were to be
known globally, then the attr parameter would be GLOBAL I PRIORITY.

61

C. Operations

1. Creating a Message Queue

The qcreate directive creates a message queue with the user-defined name.
Optionally, a limit can be placed on the number of messages allowed to be in the message queue
at one time. The user may select FIFO or task priority as the method for placing waiting tasks in
the task wait queue. RTEMS allocates a Queue Control Block (QCB) from the QCB free list to
maintain the newly created queue. RTEMS also generates a message queue ID which is returned
to the calling task.

2. Obtaining Message Queue IDs

When a message queue is created, RTEMS generates a unique message
queue ID. The message queue ID may be obtained by either of two methods. First, as the result
of an invocation of the qcreate directive, the queue ID is stored in a user provided location.
Second, the queue ID may be obtained later using the q_ident directive. The queue ID is used
by other message manager directives to access this message queue.

3. Receiving a Message

The qreceive directive attempts to retrieve a message from the specified
message queue. If at least one message is in the queue, then the message is removed from the
queue, copied to the caller's message buffer, and returned immediately. When messages are
unavailable, one of the following situations applies:

• By default, the calling task will wait forever for the message to arrive.

• Specifying the NOWAIT option forces an immediate return with an
error status code.

Specifying a timeout limits the period the task will wait before return-
ing with an error status.

If the task waits for a message, then it is placed in the message queue's task wait queue in either
FIFO or task priority order. All tasks waiting on a message queue are returned an error code
when the message queue is deleted.

4. Sending a Message

Messages can be sent to a queue with the qsend and qurgent directives.
These directives work identically when tasks are waiting to receive a message. A task is removed
from the task waiting queue, unblocked, and the message is copied to a waiting task's message
buffer.

When no tasks are waiting at the queue, q.send places the message at the
rear of the message queue, while q.urgent places the message at the front of the queue. The
message is copied to a RTEMS message buffer and then placed in the message queue. Neither
directive can successfully send a message to a full queue.

5. Broadcasting a Message

The qbroadcast directive sends the same message to every task waiting on
the specified message queue as an atomic operation. The message is copied to each waiting

62

task's message buffer and each task is unblocked. The number of tasks which were unblocked is

returned to the caller.

6. Message Queue Deletion

The qdelete directive removes a message queue from the system and frees
its control block. A message queue can be deleted by any task that knows the message queue's
ID. As a result of this directive, all tasks blocked waiting to receive a message from the message
queue will be readied and returned a status code which indicates that the message queue was
deleted. Any subsequent references to the message queue's name and ID are invalid. Any
messages waiting zt the message queue are also deleted and deallocated.

D. Directives

This section details the message manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

63

1. QCREATE - Create a queue

CALLING SEQUENCE:

dir status q_create (name, count, attr, & qid)

INPUTr:

obj_.name name; /* user-defined name /
unsigned32 count; /* max message count */
unsigned32 attr; / * queue attributes
objid *qid; /* queue id

DIRECTIVE STATUS CODES:

SUCCESSFUL queue created successfully
ETOOMANY too many queues created
EUNSATISFIED out of message buffers
E NOMP multiprocessing not configured
ETOOMANY too many global objects

DESCRIPTION:

This directive creates a message queue which resides on the local node with
the user-defined name specified in name. For control and maintenance of the queue, RTEMS
allocates and initializes a QCB. The RTEMS-assigned queue id, returned in qid, is used to
access the message queue.

Specifying PRIORITY in attr causes tasks waiting for a message to be
serviced according to task priority. When FIFO is specified, waiting tasks are serviced in First
In-First Out order.

If LIMIT is specified in attr, then a limit is fixed on the maximum number
of message buffers that can be contained in the queue. Buffers are dynamically allocated from
the system message buffer pool as needed. The count parameter is disregarded if NOLIMIT is
specified.

NOTES:

This directive will not cause the calling task to be preempted.

If the LINIT option is selected and count has a value of zero, then the
q_send and q-urgent directives will fail unless one or more tasks are already waiting on the
queue.

64

The following message queue attribute constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

FIFO tasks wait by FIFO

PRIORITY tasks wait by priority _

NOLIMIT unlimited queue size

UNIT limit queue size to count

LOCAL local message queue

GLOBAL global message queue

Message queues should not be made global unless remote tasks must interact
with the created message queue. This is to avoid the system overhead incurred by the creation of
a global message queue. When a global message queue is created, the message queue's name and
id must be transmitted to every node in the system for insertion in the local copy of the global
object table.

The total number of global objects, including message queues, is limited by
the num.gobjects field in the configuration table.

65

2. QIDENT - Get ID of a queue

CALLING SEQUENCE:

dir.status q_ident (name, node, & qid)

INPUT:

objname name; /* user-defined name */
unsigned32 node; /* node(s) to search

OUTPUT:

obj-id *qid; /* queue id

DIRECTIVE STATUS CODES:

SUCCESSFUL queue identified successfully
ENAME queue name not found
ENODE invalid node id

DESCRIPIEON:

This directive obtains the que<ue id associated with the queue name specifit.,
in name. If the queue name is not unique, then the queue id will match one of the queues with
that name. However, this queue id is not guaranteed to correspond to the desired queue. The
queue id is used with other message related directives to access the message queue.

NOTES:

This directive will not cause the running task to be preempted.

If node is ALL-NODES, all nodes are searched with the local node being
searched first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then
only the message queues exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only
the local copy of the global object table.

66

3. QDELETE - Delete a queue

CALLING SEQUENCE:

dir status q_delete (qid)

INPUT:

objid qid; /* queue id *1

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL queue deleted successfully
E_ID invalid queue id
E_REMOTE cannot delete remote queue

DESCRIPTION

This directive deletes the message queue specified by qid. Any tasks that are
waiting on this queue are unblocked with an error code for a deleted queue. If no tasks are
waiting, but the queue contains messages, then RTEMS returns these message buffers back to
the system message buffer pool. The QCB for this queue is reclaimed by RTEMS.

NOTES:

The calling task will be preempted if its preemption mode is enabled and
one or more local tasks with a higher priority than the calling task are waiting on the deleted
queue. The calling task will NOT be preempted if the tasks that are waiting are remote tasks.

The calling task does not have to be the task that created the queue, although
the task and queue must reside on the same node.

When the queue is deleted, any messages in the queue are returned to the
free message buffer pool. Any information stored in those messages is lost.

When a global message queue is deleted, the message queue id must be
transmitted to every node in the system for deletion from the local copy of the global object
table.

Proxies, used to represent remote tasks, are reclaimed when the message
queue is deleted.

67

4. QSEND - Put message at rear of a queue

CALLING SEQUENCE:

dir-status qsend (qid, buffer)

INPUT

objid qid; /* gueue id */
long (*buffer)[4]; /* message buffer pointer */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL message sent successfully
EID invalid queue id
EUNSATISFIED out of message buffers
ETOOMANY queue's limit has been reached

DESCRIPTION:

This directive sends the message contained in buffer to the queue specified
by qid. If a task is waiting at the queue, then the message is copied to the waiting task's buffer
and the task is unblocked. If no tasks are waiting at the queue, then the message is copied to a
message buffer which is obtained from RTEMS' message buffer pool. The message buffer is
then placed at the rear of the queue.

NOTES:

The calling task will be preempted if it has preemption enabled and a higher
priority task is unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the
local node will generate a request to the remote node to post the message on the specified
message queue.

If the task to be unblocked resides on a different node from the message
queue, then the message is forwarded to the appropriate node, the waiting task is unblocked, and
the proxy used to represent the task is reclaimed.

68

5. QURGENT - Put message at front of a queue

CALLING SEQUENCE:

dir-status qurgent (qid, buffer)

INPUT:

objid qid; /* queue id
long (*buffer)[4); /* message buffer pointer */

OUTPUT': NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL message sent successfully
E.ID invalid queue id
EUNSATISFIED out of message buffers
ETOOMANY queue's limit has been reached

DESCRIPTION:

This directive sends the message contained in buffer to the queue specified
by qid. If a task is waiting on the queue, then the message is copied to the task's buffer and the
task is unblocked. If no tasks are waiting on the queue, then the message is copied to a message
buffer which is obtained from RTEMS' message buffer pool. The message buffer is then placed
at the front of the queue.

NOTES:

The calling task will be preempted if it has preemption enabled and a higher
priority task is unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the
local node will generate a request telling the remote node to post the message on the specified
message queue.

If the task to be unblocked resides on a different node from the message
queue, then the message is forwarded to the appropriate node, the waiting task is unblocked, and
the proxy used to represent the task is reclaimed.

69

6. QBROADCAST - Broadcast N messages to a queue

CALLING SEQUENCE:

dir status q_broadcast (qid, buffer, &count)

INPUT:

obj-id qid; /* queue id */
long (*buffer)[4]; /* message buffer pointer */

OUTPU:.

unsigned32 *count; /* tasks made ready

DIRECTIVE STATUS CODES:

SUCCESSFUL message broadcasted successfully
EJID invalid queue id

DESCRIPTION:

This directive causes all tasks that are waiting at the queue specified by qid
to be unblocked with the message contained in buffer. Before a task is unblocked, the message
in buffer is copied to that task's message buffer. The number of tasks that were unblocked is
returned in count.

NOTES:

The calling task will be preempted if it has preemption enabled and a higher
priority task is unblocked as the result of thii directive.

The cost of this directive is directly related to the number of tasks waiting
on the message queue, although it is more efficient than the equivalent number of invocations of
q_send.

Broadcasting a message to a global message queue which does not reside on
the local node will generate a request telling the remote node to post the message on the speci-
fied message queue.

When a task is unblocked which resides on a different node from the
message queue, a copy of the message is forwarded to the appropriate node, the waiting task is
unblocked, and the proxy used to represent the task is reclaimed.

70

7. QRECEIVE - Receive message from a queue

CALLING SEQUENCE:

dir status qjeceive (qid, buffer, options, timeout)

INPUT:

obj id qid; /* queue id *1
long (*buffer)[4]; /* message buffer pointer */
unsigned32 options; /* receive options *
interval timeout; /* wait interval

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL message received successfully
E ID invalid queue id
EJUNSATISFIED queue is empty
ETIMEOUT timed out waiting for message
EDELETE queue deleted while waiting

DESCRIPTION:

This directive receives a message from the message queue specified in qid.
The WAIT and NOWAIT options of the options parameter allow the calling task to specify
whether to wait for a message to become available or return immediately. For either option, if
there is at least one message in the queue, then it is copied to buffer and this directive returns
immediately with a successful return code.

If the calling task chooses to return immediately and the queue is empty,
then a status code indicating this condition is returned. If the calling task chooses to wait at the
message queue and the queue is empty, then the calling task is placed on the message wait queue
and blocked. If the queue was created with the PRIORITY option specified, then the calling
task is inserted into the wait queue according to its priority. But, if the queue was created with
the FIFO option specified, then the calling task is placed at the rear of the wait queue.

A task choosing to wait at the queue can optionally specify a timeout value
in the timeout parameter. The timeout parameter specifies the minimum interval to wait before
the calling task desires to be unblocked. If it is set to NOTIMEOUT, then the calling task will
wait forever.

71

NOTES:

The following message receive option constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

WAJT wait for message *

NOWAIT do NOT wait for message

Receiving a message from a global message queue which does not reside on
the local node will generate a request to the remote node to obtain a message from the specified
message queue. If no message is available and WAIT was specified, then the task must be
blocked until a message is posted. A proxy is allocated on the remote node to represent the task
until the message is posted.

72

8. QFLUSH - Flush all messages on a queue

CALLING SEQUENCE:

dir-status q_flush (qid, & count)

INPUT:

obj-id qid; /* queue id

OUTPUT:

unsigned32 *count; /* messages flushed */

DIRECTIVE STATUS CODES:

SUCCESSFUL message received successfuy
E11D invalid queue id

DESCRIPTION:

This directive removes all pending messages from the specified queue qid.
The number of messages removed is returned in count. If no messages are present on the queue,
count is set to zero.

NOTES:

Rushing all messages on a global message queue which does not reside on
the local node will generate a request to the remote node to actually flush the specified message
queue.

73

IX. EVENT MANAGER

A. Introduction

The event manager provides a high performance method of intertask commu-
nication and synchronization. The directives provided by the event manager are:

Name Directive Description

ev send Send event set to a task

ev receive Receive event condition

B. Background

1. Event Sets

An event flag is used by a task (or ISR) to inform another task of the occur-
rence of a significant situation. Thirty-two event flags are associated with each task. A collec-
tion of one or more event flags is referred to as a event set. The application developer should
remember the following key characteristics of event operations when utilizing the event man-
ager:

"* Events provide a simple synchronizatfin facility.

"* Events are aimed at tasks.

* Tasks can wait on more than one event simultaneously.

* Events are independent of one another.

* Events do not hold or transport data.

* Events are not queued In other words, if an event is sent more than
once before being received, the second and subsequent send operations
have no effect.

An event set is posted when it is directed (or sent) to a task. A pending
event is an event that has been posted but not received. An event condition is used to specify the
events which the task desires to receive id the algorithm which will be used to determine when
the request is satisfied. An event condition is satisfied based upon one of two algorithms which
are selected by the user. The ANY algorithm states that an event condition is satisfied when at
least a single requested event is posted. The ALL algorithm states that an event condition is
satisfied when every requested event is posted.

2. Building an Event Set or Condition

An event set or condition is built by a bitwise OR of the desired events. The
set of valid events is EVENT 0 through EVENT_31. If an event is not explicitly specified in
the set or condition, then it is not present.

For example, when sending the event set consisting of EVENT 6,
EVENT 15, and EVENT 31, the event parameter to the ev send directive should be
EVENT_61 EVENT_15] EVENT_31.

74

3. Building a Flag

In general, R flag is built by a bitwise OR of the desired options. The set of
valid options is provided in the description of the ev receive directive. An option listed as a
default is not required to appear in the option OR list, although it is a good program practice to
specify default options. If all defaults are desired, the option DEFAULTS should be specified on
this call.

This example demonstrates the flag parameter needed to poll for all events
in a particular event condition to arrive. The flag parameter should be ALL I NOWAIT or
NQVW4T T1"h flag parameter can be set to NOWAIT because ALL is the default condition
for ev receive.

C. Operations

1. Sending an Event Set

The ev send directive allows a task (or an ISR) to direct an event set to a
target task. Based upon the state of the target task, one of the following situations applies:

"* Target Task is Blocked Waiting for Events
- If the waiting task's input event condition is satisfied, then

the task is made ready for execution.

- If the waiting task's input event condition is not satisfied,
then the event set is posted but left pending and the task
remains blocked.

" Target Task is Not Waiting for Events
- The event set is posted and left pending.

2. Receiving an Event Set

The evyreceive directive is used by tasks to accept a specific input event
condition. The task also specifies whether the request is satisfied when all requested events are
available or any single requested event is available. If the requested event condition is satisfied
by pending events, then a successful return code and the satisfying event set are returned
immediately. If the condition is not satisfied, then one of the following situations applies:

" By default, the calling task will wait forever for the event condition to

be satisfied

" Specifying the NOWAIT option forces an immediate return with an
errors status code.

" Specifying a timeout limits the period the task will wait before
returning with an error status code.

3. Determining the Pending Event Set

A task can determine the pending event set by calling the ev receive direc-
tive with a value of CURRENT for the input event condition. The pending events are returned
to the calling task but the event set is left unaltered.

75

D. Directives

This section details the event manager's directives. A subsection is dedicated to
each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

76

1. EVSEND - Send event set to a task

CALLING SEQUENCE:

dir-status ev send (tid, event)

INPUT:

obj-id tid; /* task id */
eventset event; /* event set to send

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL event set sent successfully
E.ID invalid task id

DESCRIPTION:

This directive sends an event set, event, to the task specified by tid. If a
blocked task's input event condition is satisfied by this directive, then it will be made ready. If its
input event condition is not satisfied, then the events satisfied are updated and the events not
satisfied are left pending. If the task specified by tid is not blocked waiting for events, then the
events sent are left pending.

NOTES:

Specifying SELF for tid results in the event set being sent to the calling
tabk.

Identical events sent to a task are not queued. In other words, the second,
and subsequent, posting of an event to a task before it can perform an ev receive has no effect.

The calling task will be prc.opted if it has preemption enabled and a higher
priority task is unblocked as the result of this directive.

Sending an event set to a global task which does not reside on the local node
will generate a request telling the remote node to send the event set to the appropriate task.

77

2. EV RECEIVE - Receive event condition

CALLING SEQUENCE:

dir-status ev receive (eventin, options, timeout, & eventout)

INPUT:

eventset eventin; /* input event condition */
unsigned32 options; /* receive options */
interval timeout; /* wait interval

OUTPUT:

event-set *eventout; /* output event set

DIRECTIVE STATUS CODES:

SUCCESSFUL event received successfully
EUNSATISFIED input event not satisfied (NOWAIT)
ETIMEOUT timed out waiting for event

DESCRIPTION:

This directive attempts to receive the event condition specified in eventin. If
eventin is set to CURRENT, then the current pending events are returned in eventout and left
pending. The WAIT and NOWAIT options in the options parameter are used to specify whether
or not the task is willing to wait for the event condition to be satisfied. EV ANY and EVALL
are used in the options parameter are used to specify whether a single event or the complete
event set is necessary to satisfy the event condition. The eventout parameter is returned to the
calling task with the value that corresponds to the events in eventin that were satisfied.

If pending events satisfy the event condition, then eventout is set to the
satisfied events and the pending events in the event condition are cleared. If the event condition
is not satisfied and NOWAIT is specified, then eventout is set to the currently satisfied events.
If the calling task chooses to wait, then it will block waiting for the event condition.

If the calling task must wait for the event condition to be satisfied, then the
timeout parameter is used to specify the maximum interval to wait. If it is set to NOTIMEOUT,
then the calling task will wait forever.

NOTES:

This directive only affects the events specified in eventin. Any pending
events that do not correspond to any of the events specified in eventin will be left pending.

78

The following event receive option constants are defined by RTEMS;

CONSTANT DESCRIPTION DEFAULT

WAIT task will wait for event *

NOWAIT task should not wait

EVALL return after all events

EVANY return after any events

79

X. SIGNAL MANAGER

A. Introduction

The signal manager provides the capabilities required for asynchronous commu-
nication. The directives provided by the signal manager are:

Name Directive Description

as catch Establish an ASR

as send Send signal set to a task

B. Background

1. Definitions

The signal manager allows a task to optionally define an Asynchronous
Signal Routine (ASR). An ASR is to a task what an ISR is to an application's set of tasks.
When the processor is interrupted, the execution of an application is asso interrupted and an ISR
is given control. Similarly, when a signal is sent to a task, that task's execution path will be
"interrupted" by the ASR. Sending a signal to a task has no effect on the receiving task's current
execution state.

A signal flag is used by a task (or ISR) to inform another task of the occur-
rence of a significant situation. Thirty-two signal flags are associated with each task. A collec-
tion of one or more signals is referred to as a signal set. A signal set is posted when it is directed
(or sent) to a task. A pending signal is a signal that has been sent to a task with a valid ASR, but
has not been processed by that task's ASR.

2. A Comparison of ASRs and ISRs

The format of an ASR is similar to that of an ISR with the following
exceptions:

" ISRs are s-' eduled by the processor hardware. ASRs are scheduled by
RTEMS

" ISRs do not execute in the context of a task and may invoke only a
subset of directives. ASRs execute in the context of a task and may
execute any directive.

"* When an ISR is invoked, it is passed the vector number as its argument.
When an ASR is invoke4 it is passed the set as its argument.

" An ASR has a task mode which can be different from that of the task.
An ISR does not execute as a task and, as a result, does not have a task
mode.

3. Building a Signal Set

A signal set is built by a bitwise OR of the desired signals. The set of valid
signals is SIGNALO0 through SIGNAL)31. If a signal is not explicitly specified in the set or
condition, then it is not present.

80

This example demonstrates the signal parameter used when sending the
sigi'a! s,- •J.iistng or SIGNAL 6, SIGNAL 15, and SIGNAL 31. The signal parameter
provided to the as-send directive should be SIGNAL 6 1 SIGNAL 15 I SIGNAL_31.

4. Building an ASR's Mode

In general, an ASR's mode is built by a bitwise OR of the desired options.
The set of valid mode options is the same as those allowed with the t create and tmode direc-
tives. A complete list of mode options is provided in the description of the as-catch directive.
An option listed as a default is not required to appear in the option OR list, although it is a good
programming practice to specify default options. If all defaults are desired, the option
DEFAIL[S shouia be specified on this call.

This example demonstrates the mode parameter used with the as-catch to
establish an ASR which executes at interrupt level three and is nonpreemptible. The mode
should be set to INTR(3) I NOPREEMPT to indicate the desired processor mode and interrupt
level.

C. Operations

1. Establishing an ASR

The as-catch directive establishes an ASR for the calling task. The address
of the ASR and its execution mode are specified to this directive. The ASR's mode is distinct
from the task's mode. For example, the task may allow preemption, while that task's ASR may
have preemption disabled. Until a task calls as catch the first time, its ASR is invalid, and no
signal sets can be sent to the task.

A task may invalidate its ASR and discard all pending signals by calling
ascatch with a value of NULL ASR for the ASR's address. When a task's ASR is invalid,
new signal sets sent to this task are discarded.

A task may disable ASR processing (NOASR) via the tmode directive.
When a task's ASR is disabled, the signals sent to it are left pending to be processed later when
the ASK is enabled.

Any directive that can be called from a task can also be called from an ASR.
A task is only allowed one active ASR. Thus, each call to as-catch replaces the previous one.

Normally, signal processing is disabled for the ASR's execution mode, but if
signal processing is enabled for the ASR the ASR must be reentrant.

2. Sending a Signal Set

The as-send directive allows both tasks and ISRs to send signals to a target
task. The target task and a set of signals are specified to the as-send directive. The sending of a
signal to a task has no effect on the execution state of that task. If the task is not the currently
running task, then the signals are left pending and processed by the task's ASR the next time the
task is dispatched to run. The ASR is executed immediately before the task is dispatched. If the
currently running task sends a signal to itself or is sent a signal from an ISR, its ASR is immedi-
ately dispatched to run provided signal processing is enabled.

If an ASR with signals enabled is preempted by another task or an ISR and a
new signal set is sent, then a new copy of the ASR will be invoked, nesting the preempted ASR.

81

Upon completion of processing the new signal set, control will return to the preempted ASR. In
this situation, the ASR must be reentrant.

Like events, identical signals sent to a task are not queued. In other words,
sending the same signal multiple times to a task (without any intermediate signal processing
occurring for the task), has the same result as sending that signal to that task once.

3. Processing an ASR

Asynchronous signals were designed to provide the capability to generate
software interrupts. The processing of software interrupts parallels that of hardware interrupts.
As a result, the differences between the formats of ASRs and ISRs is limited to the meaning of
the single argument passed to an ASR. The ASR should have the following C calling sequence
and adhere to C calling conventions:

void asr (signals)
unsigned32 signals; /* signai set /*

When the ASR returns to RTEMS the mode and execution path of the inter-

rupted task (or ASR) is restored to the context prior to entering the ASR.

D. Directives

This section details the signal manager's directives. A subsection is dedicated to
each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

82

I. AS CATCH - Establish an ASR

CALLING SEQUENCE:

dir status as-catch (asraddr, mode)

INPUT:

asrptr asraddr; /* ASR entr- point */
unsigned32 mode; /* mode for ASR */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive establishes an asynchronous signal routine (ASR) for the
calling task. The asraddr parameter specifies the entry point of the ASR. If asraddr is
NULL ASR, the ASR for the calling task is invalidated and all pending signals are cleared. Any
signals sent to a task with an invalid ASR are discarded. The mode parameter specifies the
execution mode for the ASR. This execution mode supersedes the task's execution mode while
the ASR is executing.

83

NOTES:

This directive will not cause the calling task to be preempted.

The following task mode constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

PREEMPT enable preemption *

NOPREEMPT disable preemption

NOTSLICE disable timeslicing *

TSLICE enable timeslicing

ASR enable ASR processing *

NOASR disable ASR processing

INTR(O) enable all interrupts *

INTR(n) execute at interrupt level n

84

2. AS-SEND - Send signal set to a task

CALLING SEQUENCE:

dir-status as-send (tid, signal)

INPUT:

objid tid; /* task id
signal set signal; /* signal set to send

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL signal sent successfully
E ID task id invalid
ENOTDEFINED ASR invalid

DESCRIPTION:

This directive sends a signal set to the task specified in tid. The signal
parameter contains the signal set to be sent to the task.

If a caller sends a signal set to a task with an invalid ASR then an error code
is returned to the caller. If a caller sends a signal set to a task whose ASR is valid but disabled,
then the signal set will be caught and left pending for the ASR to process when it is enabled. If a
caller sends a signal set to a task with an ASR that is both valid and enabled, then the signal set
is caught and the ASR will execute the next time the task is dispatched to run.

NOTES:

Sending a signal set to a task has no effect on that task's state. If a signal set
is sent to a blocked task, then the task will remain blocked and the signals will be processed
when the task becomes the running task.

Sending a signal set to a global task which does not reside on the local node
will generate a request telling the remote node to send the signal set to the specified task.

85

XI. PARTITION MANAGER

A. Introduction

The partition manager provides facilities to dynamically allocate memory in
fixed-size units. The directives provided by the partition manager are:

Name Directive Description

ptcreate Create a partition

ptident Get ED of a partition

ptdelete Delete a partition

pt.getbuf Get buffer from a partition

ptretbuf Return buffer to a partition

B. Background

1. Definitions

A partition is a physically contiguous memory area divided into fixed-size
buffers that can be dynamically allocated and deallocated.

Partitions are managed and maintained as a list of buffers. Buffers are
obtained from the front of the partition's free buffer chain and returned to the rear of the same
chain. When a buffer is on the free buffer chain, RTEMS uses eight bytes of each buffer as the
free buffer chain. When a buffer is allocated, the entire buffer is available for application use.
Therefore, modifying memory that is outside of an allocated buffer could destroy the free buffer
chain or the contents of an adjacent allocated buffer.

2. Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attributes.
The set of valid attributes is provided in the description of the pt.create directive. An attribute
listed as a d&fault is not required to appear in the attribute OR list, although it is a good pro-
gramming practice to specify default attributes. If all defaults are desired, the attribute
DEFAULTS should be specified on this call. The attr parameter should be GLOBAL to
indicate that the partition is to be known globally.

C. Operations

1. Creating a Partition

The ptcreate directive creates a partition with a user-specified name. The
partition's name, starting address, length and buffer size are all specified to the ptcreate direc-
tive. RTEMS allocates a Partition Control Block (PTCB) from the PTCB free list. This data
structure is used by RTEMS to manage the newly created partition. The number of buffers in the
partition is calculated based upon the specified partition length and buffer size, and returned to
the calling task along with a unique partition ID.

86

2. Obtaining Partition IDs

When a partition is created, RTEMS generates a unique partition ID and
assigned it to the created partition until it is deleted. The partition ID may be obtained by either
of two methods. First, as the result of an invocation of the pt.create directive, the partition ID is
stored in a user provided location. Second, the partition ID may be obtained later using the
ptident directive. The partition ID is used by other partition manager directives to access this
partition.

3. Acquiring a Buffer

A buffer can be obtained by calling the pt.getbuf directive. If a buffer is
available, then it is returned immediately with a successful return code.

Otherwise, an unsuccessful return code is returned immediately to the caller.
Tasks cannot block to wait for a buffer to become available.

4. Releasing a Buffer

Buffers are returned to a partition's free buffer chain with the ptretbuf
directive. This directive returns an error status code if the returned buffer was not previously
allocated from this partition.

5. Deleting a Partition

The ptdelete directive allows a partition to be removed and returned to
RTEMS. When a partition is deleted, the PTCB for that partition is returned to the PTCB free
list. A partition with buffers still allocated cannot be deleted. Any task attempting to do so will
be returned an error status code.

D. Directives

This section details the partition manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

87

1. PT CREATE - Create a partition

CALLING SEQUENCE:

dir.status pt create (name, paddr, length, bsize, attr, & ptid)

INPUT:

obj name name; / user-defined name
unsigned8 *paddr; /* physical start address */
unsigned32 length; /* physical length in bytes */
unsigned32 bsize; /* buffer size in bytes
unsigned32 attr; * /* partition attributes */

OUTPUT:

objid *ptid; /* id assigned to partition

DIRECTIVE STATUS CODES:

SUCCESSFUL partition created successfully
EJTOOMANY too many partitions created
EADDRESS address not on long-word boundary
E.SIZE buffer size not a multiple of 4
E7NOMP multiprocessing not configured
E7TOOMANY too many global objects

DESCRIPTION:

This directive creates a partition of fixed size buffers from a physically
contiguous memory space. The assigned partition id is returned in ptid. This partition id is used
to access the partition with other partition related directives. For control and maintenance of the
partition, RTEMS allocates a PTCB from the local PTCB free pool and initializes it.

NOTES:

This directive will not cause the calling task to be preempted.

The paddr and bsize parameters must be multiples of four (long-word
aligned).

Memory from the partition is not used by RTEMS to store the Partition
Control Block.

The following partition attribute constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

LOCAL local partition _
GLOBAL global partition

The PTCB for a global partition is allocated on the local node. The memory
space used for the partition must reside in shared memory.

88

Partitions should not be made global unless remote tasks must interact with
the partition. This is to avoid the overhead incurred by the creation of a global partition. When a
global partition is created, the partition's name and id must be transmitted to every node in the
system for insertion in the local copy of the global object table.

The total number of global objects, including partitions, is limited by the
numgobjects field in the Lonflguration Table.

89

2. PTIDENT - Get ID of a partition

CALIUNG SEQUENCE:

dir.status ptident (name, node, & ptid)

INPUT:

obj._name name; /* user-defined name /
unsigned32 node; /* node(s) to search

OUTPUT:

objid *ptid; /* partition id

DIRECTIVE STATUS CODES:

SUCCESSFUL partition identified successfully
ENAME partition name not found
E7NODE invalid node id

DESCRIPTION:

This directive obtains the partition id associated with the partition name. If
the partition name is not unique, then the partition id will match one of the partitions with that
name. However, this partition id is not guaranteed to correspond to the desired partition. The
partition id is used with other partition related directives to access the partition.

NOTES:

This directive will not cause the running task to be preempted.

If node is ALL-NODES, all nodes are searched with the local node being
searched first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then
only the partitions exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only
the local copy of the global object table.

90

3. PTDELETE - Delete a partition

CALLING SEQUENCE:

dir status ptdelete (ptid)

[NPUT:

objid ptid; /* partition id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL partition deleted successfully
E ID invalid partition id
E-INLSE buffers still in use
EREMOTE cannot delete remote partition

DESCRIPTION:

This directive deletes the partition specified by ptid. The partition cannot be
deleted if any of its buffers are still allocated. The PTCB for the deleted partition is reclaimed by
RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the partition. Any
local task that knows the partition id can delete the partition.

When a global partition is deleted, the partition id must be transmitted to
every node in the system for deletion from the local copy of the global object table.

The partition must reside on the local node, even if the partition was created
with the GLOBAL option.

91

4. PTv GETBUF - Get buffer from a partition

CALLING SEQUENCE:

dir-status ptgetbuf (ptid, &bufaddr)

INPUT:

obj-id ptid; /* partition id /

OUTPUT:

unsigned8 **bufaddr; / buffer address */

DIRECTIVE STATUS CODES:

SUCCESSFUL buffer obtained successfully
E ID invalid partition id
EUNSATISFIED all buffers are allocated

DESCRIPTION:

This directive allows a buffer to be obtained from the partition specified in
ptid.

The address of the allocated buffer is returned in bufaddr.

NOTES:

This directive will not cause the running task to be preempted. All buffers
begin on a long-word boundary.

A task cannot wait on a buffer to become available.

Getting a buffer from a global partition which does not reside on the local
node will generate a request telling the remote node to allocate a buffer from the
specified partition.

92

5 PTRETBUF - Return buffer to a partition

CALLING SEQUENCE:

dir status pt retbuf (ptid, bufaddr)

INPUT:

obj-id ptid; /* partition id
unsigned8 *bufaddr; /* buffer to return */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL buffer returned successfully
EU1) invalid partition id
EADDRESS buffer address not in partition

DESCRIPTION:

This directive returns the buffer specified by bufaddr to the partition speci-
fied by ptid.

NOTES:

This directive will not cause the running task to be preempted.

Returning a buffer to a global partition which does not reside on the local
node will generate a request telling the remote node to return the buffer to the specified partition.

93

XII. REGION MANAGER

A. Introduction

The region manager provides facilities to dynamically locate memory in
variable sized units. The directives provided by the region manager are:

Name Directive Description

rn.create Create a region

ranident Get ID of a region

re-delete Delete a region

rngetseg Get segment from a region

rn.retseg Return segment to a region

B. Background

1. Definitions

A region makes up a physically contiguous memory space with user-de-
fined boundaries from which variable-sized segments are dynamically allocated and deallocated.
A segment is a variable size section of memory which is allocated in multiples of a user-defined
page size. This page size is required to be a multiple of four better than or equal to four. For
example, if a request for a 350-byte segment is made in a region with 256-byte pages, then a
512-byte segment is allocated.

Regions are organized as doubly linked chains of variable sized memory
blocks. Memory requests are allocated using a first-fit algorithm. If available, the requester
receives the number of bytes requested (rounded up to the next page sizi). RTEMS requires
some overhead from the region's memory for each segment that is allocated. Therefore, an
application should only modify the memory of a segment that has been obtained from the region.
The application should NOT modify the memory outside of any obtained segments and within
the region's boundaries while the region is currently active in the system.

Upon return to the heap, the free block is coalesced with its neighbors

(if free) on both sides to produce the largest possible unused block.

2. Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attributes.
The set of valid attributes is provided in the description of the rnecreate and rn_getseg direc-
tives. An attribute listed as a default is not required to appear in the attribute OR list, although it
is a good programming practice to specify default attributes. If all defaults are desired, the
attribute DEFAULTS should be specified on this call.

For example, the attr parameter should be PRIORITY to indicate that task
priority should be used as the task waiting queue discipline.

94

C. Operations

1. Creating a Region

The in create directive creates a region with the user-defined name. The
user may select FIFO or task priority as the method for placing waiting tasks in the task wait
queue. RTEMS allocates a Region Control Block (RNCB) from the RNCB free list to maintain
the newly created region. RTEMS also generates a unique region ID which is returned to the
calling task.

It is not possible to calculate the exact number of bytes available to the user
since RTEMS requires overhead for each segment allocated. For example, a region with one
segment that is the size of the entire region has more available bytes than a region with two
segments that collectively are the size of the entire region. The reason is that the region with one
segment requires only the overhead for one segment, while the other region requires the over-
head for two segments.

Due to automatic coalescing, the number of segments in the region dynami-
cally changes. Therefore, the total overhead required by RTEMS dynamically changes.

2. Obtaining Region IDs

When a region is created, RTEMS generates a unique region ID) and assigns
it to the created region until it is deleted. The region ID may be obtained by either of two
methods. First, as the result of an invocation of the mrcreate directive, the region ID) is stored
in a user provided location. Second, the region ID may be obtained later using the rn..ident
directive. The region ID is used by other region manager directives to access this region.

3. Acquiring a Segment

The rngetseg directive attempts to acquire a segment from a specified
region. If the region has enough available free memory, then a segment is returned successfully
to the caller. When the segment cannot be allocated, one of the following situations applies:

"* By default, the calling task will wait forever to acquire the segment.

"* Specifying the NOWAIT option forces an immediate return with an
error status code.

" Specifying a timeout limits the interval the task will wait before
returning with an error status code.

If the task waits for the segment, then it is placed in the region's task wait
queue in either FIFO or task priority order. All tasks waiting on a region are returned an error
when the message queue is deleted.

4. Releasing a Segment

When a segment is returned to a region by the rn retseg directive, it is
merged with its unallocated neighbors to form the largest possible segment. The first task on the
wait queue is examined to determine if its segment request can now be satisfied. If so, it is given
a segment and unblocked. This process is repeated until the first task's segment request cannot
be satisfied.

95

5. Deleting a Region

A region can be removed from the system and returned to RTEMS with the
rnudelete directive. When a region is deleted, its control block is returned to the RNCB free list.
A region with segments still allocated is not allowed to be deleted. Any task attempting to do so
will be returned an error.

D. Directives

This section details the region manager's directives. A subsectio-o is dedicated to
each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

96

1. RNCREATE - Create a region

CALLING SEQUENCE:

dir status

rnecreate (name, paddr, length, pagesize, attr,& mid)

INPUT:

obj name name; /* user-defined name /
unsigned8 *paddr; /* start address
unsigned32 length; /* length in b5 tes
unsigned32 pagesize; /* page size in bytes */
unsigned32 attr; /* region attributes

OUTPUT:

obj.id *rnid; /* region id

DIRECTIVE STATUS CODES:

SUCCESSFUL region created successfully
EADDRESS address not on long-word boundary
ETOOMANY too many regions created
ESIZE invalid page size

DESCRIPTION:

This directive creates a region from a physically contiguous memory space.
The assigned region id is returned in mid. This region id is used as an argument to other region
related directives to access the region.

For control and maintenance of the region, RTEMS allocates and initializes
an RNCB from the RNCB free pool. Thus memory from the region is not used to store the
RNCB. However, some overhead within the region is required by RTEMS each time a segment
is const-ucted in the region.

opecifying PRIORITY in attr causes tasks waiting for a segment to be
serviced according to task priority. Specifying FIFO in attr or selecting DEFAULTS will cause
waiting tasks to be serviced in First In-First Out order.

The paddr parameter must be long-word aligned. The pagesize parameter
must be a multiple of four greater than or equal to four.

NOTES:

This directive will not cause the calling task to be preempted. The following
region attribute constants are defined by RTEMS:

"CONSTANT DESCRIPTION DEFAULT

FIFO tasks wait by FIFO

PRIORITY tasks wait by priority

97

2. RNDENT - Get ID of a region

CALLING SEQUENCE:

dir-status rnident (name, & mid)

INPUT:

obj_name name; /* user-defined name /

OUTPUT:

obj-id *rnid; /* region id */

DIRECTIVE STATUS CODES:

SUCCESSFUL region identified successfully
E NAME region name not found

DESCRIPTION:

This directive obtains the region id associated with the region name to be
acquired. If the region name is not unique, then the region id will match one of the regions with
that name. However, this region id is not guaranteed to correspond to the desired region. The
region id is used to access this region in other region related directives.

NOTES:

This directive will not cause the running task to be preempted.

98

3. RNDELETE - Delete a region

CALLING SEQUENCE:

dir-status rn delete (ind)

INPUT:

objiid mid; /* region id /

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL region deleted successfully
EID invalid region id
EINUSE segments still in use

DESCRIPTION:

This directive deletes the region specified by raid. The region cannot be
deleted if any of its segments are still allocated. The RNCB for the deleted region is reclaimed
by RTEMS.

NOTES:

This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the region. Any
local task that knows the region id can delete the region.

99

4. RNGETSEG - Get segment from a region

CALLING SEQUENCE:

dir_status rngetseg (mid, size, options, timeout, &segaddr)

INPUT:

obj id mid; /* region id */
unsigned32 size; /* segment size in bytes /
unsigned32 options; /* option set */
interval timeout; /* wait interval

OUTPUT:

unsigned8 * *segaddr; /* segment address

DIRECTIVE STATUS CODES:

SUCCESSFUL segment obtained successfully
E ED invalid region id
E-SIZE request exceeds size of maximum segment
EUNSATISFIED segment of requested size not available
ETIMEOUT timed out waiting for segment

DESCRIPTION:

This directive obtains a variable size segment from the region specified by
rmid. The address of the allocated segment is returned in segaddr. The WAIT and NOWAIT
options of the options parameter are used to specify whether the calling tasks wish to wait for a
segment to become available or return immediately if no segment is available. For either option,
if a sufficiently sized segment is available, then the segment is successfully acquired by return-
ing imnediately with the SUCCESSFUL status code.

If the calling task chooses to return immediately and a segment large enough
is not available, then an error code indicating this fact is returned. If the calling task chooses to
wait for the segment and a segment large enough is not available, then the calling task is placed
on the region's segment wait queue and blocked. If the region was created with the PRIORITY
option, then the calling task is inserted into the wait queue according to its priority. But, if the
region was created with the FIFO optinn, then the calling task is placed at the rear of the wait
queue.

The timeout parameter specifies the maximum interval that a task is wiling
to wait to obtain a segment. If timeout is set to NOTIMEOUT, then the calling task will wait
forever.

NOTES:

The actual length of the allocated segment may be larger than the requested
size because a segment size is always a multiple of the region's pagesize.

The following segment acquisition option constants are defined by RTEMS:

CONSTANT DESCRIPTION DEFAULT

WAIT task may wait for segment *

NOWAIT task may not wait

100

5. RN-RETSEG - Return segment to a region

CALLING SEQUENCE:

dir status rn retseg (mid, segaddr)

INPUTM

obj_.id mid; /* region id */
unsigned8 *segaddr; /* segment pointer /

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL segment returned successfully
ElID invalid region id
EADDRESS segment address not in region

DESCRIPTION:

This directive returns the segment specified by segaddr to the region speci-
fied by mid. The returned segment is merged with its neighbors to form the largest possible
segment. The first task on the wait queue is examined to determine if its segment request can
now be satisfied. If so, it is given a segment and unblocked. This process is repeated until the
first task's segment request cannot be satisfied,

NOTES:

This directive will cause the calling task to be preempted if one or more
local tasks are waiting for a segment and the following conditions exist:

"* a waiting has a higher priority than the calling task

"* the size of the segment required by the waiting task is less than or equal
to the size of the segment returned

101

XIII. DUAL-PORTED MEMORY MANAGER

A. Introduction

The dual-ported memory manager provides a mechanism for converting
addresses between internal and external representations for multiple Dual-Ported Memory Areas
(DPMA). The directives provided by the dual-ported memory manager are:

Name Directive Description

dpcreate Create a port

dpjdent Get ID of a port

dp_delete Delete a port

dp_2internal Convert external to internal address

dp_2external Convert internal to external address

B. Background

A Dual-Ported Memory Area (DPMA) is an contiguous block of RAM owned by
a particular processor but which can be accessed by other processors in the system. The owner
accesses the memory using internal addresses, while other processors must use external
addresses. RTEMS defines a port as a particular mapping of internal and external addresses.

There are two system configurations in which dual-ported memory is commonly
found. The first is tightly-coupled multiprocessor computer systems where the dual-ported
memory is shared between all nodes and is used for inter-node communication. The second
configuration is computer systems with intelligent peripheral controllers. These controllers
typically utilize the DPMA for high-performance data transfers.

C. Operations

1. Creating a Port

The dp.create directive creates a port into a DPMA with the user--defined
name. The user specifies the association between internal and external representations for the
port being created. RTEMS allocates a Dual-Ported Memory Control Block (DPCB) from the
DPCB free list to maintain the newly created DPMA. RTEMS also generates a unique dual-
ported memory port ID which is returned to the calling task. RTEMS does not initialize the
dual-ported memory area or access any memory within it.

2. Obtaining Port IDs

When a port is created, RTEMS generates a unique port ID and assigns it to
the created port until it is deleted. The port ID may be obtained by either of two methods. First,
as the result of an invocation of the dpcreate directive, the task ID is stored in a user provided
location. Second, the port ID may be obtained later using the dpkent directive. The port ID is
used by other dual-ported memory manager directives to access this port.

102

3. Converting an Address

The dp_..intermal directive is used to convert an address from external to
internal representation for the specified port. The dp..external directive is used to convert an
address from internal to external representation for the specified port. If an attempt is made to
convert an address which lies outside the specified DPMA, then the address to be converted will
be returned.

4. Deleting a DPMA Port

A port can be removed from the system and returned to RTEMS with the
dp.delete directive. When a port is deleted, its control block is returned to the DPCB free list.

D. Directives

This section details the dual-ported memory manager's directives. A subsection
is dedicated to each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

103

1. DPCREATE - Create a port

CALLING SEQUENCE:

dirstatus dp create (name, intaddr, extaddr, length, &dpid)

INPUM:

objname name; /* user-defined name /
unsigned8 *intaddr; /* initial internal address */
unsigned8 *extaddr; /* initial external address */
unsigned32 length; /* area size in bytes

OUTPUT.:

objid *dpid; /* port id

DIRECTIVE STATUS CODES:

SUCCESSFUL port created successfully
EADDRESS internal or external address not on long-word boundary
ETOOMANY too many DP memory areas created

DESCRIPTION:

This directive creates a port which resides on the local node for the specified
DPMA. The assigned port id is returned in dpid. This port id is used as an argument to other
dual-ported memory manager directives to convert addresses within this DPMA.

For control and maintenance of the port, RTEMS allocates and initializes an
DPCB from the DPCB free pool. Thus memory from the dual-ported memory area is not used to
store the DPCB.

NOTES:

The intaddr and extaddr parameters must be long-word aligned.

This directive will not cause the calling task to be preempted.

104

2. DP)DENT - Get ID of a port

CALLING SEQUENCE:

dir.status dp.ident (name, &dpid)

INPUT:

objname name; /* user-defined name

OUTPUT:

objid *dpid; /* port id */

DIRECTIVE STATUS CODES:

SUCCESSFUL port identified successfully
ENAME port name not found

DESCRIPTION:

This directive obtains the port id associated with the specified name to be
acquired. If the port name is not unique, then the port id will match one of the DPMAs with that
name. However, this port id is not guaranteed to correspond to the desired DPMA. The port id is
used to access this DPMA in other dual-ported memory area related directives.

NOTES:

This directive will not cause the running task to be preempted.

105

3. DPDELETE - Delete a port

CALLING SEQUENCE:

dir-status dpdelete (dpid)

INPUT:

objiid dpid; /* port id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL port deleted successfully
E ID invalid port id

DESCRIPTION:

This directive deletes the dual-ported memory area specified by dpid. The
DPCB for the deleted dual-ported memory area is reclaimed by RTEMS.

NOTES:

This directive will not cause the calling wask to be preempted.

The calling task does not have to be the task that created the port. Any local
task that knows the port id can delete the port.

106

4. DP-2INTERNAL - Convert external to internal address

CALLING SEQUENCE:

dir-status dp..2internal (dpid, extaddr, &intaddr)

INPUT:

obj id dpid; /* port id */
unsigned8 *extaddr; /* address to convert */

OUTPUT:

unsigned8 *intaddr; /* internal address

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive converts a dual-ported memory address from external to
internal representation for the specified port. If the given external address is invalid for the
specified port, then the internal address is set to the given external address.

NOTES:

This directive is callable from an ISR.

This directive will not cause the calling task to be preempted.

107

5. DP_2EXTERNAL - Convert internal to external address.

CALLING SEQUENCE:

dir status dp_2external (dpid, intaddr, &extaddr)

INPUT:

obj id dpid; /* port id */
unsigned8 *intaddr; /* address to convert */

OUTPUT:

unsigned8 **extaddr; /* external address

DIRECTIVE STATUS CODES:

SUCCESSFUL always successful

DESCRIPTION:

This directive converts a dual-ported memory address from internal to
external representation so that it can be passed to owner of the DPMA represented by the speci-
fied port. If the given internal address is an invalid dual-ported address, then the external
address is set to the given internal address.

NOTES:

This directive is callable from an ISR.

This directive will not cause the calling task to be preempted.

108

XIV. I/O MANAGER

A. Introduction

The input/output interface manager provides a well-defined mechanism for
accessing device drivers and a structured methodology for organizing device drivers. The
directives provided by the I/O manager are:

Name Directive Description

delinit Initialize a device driver

de-open Open a device

de-close Close a device

deread Read from a device

dewrite Write to a device

de..cntri Special device services

B. Background

1. Device Driver Table

Each application utilizing the RTEMS I/0 manager must specify the
address of a Device Driver Table in its Configuration Table. This table contains each device
driver's entry points. Each device driver may contain the following entry points:

"* Initialization - Read

"* Open • Write
"* Close • Control

If the device driver does not support a particular entry point, then that entry in the Configura-
tion Table should be NULLDRIVER. RTEMS will return SUCCESSFUL as the executive's
and device driver's return code for these device driver entry points.

2. Major and Minor Device Numbers

Each call to the I/O manager must provide a device number as an argument.
This device number is a 32-bit unsigned entity composed of a major and a minor device number.
The most significant sixteen bits are the major number, and the least significant sixteen bits
compose the minor number. The major number is the index of the requested driver's entry points
in the Device Driver Table, and is used to select a specific device driver. The exact usage of the
minor number is driver specific, but is commonly used to distinguish between a number of
devices controlled by the same driver.

109

3. Device Driver Environment

Application developers, as well as device driver developers, must be aware
of the following regarding the RTEMS I/O Manager:

31 16 15 0

Major Number Minor Number

Figure 6. Device Number Composition

" A device driver routine e•ecutes in the context of the invoking task
Thus, if the driver blocks, the invoking task blocks.

"* The device driver is free to chant the modes of the invoking task, at
though the driver should restore them to their original values.

"* Device drivers can NOT be invoked from ISRs.

* Only local device drivers are accessible through the I/0 manager.

* A device driver routine may invoke all other RTEMS directives,
including I/0 directives, on both local ana global objects.

Although the RTEMS I/O manager provides a framework. for device drivers, it makes no
assumptions regarding the construction or operation of a device driver.

4. Device Driver Interface

When an application invokes I/O manager directive, RTEMS determines
which device driver entry point must be invoked. The information passed by the application to
RTEMS is then passed to the correct device driver entry point. RTEMS will invoke each device
driver entry point with the following C calling sequence:

void de entry(dev, argp, tid, rval)
unsigned32 dev; /* device number .1
unsigned8 *argp; /0 parameter block address "/
obj id tid; /0 ID of invoking task
unsigned32 "rval; /* driver's status area

The format and contents of the parameter block are device driver and entry point dependent.

It is recommended that a device driver avoid generating error codes which
conflict with those used by RTEMS. A common technique used to generate driver specific error
codes is to logically OR the driver's major number with an error code.

110

5. Device Driver Initialization

RTEMS automatically initializes all device drivers when multitasking is
initiated via the init exec directive. RTEMS ;nitializes the device drivers by invoking each
device driver initialization entry point with the following parameters:

dev corresponds to the major device number for this device driver

with a minor device number of zero.

argp will point to the Configuration Table.

tid will contain zero.

'[lie returned rval will be ignored by RTEMS. If the driver cannot successfully initialize the
device, then it should invoke the fatal error manager.

C. Operations

The I/O manager provides directives which enable the application program to
utilize device drivers in a standard manner. There is a direct correlation between the RTEMS
I/O manager directives and the underlying device driver entry points.

D. Directives

This section details the I/O manager's directives. A subsection is dedicated to
each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

111

1. DE.INIT - Initialize a device driver

CALLING SEQUENCE:

dirstatus deinit (dev, argp, &rval)

INPUT:

unsigned32 dev; /* 32-bit device number
unsigned8 *argp; /* address of a driver

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver */

DIRECTIVE STATUS CODES:

SUCCESSFUL successfully initialized
ECALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver initialization routine specified in the
Device Driver Table for this major number. This directive is automatically invoked for each
device driver when multitasking is initiated via the init.exec directive.

A device driver initialization module is responsible for initializing all hard-
ware and data structures associated with a device. If necessary, it can allocate memory to be used
during other operations.

NOTES:

This directive may or may not cause the calling task to be preempted. This
is dependent on *-e device driver being initialized.

112

2. DE-OPEN - Open a device

CALLING SEQUENCE:

dir-status deopen (dev, argp, & rval)

INPUT:

unsigned32 dev; /* 32-bit device number /
unsigned8 *argp; /* address of a driver */

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver /

DIRECTIVE STATUS CODES:

SUCCESSFUL device successfully opened
ECALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver open routine specified in the Device
Driver Table for this major number. The open entry point is commonly used by device drivers
to provide exclusive access to a device.

NOTES:

This directive may or may not cause the calling task to be preempted. This
is dependent on the device driver being invoked.

113

3. DECLOSE - Close a device

CALLING SEQUENCE:

dirstatus de close (dev, argp, & rval)

INPUT:

unsigned32 dev; /* 32-bit device number */
unsigned8 *argp; /* address of a driver

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from drive */

DIRECTIVE STATUS CODES:

SUCCESSFUL device successfully closed
ECALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver close routine specified in the Device
Driver Table for this major number. The close entry point is commonly used by device drivers
to relinquish exclusive access to a device.

NOTES:

This directive may or may not cause the calling task to be preempted. This
is dependent on the device driver being invoked.

114

4. DE-READ - Read from a device

CALLING SEQUENCE:

dir status de read (dev, argp, & rval)

INPUT:

unsigned32 dev; /* 32-bit device number /
unsigned8 *argp; /* address of a driver

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver /

DIRECTIVE STATUS CODES:

SUCCESSFUL device successfully read
ECALLED called from within an ISR
ENUMBER invalid major device number

DESCRIPTION:

This directive calls the device driver read routine specified in the Device
Driver Table for this major number. Read operations typically require a buffer address as part
of the argument parameter block. The contents of this buffer will be replaced with data from the
device.

NOTES:

This directive may or may not cause the calling task to be preempted. This
is dependent on the device driver being invoked.

115

5. DEWRITE - Write to a device

CALLING SEQUENCE:

dir-status dewrite (dev, argp, & rval)

INPUT:

unsigned32 dev; /* 32-bit device number *
unsigned8 *argp; /* address of a driver

/* specific parameter block */

OUTPUT:

unsigned32 *rval; /* return value from driver *

DIRECTIVE STATUS CODES:

SUCCESSFUL device successfully written to
E CALLED called from within an ISR
ENUMBER invalid major device number

This directive calls the device driver write routine specified in the Device
Driver Table for this major number. Write operations typically require a buffer address as part
of the argument parameter block. The contents of this buffer will be sent to the device.

NOTES:

This directive may or may not cause the calling task to be preempted. This
is dependent on the device driver being invoked.

116

6. DECNTRL - Special device services

CALLUNG SEQUENCE:

dir status de cntrl (dev, argp, & rval)

INPUT:

unsigned32 dev; /P 32-bit device number */
unsigned8 *argp; /* address of a driver /

/* specific parameter block*/

OUTPUT:

unsigned32 *rval; / return value from driver */

DIRECTIVE STATUS CODES:

SUCCESSFUL control function was successful
E-CALLED called from within an ISR
EJNUMIBER invalid major device number

DESCRIPTION:

This directive calls the device driver I/O control routine specified in the
Device Driver Table for this major number. The exact functionality of the driver entry called by
this directive is driver dependent. It should not be assumed that the control entries of two device
drivers are compatible. For example, an RS-232 driver I/O control operation may change the
baud rate of a serial line, while an I/O control operation for a floppy disk driver may cause a
seek operation.

NOTES:

This directive may or may not cause the calling task to be preempted. This
is dependent on the device driver being invoked.

117

XV. FATAL ERROR MANAGER

A. Introduction

The fatal error manager processes all fatal or irrecoverable errors. The directive
provided by the fatal error manager is:

Name Directive Description

k-fatal Invoke the fatal err-r handler

B. Background

The fatal error manager is called upon detection of: irrecoverable error condition
by either RTEMS or the application software. Fatal errors can be detected from three sources:

"* the executive (RTEMS)
"* user system code
"• user application code

RTEMS automatically invokes the fatal error manager upon detection of an error it considers to
be fatal. Similarly, the user should invoke the fatal error manager upon detection of a fatal error.

A user--supplied fatal error handler can be specified in the User Extension Table
to provide access to debuggers and monitors which may be present on the target hardware. If
configured, the fatal error manager will invoke a user-supplied fatal error handler. If no user
handler is configured or if the user handler returns control to the fatal error manager, then the
RTEMS default fatal error handler is invoked. In general, the default handler will disable all
maskable interrupts, place the error code in a known place (either on the stack or in a register),
and halt the processor. The precise actions of the RTEMS fatal error handler are processor
dependent and are discussed in the Default Fatal Error Processing chapter of the C Applica-
tions Supplement document for a specific target processor.

C. Operations

D. Announcing a Fatal Error

The k fatal directive is invoked when a fatal error is detected. This directive is
respunsibie for invoking an optional user-supplied fatal error handler and/or the RTEMS fatal
error handler. All fatal error handlers are passed an error code to describe the error detected.

Occasionally, an application requires more sophisticated fatal error processing
such as passing control to a debugger. For these cases, a user-supplied fatal error handler can be
specified in the RTEMS configuration table. The User Extension Table parameter fatal
contains the address of the fatal error handler to be executed when the k fatal directive is called.
If the parameter is set to NULLEXTENSION or if the configured fatal error handler returns to
the executive, then the default handler provided by RTEMS is executed. This default handler
will halt execution on the processor where the error occurred.

E. Directives

This section details the fatal error manager's directives. A subsection is dedicated
to each of this manager's directives and describes the calling sequence, related constants, usage,
and status codes.

118

1. K FATAL- Invoke the fatal error handler

CALLING SEQUENCE:

void k-fatal (encode)

INPUT:

unsigned32 encode; /* fatal error code /

OUiTPUT: NONE

DIRECTIVE STATUS CODES: NONE

DESCRIPTION:

This directive processes fatal errors. If the FATAL error extension is defined
in the configuration table, then the user-defined error extension is called. If configured and the
provided FATAL extension returns, then the RTEMS default error handler is invoked. This
directive can be invoked by RTEMS or by the user's application code including initialization
tasks, other tasks, and ISRs.

NOTES:

This directive supports local operations only.

Unless the user-defined error extension takes special actions such as
restarting the calling task, this directive WILL NOT RETURN to the caller.

The user-defined extension for this directive may wish to initiate a global
shutdown.

119

XVI. SCHEDULING CONCEPTS

A. Introduction

The concept of scheduling in real-time systems dictates the ability to provide
immediate response to specific external events, particularly the necessity of scheduling particular
tasks to run within a specified time limit after the occurrence of an event. For example, software
embedded in life-support systems used to monitor hospital patients must take instant action if a
change in the patient's status is detected.

The component of RTEMS responsible for providing this capability is appropri-
ately called the scheduler. The scheduler's sole purpose is to allocate the all important resource
of processor time to the various tasks competing for attention. The RTEMS scheduler allocates
the processor using a priority-based, preemptive algorithm augmented to provide round-robin
characteristics within individual priority groups. The goal of this algorithm is to guarantee that
the task which is executing on the processor at any point in time is the one with the highest
priority among all tasks in the ready state.

There are two common methods of accomplishing the mechanics of this algo-
rithm. Both ways involve a list or chain of tasks in the ready state. One method is to randomly
place tasks in the ready chain forcing the scheduler to scan the entire chain to determine which
task receives the processor. The other method is to schedule the task by placing it in the proper
place on the ready chain based on the designated scheduling criteria at the time it enters the
ready state. Thus, when the processor is free, the first task on the ready chain is allocated the
processor. RTEMS schedules tasks using the second method to guarantee faster response times
to external events.

B. Scheduling Mechanisms

RTEMS provides four mechanisms which allow the user to impact the task
scheduling process:

"* user-selectable task priority level

"* task preemption control

* task timeslicing control

* manual round-robin selection

Each of these methods provides a powerful capability to customize sets of tasks
to satisfy the unique and particular requirements encountered in custom real-time applications.
Although each mechanism operates independently, there is a precedence relationship which
governs the effects of scheduling modifications. The evaluation order for scheduling characteris-
tics is always priority, preemption mode, and timeslicing. When reading the descriptions of time-
slicing and manual round-robin it is important to keep in mind that preemption (if enabled) of a
task by higher priority tasks will occur as required, overriding the other factors presented in the
description.

1. Task Priority

The most significant of these mechanisms is the ability for the user to assign
a priority level to each individual task when it is created and to alter a task's priority at run-time.
RTEMS provides 255 priority levels. Level 255 is the lowest priority and Level I is the highest.

120

When a task is added to the ready chain, it is placed behind all other tasks of the same priority.
This rule provides a round-robin within priority group scheduling characteristic. This means that
in a group of equal priority tasks, tasks will execute in the order they become ready or FIFO
order. Even though there are ways to manipulate and adjust task priorities, the most important
rule to remember is:

The RTEMS scheduler will always select the highest priority task
that is ready to run when allocating the processor to a task

2. Preemption

Another way the user can alter the basic scheduling algorithm is by manipu-
lating the preemption bit in the mode parameter of individual tasks. If preemption is disabled for
a task, then the task will not relinquish control of the processor until it terminates, blocks, or
re-enables preemption. Even tasks which become ready to run and possess higher priority levels
will not be allowed to execute. Note that the preemption setting has no effect on the manner in
which a task is scheduled. It only applies once a task has control of the processor.

3. Timeslicing

Timeslicing or round-robin scheduling is an additional method which can be
used to alter the basic scheduling algorithm. Like preemption, timeslicing is specified on a task
by task basis. If timeslicing is enabled for a task, RTEMS will limit the amount of time the task
can execute before the processor is allocated to another task. Each tick of the real-time clock
reduces the currently running task's timeslice. When the execution time equals the timeslice,
RTEMS will dispatch another task of the same priority to execute. If there are no other tasks of
the same priority ready to execute, then the current task is allocated an additional timeslice and
continues to run. Remember that a higher priority task will preempt the task (unless preemption
is disabled) as soon as it is ready to run, even if the task has not used up its entire timeslice.

4. Manual Round-Robin

The final mechanism for altering the RTEMS scheduling algorithm is called
manual round-robin. Manual round-robin is invoked by using the tm wkafter directive with a
time interval of YIELD. This allows a task to give up the processor and be immediately returned
to the ready chain at the end of its priority group. If no other tasks of the same priority are ready
to run, then the task does not lose control of the processor.

5. Dispatching Tasks

The dispatcher is the RTEMS component responsible for allocating the
processor to a ready task. In order to allocate the processor to one task, it must be deallocated or
retrieved from the task currently using it. This involves a concept called a context switch. To
perform a context switch, the dispatcher saves the context of the current task and restores the
context of the task which has been allocated to the processor. Saving and restoring a task's
context is the storing/loading of all the essential information about a task to enable it to continue
execution without any effects of the interruption. For example, the contents of a task's register
set must be the same when it is given the processor as they were when it was taken away. All of
the information that must be saved or restored for a context switch is located either in the TCB
or on the task's stacks.

121

Tasks that utilize a numeric coprocessor and are created with the FP attribute
require additional operations during a context switch. These additional operations are necessary
to save and restore the floating point context of FP tasks. To avoid unnecessary save and restore
operations, the state of the numeric coprocessor is only saved when an FP task is dispatched and
that task was not the last task to utilize the coprocessor.

C. Task State Transitions

Tasks in an RTEMS system must always be in one of the five allowable task
states. These states are: executing, ready, blocked, dormant, and non-existent.

A task occupies the non-existent state before a t create has been issued on its
behalf. A task enters the non-existent state from any other state in the system when it is deleted

with the t delete directive. While a task occupies this state it does not have a TCB or a task ID
assigned to it; therefore, no other tasks in the system may reference this task.

When a task is created via the t create directive it enters the dormant state. This
state is not entered through any other means. Although the task exists in the system, it cannot
actively compete for system resources. It will remain in the dormant state until it is started via
the t start directive, at which time it enters the ready state. The task is now permitted to be
scheduled for the processor and to compete for other system resources.

Non-existent
Creating

Deleting

Starting

Deleting

Yielding Readying

Dispatching Blocking

Execui P-Blocked
Blocking

DeletingDeleting

Non-existent

Figure 7. RTEMS State Transitions

122

A task occupies the blocked state whenever it is unable to be scheduled to run. A
running task may block itself or be blocked by other tasks in the system. The ring task blocks
itself through voluntary operations that cause the task to wait. The only way a task can block a
task other than itself is with the tSuspend directive. A task enters the blocked state due to any
of the following conditions:

" A task issues a t suspend directive which block either itself or another task
in the system.

" The running task issues a qjreceive directive with the wait option and the
message queue is empty.

" The running task issues an ev receive directive with the wait option and the
currently pending events do not satisfy the request.

" The running task issues a sm_p directive with the wait option and the
requested semaphore is unavailable.

" The running task issues a tmiwkafter directive which blocks the task for the
even tune interval. If the time interval specified is zero, the task yields the
processor and remains in the ready state.

" The running task issues a tmnwkwhen directive which blocks the task until
the requested date and time arrives.

" The running task issues a rn_getseg directive with the wait option and there
is not an available segment large enough to satin the task's request.

" The running task issues a runperiod directive and must wait for the speci-
fled rate monotonic timer to conclude.

A blocked task may also be suspended. Therefore, both the suspension and the
condition that caused the task to block, must be lifted before the task becomes ready to run.

A task occupies the ready state when it is able to be scheduled to run, but
currently does not have control of the processor. Tasks of the same or higher priority will yield
the processor by either becoming blocked, completing their timeslice, or being deleted. All tasks
with the same priority will execute in FIFO order. A task enters the ready state due to any of the
following conditions:

A running task issues a t resume directive for a task that is suspended and
the task is not blocked waiting on any resource.

" A running task issues a qsend, qbroadcast, or a qurgent directive which
posts a message to the queue on which the blocked task is waiting.

" A running task issues an ev send directive which sends an event condition to
a task which is blocked waiting on that event condition.

A running task issues a sm v directive which releases the semaphore on
which the blocked task is waiting.

" A timeout interval expires for a task which was blocked by a call to the
tm wkafter directive.

" A timeout period expires for a task which blocked by a call to the
tm-wkwhen directive.

123

" A running task issues a rnyretseg directive which releases a segment to the
region on which the blocked task is waiting and a resulting segment is large
enough to satisfy the task's request.

" A rate monotonic timer expires for a task which blocked by a call to the
rm_period directive.

" A timeout interval expires for a task which was blocked waiting on a
message, event, semaphore, or segment with a timeout specified

" A running task issues a directive which deletes a message queue, a sema-
phore, or a region on which the blocked task is waiting.

"* A running task issues a t restart directive for the blocked task

"* The running task, with its preemption mode enabled, may be made ready by
issuing any of the directives that may unblock a task with a higher priority
this directive maybe issued from the running task itself or from an ISR.

A ready task occupies the executing state when it has control of the CPU. A task

enters the executing state due to any of the following conditions:

"* The task is the highest priority ready task in the system.

"* The running task blocks and the task is next in the scheduling queue. The task
may be of equal priority as in round-robin scheduling or the task may
possess the highest priority of the remaining ready tasks.

" The running task may reenable its preemption mode and a task exists in the
ready queue that has a hiker priority than the running task

" The running task lowers its own priority and another task is of higher priority
as a result.

The running task raises the priority of a task above its own and the running
task is in preemption mode.

124

XVII. RATE MONOTONIC MANAGER

A. Introduction

The rate monotonic manager provides facilities to implement tasks which
execute in a periodic fashion. The directives provided by the rate monotonic manager are:

Name Directive Description

rm create Create a rate monotonic timer

rm-cancel Cancel a period

rm-delete Delete a rate monotonic timer

rm_period Conclude current/Start next period

B. Background

The rate monotonic manager provides facilities to manage the execution of peri-
odic tasks. This manager was designed to support application designers who utilize the Rate
Monotonic Scheduling Algorithm (RMS) to insure that their periodic tasks will meet their
deadlines, even under transient overload conditions. Although designed for hard real-time
systems, the services provided by the rate monotonic manager may be used by any application
which requires periodic tasks.

1. Definitions

A periodic task is one which must be executed at a regular interval. The
interval between successive iterations of the task is referred to as its period. Periodic tasks can be
characterized by the length of their period and execution time. The period and execution time of
a task can be used to determine the processor utilization for that task. Processor utilization is
the percentage of processor time used and can be calculated on a per-task or system-wide basis.
Typically, the task's worst-case execution time will be less than its period. For example, a peri-
odic task's requirements may state that it should execute for 10 milliseconds every 100 millisec-
onds. Although the execution time may be the average, worst, or best case, the worst-case
execution time is more appropriate for use when analyzing system behavior under transient
overload conditions.

In contrast, an aperiodic task executes at irregular intervals and has only
a soft deadline. In other words, the deadlines for aperiodic tasks are not rigid, but adequate
response times are desirable. For example, an aperiodic task may process user input from a
terminal.

Finally, a sporadic task is a aperiodic task with a hard deadline and
minimum interarrival time. The minimum interarrival time is the minimum period of time
which exists between successive iterations of the task. For example, a sporadic task could be
used to process the presing of a fire button on a joystick. The mechanical action of the fire
button insures a minimum time period between successive activations, but the missile must be
launched by a hard deadline.

125

2. Rate Monotonic Scheduling Algorithm

The Rate Monotonic Scheduling Algorithm (RMS) is important to real-
time systems designers because it allows one to guarantee that a set of tasks is schedulable. A
set of tasks is said to be schedulable if all of the tasks can meet their deadlines. RMS provides a
set of rules which can be used to perform a guaranteed schedulability analysis for a task set.
This analysis determines whether a task set is schedulable under worst-case conditions and
emphasizes the predictability of the system's behavior. It has been proven that:

RMS is an optitmal priority algorithm for scheduling independent,
preemptible, periodic tasks on a single processor.

RMS is optimal in the sense that if a set of tasks can be scheduled by any
static priority algorithm, then RMS will be able to schedule that task set. RMS bases it schedul-
ability analysis on the processor utilization level below which all deadlines can be met.

RMS calls for the static assignment of task priorities based upon their
period. The shorter a task's period, the higher its priority. For example, a task with a 1 mili-
second period has higher priority than a task with a 100 millisecond period. If two tasks have
the same period, than RMS does not distinguish between the tasks. However, RTEMS specifies
that when given tasks of equal priority, the task which has been ready longest will execute first.
RMS's priority assignment scheme does not provide one with exact numeric values for task
priorities. For example, consider the following task set and priority assignments:

Task Period Priority

(in milliseconds)

1 100 Low

2 50 Medium

3 50 Medium

4 25 High

RMS only calls for task 1 to have the lowest priority, task 4 to have the highest priority, and
tasks 2 and 3 to have an equal priority between that of tasks 1 and 4. The actual RTEMS
priorities assigned to the tasks must only adhere to those guidelines.

Many applications have tasks with both hard and soil deadlines. The tasks
with hard deadlines are typically referred to as the critical task set, with the soil deadline tasks
being the non-critical task set. The critical task set can be scheduled using RMS, with the non-
critical tasks not executing under transient overload, by simply assigning priorities such that the
lowest priority critical task (i.e., longest period) has a higher priority than the highest priority
non-critical task. Although RMS may be used to assign priorities to the non-critical tasks, it is
not necessary. In this instance, schedulability is only guaranteed for the critical task set.

3. Schedulability Analysis

RMS allows application designers to insure that tasks can meet all deadlines,
even under transient overload, without knowing exactly when any given task will execute by
applying proven schedulability analysis rules.

126

a. Assumptions

The schedulability analysis rules for RMS were developed based on the
following assumptions:

* The requests for all tasks for which hard deadlines exist are
periodic, with a constant interval between requests.

"* Each task must complete before the next request for it occurs.
"* The task are independent in that a task does not depend on the

initiation or completion of requests for other tasks.
"* The execution time for each task without preemption or interrup-

tion is constant and does not vary.
"* Any non-periodic tasks in the system are special. These tasks

displace periodic tasks while executing and do not have hard,
critical deadlines.

Once the basic schedulability analysis is understood, some of the
above assumptions can be relaxed and the side-effects accounted for.

b. Processor Utilization Rule

The Processor Utilization Rule requires that processor utilization be
calculated based upon the period and execution time of each task. The fraction of processor time
spent executing task i is Time[i]/Period[i]. The processor utilization can be calculated as follows:

Utilization = 0
for i = 1 to max tasks

Utilization = Utilization + (Time[i]/Period[i])

To insure schedulability even under transient overload, the processor utilization must adhere to
the following rule:

Utilization = maxtasks * (2 (I/max-tasks) - 1)

As the number of tasks increases, the above formula approaches ln(2) for a worst-case utiliza-
tion factor of approximately 0.693. Many tasks sets can be scheduled with a greater utilization
factor. In fact, the average processor utilization threshold for a randomly generated task set is
approximately 0.88.

c. Processor Utilization Rule Example

This example illustrates the application of the Processor Utilization
Rule to an application with three critical periodic tasks. The following table details the RMS
priority, period, execution time, and processor utilization for each task:

Task RMS Priority Period Execution Time Processor Utilization

I High 100 15 0.15

2 Medium 200 50 0.25

3 Low 300 100 0.33

127

The total processor utilization for this task set is 0.73 which is below the upper bound of

3 * (2(1/3) - 1), or 0.779, imposed by the Processor Utilization Rule. Therefore, this task set

is guaranteed to be schedulable using RMS.

d. First Deadline Rule

If a given set of tasks do exceed the processor utilization upper limit
imposed by the Processor Utilization Rule, they can still be guaranteed to meet all their dead-
lines by application of the First Deadline Rule. This rule can be stated as follows:

For a given set of independent periodic tasks, if each task meets its
first deadline when all tasks are started at the same time, then the
deadlines will always be met for any combination of start times.

A key point with this rule is that ALL periodic tasks are assumed
to start at the exact same instant in time. Although this assumption may seem to be invalid,
RTEMS makes it quite easy to insure. By having a non-preemptible user initialization task,
all application tasks, regardless of priority, can be created and started before the initialization
deletes itself. This technique insures that all tasks begin to compete for execution time at the
same instant - - when the user initialization task deletes itself.

e. First Deadline Rule Example

The First Deadline Rule can insure schedulability even when the Pro-
cessor Utilization Rule fails. The example below is a modification of the Processor Utilization
Rule example where task execution time has been increased from 15 to 25 units. The following
table details the RMS priority, period, execution time, and processor utilization for each task:

Task RMS Priority Period Execution Processor

Time Utilization

1 High 100 25 0.25

2 Medium 200 50 0.25

3 Low 300 100 0.33

The total processor utilization for the modified task set is 0.83 which is
above the upper bound of 3 * (2(1/3)- 1), or 0.779, imposed by the Processor Utilization Rule.
Therefore, this task set is not guaranteed to be schedulable using RMS. However, the First
Deadline Rule can guarantee the schedulability of this task set. This rule calls for one to ex-
amine each occurrence of deadline until either all tasks have met their deadline or one task failed
to meet its first deadline. The following table details the time of each deadline occurrence, the
maximum number of times each task may have run, the total execution time, and whether all the
deadlines have been met.

128

Deadline Task 1 Task 2 Task 3 Total Execu- All Deadlines
Time tion Time Met?

100 1 1 1 25+50+100 NO
- 175

200 2 1 1 50+50+100 YES
II _ _ I______ = 200

The key to this analysis is to recognize when each task will execute.
For example, at time 100, task 1 must have met its first deadline, but tasks 2 and 3 may also
have begun execution. In this example, at time 100 tasks 1 and 2 have completed execution and
thus have met their first deadline. Tasks 1 and 2 have used (25 + 50) = 75 time units, leaving
(100 - 75) = 25 time units for task 3 to begin. Because task 3 takes 100 ticks to execute, it will
not have completed execution at time 100. Thus, at time 100, all of the tasks except task 3 have
met their first deadline.

At time 200, task I must have met its second deadline and task 2 its
first deadline. As a result, of the first 200 time units, task 1 uses (2 * 25) = 50 and task 2 uses 50,
leaving (200 - 100) time units for task 3. Task 3 requires 100 time units to execute, thus it will
have completed execution at time 200. Thus, all of the tasks have met their first deadlines at time
200, and the task set is schedulable using the First Deadline Rule.

f. Relaxation of Assumptions

The assumptions used to develop the RMS schedulability rules are
uncommon in most real-time systems. For example, it was assumed that tasks have constant
unvarying execution time. It is possible to relax this assumption, simply by using the worst-case
execution time of each task.

Another assumption is that the tasks are independent. This means that
the tasks do not wait for one another or contend for resources. This assumption can be relaxed
by accounting for the amount of time a task spends waiting to acquire resources. Similarly, each
task's execution time must account for any I/O performed and any RTEMS directive calls.

In addition, the assumptions did not account for the time spent execut-
ing interrupt service routines. This can be accounted for by including all the processor utilization
by interrupt service routines in the utilization calculation. Similarly, one should also account for
the impact of delays in accessing local memory caused by direct memory access and other pro-
cessors accessing local dual-ported memory.

The assumption that nonperiodic tasks are used only for initialization
or failure-recovery can be relaxed by placing all periodic tasks in the critical task set which can
be scheduled and analyzed using RMS. All nonperiodic tasks are placed in the non--critical task
set. Although the critical task set can be guaranteed to execute even under transient overload, the
non-critical task set is not guaranteed to execute.

In conclusion, the application designer must be fully cognizant of the
system and its run-time behavior when performing schedulability analysis for a system using
RMS. Every factor, both software and hardware, which impacts the execution time of each task
must be accounted for in the schedulability analysis.

129

4. Further Reading

For more information on Rate Monotonic Scheduling and its schedulabil-
ity analysis, the reader is referred to the following:

" C. L. Liu and J. W. Layland. "Scheduling Algorithms for Multi-
programming in a Hard Real Time Environment." Journal of the
Association of Computing Machinery. January 1973. pp. 46-61.

" John Lehoczky, Lui Sha, and Ye Ding. "The Rate Monotonic Schedul-
ing Algorithm: Exact Characterization and Average Case Behavior."
IEEE Real-Time Systems Symposium. 1989. pp. 166-171.

" Lui Sha and John Goodenough. "Real-Time Scheduling Theory and
Ada." IEEE Computer. April 1990. pp. 53-62.

" Alan Burns. "Scheduling hard real-time systems: a review." Software
Engineering Journal. May 1991. pp. 116-128.

C. Operations

1. Creating a Rate Monotonic Timer

The rm create directive creates a rate monotonic timer which is to be used
by the calling task to delineate a period. RTEMS allocates a Timer Control Block (TMCB)
from the TMCB free list. This data structure is used by RTEMS to manage the newly created
rate monotonic timer. RTEMS returns a unique timer ID to the application which is used by
other rate monotonic manager directives to access this rate monotonic timer.

2. Manipulating a Period

The rmperiod direcive is used to establish and maintain a period utilizing
a previously created rate monotonic timer. Once initiated by the rm.period directive, the period
is said to run until it either expires or is reinitiated. The state of the rate monotonic timer results
in one of the following scenarios:

" If the rate monotonic timer is running, the calling task will be blocked
for the remainder of the outstanding period an4 upon completion of
that period, the timer will be reinitiated with the specified period.

" If the rate monotonic timer is not currently running and has not
expire4 it is initiated with a length of period ticks and the calling task
returns immediately

" If the rate monotonic timer has expired before the task invokes the
rm period directive, the timer will be initiated with a length of period
ticks and the calling task returns immediately with a timeout error
status.

3. Obtaining a Period's Status

If the rm.period is invoked with a period of STATUS ticks, the current
state of the specified rate monotonic timer will be returned. The following table details the rela-
tionship between the timer's status and the directive status code returned by rm.period direc-
tive:

130

Directive Status Timer State

SUCCESSFUL timer is running

EJTIMEOUT timer has expired

E.NOTDEFINED timer has never been Initiated

Obtaining the status of a rate monotonic timer does not alter the state or pe-
riod of the timer.

4. Canceling a Period

The rmecancel directive is used to stop the period maintained by the speci-
fied rate monotonic timer. The period is stopped and the rate monotonic timer can be reinitiated
using the rmperiod directive.

5. Deleting a Rate Monotonic Timer

The rm delete directive is used to delete a rate monotonic timer. If the tim-
er is running and has not expired, the period is automatically canceled. The rate monotonic tim-
er's control block is returned to the TMCB free list when it is deleted. A rate monotonic timer
can be deleted by a task other than the task which created the timer.

6. Examples

The following sections illustrate common uses of rate monotonic timers to
construct periodic tasks.

a. Simple Periodic Task

This example consists of a single periodic task which, after initializa-
tion, executes every 100 clock ticks.

task Periodic-task (){
obj id rmid;
dir.status retval;

rm create (&rmid);
whTle (1) {

retval rm.period (rmid, 100);
if (retval == E_TIMEOUT)

break;

/* Perform some periodic actions */}
/* missed period so delete timer and SELF /
rm delete (rmid);
t de lete (SELF);

The above task creates a rate monotonic timer as part of its initializa-
tion. The first time the loop is executed, the rinperiod directive will initiate the period for 100
ticks and return immediately. Subsequent invocations of the rmperiod directive will result in
the task blocking for the remainder of the 100 tick period. If, for any reason, the body of the

131

loop takes more than 100 ticks to execute, the rm_period directive will return the ETIME-
OUT status. If the above task misses its deadline, it will delete the rate monotonic timer and
itself.

b. Task with Multiple Periods

This example consists of a single periodic task which, after initializa-
tion, performs two sets of actions every 100 clock ticks. The first set of actions is performed in
the first forty clock ticks of every 100 clock ticks, while the second set of actions is performed
between the fortieth and seventieth clock ticks. The last thirty clock ticks are not used by this
task.

task Periodic-task (){
obj-id rmidl, rmid2;
dir status retval;

rmcreate (&rmidl);
rm create (&rmid2);
whTle (1) {

retval = rm_period (rmidl, 100);
if (retval == ETIMEOUT)

break;

retval = rmperiod (rmid2, 40)
if (retval == E_TIMEOUT)

break

/* Perform first set of actions between clock
* ticks 0 to 39 of every 100 ticks.
*/

retrval = rmperiod (rmid2, 30);
if (retval = ETIMEOUT)

break;

/* Perform second set of actions between clock
* 40 and 69 of every 100 ticks.*/

/* Check to make sure we didn't miss
* the rmid2 period.*/

retval = rm..period (rmid2, STATUS);
if (retval == E_TIMEOUT)

break;

rmcancel (rmid2)

/* missed period so delete timer and SELF /
rmndelete (rmidl
rm.delete (rmid2);
t_delete (SELF);

132

The above task creates two rate monotonic timers as part of its initial-
ization. The first time the loop is executed, the rm.period directive will initiate the rmidl
period for 100 ticks and return immediately. Subsequent invocations of the rmperiod directive
for rm_period directive rmidl will result in the task blocking for the remainder of the 100 tick
period. The rmld2 timer is used to control the execution time of the two sets of actions within
each 100 tick period extableshed by nld 1. The rmncancel(rnld2) call is performed to
insure that the rmid2 period does not expire while the task is blocked on the rmldl period. If
this cancel operation were not performed, every time the rmperlod(nnldl,40) call is
executed, except for the initial one, a directive status of E TIMEOUT is returned. It is impor-
tant to note that every time this call is made, the rmidl timer will be initiated immediately and
the task will not block.

If, for any reason, the task misses any deadline, the reperiod direc-
tive will return the ETIMEOUT directive status. If the above task misses its deadline, it will
delete the rate monotonic timers and itself.

D. Directives

This section details the rate monotonic manager's directives. A subsection is
dedicated to each of this manager's directives and describes the calling sequence, related
constants, usage, and status codes.

133

1. RM CREATE - Create a rate monotonic timer

CALLING SEQUENCE:

dir-status rmcreate (&rmid)

INPUT: NONE

OUTPUT:

obj-id *rmid; /* id assigned to period /

DIRECTIVE STATUS CODES:

SUCCESSFUL rate monotonic timer created successfully
E_TOOMANY too many timers created

DESCRIPTION:

This directive creates a rate monotonic timer. The assigned rate monotonic
and is returned in rmid. This id is used to access the timer with other rate monotonic manager
directives. For control and maintenance of the rate monotonic timer, RTEMS allocates a TMCB
from the local TMCB free pool and initializes it.

NOTES:

This directive will not cause the calling task to be preempted.

134

2. RM-CANCEL - Cancel a period

CALLING SEQUENCE:

dir-status rm cancel (&rmid)

INPUT: NONE

OUTPUT:

objid *rmid; /* rate monotonic timer id

DIRECTIVE STATUS CODES:

SUCCESSFUL period canceled successfully
EID invalid rate monotonic timer and
ECALLED rate monotonic timer not created by calling task

DESCRIPTION:

This directive cancels the rate monotonic timer mid. This timer will be re-
initiated by the next invocation of rmperiod with rmid.

NOTES:

This directive will not cause the running task to be preempted.

The rate monotonic timer specified by rmid must have been created by the
calling task.

135

3. RM-DELETE - Delete a rate monotonic timer

CALLING SEQUENCE:

dir-status rmdelete (rmid)

INPUT:

obj-id rmid; /* rate monotonic timer id */

OUTPUT: NONE

DIRECTIVE STATUS CODES:

SUCCESSFUL period deleted successfully
EID invalid rate monotonic timer id

DESCRIPTION:

This directive deletes the rate monotonic timer specified by rmid. If the
timer is running, it is automatically canceled. The TMCB for the deleted timer is reclaimed by
RTEMS.

NOTES:

This directive will not cause the running task to be preempted.

A rate monotonic timer can be deleted by a task other than the task which
created the timer.

136

4. RMPERIOD - Conclude current/Start next period

CALLING SEQUENCE:

dirstatus rm_.period (rmid, period)

INPUT:

obj-id rmid; /* rate monotonic timer id */
interval period; /* length of period (in ticks) */

OUTPUT:

DIRECTIVE STATUS CODES:

SUCCESSFUL period initiated successfully
E ID invalid rate monotonic timer id
ECALLED rate monotonic timer not created by calling task
E NOTDEFINED period has never been initiated
ETIMEOUT period has expired

DESCRIPON:

This directive initiates the rate monotonic timer rmid with a length of peri-
od ticks. If rmid is running, then the calling task will block for the remainder of the period be-
fore reinitiating the timer with the specified period. If rmid was not running (either expired or
never initiated), the timer is immediately initiated id the directive returns immediately.

If invoked with a period of STATUS ticks, the current state of rmid will be
returned. The directive status indicates the current state of the timer. This does not alter the state
or period of the timer.

NOTES:

This directive will not cause the running task to be preempted.

137

XVIH. BOARD SUPPORT PACKAGES

A. Introduction

A Board Support Package (BSP) is a collection of user-provided facilities
which interr,,.e RTEMS and a application with a specific hardware platform. These facilities
may incluuq, hardware initialization, device drivers, user extensions, and a Multiprocessor
Communications Interface (MPCI). However, a minimal BSP need only support processor reset
and initialization and, if needed, a clock tick.

B. Reset and Initialization

An RTEMS based application is initiated or re-initiated when the processor is
reset. This initialization code is responsible for preparing the target platform for the RTEMS
application. Although the exact actions performed by the initialization code are highly processor
and target dependent, the logical functionality of these actions are similar across a variety of
processors and target platforms.

Normally, the application's initialization is performed at two separate times:
before the call to init exec (reset application initialization) and after init exec in the user's
initialization tasks (local and global application initialization). The order of the startup procedure
is as follows:

1. Reset application initialization.

2. Call to init exec

3. Local and global application initialization.

The reset application initialization code is executed first when the processor is
reset. All of the hardware must be initialized to a quiescent state by this software before initial-
izing RTEMS. When in quiescent state, devices do not generate any interrupts or require any
servicing by the application. Some of the hardware components may be initialized in this code as
well as any application initialization that does not involve calls to RTEMS directives.

The processor's Interrupt Vector Table which will be used by the application must
be set to the required value by the reset application initialization code. Because interrupts are
enabled automatically by RTEMS as part of the init exec directive, the Interrupt Vector Table
MUST be set before this directive is invoked to insure correct interrupt vectoring. The proces-
sor's Interrupt Vector Table must be accessible by RTEMS as it will be modified by the icatch
directive. The reset code which is executed before th2 call to init-exec has the following
requirements:

"* Must not make any RTEMS directive calls.
"* If the processor supports multiple privilege levels, must leave the processor in

the most privileged, or supervisory, state.
"* Must allocate a stack of at least MIN STK SIZE b%,.es and initialize the

stack pointer for the init exec directive.
"* Must initialize the processor , Interrupt Vector Table.
"* Must disable all maskable interrupts.
"* If the processor supports a separate interrupt stab must !ocat, the

interrupt stack and initialize the interrupt stab pointer.

138

The init exec directive does not return to the initialization code, but causes the
highest prroot) initialization task to begin execution. Initialization tasks are used to perform
both local and global application initialization which is dependent on RTEMS facilities. The
user initialization task facility is typically used to create the application's set of tasks.

1. Interrupt Stack Requirements

The worst-case stack usage by interrupt service routines must be taken into
account when designing an application. If the processor supports interrupt nesting, the stack
usage must include the deepest nest level. The worst-case stack usage must account for the
following requirements:

"* Processor's interrupt stack frame

"* Processor's subroutine call stack frame

"* RTEMS system calls requiring up to MINSTKSIZE bytes

"* Registers saved on stack

"* Application subroutine calls

The RTEMS constant MIN STZ SIZE includes all subroutine call stack frames and registers
saved on the stack by RTEMS. -

2. FLocessors with a Separate Interrupt Stack

Some processors support a separate stack for interrupts. When an interrupt is
vectored and the interrupt is not nested, the processor will automatically switch from the current
stack to the interrupt stack. The size of this stack is based solely on the worst-case stack usage
by interrupt service routines.

The dedicated interrupt stack for the entire application is supplied and ini-
tialized by the reset and initialization code of the user's board support package. Since all ISRs
use this stack, the stack size must take into account the worst case stacl- usage by any combina-
tion of nested ISRs.

3. Processors without a Separate Interrupt Stack

Some processors do not support a separate stack for interrupts. In this case,
every task's stack must include enough space to handle the task's worst-case stack usage as well
as the worst-case interrupt stack usage. This is necessary because the worst-case interrupt
nesting could occur while any task is executing.

C. Device Drivers

Device drivers consist of control software for special peripheral devices and
provide a logical interface for the application developer. The RTEMS IVu manager provides
directives v hich allow applications to access these device driv ýrs in a consistent fashion. A
Board Support Package may include deN ice drivers to access the hardware on the target plat-
form. These devices typically include serial and parallel ports, counter/timer peripherals, real-
time clocks, disk interfaces, and network controllers.

For more information on device drivers, refer to the 1/O Manager chapter.

139

1. Clock Tick Device Driver

Most RTEMS applications will include a clock tick device driver which
invokes the tin tick directive at regular intervals. The clock tick is necessary if the application is
to utilize timeslicing, the time and rate monotonic managers, of the timeout option on blocking
directives.

The clock tick is usually provided as an interrupt from a counter/timer or a
real-time clock device. When a counter/timer is used to provide the clock tick, the device is
typically programmed to operate in continuous mode. This mode selection causes the device to
automatically reload the initial count and continue the countdown without programmer interven-
tion. This reduces the overhead required to manipulate the counter/timer in the clock tick ISR
and increases the accuracy of tick occurrences. The initial count can be based on the mstick
field in the RTEMS Configuration Thble. An alternate approach is to set the initial count for
one millisecond and have the ISR invoke tmn tick on the ms tick boundaries.

It is important to note that the interval between clock ticks directly impacts
the granularity of RTEMS timing operations. In addition, the frequency of clock ticks is an
important factor in the overall level of system overhead. A high clock tick frequency results in
less processor time being available for task execution due to the increased number of clock tick
ISRs.

D. User Extensions

RTEMS allows the application developer to augment selected features by
invoking user-supplied extension routines when the following system events occur:

"* Task creation • Task context switch

"* Task initiation * Task exits

"* Task reinitiation • Fatal error detection

"* Task deletion

User extensions can be used to implement a wide variety of functions including
execution profiling, non-standard coprocessor support, debug support, and error detection and
recovery. For example, the context of a non-standard numeric coprocessor may be maintained
via the user extensions. In this example, the task creation and deletion extensions are responsible
for allocating and deallocating the context area, the task initiation and reinitiation extensions
would be responsible for priming the context area, and the task context switch extension would
save and restore the context of the device.

For more information on user extensions, refer to the User Extensions chapter.

E. Multiprocessor Communications Interface (MPCI)

RTEMS requires that an MPCI layer be provided when a multiple node applica-
tion is developed. This MPCI layer must provide an efficient and reliable communications mech-
anism between the multiple nodes. Tasks on different nodes communicate and synchronize with
one another via the MPCI. Each MPCI layer must be tailored to support the architecture of the
target platform.

140

For more information on the MPCI, refer to the Multiprocessing Manager

chapter.

1. Tightly-Coupled Systems

A tightly-coupled system is a multiprocessor configuration in which the
processors communicate solely via shared global memory. The MPCI can simply place the
RTEMS packets in the shared memory space. The two primary considerations when designing
an MPCI for a tightly--coupled system are data consistency and informing another node of a
packet.

The data consistency problem may be solved using atomic "test and set"
operations to provide a "lock" in the shared memory. It is important to minimize the length of
time any particular processor locks a shared data structure.

The problem of informing another node of a packet can be addressed using
one of two techniques. The first technique is to use an interprocessor interrupt capability to cause
an interrupt on the receiving node. This technique requires that special support hardware be
provided by either the processor itself or the target platform. The second technique is to have a
node poll for arrival of packets. The drawback to this technique is the overhead associated with
polling.

2. Loosely-Coupled Systems

A loosely-coupled system is a multiprocessor configuration in which the
processors communicate via some type of communications link which is not shared global
memory. The MPCI sends the RTEMS packets across the communications link to the destina-
tion node. The characteristics of the communications link vary widely and have a significant
impact on the MPCI layer. For example, the bandwidth of the communications link has an
obvious impact on the maximum MPCI throughput.

The characteristics of a shared network, such as Ethernet, lend themselves to
supporting an MPCI layer. These networks provide both the point-to--point and broadcast capa-
bilities which are expected by RTEMS.

3. Systems with Mixed Coupling

A mixed-coupling system is a multiprocessor configuration in which the
processors communicate via both shared memory and communications links. A unique charac-
teristic of mixed-coupling systems is that a node may not have access to all communication
methods. There may be multiple shared memory areas and communication links. Therefore, one
of the primary functions of the MPCI layer is to efficiently route RTEMS packets betweern
nodes. This routing may be based on numerous algorithms. In addition, the router may provide
alternate communications paths in the event of an overload or a partial failure.

4. Heterogeneous Systems

Designing an MPCI layer for a heterogeneous system requires special
considerations by the developer. RTEMS is designed to eliminate many of the problems
associated with sharing data in a heterogeneous environment. The MPCI layer need only
address the representation of the unsigned32 data type.

141

For more information on supporting a heterogeneous system, refer the
Supporting Heterogeneous Environments in the Multiprocessing Manager chapter.

142

XIX. USER EXTENSIONS

A. Introduction

RTEMS allows the application developer to augment selected features by
invoking user-supplied extension routines when the following system events occur:

* Task creation • Task context switch

* Task initiation ° Task exits

• Task reinitiation • Fatal error detection

* Task deletion

These extensions are invoked as C functions with arguments that are appropriate
to the system event. These functions are defined in the application's User Extension Table
which is included as part of the Configuration Table. All user extensions are optional and
RTEM places no naming restrictions on the user.

In addition, RTEMS provides for a user-defined data area to be linked to each
task's control block. This data area is a extension of the TCB and can be used to store additional
data required by one or more of the user's extension functions. It is also possible for a user
extension to utilize the notepad locations associated with each task.

The sections that follow will contain a description of each extension. Each
section will contain a example of the C calling sequence for the corresponding extension. The
names given for the C function and its arguments are all defined by the user. The names used in
the examples were arbitrarily chosen and impose no naming conventions on the user.

B. TCREATE Extension

The TCREATE extension directly corresponds to the t .create directive. If this
extension is defined in the Configuration Table and a task is being created, then the extension
routine will automatically be invoked by RTEMS. The extension should be prototyped as
follows:

void tcreate (curtcb, newtcb)
t cb *curtcb;
t-cb *newtcb;

where curtcb is the pointer to the TCB for the currently executing task, and newtcb is the
pointer to the TCB for the new task being created. This extension is invoked from the t create
directive after newtcb has been completely initialized, but before it is placed on a ready TCB
chain.

C. TSTART Extension

The TSTART extension directly corresponds to the tstart directive. If this
extension is defined in the Configuration Table and a task is being started, then the extension
routine will automatically be invoked by RTEMS. The extension should be prototyped as
follows:

void tstart (curtcb, sttcb)
t_cb *curtcb;
t cb *sttcb;

143

where curtcb is the pointer to the TCB for the currently executing task, and sttcb is the pointer
to the TCB for the task being started. This extension is invoked from the tyestart directive after
sttcb has been made ready to start execution, but before it is placed on a ready TCB chain.

D. TRESTART Extension

The TRESTART extension directly corresponds to the t restart directive. If this
extension is defined in the Configuration Table ad a task is being restarted, then the extension
should be prototyped as follows:

void trestart (curtcb, sttcb)
t cb *curtcb;
t-cb *sttcb;

where curtcb is the pointer to the TCB for the currently executing task, and sttcb is the pointer
to the TCB for the task being restarted. This extension is invoked from the trestart directive after
sttcb has been made ready to start execution, but before it is placed on a ready TCB chain.

E. TDELETE Extension

The TDELETE extension is associated with the tdelete directive. If this extension
is defined in the Configuration Table and a task is being deleted, then the extension routine will
aut-matically be invoked by RTEMS. The extension should be prototyped as follows:

void tdelete (curtcb, deltcb)
tecb *curtcb;
tcb .deltcb;

where curtcb is the pointer to the TCB for the currently executing task, and deltcb is the pointer
to the TCB for the task being deleted. This extension is invoked from the t delete directive after
the TCB has been removed from a ready TCB chain, but before all its resources including the
TCB have been returned to their respective free pools. This extension should not call any
RTEMS directives if a task is deleting itself (curtcb is equal to deltcb).

F. TSWITCH Extension

The TSWITCH extension corresponds to a task context switch. If this extension
is defined in the Configuration Table and a task context switch is in progress, then the exten-
sion routine will automatically be invoked by RTEMS. The extension should be prototyped as
follows:

void tswitch (curtcb, heirtcb)
t cb *curtcb;
t-cb *heirtcb;

where curtcb is the pointer to the TCB for the task that is being swapped out, and beirtcb is the
pointer to the TCB for the task being swapped in. This extension is invoked from RTEMS'
dispatcher routine after the curtcb context has been saved, but before the beirtcb context has
been restored. This extension should not call any RTEMS directives.

144

G. TASKEXIITED Error Extension

The TASKEXITTED error extension is invoked when a task exits the body of the
starting procedure by either an implicit or explicit return statement. This user extension is proto-
typed as follows:

void taskexitted (curtcb)
t cb *curtcb;
t_cb *heirtcb;

where curtcb is the pointer to the TCB for the currently executing task which has exitted.
Although exiting of task is typically considered to be a fatal error, this extension allows recovery
by either restarting or deleting the exiting task. If the user does not wish to recover, then a fatal
error may be reported.

If the user does not provided a TASKEXITED error extension or the provided
handler returns control to RTEMS, then the RTEMS default handler will be used. This default
handler invokes the directive k fatal with the EEXITTED directive status.

H. FATAL Error Extension

The FATAL error extension is associated with the k fatal directive. If this exten-
sion is defined in the Configuration Table is the k fatal directive has been invoked, then this
extension will be called. This extension should be prototyped as follows:

void k fatal (errcode)
unsigned32 errcode;

where errcode is the error code passed to the kIfatal directive. This extension is invoked from
the k fatal directive.

If defined, the user's FATAL error extension is invoked before RTEMS' default
fatal error routine is invoked and the processor is stopped. For example, this extension could be
used to pass controi to a debugger when a fatal error occurs. This extension should not call any
RTEMS directives.

I. TCB Extension

The TCB extension is a pointer field in the TCB which can be set by the user to
access an area of RAM. This allows an application to augment the TCB with user-defined
information. For example, an application could implement task profiling by storing timing statis-
tics in the TCB's extended memory area. When a task context switch is being executed, the
TSWITCH extension could read a real-time clock to calculate how long the task being swapped
out has run as well as timestamp the starting time for the task being swapped in.

If used, the extended memory area for the TCB should be allocated and the TCB
extension pointer should be set at the time the task is created or started by either the TCREATE
or TSTART extension. The application is responsible for managing this extended memory area
for the TCBs. The memory may be reinitialized by the TRESTART extension and should be
dcallocated by the TDELETE extension when the task is deleted. Since the TCB extension
buffers would most likely be of a fixed size, the RTEMS partition manager could be used to
manage the application's extended memory area. The application could create a partition of fixed
size TCB extension buffers and use the partition manager's allocation and deallocation directives
to obtain and release the extension buffers.

145

XX. CONFIGURING A SYSTEM

A. Configuration Table

The RTEMS Configuration Table is used to tailor an application for its specific
needs. For example, the user can configure the maximum number of task for this application.
The address of the user-defined Configuration Table is passed as an argument to the init exec
directive, which EST be the first RTEMS directive called. The RTEMS Configuration Table is
defined in a C structure. Each entry in the table is either two or four bytes in length. The struc-
ture is given here:

struct config.info {
unsigned32 execram; /* RTEMS RAM Work Area*/
unsigned32 ram size; /* RTEMS Work Area size */
unsignedl6 max tasks; /* max number tasks
unsignedl6 max semaphores; /* max number semaphores */
unsignedl6 maxtimers; /- max number timers */
unsignedl6 maxqueues; /* max number queues
unsignedl6 max messages; /* max number messages */
unsignedl6 maxregions; /* max number regions
unsignedl6 maxpartitions; /* max number partitions */
unsignedl6 maxdpmems; /* max dp memory areas
unsignedl6 mstick; /* ms in a tick */
unsignedl6 tslice; /* ticks in a timeslice */
unsigned32 num itasks; /* number of init tasks
itask table *Itasks_tbl; /* init task table */
unsigned32 numdevices; /* number device drivers */
driver table *Drvtbl; /* driver table */
ext-table *Ext-tbl; /* extension table */
mptable *Mptbl; /* MP config table

exe ram is the starting address of the RTEMS RAM Workspace. This area
contains items such as the various object control blocks
(TCBs, QCBs, ...) and task stacks. If the address is not aligned on a
four-word boundary, then RTEMS will invoke the fatal error handler
during initexec.

ram-size is the calculated size of the RTEMS RAM Workspace. The section
Sizing the RTEMS RAM Workspace details how to arrive at this
number.

max tasks is the maximum number of tasks that can be concurrently active
(created) in the system including initialization tasks.

max semaphores is the maximum number of semaphores that can be concurrently active
in the system.

max timers is the maximum number of event and rate monotonic timers that can be
concurrently active in the system.

146

max._queues is the maximum number of message queues that can be concurrently
active in the system.

max-messages is the maximum number of messages that can be allocated to the
application.

maxregions is the maximum number of regions that can be concurrently active in
the system.

maxpartitions is the maximum number of partitions that can be concurrently active in
the system.

max.dpmems is the maximum number of dual-port memory areas that can be
concurrently active in the system.

ms tick is number of milliseconds per clock tick.

tstice is the number of clock ticks for a timeslice.

hum itasks is the number of initialization tasks configured. At least one initializa-
tion task must be configured.

Itasks-tbl is the address of the Initialization Task Table. This table contains the
information needed to create and start each of the initialization tasks.
The format of this table will be discussed below.

num devices is the number of device drivers for the system. There should be the
same number of entries in the Device Driver Table. If this field is
zero, then the Drv.tbl entry should be NULLDRIVERTABLE.

Drvytbl is the address of the Device Driver Table. This table contains the entry
points for each device driver. If the mum devices field is zero, then this
entry should be NULLDRIVERTABLE. The format of this table
will be discussed below.

Ext tbI is the address of the User Extension Table. This table contains the
entry points for each user extension. If no user extensions are config-
ured, then this entry should be NULLEXTTABLE. The format of
this table will be discussed below.

Mptbl is the address of the Multiprocessor Configuration Table. This
table contains information needed by RTEMS only when used in a
multiprocessor configuration. This field must be NULLMPTABLE
when RTEMS is used in a single processor configuration.

B. CPU Dependent Information Table

The CPU Dependent Information Table is used to describe processor depen-
dent information required by RTEMS. This table is not required for all processors on which
RTEMS is supported. The contents of this table are discussed in the CPU Dependent Informa-
tion Table chapter of the C Applications Supplement document for a specific target processor.

147

C. Initialization Task Table

The Initialization Task Table is used to describe each of the user initialization
tasks to the Initialization Manager. The table contains one entry for each initialization task the
user wishes to create and start. The fields of the structure directly correspond to arguments to the
t create and tstart directives. The number of entries is found in the num itasks entry in the
Configuration Table. The format of each entry in the Initialization Task Table is defined in a
C structure, and is given below:

struct itasksinfo {
objname name; /* task name
unsigned32 stksize; /* task stack size */
task pri priority; /* task priority
unsigned32 attributes; /* task attributes */
taskptr entry; /* task entry point '/
unsigned32 mode; /* task initial mode */
unsigned32 arg; /* task argument */

name is the name of this initialization task.

stksize is the size of the stack for this initialization task.

priority is the priority of this initialization task.

attributes is the attribute set used during creation of this initialization task.

entry is the address of the entry point of this initialization task.

mode is the initial execution mode of this initialization task.

arg is the initial argument for this initialization task.

A typical declaration for an Initialization Task Table might appear as follows:

itask table Inittasks[2] = {
{ INITI NAME, 1024, 1, 0,

initi, INTR (0) I NOPREEMPT, lnitl_arg },
(INIT2_NAME, 1024, 1024, 1, 0,

init2, INTR (0) 1 NOPREEMPT, Init2_arg }

148

D. Driver Address Table

The Device Driver Table is used to inform the 1/0 Manager of the set of entry
points for each device driver configured in the system. The table contains one entry for each
device driver required by the application. The number of entries is defined in the num devices
entry in the Configuration Table. The format of each entry in the Device Driver Table is
defined in a C structure, and is given below:

strict driver-info {
procptr init; /* initialization procedure ./
procyptr open; /* open request procedure */
proc ptr close; /* close request procedure */
procjtr read; /* read request procedure
procptr write; /* write request procedure */
procptr cntrl; /* special request procedure */
unsigned32 reservedl; /* reserved for RTEMS use */
unsigned32 reserved2; /* reserved for RTEMS use */

init is the address of the entry point called by de-init to initialize a device driver

and its associated devices.

open is the address of the entry point called by de-open.

close is the address of the entry point called by de-close.

read is the address of the entry point called by de-read.

write is the address of the entry point called by de-write.

cntri is the address of the entry point called by decntrl.

reservedl is reserved for RTEMS use and should be set to RESERVED.

reserved2 is reserved for RTEMS use and should be set to RESERVED.

Driver entry points configured as NULL DRIVER will always return a status
code of SUCCESSFUL. No user code will be executed in this situation.

A typical declaration for a Device Driver Table might appear as follows:

drivertable Drivertable[2J = {
{ ttyopen, ttyopen, tty_close, tty read,

ttywrite, tty_cntrl, RESERVED, RESERVED },
{ lp_open, lp_open, lp_close, NULL DRIVER

lpwrite, lp_cntrl, RESERVED, RESERVED }
I};

More information regarding the construction and operation of device drivers is
provided in the 11O Manager chapter.

149

E. User Extensions Table

The User Extensions Table is used to inform RTEMS of each of the optional
user-supplied extensions. This table contains one entry for each possible extension. The entries
are called at critical times in the life of a task. The format of each entry in the User Extensions
Table is defined in a C structure, and is given below:

struct ext info {
proc_ptr tcreate; /* tcreate user extension */
proc_ptr tstart; /* tstart user extension */
procptr trestart; /* trestart user extension */
procptr tdelete; /* tdelete user extension */
procptr tswitch; /* tswitch user extension */
procptr taskexitted; /* task exit handler */
procptr fatal; /* fatal error handler */};

tcreate is the address of the user-supplied subroutine for the TCREATE
extension. If this extension for task creation is defined, it is called from
the t create directive. A value of NULL-EXTENSION indicates that
no extension is provided.

tstart is the address of the user-supplied subroutine for the TSTART
extension. If this extension for task initiation is defined, it is called
from the t start directive. A value of NULL-EXTENSION indicates
that no extension is provided.

trestart is the address of the user--supplied subroutine for the TRESTART
extension. If this extension for task re-initiation is defined, it is called
from the t restart directive. A value of NULL-EXTENSION indi-
cates that no extension is provided.

tdelete is the address of the user-supplied subroutine for the TDELETE
extension. If this RTEMS extension for task deletion is defined, it is
called from the t delete directive. A value of NULL-EXTENSION
indicates that no extension is provided.

tswitch is the address of the user-supplied subroutine for the task context
switch extension. This subroutine is called from RTEMS' dispatcher
after the current task has been swapped out but before the new task has
been swapped in. A value of NULL-EXTENSION indicates that no
extension is provided. As this routine is invoked alter saving the
current task's context and before restoring the heir task's context, it is
not necessary for this routine to save and restore any registers.

taskexitted is the address of the user-supplied subroutine which is invoked when a
task exits. This procedure is responsible for some action which will
allow the system to continue execution (i.e. delete or restart the task) or
to terminate with a fatal error. If this field is set to
NULL EXTENSION, the default RTEMS taskexitted handler will be
invoked.

150

fatal is the address of the user-supplied subroutine for the FATAL extension.
This RTEMS extension of fatal error handling is called from the
k fatal directive. If the user's fatal error handler returns or if this entry
is NULL-EXTENSION then the default RTEMS fatal error handler
will be executed.

A typical declaration for a User Extension Table which defines the TCREATE,
TDELETE, TSWITCH, and FATAL extension might appear as follows:

exttable Userextensions = {
tcreate-ext, NULLEXTENSION, NULL-EXTENSION,
tdelete ext, tswitchext,
NULLEXTENSION, fatalext

More information regarding the user extensions is provided in the User Exten-

sions chapter.

F. Multiprocessor Configuration Table

The Multiprocessor Configuration Table contains information needed when
using RTEMS in a multiprocessor configuration. Many of the details associated with configur-
ing a multiprocessor system are dependent on the multiprocessor communications layer provided
by the user. The address of the Multiprocessor Configuration Table should be placed in the
Mptbl entry in the primary Configuration Table. Further details regarding many of the entries
in the Multiprocessor Configuration Table will be provided in the Multiprocessing chapter. The
format of the Multiprocessor Configuration Table is defined in a C structure, and is given
below:

struct mpinfo {
unsignedl6 node; /* local node number */
unsigned16 max nodes; /* number nodes in system */
unsigned32 maxgobjects; /* max global objects
unsigned32 max.proxies; /* max proxies */
mpci table *Mpci_tbl; /* MPCI table

node is a unique processor identifier and is used in routing messages
between nodes in a multiprocessor configuration. Each processor must
have a unique node number. RTEMS assumes that node numbers start
at one and increase sequentially. This assumption can be used to
advantage by the user-supplied MPCI layer. Typically, this requirement
is made when the node numbers are used to calculate the address of
inter-processor communication links. Zero should be avoided as a node
number because some MPCI layers use node zero to represent broad-
casted packets. Thus, it is recommended that node numbers start at one
and increase sequentially.

max-nodes is the number of processor nodes in the system.

maxgobjects is the maximum number of global objects which can exist at any given
moment in the entire system. If this parameter is not the same on all

151

nodes in the system, then a fatal error is generated to inform the user
that the system is inconsistent.

maxproxies is the maximum number of proxies which can exist at any given
moment on this particular node. A proxy is a substitute task control
block which represent a task residing on a remote node when that task
blocks on a remote object. Proxies are used in situations in which
delayed interaction is required with a remote node.

Mpc.bI is the address of the Multiprocessor Communications Interface
Table. This table contains the entry points of user-provided functions
which constitute the multiprocessor communications layer. This table
must be provided in multiprocessor configurations with all entries
configured. The format of this table and details regarding its entries can
be found in the next section.

G. Multiprocessor Communications interface Table

The format of this table is defined in a C structure, and is given below:

struct mpci info f
procptr init; /* initialization procedure */
proc_ptr getpkt; /* get packet procedure */
procptr retpkt; /* return packet procedure */
proc_ptr send; /* packet send procedure
prccptr receive; /* packet receive procedure */

init is the address of the entry point for the initialization procedure of the
user supplied multiprocessor communicetions layer.

getpkt is the address of the entry point for the procedure called by RTEMS to
obtain a packet from the user supplied multiprocessor communications
layer.

retpkt is the address of the entry point for the procedure called by RTEMS to
return a packet to the user supplied multiprocessor communications
layer.

send is the address of the entry point for the procedure called by RTEMS to
send an envelope to another node. This procedure is part of the user
supplied multiprocessor communications layer.

receive is the address of the entry point for the procedure called by RTEMS to
retrieve an envelope containing a message from another node. This
procedure is part of the user supplied multiprocessor communications
layer.

More information regarding the required functionality of these entry points is
provided in the Multiprocessor chapter.

152

H. Determining Memory Requirements

Since memory is a critical resource in many real-time embedded systems,
RTEMS was specifically designed to allow unused managers to be excluded from the run-time
environment. This allows the application designer the flexibility to tailor RTEMS to most effi-
ciently meet system requirements while still satisfy even the most stringent memory constraints.
As result, the size of the RTEMS executive is application dependent. The Memory Require-
ments chapter of the C Applications Supplement document for a specific target processor
provi,>'-- a wor"'_heet for calculating the memory requirements of a custom RTEMS run-time
environment. To insure that enough memory is allocated for future versions of RTEMS, the
application designer should round these memory requirements up. The following managers may
be optionally excluded:

"* signal 0 partition

"* region • time

"* dual ported memory 0 semaphore

"* I/0 0 message

• event 0 rate monotonic

* multiprocessing

RTEMS based applications must somehow provide memory for RTEMS' code
and data space. Although RTEMS' data space -nust be in RAM, its code space can be located in
either ROM or RAM. In addition, the user must allocate RAM for the RTEMS RAM Work-
space. The size of this area is application dependent and can be calculated using the formula
provided in the Memory Requirements chapter of the C Applications Supplement document
for a specific target piocessor.

All RTEMS data variables and routine names used by RTEMS begin with the underscore
U character followed by an upper-case letter. If RTEMS is linked with an application, then the
application code should NOT contain any symbols which begin with the underscore character
and an upper-case letter to avoid any naming conflicts. All RTEMS directive names should be
treated as reserved words.

1. Sizing the RTEMS RAM Workspace

The RTEMS RAM Workspace is a user-specified block of memory
reserved for use by RTEMS. The application should NOT modify this memory after it is cleared
by '!.e board support package. This area consists primarily of the RTEMS data structures whose
exact size depends many values specified in the Configuration Table. In addition, task stacks
and floating point context areas are dyi.,aiically allocated from the RTEMS RAM Workspace.

The starting address of the RTEMS RAM Workspace must be aligned on a
four-byte boundary. Failure to properly align the workspace area will result in the kfatal direc-
tive being invoked with the EADDRESS error code.

A workshect is provided in the Memory Requirements chapter of the C
Applications Supplement document for a specific target processor to assist the user m calcu-
lating the minimum size of the RTEMS RAM Workspace for this application. The value calcu-
lated with this worksheet is the minimum value that should be specified as the ram-size param-

153

eter of the Conflguration Table. The user is cautioned that future versions of RTEMS may not
have the same memory requirements per object. Although the value calculated is sufficient for a
particular target processor and release of RTEMS, the user is advised to allocate somewhat more
memory than the worksheet recommends to insure compatibility with future releases for a
specific target processor and other target processors. Failure to provide enough space in the
RTEMS RAM Workspace will result in the kjfatal directive being invoked with the
E UNSATISFIED error code.

154

XXI. MULTIPROCESSING MANAGER

A. Introduction

In multiprocessor real-time systems, new requirements, such as sharing data and
global resources between processors, are introduced. This requires an efficient and reliable
communications vehicle which allows all processors to communicate with each other as neces-
sary. In addition, the verifications of multiple processors affect each and every characteristic of a
real-time system, almost always ma king them more complicated.

RTEMS addresses tnese issues by providing simple and flexible real-time multi-
processing capabilities. The executive easily lends itself to both tightly-coupled and loosely-
coupled configurations of the target system hardware. In addition, RTEMS supports both homo-
geneous and heterogeneous target environments.

A major design goal of the RTEMS executive was to transcend the physical
boundaries of the target hardware configuration. This goal is achieved by presenting to the
application software a logical view of the target system where the boundaries between processor
nodes are transparent. As a result, the application developer may designate objects such as tasks,
queues, events, signals, semaphores, and memory blocks as global objects. These global objects
may then be accessed by any task regardless of which processors the object and the accessing
task may reside. RTEMS automatically determines that the object being accessed resides on
another processor and performs the actions required to access the desired object. Simply stated,
RTEMS allows the entire system, both hardware and software, to be viewed logically as a single
system.

B. Background

RTEMS makes no assumptions regarding the connection media or the topology
of a multiprocessor system. The tasks which compose a particular application can be spread
among several processors. The application tasks can interact using a subset of the RTEMS direc-
tives as if they were on the same processor. These directives allow application tasks to exchange
data, communicate, and synchronize regardless of which processor they reside upon.

The RTEMS multiprocessor execution model is multiple instruction streams with
multiple data streams (MIMD). This execution model has each of the processors executing code
independent of the other processors. Because of this parallelism, the application designer can
more easily guarantee deterministic behavior.

By supporting heterogeneous environments, RTEMS allows the systems designer
to select the most efficient processor for each subsystem of the application. Configuring
RTEMS for a heterogeneous environment is no more difficult than for a homogeneous one.
In keeping with RTEMS philosophy of providing transparent physical node boundaries, the
minimal heterogeneous processing required is isolated in the MPCI layer.

1. Nodes

A processor in a RTEMS system is referred to as a node. Each node is
assigned a unique non-zero node number by the application designer. RTEMS assumes that
node numbers are assigned consecutively from one to maxnodes. The node number, node, and
the maximum number of nodes, max nodes, in a system are found in the Multiprocessor
Configuration Table. The max nodes field and the number of global objects, num objects, is
required to be the same on all nodes in a system.

155

The node number is used by RTEMS to identify each rode wh'n
performing remote operations. Thus, the Multiprocessor Communications Interface Layer
(MPCI) must be able to route messages based on the node number.

2. Global Objects

All RTEMS objects which are created with the GLOBAL option will be
known on all other nodes. Global objects can be referenced from any node in the system,
although certain directive specific restrictions (e.g. cannot delete a remote object) may apply. A
task does not have to be global to perform operations involving remote objects. The distribution
of tasks to processors is performed during the application design phase Dynamic iasl." relocation
is not supported by RTEMS.

3. Global Object Table

Every node in a multiprocessor system maintains two tables containing
object information: a local object table and a global object table. The local object table cn each
node is unique and contains information for both local and global objects created on this node.
The global object table contains information regarding all global objects in the system and there-
fore, is the same on every node.

Since each node must maintain an identical copy of the global object table,
the maximum number of entries in each copy is determined by the num objects paramctcr in
the Multiprocessor Configuration Table. This parameter, as well as the max nodes parameter,
is required to be the same on all nodes. To maintain consistency among the table copies, Lvery
node in the system must be informed of the creation or deletion of a global object.

4. Remote Operations

When an application performs an operation on a remote global object,
RTEMS must generate a Remote Request (RQ) message and send it to the appropriate node.
After completing the requested operation, the reroote node will build a Remote Response (RR)
message and send it to the originating node. MNessages generated as a side-effect of a directive
(such as deleting a global task) are known as Remote Processes (RP) and do not require the
receiving node to respond

Other thar, taking slightly longer to execute directives on remote objects, the
application is normally unaware of the location of the objects it acts upon. The exact amount of
overhead required for a remote operation is dependent on the media connecting the nodes and, to
a lesser degree, the efficiency of the user-providcd MPCI routines.

The following shows the typical transaction sequence during a remote

application:

(1) The application issues a directive accessing a remote global object.

(2) RTEMS determines the node on which the object resides.

(3) RTEMS calls the user-provided MPCI routine GETPKT to obtain a packet in which to
build a RQ message.

(4) After building a message packet, RTEMS calls the user provided MPCI routine SEND to
transmit the packet to the node on which the object resides (referred to as the destination
node).

156

(5) The calling task is blocked until the RR message arrives, and control of the processor is
ti anbferred to another task.

(6) The MPCI layer on the destination node senses the arrival of a packet (commonly in an
ISR), and calls the RTEMS rap_announce directive. This directive readies the
Multiprocessing Server.

(7) The Multiprocessing Server calls the user-provided MPCI routine RECEIVE, performs
the requested operation, builds an RR message, and returns it to the originating node.

(8) The MPCI layer on the originating node senses the arrival of a packet (typically via an
interrupt), and calls the RTEMS mpannounce directive. This directive readies the
Multiprocessing Server.

(9) The Multiprocessing Server calls the user-provided MPCI routine RECEIVE, readies the
original requesting task, and blocks until another packet arrives. Control is transferred to
the original task which then completes processing the directive.

If an uncorrectable error occurs in the user-provided MPCI layer, the fatal
error handler should be invoked. RTEMS assumes the reliable transmission and reception of
messages by the MPCI and makes no attempt to detect or correct errors.

5. Proxies

A proxy is an RTEMS data structure which resides on a remote node and is
used to represent a task which must Nock as part of a remote operation. This action can occur as
part of the sm~p and qreceive directives. If the object were local, the task's control block
would be available for modification to indicate it was pending a message or semaphore.
However, the task's control block resides only on the same node as the task. In this case, the
remote node must allocate a proxy to represent the task until it can be readied.

The maximum number of proxies is defined in the Multiprocessor Config-
uration Table. Each node in a multiprocessor system may require a different number of proxies
to be configured. The distribution of proxy control blocks is application dependent and is
different from the distribution of tasks.

6. Multiprocessor Configuration Table

The Multiprocessor Configuration Table contains information needed by
RTEMS when used in a multiprocessor system. This table is discussed in detail in a section in
the previous chapter, Multiprocessor Configuration Table.

C. Multiprocessor Communications Interface Layer

The Multiprocessor Communications Interface Layer (MPCI) is a set of user-
provided procedures which enable the nodes in a multiprocessor system to communicate with
one another. These routines are invoked by RTEMS at various times in the generation and
processing of remote requests. Interrupts are enabled when an MPCI procedure is invoked. It is
assumed that if the execution mode and/or interrupt level are altered by the MPCI layer, that
they will be restored prior to returning to RTEMS.

The MPCI layer is responsible for managing a pool of buffers called packets and
for sending these packets between system nodes. Packet buffers contain the messages sent

157

between the nodes. Typically, the MPCI layer will encapsulate the packet within an envelope
which contains the information needed by the MPCI layer. The number of packets available is
dependent on the MPCI layer implementation.

The entry points to the routines in the user's MPCI layer should be placed in
the Multiprocessor Communications Interface Table. The user must provide entry points for
each of the following table entries in a multiprocessor system:

init initialize the MPCI
getpkt obtain a packet buffer
retpkt return a packet buffer
send send a packet to another node
receive called to get an arrived packet

A packet is sent by RTEMS in each of the following situations:

"* an RQ is generated on an originating node:

"* an RR is generated on a dAstination node;

"* a global object is created,

"* a global object is deleted;

* a local task blocked on a remote object is deleted;

* during system initialization to check for system consistency.

The arrival of a packet at q node may generate an interrupt. If it does not,
the real-time clock ISR can check for the arrival of a packet. In any case, the mp announce
directive must be called to announce the arrival of a packet. After exiting the ISR, control will
be passed to the Multiprocessing Server to process the packet. The Multiprocessing Server
will call the getpkt entry to obtain a packet buffer and the receive entry to copy the message into
the buffer obtained.

1. INIT

The ,NIT component of the user-provided MPCT layer is called as part of
the init exec directive to initialize the MPCI layer and associated hardware. It is invoked
immediately after all of the device drivers have been initialized. This component should be
prototyped as follows:

void)nit (conftbl)
config.table *conftbl;

where conf tbl is the address of the user's Configuration Table. Operations on global objects
cannot be performed until this component is invoked. The INIT component is invoked only once
in the lite of any system. If the MPCI laver cannot be successfully initialized, the fatal error
manager should be invoked.

One of the primary functions of the MPCI layer is to provide the executive
with packet buffers. The INIT routine must cieate and initialize a pool of packet buffers. There
must be enough packet buffers so RTEMS can obtain one whenever needed.

158

2. GETPKT

The GETPKT component of the user-provided MPCI layer is called when
RTEMS must obtain a packet buffer to send or broadcast a message. This component should be
piototyped as follows:

void getpkt (pkt)
unsigned8 **pkt;

where pkt is the address of a pointer to a packet. This routine always succeeds and, upon return,
pkt will contain the address of a packet. If for any reason, a packet cannot be successfully
obtained, then the fatal error manager should be invoked.

RTEMS has been optimized to avoid the need for obtaining a packet each
time a message is sent or broadcast. For example, RTEMS sends response messages (RR) back
to tie originator in the same packet in which the request message (RQ) arrived.

3. RETPKT

The RETPKT component of the user-provided MPCI layer is called when
RTEMS needs to release a packet to the free packet buffer pool. This component should be
prototyped as follows:

void retpkt (pkt)
unsigned8 *pkt;

where pkt is the address of a packet. If the packet cannot be successfully returned, the fatal error
manager should be invoked.

4. RECEIVE

The RECEIVE component of the user-provided MPCI layer is called when
RTEMS needs to obtain a packet which has previously arrived. This component should be
prototyped as follows:

void receive (pkt)
unsigned8 * *pkt;

where pkt is a pointer to the address of a packet to place the message from another node. If a
message is available, then pkt will contain the address of the message from another node. If no
messages are available, this entry pkt should contain NULL-PACKET.

5. SEND

The SEND component of the user-provided MPCI layer is called when
RTEMS needs to send a packet containing a message to another node. This component should be
prototyped as follows:

void send (node, pkt, pktlength)
unsigned32 node;
unsigned8 *pkt;
unsigned32 pkt length;

159

where node is the node number of the destination, pkt is the address of a packet which
containing a message, and pkt.length is the length of the message in bytes. If the packet cannot
be successfully sent, the fatal error manager should be invoked.

If node is set to zero, the packet is to be broadcasted to all other nodes in the
system. Although some MPCI layers will be built upon hardware which support a broadcast
mechanism, others may be required to generate a copy of the packt for each node in the system.

May MPCI layers use the pktJength to avoid sending unnecessary data.
This is especially useful if the media connecting the nodes is relatively slow.

6. Supporting Heterogeneous Environments

Developing an MPCI layer for a heterogeneous system requires a thorough
understanding of the differences between the processors which comprise the system. One diffi-
cult problem is the varying data representation schemes used by different processor types. The
most pervasive data representation problem is the order of the bytes which compose a data
entity. Processors which place the least significant byte at the smallest address are claisified as
little endian processors. Little endian byte-ordering is shown below:

[Byte31 Byte]2 Byte1 I Byte10

Conversely, processors which place the most significant byte at the smallest
address are classified as big endian processors. Big endian byte-ordering is shown below:

Unfortunately, sharing a data structure between big endian and little endian
processors requires translation into a common endian format. An application designer typically
chooses the common endian format to the conversion overhead.

Another issue in the design of shared data structures is the alignment of data
structure elements. Alignment is both processor and compiler implementation dependent. For
example, some processors allow data elements to begin on any address boundary, while others
impose restrictions. Common restrictions are that data elements must begin on either an even
address or on a long word boundary. Violation of these restrictions may cause an exception or
impose a performance penalty.

Other issues which commonly impact the design of shared data structures
include the representation of floating point numbers, bit fields, decimal data, and character
strings. In addition, the representation method for negative integers could be one's or two's
complement. These factors combine to increase the complexity of designing and manipulating
data structures shared between processors.

RTEMS addressed these issues in the design of the packets used to commu-
nicate between nodes. The RTEMS packet format is designed to allow the MPCI layer to
perform all necessary conversion without burdening the developer with the details of the
RTEMS packet format. As a result, the MPCI layer must be aware of the following:

160

"• All packets must begin on a long-word boundary.

"* Packets are composed of both RTEMS and application data. All
RTEMS data is unsigned32 and is located in the first
MIN_HETEROCONV unsigned32's of the packet

" The RTEMS data component of the packet must be in native endian
format. Endian conversion may be performed by either the sending or
receiving MPCI layer.

" RTEMS makes no assumptions regarding the application data compo-
nent of the packet.

D. Operations

1. Announcing a Packet

The mp announce directive is called by the MPCI layer to inform RTEMS
that a packet has arrived from another node. This directive can be called from an interrupt
service routine or from within a polling routine.

E. Directives

This section details the additional directives requited to support RTEMS in a
multiprocessor configuration. A subsection is dedicated to each of this manager's directives and
describes the calling sequence, related constants, usage, and status codes.

161

MP ANNOUNCE-Announce the arrival of a packet

CALLING SEQUENCE:

void mpannounce ()

INPUT: NONE

OUTPUT: NONE

DIRECTIVE STATUS CODES: NONE

DESCRIPTION:

This directive informs RTEMS that a multiprocessing communications
packet has arrived from another node. This directive is called by the user-provided MPCI, and is
only used in multiprocessor configurations.

NOTES:

This directive is typically called from an ISR.

This directive will almost certainly cause the calling task to be preempted.

This directive does n3t generate activity on remote nodes.

162

APPENDIX A
DIRECTIVE STATUS CODES

A

Directive Status Codes

CONSTANT CODE DESCRIPTION
SUCCESSFUL 0 successful completion

E.EXITTED 1 returned from a task

EINOMP 2 multiprocessing not configured
E.NAME 3 invalid object name

EID 4 invalid object id

ETOOMANY 5 too many

ETMOUT 6 timed out waiting

E.DELETE 7 object was deleted while waiting

ESIZE 8 invalid specified size
EADDRESS 9 invalid address specified

E-NUMBER 10 number was invalid
E.NOTDEFMNED 11 item not initialized

EJINUSE 12 resourcer outstanding
EUNSATISFIED 13 request not satisfied

E.STATE 14 task is in wrong state
E.ALREADY 15 task already in state

ESELF 16 illegal for calling task
EREMOTE 17 illegal for remote object
ECALLED 18 invalid environment

EPRIORITY 19 invalid task priority
ECLOCK 20 invalid time buffer
ENODE 21 invalid node id

EYNOTCONFIGURED 22 directive not configured

ENOTIMPLEMENTED 23 directive not implemented

A-1/(A-2 Blank)

APPENDIX B
EXAMPLE APPLICATION

Example Application

/* example.c

" This file contains an example of a simple RTEMS
" application. It contains a Configuration Table, a
" user initialization task, and a simple task.

" This exajnple assumes that a board support package exists
" and invokes the in executiveo directive. The board
" support package also provides the function Task-exittedo
" for the task exitted user-supplied routine.

#include *Irtems.h"

task inittasko;

struct itasks info init-task
Ox6162630_ý, /* init task name "ABC"
1024, /* init task stack size
1, /* init task priority
DEFAULTS, /* init task attributes
init task, /* init task entry point
TSLICE, /* init task initial mode
0, /* init task argument

struct config tbl Config tbl
OxOfOOOO, 7* exective RAM work area
65536, /* exective RAM size
2, /* maximum tasks
0, /* maximum semaphores
0, /* maximum timers
0, /* maximum message queues
0, /* maximum messages
0, /* maximum regions
0, /* maximum partitions
0, /* maximum dp memory areas
10, /* number of ms in a tick
1, /* num of ticks in a timeslice

B-1

1, /* number of user init tasks */init tasktbl, /- user init task(s) table */0, /* number of device drivers
NULL DRVER TABLE, /* ptr to driver address table */NULL_-EXT_TABLE, /* ptr to extension table
NULLMPTABLE, /* ptr to MP config table1;

task userapplication{);

idefine USERAPP NAME 1 /* any 32-bit name; unique helps */

task init task()
{

objid tid;

/* example assumes SUCCESSFUL return value */t_create(USER APP NAME, 1, 1024, NOPREEMPT, FP, &tid);
C start(app_tEd, user_applicaticn, 0);
t_delete(SELF);

task userapplication()
{

/* application specific initialization goes here -/
while (1) { /* infinite locp *//* APPLICATION CODE GOES HERE

* This code will typically include at least one* directive which causes the calling task to
* give up the processor.

*1-

APPENDIX C
GLOSSARY

C

Glossary

Sc ti• A term used to describe an object which has been created
by an application.

aperiodic task A task which must execute only at irregular intervals and
has only a soft deadline.

application In this document, software which makes use of RTEMS.

ASR. see Asynchronous Signal Routine.

asynchronous Not related in order or timing to other occurrences in the
system.

Asynchronous Similar to a hardware interrupt except that it is associated
Signal Routine with a task and is run in the context of a task. The directives

provided by the signal manager are used to service signals.

awakened A term used to describe a task that has been unblocked and
may be scheduled to the CPU.

hijg endian A data r-tpreentation scheme in which the bytes composing
a numeric va, l2 are arranged such that the most significant
;vte is at the lowest address.

bit-mapped A data nording s.cheme iii which each bit in a variable is
used to represent something different. This makes for
,',M•ilct dat:'i rj' l ru-cIlitatioll.

1luck A ph:, :ly , L i) 'ý;t ii us area of II, I(.rv.

C- I

blocked The task state entered by a task which has been previously
started and cannot continue execution until the reason for
waiting has been satisfied.

broadcast To simultaneously send a message to a logical set of
destinations.

BSP see Board Support Package.

Board Support A collection of device initialization and control routines
Package specific to a particular type of board or collection of boards.

buffer A fixed length block of memory allocated from a partition.

calling The processor and -ompiler dependent rules which define
convention the mechanism used to invoke subroutines in a high-level

language. Theec rules define the passing of arguments, the
call and return mechanism, and the register set whicht must
be preserved.

Central This term is eqtivalent to the terms processor and
Processing Unit microprocessor.

chain A data structure which allows for efficient dynamic addition
and removal of elements. It differs from an array in that it

not ihLnited to a predefined size.

coalesce S:,. o -11-.ce.," .- 1. -imestrging adjacent holes into a single larger
e.Sometimes this process is referred to as garbage

ccilecrt1cn.

ConG :•tJration A !ahe ,.viich containf. information used to tailor RTEMS
Tab](- . a PaHi t"tCi r applicatonrl.

ccntext '.1I of the j.•-ocesor 2, '..rs and operating system data
:,true~urts i ..:;ociated ,< a task.

context swtcnr Aiternate to.,rn bor task switch. Taking control of the
i:,rJjJir irom ,-:e ta:Ak and transferring it to another task.

cfý,ritrcl blc'-k aa4 ýi ct u! ust-d h the eXecLIVe to define and contril

core ii.i 1 "his inanial, this term refers to the internal
,x~ '::, '. t)iItv func ,.J11s. In the interest of application

C 2

portability, the core of the executive should not be used
directly by applications.

CPU An acronym for Central Processing Unit.

critical section A section of code which must be executed indivisibly.

CRT An acronym for Cathode Ray Tube. Normally used in
reference to the man-machine interface.

deadline A fixed time limit by which a task must have completed a
set of actions. Beyond this point, the results are of reduced
value and may even be considered useless or harmful.

device A peripheral used Ly the application that requires special
operation software. See also device driver.

device driver Control software for special peripheral devices used by the
application.

directives RTEMS' provided routines that provide support
mechanisms for real-time applications.

dispatch The act of loading a task's context onto the CPU and
transferring control of the CPU to that task.

dormant The state entered by a task after it is created and before it
has been started.

Driver Address A table which contains the entry points for each of the
Table configured device drivers.

dual-ported A term used to describe memory which can be accessed at
two different addresses.

embedded An application that is delivered as a hidden part of a larger
svytem. For example, thr. software in a fuel-injection
control sy :tenm is an embe.ded application found in many
late-model automobiles.

envelope A buffer provided by the MPCI layer to RTEMS which is
used to pars messages between nodes in a multiprocessor
system. It typically contains routing information needed by
the MI'CI. T"he contents ofan envelope are referred to as a
pack ut.

C 3

entry point The address at which a function or task begins to execute.
In C, the symbolic entry point of a function is the function's
name.

events A method for task communication and synchronization. The
directives provided by the event manager are used to service

events.

exception A synonym for interrupt.

executing The task state entered by a task after it has been given
control of the CPU

executive In this document, this term is used to referred to RTEMS.
Commonly, an executive is a small real-time operating
system used in embedded systems.

exported !m object known by all nodes in a multiprocessor system.
An object created with the GI OBAL attribute set will be
exported.

external address The address used to access dual-ported memory by all the
nodes in a system which do not own the memory.

FIFO An acronym for First In First Out.

First In First A discipline for inanp ulaLing entries in a data structure.
Out

floating point A 2crnponent used in computer systems to enhance
coeprocessor ropiorni•ance inr mathematically intensive situations. It is

f'uici!'v "iO"v2d as a logical extension of the primary

freed A resource that has been released by the application to
RI EMS.

global X\n obiect thait has been created with the GLOBAL attribute
Aet anxi exported to all nodes in a multiprocessor system.

handier P'1 - equivalent of a manager, except that it is internal to
RTEMS ,,d forms part of the core. A handler is a collection
(f rc'utinus \,,hic:h provide a related set of functions. For
, p::on , there is a handler used by RTEMS to manage all
o L, (,C t S.

C-4

hard real-time A real-time system in which a missed deadline causes the
worked performed to have no value or to result in a
catastrophic effect on the integrity of the system.

heap A data structure used to dynamically allocate and deallocate
variable sized blocks of memory.

heterogeneous A multiprocessor computer system composed of dissimilar
processors.

homogeneous A multiprocessor computer system composed of one type of
processor.

II) Am RTEMS assigned identification tag used to access an
active object.

IDLE task A special low priority task which assumes control of the CPU
when no other task is able to execute.

Instruction A hardware register containing the address of the current
Pointer instruction.

interface A specification of the methodology used to connect multiple
independent subsystems.

internal address The address used to access dual-ported memory by the node
wh.ch owns the memory.

interrupt A hardware facility that causes the CPU to suspend
execution, save its status, and transfer control to a specific
location.

interrupt level A mask used to by the CPU to determine which pending
interrupts should be serviced. If a pending interrupt is
below the current interrupt level, then the CPU does not
recognize that interrupt.

Interrupt An ISR i', invoked by the CPU to process a pending
Service Routine interrutpt.

I/O An acronyn fnr Input/Out put.

IP An ri.,•,li fur Instruction Pointer.

ISR An a(cr1nv1n fur Iin•terrupt Service Routine.

C5

kernel In this document, this term is used as a synonym for
executive.

list A data structure which allows for dynamic addition and
removal of entries. It is not statically limited to a particular
size.

little endian A data representation scheme in which the bytes composing
a numeric value are arranged such that the least significant
byte is at the lowest address.

local An object which was created without the GLOBAL attribute
set and is accessible only on the node it was created and
resides upon. In a single processor configuration, all objects
are local.

local operation The manipulatln oJ an object which resides on the same
node as the calling task.

logical address An address used by an application. In a system without
memory management, logical addresses will equal physical
addresses.

loosely-coupled A multiprocessor configuration where shared memory is not
used for communicatic n.

major number The hidex of a device driver in the Driver Address Table.

manager A group of rel•tA% RTEMS' directives which provide access
and control over resources.

memory pool Used ir-ttrchangeabiy yith heap.

,':essage .. ;:.- , tity us',d to communicate between tasks.
Mussages a-e sent to rec-sage queues and stored in message
buffers.

message buffer A block of:.ienlry used to store messages.

message queue An RTEMS nbject used to synchronize and communicate
Let _-en task:,; by transporting messages between sending
and Iwce;Vi1ig tasks.

Message Queue A iata .tructure associated with each message queue used
Control Block ,. -TFNIS to manage that message queue.

minor number A numeric value passed to a device driver, the exact usage
of which is driver dependent.

mode An entry in a task's control block that is used to determine
if the task allows preemption, timeslicing, processing of
signals, and the processor mode used by the task. If the
mode specifies that the task is in supervisor mode, then an
interrupt level is used.

MPCI An acronym for Multiprocessor Communications Interface
Layer.

multi, roce-sing fhe simultaneous execution of two or more processes by a
multiple processor computer system.

multiprocessor A computer with multiple CPUs available for executing
applications.

Multiprocessor A set of user-provided routines which enable the nodes in a
Communications multiprocessor system to communicate with one another.
Interface Layer

Multiprocessor A table which contains the information needed by RTEMS
Configuration only when used in a multiprocessor configuration.
Table

multitasking The alternation of execution amongst a group of processes
on a single CPU. A scheduling algorithm is used to*
determine which process executes at which time.

mutual A term used to describe the act of preventing other tasks
exclusion from accessing a resource simultaneously.

nested A term used to describe an ASH that occurs during another
ASR or an ISR that occurs during another ISR.

node A term used to reference a processor running RTEMS in a
multiprocesor system.

non-existent The state occupied by an uncreated or deleted task.

nuineric A component used in computer systems to enhance
coprocessor performance in mathematically intensive situations. It is

typically viewed as a logical extension of the primary
processox'r.

C--7

object In this document, this term is used to refer collectively to
tasks, message queues, partitions, regions, semaphores, and
timers.

object-oriented A term used to describe systems with common mechanisms
for utiliziin, v:iriety of entities. Object-oriented systems
shield the application from ;nplementation details.

operating The software which controls all the computer's resources
system and provides the base upon which application programs can

be written.

overhead The portion of the CPUs processing power consumed by th e
operating system.

packet Aouufhr which cc.ntainýý thenmessages passed between nodes
Wi a rnuitip~oce.;ss r syŽ ea. A packet is the contents of &i

envelope.

partition An RTEMS object which is used to allocate and deallocate
fixed size blocks of memory from an dynamically specified
area of merliory.

Partition A data structure Fssiciated with each partition used by
Control Block RTEMS to manage that partition.

PC Anl'i ac Vrony for Pogranm Counter.

pending ..A :erm used to describe a task Uocked waiting for an event,
m:,essage, semiaphore, or signal.

periodic task A tas'- ovhlch must execute at regular intervals and must
Cin-_ V wi "h a h] .1 deadline.

physical address Ihe acý uI: hardware addrcss, of a rosource.

poll A -.echanism used to determine if an event has occurred by
pcriedica ly J-'ecking for a particular status. Typical events
J....ude iirri:,al ot data, corripletion of an action, and errors.

pool Ac"-c.,oa f:,. which resources are allocated.

portability A term us(cI ý_) duscrib:j the ase with which software can
be ii,,t(.d i-, anothei computer.

posting The act of sending an event, message, semaphore, or signal
to a task.

preempt The act of forcing a task to relinquish the processor and
dispatching to another task.

priority A mechanism used to represent the relative importance of
a set of items.

processor The percentage of processor time used by a task or a set of
utilization tasks.

Program A hardware register containing the address of the current
Counter instruction.

Program Status A microprocessor register typically containing the processor
Register execution mode, interrupt level, trace mode, and condition

codes.

proxy An RTEMS control structure used to represent, on a remote
node, a task which must block as part of a remote operation.

Proxy Control A data structure associated with each proxy used by RTEMS
Block to manage that proxy.

PSR An acronym for Program Status Register.

PTCB An acronym for Partition Control Block.

PXCB An acronym for Proxy Control Block.

quantum The application defined unit of time in which the processor
is allocated.

queue Alternate term for message queue.

A data structure managed using the FIFO discipline.

QCB An acronym for Message Queue Control Block.

ready A task occupies this statc when it is available to be given
control of the CPU.

real-time A term used to describe systems which are characterized by
requiring deterministic response times to external stimuli.

C-9

The external stimuli require that the response occur at a
precise time or the response is incorrect.

reentrant A term used to describe routines which do not modify
themselves or global variables.

region An RTEMS object which is used to allocate and deallocate
variable size blocks of memory from a dynamically specified
area of memory.

Region Control A data structire associated with each region us,.,t by
Block RTEMS to manage that region.

registers Registers are locaticns physically located within a
component, typiclly used for device control or genera!
purpose sko rage.

remote Any object that does not reside on the local node.

remote The manipulation of an object which does not reside on the
operation same node aLs the calling task.

return code Also known as error code or return value.

resource A hardware or softw,'are entity to which access must be
controlled.

resume Rcmoving a task from thný suspend state. If the task's -tate
.s ready following a call to the tresume directive, then the
task is available for scheduling.

return code An value re>=rn.-d by RTEMS directives to indicate the
c:::im leti.i, a-ti, of fh e directive.

RNCB An acr'mvu• for }begien Coutrol Block.

round-robin A task scheduling discipline in which tasks of equal priority
ar- ex-cuted the ordcr in which they are made ready.

RS-232 A standard for serial communications.

running iThe tAate ,u"f ý-. rate monotonic timer while it is being usd
to dulineate a [erio(d. The timer exits this state by either

(,r being canceled.

(71

schedule The process of choosing which task should next enter the
executing state.

schedulable A set of tasks which can be guaranteed to meet their
deadlines based upon a specific scheduling algorithm.

segments Variable sized memory blocks allocated from a region.

semaphore An RTEMS object which is used to synchronize tasks and
provide mutually exclusive access to resources.

Semaphore A data structure associated with each semaphore used by
Control Block RTEMS to manage that semaphore.

shared memory Memory which is accessible by multiple nodes in a
multiprocessor system.

signal An RTEMS provided mechanism to communicate
asynchronously with a task. Upon reception of a signal, the
ASR of the receiving task will be invoked.

signal set A thirty-two bit entity which is used to represent a task's
collection of pending signals and the signals sent to a task.

SMCB Aui acronym for Semaphore Control Block.

soft real-time A real-time system in which a missed deadline does not
compromise the integrity of the system.

sporadic task A task which executes at irregular intervals and must
comply with a hard deadline. A minimum period of time
between successive iterations of the task can be guaranteed.

Sit An acronynn for Status Register.

stack A data structure that is managed using a Last In First Out
(LIFO) discipline. Each task has a stack associated with it
which is used to store return information and local
variables.

status code Also known as error code or return value.

status register A microprocessor register typically containing the processor
execution mode, interrupt level, trace mode, and condition
codes.

C-1I

suspend A term used to describe a task that is not competing for Ihe
CPU because it has had a tsuspend() directive.

synchronous Related in order or timing to other occurrences in tUie
system.

system call In this document, this is used as an alternate termn fr
directive.

target The system on which the application will ultimnati;'v
execute.

task A logically complete thread of execution. The CPU i'S
allocated among the ready tasks.

Task Control A data structure associated with each task used by RTEMS
Block to manage that task.

task switch Aiternate termin. olo- for context switch. Taking control of
the processor from one t~isk and given to another.

TCB An acronym for Task Control Block.

tick The basic unit of time used by RTEMS. It is a
user-configurable number of milliseconds. The current tick
,2xpires when the tin tick directive is invoked.

tightly-coupled A multiproce.S-ssor configuration system which
comnri-mnicat-_s via sharei memory.

timeout An argument provided to a number of directives which
determ nnes. tl.,_ ina x.-nn length cf time an application task
is wiiiig to k'ait for the directive to complete.

timer /.A, T., object usedi to send ev-,ias to the calling taV-k,
at a later time.

Timer Control - data strucLu'w assr'ia tej with each timer used by RTEMS
Block z0 rnnage that

timeslicing A task !chedu1i-g discipline in which tasks of equal priority
a,- -xecuted for a specific period of tithe before beiug
preenipted by another task.

C-12

timeslice The application defined unit of time in which the processor
is allocated.

TMCB An acronym for Timer Control Block.

transient A temporary risE in system activity which may cause
overload deadlines to be missed. Rate Monotonic Scheduling can be

used to determine if all deadlines will be met under
transient overload.

user extensions Software routines provided by the application to enhance
the functionality of RTEMS.

User Extension A table which contains the entry points for each user
Table extensions.

User A table which contains the information needed to create a1.d
Initialization start each of the user initialization tasks.
Task Table

user-provided Alternate term for user-supplied. This term is used to
designate any software routines which must be written by
the application designer.

user-supplied Alternate term for user-provided. This term is used to
designate any software routines which must be written by
the application designer.

"vector Memory pointers used by the processor to fetch the address
of routin•es which will handle various exceptions and
interrupts.

wait queue The list of tasks blocked pending the release of a particular
resource. Message queues, regions, and semaphores have a
wait queue associated with them.

yield \VhWln a task voluntarzly releases control of the prncesscr.

C- 13

RTEMS Directives
Initialization Manager Event Manager

initexec Initialize RTEMS ev send Send event to a task
Task Manager ev receive Receive event condition

t-create Create a task Signal Manager
t ident Get ID of a task as catch Establish an ASR
t start Start a task as-send Send signal set to a ta,'kt restart Restart a task Partition Manager
t-delete Delete a task
t_suspend Suspend a task pt create Create a partition
t_resume Resume a task ptident Get ID of a partition
t_setpri Set task priority ptdelete Delete a partition
t-mode Change current task's mode ptgetbuf Get buffer from a par titiont getnote Get task notepad entry pt retbuf Return buffer to a par~iion
t setnote Set task notepad entry Region Manager

Interrupt Menager rn create Create a region
icatch Establish an ISR rn ident Get ID of a region

Time Manager rn_dElete Delete a region
rn getseg Get segment from a regiontmiset Set system date and time rn retseg Return segment to a regiontinget Get system date and time Dual-Ported Memory Manager

tin wkafter Wake up after interval
tin wk-. hen Wake up when specified dp create Create a port
trnevafter Send event set after interval dp ident Get ID of a port
tmevwhen Send event set when specified dp delete Delete a porttm evevery Send periodic event set dp_2internal Convert external to internal addresstin delete Delete timer event dp2erternal Convert internal to external aidr•'>•
tin_tick Announce a clock tick I/O Manager

Semaphore Manager de init Initialize a device driver
sin_create Create a semaphore de -open Open a deviceSM .i"(It ID of a semaphore de close Close a devicesGndelete Delete a semaphore de read Read from a devicesndep Acquire a semaphore de write Write to a device
sm-v Release a semaphore de-cntrl Special device services

Message Manager Fatal Error Manager
q~create Create a queue k-fatal Invoke the fatal error handler
q'ident Get ID of a queue Rate Monotonic Manager
qdelete Delete a queue rm. create Create a period
q_send Put message at rear of a queue rm-cancel Cancel a period
qurgent Put message at front of a queue rm-delete Delete a periodq~broadcast Broadcast N messages to a queue m-period Conclude current/Start next period
q_receive Receive message from a queue M proc Manager
qjflush Flush all messages on a queue Multiprocessing Manager

mnp_announce Announce the arrival of a packet

C-14

INITIAL DISTRIBUTION LIST

U.S. Army Materiel System Analysis Activity
AI'TN: AMXSY-MP (Herbert Cohen)
Aberdeen Proving Ground, MD 21005

lIT Research Institute
ATTN: GACIAC
10 W. 35th Street
Chicago, IL 60616

Naval Weapons Center
Missile Software Technology Office
Code 3901C, ATTN: Mr. Carl W. Hall
China Lake, CA 93555-6001

On-Line Applications Research
2227 Drake Avenue SW, Suite 10-F
Huntsville, AL 35805 3

Louis H. Coglianese
Advanced Technology
IBM Corporation Federal Systems Company
Route 17C, Mail Drop 0210
Owega, NY 13827

Kenneth Gregson
MIT Lincoln Laboratory
244 Wood Street
Lesington, MA 02173

John R. James
Washington Engineering Division
Intermctrics, Inc.
7918 Jones Branch Drive
Suite 710
McLean, VA 22012

Keng Low
SSC Lab
M.S. 4002
2550 Bcckleymeade Avenue
Dallas, Texas 75237

Jeff Stewart
Software Engineering Institute
RM 5505
Carnegie Mellon University
Pittsburgh, PA 15213

Dist-1

INITIAL DISTRIBUTION LIST (Continued)

_Copies

James M. Short
ODDRE&E (R&AT)
RM. 3D1089, The Pentagon
Washington, D.C. 20301-3080

Connie Palmer
McDonnel Douglas
Computer & Software Technology Ctr
MS: 3064285
St. Louis, MO 63133-0516

Chris Anderson
Ada-9X Project Office
P1/VTET
Kirkland AFB, NM 87117-6008

Virginia Castor
ODDRE&E
RM. 3EI18, The Pentagon
Washington, D.C. 20301-3080

Sholom Cohen
Software Engineering Institute
Carnegie--Mellon University
Pittsburgh, PA 15213

CEA Incorporated
Blue Hills Office Park
150 Royall Street
Suite 260, ATTN: Mr. John Shockro
Canton, MA 01021

VITA
10229 N. Scottsdale Rd.
Suite B, AJTN: Mr. Ray Alderman
Scottsdale, AZ 85253

Westinghouse Electric Corp.
P.O. Box 746-MS432
ATTN: Mr. Eli Soloman
Baltimore, MD 21203

Dept. of Computer Science B-173
Florida State University
ATN: Dr. Ted Baker
Tallahassee, FL 32306-4019

Dist-2

INITIAL DISTRIBUTION LIST (Continued)

DSD Laboratories
75 Union Avenue
AITN: Mr. Roger Whitehead
Studbury, MA 01776 1

AMSMI-RD 1

AMSMI-RD-GC, Dr. Paul Jacobs 1

AMSMI-RD--GC-S, jerald E. Scheiman 1
Phillip R. Acuff 4

AMSMI-RD-GC-N Wanda M. Hughes 10

AMSMI-RD-BA 1

AMSMI-RD-BA-C3, Bob Christian 1

AMSMI-RD-BA-AD, Bruce Lewis 1

AMSMI-RD-SS 1

AMSMI-RD-CS-R 15

AMSMI-RD--CS-T 1

AMSMI-RD-GC-lP, Mr. Fred H. Bush 1

CSSD-CR-S, Mr. Frank Poslajko 1

SFAE-FS-ML-TM, Mr. Frank Gregory 1

SFAF,-AD-ATA-SE, Mr. Julian Cothran 1
Mr. John Carter 1

t) uS. GUVERNM ENTPRIINTING OFFICF 1993 533-- 143 /80119

Dist-3/(Dist-4 Blank)

