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CHAPTER I

INTRODUCTION

1.1 Objectives

Alloys based on the intermetallic compounds have many potentially

attractive properties for structural use at high temperatures. These

include high stiffness and strength, low density, and oxidation resis-

tance. There are also a number of interesting consequences of their

ordered nature which make them interesting and fruitful subjects of

research. For example, the character and deformation behavior of

lattice dislocations are subject to more rigorous constraints, and are

more complex, than in disordered materials. It is probable that

ordering also affects the structure and deformation of grain bound-

aries but this is a question which has received little attention from

a fundamental viewpoint.

These are issues of practical importance as well, since most

intermetallics are brittle to the point of being unusable. In most

systems, that is a difficult property to moderate. However, one of

the factors motivating the continuing interest in Ni3Al is the remark-

able effect of boron on ductility. Small amounts of B can increase

1



2

the strain-to-failure from zero to over 30% and is clearly related to

grain boundary behavior.

Another factor is the scientific interest excited by the anoma-

lously increasing yield strength with increasing temperature demon-

strated by Ni 3Al and some other L1 2 structured compounds. It is this

behavior which is in large part responsible for the remarkable prop-

erties of Ni-based superalloys, in many of which, Ni3 Al is the major

phase. These materials are of major technological importance.

The general objective of this work was to investigate the ques-

tion of grain boundary structure in ordered alloys. Specifically, the

goal was to determine the structure of one or more boundaries in Ni3 Al

and identify in what ways the ordered nature affects the boundary

structure, e.g., whether the structure is characteristic of the

ordered lattice or the disordered lattice. Early in the study, it

became evident that there were aspects of lattice dislocation behavior

which had not been adequately addressed in the literature and which

clearly had the potential for affecting deformation behavior at grain

boundaries, and hence, apparent grain boundary behavior. Conse-

quently, a parallel study on aspects of the character of certain

configurations of lattice dislocations was performed. In addition,

the effects of B on Ni3Al are so pronounced they may provide addi-

tional insight into fundamental issues. Therefore, B containing

alloys were made and investigated, although in a more cursory manner.

Notable differences between the two types of materials are noted and

some effects of B are discussed.
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Following a brief overview of ordered alloys, the two topics

(grain boundaries and lattice dislocations) are treated separately

with the grain boundary work in Chapters II and III, and lattice

dislocations in Chapters IV and V. The implications of the findings

and the relationship of the two areas of investigation are considered

in Chapter V, with summary and conclusions in Chapter VI.

1.2 Ordered Alloys: Ni 3Al

Ni 3Al is of the Ll2 structure, which may be thought of as face-

centered cubic with Al atoms at the cube corners and Ni atoms at the

face center position (Fig. 1). An equivalent description is that of

four interpenetrating cubic lattices, one of which is Al and three are

Ni. More properly it is primitive cubic with four atoms per lattice

point. Because the ordering process can originate at more than one

point, a single grain can contain equivalent domains which differ only

by choice of origin (Fig. 2). The domains are separated by interfaces

called Anti-Phase Boundaries (APB). Atomic neighbors are mismatched

by type across the boundary, therefore, it is a higher energy con-

figuration. The APB energy is dependent upon the magnitude of the

ordering energy and upon the plane of the boundary, i.e., the types

and distances of mismatched bonds. Ni3Al is ordered to the melting

point: consequently thermal APBs can only be retained by rapid solidi-

fication. The Burgers vectors of perfect dislocations (those whose

passage leaves the cystal structure unaltered) are translation vectors



w4

FIGURE 1. Unit cell of Ni Al. Open circles-Al, closed-Ni,
1/2[101] and [011] vectors shown.
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FIGURE 2. Two dimensional structure with APB's, indicated by
lines, and 3 superpartials two of which are paired
as a superdislocation. (11)
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of the ordered lattice and are usually double the length of those in

the disordered crystal (Figs. 1 and 2).lh2

While the structure of the disordered crystal is completely

described by one lattice, and that of the ordered crystal is com-

pletely described by a different lattice, the terminology and view-

point often employed are based upon the disordered lattice. This is

partly due to consideration of the transformation from the disordered

state to the ordered state. All atom sites are the same before and

after ordering. Whereas prior to ordering, A and B, atoms were

randomly distributed on all sites, after ordering they are segregated

to particular subsets of the same sites. In a sense, the order is

overlayed upon the disordered lattice. The disordered lattice is often

called the fundamental lattice and the ordered lattice is called the

superlattice. Dislocations of the ordered lattice are called super-

dislocations.

A more rigorous terminology is to refer to the ordered and disor-

dered lattices and perfect dislocations in each. However, when the

ordering energy is relatively low, some phenomena in the ordered

structure are more easily visualized and explained from the basis of

the disordered (fundamental) lattice. It is also usually true that

the operative slip systems in ordered alloys are not the close-packed

directions and planes of the ordered lattice. Hence the persistence,

and utility, of the superlattice terminology. Both sets of terms will

be used here.
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The strain energy of a dislocation in either lattice decreases if

it splits into two partial dislocations. They are separated by a

planar fault however, and the fault energy must be sufficiently low

that the creation of the fault requires less energy than the strain

energy liberated by separating the partials. There have been reported

observations of several different dislocation and fault configura-

tions.1,3-6 However, the more complicated arrangements involving

extrinsic faults occasionally observed in y-y' alloys5 have not been
reported in single phase Ni 3Al. The three important faults are the

APB, the superlattice intrinsic stacking fault (SISF), and the complex

stacking fault (CSF) [Fig. 3(a)]. Across the APB,2 the stacking is

correct but the order is wrong. Across the SISF, which is the

intrinsic stacking fault of the ordered lattice, the stacking is wrong

but the order is correct. The CSF is the intrinsic stacking fault of

the disordered lattice and has both incorrect order and stacking. The

SISF is the lowest energy fault, the APB next, and the CSF is highest.

If the fault energy is low, the separation between super-partials may

be quite large7,8 and the dislocations are nearly independent. It is

in such a case that it is advantageous to consider the disordered

(fundamental) lattice as the basis. In Ni 3Al, the relevant perfect

dislocation is a <110> which can split into either a/2<l10> or

a/3<112> superpartials as in Figs. 4 and 5. The superpartials can

further split into Shockley partials, as shown. In principal, it is

possible to convert one pair of superpartials into the other by adding

opposite Shockley partials to each superpartial, as in the reaction of



o 0 0 0 I-A 0 0 0 b0 0

@ 000 0 *0

FIGURE 3. Important faults in Ni3 A1. Large circles one plane above,
small circles one plane below. Closed Al, open Ni. a) L1 2
b) APE resulting from translation of upper plane of
1/2 [101] c) SISF resulting from translation of 1/3 [ill]
d) CSF resulting from translation of 1/6(112] (after 66)
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Fig. 6. Such a reaction could occur through the nucleation of a loop

of Shockley partial in the faulted region between superpartials.

Effects of ordering on grain boundaries are discussed in Chapter II.
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coupled dislocation.



CHAPTER II

GRAIN BOUNDARY STRUCTURE: BACKGROUND AND THEORY

2.1 Background

2.1.1 Structure and Properties

It has long been recognized that grain boundaries can play a

significant role in the deformation behavior of metals and that they

behave differently than the bulk crystal. Macroscopic issues such as

dependences of properties of polycrystals upon grain size, concentra-

tion of deformation in boundaries at very high temperatures, grain

boundary embrittlement and grain boundary diffusion are among boundary

related phenomena well known for many years. 9 ' 1 0  Recent years have

brought an appreciation of macroscopic issues related to elastic and

plastic compatibility and slip transmission through grain

boundaries. 11

For many years, boundaries were thought to consist of thin layers

of amorphous cement which bond the crystallite grains together.9 By

1950, dislocation models of boundary structure began to appear, 1 0 ' 1 1

and in 1955, a treatment utilizing a continuous surface of disloca-

11. 12
tions was introduced. By this time, the power of the electron

13
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microscope was beginning to contribute to the foundations established

by elegant, but low-resolution, etch-pit and decoration techniques. 1 0

In the late 60's and early 70's there occurred both increasing

interest in the role of boundaries, particularly as sources and sinks
13-15

for lattice dislocations, and the development of an analytical

model of boundary structure.16 Bollmann's O-lattice theory was based

upon descriptions of low-angle boundaries and the Coincident Site

Lattice (CSL) model of boundary structure. 1 7  The approach has been

refined and interpreted by numerous investigators,18-23 and has been

utilized successfully in transmission electron microscope studies of

boundary structure. 24-27

28
X-ray diffraction experiments and calculated boundary struc-

tures2 9 -3 6 indicate that boundaries can undergo significant relaxation

from an ideal CSL arrangement. Individual atoms relax to new posi-

tions and the crystals may translate both along the interface and

normal to it. As a consequence the CSL model should not be expected

to provide a rigorous model of the actual structure of the boundary.

However, the model is well accepted as providing an accurate descrip-

tion of the periodic nature of the boundary and of the Burgers vectors

of interfacial dislocations.
3 7

2.1.2 Boundaries in Ni 3 Al

Notable reported experimental findings in Ni 3 Al that relate

particularly to grain boundary behavior include: 1. Single crystals of
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Ni 3Al are ductile at all temperatures. 3 8  2. Polycrystals are brittle

except at quite high temperatures and fail intergranularly. 39,40 3.

Small amounts (< 1%) of B increase the ductility of Ni-rich poly-

crystals to > 10%. 41 . The magnitude of the B effect upon ductility

decreases with increasing Al to no effect in slightly Al-rich com-

positions. 42

In many cases, grain boundaries play key roles in yield behavior.

Sometimes the role is a second-order effect such as slip incompati-

bility at boundaries due to an insufficient number of slip systems. 4 3

In other instances it is a first-order effect such as interfering with

slip transmittal or having low cohesive strength, as has been thought

in the case of Ni3Al.42 The discovery by Aoki and Izumi that 0.5 at.%

B increased the room-temperature tensile ductility of Ni 3Al from 0 to

over 30% has been principally responsible for the recent interest in

the compound.41 Until very recently, the effect has generally been

attributed entirely to increased grain boundary cohesion. However,

Baker, Schulson and Horton44 have suggested that B affects slip trans-

mittal and suggest that the boundaries disorder. Several calculations

on the effects of B and other segregants on boundary energy in several

systems support the case for increased cohesion.45-48 These have

indicated that the principal effect of B is to increase the Ni-Ni bond

strength. Several experimental studies have been done on the

chemistry of boundaries confirming preferential segregation of B to

boundary rather than free surfaces. 4 9 5 1
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The structure of boundaries in ordered alloys has been considered

by Clark and Pond52 and others53-56 and will be discussed somewhat

more below. Chen, Voter, and Srolovitz55 have performed an atomistic

simulation for <100> tilt boundaries in Ni3 Al and Foiles 5 7 has cal-

culated <100> twist and tilt boundaries using the embedded atom

approach. Both have found Ni-rich boundaries to be of lower energy

than stoichiometric or Al-rich boundaries. Foiles has found that for

off-stoichiometric compositions the boundaries act as sinks for the

excess species. Miller and Horton have studied segregation using atom

probe field ion microscopy and found B segregated more strongly to

high-angle than to Z - 3 boundaries. They also observed segregation to

APB's.58 Sieloff, et al. utilizing the same technique, concur, and

add that no disorder of the crystals at the boundary is observed. 5 9

Baker and Schulson have observed by AEM the effect of B on the concen-
60

tration of Al in the grain boundaries. They found that B enhances

the depletion of Al from the boundary.

2.2 The DSC Lattice Model of Boundary Structure

19

The discussion here follows in part Smith and Pond, Clark and

Pond 5 2 and Grimmer, Bollman, and Warrington. 1 8 ' 6 1  In the most basic

form, the model is quite simple. It is assumed that: 1. The boundary

is infinitesimal in width--all atoms on one side of a planar boundary

occupy sites of that crystal, and 2. The lowest energy boundary

structures are postulated to be those in which the greatest numbers of
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interfacial atoms occupy positions belonging to both lattices, i.e.,

coincidence sites.

Since all the atoms occupy sites of one or the other crystal, all

possibilities are included by consideration of two interpenetrating

lattices differing by a pure rotation. Only certain rotations result

in a high density of coincident sites, however, and these are assumed

to be favored. If the rotation is a coincidence orientation, there

can be constructed a three dimensional lattice of coincident sites

(Fig. 7). The ratio of the volume of the CSL unit cell to the crystal

unit cell is also the ratio of CSL sites to lattice sites and is

usually labeled Z. E does not necessarily imply a unique rotation,

i.e., two or more different CSL's may yield the same E. Conceptually

then, the bicrystal is constructed by choosing the boundary plane then

placing atoms on lattice 1 on one side of the plane and on lattice 2

on the other side. Boundary planes which include high areal densities

of coincidence sites are taken to be preferred. However, an

apparently arbitrary plane might be made up of strain-free micro-

facets along high CS density planes.

A slight misorientation from the exact CSL rotation may be

thought of aF a distortion of the CSL at the boundary exactly

analogous to th4. distortion of crystal lattice planes at a low-angle

boundary. It is observed that in low-angle boundaries, the distortion

"condenses" to discrete areas of high distortion -- dislocations--

separated by regions of low distortion wherein the lattice structure

is preserved. The lowest energy configuration consists of an array of



18

*i a

0 a0

'a 91.

a9 A 1ý

A 0aS

Al V CI 0

1 40

13 A 41**

4Q 0 ~ r. I *
A quI A4 V4 w

9 9 1Iwa

S q A .0

It 0

0* 0



19

discrete translations of the crystal lattice, i.e., perfect lattice

dislocations. Low-angle boundaries consisting of arrays of a single

Burgers vector (a), and two different Burgers vectors (b) are shown in

Fig. 8. The boundary model is based upon extension of the analogy to

the condensation of distortion of the CSL to an array of dislocations

such that the CSL structure is preserved between them. These grain

boundary dislocations, gbds, are not lattice dislocations but are

characteristic of each CSL.

Translation vectors of the structure formed by the two inter-

penetrating lattices must be translation vectors of either lattice, or

vectors which connect sites of the two lattices. Only such vectors

preserve the structure. The latter are the difference vectors between

translation vectors (not necessarily equivalent) of the two sub-

lattices.

d - t 2 - t1  2.1

Where t 2 and t 1 are translation vectors in the respective sub-

lattices. The three smallest magnitude non-coplaner differences form

a basis of the DSC lattice. The term DSC stands for "Displacement-

Shift-Complete", a reference to the fact that the DSC vectors are the

shortest translation vectors which preserve the bi-lattice structure.

Once these vectors (grain boundary dislocation Burgers vectors) are

determined, the analysis of the dislocation content of the interface

may proceed using Frank's solution for low-angle boundaries. 1 0
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Frank's formula was developed as a description for the disloca-

tion content of an interface. Where the Burgers vectors are those of

lattice dislocations, it accurately describes low-angle boundaries and

is usually simplified with a small angle approximation. In high-angle

boundaries, it is used to calculate the DSC dislocation content of a

low-angle boundary between two CSLs.

The disregistry between equivalent points a distance r from the

origin in two lattices differing by the angle theta is re. Coinci-

dence of the points (the structure of the interface) is re-established

if translations simming to -re are accomplished along r. The trans-

lations are accomplished by dislocations, each of them b . The total

Burgers vector content of the portion of the interface traversed by r

is -re. It is assumed that the interface has equilibrated, i.e., the

structure contains the fewest possible dislocations. If the Burgers

vectors are known, the line directions and densities are then given

by,

S- E x bx)] xv 2.2

we t i are th rae2.3

where the bare the reciprocal lattice vectors,1=i
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b x bb - 2.4

u is the unit rotation axis, and v is the boundary plane unit normal.

Although it yields no more useful information, the O-lattice

approach is a somewhat more elegant solution and is briefly described

here. The initial portion of the analysis includes the solution for

the CSL and the DSC vectors as a special case for which it is not

necessary to introduce the O-lattice.

The fact that coincidence relationships are not described by, at

least, piece-wise continuous functions of the transformation render

that approach incapable of directly dealing with misorientations from

exact CSL rotations. Therein lies the analytical advantage of the

O-lattice theory. For any misorientation there exists a lattice of

coincident equivalent points or lines. It consists of all the points

in lattice two which are coincident with an equivalent point in

lattice 1. (which is not to say that all points in either lattice are

equivalent). All of these points are possible origins for the rota-

tion, hence the term O(rigin)-lattice. At particular discrete values

of the rotation, some O-points happen to fall on lattice points, i.e.,

coincidence sites. The coincidence sites are then a subset of the

O-points. The feature of continuity allows the use of straightforward

linear algebra to calculate the dislocation content of the interface.
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A point in lattice 1 is transformed to a point in 2 by the trans-

formation A. A may be any affine transformation -- a homogeneous

combination of rotation, expansion or shear (parallel lines remain

parallel).

+2 " -•tx 2.5

If the points are equivalent, then also

x +tl . 2.6

Combining these,

-"(I - l)-1 T-7 tl 2.7

The vectors x2 describe points differing by translation vectors

from, and hence equivalent to, the point described by Al. The x2 then

describe 0 points and Eq. 2.7 is usually written

, t0 (I - A71)-' t - T-1 t 2.8

t-1 is some cell in the O-lattice and can be manipulated to obtain the

unit cell. In the case that A describes a coincidence relation, the

determinant of T'- 1 (the volume of the cell enclosed by the three

vectors) is Z/n which implies that the CSL unit cell volume is n times

that of the O-lattice cell. The CSL cell, J, is obtained by first
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multiplying one column of T-1 by n, so that det C - Z. (n can be the
m 

a

product of several factors. One column should be multiplied by each

factor such that each element becomes an integer). The columns are

then -- nipulated by adding multiples of one column to another. The

convention is to make one column lie as nearly as possible along the

rotation axis, the cell as near orthogonal as possible, and the

vectors as short as possible.

The objective at this point is the set of perfect dislocations of

the bi-lattice--the DSC unit cell, D. In the primitive cubic case,

the DSC lattice is the reciprocal lattice to the CSL,

-1?
-E 1 2.9

As will be discussed, D can be modified to describe the fc (or bc)

case. If the preceding discussion were to be restricted to the CSL

without reference to the 0-lattice, the notation would change in the

following ways: 1. al, m2 in the O-lattice case refer to any point in

crystals 1 and 2, respectively, while in the CSL case they refer only

to lattice sites. 2. The transformation A is restricted to a coinci-

dence transformation in the CSL case. 3. For the CSL case, the words

"coincident" and "coincidence site" should be substituted for

"equivalent" and "O-point". The DSC vectors of Eq. 2.9 combined with

Franks solution for low-angle boundaries are sufficient to solve for

the dislocation structure of the boundary, and that approach has been

utilized throughout the analyses in this work.
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The O-lattice solution for a near-CSL high angle grain boundary

is based on the following concept. Consider two transformations which

differ slightly, 6 and A', e.g., coincidence and near-coincidence

orientations. The O-lattices obtained for each will differ slightly,

JI- AI)x inTx - 2.10

IA')A' Tx t 2.11-=--0

which yields,

o= ('-IT) x - Bx 2.12

and B is then the transformation from one O-lattice to the other. The

boundary has then become a low-angle boundary between two 0-lattices,

which gives rise to a second order O-lattice, the 02-lattice. Eq. 2.8

becomes, in this case,

xo (I (- B--1d 2.13

where d is a translation vector of the O-lattice, the shortest of
which are the DSC Burgers vectors. In Eq. 2.8, x describes the

--o

O-lattice, a the transformation between crystals, and t is a trans-

lation vector of lattice 1. In Eq. 2.13, EO2 describes the 02

lattice, B the transformation between the 0-lattice and the 0'-lattice
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and d is a translation vector of the 0-lattice. Equation 2.13 is the

O-lattice solution for the dislocation content of the interface.

The misorientation forming the grain boundary can always be

described by a pure rotation. A simple rotation, however, is a matrix

of rank 2 and a rank 3 description of a matrix of rank 2 will have a

determinant - 0, i.e., the volume of the O-lattice cell - 0. This

means that the lattice is adequately described by a line lattice. In

the third dimension, the O-points can be thought of as 0-lines. A

suitable choice of transformation which is not pure rotation but which

accomplishes the same configuration will yield a solution of rank 3.

The choice of transformation is non-physical and some solutions simply

contain less information than others. In order to solve for the CSL

and DSC lattices, it is necessary that we choose one that contains

adequate information, i.e., det 0 0. Different solutions consist of

different choices of equivalent point in lattice 2 which is related to

a point in lattice one. As noted above, the smallest difference

vectors will be obtained only through the choice of translation

vectors which describe the positions of sites which are nearest

neighbors after the transformation. In most cases, that will not be

differences between equivalent vectors. An equivalent transformation

which is made up of rotation and shear and which does relate nearest

neighbors may be obtained by operating on R with a unimodular trans-

formation U. (A unimodular transformation has determinant +1.) Such

a choice will also yield a solution with non-zero determinant.
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(I - A-1) . (I - UR ) 2.14

2.3 Calculation of DSC Vectors

Tables which include the rotation matrix, CSL, and DSCL for sigma
18

up to 49 are available in the literature, as are listings of

axis/angle pairs through Z = 101.62 Several of the boundaries inves-

tigated in the course of this study required consideration of high-

sigma disorientations. In addition, the DSCL's were recalculated in

all cases using the rotation axis as assigned on the stereogram used

during TEM investigations, as opposed to transforming one set of

coordinates.

The rotation matrix is given in terms of the angle and axis, u/e,

by,63

u12 (l-ce)+ce lu 2 (l-c8)-u 3se ulu3 (l-c8)+u2 s1

R lU2 (l-ce)+u3 se u2
2 (l-ce)+ce u2 u3 (1-ce)-uS8s 2.15

( 1 - - (2-ce'2 2 3I
U3Ul(l-ce)-u 2 se u2 u3 (u-ce)+uls% 3 2(I-ce)+ce I

where ce - cose and se - sine.

The procedure described by Eqs. 2.8, 2.9 and 2.14 was used to calcu-

late the CSL and DSCL. U of Eq. 2.14 was arrived at by trial and

error. It is taken to be made up of elements of 0 or +1. For low Z

disorientations, it often looks much like the rotation matrix with the
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elements all rounded to such values. For high V's, it may be quite

dissimilar. The procedure used here (after exhausting guesses similar

to R) was to compile a list of U's and try them in succession until a

solution with n - 1 or 2 is obtained. Solutions at larger n can

require much matrix manipulation to determine C. The results for

Z > 49 are presented in Table 1.

2.4 Boundaries in Ordered Materials

Ordering of a lattice adds additional information about the

surroundings at a given point in the lattice. Whereas before ordering

lattice points were compared based on the presence of other points in

particular locations, after ordering they are also examined for type.

The same distinction must also be made in considering the boundary

structure. In a grain boundary between two disordered crystals, a

coincidence site is simply a site which belongs to both crystals. In

the ordered lattice, each lattice imposes a type on the site. If the

types are the same, then the site is consistent with the ordering in

each crystal. If not, there is an antiphase energy associated with

the site. For example, for the boundary of Fig. 9(a), the CSL is

ordered at the left. To the right of the dislocation, which is a

perfect dislocation of the disordered boundary, there is misorder of

the CSL across the boundary. A second Burgers vector of the same type

restores the order [Fig. 9(b)].
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TABLE 1

Selected CSL Lattices for Z > 49

u E R CSL E•DSCL

50 10 1 19 5 1 15 25

51a 101 1i0 49 10 11 1 0 i0

11050 3051 1.52

41 28 28 2 5 0 4 7 9

57c o0l 2"8 49 8 3 1 7 2 30

1 49 451 7227

41 30 30 3 3 10 315

59b oil 30 50 § 0 5 1 3 5 34

30 §50 3 51 3 5 2-5

72 121 051 1643

73b 101 12 71 12 6 7 0 12 1 5

112 72 1 61 1 6M

81 18~ 1 3 946

83a 101 18 79 18 1 10 0 2 9

218 81 1 1

98141 671 7849

99a 101 1-4 97 14 8 1 0 1 131

114 98 7 7 8 30
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IQ

FIGUR.E 9. a) Grain boundary dislocation of the disordered (f c)
structure in an ordered |l boundary between crystals

of the Li, structure. Anti-coincident region to the
right. b~ Dislocation of the ordered boundary
(twice the magnitude in a) preserves the structure*
(56)
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(The terminology used here with reference to a coincidence

boundary between two ordered crystals which is mismatched by type

[Fig. 9(a)] will be "anti-coincidence sites", "anti-order" and

"misorder". The term "disordered boundary" is taken to mean that the

atoms in the boundary are randomly placed by type. If the crystals

are ordered, this implies two additional interfaces between the

ordered and near-boundary disordered regions.)

The most incisive discussion of the subject is that of Clark and
52

Pond. An elegant argument is made that the Burgers vectors of

perfect boundary dislocations will be only those of the ordered

structure. It seems reasonable to consider the possibility of vectors

of the disordered boundary as partials grouped to form perfect vectors

of the ordered structure with the spacing being dependent upon the

antiphase energy of the boundary. As an analogy, if we consider the

ordered structure of Ni 3Al, it is simple cubic with four atoms per

point. Considering only that much of the crystallography, the

expected slip system would be <100>{ll0. In fact the predominant

slip system is that of the disordered lattice doubled such that it is

a translation vector of the perfect lattice, specifically <110>{111),

occurring as pairs of partials which are perfect dislocations of the

disordered lattice. Alternatively, if one imagines the ordering

energy decreasing, a point must be reached at which elastic considera-

tions favor the shorter vectors.

Of course, all near-boundary sites are subject to the same

considerations regarding types of near-neighbors, not only coincidence
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sites. Casual inspection of Fig. 9, for example, does not immediately

reveal whether the coincidence or anti-coincidence structure has fewer

incorrect near-neighbor bounds. It is likely for low symmetry

boundaries, that no simple translations in the boundary appreciably

change the average matching by type of non-coincident sites across the

boundary, while the coincidence sites are an insignificant contribu-

tion. On the other hand, it must be that ordering plays a role in a X

- 3 boundary, so the question is at what level of complexity of

boundary structure, if any, is ordering no longer important?

The perfect dislocations of an ordered (pc) boundary differ from

those of the disordered (fc) boundary in different fashions depending

upon the particular boundary structure. In some cases, two of the

disordered basis vectors will be half the length of the ordered

vectors (Fig. 10). In others, one or two of the vectors may differ in

direction as well (Fig. 11). (The latter appears in the formalism as

a need to reshape the DSC matrix before face-centering.) In either

event, the b 3's differ in direction and magnitude. In general, the

ordered and disordered solution sets will differ, albeit in some

cases, only in spacing of one set. Consequently, the CSL formalism

has the potential for distinguishing between ordered and disordered

boundary structures. Furthermore, a situation analogous to that in the

lattice may exist, wherein a perfect dislocation of the ordered

boundary consists of partials which are dislocations of the disordered

boundary with an associated grouping.
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CHAPTER III

GRAIN BOUNDARY STRUCTURE: EXPERIMENTS

Two boundaries in Ni - 24.5 at.% Al have been studied thoroughly and

will be discussed in detail. Numerous others have been inspected in a

less thorough manner. A few notable features of these will be briefly

discussed in Chapter VI. Observations related to the effects of B in

boundaries, but not directly relevant to structure determinations, are

presented in Chapter V.

3.1 Experimental Procedure

3.1.1 Sample Preparation

Specimens were fabricated by arc-melting 150 g ingots from

pre-forms of cold-pressed high purity powders of Ni and Al. The

ingots were turned and remelted several times. Portions of the

billets were then isothermally forged at 1100"C in vacuum and sub-

sequently annealed at 1200"C for 1 hour. Compositional uniformity

was confirmed utilizing electron microprobe analysis. A typical

chemical analysis by wet chemical and vacuum fusion is shown in

Table 2. Average grain size was about 100 micrometers. Foils for TEK

35
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TABLE 2

Typical Chemical Analysis

Element Amount

Ni 86.7 vt.%

Al 12.7

B 0.014

Si 200 ppm

Mn 30

Fe 400

Cu 70

Cr < 100

W < 300

Co < 10

0 40
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analysis were ground to 0.005 in. thick, and jet polished in a solu-

tion of 2% perchloric acid in butoxy-ethanol at -20<T<OOC.

3.1.2 Approximate Misorientation from Stereographic Projection

It is useful during the analysis to quickly determine the angle

and axis of the misorientation while at the microscope. The following

procedure was used. Both crystals were plotted on a stereogram by

measuring the tilt angles of several zone axes using a double-tilt TEM

stage. The rotation axis and angle can be determined by construction.

However, a simpler and more precise approach is that described by

Clark. 6 1  The rotation matrix is made up of the column vectors of the

"Snew axes as represented in the "old" system. The components are the

direction cosines to each axis. That is, the elements of R' are

aij = cos Pij 3.1

where pJ is the angle between the axes x in the old system andx in

the new system. Once the rotation matrix is obtained, the rotation

angle is given by

e - arccos((trace R'-l)/2) 3.2
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where trace R'- rll+r2 2+r3 3 . The axis of rotation is given by the

eigenvector of R,

S=rkj - rjk. 3.3

3.1.3 More Precise Determination of Misorientation

In order to determine the boundary structure with any degree of

certainty it is necessary to accurately determine the misorientation.

While diffraction spot patterns are relatively insensitive to small

tilts, Kikuchi patterns behave as though they are rigid extensions of

the crystal. This allows accurate determination of orientation. Two

approaches were utilized in this work. Both use patterns taken on

either side of the boundary at the same tilt and basically constitute

the same calculation. The details differ considerably, however.

In principle, the first approach requires only patterns with any

three Kikuchi bands not all of the same zone. If the Kikuchi pattern

is correctly indexed: 1. The camera length (radius of Ewald sphere,

r) can be computed. 2. The three K-bands can be extended to the

three poles at the intersections. 3. The distances (arc lengths, 1)

of the three poles to the origin are then measured, and 4. The

angle(s) of tilt from the known pole(s) are determined from 1 - r6.

The precise orientation of the crystal with respect to the microscope

is then known. Once this is accomplished for both crystals, the

relative misorientation may be calculated. Practically, if the
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K-bands are not low index, it is virtually impossible to index them,

therefore the plates should be taken with care. When a known pole is

present, a variation of the procedure replaces step 2 with a

determination of the orientation of a known direction in the zone.

These procedures have been described elsewhere as have the computer

programs with which the calculations were performed. 6 4 , 6 5

This approach was used for boundary 2. The uncertainty was

assigned to cover the spread of three separate determinations. Had

this value been smaller than the uncertainty estimated by Young,

Steele and Lytton,64 the larger value would have been assigned. Clark

has discussed in detail uncertainties involved in misorientation
61

determination, including this technique. The misorientation was

found to be 42.776 +0.164" about [.620 -. 7839 .0289] +1.17'.

The second approach differs first in that the plates are taken

from an orientation such that a reasonably low index pole of each

crystal will fall on the plate. Although this sounds fortuitous, such

conditions are nearly always available for near-CSL misorientations.

The rotation matrix is then the product of the rotation required to

bring the poles into coincidence, which is readily calculated, and

those required to rotate slightly away from coincidence to the config-

uration on the plate. This approach has some advantage in simplicity

in that it is more easily calculated by hand, and measurements are

made on one plate from pole to pole rather than each crystal to a

separate reference frame. Consequently there are half as many
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measurements, i.e., one measurement of angle and two measurements of

distance.

Both methods were used in the case of boundary 1. The second

method, in which R' is found as the product of more easily determined

rotations, is described in some detail. In this case, P1 . [01211 and

P2 - [13212 are nearly coincident (Fig. 12). For analysis in crystal

2, the rotation axis for R is given by P1 xP 2 P [• 2 1], and the

angle by

8 - arccos[Pl-P2 /(Pl11P 2 1)] - 33.2110 3.3

The rotation matrix is given by Eq. 2.15, and is,

.96111 .05729 .27016

R1 M -. 18175 .86777 .46256 3.4

t-.20793 -. 49365 .844441

Di is not necessarily nearly-equivalent to the actual rotation, so a

rotation about the now common direction is required. A direction in

P is chosen and operated upon by !I yielding its transformed direc-

tion. The angle between the transformed direction and a direction in

P is calculated. The difference between the measured angle and the

calculated angle is the rotation to be accomplished by !2" In this

case, (012]1 contains [I00], and (132]2 contains (1i1]. The calcu-

lated angle a is given by the angle between R,[!00]1 and (111]2. If
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the measured angle is a', R2 performs the rotation through angle a' -

a about [132]2. Specifically,

Rju 0 .34 a. - -122.669* 3.5

LO1 .3479

The measured angle is -80.5* or 180 - 80.5 - -99.5s* In this case, it

is -99.5@. The required rotation for R2 is, then, -99.5o + 122.6690

42.1690 about [132].

.75966 -. 30337 .57523

R2  .41430 .90756 -. 06849 3.6

-. 50128 .29035 .81512 1

Axes centered upon R2 are chosen and the displacement of -1 is

measured. In this case the axes were chosen to be [111] and [132] x

[111]. The displacements are, to a good approximation, the arc

lengths of the rotations accomplished by R3 and 4 about the respec-

tive axes.

-3 = 13 /L = (-4.2mm • 180) = -0.4775* about [111] 3.7

(504 • -)
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where L is the camera length. Similarly, 14 is -3.6 m and e4 a

-0.4093 about (514]. The matrices are given by Eq. 2.15, as above.

The total rotation then is given by

.66314 -. 50401 .553381

R' - R R R R I.23990 .84342 .48070 3.8

[-.70901 -. 18601 .68022j

A simple analysis of the sources of error reveals that the

uncertainty in the measurement of angle is by far the largest.

Distances can be measured reliably to 0.5 --. If two plates are used,

there is an additional distance measurement, for a total of three.

The worst case then, is the angular uncertainty due to 1.5 m- devia-

tion, which by Eq. 3.7 is 0.17*. The estimated uncertainty in angle

is 0.5, which contributes directly to the uncertainty in R' (or u)

for a total of 0.530. In fact, eight determinations using two methods

yielded a spread in angle of +0.43* and in u of +0.35. The uncer-

tainty will be taken to be A8 = +.3*, Au - +.3*.

The uncertainty in RO2 is more problematical. R02 is essentially

a small difference in two large values. To make matters worse, the

rotation axis is a vector difference, so that a small error in R' can

cause a very large error in u. It is clearly important that measure-

ments be made carefully. The actual spread in RP0 2 was A8 - +0.35* and

Au - +50. The estimated uncertainties are Ae -. 25, Au +3*. The

resulting spread in line directions was 16* and 7* for sets A and B,
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respectively. The spacings varied from 6.3 to 3.9 nm and 1.7 to

2.3 rn.

3.1.4 Determination of Boundary Plane

Determination of the boundary plane can be done by straight-

forward trace analysis if the boundary can be tilted edge-on, as in

the case of boundary 2. The uncertainty, as estimated by multiple

determinations, is about +5°.

In the case of boundary 1, the orientation of the boundary with

respect to the plane of the foil prevented such a tilt. The procedure

used here differs in some respects from those described elsewhere and

is developed in some detail. All such procedures are basically the

same in that two lines lying in the boundary are chosen and observed

from two known orientations. The equations of the lines can then be

solved uniquely and the cross product yields the boundary normal.

The lines on the plates are projections of the features onto the

plane of the plate and the out-of-plane components are unknown

(Fig. 13). By obtaining two views differing by a known transforma-

tion, one obtains equations of the form,

P2x Plx + T2 Ply+I3 T lz 3.9

where the pij are the J'th components of the line d in the i'th

reference frame, I is the transformation, and the only unknown is plz.
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FIGURE 13. Line features p, q in boundary projected on TEM plate from
two different orientations of the boundary.
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In order to simplify the precise determination of the orientations,

the plates were exposed such that there was a low index pole in the

diffraction pattern. The images are, of course, of poor quality, but

they can be obtained with sufficient detail to determine the line

directions and lengths. The procedure is as follows: 1. Two line

features in the boundary are chosen. 2. Two images are exposed such

that a different known pole (preferably low index) of the same

crystal, separated by a rotation about a common axis, is on each

diffraction pattern. 3. Lengths and directions of the projections of

the features are measured in the frames of each of the microscope

plates, RF1, RF 4. Coordinates are transformed from RF to RF2.

S. Two sets of values are then available for the x and y components

of the lines in RF 2: those just transformed from RF1, which are in

terms of the unknowns Plz and qlz, and the measured values. The two

expressions containing the measured and transformed in-plane com-

ponents are solved for the out-of-plane component of each line.

6. The boundary normal v is determined by taking the cross product of

the resulting vectors. 7. v is then transformed to the crystal

frame.

In the case of boundary 1, Plz is [011] and P2z is [1ll] and the

approximate rotation axis is [011] in the crystal frame. Coordinates

are chosen along [100] and (071] and the distances along these direc-

tions from B to P1 are carefully measured on large prints (Fig. 14).

The distance so measured divided by the camera length is the required

angle of rotation. A transformation of coordinates from B to P1 (or
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FIGURE 14. Determinatlon of transformation 
for gb normal.
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rotation from P to 3) will require Ti, which is a rotation of 0.5571

about [1O0]RF ,CF. and 12" which is a rotation of -1.508 about

[ 0 1 0 ]pRFl 01I]cF. The matrices are given by Eq. 2.15. T3 is then

required to transform from P1 to .2 and is the matrix of direction

cosines of the bases as given by Eq. 3.1.

100 o0l Oil

211 .8165 0 .5773

012 o0l 1 0 3.10

il -. 5773 0 .8165

T is then required to transforr, from P2 to RF2 by a rotation of

1.647* about (1 00 1RpF2' [211]CF in the same fashion as ', 12" The

complete transformation is then

i- 4 -T3 -•2  3.11

and

[P2x 1 Pu '
P2y p Ply 3.12

P2z J Piz
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This yields two equations of the form of Eq. 3.9 for each line with

one unknown for each pair, e.g., Plz" Since the solution is over

determined, an additional factor (i) may be introduced to compensate

for (small) differences in magnification between images and the

equations solved simultaneously. This also serves to average the

values, in a sense, by finding the most consistent solution. Equation

3.9 then becomes

in1, px +T plITM P2x 1 Plx -12 Ply + -13 Plz

3.13

m P2y = -21 plx T 22 ply + T23 Plz

There is a similar set for ql, q2 and n. Comparison of the magnifica-

tion factors (they should be the same) provides a check for consis-

tency. Once these equations are solved for plz and qlz the gb normal

is given by d x f, in the coordinates of RFI. All that remains is to

transform to the crystal frame, CF. This is most easily accomplished

by transforming from RF to P then P to CF. The former has already1 :-l Z-

been determined to be T2 !. The latter, T, is determined in the

manner of Eqs. 3.1 and 3.10 by

RF

100 011 011

100 1 0 0

CF 010 0 l1//2 V/2 3.14

001 0 l1/2 1//2-
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The complete transformation is then

S- 15 12 11 3.15

In summary, the transformation between reference frames, I

(Eq. 3.11), is determined and applied to features Pl' ql The cal-

culated and measured E2' a2 are used to determine the unknown

component of P1, &l (Eq. 3.12). The grain boundary normal in crystal

coordinates is then

X_- .( 1 xj1 ) 3.16

In order to estimate uncertainties, consider Eq. 3.13 rearranged

to solve for the unknown Plz'

mT 11 PxT12 Py31
Piz - r2x T _lxT13 31

Y13 13 1

It is difficult to identify the intersection of the boundary with the

foil surface, so the uncertainty in length of d is large and combines

with the uncertainty in angle for an estimated uncertainty in the Pij

of +2 mm, or typically * .r .it 6%.

The uncertainty in the matrix elements is determined by the

uncertainty in the distance measurements on the diffraction patterns.

The rotation angle is given by
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cos r - 1/2 (trace T - 1) - 1/2 (T11 + T2 2 + T33 -1) 3.18

and,

d cos e - 1/2 (dT 1 1 + T2 2 + T3 3) 3/2 dTtj 3.19

Since

dcose - sinede = ede 3.20

for small angles, then

ATij - 2/3 ede 3.21

Theta is about i@ and A8 about .06, and

ATij - 2/3 (.06)(ir/180)2 - 1.2 x 10-5 3.22

Since Tij is typically 0.5 or so, its uncertainty is negligible as

compared to the Pij"

If the error is taken to be in the rotation axis as the angular

difference in two unit vectors, the measured u and the actual x, the

angle is

Cos. 0 • -u -X._ +ux. +HA 3.23
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and

d cos 6 - dui + du + duk 3dui 3.24

Since the a, are all of the form

j" - T ik 3.25

then

dui a 2dTij 3.26

and these two expressions yield

dTij - 1/6 d cos 8 3.27

which is 1/4 the value calculated in Eq. 3.22. Therefore the uncer-

tainty in the transformation is negligible.

There is also a small error in that measurements in the frame of

the plates are assumed to be along crystallographic directions con-

tained in the zone axis on that plate. In fact, those axes lie near,

but not in, the plane of the plate (unless, of course, the pole is

along the beam direction). The error introduced, however, is in the

cosine of small angles and is extremely small. In this case the
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largest is .039% which is negligible compared to the uncertainties of

measurements.

Taking T to be errorless, the differential of 3.17 is then

dplz - l/T 1 3 (m dP2x + Tll dplx + T12 dply) 3.28

Since 0 < Tij < 1, and they generally su to about 1, and m = 1 then

dPij < dplz < 5 dPij 3.29

In fact, the simultaneous solution performs an averaging function

which improves the uncertainty somewhat, and the value will be taken

to be

dplz - 3 dp = +6 mm 3.30

Now we have the cross product of two vectors each with an uncer-

tainty of 4% in two components and 12% in the other. If we treat it

as a simple product with an average uncertainty of 7%, the product has

an uncertainty of 14%. To see what this means in terms of angle, a

[111] unit vector is increased in one component and decreased in the

other two by 14% and the resulting angle calculated, i.e., the angle

between [.58 .58 .58] and [.66 .50 .50], which is 7.8. In fact, the

constants m and n provide an internal check, and the estimation has

been done pessimistically throughout. A reasonable estimate is

Au - +6*.
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In su-ary, the principal contribution to the uncertainty is from

the measurement of lengths and directions on the images. All other

sources are insignificant by comparison. The major problem is in

distinguishing the intersection of the boundary with the foil surface,

i.e., the ends of the lines. This is basically an inherent contrast

problem, but is affected by image quality. Therefore it is not wise

to sacrifice too much in image quality for ease in calculation of the

transformation.

3.1.5 Solution for Boundary Structure

The measured disorientation axis/angle pairs were compared to

those of CSL relationships to E - 101. Ordered and disordered CSL and

DSC lattices were calculated for each possibility. Complete solutions

were then developed for each of the ordered and disordered CSL's,

following the procedure described in Chapter II. The grain boundary

dislocation line directions and spacings predicted by each solution

were compared to the experimental values. Those which yielded line

directions in reasonable agreement with experiment were then examined

by .&b analysis.

3.2 Boundary 1: t = 31

The segment of boundary analyzed is populated with a number of

extrinsic dislocations. In addition, and of principal interest here,
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there are two sets of intrinsic secondary grain boundary dislocations

which are resolvable. These will be referred to as set A (Figs.

15-18) and set B (Figs. 18 and 19). There are several other notable

features in the region of boundary analyzed. There is a relatively

high density of extrinsic dislocations and several loops which were

frozen in the process of leaving or entering the boundary (Figs. 16,

17, 20). The extrinsic dislocations are generally paired and have

spacings greater than, but of the same order of those found in the

lattice (Fig. 19). (The mottled area at the edge of the boundary at

the top in the photos is an area of surface contamination.)

The plotted stereographic projection yielded a misorientation of

53.39* +3.00 about u = [-.42 .77 .48]. The precise misorientation was

measured using method 2 of Section 3.1.3 and was found to be 53.684*

+0.6* about u = [-.41607 .78337 .46175]. The rotation angles differ

by 0.29* and the axes differ by 1.3* which is quite good agreement.

The only likely CSL relationships are Z - 31b which is 52.19" about

[121], or Z = 21b which is 44.40* about [121]. Complete solutions

were developed for both ordered and disordered CSL's of each type,

following the procedure described in Section 3.1.5. The Z - 21b

relationship provided no reasonable solution.

The Z = 31b DSC basis vectors are,

b - 1/31 2 5 11 and = 1/31 F2 5 11 3.31

3 - 8 1 .2 L 7 - 2 i-0
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In this case, the primitive cubic (pc, or p) and face centered

cubic (fc, fcc, or f) basis vectors differ only in that two of the

three fc vectors are half the length of the pc case. Both sets of

vectors may be found in Table 3. The important experimental and

calculated characteristics of the boundary and the solution are

summarized in Table 4. The only distinctions between pc and bc

solutions is the spacing of set B. In the pc case, the spacing is

1.7 nm, which is in poor agreement with observation in the fc case it

is 8.5 =a, which is in worse agreement. The agreement in line direc-

tion is excellent in both cases, as is the spacing of set A. The

spacing of set B is in poor agreement.

The results of the jeb analysis for the Burgers vectors deter-

mined to be the best match are sumarized in Table 5. The agreement

is very poor, therefore the assignment of vectors will be discussed in

somewhat more detail. Complete solutions were developed for both pc

and fc lattices for each rotation. The predicted line directions were

compared to the experimental values and any viable solutions iden-

tified. The r. Burgers vector analysis was performed for all vectors

of all rotations providing a viable solution, and for at least the pc

and fc basis vectors of all rotations considered. In this case, all

vectors of E31 and E21 were considered. No pair of vectors from a

single solution were found to be consistent with the g-b analysis.

Since the Burgers vector analysis is ambiguous and the result above is
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TABLE 3

1 - 31b DSC Vectors

Primitive Cubic (Ordered)

bI a/31 [7 2 3] b2 - a/31 [2 5 -8] b3 1 ' a/31 [-8 11 i]

b32- a/31 [-1 13 4] b3 3 = a/31 [-10 6 9] b3 4 ' a/31 [-3 8 12]

Face-centered Cubic (Disordered)

b1 - a/62 [7 2 3] b 2 = a/62 [4 10 -16] b 3 1 - a/62 [-8 11 1]

b3 2 - a/62 [-1 13 4] b 3 3 = a/62 [-15 9 -2] b 3 4 ' a/62 [-12 1 17]
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TABLE 4

Characteristics of Grain Boundary 1, Z - 31b

Experimental angle/axis: 53.684* +0.61/ [-.4142 .7842 .4621]

Z - 31b angle/axis: 52.190'/ [-1 2 1 ]

R(02): 3.561* +0.250/ [.1288 .0154 .9887] +3.00

Boundary Normal: - [-.6277 .5446 .5563] +6.0-

GRAIN BOUNDARY DISLOCATIONS

Experimental Calculated

Difference

Set A

Line Direction: [.754 .595 .267] [.748 .619 .237] Ar - 2.20

Spacing: 6.7 nm 6.3 nm AS - 0.5 nm

b - a/31 [2 5 -8]

Set B

Line Direction: [.659 -. 009 .752] [.671 .016 .741] Ar - 1.70

Spacing: 8.5 nm 1.7 nm AS - 7.2 nm

b - a/31 [7 2 3]
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TABLE 5

Summary of.b Analyses, Grain Boundary 1

Crystal 2, bA- [4 10 -16]2, r - [.754 .595 .267]

b .Ae 1.xr A

-1-1 1 -. 48 -. 41 -. 07 S

-1 1-1 .36 .39 -. 33 0

2 0 0 .13 .02 .41 S

0 0 2 -. 52 -. 56 -. 16 0

Crystal 1, bA [16 10 - 4 ]1, r [.40 .140 .90]

-1 1-1 -. 03 -. 05 -. 39 W

2 0 0 .52 .46 .31 S

-1-1 1 -. 48 -. 51 .08 M

0 2 0 .32 .30 -. 52 0

Crystal 2, _B 2 [7 2 32, r - [.659 -. 009 .752]

Ihber B

-1-1 1 -. 19 -. 22 .02 0

2 0 0 .45 .17 .1 W

Crystal 1, -B [3-2 7]1,. - [-.119 -. 461 .883]

-1 1-1 -. 39 -. 12 -. 11 S

2 0 0 .19 .25 .1 0

-1-1 1 .19 -. 12 .01 0

0 2 0 -. 13 .07 -. 22 S

S - Strong, M - Medium, W - Weak, 0 - Extinct
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in good agreement with the geometric structure of the boundary, it is

taken as the probable solution.

The adoption of this solution requires the conclusion that j~b

analysis for gbds in Ni3Al is unreliable. Such analysis is, in

general, more problematical than j-b analysis in the lattice. The

extension of the dynamical theory to grain boundaries requires addi-

tional assumptions and imposes additional experimental constraints.

The principal one is that one grain be strongly diffracting in the

two-beam condition while the other is very weakly diffracting such

that it can be considered a weak absorber.61 Nonetheless, as noted in

Chapter II, reasonable agreement has been obtained in other systems.

There are several properties of Ni3Al however, which may con-

tribute to the problem. The first is that it is elastically aniso-

tropic. It seems reasonable that in any but symmetric boundaries, a

distortion in the strain field of the gbd might be introduced as a

result of the different elastic properties of each crystal in the

plane of the boundary. Such a distortion would not be adequately

accounted for by consideration of &-b and ).bxu. Image simulation

would seem the most promising approach.

Secondly, as discussed in Chapters IV and VI, there is evidence

that there are chemical effects at the grain boundary. Chemical

effects at gbds in asyunetrical boundaries might also be expected to

be anisotropic and to cause changes in the image.
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3.3 Grain Boundary 2, Z - 9

The major relevant features of the boundary in Fig. 21 are

indicated in the schematic of Fig. 22. There are a number of

extrinsic boundary dislocations including those labeled E, and two

pile-ups in crystal 2, labeled G. Of principal interest are the

intrinsic boundary dislocations. Set A is clearly visible in Figs. 21

and 23-26. Set B is faintly visible in a few diffraction conditions

(Figs. 23, 25, 27), and a possible third set parallel to the thickness

fringes is suggested by the contrast in Figs. 24 and 25.

The misorientation as calculated from the stereographic projec-

tion was 40.4 +3* about u - [.05 .58 -. 81]. The more precise mis-

orientation obtained using method 1 of Section 3.2 was 42.7760 +0.1640

about u = [.0289 .6201 -. 7839] +1.2°. The difference of 2.4* in

rotation and 3.2* in axis is typical of the uncertainty in stereo-

graphic plotting and measuring. The boundary could be tilted edge-on,

so the boundary normal was found by trace analysis. The most likely

CSL relationships are the [011] rotations Z - 9, 38.94*; E - 57c,

43.99; and Z - 59b, 45.98* (Table 6). Complete solutions were

developed for ordered and disordered CSL's of each type, as in Sec-

tions 3.2 and 3.1.5. The Burgers vectors are listed in Tables 7, 8,

9.

None of the trial CSL's yielded a line direction consistent with

the possible set C. All of them gave a line direction within 4* of B.

Both Z - 57 and the disordered Z - 59 yield line directions for A
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TABLE 6

Possible Misorientations of Grain Boundary 2

Experimental angle/axis: 42.776 +0.1640/[.0289 .6201 .7839] ±1,170

Z9 38.94*/[011]

1(02) 6.126 +0.1640/[.58 .193 .9-84]

E57c 43.99/[01l]

R(02) 5.212 +0.1640/[.133 .873 J-6]

E59b 45.98/[011]

R(02) 6.084 +0.1640/[.2t .§7 . 169]
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TABLE 7

t - 9 DSC Vectors

(38.940 [01i])

b1 - a/9 [411] b2 - a/9 [122] b - a/9 [254)

b 3 2 - a/9 [245] b 3 3 - a/9 [172] b 3 4 ' a/9 [33;]

Face-Centered Cubic (Disordered)

b = a/18 [411] b2 - a/9 [122] b3 1 - a/18 [336]

b 32 a/18 (127] b3 3- a/18 (172] B3 4 - a/18 [363]
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TABLE 8

S- 57c DSC Vectors

(43.990, (011])

b - a/57 (477] b 2  a/57 [7M] b 31 = a/57 [9 30 27]

b32 - a/57 [5 23 34] b 3 3 - a/57 [2 32 25] b 3 4 ' a/57 [1 25 32]

Face-Centered Cubic (Disordered)

b1 1a/14 [477] b2 = a157 [2R] b 31 1 a/14 [9 30 27]

b - 1a/14 [5 23 34] b33 a/114 [5 34 23] b3 4 - a/114 (9 27 30]
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TABLE 9

Z - 59b DSC Vectors

(45.98", [0111)

Primitive Cubic (Ordered)

b - a/59 [10 3 3] b 2 - a/59 [355] b3 1  a/59 [(5 34 25]

b32 - a/59 [3 31 28] b33 ' a/59 [A 26 33] b 3 4 - a/59 [2 36 23]

Face-Centered Cubic (Disordered)

b- a/118 [10 3 3] b2  a/59 [10 10 5] b - a/118 [3 31 28]

b32 = a/118 [9 44 15] b 3 3 - a/118 [21 24 35) b 34 - a/118 [11 21 38]
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disagreeing by > 18", and were discarded. The major results of the

remaining three solutions are sinwarized in Table 10. The solutions

for line direction in the ordered and disordered E - 9 are identical

and are significantly better than the Z - 59 solution. The spacings

are not unreasonable in all three cases given the associated uncer-

tainty. However, the agreement is quite good in the case of Z - 9(p).

In the case of set A, the Burgers vectors are so similar that

they are indistinguishable by 8 -b analysis. The results for one of

the possible A's, set A, the three possible B's, and set B are listed

in Table 11. Only those reflections which produce images with suffi-

cient quality to definitively identify extinction conditions are

listed. The results in crystal 1 are consistent for set A. Possible

for set B are 1/9 [363] and 1/59 [8 26 33], the others are unlikely.

The results for crystal 2 are less informative, yielding no firm

indications. The lattice dislocations, set G, are (0111(1 1 1). Note

that the slip plane is viewed nearly edge-on in Fig. 26 yet the

apparent spacing between superpartials is 8.3 nm. It is probable that

they are dissociated on either (100) or (001).

The best solution for the boundary is the ordered Z - 9 solution.

The boundary solution is in excellent agreement while the 8 .b analysis

is in fair agreement. In the case of boundary 1, the .b analysis was

inconsistent with any solution set, yet there was a geometrical

solution in excellent agreement with experiment. Here again, the

geometrical analysis yields a solution(s) in excellent agreement with

experiment, which lends additional credence to those results. While
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TABLE 10

Possible Dislocation Sets, Grain Boundary 2

Ar, AS - lexperimental-calculatedt

Set A

r b r Ar() S(nm) AS(nm)

Exp. A [.495 .358 .799] 5.6
1

9 " (122] [.508 .420 .752] 5 5.7 0.1

9 1 [122] (.508 .420 .752] 5 5.7 0.1

59 L9[ 3 55 ] [.521 .495 .695) 10 2.0 3.6

p 59

Set B

I b r ar() s(nm) AS(nm)

Exp. B [.126 .682 .737] 5.3

9 -1 [363] [.008 .650 .760] 2 6.4 1.1

9 18[171] [.008 .65-0 .760] 2 3.2 2.5
1 8

59 L-[8 26 33 [.015 .641 .767] 4 7.3 2.0
I I59



81

TABLE 11

Summary of V~b Analysis

CR1 b 1 7 1 -i72 1[122] -1(9 26 31 -1[363] A B

•"k IMAGE*

ill 0.9 0.1 0.9 1.3 0 w

il 0.7 0.3 0 S 0

010 1.6 0.4 0.9 1.3 S w

-( b 1363] -1[122] L-.[! 23 361 .1(172]

rh IM&GE*

1-1 0.7 0.1 1 1.1 S 0

022 2 0 2 2 M 0

ill 0.7 0.6 1.2 0.4 S 0

020 1.3 0.4 0.8 1.6 S 0

S s = Strong, M - Medium, W = Weak, 0 - Extinct
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the g-b analysis approaches the level of agreement expected for such

analyses, it is still not convincing.



CHAPTER IV

DEFORMATION IN Ni 3Al: BACKGROUND AND THEORY

There are several unusual aspects to the deformation behavior of

Ni 3Al. The experimental results, as reported in the literature and

detailed in approximate chronological order below, are summnarized as

follows: 1. The flow stress (strain > 10-3 ) increases with increasing

temperature to a peak at about 700*C and decreases with increasing

temperature above 700*C. 6 6  2. The microyield stress (strain < 10-5 )
67

is nearly independent of temperature. 3. Below the peak tempera-

ture the dominant slip systems are <110><111>, while above the peak
68

temperature the dominant systems are <110>(100). 4. The yield

stress is highest for orientations with the highest resolved shear

stresses on cube cross-slip planes.69 5. The tension and compression

yield stresses are generally different. The sign and magnitude depend

upon orientation.70 6. The magnitude of the peak in yield stress

with temperature increases with increasing Al. 7. A major feature of

deformed specimens is a high proportion of long, straight screw or

near-screw dislocations.4

The unusual temperature dependence of yield strength (increasing

yield strength with increasing temperature) of Ni 3Al and some other

83
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Li2 compounds has been the object of numerous theoretical and experi-

66mental studies. One of the earliest of these was the work of

Flinn,71 who first suggested dissociation of the a<1l0> superdisloca-

tion on other than the slip plane might be the responsible mechanism.

The APB energy was calculated for various planes and found to be lower

on {001} cube planes than on {111) octahedral planes (later confirmed

by experiment 72). Based upon that observation, he proposed that the

dissociation plane (of a dislocation of any character) shifted from

{111) to {100) by diffusional climb. Kear and Wilsdorf 7 3 proposed

cross-slip into the same configuration to account for high strain

hardening in Cu3Au. They were also the first to find the dislocation

structure to be predominately long straight screw dislocations.

Davies and Stoloff74 found the yield stress to increase continuously

from -196*C to 600*C and concluded that a diffusion controlled

mechanism (Flinn's) was inappropriate. Copley and Kear68 first

reported a ductility minimum at 810*C, and attempted to explain all

observations by a lattice resistance (Pierls stress) argument.

Thornton, et al.67 discovered that the yield stress is indepen-

dent of temperature for very small strains (micro-yield). They were

also the first to suggest the Kear-Wilsdorf variation of Flinn's

locking mechanism as the cause of the anomalous temperature dependence

of yield stress. Takeuchi and Kuramoto 6 9 further clarified the

phenomenon by determining that the magnitude of the temperature depen-

dence increases with increasing component of the stress on the {001)
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cross-slip plane. They refined the model with a quantitative treat-

ment based upon the number of cross-slipped segments as a function of
38

cross-slip stress and temperature. Lall, et al. found a somewhat

different orientation dependence than predicted by Takeuchi and

Kuramoto 6 9 and attributed the effect to the constriction or separation

of the Schockley partials either aiding or hindering cross-slip,

depending upon the orientation.

The appearance of the companion papers of Yamaguchi, et al. and

Paidar, et al.75,76 were something of a landmark in that the further

refinement of the cross-slip model was based on atomistic calculations

of dislocation core structures. The calculations (utilizing assumed

model potentials) indicated that the 1/2 <110> superpartial dis-

sociates in a planar fashion in either the plane of the APB or and

intersecting {1111 plane. The former is expected to be glissile. The

1/3 <112> superpartial was predicted to dissociate into one of three

variants of near equal energy, two of which are sessile and the third

reverts to one of the first two under stress. They noted that dif-

ferent potentials might yield fewer stable structures, perhaps

allowing the potentially glissle variant to remain glissile. Later

core structure calculations for very high APB energies by Tichy, Vitek

and Pope have been in general agreement.77,78 (However, the recent

calculation of Farkas and Savino using local volume dependant poten-

tials finds the core of the 1/2 <110> always dissociated in a {111)

plane other than that of the APB.) In any event, this study provided

the missing element in the model, i.e., a reason for the dislocation
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to be sessile after cross-slip. As outlined in Paidar, Pope and

Vitek,79 the leading 1/2 <110> superpartial constricts under applied

stress and thermal activation, then cross-slips onto {100) and imne-

diately redissociates onto a {lll) plane. Both superpartials are then

dissociated on (possibly different) {111) planes, and are separated by

an APB on {100}. The tendency for this to happen increases with

increasing cross-slip stress and increasing temperature. The yield

stress depends upon the sig' of the stress due to the different

resolved stress constricting the Shockley partials, in agreement with
70

experiment. Yoo has developed a model in which the driving force

for the cross-slip is a torque exerted by the superpartials on one

another as a result of elastic anisotropy. 8 0 ' 8 1  The most notable

difference regarding operation of the mechanism is that the model

predicts a torque, i.e., a driving force for cross-slip in addition to

APB energy, even when the cross slip stress is zero.

While the cross-slip model has evolved to a highly sophisticated

state and explains the majority of observed macroscopic behavior,

there are several remaining issues. Veyssiere, et al. has observed

dissociation onto {1001 planes which appears to have occurred by

diffusion. 82,83 Paidar has calculated the structures and energies of
84

various APB's and predicts that some are non-planar. He interprets

this to support a diffusional dissociation model (the original model

of Flinn). Veyssiere, et al. have also observed evidence of drag of

APB's during deformation at 650°C. 8 5
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Another matter that deserves further consideration is the role of

1/3 <112> superpartials. Early in this work it became apparent that

stacking fault coupled dislocations were a common feature in binary
86

alloys, but rare in the literature. Subsequently there have been

several reports of profuse stacking faults.87,88 Baker and Schulson

have observed pairs of {1121 dislocations bounding narrow stacking

faults, many of which have been loops.89'90

The third issue that has received little attention is the role of

B in the lattice. With only a few recent exceptions, the role of B in

ductilizing Ni 3Al has been assumed to be exclusively an effect upon

grain boundary cohesion. It was evident early in the course of this

work, and has recently been reported, that there are significant

effects upon surface energies and upon the dislocation population,

specifically, that relatively small amounts of B completely eliminated

the otherwise common stacking fault coupled pairs. 9 1



CHAPTER V

DEFORMATION IN Ni3 Al: EXPERIMENTS

5.1 Experimental Procedures

5.1.1 Specimen Preparation

Specimen preparation was as described in Section 3.1.1 with the

addition of compression testing to introduce unrecovered deformation.

Compression test specimens were made by sawing blocks 3x3x6 -M. These

were polished on all sides and compressed along the long axis at a

crosshead speed of 0.001 in./min. to approximately 5% strain at 236C.

Foils for TEM analysis were sawn perpendicular to the stress axis, and

polished as described in Section 3.1.1.

5.1.2 Fault Analysis and the Magnitude of 112 Burgers Vectors

TEM examination was accomplished utilizing JEOL 100CX, 200CX, and

2000FX microscopes. Analysis to determine the orientation of the

fault vector R was accomplished in the usual fashion utilizing the

criterion of invisibility when rj - 0,1,2,... (essentially grj - 0

since all j's used for fault analysis yield r.R - n/3, n - 0,1,2,...).

There are two likely possibilities for the magnitudes of vectors of

88
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the type <112>: 1/6 <112> Shockley partial dislocations or 1/3 <112>

superpartials. The magnitudes were assigned in the following manner.

It is known that Burgers vectors of the type 1/6 <112> are invisible

for diffracting vectors yielding ._b - 1/3. (Hence the invisibility of

closely dissociated Shockley partials for diffracting vectors which

yield &.b(total) - 0, where b(total) is the Burgers vector of the

total dislocation of <110> type.) They are not generally invisible

for rb = 2/3. Therefore, dislocations which were visible for F's

which would yield V~b = 1/3 for b - 1/6 <112> were taken to be

1/3 <112>.

5.1.3 Annealing Twins, Grain Size and Chemistry

The incidence of annealing twins and the grain size were deter-

mined from optical micrographs of three randomly selected areas in

each of five materials. The line-intercept technique was used to

determine the numbers of twin and grain boundaries in each image.

Boundaries which appeared to be perfectly straight or composed of

straight segments were assumed to be twins. The uncertainty (standard

deviation) in twin frequency averaged about 25%.

The bulk chemistry was determined by wet chemical and vacuum

fusion techniques. The chemistry and degree of homogeneity were also

determined by wavelength dispersive X-ray analysis of seven to ten

spots in different areas of the forging. The total uncertainty (one
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standard deviation about the mean of the composition) was found to be

about 0.4 at.% Al. That is a reasonable value for the precision of

the technique. The accuracy is very dependent upon the choice and

quality of standards and requires particular care when dealing with

compounds. Nonetheless, using elemental standards, the results

typically agreed with the bulk analyses within 0.5 at.% Al.

5.2 Results

The specimens were found to have approximately equiaxed grains,

were generally free of inclusions and were mostly well annealed in the

as-annealed condition. However, there were occasional grains which

evidenced high densities of dislocations--presumed to be artifacts of

forging.

5.2.1 Frequency of Annealing Twins and Grain Size

The addition of B was found to have a strong effect upon both the

fraction of twin boundaries and grain size (Fig. 28). The ratio of

twin to grain boundaries decreases linearly from 0.24 to 0.05 with the

addition of 0.5 and 1.0 at.% B. There are also significant dif-

ferences in the kinetics of grain growth. After identical processing

(described above), the mean grain size increases linearly by a factor

of three with the addition of 0.5 and 1.0 at.Z B. Both phenomena are

illustrated in the plot of Fig. 29.
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5.2.2 Disl!-ations and Stacking Faults

The most obvious feature of the dislocation structures observed

in binary alloys is the common appearance of stacking fault contrast

between pairs of dislocations. Such contrast comonly appears between

closely spaced parallel dislocations throughout some, but not all,

grains (Figs. 30 and 31). In addition, there are occasional extended

faults such as in Fig. 32. In one specimen, the bounding dislocations

are completely dissociated and the faults extend over distances on the

order of the grain size, as in Fig. 33. Such faults are completely

absent in compositions containing B.

The configuration of Fig. 34 was found in Ni-24.5Al as-annealed.

The fault is invisible in Fig. 35, clearly revealing the bounding

dislocations. The fault and each of the dislocations, in turn, are

invisible in Figs. 36 and 37. The result of the Z.b analysis is shown

in Table 12 and s-arized in Fig. 38. The undissociated superdis-

location is determined to be (1 0 1], while the superpartials are

1/3 (112] and 1/3 [211]. The fault is of the type [111]. The par-

tials in the widely dissociated region lie along <110> directions.

The weak-beam image of Fig. 39 reveals small "tongues" along the

1/3 [fi2] dislocation in the narrowly dissociated region which suggest

an additional reaction, perhaps further dissociation of the super-

partial with reorientation of one of the 1/6 <112> Shockley partials

along <110> directions.



94

TABLE 12

Sulmary of &. Analysis, SF1

1/3 1/3 1/2 1/2 1/3
1 2 1 1 1

1 0 1 1
b a b c d e SF 2 I i 0 1

Number of images r.

111 1 1 1 0 1 1 -2/3 +2/3 0 +2 1/3

200 1 1 2 1 2 1 +2/3 +4/3 1 1 2/3

111 2 2 0 1 0 1 -4/3 -2/3 -2 0 -1/3

022 1 0 0 1 2 0 2 0 1 -1 0

020 2 2 2 0 2 1 2/3 -2/3 0 -1 2/3

220 0 1 1 1 2 0 0 2 1 2 0

220 1 1 1 1 0 1 2/3 2/3 1 0 4/3

220 1 1 0 1 0 1 -2/3 -2/3 -1 0 -4/3

202 1 1 1 1 w 0 -2 -2 -1 -1 0

311 0 1 1 1 2 0 0 2 1 -2 1
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Although the overall appearance of the fault of Fig. 40

(Ni-24.5 Al, c - -4%, 23*C) is different from the previous one, the

major features are quite similar. There is a complex interaction with

another dislocation(s) to the left of the extended fault region. The

region considered here is to the right of the interaction. The

bounding dislocations are clearly evident in Fig. 41 and the weak-beam

of Fig. 42. The bounding dislocations and the [110] superdislocation

are out of contrast in Figs. 43 and 44 and Fig. 45 in turn. The j.b

analysis is saummrized in Table 13 and the configuration in the

schematic Fig. 46. The superdislocation is of type [110] and is in

pure screw orientation. The superpartials bounding the fault are

1/3 [121] and 1/3 [211] and lie along <110> directions. The con-

sistent spacing of the [110] superdislocation pair in the ± images of

Fig. 47 indicates that they are a pair and not a dipole.

A short distance from the left end of this faulted line (L in

Fig. 46) is a small, complex interaction between two (or more) dis-

locations consisting of three segments (Figs. 46, 48, and 49). The

&.b analysis is inconsistent with a simple arrangement and several

more complex "lozenge" reactions92 were considered. A reasonably

consistent and best fit was obtained for segment (a) with the reaction

outlined in the schematics of Figs. 50 and 51. The I.h analysis is

summarized in Table 14.

Two other interesting features are found in this region. The

first is the large number of very faintly visible parallel lines with

contrast similar to a dislocation (Fig. 52, arrow). They have the
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TABLE 13

Sumnary of A.bAnalysis, SF2

1/2 1/3 1/3 1/3
1 1 2 1

b A B C SF 0 1 1 1

Number of images

ili 2 2 1 1 -1 -4/3 -2/3 -1/3

200 2 0 1 1 -1 2/3 -2/3 -2/3

111 0 2w 1 1 0 -2/3 2/3 1/3

022 2 2 0/1" 0 1 2 0 0

022 1 1 0 0 -1 -2 0 0

020 1 1 1 1 1 4/3 2/3 -2/3

220 2 1 1 0 2 2 2 0

220 2 1 1 0 -2 -2 -2 0

202 1 2 1 w -1 4/3 2/3 4/3

220 0 1 1 w 0 -2/3 2/3 4/3

202 2 0 1 0 -1 0 -2/3 0

, Part of curved line extinct
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FIGURE 47. +g images of SF2.
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TABLE 14

Sumary of B-b Analysis, Lozenge

PROB. 1 PROB. 2 OBSERVED

VISIBLE VISIBLE VISIBLE
1/3 100 1/3 100 1/3 011 1/3 0Il LINES LINES LINES

111 1/3 -1/3 0 0 0-2 2 2

200 1 -1 0 0 2 2 2 (4)

11i 1/3 -1/3 0 0 0-2 2 2

022 0 0 0 0 0 0 0

020 0 0 2/3 -2/3 1-2 2 2

220 -2/3 2/3 2/3 -2/3 2-4 4 2 (3)

202 2/3 -2/3 2/3 -2/3 2-4 4 2

220 2/3 -2/3 2/3 -2/3 2-4 4 2

202 2/3 -2/3 -2/3 2/3 2-4 4 2 (4)

202 -2/3 2/3 2/3 -2/3 2-4 4 2 (3)

1. Lower number assumes image extinction for jb_ - + 1/3, -2/3.

Higher number same as 2.

2. Assumes all r'b # 0 visible.
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appearance of APB tubes93 but are visible in fundamental reflections.

The second feature is the faint but visible residual fault contrast in

the region of Fig. 53 that would be swept by the undissociated super-

dislocation segment if it were turned from one edge of the fault to

the other. It suggests that the configuration was arrived at by the

reverse of that process.

Again, the major features of the extended fault of Fig. 54 and

the schematic of Fig. 55 (Ni-24.5AI, e - 4%, T - 230C) are quite

similar to the first two. The bounding dislocations are clearly

visible in Fig. 56 and are out of contrast in turn in Figs. 57 and 58.

The &.b analysis is summarized in Table 15. The undissociated super-

dislocation is [110] in pure screw orientation. The ±S pair of Fig.

59 again indicates that it is a single superdislocation. The super-

partials bounding the fault are 1/3 [121] and 1/3 [211]. The fault

and all dislocations lie in the (111) plane.

The most dramatic example of extended faults, and the most con-

vincing indication of their potential importance, is that of the grain

of Fig. 60. The foil is fortuitously oriented such that in many cases

one of the bounding dislocations is present in the foil, and lies in

the plane of the foil. The fault passes out of one surface. The

bounding dislocations are clearly visible in Figs. 61 and 62. The j.b_

analysis shows that in the region near center of Figs. 60-62, bounding

dislocations are of type 1/3 <112> and the faults are <111>. The

numbers of loops and complex interactions indicate substantial motion

of dislocations.
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In summary, slightly extended stacking fault coupled dislocations

are comon features in many, but not all grains in binary alloys.

Relatively isolated widely extended faults, while not ubiquitous, are

certainly not unusual features. The faults analyzed here demonstrate

a phenomenon which has not previously been reported. Each of the

three configurations consists of a segment which is <110>, apparently

composed of 1/2 <110> superpartials, in pure screw orientation, which

is decomposed into an extended pair of 1/3 <112> superpartials. Such

configurations are clear evidence of conversion from APB coupled to

SISF coupled superdislocations. Furthermore, the APB coupled disloca-

tion involved in the reaction is in the commonly observed, presumed

locked, screw orientation.

High densities of widely distended faults such as those of

Fig. 60 appear to be less common, but indicate considerable mobility.

It is possible that when the bounding dislocations lie well out of the

plane of the foil and the line length grows short during foil prepara-

tion, that sufficient constraints are removed that the faults

collapse. None of these features are observed in any composition

containing B.
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TABLE 15

Summary of .b Analysis, SF3

1/2 1/3 1/3 1/3
1 1 2 1

b A A a C B SF 0 1 1 1

Number of images

111 1 1 2 1 1 1 -1 -4/3 -2/3 -1/3

11l 1 1 2 1 1 1

200 1 1 2 1 2 1 1 -2/3 2/3 2/3

200 1 1 2 1 2 2 -1 2/3 -2/3 -2/3

11i 0 0 0 1 1 1 0 -2/3 2/3 1/3

iil 0 0 0 1 1 1 0 2/3 -2/3 1/3

022 1 * 1 1 0 0 1 2 0 0

02 1 * 1 1 w 0 -1 -2 0 0

220 1 1 2 1 1 0 -2 -2 -2 0

220 0 0 0 1 1 1 0 -2/3 2/3 403

220 0 0 0 1 1 1 0 2/3 -2/3 4/3

202 1 * 2 0 1 0 1 0 2/3 0

One image, either A or A'
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CHAPTER VI

DISCUSSION

6.1 Grain Boundary Structure

Briefly sumarizing the results: the structures of two

boundaries in Ni-24.5 at.Z Al were determined. Both boundaries were

found to be best described by the CSL solutions for ordered boundary

structures. Due to the structures of both boundaries, however, the

ordered and disordered solutions are similar and the solutions are not

as definitive as they might be. In each case, the agreement between

the CSL solutions and the line directions determined by experiment

were excellent. In the Z9 case, the spacings are also in excellent

agreement. For the E31 boundary, one of the spacings is in good

agreement while the other differs from experiment by a factor of

three. In each case, however, the rjb analysis for the boundary

dislocations was ambiguous. There is no evidence in either boundary

of paired partial grain boundary dislocations.

The poor agreement of the rb analyses with any likely boundary

structure complicates the evaluation of the results with regard to

confidence level. In both cases, however, the agreement of the

geometrical analyses with experiment is good, which reinforces the

implication that there is a systematic problem with Burgers vector

134
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analyses of gbds in Ni3 Al. The strong elastic anisotropy of this

material 8 6' 8 1 is a possible source for such an effect. The local

strains (and image) due to a gbd will depend upon the elastic proper-

ties of its surroundings. In the case of a grain boundary in an

anisotropic material, the elastic properties will be an infinitely

variable function of misorientation and boundary plane. Considered

later in this chapter is evidence that the composition of the boundary

differs from that of the lattice. If such differences condense

somewhat to gbd lines, image characteristics could also be affected by

that phenomenon, particularly since the geometry of the adsorption

would be affected by elastic anisotropy. With these considerations,

the E9(pc) and Z31(pc) solutions are considered the probable struc-

tures of the boundaries.

The results indicate then, that at least some grain boundaries

have the ordered structure. The matter requires further investiga-

tion, however, since it seems possible that some boundaries could be

of the ordered and others the disordered structures. In a compound

with a very large ordering energy, such as Ni3 Al, it seems evident

that some boundaries must be ordered. Consider the E - 3 first order

twin. All the atoms in the boundary have the same near neighbor bonds

by length and type as in the perfect crystal. The antiphase energy of

such a boundary is exactly the APB energy, which is quite large

(recall that Ni3 Al is ordered to melting). On the other hand, unless

there is a great deal of relaxation and shuffling, a high-I boundary

will have a large antiphase energy even if the boundary structure is



136

that of the ordered crystals. This is true because, irrespective of

the ordering of the coincident sites, there is a large number of

mismatches by type across the boundary between coincident sites.

Furthermore, the coincident sites themselves become a negligible

fraction of the boundary. If that is the case, and the antiphase

energy of the boundary is approximately equal whether the structure is

that of the ordered lattice or the disordered lattice, then the

structure can be expected to be driven by strain-energy considera-

tions. That is, the disordered structure can be expected. In this

scenario then, high symmetry boundaries will be of the ordered struc-

ture and low symmetry boundaries will be of the disordered structure.

It is interesting to speculate on the consequences. A decrease

in ordering energy would decrease the fraction of ordered boundaries.

That is, the disordered structure would extend to lower sigma's.

Presumably, slip transmittal and source operation will be more dif-

ficult in an ordered-structure boundary than in a disordered-structure

boundary of the same type, therefore, the population of transparent

(and mobile) boundaries will have changed. In sumary, a change in

ordering energy, through the addition of B perhaps, will change not

only the properties of all boundaries, but will change the distribu-

tion of boundary types.
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6.2 Surface Energies and Grain Boundary Population

It is evident that boron affects properties in addition to grain

boundary cohesion. It was found to have dramatic effects upon the

incidence of annealing twins, grain growth, and the occurrence of

extended SISF's. SISF separated pairs of dislocations are common in

binary alloys, and were never observed in alloys containing 0.5 and

1.0 at.% B. The dramatic decrease in annealing twins and stacking

fault coupled dislocations with increasing B content indicates that B

has a strong effect in increasing stacking fault energy. The accom-

panying increase in grain growth kinetics is somewhat more difficult

to interpret. There are at least three possibilities: 1. B directly

increases the mobility of some or all boundaries. 2. B biases the

distribution of boundary types toward more mobile boundaries or, 3. B

increases the driving force for grain growth. It is evident that the

second is true to some degree, in view of the decrease in twin fre-

quency. This effect is also consistent with the observation that B

segregates to higher Z boundaries more strongly than to 13 twin
58

boundaries. If B generally lowers the energy of boundaries and the

efect increases with increasing B, it follows that high Z boundaries

will be stabilized to a greater degree. The third possibility seems

unlikely since if B decreases boundary energy, the driving force for

grain growth will decrease. It seems likely then, that for whatever

reason, the population of boundaries in a B containing specimen is

more mobile.
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This is an interesting observation because it seems apparent that

grain boundary mobility and slip transmittal are related. They are

both determined in large part by the capacity of the boundary to

change orientation, absorb and emit dislocations, and generally alter

its structure. If that is true then the population of boundary types

in the B containing specimen might be more amenable to slip trans-

mittal. Although this is clearly highly speculative, it seems pos-

sible that enhanced ductility could be, in part, a second order effect

of the addition of B resulting from a change in the population of

grain boundary types.

There is significant circumstantial evidence that B decreases APB

energy. The calculations of Cahn and Kikuchi95 predict that there is

a pronounced maxima in APB energy at the stoichiometric composition

and it is now evident from experimental, and other theoretical work

that the boundary energy decreases with decreasing Al and that B aids

this process.55,57-60 Furthermore, the calculations of Briant and

Messmer45 indicate that B increases Ni-Ni bond strength. The implica-

tion is that the ratio of AB to AA and BB bond strength is decreased,

decreasing APB energy.

Regardless of the change in absolute magnitudes, the evidence

suggests that the ratio of APB to SISF energy decreases with the addi-

tion of B, increasing the fraction of APB coupled dislocations. This

is suggested also by Baker, et al. who report both SISF and APB

coupled dislocations in alloys containing 0.19 and 0.38 at.% B and APB

coupled only with 0.75 and 1.12 at.% B. 9 0



139

6.3 Possible Effects of Segregants Upon Slip Transmittal and

Grain-Boundary Sources

Transmission of slip from one grain to the other and the role of

grain boundaries as sources for lattice dislocations are clearly

important aspects of the deformation of polycrystals. It is possible

that these are indistinguishable -- that they are two terms for the

same event, or that they differ only by the order of occurrence of a

sequence of events which is impossible to determine after the fact.

Although it is common to represent slip transmittal as a localized

event with slip bands in either grain meeting at the boundary [Fig.

63(a)], in the author's experience, it is more common to observe a

slip band in one grain but not the other. It seems likely that

transmittal may occur by a process which consists of the absorption by

the boundary of lattice dislocations from one grain via dissociation

into gbd's, and the subsequent emission of lattice dislocations into

the second grain by condensation %f gbd's at another location [Fig.

63(b)]. Furthermore, the continued operation of a boundary source in

one grain requires (or accommodates) deformation of adjoining grains

and the boundary. In either case, it is apparent that the ability of

the boundary to absorb gbd's either at the site in a step or through

motion along the boundary is an important factor. The former might

favor localized transmittal while the latter might facilitate

"diffuse" transmittal. In the case of diffuse transmittal (and
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a.

b.

FIGUR 63. Slip transmittal. a) localized. b) diffuse.
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possibly that of localized transmittal) absorption and emission are

separate events.

It is assumed that emission occurs by the condensation of gbd's

into a 1/2 <110> superpartial which moves away from the boundary

trailing an APB. The second superpartial is emitted by the same

process and "repairs" the APB (Fig. 64). The alternative is that

gbd's condense to form the total dislocation which dissociates after

leaving the boundary. The latter might be expected if the boundary

were composed of DSC vectors of the ordered lattice.

It is apparent that the energy of a boundary of any structure

between crystals of an ordered material, will be changed by

rearranging atoms by type. Like-atom and dislike-atom interaction

energies are significantly different or the crystals would not be

ordered. This is particularly evident in the case of low I boundaries

with high fractions if coincidence sites. In higher Z boundaries, it

is probable that there is at least some contribution of order to the

energy. The extreme case is that the boundary structure is charac-

teristic of the ordered lattice. In any event, if order plays a role,

then some structures will be favored over others simply due to the

effects of ordering. Furthermore, even if the structure of the

boundary is that of the disordered lattice, displacements of other

than translation vectors of the ordered lattice will have an anti-

phase related component of energy. Such a gbd would bound a region of

lower AB order and higher energy -- a sort of grain boundary antiphase
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FiGUEE 64. Emission of superdislocation.
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region (gbapr). This term will be used without implication of a fully

ordered boundary.

The gbd's which condense to form the first superpartial disloca-

tion, which is not a translation vector of the ordered lattice or of

an ordered boundary, do not themselves constitute a translation vector

of an ordered boundary. Therefore, they must leave behind a region of

lower AB order (gbapr) in the boundary. The set of gbd's which follow

to form the second of the superpartial pair must repair the disorder

in the boundary. For clarity, consider the reverse process: absorp-

tion of a superdislocation pair in a boundary. Upon absorption of the

first superpartial, the boundary is intersected by an apb. If at the

intersection AB order is preserved across the gb above the apb and BB

anti-order is present across the apb, then BB anti-phase order must be

present across the gb below the apb (Fig. 64). The actual location

and extent of the misordered region is determined by the nature and

location of the gbd's resulting from the absorption event. The

absorption of the second superpartial eliminates the APB and probably

the gbapr.

Analogous to the splitting of perfect dislocations into Shockley

partials, the condensation of gbd's to form a superpartial exchanges a

number of small Burgers vectors for one large one. Since the self-

energy of a dislocation is proportional to the square of the Burgers

vector, energy input is required, and therefore the gbd's mutually

repel. They also bound an energetic fault, the gbapr, which results

in an attractive force. The expected result then is an equilibrium
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separation 11 determined by the magnitudes of the Burgers vectors and

the energy of the gbapr, ygbabr. In the schematic representation of

Fig. 65, the gbd's are represented by the pair at the extremes of the

group.

Similarly, the of gbd's which form the second superpartial sum to

a dislocation identical to the first superpartial and repel it. The

magnitude of the repulsion depends upon their proximity to the slip

plane, 11. The formation of the apb causes an attractive force and

there results an equilibrium spacing, 12, which is dependant upon the

energy of the apb, yapb.

Lower yapb will allow the first superpartial to move farther away

from the boundary and decrease the back-stress on the gbd's thereby

decreasing the energy barrier to emission. Conversely, lower ygbapr

will increase the spacing between the gbd's, 11, and decrease the the

distance of the first superpartial from the boundary, 12, thereby

increasing the barrier to emission. The activation energy then is,

Q = Q(yapb, 1/ygbapr) 6.1

Since the gbd's can be expected to always dissociate to some degree,

irrespective of the magnitude of ygbapr, and that at low ygbapr values

other factors will control the degree of dissociation, there is not a

clear choice of assumptions which will allow a meaningful calculation.

It is apparent, however, that in most cases yapb will dominate. For a

significant change in yapb, lower values will facilitate emission of
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12

FIGURE 65. Emission of superdislocation.
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dislocations. The relevant exception is a case in which ygbapr is

affected far more strongly than yapb, for instance as the result of

strong segregation to grain boundaries of a species which strongly

affects the anti-phase surface energies. In such a case increasing

anti-phase surface energies might decrease the barrier to emission.

Similar considerations apply to the SISF. Increasing ysisf can

be expected to inhibit emission of 1/3 <112> dislocations. If B in

fact decreases APB energy and increases SISF energy, the barrier to

emission of APB coupled dislocations will have decreased while the

barrier to the emission of SISF coupled dislocations will have

increased. This is consistent with the observations of Chapter V.

6.4 The Role of SISF Coupled Dislocations

Probably the most significant finding of the study on lattice

dislocations is the observation of the conversion of 1/2 [110] super-

partials to 1/3 [112] superpartials. An important aspect is that the

the APB coupled <110> superdislocation involved in the process is in

the ubiquitous straight screw orientation. This observation is then

proof of a connection between the two most prominent artifacts of

deformation. Furthermore, it appears to be a relatively common event.

A related issw, -s the identification of APB and SISF couplei

dislocations. When the stacking fault energy is sufficiently high and

the spacing small enough that the strain fields overlap substantially,

the strain field, and the image, will tend toward that of the total
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dislocation, i.e., <110>. It is probable that if the image does not

resolve the pair (due to diffraction image limitations) the image is

due to the total strain field and will represent the total disloca-

tion. It follows that SISF and APB coupled pairs will be indistingui-

shable. Since this is often the case in bright field images, and it

appears that commonly in the literature pairs are assumed to be APB

coupled if there is no apparent SISF, it is possible that they are

sometimes misidentified. In the present work, images such as the

weak-beam micrograph of Fig. 45 in which the resolution is clearly

sufficient to resolve the individual superpartials seem to preclude

that possibility.

One possible mechanism for the formation of the observed con-

figurations is that the SISF coupled superdislocation is a result of

the Kear-Wilsdorf (KW) locking mechanism. As in Fig. 66(a), the

leading superpartial has cross-slipped and locked by dissociating on a

different {1111 plane. Under sufficient stress, rather than creating

APB, the 1/2 (101] superpartial dissociates into a 1/3 [211] super-

partial and a 1/6 [121] stair-rod [Fig. 66(b)]. Another possibility

is that the formation of the 1/3 <112> plays an active role in the

locking mechanism as follows: The leading 1/2 (101] constricts,

cross-slips onto (0011, then dissociates directly into the stair-rod

and 1/3 [211]. The 1/3 [211] is incapable of cross-slipping on {0O1)

and the stair-rod is a barrier to the cross-slip of the trailing

superpartial.
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FIGURE 66. Kear-Wilsdorf lock as source of SISF, 1/3 (112)

superdislocation.
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The complex lozenge interaction was also found to result from the

presence of SISF coupled pairs. The lozenge is the consequence of

interaction of a superdislocation dipole composed of 1/3 <112> par-

tials and driven by a reduction in strain energy. Such an interaction

constitutes a variety of Kear-Wilsdorf type, cross-slip locking

mechanism, but does not appear to be a comon feature.

A thick region of foil provided evidence of profuse slip of 1/3

<112> superpartials trailing SISF's. There is ample evidence of

interaction and resulting debris. Since this specimen was unusual in

this respect, the dislocation remnants may be an artifact of forging

and not of general importance. However, it is evident that 1/3 <112>

dislocations are mobile under some circumstances.

The existence and role of SISF coupled dislocations has been

largely ignored or discounted, and in fact, the contribution may be

insignificant. Nonetheless, whether they are mobile, or simply arti-

facts of the motion of APB coupled dislocations, they are a prominent

feature in binary alloys and are absent (in extended form, at least)

in B containing alloys. That such a change in either dominant slip

system or debris should have no effect seems remarkable.

Isolated examples of the tube-like features of Fig. 52 have also

been obse-ved by Veyssiere83 who has noted the resemblance to APB

tubes and has been perplexed by the fact that they image in funda-

mental reflections but not in superlattice reflections. APB tubes

have also been reported in Ni3Al, although without mlcrographs. 9 3

SISF tubes equivelant to the APB tube is the lozenge fault of Chapter
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V and requires stair-rod dislocations at the plane intersections.

Hirth has suggested that they are APB tubes and that the contrast is

the result of a chemical effect, specifically the deviation in com-

position discussed earlier. 9 4



CHAPTER VII

CONCLUSIONS

The structures of both a Z 9 and a Z 31 boundary in Ni 3Al were found

to consist of perfect grain boundary dislocations of the ordered Li2

structure. There was no evidence of grouped partial grain boundary

dislocations. This is taken to imply that boundary structures are

ordered at least for Z < 31. It is possible that higher Z, lower

symmetry boundaries are of different structure.

Boron was observed to have strong effects upon the population of

boundary types, grain size, and grain growth. The combined effects of

the alteration of boundary type distributions and the possible

existence of ordered and disordered structure boundaries have the

potential for strongly altering average boundary behavior. In addi-

tion, small amounts of B completely eliminate widely extended stacking

faults. It is evident that B effects other than simply boundary

cohesion are important.

Independent reaction of APB coupled 1/2 [110] pairs to 1/3 [112]

SISF coupled pairs (or the reverse) has been conclusively demon-

strated. The 1/2 [110] participants were in the commonly observed

pure screw orientation which is attributed to a locking mechanism. It

is probable that SISF coupled superdislocations play a far more

151
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prominent role in deformation behavior than generally appreciated

either through a direct role in, or as a consequence of the Kear-

Wilsdorf lock.
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