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The decomposition of guided waves into spherical representations and near-field effects on target scattering

M. F. Werby, G. V. Norton, and E. White

Naval Research Laboratory
Theoretical Acoustics Branch
Stennis Space Center, MS 39529

ABSTRACT

We wish to develop a scheme that will enable us to predict the near field that results from the interaction of a
submerged object with a guided wave for a general object in a general waveguide. The method will be based on the
extended boundary condition (EBC) method (T-matrix; of Waterman and a new normal mode method that allows
one to decompose the normal-mode solutions into a spherical representation suitable for operating on the spherical
tensors that arise from the T-matrix method. Of particular importance is the fact that the resulting formulation allows
one to couple the resulting near-ficld solution to an outgoing normal-mode series that leads to the general waveguide
solution.

L. INTRODUCTION

Scattering by submerged objects in the ocean can be complicated by the sort of environment that they are in. The
easiest problem for submerged targets is when one can treat the problem as if no boundaries exist. This can happen
at high frequencies in deep oceans with targets reasonably near to the source. The problem becomes more difficult
if one must include boundaries such as ocean surfaces and bottoms. Moreover, a refractive water column further
complicates the problem both in the formal sense, as well as for computation. Here, we will focus on submerged
objects that may have a variety of boundary conditions. The objects are allowed to be in a complicated waveguide,
which can be described by normal mode theory, and for which we are only interested in the near-field solution. The
general solution in a waveguide is presented by Norton et al.,! based on the near-field solution presented here.
The approach is from its inception approximate, but we believe it is quite adequate and robust for most environments
and targets. .

Presently much progress has been made for targets in a free environment. The targets can range from spherical
shapes or infinite cylinders to elongated targets. Indeed, fairly general targets are now being successfully treated by
variations of Waterman’s Extended Boundary Condition (EBC) method?-5 for impenetrable, as well as fluid and
elastic targets, particularly if they have axial symmetry such as very elongated impenetrable spheroids, as well as
spheroidal elastic solids and shells.®-1! The latter problem (elastic shells) is the most difficult of the problems
mentioned within the context of the EBC method and might be more appropriately solved using approximate thin
shell theories or Hackman's approach using spheroidal functions.!? Weighted residual methods, the method of
moments, both based on global and local basis states, are also showing progress toward solving a variety of problems
particularly for complicated structures. Familiarity with the subject for the free-state problem and the many com-
plications and numerical pitfalls that are encountered cannot help but lcad one to the conclusion that when these
objects are placed in a bounded environment, complications proliferate possibly to the point that the methods, if
possible to formulate, are not numerically viable. It therefore scems at the very least judicious to attempt to construct
any theory that describes what happens to a signal once it propagates from an object in a waveguide based on the
free-state solution, in particular, one should try to determine a suitable unifying procedure that allows one to couple
the free-state solution to a waveguide solution.

The purpose of this paper is to give a bricf outline of a general method that allows onc to produce the correct
near-ficld solution that can be used in the development of a coupling scheme that will lead to a solution in a gcncral
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waveguide. Although the near-field solution is of inherent interest once it is obtained, there are several ways to
couple the near-field solution to a waveguide and that has been discussed elsewhere. In this work we will emphasize
primarily the near-field solution along with a new normal-mode theory designed to produce a general solution, but
that can easily be converted to a spherical representation suitable for operating on irreducible tensors such as the
T-matrix.

II. THE NEAR-FIELD PROBLEM

We wish to determine the near field due to the interaction of a guided wave with a submerged object. We can
then use the near-field solution in a variety of strategies to obtain an approximate solution for the field scattered/
propagated from an object in a waveguide. Note that we do not state the problem as either a scatter or propagation
problem because we can view the initial event (the interaction of the guided wave with the object) as a scattering
event while we can view the course of the scattered signal as a propagation event once the waveguide takes effect.
By employing the near field in this manner it is clear that we have divided the problem into different computational,
as well as conceptional segments, namely propagation-scattering-propagation. In this section we show how to treat
the interaction of a signal propagating in a waveguide with a submerged object. To do this, we first review the
treatment of scattering from a target via the EBC method, which leads to a T-matrix which transforms an initial field
into a scattered field (for the free-state problem) in matrix form as follows:

f=Ta H

where f {a} are column vectors representing the expansion coefficients of the scattered (incident) fields, and T is
the transformation (a square matrix) that maps the incident field onto the scattered field. Let us restrict our argument
(for the sake of simplicity) to that of an axisymmetric target. such as a spheroid, and deal initially with a plane
incident wave. We wijl then generalize to the case of a guided wave based on a normal-mode solution. We will see
below that even for a fairly general range-dependent waveguide, this approach will be sufficient for calculation. To
be specific, we look at the form of a T-matrix for a rigid axisymmetric target. To derive a T-matrix from the EBC
equations of Waterman, one starts with the integral representation of the Helmholiz equation for a rigid target,
namely:

U(p)=U;(p)+/; [U,(p"3G(p.p')/dn]dS (2a)

and
0=U;(p")+f; [U(p"9G(p",p")/dn}dS (2b)

where U(p), Ui(p), U,(p") are the total field at a point p cxterior to the object, the incident ficld, and the ficld at
a point p' on the object, respectively, and dG(p,p')/dn is the unit normal of the Green’s function on the surface of
the object. We are working with the velocity potential U throughout this development. The point r” is inside the
bounded object and leads to a total field that is zero, hence the terminology “null field equation.” Notice that we
have two equations here, one representing the solution in the exterior and one the interior. There are two reasons
for this. One is that we can employ the second of the two equations to eliminate the unknown in Eq. 2 and the second
is that by including the interior solution we are able to avoid the spurious eigenvalues (irregular values) that arise
when only the exterior solution is used. In Waterman’s strategies, to solve this problem one must reducc the
cquations to that of a matrix problem by two dcvices. First onc represents the Green’s function in a biorthogonal
expansion as follows:

G(p.p")=ikERe @,(kp g, (kp,, &)

where Re @,(p.) and @,(p,) arc the regular and outgoing partial wave functions. In the spherical polar representation
f"n‘kP)=h,H:p)Yim(0,¢) where h; and Y, arc outgoing spherical Hankel functions and spherical harmonics of order
I with m being the azimuthal index.

e 4
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The next step in the solution to the problem is to expand the surface quantity in a partial wave or eigenexpansion,
which is known to be complete on the surface of the object. There are many possible choices, but a judicious one
for numerous reasons is the following:

U,(p)=L, b,Req,(p). (4)

Here, b, is now the unknown quantity in this relation that reduces the problem to that of finding the unknown set
of numbers b, rather then the quantity U,. This choice of the expansion guarantees that in the limit of a sphere,
the EBC results agree formally with normal-mode theory. In addition, the regular spherical Bessel function j,(kp)
offsets the contribution of the h, (kp) terms at least in the lower half of the mairix in the integrals that define the
Q matrices (below) and thus avoids a problem associated with the dynamic range of the computer. (It is possible
for the integral to be rapidly oscillatory with the difference in absolute value greater than the dynamic range of the .
computer. This can happen for some choices of expansion functions.) It is then possible (after suitable truncation)
to arrive at the following set of matrix equations that relate the unknowns {fy} and {bp}, where b is a column matrix
representing the expansion coefficients of U,.

f=ikReQb (5a)

a=-ikQb. (5b)

The transition matrix is then easily seen from Eq. 1 to be:
=-ReQ Q! 6
where Q;=f Re ¢;(kp)d@;(kp)/on dS.

The T-matrix was developed in a spherical representation. It is a second rank tensor in irreducible form, and thus, L
only has meaning when operating on a vector also in a spherical representation. Since it is in irreducible form, it
can be easily rotated once the simplest form of T is devised, which is a salient property. On the other hand, the fact
that it requires the vector that it operates on to be in a spherical representation while having its value for plane waves
(which are easily expanded in a spherical representation) impose restrictions on the form of the guided wave.
However, we show in what follows how it is possible to represent a waveguide solution in a spherical representation
of a fairly general form. The plane wave solution may be written in a partial wave representation via the Raleigh
series as follows:

EXP{ipkcos(8) }=X (2n+1)(i)" j,(pk)P,(6) ¢)

where 8 is the angle between k and p. For the more general representation one can use the addition theorem for
spherical harmonics to obtain the plane wave in coordinates relative to a fixed Cartesian system, which we must
ultimately use. That expression is: L

Po()=41/(20+1) X Yna(Bcns Q) Yiun(Oprne @)’ @

where 9 is the angle between p and k and 6,, and @y, are the respective angles relative to the Cartesian coordinates
of n} for mode n.

Our interest, however, is in the guided wave impinging on a bounded objcct. Here the wave that insonific® the
object for a stratificd environment is of the form:

@

U,=1/2(e™)AZQ(YaZs) @n(YaZ) c*n'/(x,r)!2
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where @,(Y,2) is the vertical solution to the problem, which is an eigenfurction with eigenvalue y, corresponding
to the vertical wave number for mode n, while z; and z are the values of vertical displacement at the source and
at observation respectively. r is the distance in the horizontal plane and x,, is the horizontal wave number for mode n.
Here k2= y,2+x 2. In this formulation, we include only propagating modes and assume that the origin of the source
is localized in space such that it may be approximated by a point source and that we are sufficiently far from the
source that evernacent modes can be ignored. This procedure is, in fact, standard practice in the derivation of
normal-mode equations and proves to be quite adequate for many environments. We will limit discussion to layered
fluid bottoms so that U symbolizes the velocity potential. For an elastic bottom we would have to formulate the
problem using the displacement vector in order to satisfy the boundary conditions at the fluid-elastic interface.

It would be instructive at this point to illustrate with an example how to convert U to a spherical representation
for the case in which we represent the environment by n isovelocity layers. Let us pick a particular layer for which
the submerged object resides. Then U is of the form:

U,= 1/2(e™*)/dZa sin(Y,z,) sin(Y,z) e n"/(x,r)}? (1o

where a, is the expansion coefficient. We want to take advantage of the Rayleigh expansion of a plane wave so we
write

sin{y,z) ex r={exp(i Y,z+K,r)—exp(-i¥,z+x,r)} /2i (1)

where the (x,y,z), (r,z) are illustrated in Fig. 1. The coordinates (x'.y,z") for the T-matrix must preforce be in the
representation in Fig. 2 where z' is along the axis of symmetry of the spheroid (our choice of target). We write
cos(Qy, )=(Yp2+X,1)/ip and cos(a,_)=(Y,z~X,r)/y, So that we have

sin(Y,z) ex,r={expli kp cos(e, D-expli kp cos(o,_ )]} /2i. (12)
Thus, after use of the Rayleigh series and the above expression, we have U in the following spherical representation:
U0=l/2(ei"/")/d2nZLan(2L+l )(i)L_)L(pk)[PL(a,,) —PL(an_)]/(K'nl')l/2 (13)

where we must use the spherical harmonic addition theorem (Eq. 8) to obtain the most general form of the expression.
The above expression has been derived tacitly assuming that the interaction between the guided wave and the
submerged object occurs at a point. In fact, the interaction is extended in space and we must allow for this in
the final development. The final form depends on the way we interface the object with the guided wave. Let us
assume we have derived the above expression to be valid at the origin of the submerged object. Further, we wish
to find the field at some vertical line or over some surface with distance ry from the center of the object. This will
be developed later. However, in the next section we introduce a more general T-matrix, one that includes objects
near an ocean surface.

III. AN ENHANCED T-MATRIX FOR OBJECTS NEAR AN OCEAN SURFACE

So far we have only dealt with the free-state T-matrix. If the object is near a surface, then we have ignored
multiple interactions between the object and the interface. Although, for most problems this multiple interaction will
produce high angle propagation that will ultimately get absorbed into a realistic (attenuating) bottom and should not
be a strong factor in calculation. We show how this effect can be included in our formulation for completencss.
Previously we have shown how it is possible to derive a T-matrix for scattering near an interface. It takes the form
for only one impenctrable interface:

Tt =R(d)T{(1-06(-2d)To(2d)T)"'[R(-d)+0(~2d)TR(d) ]+R(-d) T

X{(1-6(2d)To(-2d)T)-! [R(d)+0(2d)TR(-d)} (14)
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where R(d) and o(d) are translation matrices that translate spherical Bessel and Hankel functions by the distance d
(in this case from the surface of the ocean). The translation/rotation properties of the spherical Bessel functions
{ia(kr)} are easy to derive by noting that exp{ik(d+r)cos{w)}= explikr cos(a)} exp{ikr cos(a")] where the a’s are
the angles between k and (d+1), r, and d, respectively. Then by expanding each exponential in the Rayleigh series
and using the addition theorem for spherical harmonics, multiply the left and right series by the complex conjugate
of the spherical harmonics associated with the left hand side and integrate overall space using orthogonality of the
spherical harmonics to obtain a series on the right equal to j,(k(d+r)]. The two integrals are well known to be related
to Clebsch-Gordan (C-G) coefficients so that the integrals may be replaced by the C(1I'l", m, 0, m'). We use the more
symmetric 3-j form of these overlap functions represented to be doubled column brackets to obtain:

jnlk(d+n)]=ZR (kd)j,(kr) (15)

where for translation along the z-axis we have:

n+n’ m+n+(n'+m +A)/2

R(2) n = ‘2 |(-1) (A + 1)/ (20 + D@20’ + 1)
A=in-n'
nn'A nn'A A
( 000 )(mmO)(il) iy (k)8 (16)

whcre( nn'A
m

moO

This relation defines the R’s, and if we replace the j’s by h's then it also defines the o’s. It is easy to see from
the exponential nature of the Rayleigh series that R(d)R(—d)=1 and R(d)R(d)=R(2d). The definition of o(d) is more
difficult to derive but along with R(d) the two expressions are defined by the one equation above. It can be shown
easily that R and ¢ are unitary so that for example o(d)'*= o(-d). Unfortunately, this sort of translation is only
suitable for a sphere or an object in which the body z-axis (the axial direction) is aligned with the z-direction of
the waveguide. This is seldom the case. In fact, it is usually perpendicular with the z-axis. In that case the R’s are not
diagonal with respect to the m’s. In this form, the translation matrices R and ¢ are not independent of the azimuthal
index m (which for example occurs in the spherical harmonic above). It is to be noted that for axisymmetric objects
the free space T-matrix and the Q-matrices are diagonal in m (they are block diagonal, i.e., of the Jacobi form). Thus,
we can invert the Qs for each m. Had that not been the case, we would have to invert the Q’s for matrix elements
including mixed m’s (this occurs for general targets) and this would reduce the combativeness of the T-matrix
method except for low frequencies. Because waveguides are not axisymmetric in range, we expect (in general) to
couple the m’s and in fact the presence of the translation matrices in expressions of the form (1-c(-2d)To
(2d)T)! renders the evaluation numerically unviable except for the special case mentioned above. However, we can
expand the expression as follows (1-6(-=2d)T6(2d)T) '=1406(-2d)T6(2d)T+6(-2d)To(2d)To(-2d)To(2d) T+....

) are 3j — coefficients that are related to the C-G coefficients by simple factors.

Since 6(-2d) approaches small values with increasing d, it is not difficult to suppose that this series terminates
fairly quickly. Further, since each term corresponds to zero, one, two..., etc., reflections from the surface then on
physical grounds onc expects convergence quickly. Indeed, if one has n multiple reflections, then it can be shown
that the corresponding expansion term dies off as 1/(2d)?". By retaining only a few terms corresponding to only 2
few multiple interactions between the surface and the object, it is then viable to include multiple reflections in the
way just prescribed. We will not include this effect here.

1V. A NEW NORMAL-MODE METHOD SUITABLE FOR THE NEAR-FIELD PROBLEM
A. A New Full-Perturbation Method
In general the normal-mode solution involves a water column that has a variable velocity. In the above devel-

opment we assume an isovelocity environment. We could divide the variable velocity profile into isovelocity layer®
. . . . . aaces Y
and treat the target as being in onc of the isosegments and proceed from there. This can lead in some cases t
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complications and so we have developed a new normal-mode method that obviates this problem and also leads 1o
a more elegant formulation. Because of the importance of this problem, we will outline the method here. The method
is a full perturbation approach that obtains solutions to the vertical component of the normal-mode problem. This
method proves to be very fast and particularly suitable for including fluctuations in a waveguide, as well as coupling
schemes for including targets in the waveguide. We write the exact solution for an unperturbed case as follows:

dY, [2 0
=+ ko—k_]‘l’i=0.

dz

The desired solution is rewritten as follows:

dzui

2
3 +[k (z) —A.i]Ui= 0.

dz

For convenience we rewrite Eq. 18 as follows:

dzu. 2 [4}
2l +[ko - li:,Ui = QUi

dz
2 2 0 2 2 0
Q=k0 -k (z)+li —li =q +A7Li and q(z)=ko-k (2) and Aki= Xi-— ki.

. . dz\yi 2 2 2 0
For the isovelocity case we can rewrite Eq. 17 as: 5+ ozi‘i’i =0 where o = ko— Ai .
dz

We impose the following orthonormality conditions:(‘l"l . %\yj)=6ij and (Ui R %Uj )= 8“.

We assume closure so that we can express U;:

N
U=2XaV¥
1 J=] 1} }
We insert Eq. 19 into Eq. 20 to arrive at:
N ) N
b3 au(u - )‘l’ = 3 a (q(z)+ Ali)‘l’_
i=1 j=1

wherei=1,2,3...N.

By integrating the overlap of the above expression with W; we obtain:

0 N a
A=hA ~q - L7 .q where & = 3=
12} 13

This yields the cigenvalue correction equation.

SPIF Vol 1960 Automatic Object Recovmton | o

an

(18)

(19)

(20

@n

22)




N
2 2
By integrating the overlap of Eq. 21 with ¥, we obtain: %(ai -a, - Ali) "42."“ A= 9, where k=1,
2,3...Nandi=zk. iwi

This is an eigenvalue probiem. We can use the expansion for the eigenvalue above to rewrite the equation as

N
1 2
follows: xik(“i ot Hik) - X 9 ¥,=9; wherek=1,2,3...Nandi#k

The diagonal terms are (mzi - azk + Hik)' Where H;; = q;; — AA;.

This will prove useful later. The H, terms contain the first and the higher order terms and in many cases
part of the terms are negligible. The diagonal terms are almost always greater then the off-diagonal terms.
Thus, we may in some cases use the Gauss-Seidel method. The first iteration via Gauss-Seidel leads to:
g = ik - U N

ik

2 2 2 2
o -0 +q, Ali o - o

-H ° where we rewrite Hy = qyy ~ q;; - ,E:i 3 qj;.
ik

This can be a big improvement over the ordinary perturbation term in that H;>q;,, and thus, we expect that
generally we will have convergence if the master matrix is diagonally strong. We see readily that we can arrive at
two improved perturbation theories by retaining the full form of H;; or by excluding the last term (the higher order
terms) of H;,. The advantage to excluding the last term is that we need not employ a sophisticated perturbation
approach to be discussed below. Further, this expression shows that the old theory overestimated the expansion
coefficient. '

0 N q;9;

ij
_ . . . A=A -q - X—s—F—
The new complete perturbation expansion for the eigenvalue is now: i i~ % ie) af_ aj + Hij .

This expression indicates that the first order correction is still the same, but the higher order corrections are over/
under estimated in the old theory. We must now conterid with the eigenvalues which turns out to be fairly easy to
deal with.

B. A Solution to the Eigenvalue Problem

0
We can reorder the above equations selectively to arrive at: Qa=Aa, where Qij =-q, i#jand Q. = A - q;;-
Thus, we have an eigenvalue problem for the A's. In the above expression the matrix Q is real, symmetric, and
diagonally strong. A rather good strategy to solve this eigenvalue problem is to make use of the Householder method
to reduce Q to tridiagonal form. For an nx n matrix this only takes n-2 orthogonal transformations. Since the
eigenvalues of this very stable and fast reduction method are unchanged, we need only find the eigenvalues of 2
tridiagonal matrix that can be donc in n operations. The quantity a in the above expression is rotational (unitary for
complex eigenvalues) and ought to correspond to the expansion coefficients required in reconstructing the exact
eigenvalues. Indeed, that fact that the matrix a is rotational or unitary under certain conditions guarantees that the
newly constructed eigenvalues are orthogonal as is required for Sturm-Liouville problems. We use the above method
just to obtain the eigenvalues and revert to the master equation that defines a along with H;, to obtain the expansion
cocfficients. This seems to work well. We now have a method that allows us to go to at least 10,000 Hz in shallow
water, a value considerably above what is usually allowed in normal-mode techniques, and at a considerable
improvement in specd. We now have exactly the type of method that allows one to cxpand a general normal-mode
solution in terms of a spherical representation because each normal mode is in terms of a sin function which when
included with the solution in range can casily be written in a spherical representation as was done in the earlicr
section for the isovelocity case.
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V. THE NEAR FIELD

We bricfly outline the basis for the method used to describe scattering from an object in a waveguide in the near
field based on the preceding resuits. We begin by allowing a guided wave to impinge on an object as it traverses
a given region. The object scatters the guided wave in some manner. We determine the scattered field near the object
via a free-field transition matrix as described above. Let us choose a surface circumscribing the submerged object.
The surface is arbitrary to the extent that it is smooth and its dimensions do not exceed the boundaries of the
waveguide and should be such that the largest dimension of the surface is such that the highest angle mode does
not interact with the boundary of the circumscribed region. We next require the near field on the surface, as well
as its normal derivative. To do this we must make a transformation from the coordinates of the waveguide to that
of one relative to the axis appropriate to the submerged object. Recalling that the mode angles a, were obtained
above relative to the horizontal (and not the vertical as is usual in normal-mode theory), we choose B to designate
the angle that the mode makes with the axis of symmetry of the spheroid in the horizontal plane. It is to be noted
that the reference axis of the spheroid and that of the waveguide differ. In particular, in order 1o exploit the axial
symmetry of the object, we must choose the z-axis in the object body reference along the axis, its axis of symmetry,
while we can choose x and y at our convenience. In the waveguide, z is in the downward direction while x and y
are in the horizontal plane. The angle scheme chosen is indicated in Fig. 2, where 0, and ¢, are the angles for
the particular mode n the appropriate angles to be implemented in the spherical harmonics. They are, in particular,
the angles of the incident mode n relative to the symmetry axis of the submerged object, the angle that the plane
generated by the incident raymode n, and the symmetry axis the spheroid makes above (below) the horizon, respectively.
They are:

tan{g,)=tan(e,)/sin(P) (24a)
cos(0,)=cos(P)cos(cx,) (24b)

where the surface is chosen at a suitable region circumscribing the object (suitably near the object) with origin at
the center of the object, this can be obtained from the expression

f(pves‘P):):zamm‘nn'Tmm'nn'(Kn) Ymn(e(m'n’ (pxn)Ymn(er'nm'v(pr‘n) h(“"np)/(‘cnp)”2 (25)

where the o's are projection coefficients of the normal-mode functions onto the spherical (partial wave) solutions.
This is the most general form of the scattered near field.

V1. FREE-FIELD CALCULATIONS

There are two classes of targets for impenctrable problems, i.e., soft and hard scatterers. Soft acoustically-
impenetrable targets do not support body resonances; therefore, we examine acoustic quantities appropriate for
nonresonant targets. These quantities are bistatic and monostatic angular distributions, defined by the case of noncoincident
source and receivers, where receivers vary through all possible rotation angles. Angular distributions arc thus
dependent on target geometry and can be useful to determine such features of target shape as symmetry or elonga-
tion. In particular, reflection, diffraction, and generalized Snell’s law behaviors can be observed as curved-surface
analogs for the plane-layered casc.

Bistatic angular distributions correspond to measurement of a scattered ficld at any point in space for some
incident wavcficld fixed relative to some source-object orientation. In Fig. 3 we examine a rigid spheroid of aspect
{Ienpih-to-width) ratio of 15:1. Fig. 3a~d represent scattering from the object along the axis of symmetry (end-on)
(a) 30, (b) 60, (c) 90, and (d) degrees relative to the symmetry axis (broadside). The values of the incident wavefield
frequency arc expressed using the dimensionless quantity kL/2, where L is the object length and k the total wavenumber
(k=2 m/A). The value of kL/2 in Fig. 3 is 30, which implics that the object is about 10 wavelengths long and thus
in the intermediate-frequency region where neither low nor high frequency approximations apply. In all figures,
frequency is sufficiently high that wave diffraction effects are significant in the forward scattering direction. Perhaps
the most interesting featvre of the four plots (Fig. 3a-d) corresponds to a reflection at the (fairly flat) side of the
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Table 1. Waveguide Characteristics

WATER DEPTH (m)  SOUND SPEED (m/s) DENSITY (g/cc)

0.0 1449.0 1.0
180.0- 1440.0 1.0
180.0+ 1530.0 2.0
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7
¥
9 l
L Y
] ] X '
r X
Fig. 2.
y
Fig. 1.

SPIE Val. 1960 Automatic Object Recognition il (1993) /403




object for scattering angles of 30 and 60 degrees. This reflection can occur only for very elongated objects that
approach flat surfaces, so that the reflected angle is almost the same as the incident angle (relative to a straight line
through ..ie axis of symmetry).

We now consider the same scattering problem for sound-soft objects. Fig. 4a—d illustrates the response from a
spheroid of 15:1 aspect ratio and a kL/2 of 15. In terms of directionality and reflection, these angular response
patterns are similar to those in the previous rigid case. The scattered field tends toward the forward direction and
the reflected angles (relative to the axis of symmetry) coincided with the incident wavefield. However, scattered
fields are now more highly focused, even at the lower frequency values considered. This latter effrct is due to the
phase-change at the object surface (r radians). We see the same effect (as for the rigid case) in b and ¢ for surface
reflections at angles equal to the incident value relative to the axis of symmetry.

VII. NEAR FIELD IN A WAVEGUIDE

Because the vertical component of an ocean waveguide normally varies slowly, it may be approximated by many
horizontally stratified water layers overlaying many horizontally stratified sediment layers, bounded below by a high
speed, strongly absorbing, half-space, and above by a pressure release surface. Each water and sediment laver is
defined by its local sound speed and density. The radiation condition in the half-space causes the field to diminish
exponentially with increasing depth. The waveguide is assumed to have azimuthal symmetry. For this example, shear
is ignored in the sediment and the half-space.

The purpose of the following example is to examine the backscatter signal from a solid rigid spheroid situated
in a realistic shallow-water environment, after being insonified with a continuous wave (CW) source with a fre-
quency of 100 Hz. The environment selected was a shallow-water waveguide representing the coastal region off the
North east coast of the U.S. in May. Its parameters are shown in Table 1. The environmental description was
devcloped by Cohen and Cole.!? A solid rigid spheroid 50 m long and 10 m in diameter (aspect ratio 5:1) was placed
5 km from the source. The source and receiver depths were at 90 m, while the object was at SO0 m. The source,
receiver, and object, in general, can be at different depths in the waveguide. Eight modes were excited.

Figure 5 represents a contour plot of the scattered field that resulted when the object was insonified by the source
at an angle of 45 degrees from the front of the object. The scattered field was calculated every 10 m in range starting
at 4500 m and ending at +500 m. Note that the ficld is expressed in terms of transmission loss in decibels relative
to one meter. The calculations were not carried out when the receiver was closer than the mathematical surface
circumscribing the object and the value was arbitrarily set to 200 dB, hence the circular opening of the field. The
kL/2 value for this example was only 10.48 which explains the broad lobes shown in the figure. Note also that in
the forward and specular direction the field is strong, approximately 116 dB. The ficld is very weak along the major
axis of symmetry, approximately 140 to 170 dB. This is consistent with observations made in free space. Figure 6
is the same field depicted as a mesh plot with the contour plot of Fig. 5 overlaid. This depiction better shows the
effect of the waveguide upon the scattered ficld.
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Fig. 3. Numerical examples (a) scattering from a rigid
spheroid, aspect ratio 15:1, kL/2 = 30, along symmetry
axis; (b) scattering from a rigid spheroid, aspect ratio
15:1, kL/2 = 30, 30 degrees relative to symmetry axis;
(c) scattering from a rigid spheroid, aspect ratio 15:1,
kL/2 =30, 60 degrees relative to symmetry axis;
(d) scattering from a rigid spheroid, aspect ratio 15:1,
kL/2 = 30, 90 degrees relative to symmetry axis.
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Fig. S. Contour plot of the scattered field from an object
in a waveguide.
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Fig. 4. Numerical examples (a) scattering from a soft
spheroid, aspect ratio 15:1, kL/2 = 15, along symmetry
axis; (b) scattering from a soft spheroid, aspect ratio
15:1, kL/2 = 15, 30 degrees relative to symmetry axis;
(c) scattering from a soft spheroid, aspect ratio 15:1,
kL/2 =15, 60 degrees relative to symmetry axis;
(d) scattering from a soft spheroid, aspect ratio 15:1,
kL/2 = 15, 90 degrees relative to symmetry axis.
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Fig. 6. Mesh plot of the scattered field with an overlay
of Fig. 5.




