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Proper fluid loading of thin shell theories and the prediction of pseudo-Stoneley resonances
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ABSTRACT

By including the effect of fluid loading for the thin spherical shell in a proper manner, so-called shell
theories can predict the water borne pseudo-Stoneley waves described extensively in the literature. Shell
theories give reasonably good results for the motion of a bounded elastic shell by using the assumption that
various parts of the shell move together in some reasonable manner. Without proper fluid loading, however,
shell theories do not predict the pseudo-Stoneley resonances observed in nature and predicted by exact theory.
With proper fluid loading, as well as rotary inertia and translational and rotary kinetic energy terms, a shell
theory can exactly predict these water borne resonances. These resonances are predicted by the shell theory
and compared with results from exact elastodynamical calculations.

1. INTRODUCTION

Interest in sound scattering from submerged elastic shells is broadly based. For example, the structural
engineering community has a considerable interest in the area of nondestructive testing via ultrasonic
scattering, while in the area of remote sensing or object identification scattering from objects proves
invaluable. The acoustical scattering from elastic objects or more simply the generation of resonances from
bounded elastic shells can be described by acoustic and elastodynamic theory. Exact solutions for scattering
from elastic targets exist for target shapes for which the elastodynamic equation is separable. For three
dimensional targets separability is only possible for spherical and rectangular targets. For more complicated
targets numerical techniques must be used. For axisymmetric smooth targets the extended boundary method of
Waterman has proven useful though limited and an approximate theory would be desirable for more
complicated targets. The purpose of this work is to develop an approximate theory based on shell theory that
would be of use for general shapes that could also include structural loading. Shell theories afford a very
powerful methodology to "build in" structural features usually via a variational principle in which some
Lagrangian or Hamiltonian is constructed by introducing physical features. The simplest theories which
always assume correlated motion of the inner and outer surfaces of the target include kinematic features and
potential energy terms based on the generalized Hooke's law which leads to the lowest order symmetric mode.
One can add rotational inertia to the Hamiltonian which allows an antisymmetric mode. One goes on from
there to include higher order corrections. Further, proper fluid loading -- which from our experience is no easy
task -- must be introduced correctly. The proper inclusion of fluid loading introduces a fluid borne wave: the
pseudo-Stoneley wave. Clearly thin shell theories are rather geometrical and must be constructed for each
shape due to their dependence on shape dependent dynamic factors. Non-spherical three dimensional objects
present a problem which we seek to address in the future. In this work we wish to show the development and
test the predictions of a suitable shell theory for spherical shells that can be readily generalized to spheroids
and finite cylinders, and specifically we wish to show that proper fluid loading in an shell theory does allo*.
the prediction of water-borne pseudo-Stoneley waves. In the following section we outline the derivation of a
shell theory with many of the featured described. The theory is then used to compare with the exact method.
and specifically the exact theory calculations of the water-borne wave mode. The results are then discus,'d
and future work is described.
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2. DERIVATION OF EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to P3) predominate over flexural stresses (proportional
to /82) where

I h

We differ from the standard derivation for the sphere' by retaining all terms of order p2 in both the kinetic and
potential energy parts of the Lagrangian and by considering the resonance frequencies for the fluid loaded case
to be complex. We note that this level of approximation will allow us to include the effects of rotary inertia in
our shell theory, as well as damping by fluid loading. The parameter fl itself is proportional to the radius of
gyration of a differential element of the shell and arises from integration through the thickness of the shell in a
radial direction. We will use an implicit harmonic time variation of the form exp(-iot). We begin our
derivation by considering a u,v,w axis system on the middle surface of a spherical shell of radius a (measured
to mid-shell) with thickness h, as shown in Fig. 1.

2.1. Lagrangian Variational Analysis

Our Lagrangian, L, is

L = T- V+ W, (2)

where T is the kinetic energy, V is the potential energy, and W is the work due to the pressure at the surface.
The kinetic energy is given by

1 j.2z exehIhl 2 . 2

T -I 2x (3)h12P Jo Jo J-h,2(u +wi')(a+x) 2sin dxdOdo, (3)

where the surface displacements are taken to be linear:

( += (1+x)ii XdW (4)

a a d6'

and

S, = w. (5)

The motion of the spherical shell is axisymmetric since the sound field is torsionless. Thus there is no motion
in the v-direction. Substitution of Eqs. (4) and (5) into Eq. (3) yields, after integration over x and 0,

Shs h3  2).h. h h3 dVi hs h3 dii, 11h3
T rpJsinO[(-T+-+h - 2(, +-)u--+(-+-)(----) + (--+ha 2)CvAIdO. (6)

~8 a 2 02  4 d 80? 12 dO 12

(r, in terms of fl,
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xi
T= rp,ha2J'I(1.8,34 +6/P2 + l)u4' -(3.6p4' +6fl2 )u---+(1.8 p 4 +f2)( )I +(/32 +l)wv2lsin~dO, (7)

where the first and last terms in square brackets in Eq. (7) are associated with linear translational kinetic
energies and the middle two terms are associated with rotational kinetic energies of an element of the shell.

The potential energy of the shell is

"2J Jo= J'-. (a99Ee + O"r,,e,,)(x + a)2 sin i9ddOdP, (8)

where the nonvanishing components of the strain are

E8 I= ('+w)+ a (.o3ao3w)" (9)

and
(cotI u+w)+-x Coto t (10)

and where the nonzero stress components are

(° - 1-V 2 (ee7 + veC),

and

E
= V2 ('00 + yV-0 )' (12)

where E is Young's modulus. By substitution the potential energy becomes

1 J. 2,fh/2 1E( x du xd 2w x odwV='21oif _Ll2(V2 72 [(1 + + w2l1 +(cot 0[( + a)U --- 1+w)2

x x aw x ow du
+2 vcot 0[(I + -)u - a--] + wl[(l + -) 02 + w1 (x + a) sin OdxdO,

which after integration is

IrEh ir du 2iu
V o{(W+ -) 2 +(w+ucot +)2 +2v(w+-)(w+ucot0)

dO dO
+,,du _d'w 2  dw)2 +2vo (t-dw dit d 2W ))snO+fl (•- • )cot2 6(u--O)2 +2vcot6(u--•)(--- ~ ~ .2ow3 )]}sin~dO. (1•

dO dý) O t U dO de dO d692

Terms in the potential energy proportional to /32 are due to bending stresses.
And finally, the work done by the pressure of the surrounding fluid on the spherical shell is given by
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W = 2a2Japa wsinOdO, 
(15)

where p. is the pressure at the surface.

2.2. The Lagrangian density and its equations of motion
Integration along the polar angle 0 is intrinsic to the problem, therefore we must turn to a Lagrangian

density formulation to solve for the equations of motion. Our Lagrangian density is just
L = ,rpfha2[(1 +6/32 + 6 .8'3 4)u2 - (6/82 + 3.6) (/2 ++(1+ 2)2

YrEh du 2  duV- -- {(w+T) +(w+ucotO) 2 +2v(w+--o)(w+ucotO)

+)0 +cot" O(U - .)2 + 2 vcot O(u - _.)(±.- - ±-w)]}sin a+2ira-'p wsin , (16)To-do2 '+ t2 OUdo dO dO dO2

with corresponding differential equations

dL_ d dr, d d L
0=--. 

(17)d-ou d8 u, dt du,'
0 dL d dL d dL d 2 dL d2 dL

diw dO diwv dt dw, dOdt dw, dO2 dw" '
where subscripts denote differentiation of the variable with respect to the subscript.By substitution of Eqs. (17) and (18) into (16) we obtain

= + ,l2 F +cot1 9 -UV+Cot / 3)u #2 d3W a2 dIV-2W •=(1~ d dO do,3  2cot do
a2 d 3 iv

•d- "c&•'•[(1" 8/3' + 6/32 + d1) L 1844 3/3')~ 0Iw

and(9
(1- v2)a2  3U d2u d-P.'-_ -=#2 , d+ 2P2 cot " 02-_((1+ V)(l +0#2) + 2 Cot 201Eh d1W dOt&vJip+Po do+cot 0[(2 - V + cot 2 6)13' - (I + v))u

_02d 4
W dt/ d3W W2-- ' -- 2/32 'cotO -+fl (l+V+cot 2 8)0@ -,2 cot 0(2-v+ cot2 0) 0- 2(1 + v)wdo' de" d)~-/ 2o' O doa 2  

deu d 2

4(83 -/3- (1.,v +,8 w do e (w l-- do•2d_ 2 +(l 8  
•+

2)-.ýCoto(#2+J)- 
(20)

02t dtd2  dt2d d
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These differential equations of motion (19) and (20) have solutions of the form

u(r7) = U.U(I - r12) 1/2p-•- (21)

and

w( r) = 17 P(r1). (22)
ii=O

where 7 = cos 0 and 1, (qr) are the Legendre polynomials of the first kind of order n. When the differential
equations of motion (19) and (20) are expanded in terms of Eqs. (21) and (22), we obtain a set of linearequations in terms of U,, and W., whose determinant must vanish. We consider two cases: with and without
fluid loading.

2.3. Vacuum case

The simpler case is that when the spherical shell is surrounded by a vacuum such that there is no damping.In this case, the pressure at the surface vanishes: p& = 0. The set of linear equations the expansion coefficients
must satisfy are

0 = [Q2(1 + 6032 + 1.8/3 4)-(l+/32)KU + [2(3/32 ' + .+ v)8W, (23)

and
0 = -/].,[ic- 3)p32 - 1. 8 04 +1 + v]U, + [12'(1 + 2P32 + 1.8#34) - 2(1 + v) -fl2iCAJ]W (24)

where D=o a/c, r= v + A. -1, and A. = n(n +1). In order for Eqs. (23) and (24) to be satisfied
simultaneously with a non-trivial solution the determinant of the system must vanish:

0 = j4(1+ 6P32 +13 4 )(1+2832 + 2#{1.8)+ (3 .83 4 ),,[(ic- 3)p32 - 1.8#34 + 1 + v]
-[2(1 + v) +132  , ](I + 6132 + 1.8#34)_(I + p2)(1 +2 32 + 1.8p34)1

+(I +132)42(l + v)+#32 KA.,1] -A.[(K.-3)f3 2 - 1.8/34 + 1+ VI(/ 2 K+ I+ v). (25)

Since there are no damping terms, the shell vibrates, in theory, forever. Thus, the normalized frequency
can be taken to be real. Equation (25) is quadratic in Q2, thus we expect two real roots to (25) and thus IwOmodes for the motion of the shell. They are the symmetric and antisymmetric modes.

2.4. Fluid loaded case

For the fluid loaded case, we must consider a modal expansion of the surface pressure in terms of the
specific acoustic impedance z., In its most general form this is

p(a,o,0) = Iyzj,*,,j, (cos O)cosMO, (26)
n=O m=O

where
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Z. iP h. (ka) (27)•h. (ka)

The specific acoustic impedance z,, can be split into real and imaginary parts:

Z0 =r -iom", (28)

where

r. =PcRe (29)

and
M.= -PC lmf ih, (ka) (30

= 0) { j} (30)

For the case we are considering of axisymmetric motion, the surface pressure is given by

P.(0) =-Xz ,'P(cos 6), (31)
n=0

or

Pa (0) =-(-io9Wr, - o 2 Wm,)F, (cos0). (32)
n=O

Use of Eq. (32) in our set of differential equations of motion (19) and (20) yields the following set of linear
equations for the expansion coefficients in the case of a fluid loaded spherical shell:

0 = [C12 (I +p42 .88) _ (I + f82)KlU, + p2 #4)l _ 1.88 1 - C f _ (I + V)lW,.(3

and

0 = -A.[(ic--3),B2 - 1.8/34 + 1+ vIU,+[!n 2(l+ a+2/32 +1.8p4')-2(1+ v)+ Qiy -f32'CA]W", (34)

Where

a = M (35)
pfi

Ind

a r, (36)

h p~c

Again the determinant of Eqs. (33) and (34) must vanish. However, in this instance the value of Q must be

"aAkl to be complex; the resonances have a width that depends on the damping. The result of setting this
k"k'rrninant to zero is
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0 = Q4(1+ 6p 2 + 1.804 )(1+ a+ 2p2 +I.8134 )+nliy(l +6,32 + I1.83
4)

+0i2 {(3,-+ l.834)AJ('-3)12 - 1.8p34 + I + v1

-[2(1 + v) + -2 cAJ(1 + 6P- + 1.8,4) -_(1 +p2 )x(I + a + 2P32 + 1.8/3")l
+Qf[-iy(1 + # 2) '] +(l + #2) i2(1 + v) +f }2 IA"I -A,(K-3)f 2 -1.81 +1+ vJ( 2c+l+ v). (

Equation (37) has four complex roots. From work with an exact modal solution to the problem, we exp
two roots to be associated with the symmetric and antisymmetric modes of the shell. We expect the other t
roots to be associated with a water-borne pseudo-Stoneley wave.

3. CONCLUSIONS

The next step is to plot the roots of Eqs. (25) and (37) to compare the resonances predicted by the
models with those given by exact modal expansion solutions. By suppressing a and y. the model associat
with Eq. (37) reverts to the vacuum case model associated with Eq. (25). Similarly suppression of factors
13 in Eq. (25) will result in a reversion to a previously derived solution 1. In a previous paper-2 we ranked ti
three different models according to their degree of physicality and compared their results for various relati'
shell thicknesses against each other and against the exact results of the modal expansion model. We air
considered the limitations of each of the models including the exact solution, as well as those of shell mode
in general.

These models, fluid loaded, vacuo case, and membrane, were successively less physically sophisticate
and gave successively less good comparison with the exact (modal expansion) results. The interested reader
referred to that earlier work for the comparisons of the models. We shall content ourselves with showing th
results of our best model, that corresponding to the roots of Eq. (37). In Fig. 2 we see the thin spherical stet
shell dilatational (symmetric) and flexural (antisymmetric) mode resonances calculated by this model whic
includes proper fluid loading. Here and in the succeeding figures thick means h/a = 0. 1; thin means h/a :
0.01. The shell material is a generic steel with density p, = 7.7 times that of water, shear velocityi', = 3.2-

km/s, and longitudinal velocity v, = 5.95 km/s. The surrounding fluid is taken to be water with density p :
1000 kg/m 3 and sound velocityc, = 1.4825 km/s. The exact and shell theory calculations agree well for thL
dilatational (symmetric) resonances and exhibit a marked improvement over the results of our membrane [Eq
(25)] and vacuum models [Eq. (37) with a and y suppressed] for the first several shell theory symmetric
mode resonances. This is due to the inclusion of both rotary inertia and fluid loading in the model. The
flexural (antisymmetric) mode resonances show the appropriate behavior on this rather limited size parameter
scale. Next, in Fig. 3 we have a plot of thick spherical steel shell dilatational (symmetric) and flexural
(antisymmetric) mode resonances calculated by shell theory with fluid loading. As in the vacuum case as well
as for the membrane model, the dilatational (symmetric) mode resonances compare well for exact and shell
theory methods. Finally in Fig. 4 we show a comparison of modal resonance predictions for a 1% thick steel
shell (thin shell) for the low size parameter (= ka, where k is wavenumber and a the radius of the midshell)
region, just where one would expect to see pseudo-Stoneley resonances, if the model is capable of predicting
them. The models compared are our vacuum model, our fluid loaded model, and an exact calculation of the
pseudo-Stoneley resonances in this region. As expected, the vacuum model misses the water-borne wiaVes
completely, but our fluid loaded model does predict them, and predicts them exactly.

For future reference, the flexural (antisymmetric) mode resonances, as calculated by our shell theory with
fluid loading, do not have the correct asymptotic limit for large size parameter, although they do exhibit the
correct behavior for lower values of ka.. The proper correction for the large ka asymptotic resonance beha ",,
could he most easily found by including the shear stress distortion along with a Timoshenko-Mindlin& 5shaN
factor. Inclusion of the shear distortion in the potential energy would make the flexural modes asynrpt.)! t
the coincidence velocity and the shape factor can he adjusted so that they asymptote to the Rayleigh velocIt0.L,
expected. Work is now under way to do .just this.
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