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Proper fluid loading of thin shell theories and the prediction of pseudo-Stoneley resonances
Cleon E. Dean? and Michael F. Werby?

aphysics Department, Landrum Box 8031
Georgia Southern University, Statesboro, Georgia 30460

bTheoretical Acoustics and Numerical Simulation Code 7181
Naval Research Laboratory, Stennis Space Center, Mississippi 39529-5004

ABSTRACT

By including the effect of fluid loading for the thin spherical shell in a proper manner, so-called shell
theories can predict the water borne pseudo-Stoneley waves described extensively in the literature. Shell
theories give reasonably good results for the motion of a bounded elastic shell by using the assumption that
various parts of the shell move together in some reasonable manner. Without proper fluid loading, however,
shell theories do not predict the pseudo-Stoneley resonances observed in nature and predicted by exact theory.
With proper fluid loading, as well as rotary inertia and translational and rotary kinetic energy terms, a shell
theory can exactly predict these water borne resonances. These resonances are predicied by the shell theory
and compared with results from exact elastodynamical calculations.

1. INTRODUCTION

Interest in sound scattering from submerged elastic shells is broadly based. For example, the structural
engineering community has a considerable interest in the area of nondestructive testing via ultrasonic
scattering, while in the area of remote sensing or object identification scattering from objects proves
invaluable. The acoustical scaticring from elastic objects or more simply the generation of resonances from
bounded elastic shells can be described by acoustic and elastodynamic theory. Exact solutions for scatlering
from elastic targets exist for target shapes for which the elastodynamic equation is separable. For three
dimensional targets separability is only possible for spherical and rectangular targets. For more complicated
targets numerical techniques must be used. For axisymmetric smooth targets the extended boundary method of
Waterman has proven useful though limited and an approximate theory would be desirable for more
complicated targets. The purpose of this work is to develop an approximate theory based on shell theory that
would be of use for general shapes that could alsc include structural loading. Shell theories afford a very
powerful methodology to "build in" structural features usually via a variational principle in which some
Lagrangian or Hamiltonian is constructed by introducing physical features. The simplest theories which
always assume correlated motion of the inner and outer surfaces of the target include kinematic features and
potential energy terms based on the generalized Hooke's law which leads to the lowest order symmetric modc.
One can add rotational inertia to the Hamiltonian which allows an antisymmetric mode. One goes on from
there to include higher order corrections. Further, proper fluid loading -- which from our experience 1s no casy
task -- must be introduced correctly. The proper inclusion of fluid loading introduces a fluid borne wave: the
pscudo-Stoneley wave. Clearly thin shell theories are rather geometrical and must be constructed for g‘uch_
shape due to their dependence on shape dependent dynamic factors. Non-spherical three dimensional objects
present a problem which we seek to address in the future. In this work we wish to show the development u_nq
test the predictions of a suitable shell theory for spherical shells that can be readily generalized to sphcmlds'
and finite cylinders, and spccifically we wish to show that proper fluid loading in an shell theory docs ﬂl‘“_‘f
the prediction of water-borne pscudo-Stoncley waves. In the following section we outline the derivation ot a
shell theory with many of the featured described. The theory is then used to compare with the exact mclh«"}i
and specifically the exact theory calculations of the water-borne wave mode. The results are then discusse
and future work is described.
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2. DERIVATION OF EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to B) predominate over flexural stresses (proportional
to %) where

= 1
P=Tma M

We differ from the standard derivation for the sphere! by retaining all terms of order B%in both the kinetic and
potential energy parts of the Lagrangian and by considering the resonance frequencies for the fluid loaded case
to be complex. We note that this level of approximation will allow us to include the effects of rotary inertia in
our shell theory, as well as damping by fluid loading. The parameter j itself is proportional to the radius of
gyration of a differential element of the shell and arises from integration through the thickness of the shell in a
radial direction. We will use an implicit harmonic time variation of the form exp(~iwr). We begin our
derivation by considering a u,v,w axis system on the middle surface of a spherical shell of radius a (mcasured
to mid-shell) with thickness 4, as shown in Fig. 1.

2.1. Lagrangian Variational Analysis
Our Lagrangian, L, is

L=T-V+W, (2)

where T is the kinetic energy, V is the potential energy, and W is the work due to the pressure at the surface.
The kinetic energy is given by

T= —p, [P @2+ w2+ x)?sin Odxd6dg, (3)

hi2

where the surface displacements are taken to be linear:

x X dw
s = (e Xy X 4
u, (1+a)u 290 (4)
and
% W, = W (5)

The motion of the spherical shell is axisymmetric since the sound field is torsionless. Thus there is no motion
n the v-dircetion. Substitution of Eqs (4) and (5) into Eq. (3) yields, after i mtcgrauon over x and ¢,
T=ap,[)s L 2(*25—+E-)u-19'3 ML +(~+ha »?1d6. (6)
d 4796 804 12°° 06

O in erms of B,
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T = np,ha’ jo’[(l.sﬁ‘ +6% + )i’ - (3.68* +68° )a% +(1.88* + /32)(%’;-)2 + (B’ +Dw?)sin6d6, (7)

where the first and last terms in square brackets in Eq. (7) are associated with linear translational kinetic
energies and the middle two terms are associated with rotational kinetic energies of an element of the shell.

The potential energy of the shell is

2x phl2 5 .
V= —j L, (Gosos + Opu€0s)x + @) sin Odxdbds, (8)
where the nonvanishing components of the strain are
£ (au+w)+—x- 9u_Fw 9)
AT a’\d8 96°)
and
1 x ow
£,, =—(cotBu+w)+—cotl| u——| 10
" a(o utw)t— (u 89) (10)
and where the nonzero stress components are
-_E_ 1
Oge = -V (599 + Ve, ) (1)
and
G, = 1—1-57(3,, + VEy,), (12)

where E is Young's modulus. By substitution the potential energy becomes

_ 2 phi2 ( x. 0u xd*w x ow
= jj J'm[l_v Gt ay k[( a)o'?G St ]+{cot9[(1+——)u-—-a--a—-]+w}
2
+2V{c0t9[(1+—)u—£—a—w—]+ }[(1+x)—ai—-{a—2- +w] | |[(x + a)? sin 8dxd8, (13)
ad 20 a 0o
which after integration is
V= I”Ehz J'o"{(w+ﬂ)2 +(w+ucot)’ +2v(w +%)(w+ucot9)
du iw, ow, ow_du Pw (14
[32 39 W) cot? G(u—a—-) +2vc0t8(u——a§)(§5—ae

Terms in the potential cnergy proportional to 2 arc duc to bending stresses. by
And finally, the work done by the pressure of the surrounding fluid on the spherical shell is given b
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W= Zxazj:p,wsin 6d6, (15)

where p, is the pressure at the surface,
2.2, The Lagrangian density and its equations of motion

Integration along the polar angle @ is intrinsic to the problem, therefore we must turn to a Lagrangian
density formulation to solve for the equations of motio

n. Our Lagrangian density is just
2 2 4y -2 2 4y . aW 2
L = nmp.ha’[(1+68 +1.88%)* - (68 +3.68 )u—a-é-+(ﬂ

ow
+ I'Sﬁ‘)(%)2+(l + B W?sing -
nEh

—

{(w+-;--:%)2 +(w+ucot6)® + 2v(w+§%)(W+uCOI 9)

1-v?
ou Jw s ow ow. du FPw__ ,
+ﬂ2[(3§ - W)Z +cot” O(u - 50—)2 +2vcot O(u — —979-)(56— - -Jé?)]}sm 0+2na’p wsin 6, (16)

with corresponding differential equations

(17)
and

O_QL__c_i_aL_ii_g_L,_+ d: L 4 JL (18)
MW d8Jw, diow, dbdtow,  dO° ow

where subscripts denote differentiation of the variable with res

ou  de du, dt;it,_'
pect to the subscript.
By substitution of Egs. (17) and (18) into (16) we obtain
2 3 2
0= (l+ﬂ2)[§9—t:-+cot9-g-g-—(v+cot2 6)uJ-ﬂ’%—ﬁ2cot0%+[(l+ V) + B2 (v +cot? 9)]%’
2 2 3
a ‘ 2 u . 2, w
~—[((1.8 D—-( 38—, 19
7 Ci(( ﬂ+6ﬁ+)at2 (8ﬁ+ﬂ)896‘t2] (19)
angd
(1-vH)a? *u o’u 5 odu
, P =ﬂ23§;+2ﬂ2 cotegé?q(n V)1 + %)+ B cot? 9)]35
+cot[(2 - v+cot’ §)B” - (1 + W)y
4 3 2
| ~p? _Z_GL:, -2 cote%;’— +B%(1 + v+ cot? ?)-g—é;i-—ﬁz cotf(2 - V+czot2 9)%-—2(1 + V)w
% a . 2. du . 5 o u
~{-(1 ) ——-q. <
l +c:{ (1.88* +3p )89(9:2 (1.88*+38 )cmeaﬂ
d'w I’'w ’w
) 4 2 L 4 2 g -(h? —_— (20)
3 HLB0'+BY) =+ (1L86° + 283 OO~ B+ D=
i
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These differential equations of motion (19) and (20) have solutions of the form

- dP
(m=YU,a-n)"2e, (21)
“m = QU= o
and
w(m =3 W), (22)
n=0

where 1 = cos8 and P,(n) are the Legendre polynomials of the first kind of order n. When the differential
equations of motion (19) and (20) are expanded in terms of Egs. (21) and (22), we obtain a set of linear
equations in terms of U, and W,, whose determinant must vanish. We consider two cases: with and without
fluid loading.

2.3. Vacuum case

The simpler case is that when the spherical shell is surrounded by a vacuum such that there is no damping.
In this case, the pressure at the surface vanishes: P, = 0. The set of linear equations the expansion coefficients
must satisfy are

0=[Q’(1+6B> +1.88*) - (1+ B*)x]U, +[Q(3B° +1.88*) - Bk - (1 + V)W, (23)

and
0=-2,[(x=3)B" - 1L8F* + 1+ VU, +[Q*(1+2* + 1.86*) - 2(1 + v) - B*kA_]W.. (24)

where Q = walc,, k=v+A,-1, and A, =n(n+1). In order for Egs. (23) and (24) to be satisfied
simultaneously with a non-trivial solution the determinant of the system must vanish:

0=0%+ 68 +1.86°)(1+ 257 + 1.86*)+Q (36> + 1.8B*)A, [(x - 3)B* - 1.8B* +1+ V]
~[2(1+ V) + B’ K2, )1+ 658> + 1.88*) - (1+ B*)x(1 +2B° + 1.88%)}
+H(1+B)KI2(1+ v) + BPKkA, 1= A, [(x = 3)B% — 1.8B* +1+ V(B K+ 1+ v). (25)

Since there are no damping terms, the shell vibrates, in theory, forever. Thus, the normalized frequency Q

can be taken to be real. Equation (25) is quadratic in Q?2, thus we expect two real roots to (25) and thus two
modes for the motion of the shell. They are the symmetric and antisymmetric modes.

2.4. Fluid loaded case

For the fluid loaded case, we must consider a modal expansion of the surface pressure in terms of the
specific acoustic impedance z,. In its most general form this is

p(a,0,¢) = i iz,,WmR,"' (cos B)cos mg, (26)

n=0m=0

where
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h,(ka)

z, = ipc W (ka) (27)
The specific acoustic impedance z, can be split into real and imaginary parts:
z, =1, —iom,, (28)
where
r, =pcRe{%’%‘g}, ‘ (29)
and
- =-ﬁrm{’ﬁ(—"f‘—)}. (30)
W h(ka)
For the case we are considering of axisymmetric motion, the surface pressure is given by
p.(6) = -3, 2,W,P,(c0s6), 31)
=0
or
p,(0)= -i(—ia)W,,r;, ~- ®’W,m )P, (cos6). (32)
n=0

Use of Eq. (32) in our set of differential equations of motion (19) and (20) yields the following set of linear
equations for the expansion coefficients in the case of a fluid loaded spherical shell:

0=[Q2(1+68* +1.88%)-(1+BH)xU, +[Q*(3B* +1.8*) - B’k - (1 + VIIW,, (33)
and
0=-A,[(x=3)B>-1.80° +1+ vU +[Q*(1 + a+28* +1.88*) = 2(1+ V) + Qiy - B°xA,IW,, (34)
where
m
=2 35
[0 Y (35)
g
a r
=2 36
Y hpc, (36)

f\ 8ain the determinant of Egs. (33) and (34) must vanish. However, in this instance the value of Q must be

c‘n 10 be complex; the resonances have a width that depends on the damping. The result of sctting this
Minant to zcro is

'
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0=Q%1+68 +1.88° )1+ a+28° +1.88")+Q%iy(1 +68° + 1.88*)
+Q{(3B7 + 1L.8BYA [(x=3)B* - L8B +1+ v]
R0+ v)+ kA N1+ 687 +1.88H) ~(1+BH)x(l +a + 25" +1.86%)}
+Q[-iy(1+ Bkl +(1 + f7)x{2(1 + VI+BKA |- A, [(k=3)8° - 1.8 + 1+ V(i +1+ v). (.

Equation (37) has four complex roots. From work with an ¢xact modal solution to the problem, we exp
two roots 10 be associated with the symmetric and antisymmetric modes of the shell. We expect the other t
roots to be associated with a water-borme pseudo-Stoneley wave.

3. CONCLUSIONS

The next step is to plot the roots of Egs. (25) and (37) to compare the resonances predicted by the
models with those given by exact modal expansion solutions. By suppressing o and y. the model associat
with Eq. (37) reverts to the vacuum case model associated with Eq. (25). Similarly suppression of factors
B in Eq. (25) will result in a reversion to a previously derived solution !, In a previous paper? we ranked
three different models according to their degree of physicality and compared their results for various relati®
shell thicknesses against each other and against the exact results of the modal expansion model. We al:
considered the limitations of each of the models including the exact solution, as well as those of shell mode
in general.

These models, fluid loaded, vacuo case, and membrane, were successively less physically sophisticaw
and gave successively less good comparison with the exact (modal expansion) results. The interested reader
referred to that earlier work for the comparisons of the models. We shall content ourselves with showing th
results of our best model , that corresponding to the roots of Eq. (37). In Fig. 2 we see the thin spherical ste
shell dilatational (symmetric) and flexural (antisymmetric) mode resonances calculated by this model whic
includes proper fluid loading. Here and in the succeeding figures thick means A/a = ().1; thin means h/a
0.01. The shell material is a generic steel with density p, = 7.7 times that of water, shear velocityv, = 3.2-
km/s, and longitudinal velocity v, = 5.95 km/s. The surrounding fluid is taken to be water with density p =

1000 kg/m3 and sound velocityc, = 1.4825 km/s. The cxact and shell theory calculations agree well for the
dilatational (symmetric) rcsonances and exhibit a marked improvement over the results of our membrane [Eq-
(25)] and vacuum models [Eq. (37) with a and y suppressed] for the first several shell theory symmetric
modec resonances. This is due to the inclusion of both rotary inertia and fluid loading in the model. The
flexural (antisymmetric) mode resonances show the appropriate behavior on this rather limited size parameter
scale. Next, in Fig. 3 we have a plot of thick spherical steel shell dilatational (symmetric) and flexural
(antisymmetric) modz resonances calculated by shell theory with fluid loading. As in the vacuum casc as well
as for the membrane model, the dilatational (symmetric) mode resonances compare well for exact and shell
theory methods. Finally in Fig. 4 we show a comparison of modal resonance predictions for a 1% thick steel
shell (thin shell) for the low size parameter (= ka, where k is wavenumber and a the radius of the midshelD
region, just where onc would ¢xpect to see pseudo-Stoneley resonances, if the model is capable of predicung
them. The models compared are our vacuum model, our fluid loaded model, and an exact calculation of the
pseudo-Stoneley resonances in this region. As expected, the vacuum model misscs the water-borne wiaves
completely, but our fluid loaded model does predict them, and predicts them exactly. .

For future reference, the flexural (antisymmetric) mode resonances, as caleulated by our shell theory, “’“’j
fluid loading, do not have the correct asymptotic limit for large size parameter, although they do exhibit the
correct hehavior for lower values of ka.. The proper correction for the large ka asymptotic resonance behavic?
could be most casily found by including the shear stress distortion along with a Timoshenko-Mindlin Sh;’f\‘
factor. Inclusion of the shear distortion in the potential energy would make the flexural modes asympto®
the coincidence velocity and the shape factor can be adjusted so that they asymptote to the Rayleigh veloaity 8
expected. Work 1s now under way to do just this.
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