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WAVEVECTOR-FREQUENCY ANALYSIS WITH APPLICATIONS TO ACOUSTICS

CHAPTER 1

INTRODUCTION

This monograph presents an approach to the description and analysis of

acoustic fields and systems that parallels and extends one developed by

electrical engineers to describe and analyze electrical signals and

systems. This approach, called wavevector-frequency analysis, complements

traditional methods of acoustics.

Wavevector-frequency analysis is simply the description and interpreta-

tion of a space-time field or system in terms of the Fourier conjigates of

the independent spatial and temporal variables of the field or system. The

Fourier conjugate of the spatial vector variable is called the wavevector,

and the Fourier conjugate of the time variable is the frequency.

The formalism of this approach to acoustics evolved over the course of

an extended research effort to understand and characterize certain acoustic

fields associated with turbuilent flow. A brief description of this research

effort will put the evolution of this approach in perspective.

1.1 HISTORY AND PERSPECTIVE

When a vehicle such as an airplane, automobile, or ship is subjected to

a turbulent flow, random pressure fluctuations that occur in the boundary

layer of the vehicle excite a vibration field in the outer wall of the

vehicle. That flow-excited vibration field in turn produces pressure fields

in the fluids interior and exterior to the vehicle. Because the pressure in

the turbulent boundary layer varies randomly in space and time, the

turbulent flow-excited pressure and vibration fields are also random

functions of space and time. Such turbulent flow-induced pressure and

vibration fields have been the subject of continuing research over the past

30 years..

*I--



By necessity, this research has been a interdisciplinary effort. That

is, the physics of turbulent flow is the domain of the hydrodynamicist; the

vibration of the vehicle and the consequent pressure fields radiated to the

interior and exterior of the vehicle are the domain of the acoustician; and

the description and measurement of these random fields is the domain of the

statistician or signal processor. As might be expected, the cooperative

effort between researchers in these different specialties over a long period

of time led to extensive crossfertilization among disciplines. This

crossfertilization resulted in an entirely new set of specialties in the

field of acoustics. The combinations of disciplines comprising the best

known of these new specialties, hydroacoustics and aeroacoustics, are

evident from their names. Some combinations of disciplines, however, did

not lead to such descriptive names nor to such widespread recognition. One

such combination, called wavevector-frequency analysis, designates the

specialized extension of traditional linear systems and signal processing

theories developed, over the course of this research effort, to describe and

analyze the turbulent pressure field and the turbulent flow-excited

vibration and pressure fields.

Traditional linear systems and signal prncessing theories were developed

by electrical engineers to treat systems and fields that depend only on a

single independent variable, time. In linear systems theory, it is

demonstrated that the Fourir transformation of these temporal fields into

corresponding fields in the frequency domain often simplifies the

mathematical description of the system and thereby facilitates physical

prediction and interpretation of the system. To exploit these advantages

for empirical investigations, signal processing engineers developed

techniques to measure the frequency characteristics of random and

deterministic time fields.

It should be emphasized that the advantages of Fourier transform

techniques for analysis and interpretation of linear systems have long been

recognized by researchers in other branches of physics, including those in

acoustics. However, the pressure and velocity fields encountered in

acoustics are generally functions of four variables: three spatial

coordinates (the components of the spatial position vector) and time.
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Consequently, the Fourier transforms of acoustic fields are also functions

of four variables: three wavenumber coordinates (the components of the

wavevector) that are the Fourier conjugates of the three spatial variables,

and frequency (the Fourier conjugate of the time variable). Owing to this

higher dimensionality, the measurement of the wavevector-frequency

characteristics of acoustic fields presented a far more difficult task than

the measurement of the frequency characteristics of electrical fields that

varied only with time. Prior to the development of such a measurement

capability, wavevector-frequency descriptions of acoustic fields were

traditionally employed only as an intermediate step in the prediction of the

space-time characteristics of such fields. Nonetheless, these theoretical

studies provided the mathematical foundation for the formalized extension of

traditional linear systems theory to space-time fields.

In 1967, Maidanik and JorgensenI proposed a method for direct

measurement of the wavevector-frequency spectrum of the wall pressure

fluctuations in a turbulent boundary layer. In 191, Blake and Chase 2

employed this technique to perform such measurements. This demonstrated

ability to measure the wavevector-frequency characteristics of space-time

fields promoted wavevector-frequency analysis from an interesting and useful

mathematical technique to a potentially powerful tool for interpretation and

analysis of experimental data. It therefore prompted increased research

efforts to develop new techniques for wavevector-frequency measurement and

analysis. These research efforts continue today in a wide variety of

scientific disciplines dealing with space-time fields.

1.2 HOTIVAYION AND OBJECTIVE

Despite the demonstrated utility of wavevector-frequency analysis for

characterization and interpretation of the acoustic fields generated by

turbulent flow over vehicles, the application of wavevector analysis

techniques in acoustics has been left to the specialist. The motivation for

this monograph is to encourage a wider understanding and application of

these powerful techniques by the nonspecialist.

One impediment to the adoption of these techniques by the nonspecialist

1-3



is the lack of a comprehensive tutorial treatment of wavevector-frequency

analysis. The existing theoretical and experimental capabilities in this

specialty are a result of research conducted in universities, government

laboratories, and private industry. The objective of this monograph is to

organize these disparate theoretical and experimental results into a

tutorial treatment of wavevector-frequency analysis and its application to

acoustics.

Because the objective of this work is to teach the fundamentals of

wavevector-fr.quency analysis for acoustic applications, we make no attempt

to exhaustively review the manifold publications of theoretical and

experimental research in this field. Rather, we will meld selected results

from those references into a format that mathematically defines, physically

interprets, and (where possible) illustrates by experimental data, the

essential aspects of wavevector-frequency analysis. It is expected that the

reader interested in a particular topic will use the references cited at the

end of each chapter to expand his sources of information.

1.3 ORGANIZATION

The nine chapters comprising this text treat four topics. Basic

definitions and relationships are presented in chapter 2. Chapters 3, 4,

and 5 present linear systtins theory ror'space-time invariant, space-varying,

and coupled systems, respectively. Chapters 6 and 7 treat the description

of random space-time fields and the response of linear systems to such

random fields. The problems of measurement and estimation of wavevector-

frequency spectra are treated in chapters 6 and 9.

1.4 DEPTH AND PREREQUISITES

This monograph is intended as a tutorial source for practicing

scientists and engineers. The level of the material presented is equivalent

to that encountered in a first-year graduate course. The reader is assumed

to have a basic understanding of acoustics (including vibrations), Fogrier

transforms and series, simple generalized functions, and statistics.

Although many fundamental concepts in these subjects are reviewed in this
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book, their treatment is not rigorous. Rather, such reviews are somewhat

cursory and are included to reacquaint the reader with certain fundamentals

or to improve the continuity of certain arguments. For comprehensive

treatments of such fundamental concepts, the reader should consult standard

references.
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CHAPTER 2

WAVES AND THEIR DESCRIPTORS

This chapter defines, and physically interprets, the parameters used to

describe the spatial and temporal characteristics of harmonic waves. The

mathematical description of an arbitrary wave in terms of these parameters is

developed.

Van Nostrand's Scientific EncyclopediaI defines a wave as a "disturbance

which is propagated in a medium in such a manner that at any point in the

medium the displacement is a function of the time, while at any instant the

displacement at a point is a function of the position of the point.4 This

general definition establishes that waves are fields in which the variation of

some physical quantity is specified over some region of space and time. Note

that this definition does not require any specific form of the temporal or

spatial variation of the disturbance. However, the word ipropagatedO implies

some relationship between the spatial and temporal variables. From the above,

it is clear that a wave is not a specific space-time field, Rather, a wave is

any member of a class of space-time fields that describes a disturbance which

propagates in space and time,

One of the simplest waves is the harmonic wave. A harmonic wave is

defined as one in which the disturbance varies sinusoidally in space and

time. We begin our study and characterization of waves with a specific form

of the harmonic wave called the plane harmonic wave.

2.1 THE PLANE HARMONIC WAVE

Cons i.er-a istur balce, a$ -the pressure in a fluid, described by

p(rt) P expi(kx + ot)] . (2-1)

NHere, p -ites.th -pre sure-, X = [ xx is the spatial position
vector,- t dgsignates time'* , Pis 'a ..plex. constant that represents the
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amplitude of the disturbance, k [klk 2,k3] is the (constant) wave

vector, w is the (constant) circular frequency, exp z denotes e , k.x

denotes the inner (or dot) product of the vectors k and x, and i is the square

root of minus one.

The physical pressure is, of course, a real function of space and time.

Therefore, when expressing the pressure in the complex form of equation (2-1),

we mean that the physical pressure, pr (,t), is the real part of the complex

function. That is, we mean

Pr (X t) = Pmag cos(k.x + Wt + 0) , (2-2)

where Pmag and 0 are the absolute value and argument of the complex

amplitude, P, respectively.

The argument of the cosine in equation (2-2), that is, k-x + ot + 0, is

defined as the phase of the harmonic wave, and P is the amplitude of thermag
physical wave. Therefore, the effect of varying the spatial or temporal

coordinates is simply to change the phase of the wave. Note that 0 is the

phase of the wave at [0,0,0] and t - 0.

The period of a harmonic wave is defined as the time difference, T,

between successive repetitions, or cycles, of the wave at a fixed point in

space. Recall that, in equations (2-1) and (2-2), the wavevector and

frequency are constants. Thus, at any fixed point in space, say o, the

pressure varies only with time. That is,

p(Xo ,t) - P exp(i(Qt + +kO ) . (2-3)0 mag 0

Mathematically, the period is defined as the smallest positive value of T for

which

Wo t + T) p(x0,t) (2-4)

for all t. By equations (2-3) and (2-4), it is clear that the period

corresponds to the time increment required to increase the phase of the wave
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by 21 radians, and it is given by

T = 2/w . (2-5)

It follows, then, that the circular frequency, w, is related to the period by

w = 2W/T (2-6)

and is the time rate of change of phase of the wave in radians per second.

A more familiar definition of frequency is the temporal frequency, f,

which is defined as the number of repetitions, or cycles, of the wave per unit

time. One cycle corresponds to a phase change of 2w radians; thus, the

temporal and circular frequencies are related by

f = w/(21r) - i/T. (2-7)

By the above, it is evident that both circular and temporal frequency define

the time rate of repetition of the wave. However, this rate is measured in

different units. That is, circular frequency is the time rate of change of

phase, where a phase change of 2w radians is required for one repetition.

Temporal frequency, on the other hand, is the number of repetitions of the

wave per unit time.

An important concept in the description and characterization of hamonic

waves is that of the phase front. A phase front is defined as a surface in

space over which the phase of the wave is constant. According to equations

(2-1) and (2-2), when the phase Is constant, the value of the pressure,

p(Xt), is constant. Thus, a phase front corresponds to a surface of constant

pressure in space associated with a particular phase of the wave.

Consider the phase front of the wave defined by equation (2-2) associated

with the constant phase, 0. The phase front is then defined by

k'x + wt +0 3 (2-8)

and is designated as phase front B. At time t to, the surface of constant
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phase associated'With phase front 0 is given by

-x + Ot0 + 0 = (2-9)

and is a function of 3 only. As k is a constant, equation (2-9) defines a

plane in the three-dimensional space, X. The constant, 0, is arbitrary.

Therefore, all phase fronts of the harmonic wave defined by equations (2-1)

and (2-2) are planes. Consequently, waves having the mathematical form of

equations (2-1) and (2-2) are called plane haronic waves, and their phase

fronts are often referred to as phase planes.

Let xA and *B be vectors defining two points, A and B, in the phase

plane specified by equation (2-9), as illustrated in figure 2-1.

900

X43

PHASE PLANE

X1

Figure 2-1. Relative Geometry Between the Wavevector
and a Line in the Phase Plane
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The nonzero vector -= B - A then defines a vector in the phase

plane. As both xA and 1S satisfy equation (2-9), it follows that
A B

= 0. (2-10)

Neither k nor t is a zero vector. It follows, then, that the wavevector k

is perpendicular to the vector g. However, as the vectors xA and 'B are

arbitrary, the vector g is also arbitrary. Therefore, the wavevector, i, is

perpendicular to every vector in the phase plane. Consequently, the

wavevector k is perpendicular to the plane of the phase front. Furthermore,

as k is a constant vector, it is clear that all phase planes of our harmonic

wave are parallel.

By taking the time derivative of equation (2-8), we obtain (for constant 0)

koV + W = 0 , (2-11)

where v is the velocity vector of the phase front at any point " and is

defined by

dTv = dt (2-12)

It is evident that there are an infinite number of velocities which satisfy

equation (2-11). However, as k is a constant, all possible velocity vectors

defined by equation (2-11) must have the same component normal to the phase

front: that is, in the direction parallel to Z. If we denote the velocity

normal to the phase front by p, it follows from equation (2-11) that

kev kcp = kcp cos 0 - , (2-13)

where k and c denote the magnitudes of the corresponding vectors and 0 is

the angle between the vectors k and Zp. As r and *p are parallel vectors,

it follows from equation (2-13) that 0 = v for w > 0 and 0 = 0 for w < 0.

Thus, the wavevector, k, is directed opposite to the normal velocity of the

phase front for w > 0 and coincident to the normal velocity of the phase front

for w < 0. Further, as k and w are constants, the normal velocity, y is a

constant and is given by
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C P- (2-14)

The velocity p is defined as the phase velocity of the wave and is the

apparent velocity at which the planar phase front propagates through the

medium. The word "apparent" is used because only the normal component of the

velocity of the phase plane effects an apparent change in the spatial location

of the phase plane; the tangential components produce only in-plane slippage

of the front. For a more comprehensive treatment of the kinematics of

wavefronts, the reader is directed to reference 2.

For a known phase velocity of the piane wave, the wavevector is easily

determined by

-C
k = -+(2-15)C2

cp

Returning our attention to equations (2-1) and (2-2), it is a simple

matter to show that, at any fixed time, the pressure field is periodic in

space. That is, a spatial vector t exists such that, at the fixed time to,

p( + ,tO) = P(X,t ) (2-16)

for all X. The nonzero vectors, t, that satisfy equation (2-16) are easily

shown to be those for which

2ni , n -1, 2, 3, .... (2-17)

The allowable values of t in equation (2-17) correspond to all vector

separations between a reference phase plane and a series of other phase

planes. If the phase of the reference plane is 3, the phases associated with

the other planes are 1 + 2nw.

The wavelength (or spatial period) is defined as the distance, measured

normal to the phase plane, between successive spatial repetitions of the

wave. If we denote the wavelength by k and recall that the vector k is normal
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to the wavefront, it follows from equation (2-17) that

x = 2w/k . (2-18)

Thus, for a known wavelength, the magnitude of the wavevector is given by

k = 2w/. . (2-19)

As x is the minimum distance between successive repetitions of the wave and is

measured parallel to 1, it follows from equation (2-19) that the wavevector

can be interpreted as the magnitude and direction of the maximum rate of

change of phase in space. This same interpretation of the wavevector can be

obtained by considering the gradient of the phase. It is straightforward to

show that the gradient of the phase, which by definition corresponds to the

maximum spatial rate of change of phase, is equal to 1.

By returning our attention to equation (2-17), it is apparent that, if the

vector 1 is taken parallel to the x1 axis, the distance between successive

repetitions of the wave is

2w/k1 . (2-20)

This distance is defined as the projected wavelength in the x1 coordinate

direction and is designated by k1. Similarly, projected wavelength

components may be defined in the other two coordinate directions, resulting in

the relationships

11 w 2w/k1 0 X2 - 2/k 2 , 13 a2W/k3 . (2-21)

The magnitude of the three components of the wavevector can therefore be

expressed in terms of the projected wavelength components by

k I - 2W/) . k2 - 2 *, . k3 - 2w/% (2-22)

and can be interpreted as the spatial rate of change of phase in the

respective coordinate directions.
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Some texts (see reference 3, for example) define the wavenumber components

in terms of the number of cycles of the wave per unit length (which

corresponds to k 1/X , j = 1, 2, 3) rather than the spatial rate of
j

change of phase implied by equation (2-22). In this text, the wavevector will

always be defined such that its components are consistent with equation

(2-22). However, if one desires to express the wavenumber components in terms

of cycles per unit length, the conversion is easily made by using arguments

similar to those leading to equation (2-7).

2.2 MATHEMATICAL REVIEW

This section reviews some of the mathematical concepts and techniques that

will be used in the course of this text. The review is included only for the

purpose of reacquainting the reader with these concepts and techniques and for

establishing certain conventions that we shall follow throughout this text.

Therefore, this review will be conducted without any pretense of rigor, and

the reader is encouraged to consult standard texts, as necessary, to

supplement the material presented here.

2.2.1 Fourier.Transforms

The Fourier integral theorem states that a function g(t) can be

represented as an integral of its harmonic elements.4  That is,

g(t) = G(wlexplicjt) dw (2-23)

where G(w) is the complex amplitude (within a factor of 2w) of each harmonic

element and is giver :y

G() g(t)exp(-it) dt (2-24)

The functions g(t) and G(w) constitute a Fourier transform pair, and the

variable w is called the Fourier conjugate of the variable t. The placement
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of the factor of 21 in the definition of the transform pair is, within certain

constraints, arbitrary. The choice in equations (2-23) and (2-24) is

consistent with the convention used by electrical engineers.

To paraphrase Lighthill, considerable literature has been devoted to

determining the conditions on g(t) sufficient for equations (2-23) and (2-24)

to be valid representations. For the fields, g(t), treated in this text,

equations (2-23) and (2-24) are valid representations.

Sneddon6 shows that the theory of Fourier transforms of functions of a

single variable can be extended to functions of several variables. Thus, wave

fields, which are functions of space and time, may be represented in terms of

multidimensional Fourier transforms. For example, let p(*,t) denote the

space-time field associated with a pressure wave. Then, p(x,t) can be

represented by

p(xt) = (2014 ff P(r,w)exp[i(k.x + wt)] dk dw , (2-25)

-
4
0

where

= +p( ,t)expu-i( ,x + wt)] d dt . (2-26)

-00

In equations (2-25) and (2-26), d* denotes dx dx 2dx 3 and dr denotes

dk dk 2dk The Fourier conjugate of the spatial vector variable, *, is
the wavevector, k, and the Fourier conjugate of the time variable, t, is the

circular frequency, w.

Note that the integrand of equation (2-25) is a harmonic plane wave of the

form of equation (2-1), with a complex amplitude of P(k,w). Thus, it is

evident, by equation (2-25), that expressing the pressure field as a Fourier

transform is equivalent to representing that field as a summation, or

superposition, of harmonic 'plane waves, where each harmonic component is

characterized by a distinct wavevector and frequency. The wavevector-
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frequency transform, P(kw), of the space-time field, p(jt), can be

interpreted as the relative complex amplitude of each harmonic plane wave

component comprising the pressure field.

It should be emphasized that the components of the wavevector, C, and the

circular frequency, w, are real variables. If we require the wave field

variable (e.g., the pressure in equation (2-25)) to be real also, then we

require that

p(,t) = p (x,t) , (2-27)

where the asterisk denotes the complex conjugate. It follows from equations

(2-25) and (2-27) that, for the pressure to be real,

P(kW) = P (-k,-W) . (2-28)

Thus, the wavevector-frequency transform of a real space-time field has

conjugate synnetry in both wavevector and frequency.

2.2.2 Generalized Functions

Many of the operations involving Fourier transforms are facilitated by the

use of generalized functions. Further, in some of the chapters to follow,

generalized functions will be used for either notational or mathematical

convenience. Therefore, before proceeding with further discussion of the

Fourier transform and its properties, it is convenient to introduce the three

generalized functions that will be used repeatedly throughout this text. For

a more rigorous treatment of these generalized functions, the reader is

referred to such texts as Lighthill
5 or Papoulis.I

The generalized function used most often is the Dirac delta function,

denoted by a. The delta function is defined by8

4(t - to) - 0 for t t , (2-29)

and is sufficiently large in the vicinity of t a t0 that
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t2

6(t - to) dt = 1 (2-30)

where t1 < t0 < t2. The delta function has the integral property that.

I g(t)a(t - to) dt = g(t0 )  (2-31)

where g(t) is any function of t that is continuous at t . By equation (2-31),

it is seen that the delta function can be used to sample a function at any

discrete argument of that function.

The second generalized function we shall use is the Heaviside, or unit step,

function. The Heaviside function, denoted by U, is the indefinite integral of

the Dirac delta function and is defined by the discontinuous function

t

U(t - to) 6(y - to) dy { t<t (2-32)_I I t > to

The Heaviside function has the integral property that

f U(t - t0)g(t) dt fg(t) dt , (2-33)

-W ti

where g(t) is any function that is continuous at t -tO.

The last of the generalized functions we require are the derivatives of

the delta function. The nt-h derivative of the delta function is denoted by

( )(t - to) = d...- to) (2-34)
dtn
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The derivatives of the delta function have the property that, for any good

function, g(t),

2 (n)(t to)g(t) dt H)n  dng(to)

- t0 gt t= (1" d (2-35)

tdt
n

where t1 < t0 < t2. Lighthill 9 defines a ugood" function as one that

is everywhere differentiable any number of times and is such that it and all

its derivatives are, at most, of order IxiN as IxI approaches infinity for
all N. Thus, a good function decays, for large lxi, faster than any inverse

power of lxi.

2.2.3 Some Useful Relationships and Interpretations

By use of the generalized functions and the Fourier transform, we may

deduce some relationships that will be of use in forthcoming chapters.

Further, some of these mathematical relationships can be interpreted in terms

of the composition and characterization of wave fields.

One especially useful relationship is the Fourier transform of the delta

function. If, in equation (2-24), we set

g(t) 6(t - to) , (2-36)

then, by equation (2-31), it follows that

G(o) exp(-ittO) . (2-37)

From equations (2-23), (2-36), and (2-37), it follows that

00

t - t) exp[i(t - to)] do (2-38)

A similar relation can be developed for 6(o -w ).
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Consider now a wave field (for consistency, we will again use the pressure

field, p(x,t)) that has the Fourier transform

P(fw) = (21) 4 P0 6( k - kO)6(= - W0) , (2-39)

where

6(k -k0) 6(k1 - k01)6(k2 - k02)6(k3  k03) (2-40)

and P0 is a complex constant. By equations (2-25), (2-31), (2-39), and

(2-40), it is easily shown that the pressure field resulting from the

wavevdctor-frequency transform of equation (2-39) is

p(Xt) = PO exp[i(k0OX + w0t)] " (2-41)

Equations (2-39) and (2-41) constitute a four-dimensional Fourier transform

pair.

Comparison of equation (2-41) with equation (2-1) reveals that the

pressure field of equation (2-41) is a plane harmonic wave field characterized

by the single wavevector ', the single frequency w and the complex

amplitude PO" This example shows distinctly one of the-potential advantages

of expressing a wave field in terms of its wavevector-frequency transform.

That is, in this example, the Fourier transform maps the plane harmonic wave

field, which exists over all space and time, into a field in the Fourier

conjugate. or wavevector-frequency, domain, which is nonzero only at a single

point.

A particularly useful property of the Fourier transform is the property of

superposition. That is, if g(t) in equation (2-24) is given by

N

g(t) gn(t) , (2-42)
nul

then it follows that
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N
G( ~ G n( (2-43)

An interesting example of superposition in four dimensions can be illustrated
by considering the pressure field. resulting from the wavevector-frequency

spectrum given by

2~~w P0[6( -k)6(1w - + &( + o)( + ,o) (2-44)

where P0 is a real constant. By equations (2-25) and (2-44), the pressure
field is

PcXt) = P0 cos(k0.*i + 00t) .(2-45)

Note that the pressure field of equation (2-45) is of the form of equation
(2-2), with 0 equal to zero. In this case, the pressure field is seen to be
real, and its wavevector-frequency transform consists of two discrete
components. Note that the Fourier transform of the real-valued pressure field
(equation (2-44)) satisfies the condition of equation (2-28).

At the risk of belaboring a point, we may use the principle of super-
position to substantiate our physical interpretation of the Fourier transform

of equation (2-25). That is, we have shown that a wavevector-frequenty

transform comprised of the product of delta functions of the form of

equation (2.-39) produces a plane harmonic wave in the space-time domain of the
form4 of equation (2-41). By the principle of superposition, then, a transform

coo~prised of a summ-tion of many different products of delta functions will
rdcea space-otime field comprised of a sunxnation of the correspowiding plane

harmonic waves.. Therefore, if we write the transform of the pressure field
in the form of the weighted superposition of produits of delta functions,
that is,

JJk P~~O k - i)(1  ) di do (2-46)'
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then the resulting pressure field is a weighted superposition of plane

harmonic waves. By equations (2-25) and (2-31), that weighted superposition

of plane waves is given by

p(,t) = (2w) P(",Q)exp[i(7. + at)] d'T do , (2-47)

which is merely a restatement of the multidimensional Fourier transform of

.equation (2-25). Therefore, the expression of a wave field as the

multidimensional Fourier transform of equation (2-25) can be physically

interpreted as the representation of that wave field as a superposition of

plane harmonic waves. The wavevector-frequency transform of the space-time

wave field represents the relative amplitudes and phases of these various

harmonic wave components.

In the forthcoming chapters, we will often require the Fourier transforms

of temporal or spatial derivatives of fields. Let 9(t) be given by equation

(2-23) and define

:~ f(t) ( 2-48)

dtn .

If F(w) denotes the Fourier transform of fI,) it is straightforward to show,

*by equations (2-23) and (2-48b? that

"= ~~~O " '''". F (inG(&.) 1-49)

Sy similar arg uents., It rea be shown that the inverse Fourier transform of

th'e nth derivative of 6(4) with respect to w is equal to (-it) ng(t).

Ant iteresting and useful application of equations (2-48) and (2-49) is

4 Illustrated by the following .example. Consider the equation

2 2G(W) 0 (2-50)
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w. ':;where we wish to determine G(w). By performing the inverse Fourier transform

of equation (2-50) and by utilizing equation (2-48), equation (2-49), and the

principle of superposition, we can show that

g(t) = A exp(iw0t) + B exp(-bOt) , (2-51)

where A and B are constants. By use of equations (2-24) and (2-38), it

follows that the G(w) satisfying equation (2-50) is given by

G(w) = A6(w - wo) + B6(w + o0) . (2-52)

This result will prove useful in forthcoming chapters.

As a final mathematical note, consider the Fourier transform of the

product of two functions, g(t) and f(t). If the transforms of g and f are

denoted by 6 and F, we may use equations (2-23) and (2-38) to show that

e00

g(t)f(t)exp(-i~t) dt - (21) "1 f G(w - Q)F(Q) dQ . (2-53)

-0 -0

The integral on the right-hand side is called the convolution of the functions

6 and F. By equation (2-53), it is seen that the Fourier transfoim of a

product is the convolution of the transforms of the functions making up the

product. By similar arguments, it may be shown that the inverse transform of

a product also results in a convolution. That is,

(2w)F~jex~it do fft- 0)9(e) do .(2-54)

2.3 WAVEVECTOR-FREQUENCY DESCRIPTION OF WAVE FIELDS

This section reviews certain physical and mathematical concepts presented

in the first two sections to clarify the rationale for describing wave fields

in terms of their wavevector-frequency characteristics. In addition,
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wavevector-frequency descriptions of wave fields in one and two spatial

dimensions will be presented and discussed.

2.3.1 Review and Perspective

The justification for the description of wave fields as a function of

wavevector and frequency, rather than space and time, is found in the

multidimensional Fourier transform pair of equations (2-25) and (2-26). By

these transform relationships, it must be concluded that P(k,w) and p(x,t)

constitute equivalent descriptions of the wave field, inasmuch as either

description may be derived from the other via the appropriate Fourier

transformations. Therefore, a description of a wave field as a function of

wavevector and frequency-is as valid and complete as the description of that

field as a function of space and time.

The reader might ask, with some justification, why the kinematics of the

plane harmonic wave, rather than the simple argument presented above, was the

focus of the initial section of this chapter. The reason for this choice was

that, in my experience, the primary impediment to the understanding of the

wavevector-frequency descriptions of fields is not the concept of the Fourier

transform: it is the concept of the wavevector. The scientist or engineer has

no problem envisioning the pressure field, p(O,t), because space and time are

familiar physical concepts. Envisioning the field P(Co), on the other hand,

is likely to prove difficult because the wavevector is an unfamiliar physical

concept. The concept of frequency, however, is well understood by

acousticians. For this reason, the primary emphasis in this chapter was to

define and physically interpret the wavevector.

The definition and interpretation of the wavevector were addressed by

studying the kinematics of a plane harmonic wave, which corresponds to a

wavevector-frequency field, P(k,w), containing a single discrete wavevector-

frequency component. It was shown that the space-time field associated with a

plane harmonic wave is completely determined by the amplitude and phase of the

wave. The amplitude specifies only the magnitude (and, in the case of a

complex wave, the initial phase) of the disturbance associated with the wave.
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All information regarding the spatial and temporal variation of the wave is

contained in the phase.

As was shown in equation (2-8), the phase is a linear function of the

components of the spatial position vector, 3, and time, t. The constants of

proportionality are the components of the wavevector, k, and the circular

frequency, w. The wavevector components define the rate of spatial repetition

of the wave in each of the corresponding spatial coordinate directions at any

fixed time. The circular frequency defines the rate of temporal repetition of

the wave at any fixed point in space. The direction and speed of propagation

of the plane harmonic wave are determined by appropriate combinations of the

wavevector and circular frequency.

By equation (2-1), it is evident that knowledge of the (complex)

amplitude, the wavevector, and the circular frequency is sufficient to define

the field of the plane harmonic wave over all space and time. Further, it was

shown in section 2.2.3 that expressing a space-time wave field as the multiple

Fourier transform of equation (2-25) is equivalent to representing that field

as a superposition of plane harmonic waves. Therefore, if one knows the

complex amplitude, the wavevector, and the circular frequency of each plane

harmonic wave comprising that superposition, the wave field can be uniquely

defined over all space and time. This is precisely the information provided

by the wavevector-frequency description (or transform) of the wave field,

which is denoted by P(Z,w) in equations (2-25) and (2-26).

By the arguments presented above, the wavevector-frequency description (or

transform) of a wave field specifies the complex amplitudes of all harmonic

plane waves comprising that field as a function of the rates of spatial

repetition (in each coordinate direction) and temporal repetition

corresponding to each harmonic wave component.

2.3.2 Wave Fields in One and Two Spatial Dimensions

For generality, the wave fields treated thus far in this chapter have been

assumed to have three-dimensional spatial variation. In forthcoming chapters,

many of the illustrative examples will treat wave fields with spatial

2-18



variation in only one or two coordinate directions. These one- and two-

dimensional spatial fields are interpreted as special cases of the

three-dimensional field below.

Consider the pressure field, p(x,t), having the wavevector-frequency

transfom

P(kw) = 2w(k,w)6(k3) , (2-55)

where k denotes the two-dimensional wavevector (k1 ,k2). By equation (2-25),

the space-time field corresponding to equation (2-55) is given by

p(l,t) = 5(2,t) = (2P) f (kw)exp[i(k.x + wt)] dk do , (2-56)

where x denotes the two-dimensional spatial vector (x1,x2). By equation (2-56),

it is evident that '(x,t) is a pressure field that depends only on the two-

dimensional spatial vector, x, and the time, t. Further, by equations (2-55),

(2-56), and (2-26), one can easily demonstrate that

0) = p(x,t)exp[-i(k.x + wt)] dx dt . (2-57)

Thus, P(k,w) is the three-dimensional Fourier transform of 5(Q,t) and is a

function of the two-dimensional wavevector, k, and the circular frequency, .

The characteristics of the wave field in two spatial dimensions can be

interpreted as a special case of the three-dimensional spatial field.

Equation (2-55) describes a wavevector-frequency field in which only plane

harmonic waves having a zero spatial repetition rate in the x3 coordinate

direction (i.e., k3  0 0) contribute to the space-time field. The physical

interpretation of a zero spatial repetition rate of a plane harmonic wave in

one coordinate direction is that there is no spatial variation of the wave in

that coordinate direction. This is borne out by equation (2-56), which shows

the resultant space-time field to be independent of the x3 spatial

coordinate.
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As the space-time dependence of a plane harmonic wave is contained in the

phase of the wave, it follows that the phase of each plane harmonic wave

contribution to the wave field must also be independent of x3. This

conclusion is again supported by the form of the integrand of equation (2-56).

If we consider a single wavevector-frequency component of the integrand, say

k0 = (k01,k02) and w0, and denote the initial phase of that component

by 0(ko,w0), the phase front associated with the single wavevector

component is given by

kO.X + (&0t + N(ko' o) = (2-58)

The phase front defined by equation (2-58) is a straight line in the

(Xlx 2) plane, This straight line can be interpreted as a special case of

the phase plane defined by equation (2-9). Recall that the wavevector, k, is

perpendicular to the phase plane. The x3 axis, in our Cartesian coordinate

system, is perpendicular to the (x1,x2) plane. By equations (2-55) and

(2-56), only plane harmonic wave components characterized by wavevectors

= (j,O) contribute to the space-time pressure field. For such wavevectors,

it is easily shown that if X3 
= (OOx3) then k' 3 = 0. As the

magnitudes of neither k nor x are, in general, zero, it follows that the

phase planes are perpendicular to the (xlx 2) plane. Thus, equation (2-58)

may be interpreted as the description of a phase plane oriented perpendicular

to the (x1 ,x2) plane, or as a phase line characterizing the intersection

of that phase plane with the (x1 ,x2) plane.

From the arguments presented above, it should be obvious that the

two-dimensional wavevector, k, is perpendicular to the phase line. Further,

definitions and interpretations of the two-dimensional wavevector are easily

obtained by specializing the relationships presented in section 2.1.1 to the

case where k3 is zero and x3 is a constant.

The wavevector-frequency characterization of a wave field in one spatial

dimension can also be developed as a special case of the three-dimensional

spatial field. Consider the wave field, p(1,t), resulting from the

wavevector-frequency transform
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= (2)2 (kl,)6(k2)6(k3) (2-59)

By equations (2-25) and (2-59), we obtain

00

p(t) = P(xl t) = (2r)-2 JJfP(ki,)exp[i(klXI + ct) dkI da . (2-60)

Equation (2-60) describes a space-time field, P(x1,t), that is a function of

the single spatial variable, xI, and time. By Fourier-transfoming equation

(2-60) in x, and t and by utilizing equation (2-38), one can easily show that

P(k J 0 J(xlt)exp[-i(klx, + wt)] dxI dt . (2-61)

Equations (2-60) and (2-61) constitute a Fourier transform pair.

As in the case of the wave field in two spatial dimensions, the wave field

in one spatial dimension can be interpreted as a special case of the field In

three spatial dimensions. By equation (2-59), all plane harmonic wave

contributions to the space-time wave field are characterized by wavevectors

having components (k1,O,0). As the wavevector has been shown to be directed

perpendicular to the phase plane of the plane haroonic wave, it follows that

the phase planes of all the harnonic wave contributions to p(lt) in

equation (2-60) are perpendicular to the xI axis. Thus, the phases of the

individual harmonic wave components in the integrand of equation (2-60) can be

interpreted as descriptions of the kinematics of phase planes oriented

.perpendicular to the x1 axis, or as the' knematics of the phase point

* defined by the intersection of the phQe plane with the x1 axis.

The definitions and kinematic interpretations of section 2.1.1 cdn be

i applied to the wave field in one spatial dimension by requiring k2 and k3
to be zero. These relations and definitions show that ali harmonic components

. comprisiny the wave field in one spatial dimension are independent of x2 and

X3 and propagate in the direction parallel to the l axis and opposite to

the direction of k
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CHAPTER 3

SPACE- AND TIME-INVARIANT LINEAR SYSTEMS

In the first chapter, wavevector-frequency analysis was defined as the

description of space-time fields or systems in terms of their wavevector-

frequency characteristics. The second chapter treated the description and

interpretation of space-time fields in the wavevector-frequency domain. The

characterization and interpretation of the response of systems in the

wavevector-frequency domain will be the topic of the next five chapters.

The systems approach presented in these chapters parallels, in many

aspects, the linear system theory developed by electrical engineers for the

analysis of systems and fields that depend only on time. This approach was

adopted because it provides a fundamental and consistent method of addressing

a wide vriety of problems, including those in acoustics.

This chapter reviews the basic concepts of systems theory and demonstrates

the rationale for the wavevector-frequency analysis of one class of space-time

systems: the space- and time-invariant system.

3.1 SYSTEMS AND THEIR CLASSIFICATIONS

The definition of a system that suits the purpose of this text is a

combination of those found in The American Heritage Dictionary of the English

LanguageI and Brogan's Modern Control Theory. 2 With suitable apologies to

both sources, we define a system as an aggregation or assemblage of inter-

acting elements combined by man or nature to form an integral entity.

The key word in this definition is "elements." If, for example, the

elements are taken to be su essive differential lengths of a string under

tension, then some finite length of interest of the string can be considered

to constitute a system. On the other hand, a finite length of string under

tension would be an element of the system called the violin. Clearly, the
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above definition of a system is sufficiently flexible to accommodate an

infinite variety of components, interactions, and processes.

Systems theory is concerned with the interactions and behavior of the

various elements of the system resulting from certain conditions or

excitations imposed on the system. Therefore, the statement of a systems

problem requires three definitions: (1) the definition of the elements and

interactions comprising the system, (2) the definition of the conditions or

inputs imposed on the system (usually called the input), and (3) the

definition of the specific interaction or behavior of interest in the system,

i.e., the system output. By this systems approach, a wide variety of problems

can be reduced to the conceptually simple form depicted in figure 3-1.

In systems theory, a distinction is made between the physical system and

the mathematical model of that system. The physical system is that

assemblage of interacting devices, components, mechanisms, processes, etc.,

that have been selected for scrutiny. However, owing to cost

considerations, the study of the behavior of the physical system under a

given input is often conducted by means of an experimental or mathematical

model of the system. Systems theory is ccncerned with the study and

solution of these models of systems rather than the physical form of the

system. Mathematical systems theory, or the study of mathematical models of

systems, is the emphasis of these next few chapters.

The mathematical modeling of systems is an acquired skill, and a

detailed discussion of the construction of mathematical models of systems is

beyond the scope of this text. However, the mathematical form of the system

model, including the forms of the input and consequent output, has a

.onsiderable impact on both the relative difficulty of predicting the output

SYSTEM THE SYSTEM

INPUT SYSTEM OUTPUT

Figure3-1. Conceptual Form of a Systems Problem
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of the system for a given input and on the mathematical techniques required

for that prediction. As a result, system models are usually classified

according to the mathematical characteristics of the system model and its

input. Table 3-1 lists the major characteristics used to classify

mathematical models of space-time systems and their inputs.

Table 3-1. Major Classifications of Systems

Mathematical Properties

Linear Nonlinear
Deterministic Stochastic

System Model Time Invariant Time Varying
Continuous Time Discrete Time
Space Invariant Space Varying
Spatially Distributed Spatially Discrete

Input Free Forced
Deterministic Stochastic

In general, all of the factors in table 3-1 must be taken into account in the

classification of the mathematical model of the system and its input.

owever, the order of the listing has no significance.

In this table, a linear system is one in which the equations governing all

model elements are linear. If one or more elemental equations are nonlinear,

the system is nonlinear.

Systems models that contain parameters which vary in some random fashion,

and can be described only in terms of their statistical or average properties,

are called stochastic systems. Otherwise, they are considered deterministic.

If the parameters of the mathematical model do not vary with time, the

system is time invariant. If the mathematical model of the system is defined

for all time, it is a continuous-time model. On the other hand, a model that

treats the system only at discrete time intervals is a discrete-time model.
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A space-invariant system is one in which the parameters of the

mathematical model are independent of the spatial coordinates of the model. A

mathematical model that describes the physical system continuously over space

is a spatially distributed model, whereas one that treats the system only at

discrete points in space is a spatially discrete model. Lumped parameter

systems are a special case of spatially discrete systems.

Continuous space-time systems are modeled by partial differential

equations, whereas discrete systems are modeled by ordinary differential

equations or finite difference equations.

A system is said to be free if there are no external inputs to the

system. In this case, the behavior of the system is completely determined by

the system itself and its initial conditions. A forced system is one subject

to external inputs. If either the external input or the initial conditions

are subject to random variations, the input or initial conditions are

considered stochastic.

3.2 CLASSIFICATION OF ACOUSlIC SYSTEMS

The systems of interest in this book are those associated with linear

acoustics. Further, because (1) the subject of this text is wavevector-

frequency analysis and (2) the wavevector and frequency are the respective

Fourier conjugates of the spatial vector and time variables, our focus is on

those acoustic systems that are continuous in time and spatially distributed.

Our purpose of teaching the fundamentals of wavevector-frequency analysis

is best served by restricting attention to the deterministic, time-invariant

mathematical models that describe the bulk of acoustic systems. Therefore, we

will not attempt to address the acoustics of stochastic and time-varying media.

Infinite, spatially invariant models of systems are often employed in

acoustics because they are relatively easy to solve and offer insight

regarding the relative importance of the various physical processes

influencing the system output. However, in many acoustics problems, the
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effects of the spatial limitations and boundary conditions on the system

output are the focus of the modeling effort. Such space-bounded models fall

in the class of space-varying systems. Clearly, both space-varying acid

space-invariant acoustic systems must be addressed.

Although stochastic systems will not be treated in this text, considerable

interest and history exists in the response of acoustic systems to stochastic

inputs. Therefore, all forms of inputs will be considered.

In summary, the acoustic systems treated here will be limited to those

that are linear, deterministic, time-invariant and continuous, and spatially

distributed. However, all classifications of inputs will be treated.

This chapter treats the response of space- and time-invariant linear

systems to deterministic inputs and initial conditions. Chapter 4 addresses

the response of space-varying (but time-invariant) systems to deterministic

inputs and initial conditions. Chapter 5 reviews some coupled systems of

interest in structural acoustics. Chapter 6 develops the statistical concepts

and descriptors required for the treatment of the response of systems to

stochastic inputs or initial conditions, and chapter 7 deals with the response

of systems to such random excitation.

3.3 FREE RESPONSE OF SPACE- AND TIME-INVARIANT LINEAR SYSTEMS

Spatially distributed, continuous-time ystems in linear acoustics are

modeled by linear partial differential equations in which the independent

variables are spatial coordinates and time. If attention is further

restricted to systems that are invariant in space and time, the coefficients

of the various terms of these linear partial differential equations are

constants.

In free systems, the absence of external inputs is reflected in the

partial differential equations that model the system by the absence of

inhomogeneous terms. Thus, the mathematical models of free space-time-

invariant linear systems are homogeneous partial differential equations with

constant coefficients.
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The output of a free system exists for all time and is sustained by

natural interactions within the system. In the absence of external inputs,

the initiation of the free response cannot be addressed. However, by specific

knowledge of the output at any given time, the output can be determined for

all time.

The outputs of free systems with losses cannot be described in the

wavevector-frequency domain. The amplitudes of such outputs decrease

monotonically with increasing time, and Fourier transforms of such outputs,

ever all time, do not exist.

The outputs of lossless, free space-time-invariant linear systems,

however, can be described equivalently in the space-time domain or the

wavevector-frequency domain. This equivalence of description and the

techniques for solution in the wavevector-frequency domain can be demonstrated

by some illustrative examples.

3.3.1 The Infinite String

A classical problem in linear acoustics is the free vibration of a

uniform, infinitely long string, resulting from some specified initial

displacement and velocity distribution. Here, the system is the string, free

from external input, and the desired information (i.e., the output) is the

space-time displacement field, w(x,t), of the string. The mass per unit

length (c) and the tension (T) of the string are constant over the length of

the string. The mathematical model describing the displacement of the string

is given3 by the following linear partial differential equation with

constant coefficients:

... . =w o(3-1)ax2  c2 8tz

for all x and t, where cs2 T /C.

If w(x,t) is written as the wavenumber-frequency transform
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w~x~) =(21)-2fJW(kca~expfi(kx +- ot)} dk dca 32
-00

then it follows from equation (3-1) that W(k~cw) must satisfy

[W s)2- k 2 W(k,w) = 0 (3-3)

for all k and (a. Equation (3-3) states that W(k,w) can have a nonzero

solution only along the two lines defined by IkI = Iu)/csI, which are

depicted in figure 3-2. Because of this restriction on the wavenumber content

k

______________________ cO

Figure 3-2. Locus of Wavevectors Characterizing Free Waves
of an Infinite String as a Function of Frequency
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of N~~)at- any f requency, the wavenumber

k=1/s (3-4)

Is called the free wavenumber ot the string.

It is apparent, by equations (3-2) and (3-3), that if a particular
wavenumber component, say k', is present in W(k,w), its contributions to
w(x,t) can only be complex harmonic waves of the forms exp{ik'(x + c st)} and
exp{ikl(x - c st)). The amplitudes of these harmonic wave components depend,
of course, on the exact form of W(k,o)).

The matkematical form of W(k,cw) can be deduced by first writing w(x,t) in
the f orm

00

w(x~t) -(20) 1  J W(k,t)exp(ikx) (1k .(3-5)

-00

Substitution of equation (3-5) into equation (3-1) yields the ordinary
differential equation

d2~ 1t + (kc s)2 W(k,t) - 0 ,(3-6)

which has the solution

W(kot) -A(k)exp(ikc st) + 6(k)exp(-ikc St) .(3-7)

By performing the tempioral Fourier transformation of equation (3-7), we obtain

W(k,(o) -2wfA(k)a(w - kc S) + B(k)a(w + kc5)) (3-83)

Note that this solution to equation (3-3) is consistent, in form, with the
solution to equation (2-50) given by equation (2-52). In equation (2-SO),
wwas tacitly assumed to be a constant and, consequently, A and B in

equation (2-52) were constants. In equation (3-3), however, k is a variable.



Therefore, the quantities A and B modifying the delta functions in

equation (3-8) must be functions of k.

Equation (3-8) is the form of the general solution for the vibration

displacement of the free, infinite, uniform string in the wavenumber-frequency

domain. Note that W(k,w), the wavenumber-frequency transform of w(x,t), is

characterized in the k-w plane by a weighted distribution of delta functions

along the lines IkI = ks. The particular weighting functions, A(k) and

B(k), are determined by the initial distribution of displacement and velocity

on the string. Before proceeding to the determination of A(k) and B(k) in

terms of these initial conditions, it should be noted that, by substituting

equation (3-8) into equation (3-2) and performing the required integrations,

one obtains

w(x,t) = a(x + cst ) + b(x - cst) ,(3-9)

where a(x) and b(x) denote the respective inverse Fourier transforms of A(k)

and D(k). Equation (3-9) is the general form of the classical solution for

the free vibration of the infinite, uniform string.
4

Assume that the initial displacement and velocity of the string are given

by

w(xO) - (X) (3-10)

and

aw(x, M V(3-O)

By equation (3-2), equation (3-9), and the use of the inverse Fourier

transform, it is easily shown that

A(k) = (l/2)(W 0(k) + [l/(ikc s)]Vo (k)) (3-12)

and

8(k) - (1/2)(Wo(k) - [l/(ikcs)]Vo(k)) , (3-13)
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where Wo(k) and Vo(k),are the spatial Fourier transforms of wo(x) and

Vo(X), respectively. Thus, by equations (3-8), (3-12), and (3-13), we obtain

W(k,w) = w{W0(k)[6(w - kcs) + 6(w + kcs)]

+ [1/(ikcs)]Vo(k)[6(w - kcs) - 6(w + kcs)]} . (3-14)

Equation (3-14) is the wavenumber-frequency description of the

displacement field resulting from the free vibration of an infinite, uniform

string with arbitrary initial displacement and velocity conditions. Recall,

from section 2.2.1, that this wavenumber-frequency transform defines the

amplitudes and initial phases of the harmonic waves comprising the space-time

field as a function of the wavenumber and frequency characterizing each wave.

As noted previously, the wavenumber-frequency contributions to the

displacement field consist of a weighted distribution of delta functions along

the lines IW k . The weighting of the delta functions is completely

determined by those wavenumber components comprising the initial displacement

and velocity fields of the string.

In free vibration, only waves that result from natural interactions

between elements of the string can be propagated. The delta functions of the

form 6(w t kcs) in each term of equation (3-14) are the mathematical

statements of this restriction. These terms state that only waves

characterized by wavenumbers and frequencies in the ratio jw/kI - cs (i.e.,

those with propagation speed cs) can be propagated in the string. This

restriction, implied by equation (3-3), is illustrated in figure 3-2.

As is evident by both equation (3-14) and figure 3-2, only two

frequencies, equal in magnitude and opposite in sign, are associated with each

wavenumber component of W(k,w). By equation (2-14), this implies that each

wavenumber component associated with the initial displacement and velocity

fields contributes two harmonic waves to the vibration displacement field of

the string: one propagating in the positive x direction and one propagating

in the negative x direction. The speeds of propagation of both waves are

easily shown (by equations (2-14) and (3-4)) to be independent of both
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wavenumber and frequency and to be equal to cs. The amplitudes and initial

phases of these two waves are determined by their respective complex

amplitudes, W0(k) - V0(k)/(ikcs) and W0(k) + V0(k)/(ikcs). The space-

time displacement field of the vibrating string is the superposition of all

such wave pairs dictated by the wavenumber content of the initial

displacement and velocity fields.

The space-time field is obtained by substituting equation (3-14) into

equation (3-2) and performing the integration on w. This yields

w(xt) = (4)-1 J {([Wo(k) + Vo(k)/(ikcs)]exp[ik(x + cst)]
00

+ (W0(k) - V0(k)/(ikcs )]exp(ik(x - cst)]} dk

(3-15)

It is easily demonstrated that

U

exetiku) exp(iky) dy + (3-16)

0

By substitution of the appropriate form of this result in equation (3-15), the

integrals over k are Itnmediately recognized as simple inverse Fourier trans-

forms of W0(k) and V0(k). It may thereby be shown that equation (3-15)

reduces to the form

w(xt) W (1/2)jwo(X - Cst) + w0(X + Cst)

X-Cst x+c t v

0 0

Equation (3-17) is the solution to the vibration of the infinite, uniform

string obtained by traditional methods and presonted in Morse.4  That this
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space-time solution was obtained by appropriate ittegration of the wavenumber-

frequency description of the vibration field reinforces the assertion that

both the space-time and wavenumber-frequency descriptions of a field contain

equivalent information.

As a final observation, it should be noted that the solution for the free

vibration of the string given by equation (3-17) is valid for all time. The

explicit absence of external forces in the free system model preclude, any

consideration of how the vibratory motion was initiated. The initial

conditions are therefore only simultaneous "snapshots" in time of the

displacement and velocity fields. However, in the absence of external inputs,

these initial conditions provide sufficient information to determine the

vibration field prior to, as well as after, the time of the snapshot.

3.3.2 The Infinite Flat Plate

The technique for obtaining the wavenumber-frequency or space-time

solution for the free response of space- and time-invariant systems is

independent of the number of independent spatial variables required to

mathematically model the system. To demonstrate this assertion and to

introduce the concept of dispersive waves, we next treat the free transverse

vibrations of an infinite, uniform, thin, flat plate.

The space-time field of the displacemeent of the central plane of the

plate, measured normal to that plane, is designated by w(x&t), where

E xx 2 ]. The free vibeatlon of the thin plate is governed by5

VX21w

OV4w + a 2 = 0 (3-18)

at

where

4  a2  2 2

zx 2 ax 2

and where, for this spatially invariant system, the flexural rigidity (0) and

the mass per unit area (u) of the plate are constants.
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If one assumes that the displacement field can be written in the form

w(K,t) = (21-3 JfW(kslexp{i(ki2 + 4t)} dk dw , (3-20)

-w

substitution of equation (3-20) into equation (3-18) yields (as the resulting

integral must hold for all x and t)

(k - c 2)W(k.) = 0 , (3-21)

where k4 = (k12 + k22)2.

Equation (3-21) states that W(kw) must be zero except at those

wavevectors having magnitudes equal to the fourth root of w3/D. Therefore,

as we found in the case of the free vibration of the infinite string, only

those waves that result from natural interactions between the elements of the

infinite plate can contribute to its free vibration. By equation (3-21), only

waves associated with wavevectors of specific magnitudes can contribute to the

motion of the plate at each frequency. This wavevector magnitude, called the

free wavenumber of the plate, is designated by k and given by

4 (3-22)

From equation (3-22) and the above discussion1 it is apparent that the

locus of all wavevectors contributing to the-vibration of the plate at any

given frequency tust fall on a circle of radius kp in the k plane and that

the radius of that circle increases according to the square root of the

magnitude of the frequency. However, according to equation (2-14). this

Implies that the phase speed (i.e., the magnitude of the phase velocity) of

the waves comprising the free motion of the plate is a function of frequency

and is given by

c = 4W . (3-23)
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The quantity cp, which is referred to as the free wave speed of the plate,

is seen to increase with the square root of the magnitude of the frequency.

This is in contrast to the free waves in the infinite string, which had a

constant phase speed. Waves characterized by a phase speed that varies with

frequency are called dispersive waves.

By equations (3-4) and (3-22), it is evident that the dispersive nature of

a wave is reflected in the frequency dependence of the free wavenumber. That

is, for the nondispersive waves in the uniform string, the free wavenumber is

linearly related to the frequency, as indicated by equation (3-4). For the

dispersive waves of the flat plate, the free wavenumber varies nonlinearly

with frequency, as evidenced by equation (3-22).

The difference in the wavenumber-frequency characteristics of free waves

in Oispersive and nondispersive systems is illustrated in figure 3-3. Here,

the free wavenumbers of the string (k s) and the flat plate (k p) are shown

as a function of frequency. The nonlinear behavior of the (dispersive) free

wavenumber of the plate with frequency is easily seen in contrast with the

linear behavior associated with the (nondispersi-#e) free wavenumber of the

string.

Returning now to equation (3-21), the mathematical form of W(k,w) can be

detrtmined by an extension of equations (2-50) and (2-51) or by assuming a

form for w{zt) similar to that assumed for the displacement field of the

string in equation (3-5). That is, in the latter approach, we assume

w(x,t) =~ (2w)' ((k,t)exp{ik._} dk , (3-24)

Substitution of equation (3-24) into equation (3-18) yields the ordinary

differential equation

2-- -3(-,t) Ok 4

T-+- W(tt) -0 ,(3-25)
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Figure 3-3. Comparison of the Free Wavenumbers of an
Infinite Fl~t Plate and an Infinite String

which has the general solution

_(,t) = A(t)expfi fD7TkOt) + B( )exp(-l fD7vk00 , (3-26)

where A and B are arbitrary functions of k_ and k2 . k12 + k22. By taking the

temporal Fourier transform of equation (3-26), we obtain

W(j,w) - 2[A(k)6(w - Vi7 k2) + B(_k!)6{= + k k0 ] , (3-27)

and by equation (3-20),

w(2_,t) (2w) -2 A(_)exp{iu.-j + O/ k2t])

n 8(k0exp~i.x - D-i k2t]} dk (3-28)

As was the case in the vibrating string, the functions A(k) and B(k) are

determined by the initial conditions of the plate. If the initial
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:displacement and velocity fields of the plate are given by

W(O) Wo(0) (3-29)

and

dw(x,0)

dt =v0(0) , (3-30)

then, by equation (3-28) and the definition of the Fourier transform, it is

easily shown that

w(jw) - - 1ivk 2] + i} +

+ WV , ( &[w - r/pk 2] - 6W + I-hTk 2 ] (3-31)

where Wo() and Vo(k) are the respective spatial Fourier transforms of

wo(Xi) and vo(X_). Equation (3-31) is the wavevector-frequency description
of the displacement field resulting from the free vibration of the infinite

plate.

The physical interpretation of equation (3-31) parallels that of the

somewhat similar mathematical form obtained, in equation (3-14), for the

wavenumber-frequency description of the free vibration of the infinite

string. That is, we first recall, from chapter 2, that W(k,) defines the

amplitudes and initial phases of a1l the harmonic waves comprising the
vibration field as a function of the wavevectors and frequencies

characterIzing each wave.

By equation (3-31), it is apparent that the wavevector content of the
''displacement field is cowpletely determined by those wavevectors comprising

'the initial displacement and velocity fields: that is, those defined by

WO( ) and Vo(f). Further, only two frequencies, equal in magnitude and

opposite in sign, are associated with each wavevector component of the initial

.displacement or velocity fields. The magnitudes of these frequencies are
..proportional to the squared magnitude of .the wavevector. Thus, by equations
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(2-14) and (3-20), each wavevector component of the initial displacement or

velocity contributes two harmonic waves to the space-time displacement field

of the plate; one wave propagates in the direction of the wavevector

associated with that component and the other propagates opposite to that

direction. The speeds of propagation of both components are equal and, by

equations (3-22) and (3-23), proportional to the magnitude of the wavevector

characterizing the component. The amplitudes and initial phases of these two

waves are specified, respectively, by Wo() ± iVo(k)/ D/ k2]. The

space-time displacement field associated with the free vibration of the

infinite plate is the superposition of all such wave pairs dictated by the

wavevector content of the initial displacement and velocity fields.

As an illustrative example, consider the free vibration of the infinite

thin plate resulting from the initial conditions

Wo(L) = sin(kloxI)

and (3-32)

Vo000 = 0

where , is the (real) amplitude of the initial displacement and klo is a

constant wavenumber in the kI direction. It follows, by taking the spatial

Fourier transforms of WO(I) and v0(?), that

Wo() - (2w2 /i)6(k 2)6(k, - k10 ) - 6(k, + k10)

and (3-33)

i Vo( ) 0

Therefore, only two wavevector components, with amplitudes equal in magnitude

and opposite in phase, are present in the initial displacement and velocity.

By substituting equation (3-33) into equation (3-31), we obtain

W(tw) = (2W3 c/i)6(k2){S(kl - klo) - 6(k, + klo)

{6[.- 9 klo 2 1 + 6[41 +4 kl] 2 . (3-34)
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By equation (3-34) and the previous discussion, we see that the free vibration

field of the plate is comprised of the sum of four complex harmonic waves.

The magnitudes of the (complex) amplitudes of all waves are equal, as are the

magnitudes of the wavevectors and frequencies characterizing these waves. By

use of equation (2-14), it can be shown that two of these waves propagate in

the positive x 1 coordinate direction and the other two propagate in the

negative x I direction. The speeds of propagation of all waves are equal and

can be shown to be 4 0/,Ik 10I1. Finally, it is easily demonstrated that the

wavevector-frequency description of this field has conjugate symmetry in the

k - w domain; that is, W(-k,-w) = W*(k,w). Therefore, by the arguments of

section 2.2.1, the space-time displacement field associated with this example

of the free vibration of an infinite plate is real.

The space-time displacement field for this example is easily shown to be

w(j,t) (a/2){sin~k 10x I + JD~ k 10 t] + sin~kiox1 -\l7 k 10 t])

(3-35)

Equation (3-35) shows that the space-time displacement field is the result of

the spatial waveform of the initial displacement field being propagated, at

half the initial amplitude, in both the positive and negative x I coordinate

directions. The speed of propagation in both directions is equal and is that

identified above.

3.3.3 Surriary of Free Response Characteristics

The free response of the systems described in the above eamples exhibits

certain wavevector-fre~ue-ncy characterfstics that are confion to, all firto

spoac-- -and tieiV~ 11near acostic s stans. In- th is we.O

.briefl IV ,K ~i e Thosa ta"(Uterisi cs.

The wavevector-frequenty response of free space- atid titn~viheiaint

Sslti~us defie the Specifit combia~tion of 'free wayes, thtat comp-ris the
spce-, fet ociateti with the system Output. F rfe -wie frp that

reitricted set of waves whicli propgte io a systet as a -result of only the,
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natural reactions within the system. Inasmuch as (1) each wavevector-

frequency combination defines a specific wave and (2) free waves are a

restricted set, it follows that the set of wavevectors and frequencies that

can contribute to the free response of a system is a restricted set.

Space- and time-invariant systems are infinite in spatial extent and have

uniform properties in both space and time. It is therefore illogical, in the

absence of external constraints or conditions, that there should be any

preferred direction of propagation of free waves in the system. Recall, by

the arguments of chapter 2, that the direction of propagation is determined by

the direction ofthe wavevector and the sign of the frequency. It therefore

follows that the wavevectors and frequencies that characterize free waves can

only be restricted in.their magnitudes.

A mathematical definition of the wavevectors and frequencies that

characterize the free waves of a system can always be obtained by a

multiple Fourier transformation, in all independent variables, of the

partial differential equations governing the response, or output, of the

system. The resulting equation relates the magnitudes of the wavevectors and

frequencies that constitute free waves. The free wavenumber is defined as the

magnitude of those wavevectors that constitute free waves at any particular

frequency.

In the absence of external forces or inputs, the only wavevectors that

can contribute to the output of the system are those present in the initial

conditions. The initial conditions define the complex amplitude of each

wavevector component that contributes to the free response of the system

at some specified initial time. By knowledge of the wavevector components

present in the initial conditions and the combinations of frequencies and

wavevectors comprising free waves (by the definition of the free wavenumber),

the wavevector-frequency content of the system output can be determined.

The illustrative examples presented above demonstrate a consistent

mathematical procedure for obtaining the wavevector-frequency description of

the free response of the space- and time-invariant systems encountered in

linear acoustics.
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3.4 FORCED RESPONSE OF SPACE- AND TIME-INVARIANT LINEAR SYSTEMS

The mathematical models of forced space- and time-invariant linear systems

differ from those of their free counterparts only by the addition of the

forcing term, or input, that is not a function of the independent, or output,

variable. Thus, by the arguments of section 3.3, the mathematical models of

these forced systems are inhomogeneous linear partial differential equations

with constant coefficients.

This section describes a fundamental and consistent technique for

obtaining and interpreting the wavevector-frequency response of forced space-

and time-invariant linear acoustic systems.

3.4.1 The Principle of Superposition in Linear Systems

The solution for the forced response of linear systems is based on the

principle of superposition for linear equations. Let L- denote any linear

partial differential operator of the form

J3 L M N /"1 )jj\ l - ,

(3-36)

where = (X,,X 3 ) and the indices j, 1, m, and n denote the order of

the partial derivatives in x,, x , x , and t, respectively. Mathematical

descriptions of linear systems in acoustics are characterized by operators of

the form of equation (3-36).

If p(7.t) denotes the output of a linear system resulting from the input

f(i,t), the inhomogeneous linear partial differential equation that describes

this input-output relationship is given by

L.,t{p(',t)) f( ,t) (3-37)

If p1(it), p2(i.t), ..., pN(*.t) are the solutions of equation (3-37)
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inut f(X) f* (1t)Nteresulting from the separate inputs f(t)f2(,t), (,t), then
- it fol lows that

N N
_ bnL.,tfPn((,t)} = bnfn(t) , (3-38)

n=l n=l

where the constants b are arbitrary. However, owing to the form of 1-,

shown in equation (3-36), it is easily seen that equation (3-38) can be
rewritten in the equivalent form

I N
Lt ~bnPn(tt) = bnfn(t) (3-39)

n=1 n=l

By equations (3-37) and (3-39), it is clear that if the input to a system is a

linear combination of the form

N

f(Xt) bnfn(,.t) , (3-40)

then the output is given by

N

p(Xt) S bnpn(Lt) (3-41)
n-1

Equations (3-40) and (3-41) are a mathematical statement of the principle of

superposition for linear systems, which forms the foundation for the treatment

of forced linear systems.

For the space- and time-invariant systems of interest in this chapter, the

partial differential equations governing the system have constant

coefficients. Thus, for space- and time-invariant systems, the coefficients

ajin in the linear operator of equation (3-36) are constants. However,

when a jmn are constants, it is easily seen that the form of the linear
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operator of equation (3-36) Is independent of the origins of the spatial and

'temporal. .coordinates. That is, if:we define

= x 0

and (3-42)

- t 0

where x0 and t0 are arbitrary constants, and if we denote the space- and

time-invariant linear operator by iL-,t, it is easily shown that

mI = LZt{ (3-43)

It follows, by equations (3-37) and (3-43), that

L- P WT + + t)) f( + , + to) ' (344)

from which it must be concluded that the output of a linear space- and

time-invariant system resulting from the input f(4 + 0, + to) is
W( + 'X* + to)

By using these fundamental concepts of linear systems, a logical and

consistent approach to obtaining solutions for the forced response of space-

and time-invariant linear systems can be developed.

3.4.2 The Green's Function or Space-Time Impulse Response

The Green's function (also descriptively known as the space-time impulse

response) of a system is defined as the response of that system at the spatial

coordinate ' and time t to an impulsive input applied at the spatial location

0 at time to. If we denote the Green's function by g(xt;i0 ,t0 ) and

assume that the system is governed by a linear inhomogeneous partial

differential equation of the form of equation (3-37), it follows that the

Green's function is mathematically defined by

LXt(9(x~txo~to)1 S(x- O)6(t - to ) . (3-45)
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where

6(x - x0) =6(x1 - X01)6(x2 - x02)6(x3 - x03 ) (3-46)

The argument of the Green's function in equation (3-45) is written in the

traditional form and deserves some explanation. The independent variables of

the Green's function, X and t, define the absolute spatial coordinates and

time of observation of the output of the system. The parameters x0 and to

define the spatial coordinates and time of application of the impulsive

input. Clearly, the mathematical form of the Green's function depends on both

the observation variables and the input parameters. The inclusion of the

input parameters in the argument of the Green's function serves as a reminder

of this functional dependence.

In this chapter, our focus is only on space- and time-invariant linear

systems. Therefore, by noting the form of the particular f in equation (3-45),

we can employ equation (3-44) to obtain

IL,t g(- (o,t - to)) = 6( - 0 )6(t - to ) (3-47)

By equation (3-47), it is clear that, for space- and time-invariant linear

systems, the Green's function has the mathematical form

9( ,t;Xto) - - 0,t - to) (3-48)

and thereby depends only on the difference between the variables of

observation and the parameters of excitation.

By use of the sampling property of the Dirac delta function (see

equation (2-31)), we may express any system input, f(X,t), as

f(it) J f(1 0 to)6("O- O)6(t - t) d 0 dt0 , (3-49)

where d 0 denotes dxo1dxo2dx03. It is easily shown, from equations (3-39).

(3-47), and (3-49), that the response of a space- and time-invariant linear
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'-ste m n arbitraryinput, f(.,t), is governed by

lLf,t f(xotto)g(x - xo't - t0 ) dx0 dt}

= J of((oto)6(X - xO)a(t - to) dxo dt0  f(3,t) . (3-50)

It therefore follows, by the definition of equation (3-39), that the output,

p(,t), of a space- and time-invariant linear system to any input, f(,t), is

given by

p(it) = ff( 0o,to)g(' - 10,t - to) do0 dt0  (3-51)

By employing the change of variables of equation (3-42), we may write

equation (3-51) in the equivalent form

p(',t) Jif(X - Jt - ,)g(',,) dtdv . (3-52)

Equations (3-51) and (3-52) show that, by knowledge of the Green's function of

a space- and time-invariant linear system, the output of the system resulting

from any input can, in principle, be obtained. The caveat "in principleO is

stated because, in some cases, the integrals cannot be evaluated in closed

form. However, these integral forms pose no problem for characterization of

the output in the wavevector-frequency domain.

Up to this point, we have not addressed the question of the initial

conditions used to uniquely define the Green's function. The linear acoustic

systems treated in this book are causal systems. A causal system is one that

is at rest until acted upon by an external input. Thus, the output of a

causal system depends only on inputs that existed in past times; the system
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does not respond in anticipation of future inputs. Therefore, for a causal

system, it follows that

9(x,tXo,to= 0 , t < to

and (3-53)

In
at 0  t < to for all n
atn

Equation (3-53) defines the initial conditions for the causal Green's function.

For causal space- and time-invariant linear systems, it follows from

equation (3-53) that

(10-o4, tt o) = 0, t <t o ,

or (3-54)

Therefore, for causal systems, the infinite upper limit of the temporal

integral In equation (3-51) can be replaced by t, and the negative infinite

lower limit on the temporal integral in equation (3-52) can be replaced by

zero. Many texts and papers use these alternative limits in expressing system

outputs in terms of-Green's functions. However, in this text, we will

continue to use infinite temporal limits and rely on those temporal properties

of the causal Green's functions i-adicated by equation (3-54) to effectively

limit the range of temporal integration.

It should be emphasized that, for the causal systems treated in this text,

equations (3-51) and (3-52) describe the output of a system that is at.rest

(i.e., has zero output) until an external input is applied.

3.4.3 The Wavevector-Frequencv.Response

The wavevector-frequency transform of the output of the space- and

tiwe-invariant linear system can be related to the wavevector-frequency
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transform of the input field by use of equation (3-52). That i ;, by writing

p(',t) = (21)-4 JP(tw)exp{(t. + (t)} dk do (3-55)

--00

and

00
f('Xt) = (2v) - 4  t) dk dca (3-56)

-CcO

we can rewrite equation (3-52) as

0

(20)"4 J P( ) - F(ru)G(k,w) exp{i(1- + ut)) d; dw = 0 , (3-5)

where

t~ep{i(1j"+ wa)} dt dy -8

Inasmch s equation (3-47) :s valid for all space and time, it follows that

- ~~P(k,w) %'k w~,,) 3.51

This simple- linear al9eb'alc relatiun between the'wavevectqr-frequency

transforis of t.he. input and output is in sharp contrast to the

four-dimenstoaal, co-avolution required (in equation (3-52)) to specify the

space-time output. -tndeed,. it is Interesting to note, by inverse ourietr

transfowtaation of equation (3-59) and use of equatioo (3-52)4 that -

(. -. ( Jf1(F( x + ot)1 de dw

J=i f ,t - v)g(,v) da , 6 (40)
-0
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This result is the four-dimensional extension of the convolution theorem

eXpressed by equation (2-54).

The wavevector-frequency transform of the Green's function, G(k,w), can be

shown to have a simple physical interpretation. Consider the response of a

space- and time-invariant linear system to the input

f(Lt) = exp{i(kOi 0 +oot)} (3-61)

over all 7 and t, where and ( are constants. Substltution of

equationl-3-61) into equation-(3-52) yields, by use of equation (3-58),

•.. p(xt) =G t~oexp~i( Ox + wot).-  ( 342)

By equations (3-61) and (3-62), G(t,) is the ratio of the space-time output

field of the system to-the input field when the input is a complex.,harmonic

plane wave of the form exp(i(,j4 At)). For that reason, G(k,w) is called

the wavevector-frequeacy response of the system.

. toustcs6,7,6

Sae texts on a employ the concept of mechanical and

acoustic i pedance. These im pedances" based on a force-voltage analogy

between acoustic and. electrical systems, relate the.force or pressure (az

m apoprtate) input to a system to the consequent velocity output Of the

system under conditions of havrionlc oxcitatlon. Many of the papers and

'rstports dealtig with the application of wavevvctor-frequency avnalysh3 use -an

impedance to retate the .wavevector-freqenc. transfov of .the forc oi o

ptessure to that of the velni.ty. Consider, for exawpke, a spaCe- and

tie-'invariant linear systui i .whic th ih4,t is a ressure fild, p(.t),
and the output is the velocity ftelId, v(t7,t). - The acoustic U dan e, is

AMI nod fas

Z, (- (343)

-where P(tt4) and V ) are the retspectrv aevtto.-freqenc txansfor-s of

pt) and v(*,t). Simllarly. if the systom Input is a fore fieid. say-

f.l(,t). and the output is a -velocity field, the (tchaniral impe a o is
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defined by

( =F(k /V(,) , (3-64)

where F(,w,) is the wavevector transform of f(i,t).

By comparing the forms of equations (3-63) and (3-64) to that of equation

(3-59), it is obvious that the acoustic and mechanical impedances are simply

the reciprocals of the wavevector-frequency response in these specialized

applications. It follows then,.by arguments similar to those employed in

equations (3-61) and (3-62), that the acoustic and mechanical impedances are

simply the ratio of the space-time pressure or force field, as appropriate,.to

the resultant velocity field whea the pressure or force field is a single

complex harmonic plane wave of the form expQ(tox + wt)J for all R and t.

By the above arguments, the wavevector-frequency description (i.e.,

transform) of the output of a space- and time-invariant linear system is

easily achieved, given the wavevector-frequency response of the system and the

wavevector-frequeiwy description of the forcing field. Alternatively, if one

knows (by observation or measurement) the wavevector-frequency transform of

the output and the wavevector-frequency response of the system, the

wavevector-frequency Oaracteristics of the Input field can be deduced.

. Finally, by tnowledgelof the wavevector-frequenty transforms of the input and

output fields, the wavevector-frequenry response of the systen can be deduced.

To Illustrate (I) 'the mathematical techniques for obtaining the

waevevctor-frequency response and (2) the interpretative .dvantages of the
wavevector-frequency description ot systems, we present the following

illustrative examlpes of the forced response of space- and time-Invariant

linear systems.

44 The Forced VIbratiqt1 of a UniforM Inf iite. Strinq

• Consider the displacement,'w(x,t), of a uniform, infinitely long string
: - .re uing from a force per unit length, f(x,t), applied to the string. The

wathoaatical model of this system is given by

3-28



T '2"' " w  -f(x,t) (3-65)ax2  at2

where it will be recalled that T and c are the respective (constant) tension

and mass per unit length of the string. In equation (3-65), f(x,t) is

considered positive when applied in the direction of positive w(x,t).

The Green's function for the uniform, infinite string is the solution

to equition (3-65) when f(x,t) is replaced by 6(x - x0)6(t - to). As

equation (3-65) applies over all space and time, we define t = x - x0 and

= t - t0 and then write the equation for the Green's function, g(g,T), as

2 2

22

23T2 c 2  (3-66)

where it will be recalled that cs2  Tic.

There are a variety of methods for obtaining the solution to equation (3-66).

However, because our immediate goal is the determination of the wavenumber-

frequency transform, G(k,w), of the causal Green's function, we will use Fourier

transform techniques to solve this equation.

To obtain the particular 5olution, denoted by 9p, to equation (3-66),

we write

= (20-2 if exp0(kt + wc)} dk.d . (3-67)

Then, by using equations (2-38) and (3-67), equation (3-66) can be written in

the form

(2wcs) -2 jf{[w2 -.(kcS) 2] Gp(k,) + l/c)exp(i(kk + ot)) dk do- 0

(3-68)
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As equation (3-68) holds for all and rit follows that the wavenumber-
frequency transform of the particular solution is

G p (kO) = 2 -1 2 (3-69)
CC - (kc S) I

The wavenumber-frequency transform of the homogeneous solution to
equation (3-66), denoted by Gh (k~w), is precisely that developed for the
free vibration of the string and given by equation (3-8). That is,

Gh(w)= 2wfA(k)a(w - kcs) + B(k)6(ca + kcs)) . (3-70)

The wavenumber-frequency transform of the Green's function for the infinite
string is the sum of the particular and homogeneous solutions, where the
functions A(k) and B(k) are determined by the initial conditions.

The initial condition for the desired causal Green's function is
0 for < <0 for all . If we define

qgk0 ~ x(-it t(7)

it follows that the initial condition translates to G(k,'T) 0 for < 0
for all k. 'Fromi equations (3-69) and (3-70)t G(k,v) can be obtained by the
inverse Fourier. transformItion

(2w) .- (2f#)(k.w) + Gh(kSow))exp~iw,)- dca (3-72)

Let us coasider':the inverse troosf onts of -and.'h separately.

-.8y a partial f-raction expeAnsiol -of equatiow (3-69) and u-se of equation,
(3-71a). the. partcular poior, G (k~t of =G(k.,) n&y -W written
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p = 4vckc s I c% w - kc ) exp{,l do . (3-73)

However,

fexpLIoti d.= exp{-iBr} JxA- ci d+  (3-4)

-Co -to

and Papoulls 9 shows that

(2w)J-  f w do sgn(t) . (3-75)

The generalized function sgn(t) in equation (3-75) is defined by

sgn(r) j = 2U(t) - 1 ( (3-76)

where U(t) is the Heaviside function defined in equation (2-32).

Dy equations (3-73), (3-74), and (3-75), it is straightforward to show that

sln(kc s
sp(k n() kc(

Further,. by equations (3-10) and (3-72), it can be shown that

%(k.) * A(klexpl{kcs + 8(k)exp{-ikcsi) (3-78)

Inasmuch as p(,t) + ) (k,v) and causality requires that

G(k.t) - 0 for v < 0 for all k, It follows, by equations (3-77) and

(3-78). that

A(k) * -8(k) l/(41ckc5) , (3-79)
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'and thus, by, use-- of equations (3-76), (3-77), (3-78), and (3-79),

sin(kcs .
/(k,r) =(Ic)U(t) kc (3-80)

Equation (3-80) is the wavenumber transform of the causal Green's function for

the infinite, uniform string.

Our interest is in the wavenumber-frequency rather than in the space-time

description of the Green's function. However, for the sake of completeness,

we note that the space-time description of the causal Green's function can be

obtained by the inverse Fourier transformation of equation (3-80). By writing

sin(kcs ) in equation (3-80) in its exponential form and by using equations

(3-75) and (3-76), one can show that

9(9,-t) = [/(4ccs)]IU(i)sgn( + Cs ) - sgn( - cs)) - [lI/(2ocs)]U(csT - I1)•

(3-81)

Figure 3-4 depicts the Green's function for the infinite string as a function

of t at a constant, but arbitrary, value of v. The Green's function is

usually interpreted as the output of the system resulting from an impulsive

force. This is not strictly true inasmuch as equation (3-52) shows that the

dimensions of the Green's function are not those of the output, or even the

output divided by the input. However, if I is defined as a constant of

magnitude one and dimensions of force-time, it can be argued (by equations

(3-52) and (3-66)) that lq(tv) is the displacement of the string resulting

from the impulsive force per unit length 16(x - xo)a(t - to). Thus, it

follows that g(t,%) Is proportional to the displacement resulting from the

impulsive excitation.

Note, by figure 3-4, that at r seconds after the applied impulse, g(ty)

Is constant at all spatial locations less than Ics vi from the point of

application of the impulsive force and is zero at all spatial locations

greater than c5fl. As time increases, the region of constant displacement

increases, linearly with time, symetrically about the point of excitation.
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Figure 3-4. The Spatial Dependence of the Green's Function
of an Infinite String for a Fixed

We now turn our attention to the wavenumber-frequency response of the

infinite string. The wavenumber-frequency response, it will be recalled, is

defined as the wavenumber-frequency transform of the causal Green's

function. By equations (3-69), (3-70), and (3-79), the wavenumber-frequency

response of the infinite, uniform string is given by

G(kM) 22 + It (6(w - kc s) - 6( +kC)} . (3-82)
GEL) - (kc S) Zickc

Figures 3-5(a) avtd (b) illustrate the real and imaginary parts, respectively,

of G(k,w) as a function of k at a fixed, but arbitrary, frequency, 0. Both

..real and itaginary parts of G(kw) are seen to be even functions of k. Note

that the real part of G(k,w) is the wavenumber-frequency transform of the

particular part of the Green's function, and the imaginary part is the

transform of the homogeneous part. Figure 3-5 shows that the wavenumber-

frequency response is well-behaved, except at those wavenumbers where

kj - jw/c I. Let us therefore interpret the wavenuber-frequency response

in this wavenuber range (i.e., Ik o I,/c s5 ) first.

Recall, by equation (3-62), that the wavenumber-frequency response can be

Interpreted as the ratio of w(xt) to f(x,t) when f( ,t) is a single complex

harmonic wave of the foro exp{i(kx + wt)) for all x and t. Note, by equation

(3-82) and figure 3-5, that when Ik I I w/cs , the imaginary-part of G(k,()

is zero. As the imaginary part corresponds to the homogeneous solution, the
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ReCO (k,wc))

Figure 3-5(a). R~eal Part of Wavenumber-Frequency Response

lm 10(k, A)

Figure 3-5(b). Imaginary Part of bWavenuiber-Frequeacy Response

Figure 3-5. Real anid Imaginary Parts of the Wavenumber-Frequency Response
of an Infinite String
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wavenumber-frequency response, over the range Iki o Iw/cs, can be

interpreted as the ratio of the particular solution of equation (3-65) to the

forcing field f(x,t) = expfi(kx + ot)). This particular solution corresponds

to the real part of the wavenumber-frequency response illustrated in

figure 3-5(a).

Consider now a fixed (but arbitrary) frequency of the harmonic wave

excitation. f(x,t) = exp{i(kx + wt)). The particular solution to equation

(3-65) is w(x,t) G p(k,w)exp(i(kx + ot)}, where Gp, the amplitude of

w(x,t), is the real part of G(k,a). By substituting this form of solution

into equation (3-65), one can see that when the magnitude of the wavenumber of

excitation is large compared with the free wavenumber (w/cs) of the string,

the applied force is primarily balanced by the tensile forces in the string

and the displacement, w(x,t), is in phase with the applied force. For a wave

in the string of the form exp{i(kt + wi)) and constant amplitude, tensile

forces increase with increasing wavenumber magnitude (i.e., decreasing

wavelength). Thus, in the wavenumber region IkI > Iw/cs, where tensile

forces dominate, the response of the string to the constant amplitude applied

force must decrease with increasing wavenumber magnitude. For wavenumbers

less, in magnitude, than the free wavenumber of the string, similar arguments

can be used to show that the applied force is primarily balanced by inertial

forces in the string. These inertial forces are independent of wavenumber and

act 180 degrees out of phase with both the tensile forces and the local

displacement. Thus, in the wavenumber range IkI < Io/%sl where inertial

forces dominate, the local displacement is nearly constant and out of phase

with the applied force.

When the magnitude of the wavenumber of the applied force is in the

neighborhood of, but not at, the free wavenumber of the string, the tensile

and inertial forces in the string nearly cancel each other, and the

displacement becomes very large. The relative phase between the displacement

and the applied force in this wavenumber region is determined by the relative

dominance of the tensile and inertial forces.

From the above discussion, the real part of the wavenumber-frequency

response defines the amplitude and relative phase of the displacement field
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resulting from the unit amplitude harmonic force, exp{i(kx + tt)), at all

wavenumbers and frequencies of the applied force except those characterized by
k = wc s.

At the wavenumber-frequency combinations characterized by k = /cs,
equation (3-82) and figure 3-5 show the real part of G(k,w) to be undefined

and the imaginary part to be a pair of weighted Dirac delta functions. The

imaginary part, introduced by the wavenumber-frequency transform of the

homogeneous part of the Green's function, characterizes free waves in the

string. Recall that these free waves were necessary in order that the Green's

function be causal. Regardless of the value of the real part of G(k,J) at

k = w/c$, the delta functions in the imaginary part ensure an infinite

displacement of the string when the steady state harmonic wave excitation

coincides with a free wave: that is, f(x,t) = exp{ik(x t cst)) for any k.

While this result is consistent with physical intuition, it is not possible,

by this example alone, to physically interpret the separate roles of the real

and imaginary parts of the wavenumber-frequency response for harmonic

excitations coincident with free waves in the string.

With the above background, let us now examine the wavenumber-frequency

description (i.e., transform), W(k,w), of the space-time displacement field of

the string, w(x,t), resulting from an arbitrary force per unit length, f(xt),

applied to the string. By equations (3-59) and (3-82), this wavenumber-

frequency transform is given by

W(k(,.) 2 F '. {6(+ - kC5) - 6(w + kcs)) , (3-83)
CEW - W A 21ckckc

where F(kc) is the wavenumber-frequency transform of f(x,t).

Qecall that W(k,w) defines the complex amplitudes of the various harmonic

waves of the form exp{i(kx + wt)J comprising the displacement field as a

function of the wavenumber and frequency characterizing each wave. Equation
(3-83) clearly shows that the displacement field is comprised of only those

harmonic wave components present in the forcing field.
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At all wavenumber-frequency combinations, except those that characterize

free waves in the string (i.e., Iki = io/csI), the amplitudes and initial
phases of the wavenumber-frequency components of the displacement field are

defined by the product of the wavenumber-frequency transform of the forcing

function and the real part of the wavenumber-frequency response of the

string. This product is equivalent to a filtering of the forcing function, in

both wavenumber and frequency, by the real part of the wavenumber-frequency

response. Figure 3-6(a) illustrates how the magnitudes of the various

wavenumber components of the forcing function are filtered, at some fixed

frequency, by the magnitude of the real part of the wavenumber-frequency

response of the string. The product of these magnitudes is the magnitude of

the complex amplitude of the harmonic wave components of the displacement

field at the corresponding wavenumber and frequency. Figure 3-6(a) clearly

shows that, at any frequency, the magnitude of W(k,w) will be relatively large

at (1) those wavenumbers where F(k,w) is large and (2) in the neighborhood of

tcc s, if F(k,w) is nonzero in that wavenumber range.

Figure 3-6(b) illustrates the phase shift applied to the various

wavenumber components of the forcing function (at the same fixed frequency) by

the wavenumber-frequency response of the string. The initial phase of W(k.,)

at each wavenumber is determined by applying this phase shift to the phase of

M(k,) at the corresponding wavenumber. Note that the phase at k - t/c s is

undefined.

It will be recalled that the real part of the wavenumber-frequency

response of the string is undefined at all wavenumber-frequency combinations

defined by JkJ - jw/cs. It follows therefore, by equation (3-59), that

W(kw) is undefined at any wavenumber and frequency where Iki - k/Cs I and

F(k,w) is nonzero.

The above example illustrates a technique for obtaining the wavenumber-

frequency response by treating the forced vWration of an infinite. uniform

string. This example further shows that, given the wavenumber-frequency

transform of the applied force and the wavenumber-frequency response of the

string, a description of the harmonic waves comprising the displacement field

of the string can be determined and interpreted at all wavenumbers and
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Figure 3-6(a). Filtering of the Magnitude of the Forcing Field
by the Magnitude of the Real Part of the Wavenutuber-Frequency Response
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Figure 3-6(b). Phase of W(k.w) Relative to F(k,w)

Figure 3-6. Filtering of the Forcing Field by the
Wavenumber-Prequency Response of the Stringq
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frequencies, except those coincident with free waves in the string, where the

wavenumber-frequency response is undefined.

The reason that the wavenumber-frequency response is undefined at

Iki = f=/cs I is the absence of any loss mechanism in the mathematical model

of the string. As we will show in the next example, the inclusion of losses in

the mathematical model permits definition of the harmonic waves comprising the

displacement field at all wavenumoers and frequencies.

3.4.5 The Forced Vibration of a Damped, Infinite String

Consider the displacement of a damped, uniform, infinitely long string

resulting from a force per unit length, f(xt), applied to the string. The

damping force per unit length opposes the motion of the string and is

proportional to the local velocity. To ensure that this damping force is space

and time invariant, we assume this proportionality (denoted by r) to be

constant. The mathematical model of this system is given by

_~ a2w aw

T A
2-W  - rk.-f(xt) , (3-84)ax2  at2  at

where T and c are, respectively, the constant tension and mass per unit length

of the string.

The Green's function for the damped string is the solution to equation

(3-04) when f(xt) is replaced by 6(x - x0)6(t - t0 ). As equation (3-84)

applies over all space and time, we let t - x0 and t - tO and

write the equation for the Green's function as

2  cs2 32 ecs2 a* c s

2
where it will be recalled that cs - T/C.

As we did for the undamped string, we assume the particular solution,

op. of equation (3-85) can be written in the form
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= (2) -2 JGJp (k,w)exp(i(kg + w,)) dk dw (3-86)

-Go

Then, by use of equations (2-38) and (3-86) in equation (3-85), arguients

Identical to those used between equations (3-67) and (3-69) yield

-1

G (kcs2 - ir /i2] (3-87)

In anticipation of applying the initial conditions-for the causal Green's

function in the same form as we did for the undamped string, we wish to obtain

the wavenumber transform of the particular solutiol, p(kt) by the inverse

temporal Fourier transforation of equation (3-87). It is straightforward to

show, by partial fraction expansion of equation (3-81), that

00

zL. II ep(iv)- dw, xpi~L
pt 4wocd(k) J - Ir/(2) - wd(k) w - ir/(2&' + jd(k)

(3-80)

where

-dk 4(c')2 1r/.(2 cfl] (3-89)

By efereoce 10, it can be shown that

J ep(~r d~2wgiU)exp{(-ir(2c) + iokl(k) ]v (3-90)
W lrf(2a) + j ()

It follows, by equations (3-88) and (3-90), thati

sin{wd(k),t .

6 p(ki) w(li)U()eXp(-r~l(2c)} d(k) .
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Equation (3-91) is the wavenumber transformlof the particular solution to

equation (3-85).

To obtain the wavenumber transform of the homogeneous solution to

equation (3-85), we assume that the homogeneous portion of the Green's

function. can be written in the fom

00

t(Z11  JIh(k,1r)exp{ikt) dk (3-92)

-00

By substituting equation (3-92) into the homogeneous form of equation (3-85)

and by realizing that the resultant integral applies for all t, we obtain

the ordinary differential equation

d •
+-'-4 (+cY c 1  Odv2  c d-c

.The solution to equatici (3-93) is

Gh *,)• exP{-rt/(2c)J(A(k)exP[!c a(&)t3,] e(k)expti4d~khfl (3-94.)

where od(k) is giveo by equation (3-89).

As we argued for the undamped strin, the causality condition that

g( t) 0 for < c 0 at all t can be translated to the condition that

G(k,) 0 fort < 0 at all k. Therafore, for a causal system, we reiluire

that Gp(k.t) v &h(k,t) - 0 for ' < 0. By equations (3-91) and (3-94),

this condition can be satisfied only if A(k) 8(k) a0, fro m which it follows

that Gh(k,*) - 0 for all k.

Therefore,

sf{Wd(k)t)
Sp(h,t) =(l/)Uc)exp(-rl(2c)) ik) 3-41
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and

"(k) % (ks$ - -l (3-96)
P CEO 2 (kc) 2 - lr=c

Equation (3-86), which defines the wavenumber-frequency response for the

damped string, shows that the causal Green's function is completely defined

by the particular solution to equation (3-85). 'This result is in contrast to

the Green's function of the undamped string, where the inclusion of the
homogeneous solution was necessary to satisfy causality.

Before examining the properties of the wavenumber-frequency response, it

would be interesting- to determine the causal Green's function of the damped,

infinite string for coVarison with the undamped case. By use of equation

(3-89), it is evident that i(k, ), in equation (3-95), is an even function

of k. By use of reference 11 and the properties of the Heaviside function,

one can Porw the inverse Fourier-transform of equation (3-95) to obtain

where I is the zero-th order, mnodifiled Bessel function of the first kind.
Comparison of Whis result with the causal Gro's function of the undamped

string, given by equation (32-Bl), shows that the damping introduces a temporal

decay (va the negative exonential) and a spatial decay (via the w~dif led
Bessel function) into the causal Green s function.*

-Figure 3-7 illustrates the spataW ds-pcndence of tnie causal Green's

function of the infinite, daped string at a constant time, t. after

app.1cattion of'the impulsive loading. Bycomparisbn with figure 3-4, the

obvious difference-between the Green's functions of thedamped and undamped

strings is that the Gr'een's function of the damped string decreases with

increasing magnitude of t in the range -I'< C whereas that of the

undamped string is Constant in this range.. Another difference, however, is

that the amlitude of the Green's function for the undamped string is

constant, whereas that for the damped string decreases with increasiog ',

3-4 ?



g(~ T) r 710( LT) e c
2ecs

- C

Figure 3-7. Spatial Dependence of the Causal Green's Function
for a Damped, Infinite String

Let us now examine the characteristics of the wavenumber-frequency

response. By a rearrangement of equation (3-96), we can separate G(kW) for

the damped string into its real and imaginary parts as follows:

_{[Ci) - (kCs)2] + [r=/=]} (-8
G(k,w) = -{W2-(cS 2]+.r/] (3-98)C([' 2- (kcS) 2]2 + [ro/c]2

Figures 3-8(a) and (b) illustrate the wavenumber dependence of the real and

imaginary parts of the wavenumber-frequency response of the damped string at a

fixed frequency, w, for a (constant) damping coefficient, r, such that the

ratio r/(cw) - 0.1.

Comparison of figure 3-8(a) with figure 3-5(a) shows the real parts of the

wavenumber-frequency responses of the damped and undamped strings to be

similar, except in the neighborhood of k tw/c s, where the response of the

damped string remains defined, whereas that of the undamped string is

undefined. In these regions of similarity, damping forces are insirnificant,

so the physical interpretation of the wavenumber-frequency response of the

undamped string can be shown to apply to the damped string. At k = W/cso

figure 3-8(a) shows the real part of G(k,w) to be zero. Recall, from the

disrussion of the undamped string, that th tensile and inertial forces in the

strino are in balance at this wavwnumber. Thus, in the damped string, the

applied force at this wavenumber must be balanced by the forces due to
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Figure 3-8(a). Real Part of Wavenwnber-Frequency Response
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Figure 3-8(b). Imaginary Part of Wavenumber-Frequency Response

Figure 3-8. Real and Imaginary Parts of Wavenumber-Frequency Response
of a Damped, infinite String
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damping. By inspection of equation (3-98), these damping forces are reflected

in the imaginary part of G(k,w).

Recall'that the wavenui&ber-frequency response can be interpreted as the

ratio of w(x,t) to f(xt) when f(x,t) = exp{i(kx += t)} for all x and t. By

substitution of a solution of the form w(x,t) = 6(kw)exp{i(kx + (t)} into

equation (3-84), it is easily established that irw is the ratio of the damping

force per unit length to the displacement field, w(x,t). Recall, from the

example of the undamped string, that cw2 and ck2 c 2 are the ratios of

the inertial and tensile forces per unit length, respectively, to the

displacement field. For the fixed frequency and damping coefficient selected

for this example, the ratio of the inertial force to the damping force is

10:1. With this background, the behavior of the imaginary part of G(k,w),

illustrated in figure 3-8(b), can easily be understood.

In the wavenumber ranges tkl > Iw/csl, where tensile forces dominate
both inertial and damping forces, equations (3-98) and figure 3-8(b) show the

imaginary part of G(kw) to be small and negative. In the wavenumber range

Iki < Iw/cS1, inertial forces dominate tensile forces. However, as stated

above, the inertial forces are about 10 times greater than the damping forces,

so, according to equation (3-98), the imaginary part of G(k,w) is nearly

constant and about 10 times smaller than the real part of G(k,w) in this

wavenumber range. At wavenumbers in the neighborhood of bw/c5 1. where the

tensile and inertial forces nearly balance, the imaginary part of G(k,W) is

dictated by the ratio of the displacement to the damping force. As the

inertial and tensile forces come into balance, the applied force must be

balanced by the damping force. For the typically small damping coefficient

used in this example, the displacement must be large to produce a force equal

to the applied force. Hence, the ratio of the displacement to the damping

force per unit length is large in the neighborhood of Iki = Ic/csj. This

behavior is reflected in the imaginary part of G(k,w) depicted in figure 3-8(b).

As a final observation, note that at Ikl = IW/cs,

G(IwIcsi,w) = Im[G(Ic/cI,w)] = -il(L) , (3-99)
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where Im[] denotes the imaginary part. Thus, as the damping (dictated by r)

decreases, the imaginary part of G(k,w) tends to infinity at Iki = 10/csi.

Further, as the damping coefficient decreases, equation (3-98) can be used to

show that the width, in wavenumber, of the negative peaks at k = tw/c5 in

the imaginary part of G(k,o) decreases, while the amplitudes of the positive

and negative peaks on either side of k = iw/cs in the real part of G(k,o)

increase. Thus, in the limit, as r tends to zero, the real and imaginary

parts of G(k,w) tend toward those shown for the undamped string. Further, by

this limiting process, the behavior of the real part of G(k,w) remains

interpretable as the damping tends to zero. The lesson here is that undamped

systems are best understood and interpreted when they are treated as limiting

cases of damped systems.

For the general case of the forced, infinite, damped string, the magnitude

and initial phase of each of the various harmonic waves comprising the

space-time displacement field can be obtained as a function of the wavenumber

and frequency characterizing each wave. We first write

W(k,w) = IW(k,w)l exp[ia(k,w)] ,

F(k,w) = IF(k,w)l exp[Ji(k,w)] , (3-100)

G(k,w) = IG(k,w)l exp[ia(k,w)] ,

where F(k,w) is the wavenumber-frequency transform of the applied forcing

field per unit length, f(x,t); *(k,w) and O(kw) are the initial phases of the

harmonic waves comprising w(x,t) and f(xt), respectively, as a function of

the wavenumber and frequency characterizing each wave; and o(k,w) is the

argument of G(k,w). By use of equations (3-59) and (3-100), it follows that

the magnitude of W(k,w) is equal to the magnitude of F(k,w) filtered by the

magnitude of G(k,w). That is,

IW(k.)l - IF(k,w)G(k,w)j - IF(k,w)l IG(k,w)l • (3-101)

It also follows that the initial phase, a(kw), of each complex hamonic wave

comprising w(x,t) is equal to the initial phase, O(k,w), of the corresponding

wave component of f(x,t) shifted by the argument of ((k,w). That is,
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G(k,0) = L3(k, ) + .(k,c) . (3-102)

Figures 3-9(a) and (b) depict the filtering of the magnitude of F(k,w) by

the magnitude of G(k,w) and the phase shift, o(k,w), respectively, for the

infinite, damped string. By equation (3-101), the magnitude of W(k,W) will be

large when the product of the magnitudes of F(k,w) and G(k,w) are large. From

figure 3-9(a), the magnitude of G(k,w) has relative maxima at k = tw/cs
Thus, unless IF(k,w)J is small in this region, IW(k,w)I will exhibit relative

maxima at wavenumbers characterizing free waves in the string. Other relative

maxima of IW(k,w)i can occur, at any frequency, in the neighborhood of those

wavenumbers characterizing large relative contributions to IF(k,W)j. Through

this filtering process, the relative amplitudes of the various harmonic waves

comprising the displacement field are determined as a function of the

wavenumber and frequency characterizing each wave.

Figure 3-9(b) shows that the phase shift applied to each wavenumber

component of the forcing field, at a fixed frequency, by the wavenumber-

frequency response of the string is (1) small for Iki large in comparison

to IW/csl, (2) -w/2 at Iki = J/csj, and (3) approximately -v for

IkI < Ic/cs i.

As a final coment, it should be noted that the magnitude and phase of

G(k,w) for the infinite, damped string, shown in figure 3-9, do not exhibit

the discontinuities or undefined response in the vicinity of the free

wavenumber found (see figure 3-6) in the magnitude and phase of 6(k,W) for the

case of the undamped string. Thus, if one is interested in the response of a

system near such resonances, it is clear that some estimate of the damping or

loss must be included in the mathematical model of the system.

3.4.6 The Wavevector-Freguencv Response of a Damped, Infinite Plate

This final example is included to demonstrate that the mathematical

techniques employed to obtain the Green's function (or its informational

equivalent, the wavenumber-frequency response) for the systems illustrated

above, which depend on only one spatial variable, can be applied to systems

requiring two or three independent spatial variables in their mathematical
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Figure 3-9. Filtering and Phase Shift of the Forcing Field
by the Wavenumber-Frequency Response of a Damped, Infinite String
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model. The specific problem treated here is the wavevector-frequency response

of a uniform, infinite, damped plate.

A mathematical model for the forced vibrations of a damped plate is given

by Davies.12 That model, in the notation adopted in section 3.3.2, states

that

Dy4  w( ,t) a wlx,t)

DV4w(,t) + r - = f(xt) (3-103)
&t at2

where, for this space- and time-invariant system, the damping coefficient, r,

is assumed constant and f(2,t) is the force per unit area applied to the plate.

The mathematical model for the Green's function is obtained by replacing

the applied force per unit area in equation (3-103) by 6(x - %)6(t - to),

where 6(x - N) = 6(x1 - xo1)6(x2 - x02). However, because the infinite

plate system is space- and time-invariant, we can define . = E - ?

Ex1 - Xo0,x 2 - x021 and = t - to and then write the equation governing the

Green's function as

OV g( 4,) + r + v - = A()6() . (3-104)

As we did in the case of the forced vibration of the string, we assume a

particular solution, 9p(I,%), exists of the form

p( ,,) = (2w)-3 JfGp(kw)exp{i(k.j + vr)) dk dw . (3-105)

By equations (3-104), (3-105), and (2-38) and arguments similar to those

employed between equations (3-67) and (3-69), it can be shown that

G p(k,) 1 (3-106)
Dk _ W + ir
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-where k - k + k22.

We argue here, as we did In the case of the vibration of the string, that

the causality condition that g(j,,v) = 0 for v < 0 at all . translates,

under wavevector transformation, to G(kr) = 0 for < 0 at all

wavevectors, k.

By a partial fraction expansion of equation (3-106), the particular part

of (kr) can be written as

1 exp( r _dr ....... expr(i w) dt..
= 4*w d(k) w- - ir/(2) + wd(k)J= f ir/(2p) wd(k)

L 00 0
(3-107)

where

wd(k) = - 2 (3-108)

Comparison of equation (3-107) with equation (3-00) reveals that the

particular part of (k,v) for the infinite, damped plate has the same

mathematical form as the particular part of 9(k,y) for the infinite, damped

string. It therefore follows, by the arguments of equations (3-90) and

(3-91), that

(L~i - l/uj~t~xp[-v/(V~j in~ d ()Y)(3-109)P {d(k)

The homogeneous solution, gh' to equation (3-104) is assumed to exist in

the form

-oo
9h(,L'T) - (20)2 h h(k-')exp~ik-'QL dk (3-110)

By substituting equation (3-110) into the homogeneous form of equation (3-104)

and by realizing that the resultant integral applies for all 1, we obtain

the ordinary differential equation
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2 +oDk+ . (3-111)
drc dr

The solution to equation (3-111) is easily shown to be

Gh(.,T) - exp(-rv/(2p)}(A(k)expicd(k)-r] + B(k)exp[-1-d(k)])

(3-112)

where wd(k) is given by equation (3-108).

By the arguments given previously, the functions A(j) and B(k) are

selected to satisfy causality; that is

-UL.-) - (T) + Y&O U 0 < 0 (3-113)

for all j. By equations (3-109) and (3-112), it is evident that equation

(3-113) can be satisfied only if A(k) w S(k) 0. It follows that

hk. ) - 0 aad therefore

G(w)- Gp(W) D 4  2 (3-114)- Ok _vw + irw

A significant feature of the wavevector-frequency response of the

infinite, damped plate, described by equation (3-114), is that it depends only

on the magnitude of the wavevector (k) and not on its direction. Inasmuch as

G(k,w) is the ratio of the space-time displacement field, w(x.t), to the

forcing field, f(&,t), when the forcing field is given by exp(i(k.a + wt)) for

all I and t, it follows that w(&ot) - G(k,,)exp(i(k.-j + wt)}. Thus, G(tw)

can also be interpreted as the complex amplitude of the wave of displacement

of the plate that corresponds, in wavevector and frequency, to the wave that

excites the plate in motion. By the arguments of chapter 2, knowledge of the

frequency and wavevector magnitude determines the wavelength and period of a

(complex) plane harmonic wave. The direction of propagation is determined by

the direction of the wavevector and the sign of the frequency. Therefore, the

dependence of G(k,w) on only the magnitude of the wavevector can be
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interpreted as a reflection of the spatial invariance, or isotropy, of the

plate. That is, for a unit amplitude, harmonic wave excitation of the plate,

the amplitude of the resultant displacement of the plate depends only on the

wavelength and frequency of the excitation and is independent of the direction

of propagation of the harmonic wave excitation.

Figures 3-10(a) and (b) illustrate the magnitude and phase of the

wavevector-frequency response of the damped, infinite plate as a function of

wavevector magnitude, k, at an arbitrary, fixed, positive frequency. At this

frequency, the (constant) damping coefficient was taken to be r - 0.1 w.

The behavior of the magnitude and phase of G(k,w) with k, depicted in

figure 3-10, is easily understood by recalling that for the harmonic wave

excitation expl(k.q + wt)), the displacement field is giveh by w(x,t) =

G(ku)expi(j.x + wt)}. Substitution of these displacement and excitation

fields into equation (3-103) reveals that for k < (.) 4p.

the excitation is primarily balanced by the inertial forces in the plate and
2

G(Kw) w(,t)/f(,t) v /(-P ). Thus, in this wavenimbo. range, the

magnitude of G is nearly constant with k, and the displaceme,t is nearly

180 degrees out of phase with the applied force.

In the wavenumber range k > kp (w), the applied force is primarily

balanced by the forces associated with the bending stiffness of the plate,

given by Ok 4w(A,t). Thus, in this wavenumber range. it follows that

G(kw) - w(x,t)/f(y,t) ru 1/(Ok4 ). Here, therefore, the magnitude of G

decreases with increasing wavevector magnitude as k - , and, as depicted in

figure 3-10(b), the displacement is nearly in phase with the applied force.

in the neighborhood of I~J k p(w), the forces associated with bending

stiffness and inertia nearly cancel each other, and the applied forces are

primarily balanced by the damping force, given by irww( ,t). The damping

coefficient, r, was chosen such that, at the fixed frequency of this example,

the damping force was one-tenth of the inertial force. Thus, at 1 J = k (p),

the magnitude of G is about 10 times greater than it is in the wavenumber range
IRI < kp (), where inertial forces dominate. The initial phase of w(x,t), at

IL-J kp (), is seen to lag that of the harmonic excitation by 90 degreev
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Figure 3-10(a). Magnitude of Wavevector-Frequenry Response

Figure 3-10(b). Phase of Wavevector-Frequency Response

Figure 3-10. Nagnitude and Phase of the Wavevector-Frequency Response
of a Damped, Infinite Plate
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In figure 3-10, we plotted the magnitude and phase of the wavevector-

frequency response as a function of k (i.e., the magnitude of the wavevector,

k) at an arbitrary frequency for purposes of oraphical convenience. However,

if one wished to use the relation W(k,w) = F(,w)G(k,w) to determine W(,w)

for an arbitrary excitation of the plate, F(k,w), it must be realized that

both the magnitude and phase of G(k,w) are circularly symmetric functions in

the (k,k2) plane. To illustrate this circular pattern of the wavevector-

frequency response in the k plane, figure 3-11 shows the locus of the maximum

magnitude of G(k,w) for the damped, infinite plate in the k plane at an

arbitrary, fixed frequency. As shown in figure 3-10(a) and illustrated in

figure 3-11, the magnitude of G(k,w) has a maximum at those wavevectors having

magnitudes equal to the free wavenumber of the plate at the frequency of

interest: that is, at k kI+ 2 2= kp2 ) where kp(Q) UU44 1.

k2w

.7p.

Figure 3-11. Locus of the Maximum Magnitude cf G(t.,)

for a Camped, Infinite Plate
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3.4.7 Sumgmarv of the Forced Response of Space- and Time-Invariant

Linear Systems

The approach to the forced response of linear systems taken in this text

is that of linear superposition by use of the Green's function. The Green's

function is defined as the response of the linear system, in space and time,

to an impulsive loading applied at any arbitrary location in space and at any

arbitrary time. Inasmuch as (1) any iiput can be expressed as a weighted

-integral (suimation) of impulses (i.e., Dirac delta functions) in space and

"time and (2) any summation of solutions to the linear differential equation

describing a system also constitutes a solution to that equation, it then

follows that the response of the system to an arbitrary input can be expressed

as an integral of the Green's function weighted by the space-tim6 excitation

field.

For space- and time-invariant systems, the coefficients of the linear

'differential equations governing the system are constants. As a consequence,

the Green's functions of linear space- and time-invariant systems depend only

on the spatial separation vector, t, and the temporal difference, , between

the coordinates of observation, (X,t), and excitation, ( - Z,t -

As a result, the relation between the output field, p(Tt). the input field,

f(0,t), and the Gretn's function, g(t,v), is the convolution given by

equation (3-52). This useful result states that, given the Green's function

of a space- and tfte-invariant linear system, the output field of that system

resulting from any input field can, in principle, be predicted.

By a Fourier transformation of the Green's function solution on all space

and time variables, a simple algebraic expression is obtained that relates the

wavevector-frequency transform of the output field to the produc+ of the

transforms of the input field and the Green's function. This relation is

given by equation (3-59). By this equation, the amplitudes and initial phases

of each plane harmonic wave component of the output field can be obtained.

given the uavevector-frequency transform of the Green's function, G(kw), and

the amplitudes and initial phases of the corresponding wave components of the

input. The wavevector-.frequency transform of the Green's function is called

the wavenumber-frequency response of the system because it can be shown to be
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equal to the ratio of the space-time output field to the space-time input

field when that input field is the single complex harmonic plane wave

exp{i(-X + tt)) for all and t.

Systems of practical interest in acoustics are causal systems. That is,

they respond only to past inputs and do not respond in anticipation of future

inputs. Therefore, in deriving the Greens' function or its informational

equivalent, the wavevector-frequency response, it is important to ensure that

the Green's function satisfies conditions of causality specified by

equation (3-53).

To illustrate the mathematical techniques for obtaining causal Green's

functions or wavevector-frequency responses and to demonstrate how the

wavevector-frequency des:ription of foreed space- and time-invariant systems

can be physically interpreted. illustrative examples are presented in

sections 3.4.4, 3.4.5, and 3.4.6.
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CHAPTER 4

SPACE-VARYING LINEAR SYSTEMS

4.1 INTRODUCTION

The spatially distributed, continuous time systems of linear acoustics are

mathematically modeled by partial differential equations of the form of

equation (3-31): that is, by

L.,t{p((,t)J - f((,t) . (4-1)
xt

Here f(xt) is the system input, p((,t) is the system output, and L(t } is
the partial differential operator defined (see equation (3-36)) by

3 L M N 1a 1  1 am Van

L;t{ I = I 4d' ln(a )~ ~)r
J=O 1=0 m=nO n=O (1/' 2

(4-2)

The space- and time-invariant linear systems treated in chapter 3 were

defined as systems having constant properties, or parameters, over all space

and time. In the mathematical model of acoustic systems specified by

equations (4-1) and (4-2), system parameters are reflected in the

coefficients, ajlmn(xt), of the partial differential operator, L.,t{}.

Thus, for space- and time-invariant linear systems, we required that

ajlmn(,t) = ajlmn = constant (4-3)

for all x and t. By defining iL-, t { } as that form of L,,t{ in which
the parameters ajlmn(xt) are constants over all space and time (that is,

J L N/ n

V-~i a1  a I- (4-4)
J=O 1=0 m=O n=O 2
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for all I and t), It follows that space- and time-invariant linear acoustic

systems can be mathematically modeled by

I-1,tjp(lt)l = f(Xt) (4-5)

for all x and t.

In this chapter, we explore the wavenumber-frequency analysis of

space-varying, but time-invariant, linear acoustic systems. Space-varying,

time-invariant systems are those in which the parameters of the system vary in

space, but not in time. As we argued above, the system parameters are

reflected in the general mathematical model of the linear acoustic system

(equations (4-1) and (4-2)) by the coefficients ajlmn(tt) contained in the

linear partial differential operator, L;,t{ }. Therefore, if the

coefficients ajlmn in equation (4-2) describe the variation of the system
parameters over.all'space and are constant in time (that is,

ajlmn(1,t) = bjlmn() (4-6)

for all x and t), we can define the space-varying, time-invariant linear

partial differential operator, itLt }, by

t m\/N

i=Ol=Om=On=O 1 a 2  a at n

for all space and time. If ItLtt{ } is substituted for L.,t{ inx X,t
equation (4-1), it follows that space-varying, tim@-invariant systems in

linear acoustics are mathematically modeled by

ItL7,t{P(,t)} = fx,t) (4-8)

for all I and t.

The mathematical form of equation (4-8) is an n-th order linear partial

differential equation with nonconstant coefficients. Finite (or closed) form

solutions cannot be obtained for most ordinary linear differential equations
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greater than first order with nonconstant coefficients.1  Therefore, our

exploration of space-varying, time-invariant acoustic systems cannot be

general. Rather, the primary emphasis in this chapter will be to obtain

wavevector-frequency descriptions of space-varying versions of some of the

physical systems treated in chapter 3. Comparison of the wavevector-frequency

descriptions of the outputs of space-varying and space-invariant versions of

the system will then be used to illustrate the effects of the spatial

variation. Another objective of this chapter is to develop and interpret

wavevector-frequency descriptions of certain space-varying fields that arise

in structural-acoustics.

Space-varying systems result from only two characteristics of the physical

system: (1) boundaries and (2) nonuniformities in the spatial properties

between elements of the system. Space-varying systems can therefore be

classified according to the source of the spatial variation. Bounded systems

are referred to as space limited, whereas unbounded systems are infinite.

Systems are termed spatially uniform or nonuniform, depending on the

respective absence or presence of spatial nonuniformities in properties over

the physical extent of the system. By use of these definitions, it follows

that space-varying systems can be classified into three categories:

(1) uniform, space limited, (2) nonuniform, space limited, and (3) nonuniform,

infinite. Uniform, infinite systems are, of course, space invariant.

Of the three categories of space-varying systems, the one most commonly

encountered, and best understood, in acoustic applications is the uniform,

space-limited system. Consequently, the primary focus in this chapter will be

on the wavevector-frequency characteristics of uniform, space-limited acoustic

systems.

As we did for space- and time-invariant systems, we will first present

some illustrative examples of free, space-varying systems and then explore the

forced response.

4.2 FREE RESPONSE OF SPACE-VARYING, TIME-INVARIANT SYSTEMS

Recall that free systems are systems free of externally imposed inputs,

characterized by f(*,t) in equation (4-8). Thus, free, space-varying.
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time-invariant acoustic systems are modeled by equations of the form

= 0 . (4-9)

Recall further, from the previous chapter, that free systems with losses

cannot be described in the wavevector-frequency domain. Therefore, the

illustrative examples presented below will be confined to lossless systems.

4.2.1 The Finite String With Fixed Ends

Consider the free vibration of a string of length L, fixed at x = 0 and

x = L such that no motion occurs at the ends. The tension, T, and mass per

unit length, c, are constant over the length of the string, 0 < x < L, and are

taken to be zero outside this interval. The equation governing the

displacement field of the string, w(x,t), can then be written as

a2w wIblx) T L--ca2w 4-0ax- -= o(4-10)
1 ax 2  at 2

for all x and t. The spatially varying coefficient, b(x), that modifies T and

£ is defined by

0 < x 4 L
b(x) a U(X) - U(x - L) t (4-11, otherwise,

where U(x) denotes the Heaviside function.

The requirement that the ends of the string be motionless translates into

the boundary conditions

w(O,t) m w(L,t) - 0 (4-12)

for all t. To complete the statement of the free vibration problem, we assume

(as we did in the case of the uniform, infinite string) that the initial

displacement and velocity fields of the string are given by

w(xO) Wo(x) (4-13)
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and

aw(x.) VO(X) (4-14)

Equation (4-10) is equivalent to the mathematical statement

a2w 1 a2w (

ax2  Cs2 at
2

for 0 < x < L and all t. Recall that cs2 = T/c. The space-limited nature of

this equation precludes a solution by the Fourier transform technique used for

the free vibration of the infinite string in chapter 3. That is, although we

may write the vibration field in the form

w(xt) - (2)1  JM(kt)exp(ikx) dk , (4-16)

substitution of this form into equation (4-15) yields

(2 1 + (kc S) 2 W(k,t) exp(ikx) dk 0 , (4-17)

which is valid only over the spatial range 0 < x < L. Thus, we cannot argue,

as we did for the case of the free, infinite string, that

2(~t (kcs)2 I(k~t) - 0 , (4-18)dt2

because equation (4-18) is a valid conclusion from equation (4-17) only when

equation (4-17) holds for all x.

Feom the argument presented above, it is evident that the wavenumber-
frequency description of the vibration field of the free, space-limited string

cannot be obtained by direct application of Fourier transforms to the partial

differential equation governing the motion of the string. However. the free
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vibration of the finite-length string, fixed at its ends, is a classic problem

in acoustics, and the space-time description of the displacement field for

this system is derived in most standard texts on acoustics. Our approach,

therefore, to obtaining a wavenumber-frequency description of the free

vibration of the finite, fixed-end string is simply to perform a double

Fourier transform of the classical solution for the space-time displacement

field.

The space-time displacement field of the free, finite string with fixed

ends is generally obtained (see reference 2, for example) by a separation of

variables approach. This approach leads to a description of the displacement

field, w(x,t), in terms of a complete set of orthogonal functions, called

normal modes, in the variable x. Associated with each normal mode is a

natural frequency. The details of this solution procedure for the space-time

field of the finite string are well documented (see references 2 and 3, for

example) and will not be further reviewed here.

From reference 3, the space-time displacement field of the finite string

that satisfies the fixed-end boundary conditions of equation (4-12) and the

arbitrary initial conditions specified by equations (4-13) and (4-14) is given

by

W(x't) > C~ cos(W t) + OD sin(ont)1x) (4-19

nul

for 0 < x < L and for all time. Here, the normal modes, denoted by Q (X)

and given by

an (x) - sin(nux/L) , (4-20)

form a complete set of orthogonal functions over the spatial interval

0 - x < L. The orthogonality condition is given by

L

m(X)%n(x) dx - (L/2)6n ,(4-21)

0
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where imn is the Kronecker delta. The modal natural frequencies, wn, are

given by

on = nc s/L . (4-22)

The modal coefficients, Cn and Dn, in equation (4-19) are determined by

the modal content of the initial displacement and velocity. That is,

L

Cn = (2/L) J wo(x)an(X) dx (4-23)

0

and

L

n 2/(nwc s ) J vo(x)an(x) dx . (4-24)

0

As is evident, by equation (4-19), the space-time displacement field of

the free, finite, fixed-end string is expressed as a weighted sum of natural

modes of vibration of the string, where each natural mode of vibration is

characterized by a specific spatial pattern of displacement, cn(X), and a

specific frequency of vibration, on. The amplitude and initial phaso of

each modal contribution to the displacement field is determined (see

equations (4-23) and (4-24)) by the initial displacement and velocity fields

of the string.

The wavenumber-frequency description, W(kw), of the displacement field is

defined as the double Fourier transform of the space-time displacement field,

w(x,t), over all space and time. That is,

W(kf) I J w(xmt)exp(-i(kx + wt)) dx dt . (4-25)
-. 0 -

Equation (4-19) defines the space-time displacement field of the fixed-end,

finite string only over the spatial interval 0 < x < L. Outside this spatial
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interval, the string does not exist, so the displacement in the regions x < 0

and x > L is not defined. However, it is evident, by equation (4-25), that

the wavenumber content of W(k,w) depends on the displacement field outside, as

well as inside, the spatial interval 0 < x < L. Inasmuch as our interest is

in the wavenumber-frequency description of the displacement field of the

string in the interval 0 < x < L, we want to avoid contaminating that

description with wavenumber-frequency components arising from any assumed

displacement field exterior to this spatial interval. Such contamination is

avoided by requiring that w(x,t) = 0 for x < 0 and x > L.

For mathematical convenience, we define the space-time field I,6(x,t) as

the extension of the mathematical form of equation (4-19) over all x and t.

That is,

w~x~) ~ cos(wn.t) + D1n sin(ont)}can M (4-26)

for all x and t. By use of equations (4-11) and (4-26), we can then express

the desired space-time displacement field as

w(x.t) = b(x)w,,(x,t) (4-27)

for all x and t. It is easily verified that the displacement field defined by

equation (4-27) is equivalent to that of equation (4-19) in the spatial

interval 0 < x < L and is zero elsewhere.

By equations (4-25) and (4-27), the wavenumber-frequency transform of the

space-time displacement field of the free, finite string with fixed-end

conditions can be written in the form

W(k,j)- f fb(X)wo(x.t)exp{-((kx + cat)) dx dt. (4-28)
-- W -W

By (1) substitution of equation (4-26) into equation (4-28). (2) expression of

the cos(on t) and sin(wn t) in their exponential forms, and (3) use of
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equation (2-38), it is straightforward to show that

W(k,w) = i r {(C n - 'on)6(w- n) + (Cn + 'Dn)6(co+ On)}In(k ) ,

n=l

(4-29)

where I n (k) is the spatial Fourier transform of the n-th normal mode, space

limited by b(x). That is,

In(k) =f b(X)(X)exp(-ikx) dx . (4-30)

-00

By expressing the normal mode, defined by equation (4-20), in exponential

form, we can write In (k) as

In(k) I-fB(k - nw/L) - B(k + nw/L)) (4-31)

where B(k), the Fourier transform of b(x), is easily shown to be

B(k) = L exp(-ikL/2) sin(kL/2)

(kL/2) (4-32)

Equation (4-29) shows W(k,w) for the free, finite string with fixed ends

to be a discrete function of w, with Dirac delta functions at all positive and

negative integer multiples of vc s/L. At each w", the delta function in o

is multiplied by the wavenumber transform of the corresponding space-limited,

n-th normal mode and a weighting factor appropriate to the particular Wn.

The wavenumber transform of the n-th normal mode can be seen, by equations

(4-31) and (4-32), to be continuous functions of k for all n. Thus, the

wavenumber-frequency transform of the displacement field of the free, finite

string with fixed ends is discrete in 4), but continuous in k.

As stated above, the continuous behavior of W(k=) in k. at each n

results from In(k) , the wavenumber transform of the n-th notal mode, space

limited by b(x). B! equations (4-31) and (4-32), it is evident that In(k)
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is, in general, a complex quantity and therefore influences both the magnitude

and phase of W(k,w). Figure 4-1 illustrates the magnitude and phase of

16(k): that is, In(k) for the 6-th normal mode of the fixed-end, finite

string.

The magnitude of 16(k), shown in figure 4-1(a) over the wavenumber range

-12v/L < k < 12w/L, defines the magnitudes of the (complex) amplitudes of the

waves of the form exp(ikx) that comprise the spatial field defined by

b(x)*6(x). By equations (4-11) and (4-20) and use of the exponential form

for sin(nwx/L), it ran be shown that

[0, -QO< x < 0

b(x)%(x) = (l/2)exp(i6wx/L) - exp(-16vx/L)) . 0 : x I I , (4-33)

101L < x < ao

By the form of equation (4-33). it is not surprising that the largest

contributions to the wavenumber transform of b(x)a6(x) occur at the

wavenumbers ±6v/L. Indeed, it can easily be shown that the Fourier transform

of *6(x) alone, over all space, is the weighted pair of Dirac delta

functions, 6(k - 6,/tL) and 6(k + 6w/I). It therefore follows that all

wavenumber contributions to 16(k), other than those at ±6w/L. result from

the restriction, mathematically imposed by b(x), that the displacement field

be equal to zero outside the spatial interval 0 < x < L.

Figure 4-1(b) depicts the phase of 16(k). Physically, this phase can be

interpreted as the phase, at x 0 0, of the various spatial waves of the form

exp(ikx) that comprise the space-limited, 6-th normal mode as a function of

the wavenumber (k) characterizing the srptial waveform The phase is

presented modulo 2w in figure 4-1(b), so all discontinuities of magnitude 2W

are merely scale adjustments. The phase discontinuities of magnitude w result

from the sign changes in 16(k) associated with the terms of the form

sln(kLi/2)/(kL/2) in B(k - 6v/L) and O(k + 6w/L). These discontinuities occur

at all integer multiples of 2w/L. except ±6w/L. In between such

discontinuities, the phase decreases linearly (with slope -L/2) with

increasing k.
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Figure 4-1(a). Magnitude of 16(k)
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Figure 4-1(b). Phase of 16(k)

Figure 4-1. Naghitude and Phase of In(k) for the 6th Mode
of the Free* Finite, Fixed-End String
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Owing to the discrete nature of W(k,w) with frequency, it can be argued,

from equation (4-29), that the magnitude of W(k,w) can be written as

IW(k,w)l =- {ICn - i 0nl IIn(k)l 61(- n)

n=l

+ ICn + io ni IIn(k)I 6(w + n) (4-34)

where II denotes the absolute value. Inasmuch as Cn and Dn are real

constants, it is evident that the wavenumber dependence of IW(k,W)j at each

modal natural frequency, wn, is dictated by IIn(k)l. To illustrate this

wavenumber dependence, figure 4-2 presents, in a waterfall-type display, the

magnitude of I n (k) as a function of k at each of the modal natural

frequencies in the range -61cs/L < n 61cs/L. Superposed on this plot

are the free wavenumbers, k = w/cs, of the infinite, uniform string treated

in section 3.3.1 of chapter 3.

By figure 4-2, it is evident that the largest (in magnitude) contribution

to W(k,w) at each natural frequency (with the exception of wtl) occus

at k - wn/cs. These contributions are associated with the maxima of

IB(k - ni/L) - B(k + nw/L)j, which, by equation (4-31), dictate the wavenumber

dependence of 11n(k)I. It should be noted that, although the maximum of

B(k - nw/L) occurs at nw/L, the maximum of IB(k - nw/L) - B(k + niL/)l is

shifted away from k - nt/L, owing to the interaction between the main lobe of

B(k - nw/L) and the side lobe of B(k + nw/L). The same argument applies to

the maximum of In (k) at k = -nr/L. For large values of n, and therefore

high modal frequencies, this wavenumber shift is small. However, for the

lower order modes, this shift is significant. Indeed, at the first modal

frequency (i.e., n = 1), the main lobes of B(k - v/L) and B(k + w/L) interact

to produce a single maximum at k = 0 rather, than the expected pair of maxima

at k = ti/L.

To the extent that (1) figure 4-2 illustrates, to within a frequency-

dependent scale factor, the wavenumber-frequency characteristics of the

magnitude of W(k,w) associated with the free vibration of a finite,
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The first difference is that the wavenumber-frequency transform of the

free vibration field of the infinite (space-invariant) string is a continuous

function of frequency along the lines k = ±w/c , whereas that of the finite

(space-limited) string is a discrete function of w. The reason for this

difference can be traced to the boundary conditions. The infinite string,

owing to the absence of boundaries, can support the propagation of any

wavenumber component introduced by the initial conditions at the frequencies

= ±kc s. The fixed-end, finite string, owing to the boundary condition

that w(0,t) = w(L,t) = 0, can support propagation, over the spatial interval

0 < x < L, of only that discrete set of wavenumber components associated with

the normal modes of the string: that is, by equation (4-20), k = ±nir/L.

According to the differential equation for the free motion of the finite

string (equation (4-15)), the string will support propagation of these

discrete wavenumber components on', at the corresponding set of discrete

frequencies, w = ±n = ±nic s/L.

The second difference in the wavenumber-frequency transforms of the fields

of the finite and infinite, uniform strings is that, at any given frequency,

the wavenumber content is discrete for the infinite string, but distributed

for the finite string. As discussed above, the string, in free vibration,

will only support propagation of waves characterized by k = ±t/cs. As shown

in chapter 3, the wavenumber-frequency transform of the displacement field of

the infinite string consists, at any frequency, of a weighted pair of Dirac

delta functions in k: one at k = +w/cs and one at k = -w/cs. It is also

evident, by equations (4-19), (4-20), and (4-22), that only the wavenumber-

frequency combinations related by kn = n /Cs (where kn = niT/L) satisfy

the governing equation for the displacement field of the free, finite string.

However, owing to the finite length of the string, we imposed the restriction

that the displacement field, w(x,t), be zero outside the physical extent of

the string (i.e., x < 0 and x > L). It was this restriction that introduced,

at each natural frequency (wn), wavenumber components other than n/cs

in W(k,oa). Such additional wavenumber components will be present in any

space-limited system if the space-time output field of the system is

restricted to be zero outside the physical bounds of the system.

Before leaving the example of the free vibrations of the fixed-end, finite

string, it is instructive to consider the relationship between the wavenumber
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transform of the initial displacement and velocity fields and the modal

coefficients Cn and Dn. By writing

wo(x) = 1 w o(k)exp(kx) dk (4-35)

and

vo(x) 11(21) JVo(k)exp(ikx) dk (4-36)
-0

and substituting these expressions into equations (4-23) and (4-24), we can

show, by use of equation (4-30), that

C- l/(wL) JWO(k)In (k) dk (4-37)

and

D l/(n VO(k)In (k) dk , (4-38)

where the asterisk denotes the complex conjugate. Equations (4-37) and

(4-38) show that the modal coefficients, Cn and Dn, are proportional to

the integral, over all wavenumbers, of the wavenumber transforms of the

respective initial displacement and velocity fields filtered by In*(k), the

conjugate of the Fourier transform of the space-limited, n-th normal mode.

Owing to the restriction that w(x,t) is zero outside the spatial interval

0 S x < L, neither Wo(k) nor Vo(k) can consist of only a single wavenumber

contribution of the form 6(k - k0). However, it is interesting to note, by

equations (4-37) and (4-38), that each such delta function contribution to

WO or V0 produces an infinite number of nonzero modal coefficients, Cn or Dn -

If Wo(k) is proportional to I.(k), where N is a fixed, positive integer, it is

straightforward to show, by equations (4-37), (2-38), and (4-21), that
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C - A nN (4-39)

where A is the constant of proportionality. Thus, when Wo(k) is

proportional to I (k), only the modal coefficient C contributes to the

wavenumber-frequency transform. In a similar fashion, it can be shown that

when Vo(k) is proportional to I.(k), all On S, except D., are zero.

These results stem from the orthogonality of the normal modes over the

interval 0 < x < L. That is, by the inverse Fourier transformation of

equation (4-30),

b(X)n (x) - 1/(2W) In(k)exp(ikx) dk . (4-40)

It then follows, by equation (4-21), that the orthogonality condition can be

expressed in terms of In(k) in the form

I112) Im(k)In (k) dk = (L/2)6=n . (4-41)

The orthogonality condition, as expressed by equation (4-41), can be used

to aid the interpretation of the wavenumber filtering of Wo(k) and V (k)0
by I (k) in equations (4-37) and (4-38). By use of equations (4-13),

n
(4-14), (4-26), (4-27), and (4-30), it is straightforward to show that

Wo(k) = CnIn(k) (4-42)

n=l

and

Vo(k) = w (nDnIn(k) (4-43)

nul

By equations (4-42) and (4-43), it is seen that the wavenumber description of

the initial conditions can be expressed as a weighted summation of the
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wavenumber transforms of the various normal modes. Further, the modal

coefficients, C n and Dn, are the same as those used in the space-time

domain to describe w(x,t). Substitution of equations (4-42) and (4-43) into

equations (4-37) and (4-38), respectively, yields

Cn =I/(wL) J Cmm(k)In (k) dk (444)

and

On = 1/(wLn) f mDmIm(k)In (k) dk (445)

Note that the integrations in equations (4-44) and (4-45) are simply a

restatement of the orthogonality condition of equation (4-41). Application of

this orthogonality condition to equations (4-44) and (4-45) yields identities

for Cn and Dn

It is clear from the above arguments that the wavenumber descripttori of

the initial conditions can be viewed as weighted superpositions of the

wavenumber transforms of the space-limited, normal modes of the finite

string. The coefficients that weight this superposition are the same

coefficients that weight the normal modes in the space-time description of the

displacement field, w(x,t).

It should be emphasized that the space-time description of the free

vibration field of the fixed-end, finite string given by equation (4-19)

applies for all time. In a fashion similar to that observed for the free

vibration of the infinite string, the "snapshot" in time of the initial

displacement and velocity fields of the finite string determines the modal

coefficients Cn and Dn. By equation (4-19), it is evident that, given the

normal modes and modal natural frequencies of the finite string, specification

of these modal coefficients provides sufficient information to determine the

space-time displacement field for all time.
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4.2.2 The Finite, Simply Supported Plate

As an example of a space-limited system in two spatial dimensions,

x = (x1,x2), we next treat the free vibrations of the simply supported

plate illustrated in figure 4-3. Here, the flexural rigidity, 0, and the mass

per unit area, p, of thp plate are constant over the physical extent of the

plate and are taken to be zero elsewhere. By defining the two-dimensional

space-limiting function, 0(x), to be

1 0 < x1 < L and

O(x) = {U(x1) - U(x1 - L1)}{U(x2) - U(x2 - L2)) 0 < x2 < L2,0 otherwise ,

(4-46)

the equation governing the displacement field, w(,t), can be written as

{ a2w(x't) 1

0(0 D94w(x..t) + a = 0 (4-47)- a t 2

for all x and t.

The simply supported boundary conditions require that the displacement and

the moment be zero at the boundaries of the plate. Mathematically, the zero

displacement condition requires that

LL ;

PLATE

X1

Figure 4-3. Geometry of Simply Supported Plate
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w(O,x2,t) = w(L1 ,x2,t) = w(X1,O,t) - W(Xl,L 2,t) = 0 (4-48)

for 0 <x 1  L1. 0 < x2 < L2* and all t. The zero-moment boundary conditions

can be shown to translate to the mathematical statements

a2w(O,x2,t) a2W(LlX 2,t) a2 w(xlOt) a 2W(X,L 2,t) = 0 (4-49)
2 -2 = 2 =2 =0 (-9

ax1  ax1  ax2  ax2

for 0.x 1 , 1, 0 < x2  L L2, and all t.

For initial conditions, we again assume that

w(1)= WOO() (4-50)

and

aw(K,O)
at v 0(2) (4-51)

The free vibration of the finite, simply supported plate, like the

space-limited string, cannot easily be solved by direct application of Fourier

transforms. However, it is easily solved by a separation of variables

approach in the space-time domain. The details of this solution procedure are

presented in standard texts (see Meirovitch,5 for example) and will not be

reviewed here. The separation of variables solution for the displacement

field associated with free vibration of the simply supported plate is

w(Xt) = I (A. cos(tmnt) + Bmn sin nt))mn(X) (4-52)

m=l n-l

over 0 < x1 S L1 and 0L, x2  12 for all t. In equation (4-52), OMA(D)

the normal modes of the plate defined by

Qn(x) - sln(mwxl/L1)sin(nwx2/L2) , (4-53)

forn a complete set of orthogonal functions, over the spatial area

0 S x1 j L, and 0 -c x2 :S L2. that individually satisfy the boundary
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conditions of equations (4-48) and (4-49). The orthogonality condition is

given by

LI2

I J ,n()*qs(2) dx = 1 ]2/4)6mq6ns (4-54)

0 0

The modal natural frequencies of the simply supported plate, denoted by me,

are given by

= (D/p) 1/2(m/Ll) 2 + (nv/L 2 ) 2 (4-55)

By use of equations (4-50), (4-51), and (4-52), the orthogonality

condition (equation (4-54)) can be used to show that the modal coefficients,

Amn and Bmn are related to the initial conditions by

Amn = Lwomnl)m(x) dx (4-56)

0 0

and

Li1
8 4 L12 Vo(0..n(2L) dx (4-57)

0 0

To complete the specification of the displacement field of the free.

simply supported plate over all space, we define (as we did for the finite

string) the displacement field, w(x,t), to be zero outside the physical extent

of the plate: that is. outside the spatial region 0 < x, :S L and
0 <_ x2 :S L2. By defining w to be the extension of the displacement field

of equation (4-52) over all I (that is,

*'OL I > (An cos(u11t) + B. sin(w,.t)a.) (4-58)
Mwl nol
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for all x and t), we can then use equations (4-46) and (4-58) to express the

requisite displacement field over all space and time as

w(2,t) = 8(K)w.0(x[t) . (4-59)

The wavevector-frequency description, W(k,w), of the displacement field is

obtained by the following multiple Fourier transform of the space-time field,
: w(2[_,t) :

= f w(lx,t)exp{-i(lko + ot)} dx dt . (4-60)

By substituting equation (4-59) into equation (4-60), it is straightforward to

show that

W(kCi=) =, {(Amn - imn)6( - w'mn) + (Amn W I8mn)'(" + )

m1l n-l

(4-61)
where

I a(k) f f s)(n)exp(-tk.x) dx. (4-62)

By defining the Fourier transform of 0(21) as

JW J8(jexp(=ikq X
-40 -0

( sin(kL L11/2)1 s in(k 2L 2/2)

wLI L2 exp(-i(k I L/2 + k 2L 2/2)) {sl(k L/2) j~I(k 2 2 2)1  (4-63)

it follows, from equation (4-62), that I(j K_) can be expressed as

I m(k) - (1/4){B(k1 - mi/L1 ,k2 + n/L 2 ) + B(k1 + mW/L 1 ,k2 - ni/L 2 )

- 8(k 1 - fl/L 1 , k - nw/L2) - 8(k, +mw/Ll k2 + nw/L2) } . (4-64)
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By equations (4-61) through (4-64), it is evident that the wavevector-

frequency transform of the displacement field of the simply supported plate is

discrete in frequency and continuous in both wavevector components, kl and

k 2  The discrete frequency components occur as Dirac delta functions at

wmn , where 'tn are the modal natural frequencies of the plate. At each

modal natural frequency, the wavevector dependence of W(k,) is dictated by

the product of (1) a complex constant, which depends only on the (real) modal

coefficients, and (2) I mn(K), the wavevector transform of the corresponding

space-limited, natural mode of the plate. Note that at w = -wmn, the

constant that modifies I mn(k) is the complex conjugate of the constant thatat +mn-
modifies I mn(k) at w = %n.

To aid in the physical interpretation of the wavevector-frequency field

given by equation (4-61), it is useful to employ the inverse Fourier

transformation of equation (2-56) on equation (4-61) to obtain the following

description of the space-time field of the simply supported plate:

00

w(xt) - j j {(A mn - iBmn)Imn(K)OxPIi(tx. , + wmnt) ]
mt=l n=l -co

+ (Amn + iBmn )I mn(k)exp[i(ok.2 - wmnt)]) dk . (4-65)

By equation (4-65), it is seen that the space-time displacement field of the

simply supported plate is comprised of a superposition of complex harmonic

waves of the forms exp[i(k.! + mnt)] and exp[i(k.X - wmnt)] over all wave-

vectors, k, and over all discrete natural frequencies, wmn' of the plate. At

each natural frequency, the magnitudes of the complex amplitudes and the initial

phases of all harmonic wave components of the form exp[i(k-?x + wmnt)] are

specified by the product (Amn - 18m)Imn(k), and the magnitudes and

initial phases of harmonic wave components of the form exp[i(k.x - 'mnt)] are

specified by the product (Amn + i Bm)Imn(k). Note, by equation (4-61),

that these are the same products that specify the wavevector dependence of

W(_,w) at the discrete frequencies umn and -=, respectively.

From equation (4-65), it is obvious that the magnitudes of the complex

amplitudes of the harmonic waves of the forms exp[i(.t + wmnt)] and
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exp~i(k.x - mn t)] are equal at any specified wavevector and natural
frequency and are given by

I(Amn -lBmn)Imn(k)' I (Amn + iBmn)Imn(k)l (Amn2 + Bmn2)1/2 11mnWI

8w2  8W2  8w2

(4-66)

Note also, from equation (4-61), that because W(k,w) is discrete in W, the

magnitude of W(k,w) is given by

=~ I (Amn 2 + 8.2 1/2 wm=- rn) + 6(w + wm)}
m=l n=l

(4-67)

By comparison of equations (4-66) and (4-67), it is clear that the wavevector

dependence of tW(k,w) at w= is, within a factor of 8w3, equal to

the magnitudes of the complex amplitudes of the harmonic wave components

exp[t(K.X + wmnt)I and exp[i(K.x - wmnt)] that contribute to the space-

time displacement field at w - ± .

Recall that Amn and BMn are constants that depend on the initial
displacement and velocity conditions of the plate. It is therefore evident,

from equation (4-67), that the wavevector dependence of tW(K,w)t at the

discrete frequencies w = twmn is specified, to within a multiplicative

constant, by 11mn () . To illustrate this wavevector dependence, figure 4-4
presents the magnitude of Imn () as a function of kI and k2 for the

6-6th (i.e., m f 6, n w 6) natural mode of a simply supported plate.

By inspection of figure 4-4, it is evident that It66( )! is character-

ized by four primary maxima located at the wavevectors (6*/L,6w/L2),

(6t1/ ,-6w/L2), (-6w/I#,6w/L2), and (-6w/L1 ,-6/L2). From equation

(4-64), it can be established that the amplitudes of these primary maxima are
identical and equal to L L 2/4. Figure 4-4 also shows secondary maxima that

occur at odd multiples of w/L1 along the lines k2 - 6w/L 2 and at odd

multiples of r/L2 along the lines ki I -6w/L l. The amplitudes of
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By use of equations (4-55) and (4-68), it is evident that the magnitudes of

the wavevectors associated with the four primary maxima of 1166(_)1 are

characterized by

k66 = 404 662/ . (4-69)

In chapter 3, the wavenumber characterizing the free vibrations (i.e., the

free wavenumber) of a space- and time-invariant plate at any frequency was

defined by

kp(Q) 4o . (4-70)

By comparison of equations (4-69) and (4-70), it is evident that the

magnitudes of the wavevectors associated with the four primary maxima of

116(0M correspond to the free wavenumber of the plate at the natural

frequency, o66' associated with the 6-6th natural mode of the simply

supported plate.

The above observations regarding determination of the relative wavevector

dependence of IW(k,.)l at the discrete frequencies 'L066 by examination of

the wavevector characteristics of the magnitude of 166(k) can be ertended to

any of the natural frequencies, woT. That is. the relative wavevector

dependence of iW(kw)l at i., is determined by the magnitude of I a(k) for

arbitrary values of m and n. Further, from equations (4-63) and (4-64), it is

straightforward to show that, for all m and n except unity, it( )t is
characterized by four primary maxima of amplitude L1L2t4 occurring at the
wavevectors (aW/t1 ,n*/L2), (-vt 1 .nuIL2 ). (m/L 1 .- nv/L 2 ) , and
(-m/Ll.-n*/L2). The magnitudes of these four wavevectors are equal and

given by

law N w=/ Yom) .(4-71)

For to 1, the two associated primary maxima at k) tw/L interact,

thereby producing a single, broader maxim=n at k 0. Similar arguments

apply in k2 for n 1.
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The initial phases of the harmonic waves of the form exp[i(k.x + mnt)]

and exp[i(k-.j - wmnt)] that contribute to the space-time field of the freely

vibrating, simply supported plate at each wmn are seen, from equation (4-65),

to be determined by the arguments of the complex products (Amn - iBmn) Imn(k )
and (Amn + iBmn)Imn(k), respectively. By equation (4-61), these are

the same products that specify the wavevector dependence of W(k,w) at the

discrete frequencies ±tmn. As the argument of a product is the sum of the

arguments of the terms comprising the product, we can gain some insight into

the initial phase by examining the individual arguments of (Amn ± iBmn)

and Im(k).

At any discrete frequency wmn' the modal coefficients Amn and Bmn are

real constants. Thus, if we denote the argument of Amn - iBmn by 'Dmn' the

terms Amn - iBmn and Amn + iBmn contribute constant initial phase shifts

of emn and -emn to the respective harmonic waves exp[i(k.x + wmnt)] and

exp[i(&.-x - mnt)] that contribute to the space-time field, w(xt), at the

frequency wmn"

By equations (4-63) and (4-64), it is clear that the argument of Xmn(k) is

a complicated function of k. However, after some tedious manipulation, it can

be shown that

arg{Imn(k)) - {kL 1/2 + k2L2 /2 + (m + n)w/2) + J(k)w , (4-72)

where J(k) is a function that is zero or one, depending on the sign (as a

function of k) of the summation of terms of the form (sin(kiLl/2)

sin(k2L2/2)}/((klL1 /2)(k 2 L2 /2)) that arise in Im(j) from various

combinations of B(k1  mnw/Ll,k 2 ± n/L 2). By equation (4-72), it is seen

that, in between the jumps of ±w dictated by J(k), the argument of In (k) is a
linear function of k and k2. Further, at each discrete frequency, (a nn the

argument has a constant component that depends on m + n.

The argument of I (k) described by equation (4-72) is much toomn-
complicated to illustrate as a function of k and k However, at w660

the k1 dependence of arg{I66 (j)} along the lines k2 ' ±6v/L2 can be

shown to be identical to the argument of IM(k) for the fixed-end, finite

string shown in figure 4-1(b).
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By the above arguments, the initial phases, at x = (0,0), of the harmonic
waves of the form exp[t(k.x + .rant)] and exp[i(k.x - wMnt)] that
contribute to w(x,t) at = "mn are given by emn + argfImn(k) and
em + arg(I M(k)), respectively.

By definition of W0(k) and Vo(k) as the wavevector transforms of the
initial displacement and velocity fields, w0 (x) and vo(X), respectively,
equations (4-56), (4-57), and (4-62) can be used to show that the modal
coefficients are related to Wo(k) and Vo(k) by

00 00

Amn 2 "21L - -o(k)Im*(k) dk (4-73)

1 2 --

and

Bn1 = 22 nt 0(kj) mn*(k) dk (4-74)

Equations (4-73) and (4-74) show that the modal coefficients. A n and Bn ,
are proportional to respective integrals of the wavevector descriptions of the
initial displacement and velocity fields filtered by the conjugate of the
wavevector transform of the space-limited, mn-th normal mode.

The restriction that w(xt), and thereby v(x,t), be zero outside the
physical extent of the plate precludes W0(k) or V0(_) from consisting of a
single wavevector contribution of the form aft - 0), because such a form
corresponds to a space-time field of the form exp(ikqx_) over all 2. Rather,
by Fourier transformation of equations (4-50), (4-61), and (4-52), over all X,
it Is straightforward to show that

ln-

and
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VO(k) I I *%.B mI jjj (k) (4-76)
frol n=l

Thus, it is evident that Wo(k) and V0(k) can be expressed as a weighted

superposition of the wavevector transforms of the space-limited, normal

modes. Recall that these transforms are continuous in k. Note also that the

weighting coefficients, Amn and Bmn, are those used to express w(x,t) in

the space-time domain.

The inverse Fourier transform of equation (4-62) is

o

-
B~xn~) = I IImn (k)exp(ikx) dk (4-77)

By equations (4-54) and (4-77), the orthogonality condition on amn(L) can be

translated into the following orthogonality condition on Imn(k):

90

__ 2 J 1( ) dkW 2 6 . (4-78)

(2w) -

By equation (4-78), it is evident that Iron M.,where m and n are integers

between one and infinity, constitute a complete set of orthogonal functions

over the interval (-o.-o) < k < (ww). This set of functions is the Fourier

conjugate of the complete orthogonal set formed by the normal modes,

omn(X). If equations (4-75) and (4-76) are multiplied by I qs(K) and

integrated over all k, the orthogonality condition of equation (4-78) can be

used to verify the relationships of equations (4-73) and (4-74) between the

modpl coefficients, Amn and Bmn, and the wavevector transforms, WO(k)

and Vo(), of the initial conditions.

4.2.3 Sunmary.of.Free Wave Characteristics ofSpace-Limted Systems

The free responses of the space-limited, time-invariant linear systems

treated in the above examples exhibit certain cmon wavevector-frequency
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characteristics. This section highlights certain of these common

wavevector-frequency characteristics and compares them to the characteristics

of the space- and time-invariant systems treated in chapter 3.

The wavevector-frequency description of the free response of space-

limited, time-invariant linear systems cannot, in the majority of cases, be

easily obtained by direct application of Fourier transforms to the governing

equations. Rather, most free, space-limited systems best lend themselves to

solution in the space-time domain, where the solution is expressed as a

weighted superposition of the normal modes of the system. Each normal mode

defines an allowed spatial pattern of free response of the structure.

Corresponding to each normal mode is a modal natural frequency, which defines

the only frequency at which the system will support the free response defined

by the normal mode. The wavevector-frequency description of the response

field of a free, space-limited system is obtained by appropriate Fourier

transformation of the space-time solution.

The above procedure is in contrast to that employed in chapter 3 to obtain

the wavevector-frequency description of the free response of space- and

time-invariant linear systems. For these systems, the wavevector-frequency

description was obtained by direct transformation of the governing partial
differential equations into the wavevector-time domain. The resultant

ordinary differential equation in time was solved fop the temporal

characteristics of the field. Subsequent temporal Fourier transformation of

this wavevector-time field led to the desired wavevector-frequency description.

Recall that the wavevector-frequency description (or transform) of the

response of a system defines the specific cobination of harmonic plane waves

that comprise the space-time output field of the system. The space-time field

of the free, space-limited system is comprised of a superposition of harmonic

waves over an infinite set of discrete frequencies and over all wavevectors at

each of the discrete frequencies. The set of discrete frequencies is comprised

of all positive and negative values of the (positive) modal natural frequencies

of the system. At each discrete frequency, the relative amplitudes and phases

of the harmonic waves contributing to the space-time response field are

determined by the wavevector transform of the space-limited, normal mode
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corresponding to that discrete frequency. Thus, the wavevector-frequency

description of the free response of a space-limited system is discrete in

frequency, but continuous in the wavevector domain. The continuous nature of

the wavevector-frequency description in the wavevector domain at each discrete

frequency can be traced to the requirement that the response of the system be

zero outside the physical extent of the system.

In contrast, the space-time fields of the free, space- and time-invariant

systems treated in chapter 3 were comprised of a superposition of harmonic

waves over the restricted set of wavevector and frequency combinations that

can propagate as free waves in the system. The wavevector-frequency

description (or transform) of the response field of a free, space- and

time-invariant system is therefore characterized by nonzero values only along

those surfaces or lines, in the wavevector-frequency domain, on which the

wavevector-frequency combination corresponds to an allowable free wave of the

system.

Owing to the absence of external forces in free systems, the wavevectors

contributing to the free response of both the space-limited and space-invariant

systems are completely determined by those wavevectors present in the initial

conditions. In the space-limited system, the wavevector transforms of the

initial space-time fields, filtered by the modal wavevector response, determine

the modal coefficients and, thereby, the complex amplitudes of the various

wavevector components at each modal natural frequency. In the space-invariant

system, knowledge of the wavevector content of the initial fields and the

wavevector-frequency combinations comprising free waves in the system is

sufficient to completely define the wavevector-frequency description of the

free response field.

4.3 FORCED RESPONSE OF SPACE-VARYING, TIME-INVARIANT SYSTEMS

The forced response of space-varying, but time-invariant, linear acoustic

systems is governed by mathematical models of the form of equation (4-8): that

is,

it4-30p(".t - f(x,t)
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for all x and t. Recall that the space-varying nature of the system is
specified by the coefficients bjimn( ) in the space-varying, time-invariant

linear operator, itL*,t{ }, defined by equation (4-7).

In this section, we examine the input-output relationships for space-

varying, time-invariant linear systems and present two examples of the forced
response of space-limited systems that arise in structural acoustics.

The general input-output relationships for space-varying, time-invariant
linear systems are developed from the same basic concepts as those used in
chapter 3 to treat space- and time-invariant systems. These concepts are
(1) the principle of superposition for linear systems and (2) the Green's

function, or impulse response.

The principle of superposition for a general space- and time-varying linear
system is described by equations (3-36) through (3-41) in section 3.4.1 of
chapter 3. Inasmuch as the space-varying, time-invariant linear systems of
interest in this chapter are a subset of space- and time-varying linear

systems, the principle of superposition described by these equations applies
to space-varying, time-invariant linear systems.

For space-varying, time-invariant linear systems, the coefficients,

bjlmn(X), of the linear operator, itL.X,t { ), are independent of time, but are
functions of the spatial vector, Z. Thus, the form of the linear operator

ItLrt{ } is invariant with a change in the temporal origin, but not with a
change in the origin of the spatial coordinates. That is, by defining
-t - 6, where e is a constant, equation (4-8) can be written

ItLk.T+O~p(x,1 0 )} - f(x,l + 0) .(4-79)

However, it is easily shown, by equation (4-7), that

ItL,+{ ) ItL-,[( } (4-80)

It therefore follows, from equations (4-79) and (4-80), that
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t+e)) = f(X,r 0) . (4-81)

We can conclude, by comparison of equations (4-8) and (4-81), that the output

of a space-varying, time-invariant linear system resulting from the-input

f + e) is p(*,i + e).

It also follows from equation (4-8) that if = - z, where " is a

constant, then

_ {p + -0 t)) = f(1( +* 2t) .(-2

However, it is clear from equation (4-7) that

ItL&, t{ ) o itL-,.t{ }.(4-83)

Therefore, the response of a space-varying linear system to the input

f(g + ',t) is not equal to p(t + tt).

By applying these concepts of superposition to the Green's function, or

space-time impulse response, of space-varying, time-invariant linear systems,

we can obtain general expressions for the input-output relations for such

systems.

4.3.1 Green's Functions For Space--Var in. Time-Invariant sms

The complete mathematical description of a system requires not only the

specification of a mathematical model governing the system, but specification

of the response at the spatial and temporal limits, or boundaries, of the

system as well. Recall, from section 4.1, that there are three categories of

space-varying systems: (1) unifom, space limited, (2) nonuniform, space

limited, and (3) nonuniform, infinite. One primary difference between

space-limited and infinite systems is the way the response of these systems is

specified at the spatial limits of the system.

For systems of infinite spatial (or temporal) extent, the response of the

system at the spatial (or temporal) limits is specified on the basis of
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physical realizability, or causality. This requirement for causal response in

such systems Is satisfied by selecting appropriate combinations of the

homogeneous and particular solutions to the partial differential equations

governing the behavior of the system. All systems treated in this text are

time invariant, and their temporal response characteristics are uniquely

determined by causal arguments. For spatially infinite, time-invariant

systems, causality conditions are applied to both the spatial and temporal

response characteristics to define a unique system response.

In space-limited, time-invariant systems, the response of the system at

its spatial limits, or boundaries, is specified as a part of the definition of

the system. The response of such space-time systems is then uniquely defined

by the governing partial differential equation, augmented by the specification

of the required response at the spatial boundaries of the system (and, of

course, the conditions for temporal causality). The requirement of a specific

response at the spatial boundaries of a system usually implies the existence

of external inputs acting on the boundaries of the system. The spatial

bound&ry conditions can therefore be interpreted as an equation, supplementary

to that governing the behavior of the system, that defines those external

inputs (additional to those applied interior to the boundaries) required to

achieve the specified response on the spatial boundaries of the system.

As a consequence of the different forms for specification of the responses

of infinite and space-limited systems at their spatial limits, different

mathematical procedures are required to formulate the respective input-output

relationships for these space-varying systems. It is therefore convenient to

treat the Green's function solutions for infinite and space-limited versions

of space-varying systems separately.

As a prelude to the development of these Green's function solutions,

certain remarks are in order regarding the role and treatment of such

solutions in this text.

With regard to the role, the Green's function solution for a linear system

relates the output of the system to the input and the Green's function in an

integral form. This solution is general in the sense that, given the Green's
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function for the linear system of interest, the output field resulting from

any input field can be predicted. By appropriate Fourier transformation of

the Green's function solution, the wavevector-frequency description (or

transform) of the output field can be related to the wavevector-frequency

description of the input field and the wavevector-frequency response of the

system (i.e., the wavevector-frequency transform of the Green's function).

This transformed relationship has the same generality as the Green's function

solution. Thus, the role of Green's function solutions in the wavevector-

frequency analysis of acoustic systems is to provide the basis from which

general input-output relationships can be written in the wavevector-frequency

domain for various classes of linear acoustic systems.

Let us now address the treatment of the Green's function in this text.

The concept of Green's functions is a simple one. However, any rigorous

development of the theory of Green's functions for a general linear space-time

system requires mathematically complex and, consequently, lengthy arguments.

Morse and Feshbach6 devote over 100 pages to Green's functions, Courant and

Hilbert treat this subject in about 40 pages, and Greenberg 8 devotes an

entire book to the development of a consistent theory of Green's functions.
While these references vary somewhat in the generality and rigor of their

respective treatments of Green's functions, they serve to illustrate the

futility of attempting to present a comprehensive treatment of Green's

functions in a few pages, Inasmuch as the focus of this book is the

wavevector-frequency analysis of acoustic systems, we must conclude that a

rigorous treatment of Green's functions is beyond the scope of this text.

Consequently, we rely on somewhat heuristic arguments for the development of

Green's function solutions of linear systems. For a more thorough treatment

of such solutions, the reader Is encouraged to consult the references cited

above.

With apologies to the reader for this lengthy prelude, we now address the

Green's function solution for infinite versions of space-varying linear systems.

4.3.1.1 The Green's Function for Infinite. Nonuniform, Time-Invariant

Linear Systems. An infinite, nonuniform, time-invariant linear system is one

in which (1) at least one of the coefficients, bjlmn(l), of the linear
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operator ItL(,t { }, defined by equation (4-7), varies with x and (2) at

least one of these coefficients, at any x, is nonzero. These conditions

ensure a continuous system over all space that has space-varying properties.

An example of an infinite, nonuniform linear system is an infinitely long,

uniformly tensioned string having a mass per unit length that varies (but

remains positive) over the length of the string.

Subject to the above restriction on the coefficients bjlmn(X), the

output, p(xt), of the infinite, nonuniform, time-invariant linear system

resulting from the input, f(I,t), is governed by equation (4-8). Solutions to

this equation are restricted to those that are casual in space and time.

Recall that the Green's function, 9((,t;o,to), is defined as the

response of the system at the spatial position I and time t to an impulsive

input applied at the spatial location *0 and time to. Therefore, the

Green's function for the infinite, nonuniform, time-invariant linear system is

defined by that combination of particular and homogeneous solutions to

itL(tg(,t;xo0to)} 6(0 - 0 )6(t - to) (4-84)

that are physically realizable, or causal, over all space and time.

The condition for temporal causality is that the output, or response,

cannot anticipate the input in time. Therefore, for the Green's function to

be causal, we require that

g(Z,t,'X0t )  0, t < t o

and (4-05)

n
g(It;xo01t O )

... t 0, t < to, for all n.

Spatial causality, for the infinite, nonuniform linear acoustic systems of

interest in this text, requires that the Green's function characterizes a

response to the impulsive input that either (1) propagates away from the
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spatial location of the impulsive input or (2) decays in amplitude with

increasing distance from the location of the input.

By noting the temporal form of the input in equation (4-84), we can take

advantage of the time invariance of the system, in the form of equation

(4-81), to write

ItLx,t{g(,o,t - to)} = &(- - 1O)6(t - t0) (4-86)

Thus, by comparison of equations (4-84) and (4-86), the Green's function for

the infinite, nonuniform, time-invariant linear system has the mathematical

form
glgt;o A 9(x,x,t - tO) ( (4-87)

Clearly, for this category of space-varying system, the Green's function

depends on the two independent variables X and t - t0 and on the parameter x.

Let us assume that the causal Green's function defined by equation (4-86)

is known. By use of the sampling property of the Dirac delta function (see

equation (2-31)), we may then express the system input, f(Z,t), of equation

(4-8) as an integral (i.e., sunation) of the product of a weighting function

and the delta functions that define the input for the Green's function. That

is,

f(it) f f(lxo,to)6(x - -O)6(t - to) di0 dt0 . (4-80)

-60 -40

By equations (4-87) and (4-88), the principle of superposition for linear

systems (see equations (3-39)-(3-41)) can be used to argue that

't't ( f(xo'to X V X o't- to) ) dxo dto

40 go

f f Jf(o.to6a(- - %?)S(t - to) 6 0 cit0 - f( Xt) . (4-69)
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By comparison of equations (4-8) and (4-89), it is evident that the causal

response of an infinite, nonuniform, time-invariant linear system to an

arbitrary input, f(Zt), is given by

Cc 00

p( t) c JJ f(Itto)g(Z.Ot - t) dlo dto * (4-90)
i -o

By employing the change of temporal variable r to - to, equation (4-90)

may be written in the equivalent form

0" 00

pJXpt f J f(o.t - r)9(1,o.) dZ0 dv . (4-91)

-W -AW

Equation (4-90) or (4-91) is the Green's function solution for the

infinite, nonunifom type of space-varying, time-invariant linear system.

4.3.1.2 The Green's Function for Space,limited. Time-Invariant Linear

Systems. A space-limited system, as the name implies, is one which exists

over some limited portion of space. If, within this limited portion of space,

the properties vary with space, the space-limited system is defined to be

nonuniform. If the properties are constant over the limited portion of space

occupied by the system, the space-limited system is said to be uniform.

Our treatment of Green's function solutions to space-limited systems is

based on the approach of Ffowcs-WilllaS et al. to such systems.

Consider a space-limited system that exists within the volume, VO

bounded by the surface, SO. We define the space-limiting function, s(),

to he

.M.{$(X) (4-92)

where U is the Heaviside function defined by equation (2-32) and o(x) is a
function having the properties
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C(x) > 0 inside V0 ,

o(') < 0 outside V0 , (4-93)

0 = 0 on So

Thus, s() defines a function that is one for x in V0 and zero for I outside

V0. By use of this space-limiting function, the governing equation for any

space-limited system can be written in the form of equation (4-8).

Recall that the system parameters (or properties) are reflected in the

space-varying, time-invariant linear operator itL't { I by the coefficients

bjlmn(I'). For space-limited systems, such system properties do not pertain

outside of the spatial extent, V0 9 of the system and can therefore be set

to zero for x outside V0 . The same argument can be applied to the system

input: that is, any input acting outside of V0 is not acting on the

space-limited system and can. therefore be set to zero. Thus, for space-

limited systems,

b (X) () )(4-94)

and

f(,t) = s(X)q( ,t) . (4-95)

where Bi'M (X) defines the parameters of the system inside V0 and q(x.t)
Specifies the input to the system inside V0 . Outside V0 . 0Jlmn M and

(0,t) can be specified arbitrarily. Note that, for a uniform space-limited

system, 0r(7 ) is not a function of X. With 0I (1) and f({,t) defined

by equations (4-94) and (4-95), equation (4-6) describes a space-limited,

time-Invariant linear system.

We must now address a notational problem. Let us designate the

space-varying, time-invariant linear operator (of the form of equation (4-7)),

having coefficients bj1m( ), by tbLt,, and an identical opeirator,

having the coefficieots .b M(x) replaced by 8 ln('X), by jt.6L',t
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That i s,

bj,' (-) AnV (4-96)
It,bL-"t j a(£ lm a 1  a fl 1 atJ=~O 1=0 m=0 n=G \x/a 2)\ax 3)(1t

and

S(am (4-97)
jG14 M4 r0 a nI

In this notation, the additional presubscript identifies the coefficients of

the space-varying linear operator. By use of the notation of equation (4-96).

equation (4-8) becomes

tbL.o{(,) f( ,t) .(-

For the forced, space-limited. time-invariant linear system, use of equations

(4-94), (4-95), and (4-97) allows us to rewrite equation (4-98) in the

mathematically equivalent form

%X )zt*OL,tf(x, )3 s(*)q0xt) (4-99)

Equation (4-99) is the typical form of the governing equation for forced,

space-limited, tie-invariant linear systems. To complete the specification

of the space-limited problem, tie output, p(I,t), is subject to certain

restrictions (i.e., boundary conditions) on the boundary S0 ,

Inasmuch as the system is space-limited to within V0, the desired output

of the system is also space limited and is nonzero only within V0 and on

S 0 . This desired output can be achieved by transferring the space-limiting

function, s('), inside the linear operator. For the tems in the linear

operator containing no spatial derivatives, this transfer presents no

problem. For examsle,

t M ptt (4-100)
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However, in the transfer of s(1) inside the linear operator, each spatial

derivative generates an additional term. For example, it is easily verified,

by use of equations (4-92) and (2-32), that

-P., t 86a__________s(O)Biooo(1 ) ax 1  1000() ax1

_ e~oo( p( ,~a~o )} ai(x)
-t1 . (4-101)

It follows that higher spatial derivatives will generate not only terms

involving products of p(4,t)6{a(Z)}, but also additional terms involving

products of various order spatial derivatives of p(x,t) and 6{o(x)}.

The above arguments demonstrate that transferring s(o) inside the linear

operator gives rise to additional terms involving products of p(x) or its

spatial derivatives with 6{c( )} or its derivatives. Inasmuch as the Dirac

delta function and its derivatives are zero everywhere except at the 7eros of

the argument of the delta function, these additional terms can be interpreted

as additional inputs concentrated at those spatial locations where CF(j) - 0.

However, by equation (4-93), these locations are on the bounding surface of

the system. Thus, the additional terms correspond to inputs, additional to

q(x,t), that act on the boundary, So, of the system.

If we denote the collection of these products of p(x) or its spatial

derivatives with 6{o( )) or its derivatives by iQ{p(X,t),6(a)), it can be

shown, by arguments similar to those of equation (4-101), that equation (4-99)

can be written in the form

itL ,t{s(O)p((,t)} = s(*)q( ,t) +-Q~p(Zt),4(c)} (4-102)

for all 0 and t.

Equation (4-102) is the goveri,,ng equation for the generalized function

s(x)p(l,t) that is valid for all space and time. The field described by this

generalized function is equal to p(x,t) in the volume of interest, VO, and

is zero elsewhere. The boundary conditions, in terms of appropriate
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specification of p(o,t) and its spatial derivatives on So$ are the weighting

functions of the additional inputs described in EQ{p(',t),6(a)}. Thus, by

absorbing the space-limiting function inside the linear operator, we have

transformed a finite space problem with boundary conditions to an infinite

space problem Ath additional inputs concentrated on the boundary.

The Green's function for the space-limited, time-invariant linear system,

as defined by equation (4-102), must satisfy

It,OL-ot~g(,O,t - to)) 6(7 -1 0)6(t - to ) (4-103)

over all x and t for in V0 or on S0. For x0 outside V0 and So$ the

right-hand side can be replaced by any distribution of sources. The Green's

function must satisfy temporal causality and must also satisfy some appropriate

number of spatial constraints or conditions in order that it be a unique

solution to equation (4-103). For the moment, we leave these spatial

conditions unspecified.

We note that the input to equation (4-102) can be expressed as a weighted

superposition of the inputs to equation (4-103). That is,

s( lwao.t) E p*O)Sd I

j 6(X --60)6(t - to)[s(%O)q(ifOt o) +V (P ('X0 to),6[(do] }0 d 0 dt0
_W -00

(4-104)

By assuming that a temporally caesal fori of the Green's function is known and

by once again employing the principle of superposition for linear systems (see

section 3.4.1), it follows that
I-0 00

{JJt, ,9( ,o,t - to[S( olqlo0 to) +ZQ{p(x,to),6[O( O)3)] d 0 t

= s q ,t) + .t), [d . (4-15)

4,4



By: comparisen. of: equations (4-102) and (4-105), it is evident that

s(O)p(Ot) J 40 J(~ 0 't - olx N ')
-00 -. 00

+2QZ(W 0 ,t0 ),6(1(6 0 J 1 0 dto (4-106)

Because we assumed a temporally causal Green's function, the output field

s(1)p('X?,t) also satisfies temporal causality. However, we have not yet

identified the spatial conditions, or constraints, used to uniquely specify

the Greeni's function,, The fact of the matter is that equation (4-106) is a

valid representation of the space-limited output for any set of spatial

cozistraints sufficient to provide a unique'specification of the Green's
function. That is not to say, however, that one can obtain a solution to

equation (4-106) for the space-limited output field for an arbitrary choice of

spatial constraints an the Green's function. Rather, in applying the Green's

* function approach to'space-limited systems, there is an element of art in

specifying the spatial constraints on the Green's function.

Note that the first tern in~ the integrand of equation (4-106) is simply
the contribution to the output from the inputs within V 0. The second term

in the integrand represents the contributions to the output from the additional

inputs on the bounding surface, So , of the system. The goal, in selecting

the spatial constraints that uniquely specify the Green's function, is to

obtain the simp4lest, solvable mathemoatical form of equation (4-106). For
.systems with iaputs io V09, it is desir'able to specify the spatial constraints

such that the terms related to the additional surface inputs vanish. Such a
9

choice leads to what Ffows-Wiiliais calls the "exact Green's function."
If inputs are applied only to the system boundaries (i.e., q('X) -0 in V())$
thetn it is desirable to choose spatial constraints that minimize the

mathematical comploxity of the integral containing the surface inputs. The

art of-specify-Ing such spatial constraints for space-limited systems can best
be illustrated by artexam-Ple..



Consider the acoustic pressure p(,t) in the semi-infinite space x3 ? 0

resulting from source type inputs, q(Tt), in the space x3 > 0. At the

boundary x3 = 0, either p(x,O,t) or ap(j,0,t)/ax3, where x = (Xlx 2),

is specified.

In the form of equation (4-99), the governing equation can be written

U(x3){V2P1t) - I a2 ( 't = -U( x3)q(',t) (4-107)

where U( ) denotes the Heaviside function. It is easily verified, by use of

equation (2-32), that

92{U(x3)P( ,t)} - U(x3)2p(Ot) + 6(xj) aX 3 +aa {p(t),t)a(x

3P 0ax 3 ajx 3p t)( 3))

(4-108)

Thus, equation (4-107) can be rewritten in the form of equation (4-102) as

vl'u(x3 )p(X,t)) . a 2(u(x3)p( ' t))

c 2 at2

-U(x3)q(t) + 6(x3) a + a4 -3)

The 6ren's function is defined is the solution to

V -9 a,%(Vo,t - tt ) ( -( 6(t - to) (4-110). . at z

that satisfies temporal and spatial cauiality, It then follows, by equations

(4-104)0 (4-106),.(4-109), and (4-110), that

(xgflo o Oti0 { p(0
3 .t t O)JU(x 3 0)q(Ot 0 ) - 6(x30 ) X30

- -3 (P~o.t0)S(30)1} diro dt0 , (4-111)
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whene Ix (x 209x30].

By integrating the terms containing 6(x 30) on x310 (the first term
directly and the second term by parts), we obtain

U(X 3)P(X,t) = I J %, - t 0)U(x30)q(10,t0) di 0 dto

-00 -00

-~,A~~ o ap(io,0,t0) 1~i 0t . (4-112)
g~x;~0;t -t0) 8x30  1~ d

where Xodenotes (x 10 20]. Note, by equation (4-112), that the space-
limited field U(x 3)p("X,t) is expressed as the sum of a volume integral and a
surface integral, The volume integral represents the contribution to the
field from all inputs within thb space x 3 > 0. The surface integral

represents the contributions associated with those inputs on the surface

X3-0 required to produce the desired boundary conditions.

For specific types of inputs and boundary conditions in this acoustic half

space, we can use equation (4-112) to illustrate the rationale for selecting
spatial tonstraints on the Green's function.

Consider first the case where the input, q('X,t), is nonzero. If the
pressure field at the boundary x 0 is specified to be p(2i,0,t) -0 for
all ?i and t, it is immnediately evident, by equation (4-112). that if we subject

tAhe Green's function to the spatial restriction g("X;4,0;t - to) 0 for
all 'X6, N, and t - to, then the surface integrel vanishes and the space-
limited pressure field is given by

U(x3)P(*xlt) jJ gf ,~, -XX t)U(x30)q(%,to)d 0  t (4-113)
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Because the spatial restriction on the Green's function causes the surface

integral to vanish, this Green's function is, by definition, exact.

Spatial restrictions leading to an exact Green's function can also be

defined when ap(Z,t)/ax = 0 at the boundary x3 = 0 for all x and t.33
That is, by equation (4-112), it is evident that if we apply the restriction

ag( ;2O'; t - tO)/ ax30  0 to the Green's function for all ', NO,

and t - t0, then the surface integral vanishes and the space-limited

pressure field is given in the form of equation (4-113).

Consider now the case where the input, q(x,t), is equal to zero for all

X and t. If either p(x,t) or ap(")ax3 is specified to be zero on the

boundary x3 = 0, then it follows, from equation (4-113) and the uniqueness

of U(x3)p(,t), that the output pressure field is zero for all space and

time. Thus, when q(Zt) = 0, the system has a nonzero response only if p(I,,t)

or ap(tt)/8x 3 is specified to be nonzero at x3 = 0. If p(Z,t) is

specified to be p0(x,t) at x3 = 0, it follows from equation (4-112) that

the simplest mathematical expression for the space-limited output results when

we require th:t 9(i;?,O;t - to 0 for all . 401 and t - t0. In this

case, the space-limited output field is related to the specified pressure at

the boundary by

C(a9(1;O- 9t -_ to)- j t 414

By similar arguments, a spati! constraint can be applied to the Green's

function to reduce equation (4-112) to a single integral when ap/ax3 is

specified to be nonzero at x3 - 0. The specification of this constraint is

left as an exercise for the reader.

The above examples illustrate the manner by which spatial constraints on

the Green's function can be selected to simplify the mathematical form of the

solution for one particular type of space-limited system. It should be

emphasized that the results of these examples cannot be extended to other

systems because the additional inputs generated at the boundaries by

incorporating the space-limiting function inside the linear operator depend on

the form of the linear operator governing the system.
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For an arbitrary, space-limited, time-invariant linear system, the general
Green's function solution is given by equation (4-106). However, without

knowledge of (1) the form of the governing partial differential equation,

(2) the definition of the space-limiting function, and (3) the boundary

conditions for the particular system of interest, the specific mathematical

form for the additional inputs on the bounding surfaces cannot be defined.

4.3.2 The Wavevector-Frequency Response of Space-Varying Systems

By appropriate Fourier transformations of the Green's function solutions

for the forced response of space-varying systems, the wavevector-frequency

transform of the output field can be related to the corresponding transform of

the input field.

Owing to the differences in the mathematical forms of the Green's function

solutions between the infinite, nonuniform and the space-limited types of

space-varying systems, it is convenient to treat the wavevector-frequency

responses of these two types of systems separately. We will start with the

infinite, nonuniform type.

4.3.2.1 WavevectoR-FEequencyResponse of Infinite, Nonuniform, Time-

Invariant Linear Systems. The space-time output field for an infinite,

nonuniform, time-invariant linear system is related to the space-time input

field and the Green's function by equation (4-91). We first express the

space-time input field as the superposition of harmonic plane waves in the

form of equation (2-47). That is,

f(t (2w) - J fJFZ.sa)expfi(a-.X + sit*) da~ d~ , (4=115)
-oo -c

where Q ad u denote, respectively, the wavevector and frequency components

of the input field. Substitution of equation (4-115) into equation (4-91)

yields

expfi0;. o • z(t - T)} d~o dT d d . (4-116)
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If we define the wavevector-frequency transform of the output field by

P(r)= J p(T,t)exp{l(k.* ot)) dE dt , (4-117)

-. 00 --Go

it follows, from equations (4-116) and (2-38), that

0

KIM = (2w)-3  G(k,-aow)F(aa) da, (4-118)

where - denotes the vector (-v- 2,-u3) and G(E,O,o) is the two-

wavevector-frequency response of the system, defined by

go04000

* ff J =9(XXo9)exp{-i(Z-'Z + -O0 + " -)} di d 0 d . (4-119)

Equation (4-118) relates the wavevector-frequency description, or

transform, of the output of an infinite, nonuniform, time-invariant linear

system to the corresponding description of the input and the two-wavevector-

frequency response of the system. Note that for this space-varying system,

the wavevector-frequency transform of the output field is expressed In terms

of an integral of the wavevector-frequency transform of the input field and

the two-wavevector-frequency response of the system. This is in contrast to

the algebraic relationship obtained in the wavevector-frequency domain for the

space- and time-invariant systems (see section 3.4.3). Further, for the

infinite, nonuniform system, the wavevector-frequency response of the system

is seen to be a function of two wavevector variables, whereas the wavevector-

frequency response of the space-invariant system was a function of a single

wavevector. This, of course, is a consequence of the separate dependence of

the Green's function for the space-varying system on ' and ;0 whereas the

Green's function for the space-invariant system depended only on the difference

between X and 0
.00

To obtain a physical interpretation of the two-wavevector-frequency

response of the infinite, nonuniform, space-varying system, consider the output
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field resulting from the single harmonic plane wave input field described by

f( ,t) = exp{i(..4 + w0 t)} (4-120)

The wavevector-frequency transform of the input field is then given by

F(k.() = (2-w)6(k ko) 6( u - WO) (4-121)

so, by equation (4-118),

P(kw) = 2wG(I,-kocao)6(W - 0) . (4-122)

However, inasmuch as

p('t) =(20) 4  f fP(, )exp{i(_XZ+wt)} d do, (4-123)

P(C,w) represents the amplitudes and initial phases of the various hamonic

plane waves comprising the output field. It therefore follows, by equations

(4-120)-(4-123), that 2wG(4,-w 0,w) represents the amplitude avid initial

phase of the harmonic plane wave component of the output field characterized

by the wavevector and frequency o resulting from excitation of the space-

varying system by the harmonic plane wave characterized by the wavevector k0

and the frequency o0. Thus, for infinite, nonuniform, space-varying systems,

the two-wavevector-frequency response, , defines, at each frequency,

the response of the system at the wavevector k resulting from excitation of

the system at the wavevector -4.

The conversion, by the infinite, nonuniform, space-varying system, of one

wavevector comWonent of the input field into different wavevector components

of the output field is called wavevector conversion. Recall that, in space-

and time-invariant systems (see equation (3-59)), each wavevector component of

the input produces, at any frequency, only the corresponding wavevector

component in the output field. Therefore, wavevector conversion does not

occur in space-invariant systems. We can therefore conclude that wavevector
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conversion is a characteristic of space-varying systems that results from the

space-varying properties of the system.

Given knowledge of the wavevector-frequency transform of the input field

and the two-wavevector-frequency response of an infinite, nonuniform system,

one can (in theory) predict the wavevertor-frequency transform of the output

field from equation (4-118). Further, as illustrated by equations (4-120)-

(4-122), one can determine the two-wavevector-frequency response of the

system, ( as a function of t at any desired wavevector, Q, and

frequency, e, by exciting the system by a single plane harmonic wave

characterized by the wavevector -* and frequency w and observing the output as

a function of k. However, it is evident from equation (4-118) that, given

knowledge of the wavevector-frequency transform of the output field and the

two-wavevector-frequency response of the system, one is faced with the

solution of an integral equation to determine the wavevector-frequency

transform of the input field.

4.3.2.2. Wavevector-Frequency Response of Space-Limited, Time-Invariant

Linear-Sstems. The space-time output field of a space-limited system is

related to the space-time input field, the boundary conditions, and the

Green's function by equation (4-106). For brevity, let us designate the

space-limited input and output fields by

f(It) s(*)q(",t) (4-124)

and

o( ,t) s()p( ,t) , (4-125)

respectively. By substituting equations (4-124) and (4-125) into equation

(4-106), we obtain

I( ,t) J t - t0)(f(- 't ) +E~( 0,t0 6 O())) dJ^ dto

(4-126)
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We will deal with the wavevector-frequency response of space-limited systems

by considering three special cases of equation (4-126).

We first consider the case in which the boundary conditions imposed on the

system are such that it is possible to define an exact Green's function.

Recall that an exact Green's function is one defined in such a fashion that

J Jg(1ot - tO)[zQ{p(jtot),6[d(o(O)]}] d ° dto = 0 , (4-127)

and therefore the output of the space-limited system is given by

I(,t f J9(110't - t )x0, 0  d~t0 dto (4-128)
-00 -00oo(,0t

By following the same arguments used for the infinite, nonuniform space-

varying system, it is straightforward to show that the wavevector-frequency

transform of the space-limited output field, 0(1,w), is related to the

wavevector-frequency transform of the space-limited input field, F(k,w), by

-00

= 2) 3 GI FQ'o a (4-129)

where G(Z,*,w) is the two-wavevector-frequency response of the space-limited

system and is mathematically defined by equation (4-119).

The form of equation (4-129) is exactly the same as equation (4-118), and

the interpretations of this result and of the two-wavevector-frequency

response of the space-limited system are identical to those given for the

infinite, nonuniform system.

For the second case, consider a space-limited system with boundary

conditions and Green's function specified such that

4-50



If g""O' - t0)(ZQ{p(-x0 tO),6[o('X'0 )])] do0 dto s 0 , (4-130)

but such that the product of the Green's function and the additional

forces imposed by the boundary constraints is known. Separate knowledge

of this product and the Green's function is equivalent to knowledge of

zQ~p1O~t).6cF(Z]).Thus, for this case, we assume that the
distribution of inputs at the boundary is known and is designated by

f s(,t). That is,

f s(ot).= - 2{p(,t),&[a(0) 1) (4-131)

By using the notation of equations (4-124), (4-125), and (4-131) for the

space-limited inputs within the boundaries, the space-limited output, and the

distribution of inputs on the boundary, respectively, equation (4-126) can be

rewritten as

o(xt) = .li "t -""r (4-12
o(f ,)o(t - t o)f( o,tO) + fs(1O,tO)j d-0 dt0  -132)

It follows, by arguments similar to those used above, that the wavevector-

frequency transfonv of the space-limited output is given uy

-3 C

where F (1,6) denotes the wavevector-frequency transform f,,..t). Note

that, with the exception of the presence of the additional input term

associated with the boundary forces, the form of equation (4-133) is identical

to that of equation (4-129).

As an example of a space-limited system with known boundary inputs,

consider the semi-infinite acoustic system described in section 4.3.1.2, where
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the source inputs, q(',t), in the space x3 > 0 and the normal derivative of

the pressure field at x3 = 0 are specified. The general Green's function

solution for this problem is given by equation (4-112). For notational

simplicity, we define

o(x,t) =.U(x 3)P(Xt)

and (4-134)

f(x,t) = U(x 3)q(x,t).

Also, we specify the normal derivative of the pressure at x3  0 to be

ap(?,O,t)
x = a(&,t) , (4-135)

where a(x,t) is a known function of x and t.

For this example, the Green's function is uniquely specified by requiring

that the solution to equation (4-110) be restricted by

ag(X; ,o.Ot - to) (4-136)

ax

Thus, by use of equations (4-112) and (4-134)-(4-136), the space-limited

pressure field is given by

°(0,t) Jg( Ot -tO)f('%to) dZo dto

-0 40

- J(X;4oo;t -to)a(0.t 0) d4 dt 0  (4-137)

By use of the inverse of equation (4-19), that is.
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g(9,0 2)" ff f G(ka,)exp{i(.s + tx0 + 0)} d da d0

-wOa -0 -.0

(4-138)

the wavevector-frequency transform of the space-limited pressure field,

0(;,w), can be related to the wavevector-frequency transforms of the space-

limited source distribution and the specified pressure gradient on the

beundary, F(k,a) and A(k,), respectively, by

0 (EQ) (4 -3  G(k,- ,c(F( ) - A(a,w)} a* . (4-139)

Clearly, equation (4-139) has the mathematical form of equation (4-133) with

F Fs (,w) independent of *3.

As the final case of space-limited systems, consider a system with

boundary conditions and Green's function specified such that

j ,xot - tO)(Q(p(Xo,to),t6[(1 0 )111 dX0 dt0 o 0 , (4-140)

but such that sow terns resulting from the product of the Green's function

and the additIonal inputs associated with Ihe boundary constraints are not

knotwn, This e1tuation can arise when., regardless of the restrictions iWosed

on tbe Gree's function at the spatial limits of the system, the specified

boundary conditions do not provide the information required for the integrand

of equation (4-140) to be completely known.

In this case, the Green's function ( 0,ot - to), the space-limiting

functaon S(*", and the external input field q(t are known. Thus, the first

pnoiuct in the integrand, of equation (4-126) is knowu. In principle, the

integration of this first term can be performed, yielding a known function of

x and t, If we deiote this known function b h(Zt), that is4
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h(x,t) = f 9( ',Xt - t)S(0')q(*o,to) d 0 dt0 , (4-141)
-f 0-00

then equation (4-106) can be rewritteni as

00 00

s()p(,t) = h(,t) + f f g( ."X"ot - to)EQ{p(l0 to),6[(O)] dI0 dto

(4-142)

Because 6[o( 0 l) is the derivative of the known function s(x), the only

unknown in equation (4-142) is the output field, p(",t), over all x and t.

However, as p(x,t) appears on both the left-hand side and in the integrand on

the right-hand side, equation (4-142) represents an integral equation for the

unrestricted output field, p(x,t).

The treatment of such integral eqpations is beyond the scope of this

text. Therefore, no attempt will bc-mad- 'to define or describe the

wavevector-frequency characteristicsff space-llmited systems for which the

output is specified by integral equations. The reader interested in such

systems is encouraged to consult such standard texts as Morse and Feshbach 
10

or Courant and Hilbert.11  However, it should be emphasized that, in this

text, we restrict our attention to space-limited systems for which the

integrand of equation (4-126) is known. For such systems, the input-output

relationships in the wavevector-frequency domain are given by equation (4-129)

or (4-133), as appropriate.

Before we leave the subject of wavevector-frequency response of

space-limited systems, a couple of observations are in order regarding the

two-wavevector-frequency response, 6(ks,), of space-limited systeas.

First, recall that the physical interpretation of the two-wavevector-

frequency response for space-limited systems is the same as that for the

infinite, nonuniform type of space-varying system: that is, k

represents the response of the system at the wavevector Z and frequency

resulting from excitation of the system by a unit amplitude input at the
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wavevector -* and frequency w. Recall further that, for the infinite,

nonuniform system, it was (theoretically) possible, owing to the infinite
extent of the system, to excite the system by an input characterized by a

single wavevector and frequency component (i.e., a harmonic plane wave

characterized by wavevector -a and frequency w). The resultant system output,

in this case, defines the two-wavevector-frequency response of the system,

G(k,,&), over all wavevectors k for those (fixed) input parameters, and u.

It would be desirable to employ such a procedure to determine samplings of the
two-wavevector-frequency response of the space-limited systems that one

invariably encounters in practice. However, owing to the space-limited nature
of the system, no such single wavevector-frequency excitation is possible.

That is, for F(k,w) to be a single wavevector-frequency component, f(x,t) must

be a harmonic plane wave, existing over all x and t. However, by equations

(4-92) and (4-124), f(x,t) is zero outside the spatial limits of the system,

so excitation of a space-limited system by a single harmonic wave is
impossible. Therefore, for space-limited systems, it is impractical to

attempt direct measurement of the two-wavevector-frequency .,esponse of the

system. Rather, common practice is to obtain spatial samples of the impulse

response (or Green's function) as a function of time or freqoency and, by

discrete Fourier transformation of these spatial samples, obtain an estimate

of the two-wavevector-frequency response.

The second observation regarding the two-wavevector-frequency response has

to do with a distinction in terminology. Recall that the two-wavevector-
frequency response defines the conversion, by the space-varying system, of

each wavevector component of the input, at any frequency, to all wavevector

components of the output at that same frequency. This wavevector conversion

can result from either the space-varying properties of the system or from the

boundaries of the system. In acoustics, it is common practice to refer to the

wavevector conversion associated with system boundaries or abrupt discon-

tinuities in system properties as wavevector scattering.

4.3.2.3 Surmar of Wavevector-.Fre uencyResponse Characteristics of Space-

VaryinSystems. The space-varying systems treated in this text are limited

to those in which all inputs (i.e., both external and boundary associated) to

the system are known. We omit consideration of space-limited systems in which

the output can only be specified as an integral equation.
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Fo pc-varying systems with-known 'inputs, 'the relation between the
wavevector-frequency descriptions of the input and output fields, F(k,co) and
0(;~,W~, respectively, has the-general mathematical form

O~~) (2w) kf G( ,w)F(3"8 ) de'. (4-143)

Here, G(k~e,) is the two-wavevector-frequency response of the system and
defines the respon~se of the system at the wavevector t and frequency
resulting from a unit amplitude, plane wave input characterized by the
wavevector -~and frequency wa. Thus, the two-wavevector-frequency response is
a metric of the conversion (or scattering), by the space-varying system, of
each wavevector component (-'*) of the input field, at any frequency, into the
various wavevector components (t) of the output field at that same frequency.

For nonuniform, infinite systems, F(k,w) and O(t,cw), in equation (4-143),
represent the wavevector-frequency transforms of the respective input and
output space-time fields. These fields are infinite in spatial extent.

For space-limited systems, 0(k,w) represents the wavevector-frequency
transform of the space-limited output field and, for systeras with boundary
conditions yielding an exact Green's functioo, F( ,uv) represents the

* wavevector-frequency transform of the space-limited Input field, However, for
systems having boundary conditions incompatible with the specification of at)
exact Green's function, F(tO reprosents the wavevector-frequency transform
of the sum of the space-lirdited input field and the additional space-time
input field imposed by the constraints iat the system boundaries.

.4.3.3 1-11ustratiy 2.xEaM s, of -I e Waveveptor-Freqtjc ,,neofSac~

In this section, we present the wavenumber-frequency response of two
space-limited systems having applicati~on to structural acoustics. These
systemus are (1) the acoustic fioeld in an Infinite half space resulting from
excitation at the boundary and (2) the forced vibratio~n of a simply supported,
flat plate.
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We first treat the problem of the acoustic half space.

4.3.3.1 The Pressure Field in an Acoustic Half Space Excited at the

Boundary. A common problem in structural acoustics is the prediction of the

acoustic field resulting from some specified displacement or velocity field at

the boundary of the acoustic medium. Perhaps the most common version of this

problem is the acoustic field produced in an infinite half space as a result

of a known displacement field at the boundary of the half space.

Consider the acoustic half space depicted in figure 4-5. The half-space

x3 > 0 is occupied by a fluid of density p and speed of sound c. The space

x3 < 0 is vacuous. The displacement field on the plane x 3 = 0 is specified

to be w(x,t), where x denotes the two-dimensional vector (xl,x 2). The

consequent pressure field, p(x,t), in the space x3 > 0 is desired. The

pressure in the space x3 < 0 is, of course, zero.

The pressure in the half-space x3 > 0 is governed by the homogeneous

wave equation

VP(Xt) - 1 E_ 0 1 x3 > 0, (4-144)
c at2

for all X and t. The linearized momentum equation for the acoustic fluid

requires that, at the boundary x3  0,

ap(QO,0 a w(K,t)

Ox 3  at

In addition, the pressure field must satisfy the causl condition that

(because 'Motion at the-plane x - 0 is responsible for the pressure field in

the space x > 0) the pressure must propagate away, or decay with incre-sing

distance, from the boua/ry.

A Green's function solution for this space-1itmited acoustic field could be

obtatied by recognizing thit system as a special case of the illustrative
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0 x2

Figure 4-5. Geometry of the Acoustic Half Space

examiple presented in section 4.3.2.2, equations (4-134)-(4-139). In this
special case, q(tt) in equation (4-134) is equal to zero inasmuch as there
are no sources in the space xI3 > 0, and the boundary condition of tquation
(4-MS) is replaced by that of equation, (4-145). The Green's function is
governed by equation (4-110) for x 0 0. For x 0< 0, the Green's

* functton is governed by a simailar inhomogeneous wave equation, but with an
initially unspecified distribution of sources on the right-hand side. This
distribution of sources is then uniquely defined by requiring the Green's

function to satisfy spatial and temporal causality and the restriction of
equation (4-136).

A wore direct and coanonly used approach to this acoustic half-space

problem is to solve the homogeneous wave equation (equation (4-144)) subject
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to the boundary condition of equation (4-145). The wavevector-frequency

description of the space-limited pressure field can then be obtained by

appropriate Fourier transformation of the space-time field. This is the

approach that will be presented here.

In light of the emphasis placed on Green's function solutions to space-

varying systems in the previous sections, the reader is justified in asking

why this direct, rather than the Green's function, approach is being adopted.

The answer is that while the Green's function approach is most useful for

developing the general mathematical forms of the input-output relationships

for various types of systems and for introducing certain system concepts, it

is not necessarily the simplest mathematical approach for obtaining a solution

to a specific system. For the problem at hand, it is mathematically simpler

to solve the homogeneous wave equation, subject to a boundary condition, than

to solve the inhomogeneous wave equation, subject to a constraint on the input

field. Whichever approach is taken, however, uniqueness demands that the

solutions be mathematically equivalent.

With apologies for this lengthy preface, let us proceed with the solution

for the problem of the acoustic half space, driven at the boundary.

The acoustic half space is invariant in time and in the two-dimensional

spatial vector X. Therefore, we assume that the pressure field can be written

in the form

P( ,X3,t) : (2w) 3  P(L,X3,)exp it -X + t)) dt d , x3  > 0
- 40

(4-146)

where k denotes the two-dimensional wavevector (kl,k2). Substitution of

equation (4-146) into (4-144) yields

soj0d PVkX3,) + (k 2 k2 )P(kx c)1exp{1(k.x + t)) dk do 0

I[ dx 2  0o3

(4-147)

4-59



for 0 > and:for all'x and t. In equation (4-147), k0 denotes the

.acoustic wavenumber, w/c, and k denotes 4 7k1  +k the magnitude

of the two-dimensional wavevector, k. Inasmuch as equation (4-147) is valid

for any choice of 2[ or t, It follows that

d 2PKx 3 q) + (k02 - k2)p(kx 3,) 0 , x3 > 0 , (4-148)

dx3

for all k and a. The general solution of equation (4-148) is

P(k,Ox ) A(k_)exp ,2 x} + B(k,w)exp30i 1-t, xk- , x 3 > o

(4-149)

Substitution of equation (4-149) into equation (4-146) yields the following

expression for the pressure field in the half-space x3 > :

p(x 3,t) - (2w13  [A(k,w)exp1i +.X x3 + Qt]

+ - x3 + OtIj] dk do . (4-150)

The functions A(Kw) and (k,) in equations (4-149) and (4-150) are

determined by application of (1) the causality, or radiation, condition that

requires the pressure field to be comprised of waves which either propagate

away, or decrease in amplitude with Increasing distance. from the boundary

x - 0 and (2) the boundary condition of equation (4-145). Let us first

examine the radiation condition.

At any fixed frequency, , wave components of the pressure field described

by equation (4-150) that propagate away from x3 w 0 in the positive x3
direction are those characterized by the exponential forms
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and

exr V- koi2 7 k2 x3 + ,wt]} I o

when k < Ikol. It is also obvious, by inspection of equation (4-150), that

waves which decay in amplitude with increasing distance in the positive

x3 direction from the boundary x3 = 0 must be characterized by the

exponential form

exp{-- - ko' 31= expj{i o ' x 311 k > 1k01

For the pressure field described by equation (4-150) to be comprised only of

waves consistent with these exponential forms. we require that

A(_,o) = 0 , k IkoI and w > 0 ,

., 0 , k _ IkoI and w < 0 , (4-151)

8(k,w) - 0 , k > IkoI for all .

By defining

1 (L. t) k Ikol (4-152)
.° Alk_#w) w < 0<

and

P * A(k,w) . k > Ikol for all ( (4-153)

we can express equation (4-150) in a form that satisfies the causality (or
radiation) condition. That form is
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-P ~t) (2w) cfexpikx 0 k~34 - k2/ 0  ~k

+ J P(,( ,)exp{j tT,2 x, }exp(is.2.} 1kepiwl
k>1k01djxIl)ld

(4-1 54)

We now employ the boundary condition of equation (4-145) to determine
P (kw) and P 2(k~co). This is most easily accomplished by first writing
w(2i,t) in the form

w(K,t) = (2w)- 3  f f W(k()exp~i(k-2L + t)) dk, dw (4-155)

Then, by use of equation's (4-154) and (4-155) in equation (4-145), we obtain

2f {~,w J i ik04 -k 0 2 P1(k$W)1exp{i(L.?L + ot)J d

+[100w(ho() + 4C k P2(k'cW)]expfi(k-x + ot)} dk} dto 0

(4-156)

which is valid for all 21 and t. It therefore follows that

2ipw W~~w

0 1 - ~k A2

and (4-157)

4k2 -k2
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Substitution of equations (4-157) into equation (4-154) yields the following

expression for the space-time pressure field in the half-space x3  0:

pGox t 1P 2 W(is)p(Ii(3* ) J3
-3 -~ L 0  ko/1 - k2/ko

expI[k.x - kox3  1 - k/k02 + wt]} dk

-W - (k") exp{-_.4 k2 - k0 2 x3 exp{ikx + wt) dk dw
k>lkoj k 2

(4-158)

The pressure in the half-space x3 < 0, it will be recalled, is zero because

that space is vacuous.

Comparison of equation (4-158) with equation (4-146) reveals that

P(k.,X3#w) can be described in the half-space x3 > 0 by

i,- W ( , - exp k X3 I -k 2 0 , k IkO

P(&-#x 3'

ill4m 2 ep Z X31 k > IkoI

(4-159)

Of course, P(k, x3.) is equal to 0 for x, < 0.

The complete wavevector-frequency transform of the pressure field in the

half space is obtained by Fourier transformation of P(Kx 3,W) on the X3
variable. This complete wavevector-frequency transform of the pressure field,

denoted by P(k,k3 ,Q), can be defined from equation (4-159) by use of the

.Heaviside function. That is,
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k0fk;0  U(x )exp{i[k 3 + k0  1 k2/k021X3} dx3
koI k2 - k <. 1k01

2f 2 1JU(x 3)ex~l-i[k, i 4J"- k02 Jx3 I dx3  k k> 1k01

0 00 (4-160)

The Fourier transform applicable to the wavenumber range k <. Ik01 can be

recognized as a Fourier transform of the Heaviside function U(x 3).

Papoulis 12shows that

J I(x)exp(-ikx) dx = wak) + 11(1k) .(4-161)

.40

The transform applicable to the wavenumber range k > Ikol can be evaluated

by simple integration so, by use of equation (4-161), it is straightforward to

show that the com~plete wavevector-frequency transform of the pressure field in

the half space is given by

1o - k2/k 02 +ia~ k041 - k/k2} 51

+ k Iko

k- k 2 + ik k J o

(4-162)

Equations (4-159) and (4-162) repv'esecht two alternative forms by which a

wavevector-frequiency description of the pressure field can be related to the
wavevect-oi-frequency description of the displace~nont field at the boundary

x*0. Equation (4-159) expresses the complex amplitudes of those waves of

the form exp{(~k-x + wt)l that comprise the pressure field on any surface of
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constant x3, in the range 0 < x3 < 0, as a function of the complex
amplitude of the corresponding wave component of the displacement field on the

boundary. Equation (4-162) expresses the complex amplitudes of plane wave

components of the form exp{i(k.x + k3x3 + ot)} that comprise the pressure

field as a function of the complex amplitudes of the sutface waves of the form

exp{t(k.x + wt)) that comprise the displacement field at the boundary. Before

exploring the wavevector properties of these descriptions of the half-space

pressure field, it is instructive to examine certain physical interpretations

of these results.

Consider first the pressure field in the half-space x3 ? 0 resulting

from an impulsive displacement, in space and time, at the boundary x3 = 0.

Let the pressure field resulting from this impulsive displacement field be

denoted by h(K,XO,x3,t,to): that is,

p(?,x 3,t) - h(ILOx 3,t,to)

when

w(&,t) - ( - 10)6(t - to) . (4-163)

By equations (4-155) and (4-158), it follows that, for x3 > 0.

hxp i t,( O  - 4) - 0 3.4 k/A02 + w(t - to)]) ,

2
- 2 exp4-Vk'-k 2 X 31

k>Iko0i 0

-exp~i[_(2 - 0) + w(t - to)} d1 d (4-164)
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For x3 < 09 h(Xvox 3,t,tO) is equal to 0. By the form of the exponents

in equation (4-164), it is evident that

h(1,ox 3,t,tO) ,. '(2 - XX 3 ,t - to) (4-165)

This form of the impulse response is consistent with the invariance of the

acoustic half-space system in the x and.t variables and with the space-limited

nature of the system in the x3 coordinate.

By writing W(I,w) in equation (4-158) as the multiple Fourier transform of

w(jo,tO) and interchanging the order of integration, it is easily shown,

by use of equation (4-164), that the pressure field in the half space is

related to the displacement field at the boundary and the impulse response by

p(,x 3,t) J h(2 - 3 - to)W(o,to) d 0 dt0 . (4-166)

It is straightforward to show, from *quation (4-166), that

P(kX3,U) = H(k'x3,W)W(LQ )  (4-167)

and

P(kk3*'w)  1 (k ,k3,QM(w,)  (4-160)

where H and I denote the two- and three-wavenumber-frequency transforms,
respectively, of the impulae response, h. 8y comparison of equation (4-167)

with equation (4-159), it is evident that, for x > 0,

4,3 - k 2 2 2 0

expl-i I k X k4-1k69)
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and H(k,x3,w) = 0 for x3 < 0. Similarly, comparison of equation (4-168)

with equation (4-162) reveals that

+ 1 , k < Ikol

2 2
k3 + ko k1-k/k0

2

kc > 1k01
k 2 - k 0 

2 + 4 jk _o

(4-170)

The quantity R can be interpreted, from equations (4-146) and (4-167). as

the wavevector-frequency response of the acoustic half space to displacement

at the boundary x3  0 0 That is, by arguments similar to those used in

section 3.4.3, Hl(.,x 3,w) can be shown to represent the ratio of the

space-time pressure fHeld to the space-time displacement field at x3 0

.when that displacement field is a complex wave of the tom expi(&,4 wt)).

.i(k3.kV), the Fourier traosform of H(k&,x,,4) on the variable x3, is

..simply the ratio of the complex amplitudes of the plane wave components of the

for mexpi(. + k. 3 X 3 + At)). that coprise the pressure field to the

complex amplitudes, at corresponding values of a and w, of the waves of the

form expt(iW'. + W) that comprise the displacement field at x3  0.

One might be reasonably. curious as to the relationship between the impulse

r sponse, h(x - , 3 ,t t0 ), and the Green's function, 9(4, oxt - to),

for the semi.-mrite acoustic system presented as an illustrative example in

section 4. 3.2.2 (see'equation (4137)). To specialize tUds illustrative

example to the problem.of the atoustic. IaEf space driven at the boundary, we

first note that, inastuch as the half space is driven orly at the boundary, no

sources are prosent. i the space x > 0, and tbereby q(I,t) =0. By

equation (4-134). this implies that f(Et) = 0, Further, from the boundary

0- ,,dition for the acoustic half spAce (equation (4-145)), it follows that

a(1,t) in equatica-(4-135) is given by
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a 2w( it)S"a(x,t) = - t2  (4-171)
at 2

With these conditions applied to equation (4-137), the Green's function

solution for the acoustic half space driven at the boundary can be written

C a2W(Xo,to)dx t(41)

o(0,t) = -g(x,x ;o,O;t -to) p 2 -odt (4-172)
-1 -1 3 at0

By recognizing that the acoustic half-space system is invariant in the

two-dimensional spatial vector, x, and by using equation (4-134), it follows

that equation (4-172) has the form

0 0 0 02 'N t o ) d o t

U(x3)P(X't) = I Ig(K - o;x3 'O;t - to) P a2
- - at0

(4-173)

As the only x3 variation in the integrand of equation (4-173) is that

associated with the Green's function, it follows that the Green's function

must be of the mathematical form

g~x- 0o;X3,0;t - to) = U(x3)g'(K - o;x 3,0;t - to) , (4-174)

where g' is a function equal to g in the half-space x3 ? 0, but of arbitrary

specification in the space x3 < 0.

The product of the fluid density (p) and the second derivative of the

boundary displacement (w) with respect to time in the integrand of equation

(4-173) can be interpreted as the inertial force of each unit volume of fluid

at the boundary. It follows that the Green's function, g(x - o;x 3,0;t - to),

can be interpreted as the pressure field resulting from an impulsive inertial

force applied to a unit volume of fluid at the boundary x3  0. This interpre-

tation is in contrast to that of Lhe impulse response h(a - h;x3;t - t0).

defined by equation (4-163), which represents the pressure field resulting

from an impulsive displacement at the boundary.
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It is straightforward to .ow, from equations (4-155) and (4-173), that

U(x3)P(i,x 3,) = -G(k;x 3,O;w){P 2W(k,)} . (4-175)

Further, by comparison of equations (4-167) and (4-175), it is evident that

G(j;x 3,;M) = -H(k,x 3,c)/[.W2 2  (4-176)

Clearly then, the wavevector-frequency response associated with the Green's

function is related to the wavevector-frequency response associated with

the impulse response, h(K - Xo;x 3;t - to). By substitution of equation

(4-169) in equation (4-176), an expression for the Green's function,

g(1 - o;x 3,O;t - t0), can be obtained in terms of an inverse Foujrier

transform. This procedure is left as an exercise for the interested reader.

If we denote the three-wavenumber-frequency transform of the Green's

function by a(k;k 3 ,;O)M. it follows from equation (4-176) that

k 0  =- (4-177)

As a final note on the Green's function, it follows from equations (4-134)

and (4-175) that

O(k, k3, ) G , (4-170)

By comparison of equation (4-17) with equation (4-139) (with F(*.W) set to zero

as no sources are present in the space x3 > 0 and with A(,M - pO W(,w)),

there appears to be a difference in the two solutions. However, owing to the

tvariance of the acoustic half-spacq system in the two-dimensional spatial

vector x and in 'time, 'it way be shown that G(k,*, ) in equation (4-139) takes

the folu

(s)2 V

-6m G(.k 3 ;a 3 #0) (4-179)
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where G is the multiple Fourier transform of g(1 - o;x3,x 30 ;t - to)
on the variables x - N' x3' x301 and t - to. By substituting

equation (4-179) into equation (4-139) and performing the integration on s,

we obtain

O(k,k, 2 G(k 3 ;$a 3 ;) da3  . (4-180)

However, the integral in equation (4-180) can easily be shown to be equal to

G(K;k 3,0;w). Thus, the result of equation (4-178) is not in conflict with,

but rather a consequence of, equation (4-139).

In some of the literature dealing with structural acoustics (see, for

example, reference 13), the pressure field in the acoustic half space is

expressed in teWns of the spectral surface impedance of the acoustic medium.

The spectral surface impedance, Zs, is defined as the ratio of the wave-

vector-frequency transform of the pressure field at the boundary x3 = 0 to

the wavevector-frequency transform of the normal velocity of the boundary.

The wavevector-frequency transform of the pressure field at the boundary is

specified by equation (4-159), evaluated at x3 = 0. The normal velocity at

the boundary, v(a,t), is the temporal derivative of the displacement field,

w(K,t). By use of equation (4-155), it is easily shown that the wavevector-

frequency transform of the velocity field, V(kw), is related to the wave-

vector-frequency transform of the displacement field by V(K,w) = iww(kw).

It therefore follows that the spectral surface impedance is given by

A concept often used in conjunction with the spectral surface impedance in

acoustics is that of the spectral transfer function. The spectral transfer

function of the pressure field in the half space, denoted by T(k, x3 W), is

the ratio of the wavevector-frequeocy transform of the pressure field at a

distance k3 from the boundary to the wavevector-frequency transform of the

pressure field at the boundary. That is,

T(kx3V'W) V POL.O,) "(4-182)
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It follows, by equations (4-181) and (4-182), that the wevevector-frequency

transform of the pressure field in the half space is related to the spectral

surface impedance and the spectral transfer fuuiction by

P(k=x3,W) = Z s(k,)T(kx 3 ,w)V(k) . (4-183)

By comparison of equation (4-167) with equation (4-181), the spectral

surface impedance is related to the wavevector-frequency response,

H(k,x3,w), by

Z = H(k_,O,W)/(iW) . (4-184)

Further, by equations (4-167) and (4-182), the spectral transfer function is

related to the wavevector-frequency response by

C&Q) • (4-185)

By the above arguments, it is evident tnat the w6vevector-frequency transform

of the pressure field in the half space can be expressed in terms of several

different, but related, descriptors. These various descriptors relate the

wavevector-frequency description of the pressure field to wavevector-frequency

descriptions of different physical characterizations of the excitation applied

at the boundan. The selection of any particular descriptor for the

wavevector-frequency analysis of acoustic fields is usually made for reasons

of mathematical convenience or personal preference.

Figure 4-6 illustrates the mgn'tude and phase of the wavevector-.frequency

response, U(K, 3 , ), of the acoustic half space for an arbitrare, but

positive, freque ntcyat three values of the dimepsionless spatial variable

k X 3 . Recall, by equation (4-166), that H(kRx 3 , )expi(k-s + Wt)) is

the pressure field that results fro the displacemenit field exp(i(P,. + wt)}

applied at the boundary, X, 0..

To aid in the interpretatioo of figure 44, iAt shoutld first be noted, frkO

equation (4-169), that the argument (or phase) of Hi(,xw30) Is given by

• , . . . . .. 1
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(sgn() I - - k2/ko2 x , k 1k01
arg{(kx 3,P)} = j k (4-186)

Therefore, It follows that the pressure field resulting from the displacement

field exp{i(j L + (at)) applied at the boundary can be written

IH(kx 3 9 w)l exp{i[t.x - kox3  1 - k + t + (w/2)sgn(a)]

IH(k,x 3 , w)l exp{i(-kox + ,t) + w) k > Iko.

(4-187)

By equation (4-187), it is evident that, if the magnitude of the wavevector,

k, characterizing the displacement field, exp{i(k.? + wt)), is less than or

equal to the magnitude of .the acoustic wavenumber, k0 = w/c, of the fluid

medium, the pressure field in the half space is a plane wave of amplitude

IH(k ,x3,u)I, which is characterized h tth wavevector k in the plane of the

boundary and by the wavevector -o0 1 - k2/ko 2 in the x3 coordinate

direction. Therefore, on a plane parallel to the boundary, this wave

propagates in the same direction and with the same phase speed as the

displacement wave at the boundary. In the x3 coordinate direction, the wave

propagates away from the boundary at an angle e to the plane of the boundary.

The angle 0 is given by

e -"arcta" j k ' (4-188)

The phase speed, c3, of the wave in the positive x3 direction is given by

C

C 3  2 ' (4-169)
I1 - /o

When the magnitude of the wavevector characterizing the displacement of

the boundary is greater than the magnitude of kO, equation (4-187) reveals

that the pressure field in the half space, at any positive value of x3, is

characterized by a wave of the same form as that applied at the boundary: that
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is, by expfi(k.x + wt)). However, the pressure wave is 180 degrees out of

phase with the displacement wave. The amplitude of the pressure wave is

specified by IH(k,x3,c )l and, according to equation (4-169), decreases

exponentially with increasing distance (x3) from the boundary. As the

pressure wave is characterized, on any plane of constant and positive x3 , by

the same wavevector and frequency as the displacement wave at the boundary,

the wave propagates on that plane in the same direction and with the same

phase speed as does the wave on the boundary. These waves that propagate

parallel to the boundary, but decrease exponentially in amplitude with

distance from the boundary, are called evanescent waves.

Figure 4-5(a) presents the magnitude of H(k,x 3 , ) normalized by pcw, the

value of H(k, x3,() at k = (0.0), as a function k (the magnitude of k). From

the above discussion, the magnitude of H(k,x3,w) represents (1) the

amplitudes of the acoustic waves that propagate in x3 in the wavenumber

range k < Ikol and (2) the amplitudes of the evanescent waves that only

propagate along surfaces of constant (and positive) x3 in the wavenumber

range k > IkoI. The normalized magnitude of H(kx 3,) is presented for

three values of the normalized coordinate k0x3: 0, 0.5, and 1.

Note first that, because the acoustic half-space system is space invariant

in the two-dimensional vector variable A, the wavevector-frequency response,

H(kx3,o), is a function of only the magnitude of the two-dimensional

wavevector k. That is, owing to the spatial invariance in ), the response of

the half space to a wave of the form expfi(k?,x + wt)}at the boundary is

independent of the direction of propagation of the applied wave.

Note further that, in the wavenumber ra~ige k < Ikol, the magnitude of

0(_,x3,a), and thereby the amplitude of the acoustic wave radiated into the

half space, is independent of the variable x 3. However, as is evident by

figure 4-6(a), the amplitude of the evanescent waves associated with the

wavenumber range k > IkoI decreases with increasing positive values of x3
and with increasing values of k.

Note that when the magnitude of the wavevector that characterizes the wave

of displacement, expfi(k-. + ot)), at the boundary is equal to Ikol, the
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magnitude of H(k,x3 ,w), and thereby the amplitude of the radiated pressure

field in the half space, becomes infinite. However, if the pressure field had

infinite amplitude at the boundary, a force of infinite amplitude would be

required to initiate any displacement of the boundary. Thus, the infinite

value of IH(k,x3 ,c)l at k = Ikol is best interpreted as a statement that

the surface impedance of the acoustic half space becomes infinite at k = Ikol,

and thus no wave of displacement (or, more properly, velocity) characterized

by such a wavevector magnitude can be excited at the surface.

Figure 4-6(b) illustrates the argument, or phase, of H(k.,x3,) as a

function of the magnitude of the wavevector characterizing the wave of

displacement, exp{i(k-.x + t)), on the bounding surface, x3 = 0. In the

wavenumber range k < 1kol, where acoustic propagation occurs in the x3

coordinate direction, equation (4-186) shows the phase to depend on both the

magnitude of the wavevector of excitation, k, and the distance from the

boundary, x3. Figure 4-6(b) illustrates the wavenumber dependency for

k0x3 equal to 0, 0.5, and 1. For wavevectors of excitation greater, in

magnitude, than 1ko, the phase of H(k, x3,0) is independent of k and equal

to W.

The wavevector characteristics of t(k,k 3 0,w), the complete wavevector-

frequency transform of h(x - o,x3 t - to) defined by equation (4-170),

are difficult to illustrate in graphical form. However, they can be described

and interpreted.

Recall that H(k,k 3 ,c) is the ratio of the complex amplitudes of waves of

the form expfi(k.x + k3x3 + wt)) that comprise the pressure field in the

space x3 > 0 to the complex amplitudes, at corresponding wavevectors (k) and

frequencies (w), of waves of the form exp{i(k.'? + wt)} that comprise the

displacement field on the boundary. We have established that a wavevector

component, k, of the displacement field produces a plane wave of pressure in

the half-space x3 > 0 when I!I S IkoI. The propag tion of that plane wave

in x is characterized, for all x 3, by the wavevector, K, and frequency, w,

of the displacement field. The propagation in the x 3 coordinate direction.

however, is determined by the allowable waves (i.e., the free waves) in the

acoustic medium and the radiation condition that waves in the acoustic half
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..space must propagate in-the positive x3 direction (i.e., away from the

boundary).

It is straightforward to establish, by arguments similar to those used in

section 3.3, that free waves in an infinite acoustic medium are governed, in

the wavevector-frequency domain, by

[k12 + k22 + k32 _ (w/c)2 ]P(kk 3,) = [k2 + k32 _ ko2]P(k,k3,W) W 0

(4-190)

For fixed values of k,, k2, and w, it follows that the wavevector-

frequency description of allowable free waves in an infinite acoustic medium

is of thq form

P(j-k 3 -w) =Aft.w)4{k 3 -k 0 1 - k2/k02 B(i.064k 3 .. 1-k/ 2 }

(4-191)

The first term on the right-hand side corresponds to a wave propagating in the

negative x3 direction, and the second term corresponds to a wave propagating

in the positive x3 direction.

Note that, for k S 1k,,the first teni on the right-hand side of

equation (4-170) is of the form of the second term on the right-hand side of

equation (4-191) and therefore corresponds to a free acoustic wave propagating

in the positive x3 direction in an infinite acoustic medium. The values of

k and w associated with this wave are dictated by the wavevector-frequency

conponent of interest in the displacement field. The amplitude of this free

wave is seen., in equation (4-170), to be a function of the wavenumber and

frequency of the boundary excitation.

The acoustic half space, however, Is not an infinite acoustic medium; it

is space limited in the x3 coordinate. Therefore, in the wavenumber range

k :j IkoI. the free wave must be augmented by other wave components to

eliminate the pressure field in the space x3 < 0. The second term an the

right-hand side of that portion of equation (4-170) applicable to the

wavenuzber range k S Jkoi defines these additional wave components. For a
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given wavevector-frequency component of the displacement field (and thereby

given values of k and w), it is evident that the largest of these additional

components occurs at k3 = - - k2.

For a wave component of the displacement field characterized by a

wavevector and frequency such that k > 1k0 , we have established that the

resulting pressure field, on any plane of constant and positive x3,

propagates in the same directio' and with the same speed as the displacement

field. However, the amplitudt of this pressure wave decreases exponentially

with increasing x3. In the wavenumber range k > Ik01, equatien (4-170)

defines the complex amplitudes of that combination of plane waves of the form

exp{i(k-K + k3x3 + wt)) that produces such an evanescent wave field for

each corresponding wavevector, k, arv, frequency, o, component of the

displacement field on the boundary. In this wavenumber range, it is easily

established from equation (4-170) that the magnitude of H(k,k 3 ,a) is

inversely proportional to k2 + k32 - k 2 and is therefore largest

when the magnitude of the wavevector t0 (k1,k2,k3) is greater than, but

in the neighborhood of, koJ: that is, when

k4 k 2 +k2 +k2 Io
k1 - - 2  *k3  11

While it is not obvious how the distribution of plane waves in equation

(4-110) produces a pressure field that decays in amplitude with increasing

positive values of x 3 when k > jkOj, it should be noted that, in the

conplex k 3 plane, t(,kV3,) is characterized by a simple pole on the14
positive, imaginary k3 axis. by the Cauchy integral theorem, this pole

corresponds, under Fourier trapsformation of H on k3 to the exponential
decay noted in 0(_k,x w) for pot,4 ive x3 and to zero for negative x

To sumarize, we have presented two alternative wavevector-frequency

descriptions of the pressure field produced in an acoustic half space by a

prescribed displacement field at the boundary. This acoustic system is space

invariant in the two-di ensional space _x (xi,x 2 ), but is space limited in x3 .

One wavevector-frequency description is the Fourier transform of the

pressure field on only those variables over which the system is invariant:
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that is, the spatial vector variable x and time. In this case, the

wavevector-frequency transform of the pressure field, P(k,x3,w), was shown

to be equal to the product of the corresponding transform of the displacement

field at the boundary, W(k,w), and the wavevector-frequency response of the

acoustic half space, H(k,x3,w). This wavevector-frequency response was

shown to be related to the spectral surface impedance, Z(k,w), and to the

corresponding wavevector-frequency transform of the Green's function,

G(k;x3,,). The magnitude of the wavevector-frequency response (and that

of these related descriptors of the system response) was shown to be greatest,

for all x3  O, at those wavevectors equal, in magnitude, to the free

wavevector, kO, of the acoustic medium.

The second wavevector-frequency description of the pressure field,

FQk k3,'), was formed by Fourier transformation of the space-time pressure

field on all independent variables (i.e., on x, x3, and t). This transform

of the pressure field was shown to be equal to the product of the wavevector-

frequency transform of the boundary displacement field, W(k,a), and thte

Fourier transform of the wavevector-frequency response, H(k,x3,), of the

acoustic half space on the spatial variable x3. This complete wavevector-

frequency transform of the displacement impulse respohse, h(. - XOx 3,t - tO),

was denoted by H(k,k3,) and was shown to represent the ratio of the co.plex

amplitudes of the plane wave components of the form exp{i(Qq + k3x 3 + 001

cmprising the pressure field to the complex amplitudes, at corresponding

values of k and u, of the waves of the form exp(i(kA. $.ot)} comprising the

displacement field at the boundary, It was shown that this complete

wavevector-frequency response, I(k,k.,.), was characterized by discrete

wavevector contributions (i.e., delta functions) on the hemisphere defined by.

k2 + k32 f k 2 + k22 + k 3  k k , 0. Further, the magnitude of

H( k 3,w) was shown to approach infinity when the magnitude of the

wavevector k =,(kl,k2,k3) approached the Wgnitude of the free wavenumber

of the acoustic medium, kO.

The point to be stressed is that the magnitude of the wavevector-frequency

response, in either the two- or three-dimensional wavevector form, of this

boundary-excited,.space-varying acoustic system is greatest at wavevectors

equal, In magnitude, to that of the free wavenumber of the acoustic medium.
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Recall, from chapter 3, that the magnitude of the wavevector-frequency

response of space- and time-invariant systems was also found to be greatest at

wavevectors equal, in magnitude, to that of the free wavenumber of the system.

4.3.3.2 The Forced Vibration of a Simply Supported Plate. The free

vibration of a simply supported plate was treated in section 4.2.2 to

illustrate the wavevector-frequency properties of a free system, space limited

in two dimensions. Here, to illustrate the wavevectordfrequency properties of

a forced system that is space limited in two dimensions, we investigate the

forced vibration of the simply supported plate.

In this example, the simply supported plate illustrated in figure 4-3 is

subjected to a force per unit area, f(Kt), that is considered positive when

it acts in the direction of positive displacement, w(L,t), of the plate. To

simplify temporal causality arguments, the plate is subjected to a damping

force per unit area equal to raw/at, vhlch opposes motion of the plate. By

!!sing the notation of section 4.2.2, the displacement field of the plate

resulting from the externally applied forcing field is governed, over

0 xI < L1 , 0 < x2 < La, and all t, by

aw(lit) a 2wOa t) 1412
O()1 (t tat z 2 O'.

where 0(0 is the two-dimensional space-limiting function defined by equation

(4-45). The displacement field in the space outside the physical extent of

the plate is assumed to be zero. At the boundaries of the plate, the

displacement field must satisfy the simply supported conditions specified by

equations (4-46) and (4-49).

The si4ply supported plate is a causal, time-invariant system, and it was

established in section 4.2.2 that the normal modes of the plate, anW,

defined by equation (4-53) individually satisfy the simply supported boundary

conditions. We therefore assume that the displacement field can be expressed

in the fora

w('Xt) A20  A((4 OXp(iot) dw' (4-193)
04. n.1 i~
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over 0 x1 <L and 0 < x2 < L, for all t. We also assume the forcing

field, f(x,t), can be expressed by

f(xt) = (2) 1  J Bqs()aqs(l )exp(ot) do (4-194)e- q' si:
over 0 < x1 < L, and 0 < x2 5S 12 for all t. Substitution of equations

(4-193) and (4-194) Into equation (4-192) yields

'[ n {D[(uvL1) 2 + (nw/L 2 ) ] + irw - W 1A.(w)0(x)om(j)
--0 Lnal ncl

Bqs (w)L(X)cqs(&)1 exp(iot) dw = 0 . (4-195)

Q0l Sol

As equation (4-195) is valid for all t, it follows that

2 (nw/I 2 ) 2 + irw -o 2)=w8(arx
Val nal

- ~ ~0 (-196)

By oltiplying equation (4-196) by uv(?_) and integrating over all 1, we can

use the orthogonality condition of equation (4-54) to show that

AMM 2. 2 4-97
O[(mv/1 )2 + (nvIL2)2 + irw - p(

Hvowever, fro equation (4-194) and the orthogonality condition of equation

(4-54), it can .be shown that

BMW (4/L1L2) J Jf(.,t)B( ),nexp(-iwt) dx dt. (4-198)

Therefore, by equations (4-193), (4-197), and (4-198), it follows that
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00 ao

jGo f(i.G8(L)cn(i)extp(-ica)dide
2 f 11ti2

w(A~t = L1 2  ni DE((m/L,1) + (nWL)J + iro -

M=1 [

an(x_) exp(iat) dw (4-199)

over G Sx1  L, and 0 x2 <L2 for all t. Recall that w(a,t) =0 for

outside 0 x, 1  L1 or 0 Sx2 L2.

To obtain a single expression for the displacement field, valid over all

space and time, it is convenient to define the field w,,(x,t) as the extension
of equation (4-199) over all space. That is,

00

wLI~ L; murkll)2 + (nw/L 2  + rt- 2MW l 2),

o=(.)exp(tat) do (4-200)

for all X and t The displacement field that, fOr all tiae, satisfies

equation (4-192) in the space 0 <, S , and 0 x2 :S L2, the boundary

conditions of equations (4-46) and-(4-49), and the requirement of zero
displacement for a outside 0 < x1 < L1 or 0 x2  L2 can then be written

w(Aft) 8(DwW(Xxat) .(4-201)

By definition, the Green's function for the simply supported plate is a

solution to equation (4-192) when f(Xt) is an impulse in time and space.

That is, the Green's function is governed by

2
1(1)104+ r xu!.t at ( t.to)

9 =of 0of -at

= 0Q)6( - o)6(t - to) (4-202)
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To complete the specification of the Green's function, suitable spatial and

temporal constraints must be applied to the solutions to equation (4-202).

If we require that the Green's function satisfy the simply supported

conditions at the boundaries of the plate, that is,

3(0,x 2;o;t~tO) = g(Ll x2 ;2io;t,t 0 ) = g(x l O ;AO ;t,tO) = g(x l ,L2 ;AO;t,t O) = 0

(4-203)

and

a2 g(0,x 2 ;; t,'tO)  a2 g(L1, x2 ;A0;t,t O)

ax 12  ax 12
2 2

a 2g(xl, 0;20 ;t,t O) a2 g(Xl,,L2 ;;t,t O)a 2 2a 2 = 0, (4-204)ax22  ax22

then the form of the Green's function can be obtained from equations (4-200)

and (4-201) by replacing f(x,t) by 6(x - 4)6(t - to) . That form is easily

shown to be

00

.2 00( G () mn1(x)B(A0)mn(X0)
(-o tO) = L1L2  4D[(mw/L l )2 + (nr/L 2) 12 + irw - Pw2

-.0 m=l n-l D2)

exp{iw(t - t0)) dw . (4-205)

Note that, owing to the time invariance of this plate system, the Green's

function depends only on the time difference between excitation and

observation.

With regard to temporal dependence, equations (4-200) and (4-201), and

thereby equation (4-205), assume only that the response of the system is such

that the temporal transform oF the displacement field L.Ists. However, the

Green's function must satisfy the temporal constraint that the response cannot

anticipate t.ie input. Mathematically, this means
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an g~i, KOt 0 o , for t < t o  (4-206)n
at0

for all n. By inspection of equation (4-205), the frequency dependence of

each term in the summation is of the form

1 = - l (4-207)
p (W - "'mn2 - irWiiV1

where cmn is the modal natural frequency defined by equation (4-55).

Equation (4-207) is of the same mathematical form as equation (3-87).
Consequently, by arguments similar to those presented in equations (3-88)-

(3-91), it can be shown that the temporal dependence of each term in the

summation of equation (4-205) is given by

smu(t) = (l/1)U(t - to)exp{-r(t - to)/(2p)}  {dmn - 0 , (4-208)
Aimn

where dwmn is the damped modal natural frequency of the simply supported

plate, defined by

d~mn 0 4mn- (r/2,)0 . (4-209)

It is evident that smn(t) and all its temporal derivatives are identically

zero for t < to, regardless of the values of m and n. It follows, inasmuch

as each term of the summation comprising g(&,o,t - t0) has the temporal

dependence specified by equation (4-208), that the Green's function of

equation (4-205) satisfies the causal condition of equation (4-206).

By multiplying equation (4-205) by f(Mo,to) and integrating over all
MO and to, it is evident, by comparing the result with equations (4-200)

and (4-201), that

W(x.,t) - f J gc~h.t - to)f(moto) do dt0 . (4-210)
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Note that this Green's function solution for the simply supported plate, a

system space limited in two dimensions, contains no line integrals

representing additional inputs associated with boundary forces. Thus, by the

arguments of section 4.3.1.2, the Green's function specified by equation

(4-205) is exact.

A note is also in order regarding the forcing function f(x,t). As used in

equations (4-198)-(4-200) and in equation (4-210), f(K,t) is a function

defined over all x and t that is equal to the force per unit area applied over

the surface of the plate in the spatial range 0 < xI < L1 and 0 < x2 < L2.

Outside this spatial range, f(xt) can be arbitrarily specified, inasmuch as

forces applied outside the physical extent of the plate do not affect any

displacement of the plate.

If we write

I J J G~,,)epijx+o-S + wT)) dk da dw (4-211)
-40 -Q0 --

then it follows from equations (4-210) and (4-211) that the wavevector-

frequency transform of the displacement field, W(kw), is related to the

wavevector-frequency transform of the forcing field, F(k,w), by

W(Lw) a (2w) "2 I G(k,-# )F( ,) do . (4-212)

If we denote the magnitude of the wavevector k = (mw/L,,nw/12) associated

with the mn-th mode of the plate by

kMw4(ra/ 1) 2 +(nv/I 2) 2  (4-213)

and toake use of the definitions of equations (4-62) and (4-70), it is

straightforward to show, from equatiun (4-205), that

.... (4-214)
LIL2 m l nwl kMn4  k 4() + ir/
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Therefore, by equations (4-212) and (4-214), it follows that
@o

4,-'w) mn I ' na . (4-215)
IAL L ~ k 4- k 4(w) + i r/D m

SL2L2 ml n=l I mn4  p 4 ) - r0

If we make use of the definitions of Ion (k) and F(k,w), it is straightforward

to show that

J Imn(j F(p.,u) d = w LIL 2Bmn(U) , (4-216)

--0

where Bm (w) is the frequency-dependent modal force defined by equation

(4-198). Therefore, we can rewrite equation (4-215) as

B mnc~ mj ~j; (4-217)
Dw,1nnai kt 4 - kp4 (W + arW/"

Equations (4-214) and (4-217) (or (4-215)) define, respectively, the

two-wavevector-frequency response, G(k,s_,), and the wave'hector-frequency

transform, W(k,w), of the displacement field for the forced simply supported

plate.

A noteworthy feature of equations (4-214) and (4-217) is that the

description of this space-limited field in the wavevector domain does not

offer an advantage in mathematical simplicity over the description in the

spatial domain. That is, by equations (4-198)-(4-201)l

on 0

W (x.t) - iW 4~ 4 exp(iot) (to. (4-218)
I. Lk 4 , k(c, + i rat')

Comparison of equation (4-217) with equation (4-218) reveals that, while the

transformation from the temporal domain to the frequency domain has resulted

in a mathematical simplification by elimination of an integral, both the

spatial and wavevector characteristics of the field are expressod as doubly

infinite summations of modal functions characteristic of the respective
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domains. Similar arguments apply to the Green's function (see equation

(4-205)) and its wavevector-frequency transform, G(k,,w), defined by equation

(4-214). Thus, the prediction of the wavevector characteristics of the

space-limited displacement field of a simply supported plate is a mathematical

task equally difficult to that of predicting the spatial characteristics.

The mathematical complexity of the expressions for W(k,ca) and G(k,a,w)

preclude us from attempting any detailed analysis of the wavevector-frequency

characteristics of the forced motion of the simply supported plate. However,

by examination of equations (4-214) and (4-217), we can identify significant

contributions to W(k,w) and G(kaw) and thereby gain insight into the general

nature of these wavevector-frequency descriptions.

We first note, from equation (4-212), that G(k,q,w) defines the complex

amplitudes of waves of the form exp{i(ox + wt)) that comprise the displace-

ment field of the plate as a result of excitation of the plate by the wave

(2w) -I exp(i(-._.K + wt)). Similarly, equation (4-215) or (4-217) relates

the complex amplitudes, W(k~w), of the waves of the form exp{i( k~ + wt)} that

comprise the displacement field of the plate to, respectively, the comolex

amplitudes, F(R,w), of the waves of the form exp{i(%.4 + ut)}or the

frequency-dependent modal forces, Bmn. ), that comprise the forcing field of

the plate.

By inspection of equations (4-214) and (4-217), it is evident that, at any

fixed frequency, w0, the dependence of both G(k,w,0 ) and W(t,C O) on the

wavevector k is specified by a weighted superposition of wavevector transforms

of the space-limited natural modes, Imn (k), over all mode numbers, m and n.

Two separate functions weight IMn () at each value of m and n. One weighting

function, the term

t kn 4 - kp4(w) + - 1

specifies the response of the mn-th mode of the plate at the frequency W0.

The other weighting function is the frequency-dependent modal force,

B Bmn(wO), acting on the plate. In equation (4-214), this modal force is

frequency independent and is given by I (2L), where -% is the fixed, but

4nn-
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arbitrary, wavevector characterizing the (single) complex wave that forces the

motion of the plate. It is important to note that Imn() and the two

weighting functions are, in general, complex.

Clearly, the relation between the wavevector-frequency characteristics of

the displacement field and those of the forcing field is not a mathematically

simple one. However, we can gain some insight into the wavevector-frequency

characteristics of the displacement field by identifying those terms in the

summations of equations (4-214) and (4-217) that provide the largest, in

magnitude, wavevector contributions to the displacement field at some fixed,

but arbitrary, frequency 0. We will perform this identification for

W(K,w), described by equation (4-217). The general wavevector-frequency

characteristics of G(Lgw) can then be examined as a special case of W(j,W).

From our investigation of the free vibration of the simply supported plate

(section 4.2.2), we know that the magnitude of Imn(j) has four equal primary

maxima at the wavevectors k = (±mm/L ,±nw/L 2 ) and has secondary maxima at the

wavevectors k ( {tim ± (2p + 1)]w/Ll,±[n ± (2q + 1)]w/L 2) for all
integers p and q equal to or greater than one. The magnitudes of these

secondary maxima decrease with increasing wavevector distance, c, from the

primary maxima approximately as ( 11 1c2 )-1 and are therefore considerably

smaller than the magnitudes at k (tmw/L,±nw/L2 ). The reader can refresh

his memory retarding the wavevector characteristics of Imn (k)l by referring
to figure 4-4. It follows, by the above arguments, that the largest, in

magnitude, wavevector contributions to W(k,wO) from each mn-th term in

the summation of equation (4-215) occur at the four wavevectors

k (±mq/L 1,±nv/L2). These wavevectors associated with the primary maxima of

Imn (k) are referred to as the modal wavevectors, and their magnitudes, kmn, as

modal wavenumbers (see equation (4-213)).

By equation (4-64), it can be shown that the magnitudes of the four

primary maxima of Imn(k) are equal and independent of the mode numbers m and n.

Therefore, from equation (4-217), it is evident that (1) the largest, in

magnitude, wavevector contributions to W(J,wO) from each mode occur at the

wavevectors t - (±mw/L 1,±nw/L 2 ) and (2) the magnitudes of the contributions

at each of these modal wavevectors are determined by the magnitudes of the
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weightings applied to these modes: that is, by the magnitude of the product of
4 4 -1

Bmn(WO) and {kmn - k p(NO) + irO}/D-1. In the absence of specific
knowledge of the modal forces, Bmn No), the complete set of modal wavevectors

must be considered as sites of potentially large contributions to W(kWo).

Figure 4-7 illustrates the wavevector locations of this set of modal

wavevectors.

Also illustrated in figure 4-7 is a circle of radius equal to the free

wavenumber of the plate, kp(to), at the frequency wO. A coincidence of

the magnitude of a modal wavevector, say kMN, with kp(WO) defines a

resonance of the MN-th mode plate. By equation (4-71), this resonance occurs

at the frequency wO = wMN" At resonance, the magnitude of the weighting

function that specifies the response of the mn-th mode of the plate at the

frequency w0 i.e., {kmn4 _ kp4(wo) + irwo/D -1 , reaches its maximum

value. That is, at the frequency wMN where the MN-th mode is resonant, the

magnitude of the NN-th modal contribution to W(k,%aN) is weighted by

IBMN(MN)I 8NN(4N)I (4-219)

k+ ir4_N/O} I(rOMN/D)I

By contrast, the magnitude of a nonresonant (say PQ-th) modal cuntribution to

W(i, N) is weighted by

18 PO(wN)l
I{kPQ4 - kp4(wN ) + rwMN/I I

Clearly, for equal magnitudes of excitation of the resonant MN-th and the

nonresonant PQ-th modes (i.a., JBMN(MN) = IBpQ(wN)I), the ratio of
the magnitude of the weighting applied to the MN-th modal contribution to

W(i,N) to that applied to the PQ-th contribution is

I{kPQ4kP4 -(%) + 'ON

W(rN/D)I > 1 (4-220)
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Figure 4-1. W1avevector Locations of Potentially Large Contributions
to the Magnitude of W(j_,u)

~Thus, in figure 4-7, the modes characterized by modal wavevectors on or near

the circle deflninf the free wavenumber of the plate (ie., those where
kmn u kp( lN)) respond more strongly to modal forces than do those modes
characterized by modal wavevectors well inside or outside that circle. By

equation (4-220), the magnitude of the relative response of resonant to
nonresonant modes depends on bothi the dampitng and the relative magnitudes of
the modal and free wavenumbers.

~4-89



Let us now examine how knowledge of the magnitudes of the maximum

wavevector contributions from the various terms in the summation of equation

(4-217) can be used to gain insight into the wavevector characteristics of

W(k,w) at a fixed, but arbitrary, frequency, w0. We assume that the plate

properties and dimensions are known and, therefore, that the modal natural

frequencies, modal wavevectors, and the damping are known quantities. We also

assume that the modal forces are known. We know, from basic vibration theory,

that the response of the plate will be greatest at the modal natural

frequencies of the plate. Therefore, the characteristics of W(k,w) at these

natural frequencies are of primary interest. Let us therefore examine the

characteristics of W(k,'N), where wMN is the natural frequency of the MN-th

mode of the plate.

By equation (4-71) and (4-217),

W(,Nl j I mn(MN__mn( ) . (4-221)

mzl nl kln7  - kilN + ir0. 4N/D

By our previous arguments, we know that the maximum, in magnitude, wavevector

contributions to W(k,.N) from each term occur at the mn-th modal wavevectors,

(tmw/L,1±nv/L2). Further, we know that (k - kMN4 + ir N/D} is a

maximum when kmn k MN or when m M and n - N. Thus, ignoring the relative

magnitudes of the modal forces, we would expect significant contributions to

W(kwMN) at the modal wavevectors k - (±Mw/LI,±Nv/L2). On the other hand, if

we assume that one modal force, say BPQ, is much larger than the others, we

might also expect significant contributions to W(k,wN) at the modal wave-

vectors k - (±P*/LltQw/L2). Let us first look at the relative magnitudes

of the modal contributions to W(kcIN) at the wavevector k -(N/L1,Nv/L2).

The magnitude of the contribution from the MN-th modal term is

IB MN (tON) OWM('LI ,Nw/L2)1

IrOHN/DI

and the magnitudes of the contributions from the nonreasonant terms are
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IB mn(wMNO Ilmn (M/L1, N /L2)1

Ikmn4 - kMN4 + irw4N/DI

The largest nonresonant contributions will be those from modes adjacent to the

resonant mode and from the mode with the large modal force, the PQ-th mode.

If we assume that the closest nonresonant mode is the M-1, N-th mode, it can

be established from equations (4-63) and (4-64) that

IIMI,N (Mv/L1,Nw/L 2) fl- (21v)llIMN (MvIL1,N/L 2)1 (4-222)

Therefore, the ratio of the magnitude of the resonant modal contribution to

that of an adjacent, nonresonant mode is given by

MIBN(1N) HkM1.N 4 -kMN 4 4 'roNiD0

For modal forces of comparable magnitudes, large wavevector separations

between adjacent modes, and small damping, this ratio can be larg? (;,,y of the

order of 10). Conversely, for small modal separations, large damping, and

comparable modal forces, this ratio is just slightly greater than 1. If the

M-1,N.'th mode were subjected to a much larger modal force than the MN-th mode,

this ratio could be less than 1.

Consider now the magnitude of the contribution from the PQ-th mode (where

the modal force is significantly larger than other modal forces) to

W(fw/L,Nw/L2,ewN). Because we have already looked at the contributions

of adjacent modes, we will assume that the PQ-th mode is somewhat removed from

the resonant MN-th mode. The magnitude of the contribution from the PQ-th

mode to W(Mf/L 1,Nw/L2 ,wM) is given by

/POlNN)l. I~p,(1M*/L 1 ,Nvr/L2 )1

IkpQ4 - kln 4 + i(N/OI

However, for IM-PI and IN-QI greater than 2, we can show that

IIPQ (Pi/l1 -Ow/L2)I I'MN(Mw/L1 ,Nw/L _).

IpQ(I'/LpNWL2 I J 1 - Pl jN - QI I- PI--IN -QI
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Thus, the ratio of the magnitude of -the resonant MN-th modal contribution to

W(Mw/Ll,Nv/L21N) to the magnitude of the PQ-th modal contribution can

be shown to be equal to or greater than

4 4

IB MN(cMN)l IN - P1 IN - QI Ikp -0  kN 4 + rN/D
I BpQ(OMN)1 IrNMN/DI

Because we have assumed that IM-PI and IN-QI are both greater than 2, it

follows that, when the modal separations are sufficiently large and the

damping sufficiently small that

k P 4 k MN 4 + ir MN/ a

the magnitude of the PQ-th modal force must be nearly two orders of magnitude

greater than that of the HN-th modal force in order for the magnitude of the

PQ-th modal contribution to be of the order of the magnitude of the KN-th

modal contribution.

By the above arguments, it follows that, for sufficiently large modal

separations, sufficiently small damping, and modal forces that exhibit large

variations in magnitude only at modes well removed from resonance, the

magnitude of the resonant HN-th modal contribution to W(H*/L ,.Nw/L2,0"N)

is at least an order of magnitude greater than the magnitudes of each of the

other modal contributions. It is also easily verified that the phases of the

various modal contributions vary with the mode numbers m and n, Therefore, if

we envision each.modal contribution as a vector, it is reasonable to argue

that the sum of one large vector (the MN-th contribution) with many small

vectors of random direction (the nonresonant modal contributions) results in a

vector nearly equal to the original large vector. By this argument, it

follows that, under the above restrictions,

IW(N*/L 1,N*/L2-4)1 W B 0N  1 - , / 1 (4-22)
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This estimate is also valid at the other three wavevectors associated with the

MN-th mode: that is, at k = (-M4IL,1Nw/L 2), k = (Mv/L ,-Ni/L 2), and

k = (-Iw/L ,-Nr/L2).

As we relax the restrictions on modal separation, damping, and variations

in modal forces, the contributions from some of the nonresonant modes

increase, and the estimate of the magnitude of W(k,)N ) at the resonance

wavevectors by the maximum magnitude of the MN-th modal term becomes a poorer

one. Inasmuch as the magnitude of a sum is less than or equal to the sum of

the magnitudes, the estimate of the magnitude of W(Mw/LL,Nw/L2, MN)

under these relaxed conditions will likely decrease from its true value.

However, for reasonable relaxations of these conditions, it is likely that

W(k,N) will still exhibit relative maxima in the neighborhoods of
k - (:irwl 1 ,+Nw/L2)

Arguments similar to the above may be applied to estimate the magnitude of

W(k,4 N) at the modal wavevector K - (Pv/L,Qw/L2 ) associated with the

modal force that was assumed large in comparison with the others. By such

arguments, it can be demonstrated that, at k = (P*/L I Q/L 2) and w - OMN, the

ratio of the magnitude of the PQ-th modal contribution to thiat of the MN-th

contribution is given by

I, p! l PIIN- 0IrN/DI

It3J4U(( kRN}I Ikp " r /

If we again assume values of damping and modal wavevector separations such that

k4 N 4 + irulMN/

then, because we have assumed that I'-PI and IN-0I are both greater than 2, it

follows that the ratio of the magnitude of the PQ-th contribution to that of

the MN-th contribution is of the order IBpQ(owN)I/IBMNN). Thus,

if IB 1 (w)I is an order of magnitude larger than 'BKN(wMN) I' then,

by the arguments presented previously, the magnitude of W(P/L 1,Qw/L 2 ,-*N)
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can be approximated by

IW(Pi/L nw/L a tIP(Pw/L1 ,Qv/L2)j IBpQ( N)I

IWPw 20MONN) " OlkpQ4 _ kMN4 + irw14N/D1

It is interesting to compare this estimate with the estimate of the

magnitude of W(±w/L1 ,±Nw/L2,'M) obtained previously under similar

assumptions of damping, modal separations, and relative magnitudes of modal

forces. By equations (4-223) and (4-224), we can show

4 4

IW(Nw/LlNv/La' N)I IBMN( N)I !kpQ - + ir N/D
IW(PWNLl,QV/L 2 ,o3N)I IBpQ(9 N)I N' .... (4-225)

For the small damping, large modal separations and relative magnitudes of

modal forces used to obtain equations (4-223) and (4-224), this ratio is of

the order of unity. Thus, we can conclude that the magnitude of W(k,c) at the

resonance frequency w., is characterized by equally large contributions at

the four wavevectors t, (+-w/11,±Nv/L2) associated with the resonance of

the KN-th mode and at the four wavevectors .j (tPv/LI,±Qv/L2) associated

with the modal response of the strongly driven PQ-th mode.

The reader should be reminded once again that the above approximations,

-and thereby.the above conclusions, are strictly valid only for small damping,

large modal separations, and the ratios of modal force magnitudes used for

their derivations. However, it is likely that, under reasonable relaxations

of these restrictions, the magnitude of W(k) at a resonance frequency 0.

will. be relatively large Io the neighborhoods of those modal wavevectors

associated with resonances and in the neighborhoods of those modal wavevectors

associated with relatively large modal forces. Indeed, it seems reasonable to

enpect that, at any frequency, the magnitude of the W(k,w) will be relatively

large in the neighborhoods of the (four) modal wavevectors associated with

each resonant or near-resonant mode and in the neighborhoods of the modal

wavevectors associated witl relatively large modal forces. The exact

wavevector locations of these relative maxima of IW(t..)j will depend on the

relative separation between the modal wavevectors associated with the



resonant and near-resonant modes and on the exact distribution of modal

forces. To the degree that such an extension of the highly 3peciaitzed

example presented above is a valid one, the plot of the modal wavevectors and

the radius of the free wavenumber shown in figure 4-7 can be a useful tool for

identifying potentially large wavevector contributions to W(k,u).

As stated previously, the two-wavevector-frequency response, G(kOW), can

be treated as a special case of the wavevector-frequency description of the

forced displacement field, W(ta), of the simply supported plate. That is,

G(k,%,w) is the wavevector-frequency transform of the displacement field

when the space-time forcing field is the single complex wave given by

(l/2v)exp{-i(S,-x - ut)). As can be seen, by comparison of equations (4-214)

and (4-217), the modal forces associated with this forcing field are I mn(S),

independent of the frequency characterizing the forcing wave.

By applying arguments similar to those used to investigate the wavevector

behavior of W( .w), the most significant wavevector-frequency characteristics

of G(K, ,) can be deduced. Inasmuch as the procedure used to identify these

characteristics is identical to that employed previously, we will omit the

details of this deduction process. However, the reader is encouraged to

perform-such a detailed analysis to gain familiarity and confidence with this

predictive technique.

Consider first the response of the plate to the wave exp(-i(Pix I/L +

x 2 /L? - Nt)); thus. a * (Pw/L,Q/L 2), one of the four modal

wavevectors of the PQ-th made of the plate, and w w uc., the natural

frequency of the 1N-th mode. It is straightforward to show that for small

damping, large modal separations, and IP-HI and 1Q-NI greater than 2. the

largest contributions to IG(k;P/L1,Q/L 2:0N)I occur at the four

wavevectors, k e (tv/LI,±N#/L 2, associated with the resonant KN-th mode

and at the four wavevectors, k (±Pw/lt,±Q-/L 2), associated with the mode

that Includes the wavevector of excitation. The relative magnitudes of the

contributions at the resonant modal wavevectirs and at the modal wavevectors

associated with the input depend on the exact values of the damping, the modal

Separation, and the differences IP-MI and IQ-NI. It should be recognized that

G(t,w) is zero in this example when w o q'-
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It is easily shown that if the plate is forced at resonance, i.e., by

exp{-i(Mw x1/L1 + Nrax2/L2 - Nt)}, IG(k;Mw/Ll,N*/L 2 ;wiN)l is characterized by

only four large contributions: one at each of the modal wavevectors

= (±Mir/L ,±Nir/L2).

By extending these results to arbitrary wavevectors and frequencies of

excitation, it appears that the magnitude of G(kqw), at the frequency of

excitation, will be relatively large in the neighborhoods of the four modal

wavevectors associated with each resonant or near-resonant mode and in the

neighborhoods of those modal wavevectors that have a member close in amplitude

and direction to the wavevector characterizing the wave input to the plate.

The exact wavevector locations of these relative maxima of IG(k,S,d)j will

depend on the relative separation between the modal wavevectors associated

with the resonant and near-resonant modes and on the wavevector characterizing

the single wave excitation of the plate.

By the arguments presented above, we have demonstrated two important

features of the wavevector-frequency response of the space-limited plate. The

first is that the plate responds most strongly, at any given frequency, to

those wave components of the input field that are characterized by wavevectors

closest, in magnitude, to the free wavenumber of the plate. The second is

that any single wavevector-frequency component of excitation to the plate

produces, at the frequency of excitation, a strong response at not only those

modal wavevectors with members most nearly coinciding with the wavevector of

excitation, but also at those modal wavevectors close, in magnitude, to the

free wavenumber of the plate. These resonant components of the plate motion

are a consequence of the reflections (or wavevector scattering) of the forced

waves at the boundaries of the plate.

4.3.3.3 Observations From Illustrative ExamRIes. The two relatively

simple examples of space-limited systems presented above provide ample

evidence that the analysis and interpretation of the wavevector-frequency

characteristics of space-limited systems is a considerably more complex task

than that of analyzing and interpreting space-invariant systems in the

wavevector-frequency domain.
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By use of these examples, we have shown that the wavevector-frequency

response of space-limitcd systems has two characteristics in common with the

wavevector-frequency response of space-invariant systems. The first

characteristic is that both space-limited and space-invariant systems respond

most strongly, at any frequency, to wavevector components of excitation equal,

in magnitude, to the free wavevector of the system. The second common

characteristic is that the magnitudes of the wavevector-frequency transform of

the output field of both space-limited and space-invariant systems exhibit, at

any given frequency, relative maxima in the neighborhoods of those wavevectors

characterizing relatively large inputs to the system.

However, the example of the simply supported plate illustrates a

characteristic of the wavevector-frequency response of space-limited systems

not encountered in space-invariant systems. That characteristic is wavevector

scattering (or conversion). Recall that in space- (and time-) invariant

systems, a single wavevector-frequency component of input produces only a

single wavevector-frequency component of response, with that response

component occurring at the wavevector and frequency characterizing the input.

In the space-limited system of the simply supported plate, we found that a

single wavevector-frequency component of input produced, at any frequency, a

continuum of wavevector components in the output as a result of reflection, or

scattering, of the input wave from the boundaries of the plate. The largest

(in magnitude) components in the output field occurred at the (four) modal

wavevectors associated with each resonant (or near-resonant) mode at that

frequency and at the modal wavevectors with members nearly equal to the

wavevector of excitation. The most important feature of this wavevector

scattering is the excitation of wavevector components close, in magnitude, to

that of the free wavenumber of the plate by inputs characterized by

wavevectors far removed, in their magnitudes, from the free wavenumber.
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CHAPTER 5

COUPLED LINEAR SYSTEMS

The spatially distributed, time-invariant linear systems treated in the

previous two chapters have consisted of a single physical component, such as a

string, a plate, or an acoustic fluid. However, in such specialized fields as

structural acoustics, musical acoustics, architectural acoustics, and noise,

the systems of practical interest are comprised of multiple interacting

physical components. This chapter addresses the response of spatially

distributed, time-invariant linear systems comprised of more than one physical

component.

5.1 FUNDAMENTAL CONCEPTS OF COUPLED SYSTEMS

In section 3.1 of chapter 3. we defined a system as "an aggregation or

assemblage of interacting elements combined by man or nature to form an

integral entity." In a spatially distributed system comprised of a single

physical component, the "interacting elements" of the system are differential

lengths, areas, or volumes (as appropriate) of the physical component under

scrutiny. For a spatially distributed system comprised of multiple

interacting physical components, the "interacting elements" of the composite

system are the individual physical components of the system. Thus, we see

that for a spatially distributed single component system, the elements of the

system are of microscopic spatial scale, whereas for a spatially distributed

multicomponent system, the elements of the composite system are of macroscoplc

scale. This difference in spatial scale, though initially somewhat confusing,

is simply a consequence of defining a system in terms of 'interacting

elements."

The macroscopic spatial scale of the elements of a system comprised of.

multiple physical components does preset a dileioa. It has been

demonstrated, by the illustrative examples of the preceding chapters. that the

spatial scale of the interacting elements of a system corresponds to the
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spatial detail to which the system and its response can be described.

Further, by definition, the wavevector-frequency description of the response-

of a system requires knowledge of the system response over all space and

time. Clearly then, the macroscopic spatial scales associated with the

various physical components of a multicomponent system are not compatible with

a wavevector-frequency descr~iption of that system.

'the solution to this dilemma is really quite simple. We define each
physical component (or interacting element) of the multicomponent system to be

a sub system. Each subsystem is now a single component system and is comprised

of elements having spatial scales of differential orde.r. The various

subsystems are then coupled 'in accordance with the interactions between tie

various physical components (or macroscopic elements) of the composite system.

By these arguments, a spatially disteibuted system comprised of several

(say N) interacting physical componenti can he interpreted as an assemblage of

H-coupled subsystems, where each subsystem 'represents a single physicO1

component of the composite systen,, and the couplings between the subsystems

are chosen to reflect toe appropriate interactions between the pqysical
cam~onetits of the coiposita systom.. The title of this chapter, Coupled Linear
Systems, was chosen to reflect this iitt-rretatioA of, anu-approach tz,

-Spatally distributed, time -i nwri ant rulticamponent.li"ear systems.

5. . Ifleaqssridffects- Of (~plinq

Consider a system comprised of stneral interactlin4 Physical conIponeott,

For an interaction to exiit betwaei) 4ny two--of the various-physit~l

* opoe -t.those contpoinelts must be either-in pbrpical. -.entact, phsically

cononcd through one or more of t0e! -Ot~r- .m -aff the system,, or
subject to sov% physical Ji1-ld that, induces muld forces be .tween the two
component*. In the interpretationoOf a m lti),oioort system a,, an1 assemblago
of coupled sitigle co4-6onent stmthe inte-ractions between the various
phiysical ccmponewits of the compasite -sy ,tem--6ine the couplings between the

varous yses. eticrtr o tho coupling between any two
stsystems can be detertniined ,ol1vby- -eailgthe physics of the particular
interaction tbotweri* the- corre-poiiding coimponents of the ccvvosite system.



However, certain characteristics of the coupling between subsystems and, in

some cases, of the physical subsystems themselves can be deduced from the

specific form of the interaction between them.

Consider the situation in which the interaction between two components of

the composite system results from physical contact between the components.

The line or surface of physical contact between the two components establishes
a spatial boundary common to both components. It therefore follows that the

coupling between the physical subsystems corresponding to these components

occurs.at the boundaries of the subsystems. It further follows that the

physical subsystems corresponding to these components are space limited.

-'Arguments similar to the above apply when the interaction between two

components of a composite system results from an interconnection of these

components via one or more of the other components of the composite system.

That is, the lines or surfaces of physical contact between the components of

interest and the interconnecting component(s) establish spatial boundaries for

both components of interest, thereby spatially limiting the corresponding

physical subsystems. In addition, the coupling between these physical

subsystems acts at these boundaries.

Two components of a composite system can interact through the presence of

some field of physical origin (an electromagnetic field. for example) between

the components. Such fields can produce interactive forces between components

at the atomic or molecular level in the absence of any physical contact
between the components. It follows that, in the presence of such interactions

between components, the coupling between the associated physical sobsystemsS acts not only at the boundaries of the subsystems, but can act between any of
.the (differential scale) elements of the two subsystems. All physical

subsystems associated with a multicomponent system are, of course, space

liuited Inasmuch as two components cannot simultaneously occupy all of space.

5.1.2 Classification..of Coupled Systems

From the above discussion, it would appear that, inasmuch as each of the

variou5 physical subsystems associated with a given multicomponent system is
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space limited, all coupled systems are space limited. However, the reader

should recall (from chapter 3) that a distinction is made between a physical

system and the mathematical model of a system and that a system (or subsystem)

is classified on the basis of the mathematical model. Thus, while it is true

that all physical subsystems associated with a multicomponent system are space

limited, it does not necessarily follow that the mathematical model of each

subsystem is space limited. If, for example, one physical component of a

multicomponent system was a large flat plate, it might prove useful or

convenient to mathematically model the plate subsystem as a flat plate of

infinite extent. As demonstrated in chapter 3, the mathematical model of the

infinite flat plate is linear and space invariant. Clearly then, the

mathematical models of all subsystems associated with a multicomponent system

need not be space limited.

If we interpret a multicomponent system as an assemblage of coupled

subsystems, it follows that the mathematical model of a multicomponent system

is formulated by appropriately coupling the assemblage of mathematical models

corresponding to these subsystems. By the arguments presented above, the

mathematical models of these subsystems can be either space invariant or space

limited, as appropriate. The question to be addressed in this section is,

given such an assemblage of coupled space-invariant and space-limited

subsystems, how does one determine the classification of the mathematical

model of the- resultant coupled system?

'The answer to this question is again quite simple: the classification of

the mathematical model of a multicomponent system (or any system, for that

1btter) is determined by examination of the mathematical form of relationship

between the input and output of the system. Recall, first, that all systems

(a~i subsystems) treated in this text are linear and time invariant. For

space-invariant form of such systems, we showed in chapter 3 that the

relationship between the space-time descriptions of the input and output

fields was of the mathematical form of equation (3-52). The associated

relationship between the wavevector-frequency descriptions of the input and

output fields of a space-invariant system was shown to have the simpler

mathematical form given by equation (3-59). In chapter 4, corresponding

relationships were developed between the input and output fields of
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space-varying systems in both the space-time and wavevector-frequen.y

domains. The respective mathematical forms of these relationships are given

in equations (4-128) and (4-129). Thus, to establish the appropriate

classification of a multicomponent system, it is only necessary to determine

whether the input-output relationship for the composite system, in either the

space-time or wavevector-frequency domain, has the mathematical form

corresponding to a space-varying or space-invariant system.

Although the mathematical form of the input-output relationship is the

unambiguous indicator of the classification of a multicomponent system, it can

be demonstrated, for a wide assortment of coupled systems, that the presence

of a single space-varying subsystem renders the associated composite system

space varying. The reader is encouraged to test this assertion for various

coupled combinations of space-varying and space-invariant subsystems. This

exercise will, in addition to lending credence to the above assertion,

demonstrate the advantage, in mathematical simplicity, of formulating such

input-output relationships in the wavevector-frequency domain rather than in

the space-time domain.

Recall, from chapter 3, that the specification of a systems problem

requires definition of the input to, and output from, the system, as well as

the definition of the interacting elements comprising the system. Given these

definitions, a mathematical model of the system can be formulated. In a

multicomponent system, an input can be applied to any one, or several, of the

physical components comprising the system. Further, the output can

alternatively be defined to be the response of any component, or the inter-

action between any components, of the composite system. Clearly, given a

specific assemblage of interacting physical components and a specific input,

many multi-element systems problems can be specified merely by redefinition of

the output. However, it must be realized that each redefinition of the output

results in a modification of the mathematical model of the composite system

and, potentially, in the classification of that system.

5.1.3 The Coupled System of the Fluid-Loaded Plate

To add perspective to some of the concepts discussed above, it is

convenient to introduce, at this point, a relatively simple spatially
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distributed, time-invariant linear multicomponent system that will be used in

this chapter as an illustrative example. This example is the forced vibration

of a large flat plate with an acoustic fluid on one side and a vacuum on the

other. The physical system consists of two interacting elements: the plate

and the acoustic fluid. The vacuum, being an absence of matter, plays no part

in the dynamic motion of the plate. The plate is excited into motion by a

distribution of force per unit area, f(Kt), applied on the vacuum side of the

plate. We wish to determine the resultant displacement field, w(2,t), of the

plate.

The geometry of this system is illustrated in figure 5-1. Here, the

central (or neutral) plane of the large flat plate is taken to be coincident

with the plane defined by x3 = 0. The half space defined by x3 > 0 is

occupied by an acoustic fluid of density p and speed of sound c. The half-

space x3 < 0 is vacuous. The force per unit area, f(Kt), applied to the

vacuous side of the plate and the displacement of the plate. w(K,t), are taken

to be positive in the positive x3 direction.

The first step in the formulation of a mathematical model of the system is

to interpret the two interacting elements of the composite plate-fluid system

as two appropriately coupled single component subsystems. If we assume that

the large flat plate can be considered to be thin and of infinite extent, it

follows that the respective interacting elements of these two subsystems are

(1) the differential area segments comprising the infinite plate and (2) the

differential volume segments of the acoustic fluid occupying the half-space

x3 > 0. To complete the specification of these two coupled single component

subsystems, we need to define (1) the inputs to each subsystem, (2) the

outputs from each subsystem, and (3) the nature of the coupling between

subsystems. This definition process is facilitated by examining the sequence

of physical processes that occur in the infinite plate and acoustic half space

subsequent to the excitation of the plate by the externally applied input,
f (x,t).,

This sequence of physical processes, which is illustrated in figure 5-2,

proceeds as follows. The externally applied input, f(i,t). excites a

vibration displacement field, w(x.t), in the infinite plate. Because the
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Figure 5-1. Geometry of fluid-Loaded Plate

plate and fluid are in contact at t;ie top surface of the plate, the

displacement field-of the plate is imposed on the fluid at this boundary.

thereby exciting a pressure field, p(,,x 39 t), in the acoustic half spoce.

This pressure field, acting o the top surface of the plate, produces an

additional input field, p(o,Ot), to the plate that acts opposite in direction

to the external input, f(xt). We have assumed here that, with respect to the

acoustic half space, the plate is of %ifinitesimal thickness. Further, we

have applied the law of cofhlevatiso; -f mass (or continuity), which requires

that the displacement field of the plate and the component of the displacement

-field of the fluid noual to the plane of the plate be equal at the plate-

fluid interface (x3 .0).

By means of the above arguments and ftigure 5-2, we can completely specify

the subsysts associated with the infinite plate and the acoustic half-space

coponents of the composite plate-fluid system and the coupling betw"n them,

The elements of the infinite plate subsystem are subjected to two inputs: the.

externally inposed input, f(t,t), and the oppositely directed pressure iield.

pA(,O.t), that is induced in the acoustic half space afid acts on the upper
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COMPOSITE PLATE - FLUID SYSTEM
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Figure 5-2. Schematic Diagram of the Fluid-Loaded
Infinite Plate System

surface of the plate. The only output of consequence from the infinite plate

is the vitratory displacement field of the plate, w(.,t). With the exception

of the additional input of the pressure field from the half space, the

infinite plate subsystem is identical to the infinite plate system treated in

chapter 3 as an illustrativp example of a forced, linear. space- and time-

invariant system.

Contrary to the impression conveyed by figure 5-2. no inputs (or sources)

are applied to all elements of the acoustic half space. Rather, the

connection of the output of the infinite plate subsystem to the acoustic

half-space subsystem in figure 5-2 indicates that the half-space subsystem is

coupled to the infinite plate subsystem via the displacement field of the

plate. In this coupling, the displacement of each element of the plate

(weasured normal to the plane of the plate) is imposed on the contactin%

element of the acoustic half space over the planar boundary of the half Space,

x3 t 0. prescribed by the plate. The pressure field in the half space

results solely from this imposition of the displacement field of the plate on

the boundary of the half space. The quantity of interest, or output. from the



acoustic half-space subsystem is the acoustic pressure field over the planar

surface, x3 = 0, that defines the plate-fluid interface. The subsystem

associated with the acoustic fluid component of the composite plate-fluid

system is a special case of the linear, time-invariant, space-limited

acoustic half-space system treated in section 4.3.3.1 of chapter 4.

In identifying the subsystem associated with the acoustic fluid as a

special case of the space-limited acoustic half-space system treated in

section 4.3.3.1, the words "special case" must be emphasized. The system

treated in section 4.3.3.1 was that of the pressure field produced in the

acoustic half-space x3 > 0 as a result of a prescribed displacement field

applied to the boundary of the half space at x3 = 0. This system was shown

to be space Invariant in the x and x2 coordinate directions but, owing to

the boundary at x3 = 0. space limited in the x3 coordinate direction.

Consequently, this acoustic half-space system was classified as a space-

limited system. The subsystem associated with the acoustic fluid component of

the composite plate-fluid system is a special case of the half-space system

treated in section 4.3.3.1, because the output of this subsystem is the

pressure field over the two-dimensional surface defined by x3 = 0, a subset

of the three-dimensional half-space x3 ?0 . However, inasmuch as the

pressure field over the plane x3 = 0 (or, for that matter, iny plane of

constant x3) is independent of x3, it is space invariant. Consequently,

as can be demonstrated by comparison of the mathematical forms of the

input-output relationships of equations (4-159) (at x3 = 0) and (3-59), the

subsystem associated with the acoustic fluid component of the composite

plate-fluid system is space invariant.

By the use of figure 5-2 and the above arguments, we have defined the

coupled plate and acoustic fluid subsystems that will be used to mathe-

matically model the composite system of the fluid-loaded plate. Both

subsystems have been argued to be linear, time invariant, and space

invariant. It therefore follows that the mathematical model of the composite

plate-fluid system is also linear, time invariant, and space invariant.

By reference to figure 5-2, it is evident that the plate and acoustic

fluid subsystems are mutually coupled. That is, the acoustic fluid subsystem
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is coupled to the plate subsystem through the common displacement field at the

interface of these two systems. In addition, the plate subsystem is coupled

to the acoustic fluid subsystem by means of the pressure field exerted, by the

fluid, on the upper surface of the plate. Because of this mutual coupling,

the composite plate-fluid system is a form of feedback system. That is, the

output of the composite system (the displacement field of the plate) is fed

back through the acoustic fluid subsystem to produce a pressure field that

augments the input to the composite system, f(x,t), in exciting the infinite

plate subsystem.

Recall (see figure 5-2) that the input to the composite plate-fluid system

described above is the force per unit area, f(x,t), applied to the infinite

plate subsystem and the output was defined to be the displacement field of the

plate, w(x,t). If we redefine the output of the composite system to be the

pressure field, p(x, x3 ,t), throughout the acoustic half-space x3 ? 0

rather than the displacement field of the plate, we specify a new composite

system that has the same physical elements (or components) and the same

interactions between components as the composite system used to predict the

displacement field. The redefinition of the output, therefore, has no effect

on the definition of the interacting elements of the two subsystems associated

with the plate and acoustic fluid components of the composite system.

To complete the specification of the coupled subsystems associated with

this new composite system, we again trace the sequence of physical processes

occurring subsequent to the excitation of the plate to define the inputs,

outputs, and couplings associated with these subsystems. A schematic diagram

of these processes is shown in figure 5-3.

A comparison of figures 5-2 and 5-3 reveals that the primary difference

between the coupled subsystems that define the mathematical model for the

displacement of the plate and those that define the mathematical model for the

pressure field in the half space is the subsystem associated with the acoustic

half space. As shown in figure 5-3, the output of the acoustic half-space

subsystem is the pressure field over the entire half space. This output, in

addition to being defined as the output of the composite plate-fluid system,

is spatially filtered such that the pressure field at the surface of the plate
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Figure 5-3. Schematic Systems Diagram for the Pressure Field
Produced by the Forced Vibration of an Infinite Flat Plate

(i.e., at x3  0 0) acts as an additional input to the plate. For the coupled

system shown in figure 5-2, this spatial filtering was incorporated in the

acoustic half-space subsystem so that the output of that subsystem was the

pressure field at the surface of the plate, p(X,O,t).

By the above arguments, it is evident that the redefinition of the output

of the composite plate-fluid system from the displacement field of the plate

to the pressure field over the entire acoustic half space requires a

redefinition of the acoustic half-space subsystem, but not of the infinite

plate subsystem or the couplings between the subsystems. This redefined

acoustic half-space subsystem is exactly that linear, time-invariant,

space-limited,acoustic half-space system treated in section 4.3.3.1 of

chapter 4. Inasmuch as one of the two coupled subsystems that forms the basis

of the mathematical model for the pressure field produced by the forced

5-11



vibration of an infinite, flat plate is space varying, it follows that the

redefined composite system is space varying.

The above examples demonstrate that changing the definition of the output

from a specific assemblage of interacting physical components can effect a

change in (1) the specification and classification of one or more of the

single component subsystems used to mathematically model the multicomponent

system and (2) the classifIcation of the muiticomponent system itself.

5.2 THE FREE RESPONSE OF COUPLED SYSTEMS

By definition, the free response of a multicomponent system is the

self-sustained output of that system in the absence of any externally applied

input. Recall that, in the absence of any input to the system, the initiation

of the output field of the system cannot be addressed but, given certain

knowledge of the output at any specific time, the output can be determined for

all time.

Because the mathematical model of a multicomponent system is formulated by

interpreting that composite system as an assemblage of coupled subsystems, the

determi.ation of the free response of the composite system is equivalent to

determining the free response of the corresponding assemblage of coupled

subsystems. The title of this section emphasizes this equivalence.

In this section, we demonstrate, by example, the procedure for formulating

a mathematical model of, and obtaining a solution for, the free rer;:onse of a

nulticomponent system. The multicomponent system addressed in this

Illustrative example is the displacement field of a free infinite plate

subjected to fluid loading on one side. By comparing the free displacement

field of the fluid-loaded plate to that of the plate in vacuo, we also examine

the effects of the fluid loading on the free waves of the plato.

5.2.1. The Free Response of an Infinite Plate With Fluid Loading on One Side

The physical system and the corresponding assemblage of coupled subsystems

associated with the forced vibration of a thin, infinite, flat plate with an
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acoustic fluid on one side and a vacuum on the other were presented and

discussed in section 5.1.3. The physical system of interest in this section

is the response of that same plate, fluid loaded on one side, in the absence

of the externally applied forcing field, f(x,t). Thus, it follows that a

mathematical model for the free displacement field of this fluid-loaded plate

can be formulated from that assemblage of coupled subsystems illustrated in

figure 5-2 with the forcing function, f(j,t), set equal to zero.

By reference to figure 5-2, it is evident that, in the absence of an

externally applied forcing field, the infinite plate subsystem represents the

displacement field of the plate forced by the pressure field, p(2,O,t),

applied to the upper surface of the plate. The resulting displacement field

of the plate is tne output of the composite plate-fluid system, as well as

that of the infinite plate subsystem. The forced response of a damped,

infinite plate is treated in section 3.4.6. However, recall from section 3.3

that the outputs of free systems having losses cannot be described in the

wavevector-frequency domain. To circumvent this difficulty, we assume the

plate to be undamped. With this assumption and the recollection that the

pressure field p(2,O,t) is applied in the negative x3 direction, it follows

from equation (3-103) that the displacement field output from the infinite

plate subsystem is governed by

a 2w(,t)
Ov4w(l,t) + = -p(,O,t) (5-1)

for all . and t. Recall that 0 denotes the flexural rigidity of the plate and

v represents the mass per unit area of the plate. In this text, our interest

is confined to those displacemient and pressure fields that can be expressed in

the forms

w(&,t) - (2,1) 3 if + ut)} dk do (5-2)

and
00

p(-,O~t) (2,) - 3 if P(k,OexP(K. + (t)) dk do . (5-3)
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By using equations (5-2) and (5-3) in equation (5-1) and by recalling that
equation (5-1) applies for all x and t, it follows that the wavevector-

frequency descriptions of the input and output fields of the infinite plate

subsystem are related by

-P(k,O,W)
W(k,a) 24 _ (5-4)

k 2  k22
where k = = + 2 e This relationship has the mathematical

form shown, in equation (3-59), to be characteristic of space and

time-invariant linear systems. Thus, we conclude that the infinite plate

subsystem is space and time invariant.

As was stated in section 5.1.3, the subsystem associated with the acoustic

fluid is a special case of the space-limited acoustic half-space system

treated in section 4.3.3.1. By reference to equations (4-144) and (4-145) of

section 4.3.3.1, it is evident that the output, p(2,O,t), of the acoustic

half-space subsystem is governed by

V 2 p(X,x3 2ap(Kx 3,t) 1 a2 p(Kx 3
't)2 - 2 0 x3 0 0 (5-5)

ax32 c2  at 2 3

and

ap(*.O,t) a2w(t)
ax3  -p t 2  (5-6)

for all x and t, Here, v2 denotes the two-dimensional Laplacian operator.

p and c are the respective density and speed of sound in the fluid, and w(X,t)
is the displacement of the fluid at the boundary x3 - 0 in the direction

normal to that boundary. Recall, however, from section 5.1.3, that the normal

displacement of the fluid at x3 ' 0 is imposed by the displacement of the

plate. Recall, further, that the pressure field in the half space must

satisfy the causality condition that the pressure must either propagate away,
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or decay with increasing distance, from the source of excitation of the

pressure field: that is, the boundary common to the plate and fluid at

X3 = 0.

It is interesting-to note, from equations (5-5) and (5-6), that to obtain

a solution for the pressure field at x = 0, one must first obtain a

solution for the pressure throughout the entire half space inasmuch as the

boundary condition (equation (5-6)) requires knowiedge of the gradien t or the

pressure normal to the boundary.

The solution to equations (5-5) and (5-6), subject to the causality

condition, were developed in section 4.3.3.1. By use of equation (4-159), it

is straightforward to show that the wavevector-frequency description of the

output field, Pk,O,, of the subsystem associated with the acoustic fluid is

related to the wavevector-frequency description of the displacement field of

the plate, W(tw), imposed at the boundary of the fluid by

i2
ipW W( ,W) . . k S IkoI

k041 - k2/k0 2

Ki'OW) -(5-7)

k2 - k 2 4 >1 0

where it will be recalled that k 0  ic. By reference to section 3.4.3, it

can be verified that the input-output relationship described by equation (5-7)

has a mathematical form consistent with that of a space- and time-invariant

system.

The coupled set of equations (5-4) and (5-7) form the mathematical model,

in the wavevector-frequency domain, for the displacement field of the free,

infinite plate subjected to fluid loading on one side. By substituting

_equation (5-7) into equation (5-4), it is easily verified that the

4avevector-frequency description of the displacement field of this

fluid-loaded plate is toverned by
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fDO4  JA2 + 20  0 ,k < Ik 01 ,(5-8)

and

IDk 4  VW 2 ~ 2 PM2 }W(kjs) 0, k > 1k01 (5-9)

By these equations, it is evident that unless

-k VW + 0, (5-10)
k01 - k2/k i xo kI 0

W(,)is zero over the wavevector range k I kol, and unlesstOk~ 4-W 20 k>Io (5-11)

W~~w is zero over the wavevector range k > 1k01.

In equations (5-2) and (5-3). the components k, and k2of the
wavevector k, and the frequency w are restricted to be real. Thus, we seek

only those solutions to equations (5-10) and (5-11) for which both k and W are
real. With this restriction, it is evident that equation (5-10) is satisfied

only if k 0. This solution represents a static, rigid body displacement
rather than a vibratory motion of the plate and can therefore be ignored. We
thus conclude that equation (5-10) has no solutions of consequence to the
Aynamic motion of the plate in the real wavevector domnain k < Ikol, and

therefore

W~~)- 0 , k :S Ik01 (5-12)

Let us now seek the solutions of equation (5-11) for real values of cand
k. To accomplish this, we recall that the symbol Cf denotes the positive



square root of a positive number, and we define the real, positive parameter

s = Vk 2 - ko2 , k > lkol (5-13)

By using equation (5-13) and by recalling that k0 = W/c, we can rewrite

equation (5-11) in the form of tie following cubic equation in s:

s 3 +(e)s 2 + (k 4 k2s - (e)k 2 = . (5-14)

Inasmuch as s is defined to be real and positive, we seek the real, positive

roots of equation (5-14). It is well known that a cubic equation with real

coefficients has either three real roots or one real root and two conjugate

complex roots. It is also known that if s,, S2, and s3 denote theroots of equation (5-14), then

s s2s 3 =plP (5-15)

and

sI + s2 + s3 -p/V. (5-16)

By equations (5-15) and (5-16), it is easily deduced that there is only one

real, positive root of equation (5-14). If we denote that real, positive root

by sl(k), it follows from equation (5-13) that the corresponding (and only)

real roots of equation (5-11) are given by

= ±c .2 s (-7
1 0 s,(k) " M(k

Thus, it is evident that equation (5-11) has two real roots in w, equal in

magnitude and opposite in sign.

It is convenient to use equation (2-14) to define the phase speed, c p ,

associated with w,(k) at any wavevector k as

C p'(k) - I (k)/Ikl1 - lul(k)l/k (5-18)
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and then to rewrite equation (5-17) as

= ±kC '(k) . (5-19)
tp

The phase speed cp (k) represents the speed of propagation of the free waves

in the fluid-loaded infinite plate as a function of the magnitude of the

wavevector characterizing that wave. By substitution of equation (5-19) into

equation (5-11), it can be shown that the phase speed, c p'(k), is the

positive, real root of

.4-i c,2p2 pcc=
Ok pp - "2 ....,2 =0 2  p 2 . (5-20)

By the above arguments, we have established that equation (5-11) has only

two real roots in w. It can further be shown, by equations (5-13), (5-15),

and (5-16), that equation (5-11) also has four other complex roots that occur

in conjugate pairs. If we denote the product of the factors of equation

(5-11) associated with these complex roots by Q(k,w), then it follows, by use

of equations (5-17) and (5-19), that equation (5-11) can be rewritten in the

form
2

Ok4 . 2 2-=( 2 - k 2C 12)Q(k,w) = 0 , k > ikoI . (5-21)
2 0

Consequently, equation (5-9) can be written

(W2 - k 2C 2)Q(kw)W(f,w) = 0 , k > IkoI . (5-22)

To obtain a solution of equation (5-22) for W(Kw), we argue as follows.

By use of equation (2-50) and the arguments presented in section 3.3.1, it can

be shown that

- kc ') + B(K)S(w + kc ') k > IkoI . (5-23)

where A(k) and B(k) are unspecified functions of the wavevector k. Therefore,

it follows that
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A(K) B(t)
W(k,) = (-k- kcp') + &(k,w) 6(&) + kCp') , k > Ikol . (5-24)

However, by making use of the sampling property of the Dirac delta function

and recalling that c P' is a function of k, we can write

A(k)Ik) - kCp') = {A(k)/Q(k~kCp')}6(w - kCp') = ((k_)6(1 - kcp')

(5-25)

and

+ kcp ) = {B(k)/Q(k,-kc p')}6(w + kc p) = O(k)6(w + kcp ')

(5-26)

Consequeutly,

W(k,() = ()6( - kpc )4- 1()6(W + kc ') , k > Ikol (5-27)

where a (I) and B(k) are, as yet, unspecified functions of the wavevector k.

By equations (5-12) and (5-27), we can conclude that the wavevector-

frequency description of the displacement field of the fluid-loaded, infinite

plate has the mathematical form

W(kw) - a(k)6(w - kc p') + O(k)6( + kC p) (5-28)

for all k and w. The unspecified functions ao(k) and 0(t) are determined by

the initial conditions of the plate motion.

As we did in the case of the in-vacuo infinite plate, let us specify the

initial displacement and velocity fields of the plate to be

w(K.o) Wo(O) (5-29)

and

aw(F.,O)
Vo .W (5-30)
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By use of equations (5-2), (5-28), (5-29), and (5-30), it is a simple matter

to show that

W(k,) = 1W0(k){6(a - kC p') + 6(W + kC '))

+ tk:cp(k) - kcp') - 6(w + kcp')} (5-31)

for all k and w, where W0(j) and Vo(j) are the respective ipatial Fourier

transforms of WO((X) and voW.

It is instructive to compare the wavevector-frequency description of the

displacement field of the freely vibrating infinite plate with fluid loading

on one side, given by equation (5-31), with +he corresponding description of

the free vibration of the infinite plate in vacuo, given by equation (3-31).

By use of equations (2-15) and (3-23), it is straightforward to show that the

phase speed, cp, of the in-vacuo plate can be expressed as

C (k) (5-3Z)h

Consequently, from equation (3-31), the wavevector-frequency description of

the displacement field of the freely vibrating infinite plate in vacuo can be

written in the form

m vW(k)f(~ - kc p) + 6(w. + kc p)) + kP()((w cp-6w+kp)

(5-33)

Comparison of equations (5-31) and (5-33) reveals that the wavevector-

frequency descriptioas of the free vibration of the infinite, fluid-loaded

plate and the infinite plate in vacuo differ only in the propagation speeds of

the respective free waves. Therefore, the physical interpretation of equation

(3-31) given in section 3.3.2 can be directly applied to equation (5-31) by

properly accountiar! for this difference in phase speeds.

Inasmuch as the phase speed of a free wave in an infinite fluid-loaded

plate differs froa that in an infinite plate in vacuo, it follows that the
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free wavenumber associated with the fluid-loaded plate must differ from that

of the in-vacuo plate. Recall that the free wavenumber is defined as the

magnitude of a wavevector associated with a free wave. If we denote a free

wavenumber of the fluid-loaded plate by kp', then it follows from equation
p

(5-19) that

k '(W) = IWI/C (5-34)

By equations (5-19), (5-2C), and (5-34), the free wavenumber of the

f lud oaded plote is the real. positIve root of

2
Okp 4 W2 -- ", .r 0 kp' > Ikol . (5-35)

p"4kp " G

In section 3.2.2, w6 showed the free wavenumber of the in-vacuo infinite

p.ate, kp to be given by

kP (5-36)

An contrast to equation (S-36)0 equation (.5-35) is, of such cmulexity that a
solution for k can only be obtained by ousearical techniques. 4wever, by
use of equation (5-3b) 40d the mathematical form of equation (5-35). we c.an
deduce that (1) kP ' iust esceod k 0for Wal nd ( ) the f luid paramneters
appear in a term consisent, in foro. with an additional rgss. or filertial
force. Thus. we conclude that the fluid loading acts as an additional 4mass to

the plate, thereby (in accordance with equation (5-36)). increasing the free

wavenuter of the plate.

lo provide a quantitative example of the effe~ct of fluid loading on the

free wavenuzber of a plate, figure 5-'4 presents a comparison of the free

wavenuttber (k.') of an infinite 2.54-cs-thick steel plate with water loading

on one side with the free waventgter (k% of the same plate in vacun over
the frequency range 0 to 12 kilohertz (kHz). Also included in this figure,

for reference purposes, is the acoustic waveriamber (k) of the water.
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Figure 5-4. Conpartson of In-VAcuo and Water-Loaded (One Side)
Free Wavenuaber of an Infinite 2.54-cm-Thick Steel Plate

Figure 5-4 shows 'at, In the frequency range where kP is greater than

k0e the free wavenumber of the water-loaded plate is about 6 percent greater

than that -f the plate In vacuo. In the frequency range where k is lessP
than k0, the free wavenumber of the water-loaded plate asymptotically

approaches kO, and the ratio of kp0' to k p increases with increasing

frequency. Note that, as required by equation (5-35). kp ' exceeds k0 at

all frequencies.
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Because the character of kp is similar to that of kp at frequencies

where kp > k0 and similar to k0 at frequencies where kp < kO f the

frequency at which k, = k0 is given the special name "coincidence

frequencyu and is denoted by f c* By equation (5-36) and the definition of

ko, it is easily shown that the coincidence frequency is given by

2fc =  (5-37)

For the example shown in figure 5-4, the coincidence frequency is about

9.4 kHz.

Junger and Felt2 show that an "extremely accurate" approximation to

k can be obtained at frequencies below the coincidence frequency byp!

replacing the kp under the radical in equation (5-35) by the free

wavenumber of the in-vacuo infinite plate, k . With this substitution, we

obtain the following approximation for the free wavenumber of the infinite

plate, fluid loaded on one'side: -

kk 1 + k w k'  f < fc (5-38)

p ~ p k2 -I02

Figure 5-5 compares the free wavenumber computed from equation (5-35) with the

approximate value obtained by equation (5-38) for the same 2.54-cm-thick steel

plate, water loaded on one side, that was characterized in figure 5-4. As is

evident from figure 5-5, equation (5-38) provides an excellent approximation

to the free wavenumber of the fluid-loaded plate over the frequency range

f < 0.8 f .

By applying similar arguments to equation (5-20), it would seem reasonable

that a good approximation to c p'(Ik) can be obtained, over the wavenumberpt

range where c p(k) < c, by replacing the cpI under the square root by the

phase speed of the in-vacuo plate, c p By making this substitution and

using equation (5-32), we obtain

c&P(k) w c (k)/f + c -- , k < k . (5-39)
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Figure 5-5. Comparison of Exact and Approximate Values
of the Free Wavenumber of an Infinite 2.54-cm-Thick Steel Plate,

Fluid Loaded on One side

Here. k denotes the critical wavenumber. defined as that wavenumber at

which C (k) -c and, by equation (5-32), given as

Figure 5-6. compares the phase speed of the free wave computed from

equation (5-20) with the approximate value computed from equation (5-39) for

the 2.54-cm-thick infinite steel plate with water loading on one side. Here

again. it is seen that equation (5-39) provides an excellent approximation
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Figure 5-6. Comparison of Exact and Approximate Values of the
Propagation Speed of the Free W3ve in an Infinite 2.54-cm-Thick

Steel Plate, Fluid Loaded on One Side

of the phase speed at wavenumbers less than 80 percent of the critical

wavenuwber.

As a final observation, it is easily shown, by equations (5-2) and (5-33),

that the space-time description of the free vibration of the fluid-loaded

infinite plate is given by

w(_,t) (2,)-2 [Wo(m) - ! 1KL exp{(M-i + kc 1(k)tl}

+7k WA xp(i[ u.K -,kc~ 1(k)t)j dk (5-41)

for all x and t. However, owing to the dependence of c on k, no further

simplification of equation (5-41) is possible without specification of Wow

and V0().
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5.3 THE FORCED RESPONSE OF COUPLED SYSTEMS

Different multicomponent systems consist of different assemblages of

physical components with different interactions between components and

different inputs. By the arguments of section 5.1, such different

multicomponent systems can be interpreted as different combinations of single

component subsystems with different couplings between, and inputs to, the

various subsystems. These coupled systems form the basis for the mathematical

models of the corresponding multicomponent systems. Recall that although all

systems (or subsystems) treated here are linear and time invariant, they can

be either space varying or space invariant, as appropriate. By the arguments

of chapters 3 and 4, it follows that the mathematical models of different

multicomponent systems consist of different combinations of simultaneous,

linear, homogeneous or inhomogeneous partial differential equations with

different coupling conditions between equations. The coefficients of th.

various differential equations are time invariant, but may be either space

invariant or space varying, as appropriate.

Clearly, by the above discussion, it is impractical to attempt to develop

a general input-output relationship applicable to all multicomponent, or

coupled, systems. Rather, the emphasis in this section will be to

demonstrate, by example, techniques for formulating and solving mathematical

models for the forced response of coupled systems. In the subsections to

follow, we will address the forced response of two multicomponent systems:

(1) the infinite plate subjected to fluid loading on one side and (2) the

finite, simply supported plate subjected to fluid loading on one side. The

forced response of these systems can then be compared with the forced response

of the corresponding plates in vacuo to determine the effects of fluid loading

on the forced response of infinite and finite plates.

5.3.1 The forcgd Response ofan Ifinite PlatehWth Fluid Loading on One Side

This illustrative example is the forced version of the coupled system

described and discussed in section 5.1.3. The geometry of the physical system

is illustrated in figure 5-I. and the schematic diagram of the corresponding

assemblage of coupled subsystems is illustrated in figure 5-2.
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Let us first consider the subsystem associated with the infinite plate.

By reference to figures 5-1 and 5-2, it is evident that the plate is subjected

to two forcing fields: (1) the externally applied input, f(x,t), and (2) the

oppositely directed pressure field, p(x,O,t), acting over the upper surface of

the plate. The output of this subsystem, the displacement field, w(x,t), of

the plate, is also the output of the composite plate-fluid system. By

equation (3-103), the response of an infinite plate (having flexural rigidity

D, mass per unit area v, and viscous damping per unit area r) to the forcing

fields f(L,t) and -p(L,O,t) is governed by

aw( ,t) a w(x,t)

Ov4w(&,t) + r aj-t- + V at = f(nt) - p(K,O,t) (5-42)- at2a-

over all x and t.

Note that, for the treatment of the forced response of this composite

system, we have assumed the plate to be damped, whereas in our treatment of

the free response of the same composite system, the plate was assumed (for

reasons explained in section 5.2.1) to be undamped, The reason for including

damping in the model for the forced response of the plate subsystem is that

its presence, as explained and illustrated in sections 3.4.4 and 3.4.5,

simplifies causality arguments and permits unambiguous definition of the

subsystem response over all wavevectors and frequencies.

By assuming that w(x,t) and p(,O.,t) exist in the forms of equations (5-2)

and (5-3), respectively, and that f(x,t) can be expressed as

f(&t) W (2w) - 3 1F(J)exp{i(k*I + wt) dk do (5-43)

it is straightforward to show, from equation (5-42), that the wavevector-

frequency descriptions of the input and outpit fields of the infinite plate

subsystem are related by

F(_w) - P(Jot)
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where k =Vkl + k22. This input-output relation has the mathematical

form characteristic of a space- and time-invariant linear system.

By inspection of figure 5-2, it is evident that, inasmuch as the input to

the coupled plate-fluid system is applied to the plate, the subsystem

associated with the acoustic fluid is the same for both the forced and free

versions of the composite plate-fluid system. This acoustic half-space

subsystem was shown, in section 5.2.1, to be governed by equations (5-5) and

(5-6) in the space-time domain and by equation (5-7) in the wavevector-

frequency domain.

By the coupled set of equations (5-7) and (5-44), it can be shown that the

wavevector-frequency description of the forced response of the infinite plate,

fluid loaded on one side, is given by

F (k, =)

[Dk 4 -v 2 i r() + 0 f~~/ 02jkI

w(t.w) =(5-45)

Vot tht2oe - k0 2 J
Note that, over both ranges of wavevector magnitudes, this input-output

relationship for the composite plate-fluid system has the algebraic form (see

equation (3-59)) characteristic of space- and time-invariant systems. Thus,

we conclude that the composite system of the infinite plate, fluid loaded on

one side, is a space- and time-invariant linear system.

By recognizing the composite plate-fluid system to be space and time

invariant, we can readily deduce, by equations (3-59) and (5-45), that the

wavevector-frequency response, G(k,w), of the infinite plate, fluid loaded on

one side, is given by
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2 2

GU =o4 (5-46)

G~~,r {Dk 4 -2 ~ 2~ +~r k- >oF'Iol . Ik0I (54

Recall that the wavevector-frequency response, G(k,w), is the wavevector-

frequency transfom of the Green's function, g(jt). It is good practice,

at this point, to ensure that G(k,w) is the causal wavevector-frequency

response: that is, the wavevector-frequency transform of the causal Green's

function. In section 3.4.4, we established that G(k,w) was a causal

wavevector-frequency response if 6(k,v), the inverse Fourier transformation

of G(k,&) on w, and its temporal derivatives were zero for T < 0. However,

as is often the case in coupled systems, the form of equation (5-46) is of

sufficient mathematical complexity that one is quickly discouraged from

attempting the inverse Fourier transformation required to obtain G(K).

Consequently, we are motivated to address the question of the causality of the

wavevector-frequency response of the fluid-loaded plate (given by equation

(5-46)) by logical, rather than mathematical, arguments.

To this end, we submit the following arguments. The composite plate-fluid

system can be interpreted, according to figure 5-2, as two subsystems arranged

in a feedback loop. The input-output relationship for the plate subsystem

(equation (5-44)) has the form shown (by equation (3-59)) to be characteristic

of space- and time-invariant systems. From equations (3-59) and (5-44), it

can easily be verified that the wavevector-frequency response of the plate

subsystem is identical to that given by equation (3-114), which was shown to

characterize the causal Green's function for the infinite plate in vacuo. The

input-output relationship for the acoustic half-space subsystem was taken

directly from equation (4-159) (with x3 set to zero). The causality of this

input-output relationship was addressed and ensured in its derivation.

Inasmuch as (1) the input to the composite system is applied directly to the
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plate subsystem, (2) the input-output relationships used to model both the

plate and half-space subsystems in the wavevector-frequency domain are causal,

(3) the causal output of each of the two subsystems is input directly to the

other subsystem in a feedback loop, and (4) the output of the (causal) plate

system is defined as the output of the composite plate-fluid system, it

follows that the wavevector-frequency response of the composite plate-fluid

system, described by equation (5-46), must be causal.

Let us now shift our focus to the response characteristics of the

fluid-loaded plate in the wavevector-frequency domain. As explained in

section 3.4.6, the wavevector-frequency response can be interpreted as the

complex amplitude of the wave of the form exp{i(k.x + wt)} output from a

system as the result of excitation of the system by the unit amplitude wave,

exp{i(k.x + wt)}. Note, by equation (5-46), that the wavevector-frequency

response of the fluid-loaded plate, like that of the plate in vacuo (see

section 3.4.6), depends only on the magnitude of the wavevector, and not on

its direction. As was explained for the case of the infinite plate in vacuo,

this independence of G(kw) on the direction of k is a reflection of the

spatial invariance of the fluid-loaded infinite plate system. That is, for a

unit amplitude harmonic wave excitation of the plate, the complex amplitude of

the response of the fluid-loaded infinite plate depends only on the wavelength

and frequency of excitation and is independent of the direction of propagation

of the harmonic wave excitation.

The effects of the fluid loading on the wavevector-frequency response of

an infinite plate can best be illustrated by comparing the response of a

fluid-loaded plate with that of the same plate in vacuo. Figures 5-7(a) and

(b) compare the magnitude and phase, respectively, of the wavevector-frequency

response of an infinite plate, fluid loaded on one side, to that of an

identical plate in vacuo as a function of the wavevector magnitude, k, at a

fixed frequency, 6.

By figure 5-7(a), it is evident that the fluid loading has a significant

effect on the magnitude of the wavevector-frequency response of the infinite

plate. However, by use of equations (3-114) and (5-46), the reasons for the

differences betwee" the magnitudes of these wavevector-frequency responses can
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Figure 5-7. Comparison of the Wavevector-Frequencyv Responses
of Fluid-Loaded and In-Vacuo InfLnite Plates
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easily be understood. Note first that, at wavenumber magnitudes less than the
free wavenumber (k p) of the in-vacuo plate, the magnitude of the wavevector-

frequency response of the fluid-loaded plate is less than that of the plate in

vacuo. This difference results from the additional damping (at wavevector

magnitudes below k0) or the additional mass (at wavevector magnitudes above

k0) imposed on the plate by the fluid in these respective wavenumber

regimes. The amount of this difference in magnitude of response between

fluid-loaded and in-vacuo plates in this wavenumber region can be shown, by

equations (3-114) and (5-46), to increase as the quantity pc/(VW), the ratio

of the specific acoustic impedance of the fluid (pc) to the inertial impedance

of the plate (Vw), increases. Thus, if the fluid impedance is small in
comparison with the inertial impedance of the plate, the effect of the fluid

loading on the magnitude of the wavevector-frequency response of the plate

will be small (except at the wavenumber k0). Conversely, if the specific

acoustic impedance is large in comparison with the inertial impedance of the

plate, the magnitude of the wavevector-frequency response of the fluid-loaded

plate will be significantly lower than that of the plate in vacuo.

At the wavenumber ko , the response of the fluid-loaded plate is seen to

be zero, whereas that of the in-vacuo plate is nonzero. Recall, from section

4.3.3.1, that the impedance of the acoustic half space at the surface x3 = 0

becomes infinite at wavevectors equal, in magnitude, to that of the acoustic

wavenumber, Ikoll Inasmuch as the plate motion and the fluid motion must be

equal at the interface x3 = 0, it follows that the impedance of the coupled

plate-fluid system must also be infinite at wavevectors equal, in magnitude,

to IkoI. Consequently, the wavevector-frequency response of the fluid-

loaded plate is zero at k - k . Conversely, equation (3-144) shows the

•wavevector-frequency response of the in-vacuo plate to be nonzero for all

wavenumbers below the free wavenumber, k, of the plate.

Resonance in the wavevector-frequency responses of the in-vacuo and

fluid-loaded plates occurs, at any fixed frequency, when the wavevector of

excitation is equal, in magnitude, to the free wavenumbers, kp and k p', of
the respective plates. As is evident in figure 5-7(a), the magnitude of the

wavevector-frequency response at these resonance wavenumbers is equal to

l/(ril) for both the fluid-loaded aod in-vacuo plates. However, because the
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free wavenumber of the fluid-loaded plate is greater than that of the plate

in vacuo, resonance occurs at a higher wavenumber in the fluid-loaded plate

than in the in-vacuo plate.

For wavevector magnitudes large in comparison with the resonance wave-

numbers, the wavevector-frequency responses of both the fluid-loaded and

in-vacuo plates are governed by the flexural rigidity of the plate (i.e., the

term Ok4 in equations (3-114) and (5-46)). Inasmuch as figure 5-7(a)

compares the magnitudes of the wavevector-frequency responses of identical

plates, fluid loaded and in vacuo, it is not surprising that the magnitudes of

the responses of the two plates are approximately equal at high wavenumbers.

Figure 5-7(b) compares the phases of the wavevector-frequency responses of

the fluid-loaded and in-vacuo plates at the fixed frequency w. As explained

in section 3.4.6, the phase of the wavevector-frequency response can be

interpreted as the phase of each harmonic wave component of the displacement

field relative to that of the corresponding harmonic wave component of the

excitation field. At wavevectors less, in magnitude, than the resonance

wavenumber, k p the response of the in-vacuo plate is dictated primarily by

inertial effects (i.e., the term in equation (3-114)), and the

displacement is nearly out of phase with the applied force. This same

argument applies to the fluid-loaded plate for wavevector magnitudes greater

than k 0 and less than k p', where the inertia of the plate is augmented by

the inertia associated with the fluid loading. For wavevectors less, in

magnitude, than kO, the fluid acts as additional damping to the plate,

thereby reducing the phase lag between output and input relative to that shown

for the in-vacuo plate. When the plate is excited by a harmonic wave

characterized by a wavevector nearly equal (but less) in magnitude to that of

the acoustic wavenumber, the damping force assotiated with the fluid loading

becomes extremely large, and the displacement lags the applied force by

90 degrees, At resonance, the harmonic waves of displacement of both tle

fluid-loaded and io-vacuo plates lag the associated waves of applied force by

90 degrees. For harmonic wave excitations characterized by wavevectoes

larger, in agnitude, than the resonance wavenunber, the responses of both tile

fluid-loaded and in-vacuo plates are governed by the flexural rigidity of the

plates (i.e., the term Ok 4 in the respective wavevecr-frequeocy responses),
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and the resulting wave of displacement is nearly in phase with the excitation.

The above example illustrates that the fluid-loaded plate responds most

strongly to harmonic wave components of excitation that are characterized by

wavevectors equal, in magnitude, to the free wavenumber of the fluid-loaded

plate at the frequency of excitation. This behavior parallels that observed

(in setion 3.4.6) for the in-vacuo plate.

5.3.2 The Forced Response ofa Fanite, Simply Supported Plate With Fluid

Loading on One Side

In this section, we develop the wavevector-frequency description of the

forced displacement field of a finite, simply supported plate subjected to

fluid loading on one side. The composite plate-fluid system of interest is

illustrated in figure 5-8. Here, a thin plate (with flexural rigidity 0, mass

per unit area p, damping coefficient per unit area r, and dimensions L1 by

L2) is simply supported in a rigid baffle of infinite extent. The space

above the plate and baffle, x3 > 0, is occupied by an acoustic fluid having

a density p and a speed of sound c. The space x3 < 0 is vacuous. The plate
is excited into motion by a force per unit area, f( t). applied to the bottom

surface of the plate, We wish to detemine the displacemen field of the

plate resulting from this externally applied excitation.

A schematic diagram of this composito system is illustrated in

figure 5-9. The baffled, simply supported plate is excited into motion by

the externally applied forcing field, f(?,t). The resulting displacement

field, wQ.t), is imposed on the fluid in the acoustic half space at the

plate-fluid interface (x 3  0), thereby exciting a pressure field,

p(x,x3 ,t), throughout the acoustic half space, x3 > 0. 1his pressure

field, acting over the top surface of the plate, produces an additional input

field, p(,Ot), over the upper surface of the plate and baffle that acts

opposite in direction to the externally applied forcing field. The output of

this composite system is the displacement field of the plate, w(x,t).

By figure 5-9. it is evident that the composite system of the fluid-

loaded, simply supported plate can be interpreted as two coupled subsystems:
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Figure 5-8. Geometry of the Finite. Simply Supported Plate
With Fluid Loading on One Side

one subsystem represents the simply supported plate and the surrounding baffle

and the second subsystem represents the acoustic halt space. The couplings

between these systems are identical to those occurring in the fluid-loaded

infinite plate, which were described and discussed in %ection 5.1.3.

The reader might be justifiably curious as to why the simply supported

plate and the surrounding rigid baffle are treated as a single subsystem. The

answer is that. by including the rigid baffle in the subsystem associated with

the simply supported plate, the input-output relationship for the plate-baffle

subsystem cat, be directly obtaited from that of the forced response of the

simply supported plate, which was treated 'in section 4.3.3.2. That is,

because the baffle is assumed to be rigid (i.e., of infinite impedance for all
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Figure 3-9. Schematic Diagram of Fluid-Loaded,
Simply Supported Plate System

wavevectors and frequencies), the displacement, w(x,t), nonual to the plane of

the plate and baffle is then known tu be zero for all i outside the boundaries

of the plate: that is, outside 0 < x L I and 0 < x2 < L2 This is

exactly the displacement field that was assumed to exist outside the confines

of the simply supported plate in the forced system treated in section

4.1t3.2. Thus, the motivation for including the rigid baffle in the subsystem

associated with the simply supported plate was to enable us to use the

relationships deveioped in section 4.3.3.2 to model this subsystem.

By reference to equation (4-210) of section 4.3.3.2, the displacement

field output from the subsystem associated with the baffled, simply supported

plate as a result of the forcing fields f(j,t) and -p(x,0,t) can be written as

5-36f f io.t - t){( ,t 0 ) - p(?,Ot 0 )) dA dt0  (5-47)

-'W -00
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for all x and t. Here, g(,2o~t - to) is the exact and causal Green's

function for the baffled, simply supported plate, which was shown, by equation

(4-205), to be given by

g(2, ,t 00 0o  -)Lmn ) fmn2
-tt) wLIL 2  1D[(nw/L) 2 + (nir/L) 212 + irw- 2

exp{tw(t - to)} dc , (5-48)

where umn f) are the normal modes of the simply supported plate defined by

%n(X) = sin(mix 1 L)sin(ngx2/L2) (5-49)

and B(x) is the two-dimensional space-limiting function defined by

O() = {U(x l) -U(x1 - L1)}{U(x 2) -U(x2 -L)} . (5-50)

It should also be recalled (from section 4.3.3.2) that, in equation (5-47),

f(x,t) is equal to the force per unit area applied to the under surface of the

plate in the spatial range 0 < xI < L1 and 0 < x2 < L2, but can be

arbitrarily specified outside this range inasmuch as forces outside the

physical extent of the plate act only on the baffle, which is rigid.

It is straightforward to show, from equation (5-47), that the wavevector-

frequency transform, W(k,w), of the space-time displacement field is related

to the wavevector-frequency descriptions of the forcing and surface pressure

fields, F(k,w) and P(k,O,w), by

W(k,w) = (21) - 2 JG(.-gw)(F(gw) - P(a,O.t)) dq. (5-51)

-00

Here, G(k,g,w) is the two-wavevector-frequency response of the system (i.e.,

the multiple Fourier transform g( ,Or) on the variables X, So. and ),

which is given by

4 Imn(k) Imn(g)

G(L, , I) LL 2  Ok4 2 i rw (5-52)
m=l n - + ir

5-37



...he

kmn = m s /L1)2 + (nw/L2)2  (5-53)

and
00

=m( 0(X[)'mn (X)exp(-tk, x) dx.(-4

Equation (5-51), with equation (5-52), defines the relationship between the

wavevector-frequency descriptions of the input and the output fields for the

subsystem associated with the baffled, simply supported plate. This input-

output relationship has the mathematical form shown, in section 4.3.2, to be

characteristic of a space-varying, time-invariant system.

The subsystem associated with the acoustic half space is identical to that

used in the coupled system that represents the fluid-loaded infinite plate in

sections 5.2.1 and 5.3.1. The causal relationship between the wavevector-

frequency descriptions of the boundary displacement and the resuilting surface

pressure was given by equation (5-7). As was argued previously, this

relationship has the mathematical form characteristic of a space- and

time-invariant system.

The composite system of the fluid-loaded, simply supported plate

surrounded by ao infinite rigid baffle is mathematically modeled by the

coupled set of equations (5-7) and (5-51). By substitution of equation (5-7)

into equation (5-51), it can be shown that the wavevector-frequency

description of the forced displacement of the baffled, simply supported plate.

fluid loaded on one side, is governed by

- (2w) -2 0 (k,-,'(,)

Iko 0+ .I- - ddI (5-55)
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where o2 = li2 + 22. Note, by equation (5-55), that the input-

output relationship for the fluid-loaded, baffled, simply supported plate in

the wavevector-frequency domain is expressed in the form of an integral

equation for W(k,w). This mathematical form of input-output relationship was

shown, in section 4.3.1.2, to be characteristic of space-limited,

time-invariant linear systems.

The solution of the integral equation (5-55) for W(k,w), subject to the

constraints imposed by the simply supported boundary conditions and the

surrounding rigid baffle, presents a formidable mathematical challenge.

However, a conceptually simple (although computationally inefficient) approach

to obtaining a solution for W(k,w) is to assume that the space-time displace-

ment and forcing fields can be expressed as a weighted superposition of the

in-vacuo normal modes of the simply supported plate. That is, assume that the

w(x,t) and f(&,t) can be expressed as

W(,t) L I Wmn(w)O( mn( Lexp(iwt) dw (5-56)

-oow~ =l

and

f(2it 0 Tr Fmn(w)O(jl*mn(IL)exp(iwt) dw (5-57)

As expressed in the form of equation (5-56), the displacement field of the

baffled, fluid-loaded plate satisfies the simply supported boundary

conditions and the requirement that the displacement be zero over the

surface of the rigid baffle. The form of equation (5-..57) reflects the fact

that the externally applied forcing field acts only over the surface of the

-plate.

by asswming that the space-time displacement and forcing fields exist in

the forns of equations (5-56) and (5-57), it follows (by use of equation

(5-54)) that W(t,w) and F(k,o) can be written in the form
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isI

K MW (N)t ( (W58
M=l nl

and

F(~ F mn(Wj)Iwn(k)(5 )
M-l n=l

By substituting equations (5-52), (5-58), and (5-59) into equation (5-55), we
obtain the following relationship between the frequency-dependent modal
coefficients of the displacement and forcing fields:

W1l na1

1 04 0 F 9 9( W)I (k ) I ( )I'g c

W (w I (k) Iv Jlpq* (9*
2k VW2 +~ i 4 - 42
M 12~=l n~l u~l v~4 uv I J- S -k k

jMV

mu i "- uml V'. kUv -c ir I gj. -k0o

By mulltiplying equation (5-60) by I*ij(164 and irttegrating over all ~.we can
emp~loy the orthogonality condition (derived in section 4.2.2),

Im~ Ik sW d LW 24an (5-61)

to sbow that
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WtjW1  - k 4 2

ir2L L Dk i4 P2 + irc0

JIZ,/ - "d.

12m=l n=l IJj<_lkoI1 %[ 7/ko

+ O2 0 Wmn(W) I Imn(g)I*l j(-°) d

k2 41
Ir L IL2 mO -- kij _V,+ irw 1.>k01 a 2-

(5-62)

If we then define

....sw 2"PC "n )IS Ma (5-63)
r ) 2LL2  j:ko 1 - aok0

and

------ ~ - .... dg ,(5-64)
qs L2 j k ikog 2

equation (5-62) can be written

' o o V V
{k4 - 4- irjW(u) ,. > [- 21q~s(u) iurmnq()]Wqs( )) Fn(n)

Ji mni 4s0 1WM 6)+2 -W rq w

q-1 S-1

(5-65)

Oy recalitng that the free wavenumber of the space- and time-invariant plate
in vacuo is defined by

k (W) o 4 (5-66)
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,we can rewrite equation (5-65) in the form

I I I mq6nsqs 4 kp4 [Imq ns+ mnqs(' 1]

q=1 s=l

+ k Ismqsns iW() =m () 0 (5-67)

Equation (5-67) represents a doubly infinite set of coupled equations for

the frequency-dependent modal coefficients of the plate displacement,
V in terms of the frequency-dependent modal coefficients of the
-V V

external forcing field, Fn (c). Owing to the coupled nature of these

equations, a single modal component of the forcing field excites many modal

components of displacement. This behavior is in sharp contrast to that

observed in the forced response of the simply supported plate in vacuo (see

equation (4-197) of section 4.3.3.2), where each modal component of the

forcing field excited only the corresponding modal component of displacement.

Clearly then, the coupling between a single modal component of force and the

infinite set of modal coefficients of the displacement results from the fluid

loading of the plate.

The fluid leading of the plate Is applied by the pressure field (that is

induced throughout the acoustic half space by the motion of the plate) acting

on the upper surface of the plate. By equation (4-146) of section 4.3.3.1,

the space-time description of the pressure field over the surface x3 = 0 can

be expressed as

-3'r2) J p(, P.O,)o xp+i(u wt))dk do (-68)

for all E and t. However, over the surface of the plate. 0 :S x1 < L1 and

0 .X 2 : L2V p(.x,O.t) can be expressed in the form

-1 1 0 90 10 <xI <LI,p(,O.t) - (2w) "1 PMn()ajnn ( )exp(twt) d,

--w mal nal 0 :j x2  L2 •
.., :': ii . 5-42 ( -9



By use of equations (5-7), (5-58), (5-68), and (5-69), it follows that

• CO

-= 1 1U(2i
U=l v=l

V

2= (2 {S gS exp[t(k.x)] dk

q=l s=l k kol _ 2

- J P(IWos(())Io(k)1
W WQ.M qs., exp[ilk.x)] dk (5-70)Itjk I 1 4ko2 - k02

for 0 x, L I and 0 < x2 :S L2 . By multiplying equation (5-70) by
Smn(X) and integrating over O < xI < LI and 0 <.x < L2, we can use
equations (4-54), (5-54), (5-63), and (5-64) to show that

Pm(" ={irmqs((#) - t. }WWqs(W) •(5-71)

q=l sol

Equation (5-71), which defines the complex, frequency-dependent amplitude of
the mn-th modal component of the pressure field acting over the upper surface
of the plate, clearly shows that a single modal component of the displacement
field.,W qs(u), produces an infinite number of modal components of pressure
on the upper surface of the plate. These modal components of pressure, in
turn, excite the corresponding modes of displacement of the plate. This

phenomenon is known as modal coupling.

The presence and degree of modal coupling is dictated, in both equations
(5-67) and (5-71), by the frequency-dependent quantities rmnqs and

defined by equations (5-63) and (5-64), respectively. It is desirable to
interpret the roles of these quantities on the physics of the plate motion.

It is easily shown, by use of equations (5-54), (5-63), and (5-64), that
r and V are real quantities. Further, by equation (5-71), it isMnqS Q5
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evident that the combination of terms

2v

jrmnqs(w) - w mnqs (0)} Wqs(W)

can be interpreted, at any given frequency, as the contribution to the mn-th

modal component of the pressure acting over, the upper surface of the plate

resulting from the qs-th modal component of the displacement field of the

plate. More specifically, it can be shown by use of equation (5-56) that

t s (w) can be interpreted as the complex frequency-dependent amplitude

of the qs-th modal component of the normal velocity field of the plate.

Therefore, because rmnqs is real, the term iwrnnqs (O)&s) (w) describes a

contribution to the mn-th modal component of pressure that is proportional to

the qs-th modal component of the velocity field of the plate. Inasmuch as

forces per unit area that are proportional to velocity are normally associated

with losses (e.g., damping) to the system, the term r can be interpretedmnq s
as additional damping per unit area of the plate resulting from the coupling

between mn-th and qs-th in-vacuo modes of the plate caused by the presence of

the fluid. This interpretation is supported by equation (5-63), which shows

that r. (w) is proportional to an integral over the supersonic (i.e.,

I k0 ) wavevector components of the acoustic half space. Recall, from
section 4.3.3.1, that these supersonic wavevector components are associated

with waves that propagate away from the boundary (the plate-baffle surface)

and, thereby, represent a loss mechanism to the plate.

2V

By similar reasoning, the term -w Wqs() can be interpreted as the

complex amplitude of the qs-th modal component of the acceleration field of

the plate in a direction normal to its surface. Because vmnqs is real, the
2 V

ter -w mqs(iO) (ii) represents a contribution to the mn-th modal
component of the pressure acting over the upper surface of the plate that is

proportional to the qs-th modal component of the acceleration field of the

plate. Because forces per unit area that are proportional to acceleration are

associated with the inertia (or mass) of the system, the tern p mnqs can be

interpreted as an additional mass imposed on the plate as a result of the

coupling of the mn-th and qs-th modes caused by the presence of the fluid. As

seen by equation (5-64), this additional mass is proportional to an integral

of the subsonic (i.e., jgi > JkoI) wavevector components of the acoustic
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half space. These subsonic components were shown, in section 4.3.3.1, to be

associated with waves that did not propagate away from the boundary, but

decayed in amplitude with increasing distance from the boundary, (i.e., the

plate). As these waves do not propagate away from the plate, they do not

represent a loss mechanism to the plate. Rather they can only represent

reactive forces (i.e., inertia or stiffness) on the plate. Davies3 argued

that the terms containing vmnqs lead to additional virtual mass of the

plate. Therefore, v mnqs is interpreted as additional mass to the plate

rather than additional stiffness.

By the above arguments, we conclude that the modal coupling, introduced by

the physical coupling between the plate and the fluid, has the effect of

adding mass and damping to the simply supported plate. The reader will recall

that the effects of fluid loading on the space-invariant, infinite plate were

to increase the apparent mass and damping of the plate. Thus, we see that the

effects of fluid loading are similar between finite, simply supported plates

and infinite, space-invariant plates.

If we define

Anmqs() 6mq nskq54 - kp P mq ns * (

then equation (5-67) can be rewritten as

V
~~ ~ __. Fmn(W)

Amnqs(u)Wqs( = (5-73)

ql sWl

In principle, although not necessarily in practice, a four-dimensional,

frequency-dependent matrix, B (co), can be found that satisfies the
nqS

relationship

I I a i=A6nqs(w) 6iq6js . (5-74)

.q=- S=4
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That :s the .matri B (is). the inverse of the matrix A (w) at theniqs mnqsfrequency . By use-of equations (5-73) and (5-74), it follows that n(

'has the form

V

W 9S (5-75)
kmn e )  mnqs ( )  " 5-5

q=l s=l

Therefore, by equation (5-58), the wavevector-frequency description of the
displacement field of the baffled, simply supported plate, fluid loaded on one
side, has the form

V

(w Fs I W (5-76)

m=l n=1 q1 s=l1

Equation (5-76) shows that, at any fixed frequency w, the wavevector
dependence of the displacement field of the baffled, fluid-loaded, simply
supported plate is specified by a weighted summation of the wavevector
transforms of the space-limited natural modes of the in-vacuo plate, yan(k).
over all mode numbers, m and n, By reference to equation (4-217) of section
4.3.3.2, it is evident that the wavevector dependence of the displacement

field of the in-vacuo, sinoly supported plate is also specified by a weighted
summation of I mn(k) over all m and n. However, a comparison of equations

(4-217) and (5-76) shows that the modal weights applied to ](A) are

considerably more complicated for the fluid-loaded plate than for the in-vacuo

plate. Determination of the modal weights, W for the fluid-loaded,
simply supported plate requires, by equation (5-75), knowledge of Bn(u),
the inverse of Arnqs(u). Inasmuch as the mode numbers, m and n, range from
1 . to infinity, it is evident that mnqs() cannot be determined exactly.
Therefore, only approximate solutions can be obtained for the wavevector-

frequency (or space-time, for that matter) characteristics of the baffled,
simply supported, fluid-loaded plate. A variety of such approximate solutions

are presented by 3unger and Feit 4 and Davies.5  The majority of these
approximate solutions require arguments too complex and lengthy to be
presented here. However, to provide some insight into the response
characteristics of the baffled, fluid-loaded, simply supported plate, we will
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present one, somewhat simplistic, example of an approximate solution: the

example of a light fluid loading.

Light fluid loading is defined as that situation in which the modal

amplitude of the pressure, Tmn(w), defined by equation (5-71), is small in

comparison with the externally applied modal force, Ymn(w). Thus, in the

case of light fluid loading, the forces resulting from modal coupling are

small, and each modal component of the applied force is primarily balanced by

the modal forces associated with the stiffness and inertia of the plate.

Under these assumptions, equation (5-65) can be rewritten

AOk 4- [v + 2 ~nmnM )2 + it + rmnmn(w)]m "  v
InU m J Wmn~a) + cmn = n(n )

(5-77)

where c mn() denotes the contribution to the modal pressure resulting fromon
the sum of the crosscoupled terms (i.e., q s m and s i n) in equation (5-71).

That is,

I -twA"Yoolq(w) + iOrmnqs(w)] (-8

qOM son

We now assume that cMn (4) is (f the same order of magnitude as the modal

pressure, ;mn(w), and is therefore sufficiently small, in comparison with

the externally applied modal force, ymn(c), to be neglected. Under this

assumption, it follows that the modal amplitudes, , can be

approximated by

V
v F n( )

(Ok E + %m M~w.+ itr + rma(Ol)3

It therefore follows that the wavevector-f-equency description of the

displacement field of the baffled, lightly fluid-loaded, simply supported

plate can be approximated by
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0000 V

1 2 k - p ( )]o + l~r + r(
m=1 n=l D mn 0mnmn 2)] mnmnw)w

Comparison of equation (5-80) with equation (4-217) of section 4.3.3.2

shows that the wavevector-frequency description of the displacement field of

thte lightly fluid-loaded, simply supported plate has a mathematical form

similar to that of the simply supported plate in vacuo. Indeed, this

comparison reveals that the effect of the light fluid loading is to increase

the apparent mass and damping of the plate. The additional mass and damping

are modally dependent quantities, which, in this first order approximation,

result only from the autocoupled (m = q and n = s) modal contributions to the

pressure field at the surface of the plate.

The similarity in the mathematical forms of equations (5-80) and (4-217)

implies a similarity between the wavevector-frequency characteristics of

in-vacuo and lightly fluid-loaded, simply supported plates. By arguments

presented in section 4.3.3.2, certain wavevector-frequency characteristics of

the forced response of the in-vacuo, simply supported plate were deduced from

equation (4-217). By taking proper account of the differences in inertia and

damping between equations (4-127) and (5-80), a similar set of wavevector-

frequency characteristics can be inferred for the forced response of the

lightly fluid-loaded, simply supported plate.

Recall that at any resonance frequency, %, the magnitude of the

wavevector-frequency response of the simply supported pD te in vacuo was

argued to be relatively large in the neighborhoods of those modal wavevectors

associated with the resonance (i.e., where IKI u kHN) and in the

neighborhoods of those modal wavevectors associated with relatively large

modal forces. By similarity arguments, it follows that, at any resonance

frequency of the lightly fluid-loaded, simply supportd plate, " the

wguitude of the wavevoctor-frequency response will be relatively large in the

neighborhoods of those modal wavevectors associated with the resonance (i.e.,

where j I k N) and in the noighborhoods of those modal wavevectors

associated with relatively large modal forces. Here, w..,' is the natural

frequency of the KN-th mode of the li)ghtly fluid-loaded plate, which is
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defined as tat frequency at which

DkMN - [1 + P14NHN(w)]W 2 = 0 . (5-81)

In contrast, the MN-th modal natural frequency of the in-vacuo plate was

defined as that frequency satisfying

4 2
DkMN - 2 = 0 . (5-82)

Thus, we see that lightly fluid-loaded and in-vacuo simply supported plates

have similar wavevector-frequency characteristics at resonance. However,

owing to the additional apparent mass associated with the fluid loading, the

resonance frequencies of the lightly fluid-loaded plate differ from those of

the plate in vacuo.

In section 4.3.3.2, we argued that, at a nonresonance frequency WO, the

in-vacuo plate responded most strongly to those modal forces characterized by

modal wavenumbers, kmn, nearest to the free wavenumber, kp(wO), of the

in-vacuo plate: that is, those modal forces characterized by modal numbers, m

and n, such that

k k .

By similarity arguments, the lightly fluid-loaded plate also responds most

strongly at a nonresonance frequency to modal forces characterized by modal

wavenumbers, nearest to the free wavenumber of the lightly fluid-loaded

plate, kp(wo). which (by equation (5-80)) can be approximated by

4 2
k wo ViEP '.nwa'0 P W)c&WO (5-84)

Thus, off resonance, both the ln-vacuo and lightly fluid-loaded plate respond

most strongly to modal forces characterized by modal wavenumbers nearest to

the free wavenumbers of the respective plates. However, owing to the

additional mass associated with the fluid loading, the free wavenumber of the

lightly fluid-loaded plate differs from that of the plate in vacuo.
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It was demonstrated in section 4.3.3.2 that excitation of the in-vacuo

simply supported plate by a single wavevector-frequency component of the

externally applied forcing field produced a response, at the frequency of

excitation, that was comprised of a weighted distribution of wavevectors.

This conversion of a single wavevector component of the input into multiple

wavevector components of response was attributed to wavevector scattering at

the boundaries of the plate. This mechanism for wavevector conversion is, of

course, also present in the lightly fluid-loaded, simply supported plate.

However, as was shown above, fluid loading provides an additional mechanism

for wavevector conversion in the simply supported plate: that is, modal

coupling. Whereas only autocoupling of modes is assumed in the light

fluid-loading approximation, it should be recognized that the forces

associated with crosscoupled modes can be significant for heavier fluid

loadings.

5.4 CONCLUOING REMARKS

In this chapter, we have demonstrated that spatially distributed,

multicomponent linear systems can be interpreted as an assemblage of coupled

subsystems, where each subsystem represents a single physical component of the

composite system and the couplings between subsystems reflect appropriate

interactions between the corresponding physical components. by use of this

interpretation, we argued that the mathematical model of a multicomponent

system is formulated by appropriately coupling the azsenblage of mathematical

models of the subsystems associated with the composite system. To demonstrate

this procedure for the formulation and solution of mathematical models of

mailticoraponent systems, we treated the free and forced vibrations of an

infinite plate with fluid loading on one side and the forced vibration of a

baffled, simply supported plate with fluid loading on one side as illustrative

examples.

These illustrative examples reveal that a primary effect of the fluid

loading, comon to both the infinite and simply supported plates. is to

increase the apparent mass and damping of the plate. The increase in apparent

mass, though frequency dependent, causes the free wavenumber of the fluid-

loaded plate to be greater, at any frequency. than that of the same plate
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in vacuo. Inasmuch as the free wavenumber defines the resonance

characteristics of the plate in the wavevector-frequency domain, it follows

that the fluid loading alters the resonance behavior of infinite and space-

limited plates. In the case of the simply supported plate, it was shown that

the fluid loading provides a means for wavevector conversion supplemental to

the scattering mechanism associated with reflections at the boundaries of the

in-vacuo plate. This additional means of wavevector conversion is modal

coupling, whereby a single modal component of displacement of the plate

produces a pressure field at the surface of the plate that is comprised of

many modal components. These modal components of the pressure field act as

additional modal forces on the plate and produce corresponding modal responses

of the plate.

The response of multicomponent systems comprised of structural and fluid

components is the focus of structural acoustics. The response of interest

(i.e., output) in such systems can be either the vibratory field of the

structure or the acoustic pressure-field produced by the vibration of the

structure. The illustrative exampi-es far this chapter are a subset of perhaps

the most exhaustively studied class uf problems in structural acoustics: the

vibration of, and radiation from, plates in contact with an acoustic fluid.

Owing to space limitations and the desire to provide a simple and consistent

set of illustrative examples of coupled systems, the examples presented here

focus only on the vibratory displacement fields of the simplest space-

invariant and space-limited forms of plate-fluid systems: that is, the

infinite and simply supported fluid-loaded plates. Space limitations also

restricted the detail to which the effects of fluid-loading were examined. To

supplement the treatment of coupled plate-fluid systems provided here and to

demonstrate the variety of plate-fluid systems addressed in the literature, we

close this chapter with a brief listing of references. These references can

be used as a springboard by the interested reader to further expand his

sources of information.

The vibration and pressure fields associated with uniform, infinite plates

under various forms of excitations constitute the most extensively studied

class of coupled systems in structural acoustics. Examples of these systems

are treated In such standard texts as Junger and Feit 6 and Morse and
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Ingard. 7 However, as late as 1979, there was continuing interest
8'9'10

(and some confusion) regarding the free waves of fluid-loaded plates. The

vibration and acoustic fields associated with fluid-loaded infinite plates are

usually obtained by asymptotic methods. Examples of such approaches are

presented by Morse and Ingard11 and by Crighton.
12'13

The vibration and acoustic fields of the simply supported, rectangular

plate are treated by Junger and Felt.14 However, for a detailed treatment

of the modal coupling terms (i.e., Vmnqs and r mnqs) and high and low

frequency approximate solutions of the displacement and radiated fields of

fluid-loaded, simply supported plates, the reader is referred to Davies.
15

In addition, Maidanik 16 devised a method for classifying the various modes

of simply supported plates in terms of their radiation efficiencies. Crighton

and Innes13 apply asymptotic methods to obtain approximate solutions for the

vibration and radiation fields of certain other examples of fluid-loaded,

space-limited plates.

Finally, the vibration and acoustic radiation fields of beam-stiffened,

fluid-loaded plates have received much attention over the past 25 years. This

work has progressed from the consideration of the vibration and acoustic

fields of a single beam attached to a plate.ll' 1Wthrough the treatment of

the vibration and pressure fields associated with periodically stiffened,plates19
fluid-loaded plates, to the prediction of the vibratory and radiated

fields of a plate with any number of supports.
20'21

The above references illustrate the variety of coupled plate-fluid systems

encountered in structural acoustics and provide a starting point for readers

interested in such systems.
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CHAPTER 6

RANDOM SPACE-TIME FIELDS

In the previous chapters, we have presented examples of various classes of

linear systems excited by deterministic input fields -- that is, input fields

that can be explicitly described over all space and time for all repetitions,

or realizations, of the experiment or computation. In many problems of prac-

tical interest in acoustics, however, the system of interest is excited by a

field that behaves unpredictably, in both space and time, from one experi-

ment, or observation, to another. Such fields are called random space-time

fields, and can be described only in terms of their statistical properties.

In this chapter, we define the statistical metrics used to characterize

random space-time fields. In addition, we define various classes of random

space-time fields, and show how the classification of the field affects the

functional form of the statistical metric.

The random space-time fields encountered in acoustics fall into a category

that statisticians call random, or stochastic, processes. Inasmuch as these

.-ispace-tite fields describe real physical quantities, we will limit our

3ttention to real random processes. Random processes are rigorously treated

in texts dealing with the mathematical theory of probability and statistics

(see, for example, reference 1),. and are somewhat less rigorously treated In

eIneering texts (such as refeiences 2, 3 and 4). The intent of this chapter

is to dfine those statistical metrics and concepts used in wavevector

frequeocy analyais of linear acoustic systems. The most cursory examination

of any of references 1 through 4 will demonstrate the futility of attempting

* :eide, a co lete or rigorous treatment of stoahastic processes in a single

:chater. Therefore, to accommodate both the intent and spatial restrictions

of this chalter, we must assume that the reader has some familiarity with the

thteOry of probability and statistics. Moreover, we must disclaim any pretense

of riqor in our presentation of statistical definitions and concepts. For

:" " " ":"' " " " : " " " " : " ' " " .1



comprehensive or rigorous treatments of the statistical concepts and metrics

presented here, the reader is encouraged to consult the above cited (or

equivalent) references. Readers unfamiliar with probability and statistics

will find the first chapter of Random Vibration by Crandall and Mark5 to be

a helpful introduction to random processes and statistical concepts.

6.1 REVIEW OF BASIC CONCEPIS

Probability and statistics are mathematical theories developed to describe

and predict certain average properties of experimental outcomes that vary

randomly over repeated trials. The concept of repeated experiments or

observations is central to the definition of randomness. Consider, for

example, an experiment in which the pressure, p(io,t), at the spatial

location x on a planar surface is measured as a function of time between

0 < t < T. Assume that the time history of p(Xo,t) illustrated in figure

6-1 is the result of one trial of this experiment. This time history has no

apparent pattern, and one is tempted to say that the pressure varies randomly

in time. However, if the experiment is repeated many times, either on the

same system or on a series of identical (within the control of the experi-

menter) systems, and if the time histories of the input pressure at A are

identical for all repetitions of the experiment, the pressure field, p(o,t),

is said to be deterministic over the interval 0 < t < I inasmuch as the result

of one experiment defines the results of all repetitions of the experiment.

If, however, each repetition of the experiment produces a different time

history of the pressure at 0 over the time lUterval 0 < t < 1, the pressure

field, p(o,t), is said to be random in that time interval.

ihe fields of interest in acoustics are wave fields, which vary in both

space and time. To facilitate the 4pplication of the theory of probability

and statistics to the random space-time fields occurring In acoustics, it is

desirable to review certain definitions and concepts. To illustrate these

definitions and concepts, we will use (here, and throughout this chapter) the

pressure field, p(A,t), on a planar surface. The reader should realize,

however, that the arguments, definitions, and concepts illustrated by this

surface pressure field apply equally to displacement, acceleration, or other
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Figure 6-1. Time History of p(io,t)

space-time fields of interest in acoustics.

6.1.1 Fundamental0Definitions

An outcome of an experiment is a predefined result of one trial of an

experiment. In an experiment of drawing one card from a deck of 52 cards, the
-outcome could be defined as the particular card drawn. Thus, the outcome of

one trial of this experiment might be the king of clubs. In an experiment

designed to measure the pressure field on a planar surface, the outcome might

be defined as the pressure at the spatial location x, and time t1. The

Important characteristic of an outcome is that it is a single data point

associated with one trial of the experiment.

A random variable is a function, or rule of correspondence, for assigning

numbers to all possible outcomes of an experiment. In the experiment of

-drawing a single card from a deck, there are 52 possible outcomes, and one
* might define the. random variable by assigning the numbers 1 to 13 to the ace

through king of clubs, 14 to 26 to the ace through king of diamonds, and so

forth, such that all possible outcomes are.assigned the numbers 1 through 52.

in engineering experiments, the assignation (or definition) of a random
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variable to all possible outcomes of an experiment is a trivial exercise

inasmuch as the outcomes of such experiments are generally expressed in

numerical terms. For example, we may desire all possible outcomes of the

various trials of measuring the surface pressure at the location x1 and time

tI to be expressed in units of micropascals. In this case, the random

variable is the function, or rule, by which the repeated measurements of

P(Xl ,) are converted to numbers with units of micropascals.

The value of the random variable associated with a particular outcome of

the experiment is the number assigned to a particular outcome. The range of

the random variable is defined as the set of values that the random variable

assigns within the ensemble (or collection) of all possible outcomes of the

experiment. Note, for example, that for the card experiment described above,

the range of the random variable is the discrete set of numbers I to 52. In

repeated measurements of the surface pressure at 2I and tI , the value of

pressure (in units of micropascals) may assume any value between -- and

+cm. Thus, the range of the random variable is the continuous set of all

numbers between minus and plus infinity.

Although there is a distinction between a random variable (the rule of

correspondence between outcomes and numbers) and the value of a random

variable (a number), this distinction is commonly ignored, and the terms

Wvalue of a random variableO and Orandom variableO are often used synonymously.

Attendant with the concept of assigning numbers to all possible outcomes

of an experiment by definition of a random variable is the concept of the

relative frequency of occurrence, or probability density, of each possible

value of the random variable over a very large number of repetitions (or

trials) of the experiment. The probability density (or, more precisely, the

probability density function) of a random variable is a central concept in the

mathematical theory of probability and statistics because all statistical

metrics are defined in terms of appropriate probability density functions.

The probability density function of a random variable is usually defined

in terms of the distribution function of that random variable. The distri-

bution function of the (value of the) random variable v, which we denote
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by Fv(*), is the continuous function defined by

Fv(a) = Prob[v < (6-1)

over all values of a. Here, the subscript v indicates that the distribution

function applies to the random variable v, and Prob[ ] denotes the probability

that the statement within the braces is true. Papoulis 6 shows that the

distribution function of a random variable (say v) has the following

properties:

(a) Fv()= 0 and Fv(+ ) = 1

and

(b) F () is a nondecreasing function of a; that is,

Fv( 1) 5 Fv( 2) for Q, -< 2

By equation (1). it follows that if *2 >

F Vv(a2) - Fv() w Prob[v ' %21 - Prob[v < tll = Prob[&, < v : S] . (6-2)

An example of a distribution function of the random variable v is illustrated

in. figure 6-2.

The probability density function of a random variable is defined1 as the

derivative of the distribution function of that random variable. Thus, for

the random variable v, the probability density function of v, designated by

ifvsts defined by

f (CI) v(6-3)

By equation (6-3) and the properties of the distribution function listed

above, it is evident that the probability density function has the following

properties:
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,, (a) f()._ 0(because F() is 4.nondecreasing function of M),

(b)j fv(a) d= 1 (because F = land Fv(-C) =0),

b

(c) J vW da = Fv(b) = Prob[v < b], and

b
(d) j fvx) do Fv(b) F,(a) = Probta < v < b].

a

The probability density function associated with the distribution function of
figure 6-2 is illustrated in figure 6-3.

Unless the probability density of a random variable is given or can be
physically.or intuitively deduced, it must be estimated from measured data.
To illustrate how the probability ,density might be estimated and to lay a
foundation for future arguents, it is useful at this point to examine the
interpretation of-the probability density in terms of the relative f"quency
-of -occurrence of.the values, of a random variable. Consider an experiment in
whitch values of the random variable, v, have been atsigned to all possible
outcoms. The-•experiment is 'epeated N times, and we wish to estimate the

S ...probability density function of v from the resultant data. By statement (d)
-of the properties of-the probability density function and by use of the mean
value theore for integrals-, it is straightforward to show that

a~ha/2
fv(a) d Prba -a/2 < v _a + a/]) fv(a) a ( 64)

Let us divide the range of the value of the random variable into equal,

--moverlapping increments, au, centered at the values am Auta&, where -w < m
a. < ' If we -then denote the nuber of times the value of the random variable
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Figure 6-2. Example of a Distribution Function for a Random Variable, v

tv (a)

0

Figure 6-3. Probability IDetsity Function Associated

-With the Distributioicto of Figure 6-2
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occurs within any-given increment am - A&/2 to am + A/2 by n(am), the

probability that v is greater than am - au/2 and less than or equal to

am 6 A/2 can be estimated by

.. = • n( )
Prob[am - "/2 < v < am + A6/2] x N " (6-5)

It follows from equation (6-4) that an estimate of the value of the

probability density function at am, which we denote by fv(am), is given by

n(a m)f a) N~a "(6-6)

By repeating this process at increments of a, an estimate of the entire

probability density function of the random variable v can be obtained. As one

might expect, for a fixed am, the quality of the estimate improves as the

number of repetitions, N, increases.

A special set of statistical metrics of a random variable are called

ments. The -th 4uent of atandom variable (say v) ts defined by

Efv1]j 43f v(c) do;* (6-4)

where EC I denotes the average, or *expected value,* of the argent. The

most corfl oly used metrics -re the first (J=A) %oment, which is called the

mean of the random variable v, and the second (3*2) moment, which is called

the meani s vare value of v. For brevity, we will denote the mean and mean
2

Square values of the random variable v by v> and <v >. Another set of

0uwents are the central waents, definted by

-j(v - Cv>)] J (a - cv4 (c) ci (6-8)
_-,V
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It is easily verified, from equations (6-7) and (6-8), that the first (i.e.,

J-1) central moment is zero. The second (j=2) central moment is called the

variance of v, and is denoted by the symbol a2. Note, by equations (6-7)

and (6-8), that

*2 = <v2> - <V>2  (6-9)

Moments can also be written for functions of a random variable. For

example, let y be defined as an ordinary function of the variable x; that is,

y = 9(x). Then, the random variable w, defined by w = g(v), is a function of

the random variable v. The function 9(v) maps all values of the random

variable v into corresponding values of the random variable w. We denote the

values of v by % and the corresponding values of w by 0. By equation (6-1),

the J-th moment of the random variable w is defined by

3 ("EEw 3 jf d) Q (6-10)

Recalling that 0 is simply the value of g(m), Papoulis8 demonstrates that

* equation (6-I0) can be rewritten in terms of the probability density of the

random vaeiable v. That is,

[~wJ] E[9J(~ 1] f 9 ( a) f v ( a) da

,,-0

Although we will not do so here, expressions similar to equation (6-8) may be

-written for central mounts of a function of a random variable.

To provide a simple mathematical interpretation of the mean of a random

vzriable and a foundation for future arguments, consider again an experiment

in which values of the random variable, v, have been assigned to all possible

outcomes. The experiment is repeated N times, and the value of the random

* variable obtained from the J-tb trial (or repetition) of the experiment is

designated by olj), We wish to estimate the mean value (or first moment) of
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the random variable from the resultant data. By using equation (6-6) to

approximate f v(a)do in equation (6-7) and by replacing the integral over =

by a sunnation over all indices, m, of a m = m m, we can approximate the mean

value of v by

nL(v a m  )  
(6-12)

N

For a large number of trials (N) and a small increment (a), the sum of the

values of the random variable (ordered by increments of range) must approach,

in value, the sum of the values of the random variable ordered by trial

sequence. That is, for .large N and small 4m,

0N

V ~(y .)( (6-13)
Jl

Therefore. the mean value of v can be approximated by the arithmetic average

of the ensemble of trial values, u(j), of the random variable, v. That is,

N
. . .. . : :F.(v) aa (j (6- 1

~j~l

It ollows that the man, or expected value, of any random variable or

function of a random variable can be interpreted as the arithmetic average,

ovr an Wfinito, number of trials, of the observed values of that random

variable or function.

6.1.3 Rand3n Proce se.

lhe definitions and coocepts presented above provide a toundation for the

intvduction of random processes. The clearest and most concise definition of

a random process that I have found appears in a set of unpublished lecture

notes by Kneipfer for a graduate levei course in Random Signals and Noise.
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Kneipfer defines a random process as an indexed collection of random

variables. To put this definition in perspective, consider again the pressure

field on a planar surface. We define an experiment in which the pressure is

observed continuously over the circular area lxi < R and 0 < t < T. Over

repeated experiments, the pressure at any predefined spatial location and time

is observed to vary from trial to trial. Note that a single trial of this

experiment requires definition of an infinite number of outcomes, one corre-

sponding to the observed pressure at each spatial location and time within the

specified limits. It is convenient to write the set of random variables

defined for each of the outcomes of a single trial of the experiment in the

form p(x,t). Expressed in this fashion, x and t are indices that identify the

random variable associated with each defined outcome of a single experiment.

Thus, p(xl,tl) and P(X2,t2) specify the value of the random variables

associated with the outcomes of a single trial at the spatial location K,

and time t1 and at the spatial location 22 and time t2, respectively.

The specification of p(K,t) over 2i < R and 0 < t < T from a single

trial of the experiment is called a sample function of the random process.

The collection, or ensemble, of all possible sample functions of the

experiment constitutes a random, or stochastic, process.

A random process indexed by three parameters (i.e., two spatial coordi-

nates and time) is difficult to illustrate. Therefore, let us consider the

simpler random process comprised of all possible sample functions of the

pressure at x = xI over the time interval 0 < t < T. Here, each sample

function, denoted by p (x1,t), consists of the values of the infinity of

random variables associated with the continuous range, zero to T, of the index

t for the 0-th realization cf the experiment. Figure 6-4 illustrates a few of

the sample functions of this process at increments of m O where m is an

integer. However, it should be realized that there are a continuous infinity

of possible sample functions, and therefore the parameter 0 can assume any

value between -w and ®.

Recall that the average iroperties of a random variable were expressed in

terms of the probability density function of that random variable. The
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statistical metrics of random processes are also described in terms of

probability density functions. However, inasmuch as a random process is an

indexed collection of random variables, the average properties of a single

random variable are insufficient to characterize the average properties of a

random process. Rather, the statistical metrics of random processes are

averages of various products of the different random variables comprising the

process. The mathematical formulation of the average properties of random

processes is based on the joint probability density function of two or more

random variables.

6.1.4 Joint Metrics of Multiple Random Variables

The joint probability density function, like the probability density

function for a single random variable, is defined in terkns of a distribution

function. For illustration, consider two random variables that have the

values v and w, respectively. The joint distribution function of the (values

of the) random variables v and w, denoted by Fvw (,B), is the function

defined by

F vw(aB) - Prob[v < e,w < 0] (6-15)

over all values of a and 0. Here, the subscripts v and w indicate that the

distribution function pertains to the random variables v and w. According to

reference 10, the joint distribution function is a nondecreasing function of I

and 0, and has the following properties:

(a) FVw(-w,0) Fvw(,-) - 0

(b) Fvw(=,=) 1

(c) F Fv() ,

(d) F VW(=.) Fw(O)

The joint probability density function of the (values of the) random

variables v and w, which we denote by f vw is defined11 by
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The Joint probability density function of a random process can be

estimated from measured data in a fashiotn similar to that described previously

for estimating the probability density function of a random variable. That

is, by the property (d) of the joint probability density shown above and the

mean value theorem of integrals, it is easily shown that

a+Aa/2 b+Ab/2

J j fvw(=,B) de dQ=

a-aa/2 b-Ab/2

Prob[a - aa/2 < v < a + &a/2,b - Ab/2 < w < b + Ab/2] t fvu(ab) Aa Ab

(6-17)

Thus, if v and w are values of two random variables assigned to the sample

functions of a random process and if N trials of the experiment are conducted,

one can estimate the joint probability density function at =t ia and

a= JAB by determining the number of times, n(aiB%), that. at "a/2 < v

<S a + A./2 and B - 4/2 < w < B - 40/2. That is, by arguments similar to

those used between equations (6-4) and (6-6), an estimate, fvw(mit,%), of

the joint probability density function of the random variables v and w can be

shown to be given by

fvW(Gt N Ai a1

As was noted for the case of a single random variable, for fixed values of a6

and AO, the qulity of the estimate of the joint probability density improves

as the number of trials, N, increases.

The sttstical metrics for two random variables of a random process are

kalled Joint w.merit ,. The m,n-th joint moment of the random variables, v and

w, iz flefined by

E ,N 1 f (aB) do d-

where, again, E[ ] denotes the mian, or expected value, of the argutoent. The

.st comaonly used joint moment Us the 1,1 moent. which is called the



correlation. We will denote the correlation of the random variables v and w

by Qw and note, for future reference, that
iV

= E ~ ~aw] tIf(ij) da dB (6-20)

The two random variables, v and w, are said to be uncorrelated if E~vw]

ELv]E~w].

Central moments are also defined for two random variables. The mn-th

central moment for the random variables v and w is defined by

E[(v <v>) M(w -oc) I <v>)'(0 <w>)nfvw(Q) da dB (6-21)

iThe 1-,1 central moment is called the covariance.

-It is useful, for future reference, to provide a simple mathematical

interpretation of the correlation. Consider an experiment in which the

-values, v and w, of two random variables of a random process have been

---:.astired to all possibilities of their respective outcomes. The experiment is

repeated N'times, and the product of v and w obtained from the rn-th trial is
designated by 4 (m). The number of times, n(aj.0) that the product 4i8

occurs in each incremental area acAB centered at i b and 0 JAB is

noted and recorded. If we use equation (6-18) to approximate f (,C,(i) in

equatin (6-20) and If we replace the integrals over a and $3 by appropriate

.sumations over the indices of ai and 3, the correlation can be

..approximated by

Vw' a Ij(*,' ) ( 6-22)

1O-0 jVuM

.However, for a large number of trials (N) and small incremental areas (aAB)

of range, the sum of the values of the product 4 ordered by increments of
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range must approach, In value, the sum of. -the values of *a ordered by trial
sequence-. That. is,

N

a, Di Qn(a118 ) 0 06(m) .(6-23)

Thus, it follows that the correlation of the random variables v and w can be
approximated by, and interpreted as, the arithmetic average of the trial
values of the product all(m) over a large number of trials. That is,

N

v8(m N (6-24)
ra-l

The concepts presented above for two random variables can be extended to

any number of random variables. Let the values of N random variables be
denoted by vi, I < i <~ N. The joint distribution function of these N random
variables is

Fvct qa2peN Probtv ~oyv 2 ..v (6-25)

The associated joint probability density function is defined by

N

f ( a Fv v2.... vN,2dN) N (6-26)
8ail aa2 ...80N

and the joint moments are given by

EEYIa -2 b v 0 01a0b n
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With the above concepts and definitions, we are now prepared to address

the description of a random space-time field, or process, in the space-time

domain.

6.2 DESCRIPTORS OF RANDOM SPACE-TIME FIELDS IN THE SPACE-TIME DOMAIN

Consider again the pressure field on a planar surface. We define an

experiment in which the outcomes are the infinite set of pressures at each

spatial location, X, and time, t. Over repeated experiments, the pressure at

any predefined spatial location and time is observed to vary from trial to

trial. We define an infinite set of random variables that assigns values,

p(xt), to the pressure at each spatial location and time. By this procedure,

p(j,t) constitutes a random process in which the spatial vector, X, and the

time, t, are the indices of (the values of) the infinite set of random

variables. We will refer to random processes in which the values of the

predefined set of random variables are indexed by spatial and temporal

coordinates as random space-time fields.

In section 6.1.4, we defined various joint metrics of multiple random

variables. However, as explained above, the random process, p(x,t), comprises

an infinite number of random variables. A complete statistical characteri-

zation of this random process requires wpecification of all possible moments
of all combinations of all random variables. Clearly, such a complete charac-

:terization is practically impossible. Indeed, specification of even the

simplest statistical metric (i.e., the mean value) of all the random variables

constituting this random process requires a triply infinite, three-dimensior.al
.array of numbers. These realizations prompt two questions. The first is

bWhat statistical metric(s) do we use to characterize a random processm The

second is "Can we describe these metrics in a mathematically economical

form? We will address these questions in reverse order.

6.2.1 1athematical Form for Descriptors of a.Randm..Process

A mathematically economical description of the statistics of random

processes is facilitated by using the indices of the collection of random

variables Constituting the random process to index the collection of single or
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Joint moments formed from that collection of random variables. To Illustrate,

consider the single random variable, p(x1,t1 ), of the random process p(x,t).

We can write the distribution function of p(X1,t1 ) in the following functional

form:

Fp(e:l t1 ) = Fp(x,t)( ) = Prob[p(xLt 1 ) < :S . (6-28)

Here, = signifies definition, the subscript p on F indicates that the random

variable is a member of the random process p(x,t), and the arguments of Fp

following the colon specify the indices that identify the particular random

variable to which the distribution function applies. By this notation, we are

reminded that a change in either index, 2I or tl , specifies a distribution

function of a different random variable. Further, if Fp(*:x 1,t1 ) is
known for all possible values of a, xL, and t1 , the distribution functions

of all possible random variables assoc;ated with the random process p(x,t) can

be expressed as a single function.

Assume that Fp(*:Xl,tl) is known for all X, and t1 . It then follows, by

equations (6-3) and (6-28), that the probability density function of any

random variable of the random process p(x,t) can be expressed in the

functional form

f ~ ~~dF (*:A, t,) dF pOx~tl )(s) f()(-9

Here, the subscript and the arguments following the colon in fp have the

same significance as described above for the distribution function.

By use of equations (6-7) and (6-29), the J-th moment of p(x1 ,t l ) can
be written

E[pj (x1 ,t 1)J ] J&f (o. t) di . (6-30)

Thus. given the probability density function, fp(at:Xl t,), for all a. x!, and t1,

EEpJ (-,,tl)] specifies, in a single function, the J-th moment of all random
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variables of the random process, p(j,t). In similar fashion, the J-th central

moment of any random variable of the random Process, p(i,t), can be written as

E[[p(x2,.tl ) - <p( 1 ,tl)>]J) = ca - <pxl-tI)>ifp(*: X,.t) da , (6-31)

CO

where <p( 1,tl)> is the mean of the random variable p(Ltl).

The joint moments of the random variables constituting a random process

can also be economically stated by indexing these joint moments with the

indices of the random variables associated with that moment. To illustrate,

consider the two random variables, p(2i,t,) and p(K2,t2), associated with the

random process p(Q,t). The spatial locations of these two points of observa-

tion are illustrated in figure 6-5. We can express the joint distribution

function of these random variables in the following functional form:

F pO(QB: 41 t 1 2 ,t2) Fplxl_ t1 )p(42,t2) =B

=Prob[p(j,,t 1) I *,p(42,tZ ) j 0. (6-32)

Here, the subscripts pp onFindicate that both randni variables are members

of tho random process p(&,t), aod the arguments following the colon in F
p

specify the indices that identify the two random variables to which the

distribution function applies. By this notation, we are again reminded that a

change in either set of indices (i.e., 2,it1 or X,t2) specifies a dis-

tributlon function of a different set of random variables. Clearly, if

F (c,8x ,t1 ,tE) is known for all a,.6, NO 2 tlo and t2, the joint

distributions of any two random variables associated with the random process,

p(2L,t), can specified by a single function.

Assume that Fp(aB t x is known for all , 0, * .  tit

and t2. It then follows, from equations (6-16) and (6-32), that the joint

probability density function of any two random variables associated with the

random process p(j,t) can be written in the for
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Figure 6-5. Geomtry of Pressure Field on a Planar Surface
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By use of equations (6-19) and (6-33). the us-tb joint nimiet of the

random variables p(&1.lt1) -and p(. 20t2) can be expressed in the indexed fern

- J pp caIf'oQ:jtj ;A 2 ) dci dO

Sf ~ Pt 9 1 P!, 2  (,0) do dO (6-34)
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If the joint probability density function, f pp (C&.a:2,t 1;2,t2), is

known for all xl,t. i2, and t2, then the joint moments of all pairs

of random variables in the random process p(2,t) are known. The function of

x t' and t2 resulting front the 1-1 joint moments (i.e., correlations)

of all random variables of the process is called the autocorrelation function

of the random process, and is designated by Qpp(2ltl,-2,t2). That

is,

Q pp (2l -tl, 2t2) Qpi '[(It l)P(!2,t2)]

= =Bppdet dO . (6-35)

The prefix 4auto" to the term Ocorrelation function" denotes that both random

variables are members of the same random process.

Although we will not do so here, the indexing process illustrated above

can be applied to equations (6-25) through (6-27) to obtain similar

functional forms for the joint moments of any number of the random variables

belonging to the random process p(jt).

As a final note, it should be recognized that one can index the joint

metrics of the random variables associated with the random process p(x,t) by

variables other than -' t1. 2- and t2. To illustrate. we will express the

joint metrics of equations (6-32) through (6-35) in tems of an alternative

set of indices that will prove useful in later sections. Note, from figure

6-5, that

L, (6-361

If we define

t2  t, (6-37)

we can express the joint distribution function, the joint probability density

function, and the autocorrelation function of the random process pkx,t) as a
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function of the indices 2i tI , and r rather than x, _2, tlI and t2.

That is, the Joint distribution function can be expressed in the form

F pp (c,0:2~L, ,tl,-t) B F p(x l , t l ) p ( 2[ + K~tl + T)(ag1e)

= Prob[p(xl,t 1 1 < cf,p(x1 + 1,t I + T) : o] . (6-38)

To distinguish this functional form of the joint distribution function from

that of equation (-32), we have orultted the caret over F pp Note also that

the indices that identify the random variables (following the colon in the

argument list of F ) are listed in a different order in equation (6-38) titan
PP

in equation (6-32). This reordering is intended to serve as a reminder that

& and -v are relative rather than absolute spatial and temporal variables,

respectively.

Given Fpp(,O:Xl,(,tlT) for all o, B, hl' K* t I , and v. it follows from

equations (6-16) and (6-36) that the joint probability density function of any

two of the random variables of the random process p(2,t) is defined by

aft ._ (6-39)

By equations (6-19) and (6-39). the mn-th joint mont of any two random
variables associated with p(_,t) is given by

!. ~p~xlt )n *l + ,tl + ]r) . " n . d1 . dcb .U3 (60)

+ .

-thus, t; autocorrelation function of p(.L,t) can be written as

A. Ep(j,t)P() L+ do Q 1 4
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By the above arguments, it is evident that the infinite set of numbers

resulting from the application of any single or joint metric to all random

variables of a random process can be expressed as a single function of the

indices of the random process.

6.2.2 Metrics of Random Processes in the Space-Time Domain

As stated previously, a complete statistical description of a random

process requires specification of all possible moments of all combinations of

the random variables contributing to the random process. However, for

reasons that are, historically, both logical and practical, we will

characterize random processes in the space-time domain by just two

statistical metrics. Those metrics are the mean and the autocorrelation

functions of the process.

The logic for the characterization of a random process by only the mean

and autocorrelation functions is based on three concepts that are central to

the theory of signal processing. These three concepts are (1) the Gaussian

(or normal) random process, (2) the linear system, and (3) the central limit

theorem. A complete explanation of these concepts and logic is well beyond

the scope of this chapter. However, to lend credibility to the idea that a

random process can be characterized by its m ao.and autocorrelation func-

tions, we offer a brief review of the relevant aspects of these concepts and

the consequent logical arguments.

A Gaussian (also called Ononnal) random process is defined12 as a

random process in which all single'and joint probability density functions of

the constituent random variable! are Gaussian. The central feature of a

Gaussian random process is that all its statistical moments are

completely defined by knowledge of its mean and autocorrelation functions.

In chapters 3 and 4 (see equations (3-51), (4-91), (4-128). and (4-132)).

we demonstrated that the output. field, o(?,t), of any time-invariant linear

system is related to the input field, say p(i,t), and the Green's function,

9(1.2%,t - to), of the system by
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o(L, t) g~i -~ t0)p(4,t0) d~j dt0  (6-42)

By equation (3-43) and the principle of superposition for linear systems (see

section 3.4.1 of chapter 3), we can deduce certain characteristics of the

output field of a deterministic linear system excited by a random process.

That is, If the Input field, p(x,t), is a random process, the output field at

any spatial location x and time t can be interpreted (by the principle of

superposition) as a weighted summation of all the random variables that

constitute p(xt). As location, x, and time, t, of the output are varied,

the weighting, 9(X,Xot - to), applied to the various random variables

associated with p(&,t) is altered. Inasmuch as a weighted sum of random

variables is a random variable, we conclude that the output field, o(Kt), of

a deterministic, time-invariant linear system excited by a random process is,

itself, a randow process comprising random variables that are various

weighted sums of those random variables constituting the input field.

The essence of the central limit theorem is14 that, under fairly

general conditions, the probability distribution of a sum of statistically

independent random variables tends to become Gaussian as the number of random.

variables approaches infinity., This result holds regardless of the
probability distribution of the random variables contributing to the sum as

long as that distribution has a finite mean and variance. Further, under

certain conditions, the probability density of a sum of random variables will

tend to become Gaussian even when the requirement of statistical independence

of the random variables is relaxed.15 However, it should be noted that the

limiting distribution of an infinite sum of random variables is not always

Gaussian, and therefore each individual case must be examined to determine

whether or not such a theorem applies.

if the central limit theorem applies to the weighted sum of random

variables that constitutes the output field of a linear system excited by a

random process, then the output field of the linear system is a Gaussian

random process, and is completely characterized by its mean and auto-

correlation functions. Further, as will be illustrated in the next chapter,
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the mean ard autocorrelation functions of the random process output from a

linear system are determined from the autocorrelation function of the process

input to the system and the Green's function of the system. Therefore, when

the central limit theorem applies to the random process output from a given

linear system, knowledge of the autocorrelation function of the input field

is sufficient to completely specify the statistics of the output field.

If it is determined that the central 1i-it theorem does not apply to the

weighted sum of random variables constituting the output field, then the

output process is not Gaussian, and the mean and autocorrelation functions do

not constitute a complete characterization of the statistics of the output

field. It is at this point that the aforementioned practical reasoning comes

into play. That reasoning is as follows:

(1) Inasmuch as it is clearly impractical to attempt to measure or

predict the infinity of single and joint moments required for a

complete statistical characterization of the output, one must decide

which set of moments constitutes a practicable description of the

statistics of the output field.

(2) A practicable (though admittedly incomplete) description is provided

by the mean and autocorrelation functions.

Here again, the mean and autocorrelation functions of the output process of a

given linear system are determined by the autocorrelation function of the

random process input to the system.

6.3 CLASSIFICATION OF RANDOM SPACE-TIME FIELDS

As shown in section 6.2.1, the autocorrelation function of the random

space-time field (i.e., random process) p(x,t) is a function of the indices

that identify the two random variables being correlated. For example, we

showed in equation (6-35) that the autocorrelation of the random variables

p(1,t) and p(A2,t2) is defined by

(-43)
pp(2lI tl ' t2) EE[P(2l-t 1) p ( 2 t 2 ) ] . (6-23
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The functional form of equation (6-43) clearly indicates that the value of

the correlation, Q pp, depends on the indices, 21, tl, x2, and t2 , that

identify which two random variables of the random process, p(x,t), are being

correlated. We also showed in section 6.2.1 that equation (6-43) was not a

unique functional form for the autocorrelation function of the random process

p(x,t). That is, we showed (see equation (6-41)) that the autocorrelation

function of p(x,t) could also be expressed as

Qpp(Xl, ,t1 ,T) E[p(xl,tl)P(X 1  M,t I + r)] , (6-44)

where (see figure 6-5 and equations (6-36) and (6-37)) =2 - Kl and

= t2 - t. Other functional forms for the autocorrelation function

are limited only by one's imagination and the requirement that the arguments

unambiguously identify the random variables to which the value of the corre-

lation applies. For example, two valid alternative functional forms are

pp(2il'22'tl )  EE[p(xlt l )p(x 2,t I + r)] (6-45)

and

Q pp(2,ili) =Ep( - /2,t)p + /2,tI  )] , (6-46)

where

= (A ) / 2 '(6-47)

Although the functional forms of equations (6-43) through (6-46) are

different, it should be noted that for any two specific random variables, say

P(,t) and p(x2,t2), of the random space-time field, all functional

forms of the autocorrelation function yield the same value. That is. for

fixed values of ., 2' t' and t2, and thereby for fixed values of ,

, and v,

6pplQiltlX2,t2) Q Qpp l K, tl,.-)

= pp(ilX2tll) = pp (i,,t V C) .(6-48)

Equations (6-43) through (6-46) represent alternative forms of the auto-

correlation function for a general random space-time field (i.e., random
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process). We will now define certain classes of random space-time fields and

examine how the class of the field affects the form of the mean and correla-

tion functions.

6.3.1 Stationary Fields

A random space-time field (or process) is said 16 to be stationary in the

strict sense if its statistics are unaffected by the choice of the temporal

origin. Thus, the random process p(x,t) is stationary in the strict sense if

all single and joint moments of the random variables associated with p(x,t)

are equal to the corresponding single and joint moments of p(2,t + 0) for

all choices of 0. This implies that

<p(4l.tl)> r- <p(l,tl + 0)> (6-49)

for any choice of xI, ti, and 0. Clearly, by equation (6-49), the mean

of a strictly stationary random space-time field must be independent of time.

Further, if p(x,t) is stationary in the strict sense, it follows from equation

(6-44) that

Qpp(041,tl, 00 0pp(XjItI + O,) (6-50)

for any choice of x!,I,, t1 , T, and 0. This can only be so if the auto-

correlation function is independent of the origin of the time variable, t1.

Thus, for a strictly stationary random space-time field,

Qpp(Al.1,tlV) - QPP ") "3160 (6-51)

Although we will not do so here, it can be demonstrated that if the random

space-time field. p(2,t), is strictly stationary, all joint moments of the

random variables associated with p(A,t) are independent of the absolute times

of observation (i.e.. timts referenced to a specific temporal origin) but
depend on the time differences between observations.

A random space-tiae field is said 17 to be weakly statioteary (or station-

ary in th6 wide sense) if its mean vaiue is independent of time and its
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autocorrelation function depends only on the spatial coordinates of, and the

time difference (t2 - t1) between, observations. Thus, the mean of a

weakly stationary random space-time field is a function of only the spatial

coordinate, x, and has the functional form of equation (6-49). By review of

equations (6-43) through (6-46), it is evident that the autocorrelation

function of a weakly stationary random space-time field, p(x,t), can be

defined by any of the following alternative functional forms:

Q pp(XK, ) = E[p(Xl,tl)p(Xl + I.,t1 + )] , (6-52)

Q pp (1 ,4 = Ep~xl Itt )p(h_2 tI + f)] , (6-53)

or

&pp("_,1-) = Ep(_- 2,tl)P(_ +/2,t 1  r)] . (6-54)

Note, by comparison of equations (6-44)-('-46) with equations (6-52)-(6-54),

that the autocorrelation function of a stationary field is characterized by a

single temporal variable (the difference between the temporal indices of the

random variables being correlated), whereas the autocorrelation function of a

nonstationary field is characterized by two temporal variables (or indices).

Clearly, a random space-time field that is stationary in the strict sense

is also weakly stationary; however, the converse is not necessarily true.

By use of figure 6-5 and a change of the temporal variable in equations

(6-52)-(6-54), it is straightforward to show that the various forms of the

autocorrelation function of a stationary random space-time field have the

following symmetry properties:

Qpp(Oil,...0 pp , - ,-  (6-55)

where X2 l + ,

0 pp l,-X_2,) Q (pp(,2,l,-V) (6-56)

or
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AUTHOR'S COMMENT

Throughout the remainder of this book, we shall restrict our attention to

random space-time fields that are, at least, weakly stationary. The reasons

.for this restriction are as follows:

* The assumption of stationarity affords considerable mathematical

simplification in the analysis of linear systems excited by random

space-time fields.

* Many of the random space-time fields occurring in nature have

statistics that are, over practical times of observation, weakly

stationary.

* In laboratory environments, the random space-time field of interest can

often be rendered weakly stationary by means of experimental controls.

6.3.2 Ergodic Random Processes

Ergodic random processes are a subclass of strictly stationary random

processes in which any statistical metric obtained by an ensemble average is

equal to the corresponding metric obtained from the temporal average of a

representative sample function.18  To illustrate, let p0(,t) designate

the B-th sample function from the continuum of all possible sample functions

of the stationary random space-time field, p(K,t). If the random process

p(j,t) is ergodic, then the mean and correlation functions are given by

T

E[plXl,tl) - E[Pllim pe(2lt) dt (6-58)
-T

and

Q pp (2Lj'y,,v) - E[P(x,')P(-1 + 1'ti +

lim P(2I't)p(x+ .,t + v) dt (6-59)
T- T 2T_

-T
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so long as the O-th sample function is representative of the entire random

process. Inasmuch as ergodic random processes are, by definition, stationary

in the strict sense, it follows that higher order moments of ergodic processes

are also specified by a temporal average of appropriate products from some

representative sample function. The formulation of such higher order moments

is left as an exercise for the reader.

It should be noted that aa ergodic random process must be strictly

stationary, but a strictly statiunary process is not necessarily ergodic. It

should be further noted that the correlation function of an ergodic random

process can be expressed in any of the functional forms of equations (6-52)-

(6-54) and tha. it maintains the symmetry properties shown for these

functional forms in equations (6-55)-(6-57).

6.3.3 Homogeneous Random Processes

Homogeneous random processes are introduced in the description of the

statistics of turbulent flow and, consequently, are often encountered in

treatises of flow-induced noise and structural acoustics. To paraphrase

Smollyakov and Trachenko, a homogeneous random process is another name for

a process that is spatially stationary. Indeed, in the literature of flow

noise and structural acoustics, the reader will sometimes find the homogeneous

random process described as spatially stationary.

Because the above definition of a homogeneous random process prescribes

characteristic,- of the process, in the spatial domain, that parallel those of

a stationary process in the time domain, we define a random space-time field

(or process) to be homogeneous in the strict sense if its statistics are

unaffected by the choice of the spatial origin. Thus, the random process

p(i,t) is homogeneous in the strict sense if all single and joint moments of

the random variables assojlated with p(x,t) are equal to the corresponding

single and joint moments of p(2i + £,t) for all choices of c. This implies

that

t<P(-ltl )> = <P(1I + £.,tl)> (6-60)
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for any choice of 21, t,. and c. Clearly, the mean of a strictly homo-

geneous random space-time field is a function only of time. Further, by

arguments parallel to those of equations (6-50) and (6-51), it can be

demonstrated that, when p(x,t) is homogeneous in the strict sense,

Qpp([l'_K'tl ..0 = Qpp(Q.tl "V) (6-61)

and that all other Joint moments of the random variables associated with

p(x,t) are independent of the absolute spatial coordinates (i.e., spatial

vectors referenced to a specific spatial origin), but depend on the spatial

separation vectors between observations.

We will define a random space-time field to be weakly homogeneous (or

homogeneous in the wide sense) if its mean value is independent of any spatial

variable and its autocorrelation function depends only on the times of, and

the spatial separation vector (X2 - 2 ) between, observations. Thus, the

mean of a weakly homogeneous random space-time field is a function of only the

temporal coordinate, t, and has the functional form of equation (6-60). By

examination of equations (6-43) through (6-46), it is evident that an

appropriate functional form for the autocorrelation function of a weakly

homogeneous random space-tine field, p(&,t), is

Qpp(,tl 6,C) - E[P(1, t1)pQ(1 + ,t1  r)] . (6-62)

Recall that, in this text, we characterize random space-time fields by
only the mean and autocorrelation functions. Thus, the homogeneity of the

fields treated in this book can be only established in the weak sense. Recall

further that we are restricting our attention to random space-time fields that

are, at least, stationary in the weak sense. Thus, all homogeneous random

processes treated in this text will be assumed to be, at least, weakly

stationary.

For a real random space-time field, p(x,t), that is both weakly stationary

and homogeneous, it can easily be established, by equations (6-49) and (6-60),

that the mean of the field is a constant. That is, inasmuch as the mean of

p(x,t) must be independent of the choices of both the spatial and temporal
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origins, we require

<P( 1'tl)> = <P(L, 'tlP)> <p(i1,t1 + 0)> = <P( i + C't1 + 0)> (6-63)

for any choice of 2,. 1 , tl, and 0. This can be so only if

<p(=,t)> = constant . (6-64)

Further, inasmuch as the autocorrelation of a weakly stationary field is
independent of the absolute time of observation and that of a weakly
homogeneous field is independent of the absolute spatial location of
observation, it follows that the autocorrelation of a weakly stationary and
weakly homogeneous field, p(x,t), must have the functional form

Qpp(I, ) = E[p(xItl)P(x j,t1 + *)] • (6-65)

Note, by equation (6-65), that

Qpp(10,T) p(ltP(1 +, + +)

- p~i_ + Lt 1 + T)P( 9t1 )] Qp(- .,-) , (6-66)

Clearly then, the autocorrelation function of a real homogeneous, stationary
field has the symmetry property

Qpp(1,1) = Qpp(-Ip,-) •(6-67)

We stated r eviously that the mathematical analysis of linear systems
excited by random space-time fields is simplified if the statistics of the
excitation field are stationary. An additional simplification is afforded if
the excitation field is also homogeneous. Unfortunately, as we will show in
the next chapter, we cannot restrict our att-ntlan to fields that are both
homogeneous and stationary because, in some linear systems, a homogeneous and
stationary input field can produce an output field that, while stationary, is

nonhomogeneous.
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6.4 SUMMARY OF THE SPACE-TIME CHARACTERIZATION OF RANDOM FIELDS

Because of the lengthy development of the descriptors and classification

of random space-time fields presented in sections 6.2 and 6.3, it seems

appropriate to briefly summarize the more significant results, assumptions,

and decisions presented in those sections.

For logical and practical reasons (see section 6.2.2), a random spae-time

field is characterized in the space-time domain by two sta istical metrics:

the mean and autocorralation functions.

There are four major classes of space-time fields:

* nonstationary and nonhomogeneous

• stationary and nonhomogeneous

• nonstationary and homogeneous

• stationary and homogeneous.

There ore two degrees of both stationarity and homogeneity. These degrees are

termed strict and weak.

A space-time field is strictly stationary if all single and Joint moments

of the field are independent of the temporal origin (i.e., independent of

absolute time).

A space-time field is defined as weakly stationary if its mean is

independent of time and its autocorrelation function depends on the spatial

locations of, and the time difference between, observations of the random

variables being correlated. If either the mean or correlation function

depends on the absolute time (or choice of time origin) of observation, the

field is said to be nonstationary.

A space-time field is strictly homogeneous if all single and joint moments

of the field are independent of the choice of the spatial origin (i.e.,

independent of the absolute spatial coordinates).
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A space-time field is weakly homogeneous if its mean is independent of any

spatial coordinate and its autocorrelation function depends on the times of,

and the spatial separation vector (j) between, observations of the random

variables being correlated. If either the mean or correlation function

depends on the absolute spatial location (choice of spatial origin) of

observation, the field is nonhomogeneous.

An important subclass of stationary processes is the ergodic random

process. An ergodic random process is one in which any statistical metric

obtained by averaging the ensemble of all possible sample functions is equal

to the correspondinq metric obtained from the temporal average of a single

representatiYJ sample function.

Inasmuch as random space-time fields are characterized, in this text, by

the mean and autocorrelation functions, it must be realized that the

functional forms of these metrics can only establish whether a field is

stationary or homogeneous in the weak sense.

For reasons outlined in section 6.3.1, we will restrict our attention, in

the remainder of this book, to fields that are, at least, weakly stationary.

Within this restriction, we will deal with only two classes of fields: the

stationary, nonhomogeneous field and the stationary, homogeneous field.

A real stationary, nonhomogeneous field, say p(2,t), is characterized by

(1) a mean that is a fonction only of the spatial variable, x, and (2) an

autocorrelatlon that is a function of the spatial coordinates of, and the

temporal difference between, the two random variables being correlated. For

such a field, the value (vp ) of the mean has the functional form

VpOO = <p(Lt)> - EIp(it), (6-66)

and the autocobrelation can be expressed in one of the following alternative

functional forms:

Q ppl,) Ep t)P( ,t 1 + .) (6-69)

Qpp(l,2, ) = E[P(2l1tlP(i2t I + 03
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or

QPP(K,,,) = E[p(x - L/a,tl)p( + j/2,t 1 + ,)] . (6-71)

If the real random space-time field, p(x,t), is stationary and homo-

geneous, it is statistically characterized by (1) a constant mean value and

(2) an autocorrelation that is a function only of the differences between the

spatial locations and times of observation of the two random variables being

correlated. Thus, the mean and autocorrelation functions of the stationary,

homogeneous field, p(X,t), have the functional forms

<p(2,t)> = constant (6-72)

and

Qpp( ,=) = E(p(2L,tl)p(A 1 + K,t1 , r)] , (6-73)

respectively.

Because all physical fields are real, we will confine our attention to

real random space-time fields. Thus, for both the homogeneous and non.-

homogeneous, stationary fields treated in this text, the mean and auto-

correlation functions are real functions of the appropriate space and time

variables. Further, as was demonstrated in sections 6.3.1 and 6.3.3, the

autocorrelation functions of stationary fields have certain symmetry

properties. The alternative functional forms for the autocorrelation function

of a nonhomogeneous, stationary field have the following symetries:

Qpp = pp-,0 - 1 ) V (6-74)

where 2 = 1

Q pAl-) QPL.i -) (6-75)

and

pp pp(6-76)

The autocorrelation function of a stationary, ioogeneous field was shown to

have the following symmetry:
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Qpp(,T) =Qpp(--T) .(6-77)

Let us now turn our attention to the characterization of random space-time

fields in the wavevector-frequency domain.

6.5 DESCRIPTORS OF RANDOM SPACE-TIME FIELDS IN THE

WAVEVECTOR-FREQUENCY DOMAIN

In chapter 2, we demonstrated that the wavevector-frequency description
(i.e., transform) of a wave field was informationally equivalent to the

space-time description of that field, In this section, we again employ

multidimensional Fourier transforms to develop alternative descriptions of the

statistics of random space-time fields that are informationally equivalent to

the mean and autocorrelaLion functions. These alternative descriptions of

random space-time fields are generically called wavevector-frequency spectra.

Recall that we restrict our attention, in this text, to random space-time

fields that are statistically stationary. Therefore, we need to define

wavevector-frequency spectra for only two classes of random space-time f ields:
the stationary, homogeneous field and the stationary, nonhomogeneous field.

Let us first define the wavevector-frequency spectrum for the simpler of these

fild~s, the stationary, homogeneous field.

6.5.1 iavevector-FrequencyjSpectrum of a Stationary,

Homogeneous Random, SpaceTTime Field

The wavevector-frequency spectrum of the stationary. homogeneouS raodom
space-time field, p(Q,t). is defined as the multiple Fourier transform of the

autocorrelation function, Q (lot), on the spatial separation vector, 1,

and time difference, That is,

tow) Q (vex[ i* w%) dj dv (6-70)

Here, p denotes the wavevector-frequency spectrum of the stationary,
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homogeneous field p(2,t), the wavevector k is the Fourier conjugate variable

of the spatial separation vector I, and the circular frequency W is the

conjugate variable of the time difference Y. Inasmuch as the wavevector-

frequency spectrum is defined as the (multiple) Fourier transform of the

autocorrelation function Q pp, the use of the single subscript p on the wave-

vector-frequency spectrum (i.e., p) is sufficient to unambiguously

specify the random space-time field being characterized in the wavevector-

frequency domain.

The Fourier inverse of equation (6-78) is

Qp'-K-_( )1 j %(t.)exp~i(tok +- wy) dk~ dw (6-79)

By equations (6-78) and (6-79), it is clear that the wavevector-frequency

spectrum and autocorrelat'on function of a stationary, homogeneous field form

a multidimensional Fourier transform pair.

Recall that, in this text, all random space-time fields represent real

physical quantities. Thus, the autocorrelation function, P(.,). is a real

function of I and . Consequently,

Q (I,') bQp (1,T) , (6-80)

.where the asterisk denotes the complex conjugate. it therefore follows, by

equation (6-78), that

Gp(k.w) - p(-,) . (6-81)
0 1) p

Koreover, we showed in section 6.3.3 that the autocorrelation function of the

stationary, homogeneous field, p(jt), had the symeuetry property

p(.,) . p(-0,-') • (6-82)

However. inasmuch as pp is a real quantity, it follows that
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.: Qp( t) =qpp-§,-) ,(6-83)

and therefore, by equation (6-78),

p(k=) p(k,= .(6-84)

Clearly, by equation (6-84), the wavevector-frequency spectrum of a

stationary, homogeneous field is a real function of k and w. Further, by

equations (6-81) and (6-84), that spectrum has the symmetry property

Throughout this chapter, we have consistently used the pressure field,

p(At). on a planar surface to develop and illustrate the statistical mitrics

of a random space-time field. This planar space-time field is a function of

the two spatial coordinates, x1 and x,, that specify the location on the

surface of the plane and of time, t. It should be realized, however, that the

descriptionof the statistics of random fields in one and three spatial

dimensions can be developed by arguments parallel to those used for the planar

field. That is, let p(x,t) denote a stationary. homogeneous field that is a

function of only one spatial variable, X, and time. The autocorrelation

function of p(x,t) is defined by

Q pp ( .v) =Elp(x~t)p(x + t + v)) (6-86)

and tho wavevector-frequency spectrum and autocorrelation functions are

related by the Fourier transform pair

p.) + wt)] d d (6-87)

and

1 -- p p(kw)expfi(k + , dk d.. (6-U8)
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Similarly, if p(*,t) denotes a stationary, homogeneous field that is a

function of the three-dimensional spatial vector I and time, then the

correlation function is defined by

pp( ,T) = Efp(xt)p(" + it + t)] , (6-89)

and the wavevector-frequency spectrum and autocorrelation function form the

Fourier transform pair

M 0O

op4  QP0 (kxp + jT~ d4 d ' (6-90)

and

QP I P- ( ,w)expi(Ut. + wT)] d dw (6-91)(2()4

Note, from equations (6-87), (6-88), (6-90), and (6-91), that, inasmuch as the

wavevector is the Fourier conjugate of the spatial separation vector, it has

the same dimensionality as the spatial separation vector.

It is also straightforward to show that, regardless of the spatial

dimensionality of the random space-time field, the wavevector-frequency

spectra of real stationary, homogeneous fields are real and have a symmetry,

in the appropriate wavevector dimensions, similar to that shown in equation

(6-85).

To illustrate certain features of the wavevector-frequency spectrum of a

stationary, homogeneous space-time field, consider the field

p(X,t) = <p> + s(x,t) , (6-92)

where <p> is the mean of the field p(x,t) and s(2,t) is a zero-mean

stationary, homogeneous field that characterizes the fluctuations of p(x,t)

about the mean. Inasmuch as the mean of an ensemble of sums is the sum of the
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ensemble of means, it is easily established that the autocorrelation function

of the field p(x,t) is given by

Q pp(QKT) = <p> 2 + Q ss(KT) .(6-93)

By equations (6-78) and (6-93) and by use of equation (2-38), it is straight-

forward to show that the wavevector-frequency spectrum of p(x,t) has the form

0 p(k.sa) = (2) 3<p>2 6(k)6() + 4s(k, ) . (6-94)

Clearly, the wavevector-frequency spectrum of a stationary, homogeneous field

comprises the sum of two spectra. One spectrum, os(k,w), characterizes

the statistics of s(x,t), the zero-mean fluctuating component of p(x,t), in

the wavevector-frequency domain. The other spectrum, tne Dirac delta function

located at k - (0,0) and w = 0, is weighted by a number proportional to
<p>2,
> the square of the mean of p(x,t). Inasmuch as s(j,t) has zero mean,

os(kw) cannot contain a discrete (i.e., Dirac delta function) spectral

component at k = (0,0) and w 0 0. Moreover, because 0 s(k,W) = Os(-k,- ), the

wavevector-frequency spectrum of s( j,t) must be a continuous function of k and

w at k = (0,0) and w - 0. Therefore, the magnitude of the mean, I<p>t, of

a stationary, homogeneous random space-time field, p(x,t), can be deduced from

the discrete spectral component of p (k,jw) that occurs at k = (0,0) and

0 c. However, the sign of the mean can be determined only by knowledge of

<p>. The remaining spectral contributions to 4p (k,) characterize, in the

wavevector-frequency domain, the statistics of the fluctuations of p(2,t)

about the mean.

Note, by equation (6-79), that

22

Q 9,)-<p >= 4-'- l (k,w) d d (6-95)
Qpp~gO (2q) 3  p

where <p2> a <p2( ,t)> = constant for a stationary, homogeneous field.

This relationship clearly indicates that the wavevector-frequency spectrum,

SP(kw), can be interpreted as a metric of the relative contributions of
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ensemble of means, it is easily established that the autocorrelation function

of the field p(x,t) is given by

,) = <p> 2 + Qss(_,T) (6-93)

By equations (6-78) and (6-93) and by use of equation (2-38), it is straight-

forward to show that the wavevector-frequency spectrum of p(x,t) has the form

* (k,) = (2r) 3<p>(k)6(k ) + 0s(kw) (6-94)

Clearly, the wavevector-frequency spectrum of a stationary, homogeneous field

comprises the sum of two spectra. One spectrum, 0s( ,c), characterizes

the statistics of s(x,t), the zero-mean fluctuating component of p(x,t), in

the wavevector-frequency domain. The other spectrum, tne Dirac delta function

located at k = (0,0) and w = 0, is weighted by a number proportional to

<p>2, the square of the mean of p(x,t). Inasmuch as s(x,t) has zero mean,

§s(k,) cannot contain a discrete (i.e., Dirac delta function) spectral

component at k = (0,0) and t = 0. Moreover, because §s(k,ic) = *s(-k,- ), the

wavevector-frequency spectrum of s(x,t) must be a continuous function of k and

w at k = (0,0) and w = 0. Therefore, the magnitude of the mean, I<p>l, of

a stationary, homogeneous random space-time field, p(x,t), can be deduced from

the discrete spectral component of t (k,) that occurs at k = (0,0) and

= 0. However, the sign of the mean can be determined only by knowledge of

<p>. The remaining spectral contributions to p(k,w) characterize, in the

wavevector-frequency domain, the statistics of the fluctuations of p(K,t)

about the mean.

Note, by equation (6-79), that

Q p(2.0) =P2> 1 3 * (k cW) dk dw (6-95)
2>2

where <p2> = (,t)> - constant for a stationary, homogeneous field.

This relationship clearly indicates that the wavevector-frequency spectrum,

p4,P ), can be interpreted as a metric of the relative contributions of
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various wavevector-frequency components to the mean square value, <p2 >, of the

random space-time field. Specifically, (2w) (k,)dk dw is the contri-

bution to <p2> from wavevectors in the range k to k + dk and frequencies in the

range w to w + dw.

By equations (6-93) and (6-95). it follows that

(2w)3  , dk d5 = Qss(OO) (6-96)

By equations (6-94) and (6-96), it is also evident that

Q5 2(qO 0)= s> 3 j s (kc3) dk dw , (6-97)

where <s2> denotes <s2 (x,t)>, which, for a stationary, homogeneous field,

is a constant.

As a specific example, consider the field in one spatial dimension

described by

p(x,t) = PO + P1 sin(k0x + W0t + e) , (6-98)

where the initial phase, 0, is a random variable equally probable between -V

and v. Thus, the probability density of 0 is given by

M120), -v <,

fe( ) (6-99)

O1 otherwise.

By reference to chapter 2, we recognize the random process p(x,t) to be an

ensemble of real one-dimensional plane waves characterized by a mean Poo an

amplitude P1 about the mean, a wavenumber kO, and frequency w0, with

initial phases distributed uniformly between -v and w.
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Clearly, the product p(x,t)p(x + ,t + T) is a function of the random

variable 0. Consequently, by equations (6-44) and (6-11), the autocorre-

lation function of p(x,t) is given by

Q pp(x' ,t,i) {p(x,t;c,)p(x + ,t + t;c)}fe(c) da

2 (Po 4 P sin[kox + w0t + *]}[P o + Plsin[ko(x + ) + ca0(t + T) + c]} dci
-Ir (6-100)

The integration of equation (6-100) is easily performed to yield

Q (X,9,t,) = Qp( ,') Z P2 + (P2/2)cosko + W0 ]  (

pp pp P0  ( 1/2csk~' (6-101)

The functional form of this autocorrelation clearly indicates that p(x,t) is a

stationary, homogeneous field. Further, equation (6-101) shows that the

autocorrelatlon function comprises two terms. The first term, P2, is the
2 0

square of the mean of the field, and the second term, (P 1/2)cos(k +OT]

is the autocorrelation of the zero-mean fluctuating component of the field.

Note that (1) the amplitude of this second term is the mean square value of

the fluctuating component of the field and (2) the wavenumber and frequency

characterizing the argument of the cosine are identical to those charac-

terizing the zero-mean wave component of p(x,t).

It follows, by equations (6-78) and (6-101), that the wavevector-frequency

spectrum of p(x,t) is given by

0 (kw) = (21r)2P26(k)6(U)
p.0

+ (20)2 (P2/4)(i(k - ko)6(w - w ) + 6(k + ko)6(w + w0)) (6-102)

This spectrum, as illustrated in figure 6-6, consists of three discrete wave..

vector-frequency components. The discrete spectral component (i.e., Dirac
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Figure 6-6. Wavevector-Frequency Spectrum of a Plane Wave
With a Nonzero Mean and Random Phase

delta function) at k - w - 0 reflects the presence of a nonzero mean, and the

amplitude (or weighting) of this component is seen to be proportional to the

square of the mean value, Pot of the wave field. The pair of equal ampli-

tude, discrete spectral components at (ko, 0 ) and (-ko,-w O) characterize

the statistics of the zero-mean propagating component of the field. The

locations of these discrete components in the wavevector-frequency domain

correspond to the wavevector-frequency combinations that characterize the

propagation of the wave in the space-time domain, and the amplitudes of these

components are proportional to the square of the amplitude of the zero--mean

propagating component of p(x,t). Also, it is easily established that the

combination of the waves associated with these two weighted discrete spectral

components forms the term (P /2)cos[ko + w0fl in equation (6-101) that

characterizes the correlation function of the zero-mean contribution to the

field p(x,t).
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It is evident, by inspection of equation (6-102), that

* (k,w) = § (-k,-w) , (6-103)

and therefore knowledge of the wavevector-frequency spectrum over all k and

0 <a < w is sufficient to define the spectrum over all k and w. Note

further, from equations (6-98), (6-99), (6-101), and (6-102), that

4 kc)dk dc= (0,0) -P2 +P /2=<p2> 614
(2P) 2  p > 0 (

Let us now turn our attention to the wavevector-frequency spectra of

stationary, nonhomogeneous fields.

6.5.2 Wavevector-Frequency Spectra of Stationary, Nonhomogeneous Random

Space-Time Fields

Recall that the wavevector-frequency spectrum of a stationary, homogeneous

field was defined as the multiple Fourier transform of the autocorrelation

function, Qpp(1,i), on the spatial separation vector, _, and the time

difference, T. The wavevector-frequency spectra of stationary, nonhomogeneous

fields are also defined by multiple Fourier transforms of the autocorrelation

function. However, a brief review of section 6.4 will remind the reader that

(1) the autocorrelation function of a stationary, nonhomogeneous field is a

function of two spatial vector variables, whereas the autocorrelation function

of a stationary, homogeneous field is a function of a single spatial vector

variable and (2) the autocorrelation of a stationary, nonhomogeneous field can

be expressed in several functional forms, whereas the autocorrelation of a

stationary, homogeneous field is characterized by a single functional form.

The presence of the additional spatial variable in the autocorrelation

function of the nonhomogeneous field permits some flexibility in the

definition of a wavevector-frequency spectrum for a stationary, nonhomogeneous

field. Moreover, the existence of alternative functional forms for the

autocorrelation of a nonhomogeneous field implies the existence of alternative

functional forms for any definition of the wavevector-frequency spectrum of

such fields.
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By the above arguments, it is evident that there is no unique charac-

terization of the statistics of a stationary, nonhomogeneous field in the

wavevector-frequency domain. In the sections to follow, we will define and

examine three different wavevector-frequency spectra for characterizing the

statistics of stationary, nonhomogeneous fields. These forms are analogous,

in the wavevector domain, to those proposed by Bendat and Piersol20 for

describing the statistics of nonstationary processes in the frequency domain.

6.5.2.1 The Space-Varying Wavevector-Frequency Spectrum. The space-varying

wavevector-frequency spectrum is defined as the multiple Fourier transform of

the autocorrelation function on the second of its spatial vector variables and

on the time difference, T. Thus, from the alternative functional forms of

the autocorrelation function defined by equations (6-69), (6-70), and (6-71),

we can define three alternative functional forms of the space-varying

wavevector-frequency spectrum. These are

IK(xkw)(2l.J-rex[-Q-k+ wrr)] dJ di (6-105)
-0 -0

K, (j,.2,.)exp(-i(a. 2 + w)] dx2 d, (6-106)

and

K- ( Jve'ri q+W)) dl di (6-107)

ppp

wavevector-frequency spectra and, consistent with the stationary, homogeneous

form of the wavevector-frequency spectrum, the wavevector k denotes the

Fourier conjugate variable of the spatial separation vector , and W is the

conjugate variable of the time difference T. The wavevector , in equation

(6-106), denotes the Fourier conjugate variable of the spatial vector x2.

It is straightforward to establish the following inverse relationships:
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CO CO

Q pp(XI ) (21o) I Kp k'exp[i (k + w)] dk dw , (6-108)

Qpp(X2,-2€) = (21) -3  pp(X1 r ,)exp[+(-1 2 + un) ] df. do (6-109)

and

0 pM.)=(21') ) K p (2 ,k ,)exp(i(k.j + waT)] dk dw (6-110)

Recall that the random space-time fields treated in this text are real. It

follows, by equations (6-69) through (6-71), that the autocorrelation

functions Qp, Qpp, and Qpp are real, and therefore

Q pp (I, , ) K. Qpp (11 ,OL T ) ,(6-111)

Q pp(2 l1 xk , ) =Qpp(X4, 2 ,- )  ( 6-112)

ppp pp (6-113)

It follows, from equations (6-105), (6-106), and (6-107), that

SPP(X ,1W) K pp -k-) , (6-114)

K pp XI&M pp -1' 6-15

K K*(
pp pp( ,  -.W) . (6-115)

Kpp .o K Kp(X,-k.- ) .(6-116)

The symmetry properties of the autocorrelation functions of stationary,

nonhomogeneous fields are summvarized in equations (6-74) to (6-76). Note. by

equations (6-76) and (6-113), that

6pp6(1.,,.) Q pp(X,-F,.) (6-117)
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It therefore follows, by equations (6-107) and (6-116), that

K pp(,k,) K ppX,k,) pp (, -k,- ) (6-118)

Thus, K pp(,kw) is a real function of i, k, and o. Equations (6-74) and

(6-75) do not lead to a symmetry similar to that shown in equation (6-117).

Therefore, it must be concluded that the space-averaged wavevector-frequency

spectra Kpp(1lo) and KppX are, in general, complex.

It is straightforward to show, from equations (6-52) through (6-54), that

Q pp Qpp(lll, + jr) =pp l + 1/2,1,T) . (6-119)

By equations (6-105), (6-106), and (6-19), it follows that Kpp and Kpp are

related by

Kpp exp(ik.xI )K pp(xl'i'w) " (6-120)

However, the presence, in equation (6-119), of the argument xI + k/2 in

Qpp precludes such a simple relationship between Kpp and Kpp or Kpp.

To summarize, we have defined three alternative functional forms of the

space-varying wavevector-frequency spectrum. One of these forms, R pp(,k,w),

is a real function of i, k, and ; the other two functional forms, K(ppXl,k, )

and Kpp , are complex. The two complex forms are simply related, but

neither of these functional forms can be simply related to the form that Is

real.

Let us now examine another characterization of the statistics of a

stationary, nonhomogeneous field in the wavevector-frequency domain: that is,

the We wavevector-frequency spectrum.

6.5.2.2 The Two Wavevector-Freguency Spectrum. The two wavevector-frequency

spectrum is defined as the Fourier transform of the autocorrelation function
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of a stationary, nonhomogeneous field on all spatial and temporal variables of

the autocorrelation function. Thus, corresponding to the three alternative

functional forms of the autocorrelation function defined by equations (6-69),

(6-70), and (6-71), we can define the following three alternative forms of the

two wavevector-frequency spectrum:

pp( pp K-rexp[-i(V-Il +- + w)] dl dJ d
(6-121)

PP( PP( I l ' ? 2 , -r ) e xp [ - i ( Vq l +  2L2 + u r )] dxl dx2 d

(6-122)

and

Sp(q,k,a) E Opp(x,iT)exp[-i(s. + I+ w)] dx d1 dr

-C -W -o (6-123)

Here, y and are the Fourier conjugate variables of the absolute spatial

vectors xI and i, respectively. The Fourier inverses of equations (6-121)

through (6-123) are

pp -1 ~ (2w)-5 ' f CS p(PA

exp(i(v'Kl + k.K + or)] dR dk dw , (6-124)

Q p (,,V") (t)- pp-0 ~ j

exp(i( 1.xI + -x2 + wr)] dy dB dw (6-125)

and
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exp(i( _ + + f'r)] d=_ dk dc .(6-126)

By comparison of equations (6-105) through (6-107) with (6-121) through

(6-123), it is evident that

Ca

S pp(Y. ) = p Kpp(XI, ,)exp[- i(V.x )] dxI , (6-128)
-0

and

Spp( K pp [('k°)exp[-i(a°- )j dx (6-129)

The associated inverse relationships are

0

K p - (2v)-2 I SP( p kpo)exp[i( *X1 )] dp , (6-130)

(p,))xp ) d., (6-131)

and

-2

KP (xk,,w) =(2w)- ,_ (6-132)
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Inasmuch as all forms of the autocorrelation functions are real, it

follows from equations (6-121) to (6-123) that

Sp( ,k, ) S (- ,-1,-o) S (6-133)

Spp, Spp (6-134)

Spp(S,k, ) pp(-,-k,- ) (6-135)

Moreover, by the symmetry properties of the various forms of the auto-

correlation functions summarized in equations (6-74), (6-75), and (6-76), it

can easily be shown that

S- k,-) , (6-136)

pp (PAM S pp(a(,o (6-137)

Spp (,k,) pp (S- A.-4 (6-138)

By the symmetry properties of equations (6-133) through (i-13), it can be

deduced that none of the alternative forms of the two wavevector-frequency

spectra are real. Thus, in geperalo all two.wAvevecor-frequenty spectra of

stationary, nonhomogeneous fields are conplex funttcons of their wavevector

and frequency arumeats.

By use of equation (6-19) and equations (4-121) to (6-123), the following

relationships between the alternative foms of the two wavevector-frequency

spectra tan be established!

Sp S (6-139)

S pS ip, - H/2,) , (6-140)
PO PP

S, c4SIDP- (6-141')
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Thus, liven any form of the two wavevector-frequency spectrum, all other

alternative forms can be deduced.

We now turn attention to the third wavevector-frequency characterization

of stationary, nonhomogeneous fields: that is, the space-averaged wavevector-

frequency spectrum.

6.5.2.3 The Space-Averaged Wavevector-Frequency Spectrum. The wavevector-

frequency spectra described in previous sections have simply been various

Fourier transforms of the autocorrelation function of the random space-time

field of interest and, therefore, are informationally equivalent to the

autocorrelation function. As will become evident shortly, the space-averaged

wavevector-frequency spectrum does not preserve, in the wavevector-frequency

domain, all of the statistical information characterized by the auto-

correlation function in the space-time domain. Nonetheless, the space-

averaged wavevector-frequency spectrum is a useful, and perhaps the most

widely applied, metric of the statistics of nonhomogeneous fields.

Simply stated, the space-averaged wavvector-frequency spectrum is a

statistical metric defined for stationary, nonhomogeneous fields such

that its properties parallel those of the wavevector-frequency spectrum

of a stationary, homogeneous field. Recall (see equation (6-73)) that

the autocorrelation function of a stationary, homogeneous field is a

function of only the spatial separation vector . and the time difference

ir. Inspection of the alternative forms of the autocorrelation functions for

stationary, nonhomogeneous fields shown in equations (6-69) to (6-71) reveals

that two of these forms, designated by Q and Qp, are functions of both
pp pp,

and T. However, Q and Qpp are also functions of the additional variables

= (Xlix 1 2) and _ = (Rlx 2 ), respectively. To eliminate these extra

variables, we assume that the following space-averaged autocorrelation

functions exist and are not identically zero for all _ and T:

L L

Q(') = lim l Q dXl dX (6-142)
ppL-w 4L 2  pp ~ x 1 d 12

-L -L

and
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L L

Lp 4L 2  PP d l d 2 " (6-143)

-L -L

Here, the superscript "a" designates the space-averaged forms of the auto-

correlation functions, and L designates a length measured along either the

X119 X12' Xl, or i2 axis.

For fixed values of y, and T, it seems intuitively obvious that Qa (jr)

and Q P( 'r) should be equal. By use of equation (6-119) in equation

(6-142), we obtain

L L

Qa li (i + l~ /2,d,T) dxii dx1  (6-144)
p Lc 4L2 "

-L -L

By letting x + I /2, we obtain

L+- 2/2 L+ 1/2
QP lim - dl d1X . (6-145)

-L4- 2/2 -L+t 1 /2

However, for any fixed I and T, the rFght-hand side of equation (6-145)

tends to the same limit, as Low , as does the right-hand side of equation

(6-143). Thus, consistent with our intuition, we conclude that

Q a(p Qa (I ) (6-146)

Thus, we need consider only one mathematical form for the space-averaged auto-

correlation function. We choose to work from the form given by equation (6-142).

By equations (6-76) and (6-146), it is evident that

_ a I' AoT (6-147)
pp5pp
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Further, because the autocorrelation fuaction of a real process is real, it

follows that

Qa( Qpa(-,-) (6-148)
pp pp

The symmetry properties shown in equations (6-147) and (6-148) are identical

to those demonstrated for the autocorrelation function of a stationary,

homogeneous field in equations (6-82) and (6-83).

The space.oaveraged wavevector-frequency spectrum is defined as the Fourier

transform of the space--averaged autocorrelation function on the spatial

separation vector I arid the time difference T. Thus, if we denote the

space-averaged wavevector-frequency spectrum by §a (k,w), it follows that

a Q(k,=) a p(jT)exp[-i(k.i + wT)] dt dT . (6-149)

The Fourier inverse of equation (6-149) is

Q (210)3 a 4(i )expi(j.'j + wT~)] dk do (6-1 50)
pp p

By the symmetry properties of equations (6-147) and (6-148), it follows from

equation (6-149) that

- a 0, a*=~k~ %p (&,w) (6-151)

and

0a a612
p p

Thus, the space-averaged wavevector-frequency spectrum is real and has the

same symmetry (see equation (6-85)) as the spectrum of a stationary,

homogeneous field.
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By use of equations (6-105), (6-142), and (6-149), it is easily shown that

L L

-t a , 4 2 K=pp l'k) dxrn dx 12 "(6-153)

-L -L

By substituting equation (6-130) into equation (6-153), the space-averaged

wavevector spectra can also be written in the form

L L

pak~ ifi 1 2 p(~~~epi(- dp, dxl1 dxl2
L. lW 2L2  ) J

L -L (6-154)

By performing the integrations over xll and x12 in equation (6-154), we obtain

i [~sin(pIL)Irsin( 2L)]

t= L, i 1) Sp(Pk) 3 [2 3 dV . (6-155)

However,

sint n li ..qO, f (6-156)
L w I L 0, othevwise.

Thus, in the limit as LO, the integrand of equation (6-155) is zero

everywhere except at the point X w (0,0). Inasmuch as the area associated

with any single point is zero, the integral of this contribution is zero, and

thus * a(Q,) - 0 for all k and w, unless Sp(g,kw) contains a spectral

contribution of the form O(CuM O)

Consider a stationary, nonhow.9eneous field characterized by the two

wavevector-frequency spectrum.

PP()V(k,O) + W , (6-151)
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By use of equations (6-105), (6-142), and (6-149), it is easily shown that

LL

aI(kI) K li l (6-153)
- L-w 4L 2l'( ) dx1

l dx11 12

-L -L

By substituting equation (6-130) into equation (6-153), the space-averaged

wavevector spectra can also be written in the form

L L ce

-a (= -
= 1(k6v) Li 2  Spp(k,wexp[i.(pX)] dy dx,1 dxl2

L A (6-154)

By performing the integrations over x and x12 in equation (6-154), we obtain

';( -'°a = rsiIs, ._on(, l ) ,sn(__,2 )1
L.k (r ) 1I ( 2L) d. (6-155)

However,

- 1 f
L sin(L) I 1, otherwise.(6-156)

Thus, in the limit as LOw, the integrand of equation (6-155) is zero

everywhere except at the point V = (0,0). Inasmuch as the area associat(,;

with any single point is zero, the integral of this contribution is zero, and

thus *a(ks) 0 for all k and w, unless Spp(jM,k,w) contains a spectral

contribution of the form a(M)V(k,w).

Consider a stationary, nonhomogeneous field characterized by the two

wavevector-frequency spectrum

S (2w) 26(1)V(kW) + Wpp(M~k ) , (6-1571)
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where Wpp (,k,w) characterizes a nonhomogeneous field that has no spectral

contribution in the form of a Dirac delta function at , = (0,0), but may have

discrete wavevector components at any other value of ,. By equations (6-155)

and (6-156), the space-averaged wavevector-frequency spectrum is given by

t !0= V(tw) . (6-1 58)

~However, it is straightforward to demonstrate (by use of equations (2-38),

(6-78), and (6-121)) that the two wavevector-frequency spectrum of a

stationary, homogeneous field, characterized by the autocorrelation function

Q pp(_,T) and the wavevector-frequency spectrum p(k,w), is given by

_ pp (,kw) (21) 26(U)0p(kW) . (6-159)

By comparison of equations (6-157) and (6-159), it is evident that equation

(6-157) expresses the two wavevector-frequency spectrum, Spp k of a

general nonhomogeneous field as a sum of homogeneous spectral components,

represented by the term (2-r) 2()V(k,w), and purely nonhomogeneous spectral

components, represented by the term WPp(Xl#,,). It follows, by these

arguments and equation (6-158), that the space-ave-aged wavevector-frequency

spectrum represents the wavevector-frequency spectrum, as defined by equation

(6-78), of the homogeneous constituents of a generally nonhomogeneous field.

To summarize, we have demonstrated that the space-averaged wavevector-

frequency spectrum is a metric that characterizes, in the wavevector-frequency

domain, the homogeneous components of a stationary, but generally nonhomo-

geneous, field. This metric is defined as the Fourier transform of the

space-averaged autocorrelation function on the spatial separation vector

and on the time difference T. The space-averaged wavevector-frequency

spectrum has symmetry properties identical to those of the wavevector-

frequency spectrum of a stationary, homogeneous field. However, it :ust be

recognized that, by spatially averaging the autocorrelatlon function (or,

alternatively, the space-varying wavevector--frequency spectrum) to obtain the

space-averaged spectrum, we have lost all information regarding the non-

homogeneous components of the field. Clearly then, the space-averaged

wavevector-frequency spectrum does not provide a complete characterization of
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the statistics of a nonhomogeneous field. Rather, it characterizes those

statistical components that are common to all absolute spatial locations: that

is, the homogeneous components.

6.5.2.4 Properties of the Wavevector-Frequency Spectra of Stationary,

Nonhomogeneous Fields. In the previous sections, we have explored only such

properties as reality and symmetry of the various forms of wavevector-

frequency spectra used to characterize the statistics of stationary,

nonhomogeneous fields. In this section, we present and illustrate some

additional properties of the wavevector-frequency spectra of nonhomogeneous

fields that are of practical utility.

Note first, from equations (6-108) through (6-110), that

Qpp( .1 0O) ,2 _l)> (2M) -  f K(ppxl,k,) dk dw , (6-160)

2Q pp (11-L' , 0) p Oi ) >

(2) -3 f Rpp( da dw , (6-161)

and

Q(x 0,0) <p 2(j)> -(2r)~ -3 pp6A d (-12

Inasmuch as the space-time fields in this text are assumed to be real, the

left-hand sides of equations (6-160) through (6-162) are clearly real and

positive. Therefore, each of the integrals of the alternative forms of the

space-varying wavevector-frequency spectrum given by equations (6-160),

(6-161), and (6-162) is real and positive. It follows, by equation (6-160).
2v)~~~-3KpX,)dd

that the quantity (2w) K (xk,_)dkd can be interpreted as the contri-

bution to the mean square value of the pressure, <p 2(x)>, at the location x

from wavevectors in the range k to k + dk and frequencies in the range

6-56



w to w + dw. Similar arguments can be applied to the integrals involving

alternative space-varying spectral forms (that is, to equations (6-161) and

(6-162)).

By substituting equations (6-130), (6-131), or (6-132), as appropriate,

into equations (6-160), (6-161), and (6-162), we can also show that the

alternative forms of the two wavevector-frequency spectra have the following

integral properties:

_P <2(I,)>= (2)-5 S Sxdk d, (6-163)

S=)> (21) -5  Spp (V,&,w)exi(p + a)'x I] dy dft dc , (6-164)

and

p (W 5 (Ak.w)exp[i(_.)] do dk dw (6-165)

By equations (6-142) and (6-150), it is straightforward to show that

L L

Qa (OMO) =lim 12 <p2(x1 )> dxl dxl2
p-L -L

0 0
- (2w)-3 5 a (_,c) dk dw (6-166)

Thus, (2)-3 a)dkdw can be interpreted as the contribution to the space-

averaged mean square value of the field from wavevectors in the range k to

k + dk and frequencies in the range w to w + dw. The space-averaged mean
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square value of a real field is, of course, real and positive. Therefore, the

multiple integral of the space-averaged wavevector-frequency spectrum over all

wavevectors and frequency is real and positive.

Consider the stationary, nonhomogeneous field of the form

p(x,t) = <p(x)> + s(x,t) . (6-167)

Here, <p(x)> is the mean of p(x,t), and s(x,t) is a stationary, nonhomogeneous

field with zero mean. By equations (6-69) through (6-71) and equation

(6-167), it is easily shown that

Q pp( l ' ') = <P(XI)><P(2 + .1)> + Qss(xl '. ',) , (6-168)

Q Qpp (,2 ) = <P(il)><p(i2)> ' Qss(2l',2'T) 1 (6-169)

and

0 (ppxj,) <p(x - K/2)><p(x + 1/2)> + Qss(j'jT) (6-170)

Define

SP(k) <p(2il>exp[-i(k-2x)] d2[ . (6-171)

Then it is straightforward to show, from equations (6-105) through (6-107). that

K po (1,,) = 2,<p(jl)>P(k)6(w)exp(ik.xl) + Kss(xl.k,w) , (6-172)

K pp ( ,&,w) - 2w<Plll>P(A)6(cj)  Kss(lgi ) , (6-173)

and

K pp(kw)_J P(L_ - k)P(E + k)exp(12c-;) dc_ + K ss (.k.) (6-174)

By use of equations (6-127), (6-128), and (6-129), it follows that the

alternative forms of the two wavevector--frequency spectra of this field are

given by
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S PP(y,k,) =2wP(k)P(p - k)6(w) + Ss (jk, ), (6-175)

S pp(y.,w) = 2wP(p)P(B)6(o) + ss(Ps, ) V (6-176)

and

Sp( ,kc) =2wP(qI/2 - k)P(A/2 - k)6(a) + S s(,kW). (6-177)

Note, by equations (6-172) through (6-177), that both the space-varying and

two wavevector forms of the wavevector-frequency spectra of a stationary,

nonhomogeneous field with -onzero mean are characterized, in a fashion similar

to the wavevector-frequency spectrum of a stationary, homogeneous field, by

the sum of two spectra. One spectrum is characterized by a Dirac delta

function at ( = 0 that is weighted by a quantity related to the mean value of

the field. The second spectrum has no singular spectral contribution at W -

0, and characterizes the statistics of the zero--mean component of the field.

Note, by equations (6-172) through (6-177), that the mean value of the field

cannot be deduced from the singular spectral contribution at t = 0. There-

fore, as we found in the case of a stationary, homogeneous field, separate

knowledge of both the mean value and autocorrelatlon function, or some form of

the wavevector-frequency spectrum, is necessary for a complete specification

of the first and second order statistics of a stationary, nonhomogeneous field.

By equations (6-153) and (6-172), the space-averaged wavevector-frequency

spectrum of the nonzero mean field specified by equation (6-167) is expressed

by

L L

a lim (2v~p01 )>P(k)6(w)exp(ikx)- L -ow 4 L 2 --

-L -L

+ K ss(lk) dX,, dXl2 (6-178)

The integral of the second term in the integrand can be recognized, by

equation (6-153), as the space.-averaged spectrum of the zero-mean component,

s(X,t), of the field. That is,

L L

a lm LKss ) dXl1  x1 2  (6-179)

L L
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By use of the Fourier inverse of equation (6-171), we can show that

L L

Jim 4L2  <p(2I)>exp(ik-_i,) dxll dxl2

-L -L

11 (V2) 2 1 T

By arguments similar to those presented following equation (6-155), the

integral shown by equation (6-180) is zero unless P(p) is comprised of terms

of the form G(S)6(y - g), where a is some fixed wavevector. However, inasmuch

as <p(j)> is real, it Is evident (see equation (6-171)) that P(p) must equal

P (-s). Therefore, a more precise statement of the requisite form of P(p)

is given by

N
p(R) = . G(k)6(p -kn) + G*(kj)S(y *kn)} ,(-181)

n=1

where k specifies the wavevector associated with the n-th pair of delta

functions, and N denotes the number of pairs of delta functions contributing

to P(U).

For purposes of illustration, consider the case where P(p) consists of a

single pair of delta functions. That is,

P(g) - G(g)6(y - ) G (9)6( 4- (6-182)

By the Fourier inverse of equation (6-171), this form of P(p) corresponds to a

mean component that varies sinusoidally in space. The amplitude and initial

phase of the mean are determined by G(S). and the spatial periods in the x

and x2 coordinate directions are dictated by the wavenumbers cI and a2'

respectively.

With P(p) given by the form of equation (6-182). we can show, by use of

equations (6-156), (6-17), (6-179), and (6-180), that if neither al or 2
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equals zero, the space-averaged wavevector-frequency spectrum has the form

2
~a U) =6(4)jG( )Ipp 2G ( 6(k -) + 6(k -0 I as(kW) (6-183)

If either a1 or a2 is zero, the constant multiplying the first term on the

right-hand side of equation (6-183) is modified. The determination of this

modification is left as an exercise for the reader.

If P(p) has the form of equation (6-182), it follows from equation (6-175)

that the two wavevector-frequency spectrum has the form

S pp(,k,) 2v6(w)(IG(%)t26( )[6(k - a) - 6(k + )]

+ G 2 (q) ( - U)6(k - + ), G* 2(CAMP- + 2)6(t + C)

+ S :s(,H,kw ) -(6-184)

Note that the first term ofi the right-hand side of this equation has the

functional form 6(y)V(k,w), which was shown in section 6.5.2.3 to characterize

a homogeneous field. Thus, this term reflects, in the two wavevector-

frequency domain, the presence of a comporant in the autocorrelation function

of the mean field that is independent of the absolute spatial coordinate,

Y1. It is straightforward to show, by equation (6-155). that it is only

this absolute space-independent component of the autocorrelation function of

the mean field that contributes to the space-averaged wavevector-frequency

spectrum given by equation (6-183).

It is straightforward, but tedious, to demonstrate that the more general

form for P(p) given by equation (6-181) produces (1) a space-averaged

wavevector-frequency spectrum in which the contribution from the mean

component of the field consists of a summation of N terms of the form

S2)k - _kn ) )6(k + tn)}
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and (2) a two wavevector-frequency spectrum containing the sum of N contri-

butions of the form

21a(w)[IG(k n )1 26(V)a(k - kn) + 6(k + k n)]

from the mean component of the field. By arguments similar to those applied

above, it is evident that, even for this more complex form of P(Y), the

space-averaged wavevector-frequency spectrum reflects only those contributions

to the autocorrelation function of the mean component of the field that are

independent of the absolute spatial variable, 2l"

By equation (6-180) and the subsequent arguments, we must conclude that,

if P(p) does not have the form of equation (6-131), then

ap(ku) a

p- a _ = tss(k,a) (6-185)

As a specific example of a stationary, nonhomogeneous field, consider the

field in one spatial dimension given by

p(x,t) = exp(-alxI)sin(k0 X + W0t + 0). (6-186)

This field will be recognized as a wave, characterized by the wavenumber k0

and frequency w0', that decays exponentially in amplitude with distance from

the origin of space. The rate of decay of the amplitude is dictated by the

positive constant a. The initial phase, 0, is assumed to be a random variable

that is equally probable between -v and v. That is, the probability density

of 0 is given by

{i<(2 <

f ) (6-187)

- O, otherwise.

Thus, we recognize p(x,t) = p(x,t;o) to be a function of the random variable

0. Therefore, by equations (6-11) and (6-69), the mean and one form of the

autocorrelation functioti of this field can be demonstrated to be given by

<p(x,t)> - Ep(xt)) - 0 (6-188)
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and

exp(-aix1I)exp(-aix1 + C)
Qpp(XIfE'z) 2 cos(k0 t +Or) w (6-189)

respectively. Thus, the field has zero mean and is clearly nonhomogeneous

inasmuch as the autocorrelation function depends on the absolute spatial

location, x,.

By equations (6-105) and (6-189), we can show the associated form of the

space-varying wavevector-frequency spectrum to be given by

K 'xke aw exp(-aIxIpi - k)x ( - )
pp 1 a2 + (k - ko) 2

exp[i(k + ko)xl] 6(w+ WO) (6-190)

a2 + (k + ko)2 )1 .

Here, we see that the space-varying wavenumber-frequency spectrum of the

exponentially decaying wave field is a complex function characterized by

discrete frequency components at ±w0 The weighting of these discrete

components is seen to be a complex function of both k and xi . At the

frequency w0 , the magnitude of the weighting function, at any fixed value of

X , is a maximum at the wavenumber k = kO, and decreases with the square

of k - k0 at wavenumbers well removed from k . The phases of the various

wavenumber contributions to the spectrum at ca - 0 are seen to be equal to

(k - k0)x . At w- -w0. the magnitude of the weighting function is a

maximum at k = -ko, and the phases of the wavenumber contributions to the

spectrum are given by (k + k0)X .

By equations (6-127) and (6-190), it can be shown that the two wavevector-

frequency spectrum of the field described by equation (6-186) is given by

S pp (u,kw) - 2va2  2 (w] O
[a2 + (k - ko)2](a2  (p - k + ko)2

+ )  (-191)

(a 2 + (k + ko)2](a2 + ( k -k 0 )2]



By inspection, the two wavenumber-frequency spectrum is real and, like the

space-varying spectrum, is characterized by discrete spectral comnponents at

the frequencies two. These discrete components are weighted by functions of

u and k. Indeed, if we define the weighting function

W(U,k) 21ra 2 (6-192)
(a- + (k -k O)2[aL4.+ ( -k +k 0 )I

we can write equation (6-191) in the form

1Cp (u k.w -' W(u,k)S(w - wo W(-ii,--k)6(,o + cwo) (6-193)

By inspection of equation (6-192), it is evident that W(Ui,k) has relative

maxima along the lines k =k 0 and k - v - k 0 and an absolute maximum at the
intersection of these lines: that is. at (ia,k) -(O,k 0). The amplitude and

bandwidth of this maximum are inversely proportional to a, the constant that

specifies the rate of decay of the amplitude of the wave with distance from the

spatial origin. Figure 6-1 illustrates the functional behavior of W(jvk).
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Note that we have presented only one of the alternative forms for the

autocorrelation function, the space-varying wavenumber-frequiency spectrum, and

the two wavenumber-frequency spectrum for this illustrative example.

Development of the other forms of these descriptors is left as an exercise for

the reader.

For positive and nonzero values of a, the space-averaged wavenumber-

frequency spectrum of the exponentially decaying wave field described by

equation (6-186) is equal to zero inasmuch as the two wavenumber-frequency

spectrum (equation (6-191)) does not contain a term of the form 6(p). Note
however, from equation (6-186), that if a = 0, the wave field becomes

stationary, and the space-averaged spectrum will be nonzero.

6.6 RELATIONSHIP BETWEEN THE WAVEVECTOR-FREQUENCY SPECTRUM

AND THE FREQUENCY SPECTRAL DENSITY

The frequency spectral density (or frequency spectrum) is a commonly used

descriptor of the statistics of fields that vary only with time. In this

section, we will define the frequency spectral density and show how it is

related to the various forms of the wavevector-frequency spectrum. Here, as

throughout this text, we will restrict our attention to fields that are

statistically stationary.

Let p(t) be a time field known to be real and stationary. The

autocorrelation of this field, Qpp (), is defined as

Q pp() 2 E(p(t)p(t + T)1 . (6-194)

The frequency spectral density, 0 p(), is defined21 as the Fourier

transform of the autocorrelation function on the time difference, r. That

is,

p E Qpp(T)exp(-iw) dT . (6-195)
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It is easily shown, by equation (6-194) and the reality of p(t), that

Qpp(T) = Qpp(-i) = Qpp(T) (6-196)

It therefore follows, from equation (6-195), that

=*

p = 0(-W) = 0p(-w) (6-197)

Therefore, the frequency spectral density is a real and even function of .

The Fourier inverse relationship to equation (6-195) is

Q_ q(T) L O p(w)exp(iwY) do (6-198)

It therefore follows that

<p2 > {p (t)) = M p(=) do . (6-199)

Consider now a space-time field, p(x,t), that is known to be real and
stationary. If the field is homogeneous, we showed previously that the
autocorrelation, Q p(,), is a real function of both the spatial separation
vector, 1, and the time difference, T. However, if k is fixed at (0,0),

-Qpp (O,) is a function only of Y, as required by equation (6-195). Thus, if
we substitute Q pp(,) for Q pp() in equation (6-195), it follows that the

frequency spectral density is related to the autocorrelation function of a
stationary, homogeneous fiold by

JP(W) Qpp (0,)exp(-iw,) d. (6-200)

However, by equation (6-79),
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Q pp(9.-r) 3 5 P( )exp(iw) dk d (6-201)

Therefore, the frequency,.spectral density is related to the homogeneous form

of the wavevector-frequenty spectrum by

0P(W) =--i 4l p(k(O) dk (6-202)

(21r2 •

Clearly, by equations (6-201) and (6-202),

<p> (,) 1 55 %(t') dk do 5 %(w) dw (6-203)

in agreement with equation (6-199).

The autocorrelation function. Qpp of a station~ary, nonhomogeneous
field is a function of the absolute spatial vector x, tht spatial separation
vector 1. and the time difference v. However, for any fixed value of x,
say X,' and for . fixed at (0,0), the autocorrelatlon function Qpp(KlO.-)
is a function only of T. By substituting 0 pp(lOr) for Q pp() in

equation (6- 95), we can show that the frequency spectral density of the field
at the spatial location 1 , which we denote by 0p(x1 ,w), is related to
the autocorrelation function of a stationary, Ponhomogeneous field at the same

absolute spatial location by

0

0P( p Q pp (AI' 'c)exp('i v) dt (6-204)

However, by writing QPp(P1 'Q1 ) in the form of equation (6-108) and by
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performing some simple integrals, we can relate the frequency spectral density

at X to the space-varying wavevector-frequency spectrum at 2[ by

p - (2-)2  K pp(LA d . (6-205)

Alternatively, by writing Q pp(XO,) in the form of equation (6-124),

we can show that the frequency spectral density at 2i is related to the two

wavevector-frequency spectrum of the nonhomogeneous field by

(2) 31S((2i)ePii. 1  dy. dk (6-206)

Note, by equation (6-160), that

2 3CO CO
<p 2(x)> (2),K pp ,kw) dj d.. (6-207)

It follows, by equation (6-205), that

This same result can be obtained from equations (6-163) and (6-206).

Although we will not do so here, it is a simple matter to utilize equation

.(6-2) to develop relationships between the frequency spectral density and
the alternative forms of the space-varyng wavevector-frequency spectrum and

two-wavevector-frequency spectrum.

As a final note, some texts on signal processing define the frequency

spectra] density in terms of the temporal frequency, f, rather than the
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performing some simple integrals, we can relate the frequency spectral density

at 2 to the spate-varying wavevector-frequency spectrum at i by

(2w)2  Kpp(Xl1 ko) dk (6-205)

Alternatively, by writing Q pp(XlO.) in the form of equation (6-124),

we can show that the frequency spectral density at X is related to the two

wavevector-frequency spectrum of the nonhomogeneous field by

CO 0

p(Xl, ,r) 4 Sp (Jk w)expiy.2l] dy dk (6-206)~~~(2w) 4

Note, by equation (6-160), that

<211>-(21r)-'J Kpp(Xl.tk#(a) dk drw (6-207)

It follows, by equation (6-205), that

!0
<g2 h I x > %(Ii.) dw. (6-208)

This same result can be obtained from equations (6-163) and (6-206).

Although we will not do so here, it is a simple matter to utilize equation

(6-204) to develop relationships between the frequency spectral density and

the alternative forms of the space-varying wavevector-frequency spectrum and

two wavevector-frequency spectrum.

As a final note, some texts on signal processing define the frequency

spectral density in tenas of the temporal frequency, f, rather than the
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circular frequency, . For axample, Davenport and Root22 define the

frequency spectral density, 0 (f), to be the following Fourier transform of
p

the autocorrelation function, Q pp(), of a stationary field:

0P(f) ( J qp()exp(-12wfT) dv (6-209)

The inverse transform is given by

-pp() J (f)exp(12vfT) df (6-210)

Recall, by equation (2-7), that the temporal and circular frequencies are

related by

f = w/(21) (6-211)

It therefore follows, from equations (6-195) and (6-209), that

"m wp(f) - p( f) (6-212)

or, alternatively,

By use of equations (209) and (210), one can parallel the arguments presented

previously to obtain relationships between p(f) and 0p(jo) or, if

appropriate, ip(X,f) and Kpp(Ql,., ) or Spp(,k, ).

6.7 SUMMARY OF THE WAVEVECTOR-FREQUENCY CHARACTERIZATION

Of RANDOM SPACE-TIME FIELOS

Recall that, for the purposes of this text, random space-time fields are

characterized in the space-time domain by the mean and autocorrelation

functions of the field. By appropriate Fourier transformations of these
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space-time statistics, we can define metrics in the wavevector-frequency

domain that are informationally equivalent to the mean and autocorrelation

functions. The multidimensional Fourier transforms of the autocorrelation

functions are generically called wavevector-frequency spectra.

For stationary, homogeneous fields, the wavevector-frequency spectrum,

* p(k,w), is defined as the multiple Fourier transform of the autocorrelation

function, Q pp(Q,), on the spatial separation vector, .1, and the time

difference, r. That is,

p~ ~ f Q p(Kiex(ik + wT)] d~t dr (6-214)

By use of the symmetry properties of the autocorrelation function, the wave-

vector-frequency spectrum of a stationary, homogeneous field can be shown to

be real and have the symmetry property I (k,) = ( For purposes of

this text, knowledge of the mean and the wavevector-frequency spectrum yields

sufficient information to characterize the statistics of a stationary,

homogeneous field.

The autocorrelation of a stationary, nonhomogeneous field is a function of

the ebsolute spatial variable xI as well as the spatial separation vector,

1, and the time difference, v. The presence of this additional variable

permits some flexibility in the definition of the wavevector-frequency

spectrum. Moreover, the existence of alternative functional forms for the

autocorrelation function of a nonhomogeneous field implies the existence of

alternative functional forms for the wavevector-frequency spectra.

The space-varying wavevector-frequency spectrum is defined as the multiple

Fourier transform of the autocorrelation function on all variables except that

variable designating the absolute spatial location. This definition results

in three alternative functional forms for the space-varying spectrum: that is,

one corresponding to each of the three alternative functional forms of the

autocorrelation function listed in equations (6-69) through (6-71). These are
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K! (xppQ.s A '- 0) Q + ... )] d. d.. (6-215)

Kppl .k. -9pp (X..c)exp[-i(koi + T)1 dL2 dr (6-216)

-- 0-

and

K pp (,ko) = J p(k.Y)exp -i(ko + wy)] dj dT (6-217)

By the symmetry properties of the alternative forms of the autocorrelation

functions, it can be shown that Rpp(Rk,w) is real; the other forms of the

space-varying wavevector-frequency spectra are, in general, complex. The

space-varying wavevector-frequency spectra have the following symmetry

properties:

Kpp((XIKp)Kpp( ,-k.) , (6-218)

K pp( , (6-219)

pp pp (6-220)

The two wavevector-frequency spectrum is defined as the multiple Fourier

transform of the nonhomogeneous autocorrelation function on all spatial and

temporal variables. Thus, associated with the three alternative forms of the

autocorrelation function for nonhomogeneous fields, we obtain the following

three alternative forms of the two wavevector-frequency spectrum:

Spp. . J pp .. + w)] dxI dj dr , (6-221)
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S pp (j,,) = p(f2[T)exp[-i( + AA2 + wi)] d[1 dx2 d (
_M (6-222)

and

pp(.Qp t )ep i + k -1 + (r)3 dj d.K di (-223)

All forms of the two wavevector-frequency spectrum are, in general, complex.

Owing to the reality of all forms of the autocorrelation functions, all forms

of the two wavevector-frequency spectrum have conjugate symmetry. That is,

Spp k S pp( (6-224)

, = Spp(-,-t,- ) , (6-225)

and
p( =) =p(-t,-k,-w) (6-226)

pp- pp -

Further, from the symmetries of the alternative forms of the autocorrelation

functions, the following symmetry properties can be established:

, .p (PA, - ,. , (6-227)

pp pp , (6-228)

and

S pp(aA k) app (ot -k.--w) (6-229)

Finally, the alternative forms of the two wavevector-frequency spectra can be

shown to be related by

I S ,( - _, =) - Sp(A,k - P/2,w) (6-230)

The space-averaged wavevector-frequency spectrum is defined as the Fourier
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transform of the space-averaged autocorrelation function on the spatial

separation vector, j, and the time difference, t. That is,

a Q a  + w..)expL-i(k. w)] d.1 d, (6-231)__~~ Q pp(

ak

where the space-averaged autocorrelation function, Q a(kt,), is defined by

L L
a a (k,.) Zlm-) dx l l dx 1 2  (6-232)

-p L-4 4L II p
-L -L

The space-averaged spectrum is real and has symmetry properties identical to

the wavevector-frequency spectrum of a stationary, homogeneous field. Through

the space-averaging process, this spectrum characterizes the statistics of

those components of a generally nonhomogeneous field that are independent of

absolute spatial position (that is, independent of X). Thus, whereas the

space-varying and two wavevector forms of the wavevector-frequency spectrum

are informationally equivalent to the autocorrelation function of a random

space-time field, the space-averaged spectrum preserves only those statistics

that are independent of absolute spatial location within the field.

The frequency spectral density of a stationary time field is defined by

-6pW) - Q Opp ()exp(-t) d. (6-233)

-CO

where Q pp() denotes the autocorrelation function of the temporal field.

By recognizing that the autocorrelation field of a stationary, homogeneous

space-time field is a function only of time when the spatial separation

vector, 1, is set to zero, it can be shown that the frequency spectral

density is related to the wavevector-frequency spectrum, p(kw), of such

a field by
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p(a) 2 0 p(k,) dk (6-234)~~(21r) 2

Similarly, for any fixed absolute spatial vector location, -xI and a zero

spatial separation vector, F, the autocorrelation function of a stationary,

nonhomogeneous field is a function only of the time difference, T. It can

thus be shown that the frequency spectral density, %p(XlW), of the field

at the absolute spatial location x1 is related to the space-varying and two

wavevector forms of the wavevector-frequency spectrum by

Sp (1l,) 2 1P~ ,,) dk (6-235)
(2 )2(2w)

and

O (2w) 4  ,Jp , d d-W (6-236)

respectively. By use of similar reasoning, op(xXw) can be related to the

alternative forms of the wavevector-frequency spectra.
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CHAPTER 7

RESPONSE OF LINEAR SYSTEMS TO RANDOM SPACE-TIME FIELDS

There are two objectives to this chapter. The first is to demonstrate the

mathematical techniques for obtaining a statistical description of the output

field of a time-invariant linear system excited by an input field that varies

randomly in space and time. The second is to demonstrate that, for certain

combinations of classes of systems and input field statistics, there are

mathematical and, thereby, interpretational advantages to relating the input

and output statistics in the wavevector-frequency spectral domain.

Recall that all systems treated in this text are assumed to be time

invariant, but can be either space invariant or space varying. Recall further

that only stationary random input fields are considered in this text. How-

ever, those stationary fields may be either homogeneous or nonhomogeneous.

Therefore, we will be concerned, in this chapter, with only four combinations

of classes of systems and inputs. Those combinations are (1) a space-invari-

ant system excited by a homogeneous input field, (2) a space-invariant system

excited by a nonhomogeneous input field, (3) a space-varying system excited by

a homogeneous input field, and (4) a space-varying system excited by a non-

homogeneous input field, These various combinations of systems and excita-

tions will be separately addressed in the sections to follow.

In this treatment, we shall consistently assume that the linear systems

have deterministic response characteristics (i.e., Green's functions, wave-

vector-frequency responses, or impedances). Therefore. the random nature of

the output field of any system is a consequence only of the randomness of the

input field.

We emphasize one final preliminary note. Throughout the remainder of this

text, we will employ only one of the three alternative forms (presented in the

previous chapter) foe each of the following, informationally equivalent,
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metrics of the statistics of stationary, nonhomogeneous fields: (1) the

autocorrelation function, (2) the space-varying wavevector-frequency spectrum,

and (3) the two wavevector-frequency spectrum. The form of the autocorre-

lation function will be Q pp(xl,,T), defined by equation (6-69). The space-

varying wavevector-frequency will be characterized by K(ppXl.k,4) as defined

by equation (6-105), and the two wavevector-frequency spectrum will be charac-

terized by S pp defined by equation (6-121). Descriptions of system

input or output statistics in forms alternative to these can be obtained by

using the equivalences developed between alternative forms of these various

metrics in chapter 6.

It is both convenient and spatially economical to organize the presenta-

tion of the four previously identified combinations of classes of systems and

inputs according to system class. We begin with the simpler of the two

classes: that is, the space- and time-invariant system.

7.1 RESPONSE OF SPACE- AND TIME-INVARIANT LINEAR SYSIEMS

TO RANDOM SPACE-TIME INP&0 FIELDS

Consider a space- and time-invariant linear system characterized by the

causal Green's function, g(9,0). By equation (3-52) of chapter 3, the

output field, p(_,t), from this system resu&Ling from an input field, f(xt),

is given by

p(Xt) gcO)f(x - o.t -0) d% do

Note here that we have assumed the input and output fields to be functions of

the two-dimensional spatial vector, x - (x1 fx2 ), rather than the three-

dimensional vector, (, ( x , used in chapter 3. This choice was

made for two reasons. The first was to ensure notational consistency of the

statistical metrics in this chapter with those presented in chapter 6. The

second reason is that, in the majority of practical system problems in

acoustics, the input is applied on a boundary of the system (a two-

dimensional surface), and the output is also observed over some (two-
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dimensional) surface of interest.

By equations (6-44) and (7-1), the autocorrelation function of the output

field of a space- and time-invariant system is given by

pp (~l,,tT) = E~p(j~l~ t ) p ( 2il + kt + T)}

= JE J [g(0, )f(_1 - _,t-

g(a,e 2 )f(xl + I - At + T - e2)] de del da do 2 l (7-2)

If we interpret the expected value, E{}, as the arithmetic average of the

trial values of the product p(x_1 ,t)p(x21 + j,t + T) over a large number

of trials (see equation (6-24)), then we can write the left-hand side of

equation (7-2) as

Q pp (X,,'t, )  QE~p(2t)p(xI  ,t 2- ))

N N

lim 1 (Xl,t)p(xl + It + )n= lim + JPn(xl't)Pn(X.i ,t + )N-w n.Ww- n(211t n(
1__0 n=l n=l (7-3)

where the subscript n denotes the n-th trial value. By applying the same

reasoning to the right-hand side of equation (7-2), we can write

E g[%,e ) f (2 - e

g(1t,02 )f(x . -+ tt + - 02)] do, do, dft de21

lim g (%, - _,t - 01)

Ww n~l 1- -0c -0c -0c

g(3,e 2)f(x 1 + 1 - ftt + T - 02)] du_ do1 dg dO 2n (7-4)
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By an interchange of the order of summation and integration, equation (7-4)

can be rewritten in the form

El I f C eg( l )f(x - _,t - e)

g(A,e 2)f(x + I .- §,t + - 2)] do, doI da de 2 j

-lm r (g(!_,e)f(xI -%,t - e,)

N-)

LNQ 'D -C n=1

g(Ae2)f(x1 + - t + 02)) n  d*- do, da do2

Lm IN I gn (%_,l)f nXlI - a_,t - el)

gn(J12Jf[nn(2L + k- ,t + - j2)j d*- do1 df do2  (7-5)

Recall, however, that the Green's function of the system is assumed to be

deterministic. Thus, for every fixed set of the arguments a_, 01' ft and

OV the product gn (_,elOgn(,02 ) is independent of the trial number, n.

That is,

-9 n(%,o1 )gn
(9,02 )  e1 9ao)g(9.,e2 )

It therefore follows that

El (g(,0)f(i1 - S,t - )

.g(,02)f(x1 + - ,t + - 02)] d% do 1 df dO2
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= JJ Jg(%,e1 )g~a,e 2)

[ N1
Lim 1 (f,(_1 - .t - , + - f.,t + ' -k 2)Jj d+ I d) do do2

Ii n=1
(7-7)

However, by comparing the form of the summation in equation (7-7) with that of

equation (7-3), we recognize that

N
i- 1 f A_, t- _l)f L + 1-§., t + e-

n=1
=r (fira N a x- 1 - +, - elf~,t -0 ,2)) e ) I

N

l  - ,t - 0)f(xl + - _,t +- - 02))

Q ff (4 -all + _ - 6,t - e1, + e I - e2) . (7-8)

Therefore, by equations (7-2), (7-7), and (7-8), it follows that the auto-

correlation function of the output field of a space- and time-invariant linear

system is related to the autocorrelation function of the input field by

-P~lltl * I II

Qff( Il - + - ,t - el #. + 01 - 62) d% do, d0 do? (7-9)

Note, in equation (7-9), that the arguments of the autocorrqlation

function of the output field (Q pp) appear on the right-hand side of the

equation only in the autocorrelation of the input field (Qff). We now

invoke the previously stated assumption that the input field is statistically

stationary. That Is, we require
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Qff(xl - ,I + - ,t - 0l1 , + e - e2) =Qff(2 1 - R,_ + - , I + e -2)

(7-10)

Note that the autocorrelation of the input field is now independent of the

absolute temporal variable t. It follows, by the observation above, that the

substitution of equation (7-10) into (7-9) will result in an autocorrelation

function of the output field (Q ) that is also independent of the absolute
pptime, t, and is thereby stationary. Thus, for a space- and time-invariant

linear system excited by a stationary, but generally nonhomogeneous, input

field, we obtain the following relationship between the autocorrelation

functions of the input and output fields:

QPP(1 I ,,T) =g(%,e I  m 2)(
i • ', 0'-00 -0.

Qff( l - +  -T + 02 - 02) de de1 da do2 . (7-I)

Note, by the functional forms of their respective autocorrelation functions,

that a nonhomogeneous input to the space- and time-invariant system produces a

nonhomogeneous output field.

Before completing the analysis of the space- and time-invariant system

excited by a stationary, nonhomogeneous input field, let us first examine the
input-output relationships of this system for a stationary, homogeneous input

field.

7.1.1 _esponse.of a Spag-,and TiMc-nvariant U-near System

to a StationarI. nomooeneous tnoutField

Recall that a stationary, homogeneous field is characterized by a mean

and an autocorrelation function that are independent of both the absolute

time and the absolute spatial location of observation. In equation (7-9),

ti autocorrelation function of the input field appears in the form

Qff(Xl - + 9-t -011 + 0 - 02), where x- is the absolute
spatial variatie, I + % - f is the spatial separation, t - 0 is the absolute

time, and v + 01 - 02 is the time difference. Clearly, if the input field
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is both stationary and homogeneous, the autocorrelation function of the input

field must be independent of the absolute spatial variable 2i a and the

absolute temporal variable t - That is,

Qff(x1 -A. +_ t -0,t + e I  02) =Qff(I +-a _ _. 1  e2)

(7-12)

By substituting this stationary, homogeneous form of the autocorrelation

function of the input field into equation (7-9), we obtain the following

relationship between the autocorrelation functions of the input and output

fields:

p J J g(%.0l)g(9o 2)Qff(, + 3_, + 01 e 2) da do1 0 do2

(7-13)

Note here that the autocorrelation of the output field is also stationary and

homogeneous inasmuch as the right-hand side of equation (7-13) is independent

of both the absolute spatial location, x1 and the absolute time, t, of

observation of the output field.

By application of equation (6-78) to equation (7-13), it can easily be

shown that the wavevector-frequency spectrum of the output field, 4(k,)

is related to the wavevector-frequency spectrum of the input field,

*f(k._ ). by

4 p (twfl Ykt), (7-14)

where, it will be recalled from chapter 2, G(kQ,) is the wavevector-frequency

response of the space- and time-invariant linear system, and is defined by

0-0 +d

Equation (7-13), which relates the statistics of the input and output

fields in the space-time domain, shows that the autocorrelation of the output
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field is expressed as a multiple convolution of the autocorrelation of the

input field with a product of two Green's functions of the system. Equation

(7-14), which relates the statistics of the input and output fields in the

wavevector-frequency domain, shows the wavevector-frequency spectrum of the

output field to be the product of the wavevector-frequency spectrum of the

input field with the squared magnitude of the wavevector-frequency response of

the system. Clearly, for a space- and time-invariant linear system excited by

a stationary, homogeneous input field, the mathematical relationship between

the input and output statistics is considerably simpler in the wavevector-

frequency domain than in the space-time domain.

Note, from equation (7-14), that if any two of the wavevector-frequency

fields are given, the third can be determined by simple algebra. On the other

hand, it is evident from equation (7-13) that the determination of either the

product of the Green's functions or the autocorrelation of the input field

requires solution of an integral equation,

By use of equation (7-14), we can establish an additional property of the

wavevector-frequency spectrum of a stationary, homogeneous field. From

equation (6-203), the mean square value of the output field, <p 2>, can be

expressed as

0 O0

j.... 3  I (tc) dkd . (7-16)

20

By substitution of equation (7-14) into equation (7-16), we obtain

<P12> 3 IG( .w)1 2 f ( .) d . (7-17)

(2w) - _

For the real fields considered in this book, <p2> is a real and positive

quantity. Clearly then, the integral of equation (7-17) must be real and

positive for any possible combination of space- and time-invariant linear

system and stationary, homogeneous input field. Inasmuch as IG(k,W)I 2 is real

and positive and, by section 6.5.1, *f(k cw) is real, the reality of this

integral is guaranteed, However, for the integral to be positive for
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any space- and time-invariant linear system and any stationary, homogeneous

input field, the wavevector-frequency spectrum, *f(k, ), of the stationary,

homogeneous input field must be positive for all k and w. Inasmuch as the

input field can be any stationary, homogeneous field, we can conclude that the

wavevector-frequency spectra of all stationary, homogeneous fields are non-

negative as well as real.

We now return our attention to the space- and time-invariant linear system

excited by a stationary, but nonhomogeneous, input field.

7.1.2 Response of a Space- and Time-Invariant Linear System

to a Stationary. Nonhomogeneous Input Field

The relationship between the autocorrelation functions of the input and

output fields of a space- and time-invariant linear system excited by a

stationary, nonhomogeneous input field was given by equation (7-11). For

reference purposes, this relationship is repeated here:

-0 -M -W -40

Qff(Xl - Ac ' . +  a 'T + 0 0 2) do, doI df do2 . (17-18)

By application of equation (6-105) to equation (7-18), it can be shown

that the space-varying wavevector-frequency spectrum of the output field is

related to the space-varying wavevector-frequency spectrum of the input field

by

X Q~l 'tGw) G)
Kpp l ,f fGl - kYlf(,,=epi- - 11 da d

(20 2 . ...

Alternatively, by use of equations (6-121) and (7-18), the two wavevector-

frequency spectrum of the output field of a space- and time-invariant linear
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system can be shown to be related to the two wavevector-frequency spectrum of

the input field by

Sp(£,k,c) = G(k,w)G(p - k,-)Sff(Yk) (7-20)

Note, from the functional forms of the output statistics described by

equations (7-18) to (7-20), that the output field of a space- and time-

invariant system subjected to a stationary, nonhomogeneous input field is

statistically stationary and nonhomogeneous. Note further that tie mathe-

matically simplest form of the input-output relationship results when the

statistics of the input and output fields are expressed in terms of the two

wavevector-frequency spectrum. Indeed, it is evident from equation (7-20)

that the two wavevector-frequency spectrum of either the input or output field

is easily predicteo, given the two wavevector-frequency spectrum of one field

and the wavevector-frequency response of the system. If the two-wavevector

spectra of both the input and output fields are known, only the product,

G(kw)G(y - k.-w), of the wavevector-frequency responses of the system can be

determined. However, given this product, the wavevector-frequency response

can be specified within a phase factor.

By inspection of the forms of equations (7-16) and (7-19), it is evident

that the determination of the space-varying wavevector-frequency spectrum of

the output field is a somewhat simpler mathematical task than the deter-

mination of the autocorrelation function of the output field. Note, however,

that the determination of either the autocorrelation function or space-

varying wavevector-frequency spectrum of the input field, given (as

appropriate) the autocorrelation or space-varying wavevector-frequency

spectrum of the output field and the Green's function or wavevector-frequency

response of the system, requires the solution of a formidable-looking integral

equation.

Consider now an input tield characterized by the two wavevector-frequency

spectrum

Sff(ptk.) - (2w) 26(p)V(k1,) + Wff(MkO) * (7-21)
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where Wff(~,,ka) characterizes a nonhomogeneous field that has no discrete

(i.e., Dirac delta function) wavevector contribution at y =(0,O). As we have

shown in chapter 6, this input field is generally nonhomogeneous, and is

comprised of spectral components that are independent of the absolute spatial

variable x, represented by the term (2,)r6(1 )V(k,), and purely nonhomo-
geneous spectral components, represented by the term Wff(k,.). Substitu-

tion of equation (7-21) into (7-20) yields the following expression for the

two wavevector-frequency spectrum of the output field resulting from this form

of input to a space- and time-invariant linear system:

spp (,) = G(k,w)G(V - k,- )((2w)26(V)V(kc) + Wff(,kAW)} (7-22)

By application of equation (6-155) to equation (7-22), the space-averaged

wavevector-frequency spectrum of the output field is given by

- aL 2) (2w) 2

F _______iF *1 (7-23)Gk)( - k, siUi]L  si( 2L)d[ J L ~ 2L J

By arguments similar to those employed following equation (6-155), it can be

demonstrated that, inasmuch as Wff contains no discrete spectral contri-

bution at p - (0,0), the integral containing this term is equal to zero.

Consequently, by use of equation (6-156), it can be shown that the space-

averaged wavevector-frequency spectrum of the output field of a space- and

time-invariant linear system, excited by a stationary, nonhomogeneous field

characterized by the two wavevector-frequency spectrum of equation (7-21), is

given by
4? , a IG(k.w) 12 V(_k.w) (7-24)
p-

Clearly, by comparison of equations (7-21) and (7-24), the space-averaged

wavevector-frequency spectrum reflects the output of the system from only

those spectral components of the input field that are independent of the

absolute spatial variable, x V The form of equation (7-24) is identical to

that of equation (7-14), which relates the wavevector-frequency spectrum of

the output field of a space- and time-invariant system to the wavevector-
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frequency spectrum of the stationary, homogeneous input field. Further, by

use of equation (6-166) and arguments similar to those used following equa-

tions (7-16) and (7-17), it is easily established that V(k,w), and thereby
a (k,a), are non-negative for all k and (. It was established in chapter 6

p a
that p(k,a) is real.

By the arguments of this and the previous section, we have demonstrated

that the input-output relationships for space- and time-invariant linear

systems excited by random space-time fields have the form of multiple

convolutions in the space-time domain, but are reduced to simple algebraic

equations when the input and output statistics and the system response are

expressed in the wavevector-frequency domain. These simple algebraic forms

facilitate both mathematical prediction and physical interpretation of the

input, output, or response characteristics of the system.

We now turn our attention to the response of time-invariant, but space-

varying, systems to random space-time input fields.

7.2 RESPONSE OF SPACE-VARYING LINEAR SYSIEMS

TO RANDOM SPACE-TIME INPUT FIELDS

Consider a time-invariant, space-varying linear system characterized by

the causal Green's function, 9(g,o,o). Recall that the space-varying

properties of a system result from either spatial variations in system

parameters or spatial boundaries of the system. We omit from consideration

here, as we did in chapters 4 and 5, space-limited iystems in which the output

can be specif'ied only in the form of an integral equation. This can be

ensured by restricting our treatment of space-limited systems to those

characterized by 'exact Greern's functions," as defined in chapter 4 (see pages

4-42 and 4-50). With this rostriction, it can be verified, by inspection of

equitions (4-91) and (4-120) of chapter 4, that the output field, o(xt), from

either a spatially nonuniform or space-limited, time-invariant linear system

is related to the input field, f(j,t), by

7(-,t) Jg(AS,)f(at - 0) da d. (7-25)
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For an infinite, spatially nonuniform system, f(x,t) and o(x,t) represent the

input and output fields of the system over all space and time. For a space-

limited system, f(x,t) and o(x,t) represent th, space-limited versions of

the input and output fields, defined in chapter 4 by equations (4-124) and

(4-125).

By equations (6-44) and (7-25), the autocorreltion function of the output

field of a time-invariant, space-varying system is given by

Qoo = Ejo(xl,t)o(xI 4- It + T)}

E g( )f(_,t - 01)

g(x1 +, ,0 2)f(at + - 02) de, de da_ 02j (7-26)

By arguments identical to those employed in equations (7-4) through (7-9), we

can interchange the order of expectation, EIJ, and integration to obtain

g xI + k.ft.07)f(a.t + i - 02)) da do1 dfl do2 . (7-27)

Recall, however, that the Green's functions are assumed to be deterministic.

Therefore,

E(g(Xl,SO)f(S.t - 01)g(t, + -,kz2 )f(9lt + -2)

= (X1 Sl,0,1 )g(XCl + , ,02){f(_.t - elf(Q ,t + - o2) }

g24-a_0)(X I + , ,02 )Qff(S, - %_.t - 0l, + 01 - 02) . (7-28)

By substitution of equation (7-28) into equation (7-27), we obtain
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S3g(x1,ct,0 I)g(2x1 + Kae2

Qff('- ,t - 81, + eI - 02) do do1 dA do2  (7-29)

Inasmuch as w.. are considering only stationary input fields, we require that

Qff(sa - ,t - lT + eI - 02) = Qff(%,B - %,T + 01 - 02) (7-30)

By substituting this result into equation (7-29) and by making the change of

variable

L - ,(7-31)

while holding S constant, we obtain the following expression for the auto-

correlation function of the output field of a time-invariant, space-varying

linear system excited by a stationary, but nonhomogeneous, input field:

Qff (2,E, + 1 - 02) d doI dC do2  (7-32)

As we did in the case of the space- anO time-invariant system, let us

examine the input-output relationship of the time-invariant, space-varying

system for a stationary, h ogeneous input field before comp!-eting the

analysis for the nonhomogeneous input field.

7.2.1 fl 0s SpaceVaryn ea Sytem.t

Stationary. Homqgeneous Input Field

Recall, from chapter 4, that there are three categories of space-varying

systems: (1) uniform, space-limited, (2) nonuniform, space-limited, and (3)

nonuniform, infinite. In classifying the input field to space-varying

systems, it is necessary to distinguish between the classification of the
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physical field applied to the system and the classification of the field

defined as the input to the system. Specifically, the input field, f(x!t), of

all space-limited systems characterized by exact Green's functions is defined

(in section 4.3.1.2) to be

f(xt) = s(x)q(xt) , (7-33)

where q(x.,t) is the physical field applied to the system, and s(x) is the

space-limiting function appropriate to that system. If the physical field,

q(x,t), is assumed to be stationary and homogeneous, it is easily shown that

the correlation function of the input field, Qff, has the functional form

Qff(l,.KT) = S(1l)S(2l + )Qqq(t, ) (7-34)

Inasmuch as the space-limiting function is defined to be unity within the

system boundaries and zero outside the boundaries, it follows from equation

(7-34) that, regardless of the classification of the physical field applied to

the system, the defined input field, f(jt), of a space-limited system is

nonhomogeneous.

In consequence of the above definitions and arguments, it is evident that

a stationary, homogeneou3 input field can be applied to only one category of

space-varying systems: that category being the infinite, nonuniform system,

for which the input field, f(x,t), is defined to be equal to the physical

field, q(jt), applied to the system.

Consider an infinite, nonuniform, time-invariant system excited by a

physical field, q(x,t), that is known to be stationary and homogeneous.

Inasmuch as the input field, f(.,t), to this system is equal to the applied

physical field, the autocorrelation function of the input field, Qff, is

also stationary and homogeneous. Thus, the autocorrelation function of the

input field in equation (7-32) can be written

Qff(qE. + 01 - 02) - 0ff(E,[ + eI - e2) Q Qqq(E., + e1 - 02 . (1-35)

where Q denotes the autocorrelation function of the physical excitation
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field. Substitution of equation (7-35) into equation (7-32) yields the

following relationship betweeR the autocorrelation functions of the physical

excitation field and the output field for an infinite, nonuniform, time-

invariant system subjected to a stationary and homogeneous excitation field:

Q #,( L PjT) 3g(x, %.e)g(x1 4-~4.ct2

Q 0 0 0 1- 0 + K-+ -0 2

Qqq(ET + a 2 ) de de1 de dO2  (7-36)

Note, from the functional form of the autocorrelation function, Qoo, that

the output field of this system is stationary, but nonhomogeneous. This non-

homogeneity results, of course, from the spatial nonuniformity of the system

properties, as is reflected by the presence of the absolute spatial variable

x, in the Green's functions in equation (7-36).

To express this input-output reiationship in the wavevector-frequency

domain, we first make use of equation (6-79) to write

0Ot 03 CO 00 W

-0 C . -0 _W

#( ,+)exp(i[o"j Q(T +. O1 - 02)]} da dol d do2 dr da , (7-37)

where *q (q,Q) is the wavevector-frequency spectrum of the physical excitation
field. By then applying equation (6-121) to equation (7-37) and performing

the resulting simple integrations over v and , we obtain the following

expression for the two aveve!:tor-frequency spectrum of the output field:

-mf -0 40 -0 - 0 _W

exn(i[.s + W(O1 - o2 )])exp(-i(y.-1.1  k,-))

d~i dL dg dO1 dc d82 dg . (7-38)
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If we now make changes of variables

v = R + (7-39)

while holding x1 constant, and

.Y = a + k (7-40)

while holding constant, we obtain

.00

- -0~ ~~ g~y,,e)exp(-i.-j - gey + me,]) dv dy~ d02) do (7-41)

However, by equation (4-119), the two wavevector-frequency response of a time-

invariant, space-varying system is defined by

= = g(x,%,e)exp(-i[o + + ]) dx do do (7-42)

It follows, from equations (7-41) and (7-42), that the two wavevector-

frequency spectrum of the output field of the infinite, nonuniform system is

related to the wavevector-frequency spectrum of the stationary, homogeneous

physical excitation field and the two wavevector-frequency response of the

system by

.oo, ) l q(g(i)G(p - k,,)G(k,0 ) do (743)
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The space-varying wavevector-frequency spectrum of the output field,

obtained by application of equation (6-130) to equation (7-43), is given by

/K 1 .4K00x1ksa) q (g, )G( -k,-)

(21r)

G(d,-,)expil) dj. (7-44)

Equation (7-37) shows the autocorrelation function of the output of the

infinite, nonuniform system to be a multiple convolution of the autocorrela-

tion function of the physical excitation field with the product of the Green's

functions of the system. The space-varying wavevector-frequency spectrum of

the output field, described by equation (7-44), is expressed as the Fourier

transform of an integral of the product of the wavevector-frequency spectrum

of the stationary and homogeneous excitation tield and a pair of two wave-

vector-frequency responses of the space-varying system. The two wavevector-

frequency spectrum of the output field, as seen by equation (7-43), is

expressed as the integral of the product of the wavevector-frequency spectrum

of the stationary and homogeneous excitation field and a pair of two wave-

vector-frequency responses of the space-varying system. By comparison of the

mathematical forms of equations (7-37), (7-43), and (7-44), it is evident

that, if the number of integrations is taken as a metric of mathematical

difficulty, the simplest input-output relationship is equation (7-43), which

results from expressing the homogeneous excitation field in the wavevector-

frequency domain and the system response and the output field in the two

wavevector-frequency domain.

By inspection of equation (7-43), the reader can verify the following

observations:

(I) If the wavevector-frequency spectrum of the homogeneous excitation

field and the two wavevector-frequency response of the system are

specified, the two wavevector-frequency spectrum of the nonhomo-

geneous output field can, in principle, be predicted.
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(2) If the two wavevector-frequency spectrum of the output field and the

two wavevector-frequency response of the system are known, the

determination of the wavevector-frequency spectrum of the homogeneous

physical excitation iield requires the solution of an integral

equation.

(3) If the product of the two wavevector-frequency responses of the

system is the desired result of an experiment, the system must be

excited by a stationary, homogeneous field comprised of a single

wavevector and single frequency component. By knowledge of the

resulting two wavevector-frequency spectrum of the output field, the

two wavevector-frequency response of the infinite, nonuniform system

can be determined to within a phase factor.

Consider now the space-averaged wavevector-frequency spectrum of the

output field of an infinite, nonuniform system excited by a physical field

that is stationary and homogeneous. By use of equations (6-153) and (7-44),

it can easily be shown that the space-averaged wavevector-frequency spectrum

of this output field is related to the wavevector-frequency spectrum of the

homogeneous excitation field by

0 (2r) 4  ,q

l i r s(i n kv.- s i nI l-,, -( - [ 1 L 3[ ?] dlI) dg. (7-45)

By arguments similar to those used in chapter 6, the integral over l tends to

zero as L-w unless the two wavevector-frequency response, G(Mk,w), of the

infinite, nonuniform system contains terms of the form r(Skw)6(y -S).

However, inasmuch as the Green's functions of all systems considered in this

text are real, we require that G(t,k,c) - G (-1-k,- ). Therefore, for the

space-averaged wavevector-frequency spectrum to be nonzero, G(L,k,w) must be

of the form
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N

I + (r(,,)( - ) r*(,-k,- ) , (7-46)n=l

where N specifies the fixed wavevector associated with the n-th pair of

delta functions and N denotes the number of pairs of delta functions that

characterize G(pkw).

Substitution of G(y,k,w), in the form of equation (7-46), into equation

(7-45) yields (after some lengthy algebra) the following expression for the

space-averaged wavevector-frequency spectrum if, for all n, sn are nonzero

wavevectors:

N ®

0 ak~ I (gw r%-g 2 d0(2)4 ...

+ 6(k + 2n) 0 q(q*w)r(g(ngI-w)1 2 d • (7-47)

If one of the wayevectors, say is equal to (0,0), then the J-th term of

equation (7-47) must be modified. It can easily be demonstrated that this

J-th term must be

-'J- g) (°' ){ r(  ' )t + Ir(°M "=)l 2
-(1r) 4  q40

~~ ~ ~ + (q,,t)

where Re(] denotes the real part of the argument.

By equation (7-47), it is clear that if the space-averaged wavevector-

frequency spectrum of an infinite, wionuniform system excited by a stationary,

homogeneous field exists, it is comprised of a set of N discrete wavevector

components located at t = t n, where 1 < n < N, that are weighted by

functions of % and u.
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We have seen that the space-averaged wavevector-frequency spectrum of an

infinite, nonuniform system subjected to excitation by a stationary, homo-

geneous field is zero unless the two wavevector-frequency response of the

system has the mathematical form of equation (7-46). Let us now examine the

form of the space-varying Green's function associated with that two wave-

vector-frequency response. By equations (4-138) and (7-46), it can be shown

that this Green's function must be of the form

N

g(2xLOe) - 2  Re(Dn(,,O,e)exp(in.X)} , (7-48)
(21) n=l

where

0 Co

(2w)3  -fu- xpi(k.E + we)) dk dw (7-49)

Note, by equation (7-48), that the Green's function associated with the

two wavevector-frequency response of equation (7-46) characterizes a system

whose response to an impulsive loading applied at k and time zero can be

characterized, at any time 0, by a swmation of sine waves in x. Each sine

wave component of the output is characterized by a different wavevector,

and the amplitude and initial phase of each sine wave component are functions

of , and 0.

For example, if N a 1 in equation (7-46), it follows from equation (7-48)

that

g( ,EO,0) =- Re{8( 1, x,o)explia1 ,x)} (7-50)(20 2 -

In this case, for any fixed location of impulsive excitation, N. and time
.subsequent to the excitation, o, the system response varies sinusoidally in

x. The wavevector characterizing the sinusoidal variation in the spatial

response is 91 and the amplitude of the response and phase at x - (0.0) is

dictated by the maqnitude and phase, respectively, of

One might legitimately question whether the functional form of the Green's

function described by equation (7-48) characterizes the causal response of an

infinite model of any physically based nonuniform system. The Green's func-
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tions of spatially nonuniform systems require the solutions of differential

equations with nonconstant coefficients. The treatment of such equations, and

therefore the resolution of this question, is beyond the scope of this text.

We now turn our attention to the response of space-varying systems to

stationary, nonhomogeneous fields.

7.2.2 Response of Space-Varying Lineal Systems to

Stationary, Nonhomogeneous Input Fields

The relationship between the autocorrelation functions of the input and

output fields of a space-varying system excited by a stationary, nonhomo-

geneous input field was given previously in equation (7-32). For ease of

reference, we repeat that relationship here:

00 o,)9(1 + I, + c,e2 )

01ff + e - 02) do doI dc de2  (7-51)

Note that the autocorrelation functions of both the input and output fields

are nonhomogeneous.

Recall, from the previous section, that a distinction is made between the

input field, f(x,t), to the system and the physical field, q(x,t), that

provides the excitation to the system. For space-limited systems, we showed

(see equation (7-34)) that, regardless of the classification of the physical

excitation field, the input field, defined by f(x,t) - s(i)q(xt), is always

nonhomogeneous owing to the properties of the space-limiting function, s(2).

Thus, by definition of the input field, all space-limited systems are excited

by nonhomogeneous input fields, irrespective of the spatial characteristics of

the physical excitation field. For infinite, nonuniform systems, however, the

input field is equal to the physical excitation field.

In consequence of the above definitions, space-varying systems subjected

to stationary, nonhomogeneous input fields comprise all space-limited systems

and infinite. nonuniform systems subjected to physical excitation fields that
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are stationary and nonhomogeneous.

If one expresses the autocorrelation of the nonhomogeneous input field
(Qff) as the inverse Fourier transform of its two wavevector-frequency
spectrum (Sff), it then follows from equations (6-121) and (7-51) that the
two wavevector-frequency spectrum of the output field of a space-varying
system can be related to the two wavevector-frequency spectrum of the input

field by

0 0 I 0 0c C0 0 CO 0 ,O

g(Xl,,el)expi[At[ + .+ Q(T + e1 - 02)]}

g(x-1 + l,% + 0,e2)exp(-i(y!.1 + k. + w))

d do do do do1 d. do2 d21 d.1 dT (7-52)

If we now define

= + (7-53)

while holding 21 constant, and

I + ,(7-54)

while holding s constant, we obtain, after performing the integrations on T

and Q,

00(2P M (Sff(a.g,)

g(y, ,02)exp[-if,-y - dv +e?]) dv dy do2) dA do

(17-55)

However, by equation (7-42), we recognize the last two multiple integrals to
be 6(y - k,- ,-w) and G(k,-_,w), respectively. Thus, the two wavevector-
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frequency spectrum of the output of a space-varying system is related to the

two wavevector-frequency spectrum of the nonhomogeneous input field by

_ (2") J Sff(A.g.w)G(y - k, - a.-)G(k,-,) da d0. (7-56)
00 ~(20_W 0

The space-varying wavevector-frequency spectrum of the output field can be

related to the space-varying wavevector-frequency spectrum of the input field

by applying equation (6-127) to the two wavevector-frequency spectrum of the

input field and equation (6-130) to the two wavevector-frequency spectrum of

the output field. That is,

K 0(2) 6  Kff(1 '.' )G(p - k,g - a,-w)

G( ,-g.,w)exp~i(y l - qz)) d~ dz da do . (7-57)

For a space-varying system subjected to a stationary, nonhomogeneous input

field, comparison of the input-output relationships in the space-time

(equation (7-51)), space-varying wavevector-frequency (equation (7-57)), and
two wavevector-frequency (equation (7-56)) domains reveals, once again, that

the simplest mathematical relationship between the statistics of the input and
output fields results from expressing the statistics of those fields in the

two wavevector-frequency domain.

The space-averaged wavevector-frequency spectrum of the output field from

a space-varying system excited by a stationary, nonhomogeneous input field can
be obtained by applying equation (6-155) to the two wavevector-frequency

spectrum of the output field described by equation (7-56). This yields

!.ao(_,.k = _., j 3 Sf f(ft..)G(,g,)

0irsin(.,6 L) 1

]lim | G( - t - a,-) jL I..I.. - 2 L ) I d do . (7-58)
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A comparison of equation (7-58) with equation (7-45) reveals that the integral

over V in equation (7-58) is mathematically similar to that in equation

(7-45). Therefore, we can employ arguments identical to those applied to

equation (7-45) to establish that the space-averaged wavevector-frequency

spectrum described by equation (7-58) is identically zero unless the two

wavevector-frequency response, G(Vkw), of the space-varying system has the

functional form given by equation (7-46). That is, unless

N

I,, {r(,k,w)6(y - !) + r*(,-k,))6(y + q)J, (7-59)
n-1

a 0(k,w) 0. If G(y,k,w) is of the form of equation (7-59) (or (7-46))
0

and a s (0,0) for any n, it can be shown that the space-averaged wave--n
vector-frequency spectrum of the output field of a space-varying system

excited by a stationary, nonhomogeneous field is given by

N 0.

0 v I ~ 6 " S- )6 n-

r*(qa! - d a,) do

+ 4 + n f

r - a.-W) dB do1 (7-60)

From equation (7-60) and the synetry property of the two wavevector-frequency

spectrum given by equation (6-136), it can be established that

0 0

Therefore. the space-averaged wavevector-frequency spectrum of the output

field is real (as it should be).

It is interesting to note that, for both homogeneous and nonhomogeneous

input fields, the space-averaged wavevector-frequency spectrum of the output
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field of a space-varying system is zero unless the two wavevector-frequency

response of the system has the form of equation (7-46). As shown previously,

this two wavevector-frequency response implies that the Green's function of

the space-varying system must have the mathematical form

N

g(x,Ao,e) - 2 I Re{8((n,X,e)exp(in-x)} (7-62)
(21) n=l

where

-(l ( 2=1O,e) 3 r(Ln,ks)exp(i(k.x + we)) dk dw . (7-63)

While we do not know, nor do we propose to determine, whether this Green's

function represents the causal response of any physically based model of a

space-varying system, we can demonstrate that it cannot describe the response

of any space-limited system. Note, from equation (7-62), that the Green's

function is a sum of waves that vary sinusoidally over all x. The direction

of propagation of the n-th wave component is dictated by N, and the amplitude

and initial phase of that component are specified by D(qn,o,e). Inasmuch

as (1) space-limited systems have zero response outside the spatial bounds of

the system and (2) the Green's function of equation (7-62) dictates a sinus-

oidal response over all x for all input locations and times, this Green's

function cannot represent a space-limited system. Thus, we conclude that

(1) the space-averaged wavevector-frequency spectrum of any space-limited

system is identically zero and (2) the space-averaged wavevector-frequency

spectrum of an infinite, nonuniform system is zero unless that system has a

Green's function of the mathematical form of equation (7-62).

By the arguments presented in this and the previous section, we have

demonstrated that the simplest mathematical forms of the input-output

relationships for space-varying, time-invariant systems subjected to random

space-time input fields result from expressing the statistics of the output

field in the form of the two wavevector-frequency spectrum and the statistics

of the input field in the form of either the wavevector-frequency spectrum

(for homogeneous inputs) or the two wavevector-frequency spectrum (for

nonhomogeneous inputs). The space-averaged wavevector-frequency spectrum of
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any space-limited system was demonstrated to be identically zero. The

space-averaged wavevector-frequency spectra of infinite, nonuniform systems

were shown to be zero unless the Green's function had the mathematical form of

equation (7-62).

7.3 ILLUSTRATIVE EXAMPLES

In this section, we present analyses of two systems subjected to

excitation by random space-time fields. The first system is a uniform flat

plate, of infinite extent, excited by the pressure fluctuations associated

with homogeneous turbulent flow over the plate. The second system is a finite

length string, with fixed ends, excited by a forcing field that is harmonic in

space and time, but has a random initial phase. The purpose of these

illustrative examples is to demonstrate the utility of the various input-

output relationships presented in the previous sections for predicting and

analyzing the response of systems subjected to random space-time excitation

fields.

7.3.1 The QisnlacementField of a Unifom. Infinite Flat Plate

Excited By Turblent Flow

A uniform flat plate of infinite spatial extent is subjected to a

turbulent flow field over its upper (i.e., x3 > 0) surface, as illustrated in

figure 7-1. The space beneath the lower surface of the plate (i.e., x3 < 0)

is vacuous. The pressure fluctuations In the turbulent boundary layer that is

formed over the upper surface of the plate apply a force per unit area,

f(K,t), on that surface. This forcing field is random in both space and

time. The statistics of this forcing field are assumed to be both stationary

and homogeneous. The forcing field excites a displacement field, w(K,t), in

the plate, which, in turn, excites an additional pressure field in the fluid.

This pressure field also reacts on the upper surface of the plate. We wish to

establish the statistics of the displacement field of the plate resulting from

the turbulent flow excitation.

The uniform infinite plate and semi-infinite volume of fluid constitute a

coupled system. This particular coupled system was treated in section 5.3.1
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of chapter 5, and was determined to be a space- and time-invariant system.

Note that the forcing function associated with the turbulent flow is directed

opposite to the forcing function illustrated in figure 5-1. However, inasmuch

as phase information is not preserved in the wavevector-frequency spectrum,

the sign convention of the forcing function is of no consequence to the

input-output relationship.

As previously stated, the statistics of the forcing field associated with

the turbulent wall pressure are assumed to be stationary and homogeneous.

Inasmuch as the infinite plate, fluid loaded on one side, is a space- and

time-invariant system, it follows from equation (7-14) that the wavevector-

frequency spectrum, *w(k,), of the (output) displacement field of the plate

is related to the wavevector-frequency spectrum of the forcing field, *f(k, ),

associated with the (input) turbulent pressure field by

fwtw - IG(jb )l2ftW _ (7-64)

where, by equation (5-46), the wavevector-frequency response of the plate,

fluid loaded on one side, is given by

r 1 _ , iko! ,

ttOk4 - 2] +~ ir1 + -- A2 2
k 0 k(1 - k2/k2)

I k > IkoI
- w -/(k2 -1ko

Here, it will be recalled that 1, 0, and r are the flexural rigidity, nass per

unit area, and darqpifg force per unit area of the plate, respectively; p is

the mass density of the fluid. and k0 ,/c. , where c is the sound sped in

the fluid.

The wavevector-frequenty response of the infinite plate, fluid loaded on

one side, was treated in section 5.3.1 of chapter 5, and the magnitude of this

response as a function of the wavenumber of the excitation, at any fixed

frequency, is illustrated in figure 5-7(a). By reference to this figure and
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Figure 7-1. Umeowtry of the Turbulent, Flow-Excited
Infinite Flat Plate

section 5.3.1. it will be recalled that, at apy given frequency, the response

of the fluid-loaded plate to any plane wave component of the excitation is

independent of the direction of propagation of that wave component, and

depends only on the magnitude of the wavevector that characterizes the plane

wave. The fluid-loaded plate responds most strongly, at any frequency, to

waves characterized by wavevectors having magnitudes, I J. equal to kp ,

where k is the free wavenwaber of the fluid-loaded plate defined byp

equation (5-35). Thus, as indicated in figure 5-7(a). IG(Kc)I is charac-

terized, at any given frequency, by a maximum response on the circle defined

by k w I k ' For a comprehensive discussion of the wavevector-

P
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frequency response of the fluid-loaded plate, the reader is referred to

section 5.3.1 of chapter 5.

To obtain an expression for the wavevector-frequency spectrum of the

displacement field of the turbulent, flow-excited plate, it remains to specify

a model for the wavevector-frequency spectrum of the forcing field associated

with the turbulent wall pressure fluctuations. According to Junger and

Felt, 1 the forcing field (i.e., the turbulent pressure fluctuations at the

surface of the plate) should be independent of the plate response. Junger and

Feit's examples suggest that the force per unit area applied to a flexible

plate by an incident pressure wave is equal to the pressure produced on a

rigid surface by that incident wave. Thus, we assume the forcing field

associated with the turbulent flow to be the pressure produced on a rigid

surface by a turbulent flow over that surface.

One of the simpler mathematical models for the second order statistics of

turbulent wall pressure fluctuations over a (relatively) rigid surface is the

model proposed by Corcos 2 in 1963. The Corcos model assumes that the cross-

spectral density (i.e., the temporal Fourier transform of the autocorrelation

function) of the turbulent wall pressure field over a rigid surface, R ff( ,.),

can be written in the separable form

R ff(IM O ff (_,v)exp(.-iwc) dr

= ff(w)A(w I /U )B(4 ?/U c)exp(-i~tl/Uc) ,(-66)

where 0 f() denotes the frequericy spectral density of the pressure, and A

and B are (as yet) unspecified functions of the streawise (tI) and

transverse (t2) spatial separations, respectively, and of frequency and

the convection speed (U c ) of the turbulent pressure f uctuatiens. This

convection speed usually ranges between 0.6U0 to O.8U O 6 where U0 is the

free stream flow speed.

Curve fits to measured cross-spectral densities of turbulent wall pressare

;luctuatlons reveal that the A and B functions are reasonably approximated by
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A(w=/Uc) - exp(-O.11il/Ucj) (7-67)

and

B( 2c/Uc) = exp(-O.71it2/Ucl) (7-68)

By equations (6-78) and (7-66), we recognize that

Rff(_Kw)exp(-ik.-) dj (7-69)

Therefore, it can be shown, from equations (7-66) through (7-69), that the

wavevector-frequency spectrum of the forcing field of the plate resulting from

the turbulent flow is given by

0.28of(w)kh 2  
(T70)

h(O I 2h + (k1  + kh) 2 ][(O.7k h ) 2 + k2 ]

where kh is the hydrodynamic wavenumber, defined by

kh = W/Uc * (7-71)

The wavevector-frequency spectrum of the forcing function associated with

the Corcos model of the statistics of the turbulent wall pressure fluctua-

tions is illustrated in figure 7-2. Here, 10log10 of the ratio of the

wavevector -frequency spectrum (tf) to 1'4e frequency spectral density (0f)

is plotted as a function of kI and k2 over the range -3kh : k< 3kh and

-3kh < k2 < 3kh . Note that this wavevector-frequency spectrum is character-
ized by relative maxima, for all values of k2, at kI = -kh. The absolute

spectral maximum occurs at k - (-khO). To avoid obscuring the shape of this

spectrum, the scale of the vertical (i.e., spectral) axis scale is not labeled.

However, from equation (7-70), it is easily shown that the difference between

the maximum value of lOloglo(§f(k,w)/r()j, which occurs at k - (-khO),

and the minimum value, which (in figure 7-2) occurs at k = (3k h,3k h), is

7-31



approximately 45 dB.

By substitution of equations (7-65) and (7-70) into (7-64), we obtain the

following expressions for the wavevector-frequency spectrum of the turbulent

flow-induced displacement field of a uniform, infinite flat plate:

. .10 LOG r4) (ii )

(k,

- /

Figure 7-2. Illustration of the Corcos Model of the

7-32 Wavevector-Frequency Spectrum of the Turbulent Wall Pressure
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0. 286f(

I [Dk 4 
-212 + Ira + k2( 2 k2/k102

.. ... . k 2  2

hk, kIkol,

[(O.lkh)2 + (k I + kh)2][(O'kh)2 + k22]  (7-72)

and

0.280 f(

~k /k2 _ k02,) + ]2

kh2 k> k .
x k > IkoI.

[(O.lkh)2 +(k! + kh)2][(O.Tkh)2 + k22] (7-73)

By inspection of equations (7-72) and (7-73) and use of the discussion of

the forced response of the fluid-loaded plate presented in section 5.3.1 of

chapter 5, we can establish that, for any given frequency, the wavevector-

frequency spectrum of the turbulent flow-induced displacement of the plate is

characterized by relative maxima on the circle defined by Itl - k and

in the vicinity of k-= (-kh,O). This wavevector-frequency spectrum is

difficult to illustrate in three dimensions. However, we can gain some

insight to the characteristics of this spectrum by separate examination of its

k I and k2 dependence at some fixed frequency.

Figure 7-3 Illustrates the kI dependence of *w( .,w)/f(w) at a fixed

frequency along the line k2  0 0. For this example, the frequency and the

parameters of the plate, flow, and fluid were chosen such that kp w 20k0 and

kh w 150k0 . These parameters are characteristic of a thin steel plate

excited by a relatively rapid flow of water. Figure 7-3 shows that, along'the

kI axis, %w(kl,O,=)/Ef(w) is characterited by three relative maxima. The two

largest spectral contributions occur at k a Up'o with the contribution at

-kp' being slightly larger. This results from the wavevector-frequency

spectrum of the forcing function associated with the turbulent flow being
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Figure 7-3. Normalized Wavevector Spectrum of the Displacement Fiela
of a Turbulent, Plow-Excited Infinite Plate:

k, Dependence

greater, for any fixed k 2 and u, at negative values of kI than at positive

values of k (see figure 7-2). The third relative maximum occurs near

k- I = -kh the maximum of the wavevector spectrum of the turbu!ence excita-

tion. This spectral contribution is seen to be about 70 dO lower than those

associated with the resonance (at kI  +k t) of the fluid-loaded plate. As~- p

can be verified by equations (7-64), (7-65), and (7-70), this reduced contri-

bution at the wavenumber associated with the viaxinium of the spectrum of

the turbulence excitation results because IG(k1 ,O,Q)l
2 decreases much more

rapidly with decreasitg kI than f(kl,O,w) increases with decreasing k, over

the wavenumber range -kh k, < -kp'

Figure 7-4 illustrates the k2 dependence of w(t)/Of(w) at a

fixed frequency along the line kI  0 0. The frequency and the parameters of
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Figure 7-4, Normalized Wavevector Spectrum of the Displacement Field
of a Turbulent, Flow.,Excited Infinite Plate:

k2 Dependence

the plate and fluid are the same as those used for figure 7-3. Here, we see

that, along the k2 axis, Ow(0.kZw)/Of(w) is characterized by two maxima of

equal armplitudek at k r tk . The equal amplitudes of these maxima are

consistent with the even natures of both Y .,) and tG(k, )l 2 in the

k2 variable.

By figures 7 -3 and 7-4 and the previously described wavevector-frequency

characteristics of IG(k,w)J, we conclude that, at any frequency, the domi-

nant contributions to the wavevector-frequency spectrum of the displacement

field of the turbulent, flow-excited infinite plate are those in the neighbor-

hood of the circle defined by k - 1 j - k . Consequently, the major contri-P
buitors to the random space-time displacement field of the turbulent, flow..
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excited plate are resonant free waves of the fluid-loaded plate propagating in

all directions. However, owing to the slightly larger excitation of waves in

the downstream (i.e., negative kl) direction, the amplitudes of the free

waves having downstream velocity components are slightly larger than those

having upstream velocity components.

7.3.2 The Displacement Field of a Finite String With Fixed Ends

Excited by a Harmonic Wave Field of Unknown Initial Phase

A string of length L, fixed at x = 0 and x = L, is subjected to a force

per unit length described by

q(x,t) = F0 sin(k 0x + '0t + 0) , (7-74)

over all x and t. Thus, the physical excitation field of the string is a real

plane wave characterized by an amplitude FO, a wavenurpber kO , a frequency

w0 and an initial phase 0. The amplitude, wavenumber, and frequency of

this physical forcing field are known, but the initial phase is unpredictable

over repeated trials of this experiment. Ignoring the loading effects of the

fluid surrounding the string, we wish to predict the second order statistics

of the displacement field, w(x,t), of the string that would result from many

repetitions of this experiment.

In this problem, the initial phase, 0, of the excitation field is a random

variable. In the absence of specific knowledge to the contrary, we assume

that, in any given trial of the experiment, the value of this random variable

is equally probable between -v and v. Thus, the probability density function,

f 0 (a), of the initial phase, 0, of the physical wave field that excites the

string can be written
{1/(2w), -v < a 

(

f 0m 0, otherwise.

The physical forcing field, q(x,t), is a function of the random variable, 0.

By use of equations (6-11) and (7-75), it can be shown that the auto-

correlation function of the physical excitation field is given by
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F02

Q q(M,) = Etq(x,t)q(x + t,t + 1) -2-cos(ko + W0T) . (7-76)qq2

The fixed-end string is a space-limited system. By the form of equation

(17-76), it is evident that the physical excitation field applied to the string

is both stationary and homogeneous. Recall, however, that for, space-limited

systems, the input field is defined to be zero outside the spatial limits of

the system. Thus, given that q(x,t) is the physical field applied to the

string, and b(x) is the space-limiting function appropriate to that string,

then the input field, f(x,t), to the finite, fixed-end string is defined to be

f(x,t) = b(x)q(x,t) . (7-77)

In chapter 4 (see equation (4-11)), we showed that the space-limiting function

for the fixed-end string was defined by

1, 0<x<L ,

b(x) - {U(x) - U(x - L)} (7-78)
0, otherwise.

By equations (6-52) and (7-77), the autocorrelation of the input field to the

string is given by

Qff(x, ,i) - Eif(:.,t)f(x + tt + v)) - E(b(x)q(x.t)b(x + t)q(x + E.t + x)}

(7-79)

However, the space-limiting function is deterministic. Therefore, by equations

(7-76) and (7-79), it follows that the autocorrelation function of the input

field to the finite, fixed-end string is given by

Qff(xAT) - b(x)b(x + t)Etq(x,t)q(x * tt + v)) - b(x)b(x + )Q qq(,v)

F2

- b(x)b(x + t) 0 cos(kok + W) • (7-80)
2

Clearly, the input field to the fixed-end string is stationary, but

nonhomogeneous.
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We know that the finite, fixed-end string is a space-varying system, and

we have established that the input field to the string is stationary and

nonhomogeneous (even though the physical field applied over all space and time

was stationary and homogeneous). By adapting equation (7-56) of section 7.2.2

to the single spatial dimension appropriate to this problem, it follows that

the two wavenumber-frequency spectrum of the displacement field of the string,

S Sww, is related to the two wavenumber-frequency spectrum of the input field,

Sff, by

Sww(V k,(j) 2...L~ Sff(8L3 tds4G(V - k.6s - 0,-w)G(k,-aMw d8 dd ,(7-81)
(2)0

where G(v,k,w) is the two wavenumber-frequency response of the finite string

with fixed ends.

By applying the arguments of section 4.3.1.2 to equation (3-84), we can

demonstrate that the forced displacement of a finite, fixed-end, damped string

is governed by

I 2 w 1 a w _ r aw _ b(x)q(x.t) -_ at (782)
b ax 2  cs2 at2  T at T T

for all t within 0 < x < L. Outside the physical extent of the string, w(x,t)

is assumed to be zero. Recall, from section 3.4.5, that T is the tension of

the string, cs is the propagation speed of a free wave on the string, and r

is the (constant) coefficient of damping per unit length. By applying

techniques similar to those used in section 4.3.3.2 to treat the forced

vibration of the simply supported plate, we can show that the Green's function

of the finite, fixed-end string is given by

) 1 Go 0 b( xO)ckn(xo)b(x)ar(x)exp(ito)
-- wLI" (ks (T) - (ni/L)2 - irQ/T]
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where n (x) is the n-th normal mode of the finite, fixed-end string, defined

by

n (x) = sln(nrx/L) . (7-84)

Recall that the two wavenumber-frequency response, G(,,k,w), is the

multiple Fourier transform of the Green's function on the variables x, xO,
and e. Thus, it follows from equation (7-83) that

24M (1)I (k)

( Lk2 n (7-85)L 2k (w) - (nr/L) - ir/T]

Here, In(k) is the Fourier transform of the space-limited n-th mode, an(x),

of the finite, fixed-end string. That is,

In(k) = b(x)Ln(x)exp(-ikx) dx (7-86)

From equations (6-121) and (7-80), we can show that the two wavevector-

frequency spectrum, Sff, of the input field to the string is given by

iF02

Sff(a,kw) 6(u - wO)B(u - k + ko)B(k - kO)

+ 6(w + o)B(u - k - ko)B(k - ko)) , (7-87)

where B(k) is the spatial Fourier transform of the space-limiting iunction,

b(x). That is,

8(k) b(x)exp(-ikx) dx . (7-88)

By substitution of equations (7-85) and (7-87) into equation (7-81). and

by application of equations (7-86) and (7-88). we can demonstrate that the two
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wavevector-frequency spectrum of the displacement field of the string can be

written in the form

2

Sw,(u,k,o) L2T2 (V(V,k,w) + V (-,,-k,--). (7-89)
L2T2

Here, V(u,k,o) is defined by

V(Uk,w) = S(w - 0o) 1I I Amn (ko)Cmn(O)Im(P - k)In(k)} (7-90)

IM1n=1

where

A nk O) = Im(ko)In(kO) (7-91)

and

C mn(w )  2 .- 2 1 2 (7-92)(k-- (w) - (v//L) + irw/TT][ks (w) - (nv/L) - trw/T]

Equation (7-89) describes the functional form of the two wavenumber-
frequency spectrum of the displacement field of the finite, fixed-end string.

Note that this functional form satisfies the conjugate symmetry requirement of

equation (6-133): that is, Sw(pkw) - SW(-U,-k,-w). By inspection of

equation (7-90), it is evident that V(pk,w) is discrete in frequency, but

distributed in the two-wavenumber variables. It is further evident, from

equations (7-89) and (7-90), that V(o,k.) specifies the wavenumber charac-

teristics of S w(P,k.,) over all v and k at w - w0 and that VA(-V,-k,-w)

specifies the wavenumber characteristics of S,(u,k,w) over all v and k at

w -= "w0"To determine the two-wavenumber characteristics of S (1ap,k,w) at

these discrete frequcncies, we must determine the two-wavenumber character-

istics of Vlv,k, ).

Equation (7-90) shows that the wavenumber dependence of V(U,k.w) is dicta-

ted by a weighted summation of terms of the form Im(p - k)I n(k) over all

positive integer values of m and n. The wavenumber characteristics of I n (k)
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were treated in section 4.2.1 of chapter 4, and are well understood. There-

fore, the two-wavenumber dependence of any single term, say IM(p - k)IN(k),

in the summation can be easily deduced. However, the two-wavenumber charac-

teristics of the summation of weighted products of Im( - k)In (k) comprising

V(v,k,w) are obscure. To provide some insight into these wavenumber charac-

teristics, we apply arguments similar to those used (in section 4.3.3.2) to

analyze the wavevector-frequency characteristics of the forced vibration field

of the simply supported plate.

Recall that the frequency, w0, and the wavenumber, ko, that charac-

terize the physical excitation field are known and independent parameters.

Note, by equations (7-91) and (7-92), that the modal weighting function

--A (k ) is a function only of the wavenumber that characterizes the excitation

field, and the modal weighting function Cmn (O) depends only on the frequency

of the harmonic wave oxcitation. Let us examine the weighting of the products

I m( - k)I n(k) as a function of the mode numbers, m and n. We first consider

the weighting properties of A mn(k ).

Recall, from section 4.2.1, that the magnitude of Im(k) is characterized

by two primary maxima, of equal amplitude, at the wavenumbers k - (±tir/L). and

by secondary maxima at k ( ±i[m t (2p f l)]w/L) for integer values of p

equal to or greater than one. However, the ratio of the magnitudes of the

secondary to primary maxima is of the order of 12p 1 11-1, so the magnitudes of
the secondary maxima are considerably smaller than the magnitude of the maxima

at k - (tM*lL). It should also be noted that the amplitudes of the primary

maxima of 11m(k)l are independi)nt of the modal number' m. By these properties

of Im (k)i, it is evident that, if the wavenumber, ko, that characterizes

the harmonic excitation field equals either of the wavenumbers characterizing

a primary maximum of IM(ko)i (i.e., k0 equals either Mv/L or -*/IL), then

AMM(kMw/L)2 will be considerably larger, in magnitude, than any

other value of Amn(k0 ). If, on the other hand k0 does not equal a wavenumber

associated with a maximum of 1l n(k0)1 for any choice of m, and therefore falls

between the maxima associated with two consecutive modes (say the H and

N r.H 1 modes), then it can be argued that A K(k 0), ANN(ko), AMN(ko). and

ANM(k ) will be significantl ' larger, in magnitude, than all other values of

A mn(k ) Thus, it is evident that the magnitude of the weighting function
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Amn(ko) will be relatively large for those combinations of modal numbers

(M,N) at which the wavenumber characterizing the plane wave excitation, kO,

closely approximates, in magnitude and direction, one of the wavevectors

(±Mw/L) characterizing the maxima of IM(k) and one of the wavevectors

(±Nw/L) characterizing the maxima of IN(k).

Let us now address the dependence of the weighting coefficient Cmn (O)

on the mode numbers, m and n. For the known and fixed frequency ((0) of the

excitation, it is evident from equation (7-92) that the magnitude of the

weighting function Cmn( O0) will be relatively large at those combinations

of modal numbers (m and n) at which the magnitudes of both ks
2((O ) - (mw/L) 2

and ks2 (caO ) - (nv/L)2 are smaller than, or comparable to, the magnitude of

r-O/T. As discussed in section 4.2.1, a modal number associated with a zeroIWO2 2
value of ks ( )0 - (mw/L) identifies a resonant mode of the plate at the

frequency w, and modal numbers associated with values of ks O) - (mw/IL)

that are comparable, in magnitude, to ro0/T identify near-resonant modes of

1. plate. For modes well removed from resonance, Ik - (/L) 21

becomes large, and the values of IC mn(O)l associated with combinations of

nonresonant mode numbers become small relative to those values associated with

resonant and near-resonant modes. Clearly, the magnitudes of weighting coeffi-

cient Cmn (wOg) will be largest for those combinations of mode numbers, m and n,

associated with resonant or near-resonant modes at the frequency W0: that

is, either at that mode number, M, at which Ik52(wy) - (MwIL) 2 equals

zero or at those mode numbirs, M and N, at which both Iks2(O0 ) - (Mv/L) 2

and Ik s(wO) - (Nv/IL) I are smaller than or copaarable to Ir /Tl..

According to equation (7 90), V(p,k,co) is obtained by summing the product

Amn(kO)Cmn(WO)Im(v - k)ln(k) over" all integer values of m and n equal to or

greater than one. Thus, the two-wavenumber dependence of V(a,k.w) is dictated

by the sum of the weighted products of I M(V - k) and I n(k). From our discus-

slon of the weighting coefficient Amn(ko). we know that, for any particular

mode, say the N-th, IIM(k)l has two maxima, of equal amplitude, located at

k - (tNv/L). It therefore follows that the magnitude of the specific product

IN(p - k)IN(k) has four maxima, all of equal amplitude, located at the inter-

sections of k - (NWL) with v - k - (t*t/L). As shown in figure 7-5, these

intersections occur at (p,k) equal to (M + N]v/L.Nv/L), ([N - N]w/L,-Nw/L),
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(-[N - N]wtL,Nv/L), and (-(N 4 N]w/L-Nw/L).

The locations of the maxi a of 1,(- k)IN(k) are easily interpreted
in tems of the autocorrelation function of the displacement field of the

string. By use of equations (7-51), (7-80). and (7-M3), or by the inverse

Fourier transformation of equation (7-89), it can be shown that the auto-

correlation of the displacement field of the fixed-end string excited by a
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single wave component (of unknown initial phase) of force per unit length can

be described by

Qww(x,g,,) Il LT 2  1 ReA m (k o)Cmn (wo)eXp(iwOr)}

L T m=l n=l

b(x)a m(Xlb(x + O)an(X + 0) . (7-93)

It is easily verified (see equation (7-86)) that IM(p - k)IN(k) is the

double Fourier transform of the product of the K- and N-th space-limited modes,

b(x)*,(x)b(x + )a. (x + ), of the fixed-end string on the variables x and

t. Thus, I M(v - k)IN(k) identifies, in the two-wavenumber domain, the wave

contributions to the autocorrelation function, in both the x and t coordinates,

from tha product of the 14- and N-th space-limited modes. It is easily demon-

strated that

N+ 0

-([exp-( - N)ix/L) - exp{i(M + N)lx/L]exp{iNv/L}

[ [exp~i(N N)vx/L) - exp(-i(K + N)*x/L}exp(-iNt/L)

(7-94)

Recall that, in Sww(v.kw), the wavenumber V reflects the variation of

SwW (X,,v) in the absolute spatial variable x, w.ile k reflects the variation

of the autocorrelation fupction in the spatial separation variable t. By

equations (7-93) and (7-94), it is evident that the product N(x)aN(x + )

introduces wavelike contributions to the autocowrelation funct!Dn that, in the

variable t. can be expressed as the weighted sum of exp(iNvt/L) and

exp(-iNwt/L). The wavenumbers (k) that characterize these sinusoidal varia-

tions in t are Nw/L and -Nw/L, respectively. By equation (7-94), it is

evident that the weightings of exo(iNct/L) and exp(-iNv/L) are functions

of the absolute spatial variable, x. The weighting of exp(iNwt/L) comprises

two components that vary sinusoidally in x. These components are character-

ized by the wavenumbers -(M - N)*/L and (M i N)w/L, respectively. Note, from
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figure 7-5, that these are the values of v that characterize the maxima of

IM( - k)IN(k) at k - No/L. The weighting of exp(-iNir/L.) also comprises

two-wave components in x, which are characterized by the wavenumbers

-(M i N)v/L and (M - N)ir/L. The reader can verify that these values of 1
specify the locations of the maxima of IM(I - k)IN(k) at k = -Na/L. Thus,

we conclude that the locations of the maxima of IM(v - k)IN(k) in the

(u,k) domain correspond to those wavenumbers that characterize the product

of the normal modes, mM(X)ON(x + ), over all Y and .

To illustrate how significant wavenumber characteristics of the

displacempnt field of a fixed-end string excited by a wave component (of

unknown phase) of force per unit length are deduced from the properties of

A mn(k ), C mn(o ), and Im(p - k)I n(k), consider the special case in which the

wavenumber, kO, of the applied physical wave is equal to the wavenumber

characterizing the Q-th normal mode of the string (i.e., k0 = Qr/L) and the

frequency of that applied physical wave is equal to the natural frequency of

the S-th mode of the string (i.e., w0 = SICs/L). For this example, we

also assume that, for any mode m, the damping coefficient (r) is a constant

proportion (say c) of the modal critical value (r cm). The critical damping

coefficient of the m-th mode can be shown (from equation (7--83)) to be given

by rcm 2ml/(Lc s).

From equations (4-31), (4-32), and (7-91), it can be shown that

Imn( Qi/L) I (- m( 2 sin[(Q - mrir/21 sin[(Q - n)I/21 (7-95)

W + m(Q 1 n) (Q - m)w/2 (Q - n)w/2

Further, under the assumption that r = crcm for all mode numbers (m), it

follows from equation (7-92) that

,ICmn (Src s /LQ - L/ (7--96)nS 4{(S2 - m2)2 4 (2Sm)2]((S 2 - n2)2 + (2Sn)2])

From our discussion of the properties of A mn(k ) and f,,n (W0), we know that the

maximum value of IAmn(QwIL)I is associated with the modal numbers m v n - Q, and

that thi m&a.imum value of IC mn(Srcs/L) is associated with the modal numbers
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m = n = S. Clearly then, we wish to evaluate the relative magnitudes of

IAQQ(Qv/L)CQQ(Sircs/L)I and JAss(Qir/L)Css(Sircs/L)I. However, by inspection of

the forms of equations (7-95) and (7-96), it also appears prudent to consider

the relative magnitudes of IAQs(Qi/L)CQS(SiCs/L)I and IAsQ(Qir/L)CsQ(Sircs/L)I,

which, it will be noted, are equal.

Under the assumption that c (the ratio of the damping to the modal

critical value) is much smaller than 1/,/2 for all modes, we can use

equations (7-95) and (7-96) to show that

IAss(QW/L)CsS(Sircs/L)I (4/(0cS) 2 , IQ- SI odd,
(7-97)

IAQQ(Q/L)CQQ (Swcs/L)I 10, IQ- SI even,

JASS(Qir/L)Css(Sircs/L)I (2/(.ncS), IQ - SI odd,
(7-98)

IAQs(QW/L)CQS(Srcs/L)I 10, IQ - SI even,

and

IAQ(Qir'L)C s(Sircs/L)i (2/(itcS), IQ - SI odd,

A (7-99)
IAQQ(Q /L)CQQ(Scs/L)I 0, IQ - SI even.

By these equations, it is evident that the relative magnitudes of the joint

modal weightings depends on IQ SI, the magnitude of the difference

between the mode number characterizing the wavenumber of excitation (Q) and

that characterizing the frequency of the excitation (S).

Consider, first, the case where IQ - SI is odd. Here, the relative

magnitudes of the joint modal weightings are seen t.o depend on the quantity

vcS/2. For excitation frequencies (Sc s/L) and proportions of critical

damping (c) sufficiently small that 6S < 21, it. is evident that

JAss(Qw/L)Css(Sics/L)I > IAQS(Qw/L)CQS(Sics/L)I

> IAQQ(Qv/L)CQQ(Swcs/L)I . (7-100)

We can therefore expect the two-wavenumber characteristics of V(v,k,Svcs /l.)

will be most strongly affected by the contribution from Is(V -)Os(k),

with weaker contributions from IQ(V - k)1s(k) and its complex conjugate
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-IS(I k)IQ(k), and yet weaker contributions from IQ(v - k)IQ(k). By our

previous arguments, therefore, we can expect the magnitude of the two-wave-

number spectrum of the displacement field of the string at the frequency

Svc L to have the following characteristics:s5

(1) pour primary maxima, of equal amplitudes, at the two-wavenumber (P,k)

locations associated with the maxima of 1ls(v - k)Is(k)I: that is, at

(O,Sw/L), (2Sv/L,Si/L), (0,-Si/L), and (-2Sr/L,-Sw/L).

(2) Eight secondary maxima of equal, but lower than primary, ampli-

tudes at the two-wavenumber locations associated with the

maxima of IIQ(u - k)Is(k)I and 11S(u - k)IQ(k)I: that is, at

[(S + Q)ir/L,Sir/L], ((S - Q)w/L,Sw/L], [(-S + Q)ir/L,-Sir/L],

(-(S + Q)v/L,-Sw/L], and at [(Q + S)v/L,Qi/L], [(Q -S)/L,Qw/L],

((-Q + S)i/L,-Qir/L], [--(Q + S)ir/L,-Qr/L], respectively.

(3) Four maxima of equal, but lower than secondary, amplitudes at the two-

wavenumber locations corresponding to the maxima of 110(v. - k)TQ(k)I:

that is, at (O,QvL), (2Qv/L,Qi/L), (0,-Qi/L), and (-2Qv/L,-QV/L).

Thus, the magnitude of the two-wavenumber spectrum of the displacement field

of the string at the frequency Sic /L can be expected to be characterized by

16 relative maxima. The ratio of the amplitudes of any of the four primary

maxima to any of the eight secondary maxima is approximately 2/(vcS), and the

ratio of the amplitudes of the primary maxima to the tertiary maxima is
2

approximately 4/(vcS)

For IQ - SI odd and excitation frequencies (Swcs/L), but proportions

of critical damping (c) sufficiently large that cS > 2/r, the magnitude of the

two-wavenumber spectrum of the displacement field of the string at the

frequency Sc slL is characterized by relative maxima at the same two-wave-

number locations identified for the case where cS < 2/w. However, for

cS > 2/, the order of the primary, iecondary, and tertiary maxima is reversed

from that presented above. That is, the primary maxima occur at the two-

wavenumber locations associated with the maxima of IIQ(v - k)IQ(k)I, and the

tertiary maxi, a occur at the two-wavenumber locations corresporning to maxima

7-47



Of IIs(p - k)Is(k)l. The wavenumber locations of the eight secondary

maxima remain unchanged.

For IQ - SI odd, excitation frequencies (Sic s/L), and proportions of

critical damping (c) such that cS = 2/i, the magnitude of the two-wavenumber

spectrum is characterized by 16 maxima at the two-wavenumber locations

identified previously. However, when cS = 2/w, all 16 maxima have

approximately the same amplitudes.

We now turn attention to wavenumbers (Qw/L) and frequencies (Sc s/L) of

excitation such that IQ - SI is even and the ratios of the joint modal

weightings given by equations (7-97)-(7-99) are zero. These zero values are a

reflection of the behavior of the term Is(Qw/L) in Ass(Qw/L), AQs(Qw/L).

and AsQ(Qh/L). That is, Is(Qw/L) is equal to zero for IQ - SI even, as

can be confirmed by inspection of figure 4--l(a). However, when IQ - SI is

even, it can be demonstrated that IS.1 (Q-r/L) and IS+I (Qw/L), the wavenumber

transforms of the normal modes adjacent to the S-th, are nonzero. Thus, when

IQ - SI is even, it can be argued that the largest, in magnitude, joint

modal weightings are JAQQ(Qv/L)CQQ(Svcs/L)I, IAQS+1(Qv/L)CQSl (Swcs/L)I

and JAs+Q (Qv/L)C s+I(Sc s/L)I, JAQs_1 (Qi/L)CQsI(SC$/L)I and

IAsIQ(Qw/L)CsIQ(Sics/L)I, JA sIS+I(Qw/L)C s S+I(Sic s/L)I and

AS_5 I(Qr/L)CsIS_1 (SC s/L)I. Thus, it is likely that the magnitude

of the two-wavenumber spectrum reflects contributions from the maxima of each

of the terms II (V - k)I Q(k), IIQ(V - k)Il 1 (k)), IIQ (- k)Is_l(k)l,

{IS+l (v- k)IQ(k)I, 11S I(V - k)IQ(k)I, 1 S+l(u - k)Is+l(k)l,

and Is1(V - k)Is1(k)J.

As shown in figure 4-1(a), the primary lobes of I m(k) are 4v/L wide.

Thus, as described in section 4.2.1, if one forms the sum of I m 1 (k) and

Im+l (k), the two sets of primary lobes interact to form a single set of

lobes centered at ±nw/L. Bdsed on these observations, we argue as follows:

(1) The primary lobes of the weighted sum of I(v - k)I S+l (k) and

I Q (V - k)Is1l(k) interact in such a fashion that the magnitude

of their sum produces maxima in the vicinity of the intersections

of k = ±Sv/L and P - k - tQw/L: that is, at [(S + Q)w/L,Sw/L],
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[(S - Q)v/LSr/L], [(-S + Q)i/L,-Sir/L], and [-(S + Q)v/L,-Sr/L].

(2) The primary lobes of the weighted sum of IsI(v - k)IQ(k) and

.S+1(v - k)IQ(k) interact in such a fashion that the magni-

tude of their sum produces maxima in the vicinity of the intersec-

tions of k = ±Qir/L and V - k = ±Sw/L: that is, at [(Q + S)w/L,Qv/L],

[(Q - S)w/L,Qw/L], ((-Q + S)w/L,-Qw/L], and [-(Q + S)r/L,-Qw/L].

(3) The primary lobes of the weighted sum of Isl(u - k)Isl(k) and

I s+l (v - k)l5 +1(k) interact in such a fashion that the magnitude

of their sum produces maxima in the vicinity of the intersections of

k - ±S*/L and P - k = iSw/L: that is, at (Q,Sv/L), (2Sr/L,Sw/L),

(O,-Sw/L), and (-2Sr/L,-Sv/L).

(4) The maxima associated with IQ(U - k)IQ(k) are identical to those

discussed previously.

The reader will note that the wavenumber locations of the 16 maxima listed

above correspond to the locations of the 16 spectral maxima identified for

IQ - SI odd.

On the basis of the above arguments, we contend that, when IQ - St is

even, the two-wavenumber characteristics of the magnitude of the two-wave-

number spectrum of the displacement field of the string at the frequency

Swcs/L are similar to those described previously for IQ - SI odd. We further

contend that it is reasonable to expect that, when IQ - SI is even, the modal

numbers identifying the two-wavenumber locations of the primary, secondary,

and tertiary spectral maxima are determined by the value of 2/(wcS) in the

same fashion as when IQ - SI is even. That is, it will be recalled that

the maxima of 11m (u - k)I n(k)I are located at the intersections of k = ±nw/L

and P - k - im/L. Clearly, knowledge of the modal numbers, m and n,

associated with a large weighting, IAmn(Qw/L)Cmn(Srcs/L)I, is sufficient to

determine the two-wavenumber locations of the maxima of 11m(v - k)In(k)I. Thus,

when cS < 21w, we can expect (according to equations (7-97)-(7-99)) the

locations of the primary maxima to be those associated with the mode numbers

S,S; the locations of the secondary maxima to be those associated with the
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mode numbers Q,S and S,Q; and the location of the tertiary maxima to be those

associated with the mode numbers Q,Q. When cS > 2/', we expect that this

ordering would be reversed.

This example of a relatively simple one-dimensional, space-limited system

excited by a physical forcing field consisting of a single wave of undeter-

mined phase well illustrates the complexities associated with predicting and

interpreting the characteristics of the two wavenumber-frequency spectrum of

nonhomogeneous, stationary fieldz. However, from our analysis of this simple

example, we were able to deduce the following characteristics of the two

wavenumber-frequency spectrum of the displacement field of the fixed-end

string:

(1) Owing to the time invariance of the system and the stationarity of

the single wave excitation field, the two wavenumber-frequency

spectrum is discrete in frequency, and is characterized by Dirac

delta functions at w = tSwcs/L (the frequencies associated with the

wave component of excitation).

(2) The magnitude of the two-wavenumber spectrum at the discrete

frequencies ±Sc s/L is distributed in both v and k, and is

characterized by several relative maxima.

(3) The k (Fourier conjugate of the spatial separation variable {)

coordinates of these relative maxima are consistent with the

wavenumbers, iQv/L, that characterize the excitation field and the

resonant wavenumbers, ±Sv/L, associated with the frequency of

excitation, Stcs/L.

(4) The p (Fourier conjugate of the absolute spatial variable x)

coordinates of the relative maxima are specified by the intersection

of the lines P - k - ±QIL and P - k = ±Sv/L with the lines k =±qw/L

and k - tSw/L. For each value of k, the associated values of

identify the wavenumbers that characterize the variation of the

autocorrelation function of the displacement field in the absolute

spatial coordinate, x.
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(5) The two-wavenumber coordinates (U,k) of the various maxima of the

magnitude of the two-wavenumber spectrum are specified by ordered

pairs of the modal numbers, Q and S. Each ordered pair of mode

numbers identifies four relative maxima of equal amplitude. The

relative amplitudes of the maxima associated with the various ordered

pair of modal numbers are determined by the value of cS, the product

of the proportion of critical damping in the string, and the modal

frequency of excitation.

It should be emphasized that the above observations apply only to the

specific example of a fixed-end string excited by a single wave component (of

unknown phase) of force per unit length. However, the procedures used for

estimating the locations apd relative magnitudes of the maxima of the

magnitude of the two wavenumber-frequency spectrum can be applied to other

space-limited systems. Further, the interpretation of thv two-wavenumber

characteristics of the spectrum in terms of the autocorrelation function (and

vice versa) is applicable to all nonhomogeneous fields.
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CHAPTER 8

THE MEASUREMENT PROBLEM

In the previous chapters, we have developed the theory of wavevector-

frequency analysis for the various classes of fields and systems encountered

in linear acoustics. In short, this theory demonstrates that the mathematical

description, and thereby the physical interpretation, of cert&in classes of

systems is greatly simplfied by expressing their input-output relationships

in the wavevector-frequency, rather than the space-time, domain. It must be

recognized, however, that the development of mathematical models of systems is

usually motivated by empirical observations. Moreover, such mathematical

models can be validated only through agreement with measured data. Therefore,

to take practical advantage of the mathematical and interpretational benefits

offered by wavevector-frequency analysis, we must be able to obtain desired

wavevector-frequency characteristics of space-time fields from measured data.

The estimation of such wavevector-frequency characteristics of acoustic fields

from measured data is the subject of these next two chapters.

Note that we use the phrase "estimation of the wavevector-frequency

characteristics...from measured data* rather than =measurement of the wave-

vector-frequency characteristics .... u Our choice of phrasing can best be

Justified by an illustrative example. Consider the problem of characterizing

a pressure field, p(x,t), in the wavevector-frequency domain from measured

data. If the field is known to be deterministic, it is completely charac-

terized by its wavevector-frequency transform, P(k,w). By definition, how-

ever, P(kw) requires knowledge uf the pressure at every point in space over

all time. If the pressure field is random, the field is characterized by an

appropriate form of wavevector-frequency spectrum. By reference to chapter 6,

any form of the wavevector-frequency spectrum requires knowledge of the pres-

sure field over all time and space for all possible realizations of that

field. Clearly, these are impossible measurement tasks. In practice, we can

measure only samples of the pressure field over some finite limits in space

and time. Further, we cannot obtain a true ensemble of any measurement of a



random pressure field inasmuch as we can afford only a limited number of

replications of either the experimental apparatus or the measurement.

Finally, most pressure measurements are performed with sensors, or trans-

ducers, which convert the locally sensed pressure to an electrical signal.

Therefore, the value of the pressure must be inferred from the measured

electrical signal. In consequence of these practical limitations, we cannot

exactly determine any wavevector-frequency descriptor of a space-time field

from measured data. Rather, we can obtain only some estimate, or

approximation, of it.

It is intuitively obvious that the quality, or accuracy, of the estimate

of any descriptor of a field must decrease as the limitations imposed on the

measurement of that field increase. It is also obvious that any measurement

program is subject to fiscal, temporal, and material constraints. However,

within these constraints, the experimenter can control, to some deqree, the

various limitations he imposes on the measurement. To exercise this control

to optimal advantage, the experimenter requires "a priori" knowledge of the

consequences of each measurement limitation on the estimate of the desired

descriptor.

Limitations on spatial and temporal sampling and the use of transducers

are problems common to the measurement of all acoustic fields. This chapter

examines the consequences of these common problems on the estimates of various

descriptors of space-time fields.

Limitations on replications of apparatus or trials affect only the meas

urement of random acoustic fields. The estimation of wavevector-frequency

spectra of such random fields is the subject of the next chapter.

8.1 SENSORS

Most measurements of acoustic fields are performed by use of sensors or

transducers, which convert the local acoustic field variable of interest

(pressure, displacement, velocity, etc.) into an electrical variable (voltage

or current). In this section, we relate various descriptors of measured

space-time fields to the descriptors of the field being measured. For
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purposes of illustration, here and throughout this chapter, we will assume the
acoustic field of interest to be the pressure field, p(x,t), at the surface of

the planar boundary defined by x = 0.

In 1952, Uberoi and Kovasznay theorized that, for a very large class of
useful (linear) transducers, the output field from the transducer, o(xt), was

related to the field being measured, p(x,t), by

o(2i-t) g('j - x)p(s,t) ds ,(-)

where g(s - 2i) is the (assumed instantaneous) output of the transducer located

at x to an impulsive loading applied at the spatial location s. In 1969,

Strawderman2 extended this theory to include transducers that do not respond

instantaneously in time.

To apply this theory to the measurement of the surface pressure field,

consider the planar transducer illustrated in figure 8-1. We assume the

transducer to be a linear, time-invariant causal device. As indicated by the

figure, the impulse response, g(s - k,t - t'), of a transducer centered at

k is defined as the output, o(o,t), from the transducer at time t resulting

from an impulsive loading applied at the spatial location s at time V. By
the principle of superposition for linear systems. it follows that the output

of a transducer located at N on the surface x3 - 0 is related to the pressure
field, p(x,t), acting on that surface by

t e

O(o,t) 3 3 g(s - Xot - t')p(s,t') ds dt' (8-2)

Howaver, by defining z s - and 0 - t - V, and by recalling that the

transducer is a causal device, we can rewrite equation (8-2) in the form

O(,t) JJJg(ZO)p(% + z~t -o) dz do. (8-3)
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Figure 0-1. Geometry for the Impulse Response of a Planar Transducer

By equation (8-3). it is evident that the output of a transducer located

at 20 Is not simply a scaled replicate of the temporal history of the

pressure at x -w0. Rather, the output, at time t, of a transducer located

at !0 is a weighted sumation of the pressure histories, over all times

prior to and including t, at every spatial location over the active surface of

the transducer. it is instructive to note that the output of the transducer

can only replicate the exact temporal history of the pressure at x = !, when

g(Q,O) - 6(z)6(O). However, this impulse response characterizes a transducer

that is infinitesimally small, responds instantaneously in time, and preserves

the amplitude of the excitation. Clearly, such a transducer is practically

unrealizable.

Having established that the output, o(Nt), of a transducer located at

differs from the surface pressure, p(Xt), at that location, we will
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now examine the consequences of transducer selection on estimates of various

wavevector-frequency descriptors of the surface pressure field. Our approach

to this task is to first develop relationships between the descriptors of the

estimated field and those of the pressure field. By use of these relation-

ships, we can then determine how the estimate is affected by the response

characteristics of the transducer.

Because we wish to examine only the effects of the transducer on estimates

of the various wavevector-frequency descriptors of acoustic fields, we assume

that no other limitations are applied to our measurements. Thus, we assume

that the surface pressure field, p(x,t), is measured by identical transducers

over all space and time. Consequently, the output of the transducer, O(Xo,t),

is assumed to be known over all k and t. We therefore write this field of

outputs simply as o(x t). By equation (8-3), o(x,t) is related to the surface

pressure field, p(j,t), by

o( ,t) c II g(j.e)p(x + zt - 0) dz do (8-4)

for all x and t.

If the surface pressure field is deterministic, it is completely charac-

terized by its wavevector-frequency transform, P(j,w), which is defined by

The wavevector-frequency transform of the output field measured by identical

transducers is similarly defined by

S o(2it)exp(-i(t-?i + ca)) dx dt .(B-6)

By substituting equation (8-4) into equation (8-6), we can easily show that

the wavevector-frequency transform of the output field measured by the
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transducer is related to the wavevector-frequency transform of the surface

pressure field by

O(k,=) = G(-k,w)P(kw) , (B-7)

where G(k,) is the wavevector-frequency response of the transducer, defined by

I g(.G,)exp(-i(tk.j +I we)) dz do (8-8)

By reference to chapter 3, the reader will recognize that equation (8-7)

has the mathematical form of the input-output relationship for a space- and

time-invariant linear system. The system, in this case, comprises the

transducers used to measure the presure field, and the space and time

invariance of the system is a consequence of the assumption that the pressure

field is measured over all space by identical transducers.

If the pressure field is random. it is characterized by its autocorrelation

function, QPp(P,.t.), or by an appropriate form of the informationally

equivalent wavevector-frequency spectrum. By applying the arguments presented

in section 7.2 to equation (0-4), we can show that the autocorrelation

function of the outoLt field, Qo(Xo ,tt), measured by identical transducers

is related to the autocorrelation function of the pressure field by

Qoo(A '
j
' t, ) I I I ~g(; 1 "Ol)g( N0 2 )

-M -W-M0CD

pp 1' + k Z1 t - l* + 0I j di, 4. ~l~

(8-9)

Recall that, in this text, we limit our attention to stationary Presfure
fields. Therefore, w* require

pp t 11 + Le. -K -t - o~I + 0 1 0 2) + z Ix -I + 12+ KT+e 2
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By substituting equation (8-10) into equation (8-9), we obtain

0-0 -Qoo((1,000= ) (2

Q pp(x+ zI1  + K2 -. 1I ' T +01, - e2) d dz2 del d02  (8-1l)

Note, by the form of its autocorrelation function, that the output field

measured by identical transducers is also stationary.

If the pressure field is homogeneous as well as stationary, then

Q pp( + 11 + z 2 - lt - el' + e -e2) = Qpp(K + Z2 - l'T + el - 02).

(8-12)

and (by equation (8-9)) the autocorrelation function of the output field is

related to the autocorrelation function of the pressure field by

= -- -- 0 --- 0 -

-Q qpp( + 2 - 11 T + el - '2) dzI dz2 do, do2 . (8-13)

Clearly, by the form of its autocorrelation function, the output field

measured by the identical transducers is also homogeneous and stationary.

Although equations (8-11) and (8-13) establish relationships between the

autocorrelation function of the output field measured by identical transducers

and the autocorrelation function of the stationary pressure field being

measured for both nonhomogeneous and homogeneous pressure fields, respec-

tively, the mathematical forms of these equations are sufficiently complex

that the effects of the transducer on the measured field are obscured. In an

attempt to clarify the effect of the transducer on the measured statistics of

the field, let us examine the relationship between the wavevector-frequency

spectra of the output field measured by identical transducers and the pressure

field being measured.
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By applying equation (6-121) to equation (8-11) and using the definition

of equation (8-8), we can easily show that the two wavevector-frequency

spectrum of the stationary, nonhomogeneous output field measured by identical

transducers is related to the two wavevector-frequency spectrum of the

stationary, nonhomogeneous pressure field being measured by

S0 ( ') = G(k- ,-)G(-k,)S(,k,c) . (8-14)

Here, it is evident that the two wavevector-frequency spectrum of the field

measured by identical transducers is a filtered version of the two wavevector-

frequency spectrum of the pressure field being measured. The filtering of

the two wavevector-frequency spectrum of the pressure field is applied, in

both wavevector variables (y and k) and in frequency (w), by the product,

G(k - ,-)G(-k,), of wavevector-frequency responses of the identical

transducers.

For the stationary and homogeneous pressure field, we employ equations

(6-78), (8-8), and (8-13) to demonstrate that the wavevector-frequency

spectrum of the field measured by identical sensors is related to the

wavevector-frequency spectrum of the pressure field by

m I0(k,w) - IG(-L,w)1)20p (k,() . (8-15)

Here, we see that the wavevector-frequency spectrum of the field measured by

identical transducers is equal to the wavevector-frequency spectrum of the

pressure field filtered by the squared magnitude of the wavevector-frequency

response of the transducer.

By reference to chapter 7, the reader can confirm that equations (8-14)

and (8-15) have mathematical forms consistent with the input-output relation-

ships for space- and time-invariant linear systems excited by nonhomogeneous

and homogeneous, stationary fields, respectively. As was noted for the

deterministic field, the system comprises the identical transducers used to

measure the field, and the space and time invariance of this system is a

consequence of the assumption that the field of interest is measured by

identical transducers. The treatment of fields measured by nonidentical
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transducers is beyond the scope of this text.

By equations (8-7), .8-14), and (8-15), it is evident that when a field,

either deterministic or random, is measured by identical sensors, the measured

field is a filtered version, in both wavevector and frequency, of the field

being measured. Thus, in the measurement process, the effect of the trans-

ducer is to filter the field being measured, in both the wavevector and

frequency domains. As a result of this filtering process, the wavevector and

frequency content of the measured field differs from that of the field being

measured.

It is also evident, from equations (8-7), (8-14), and (8-15), that if

both the wavevector-frequency response of the sensor, G(-k,w), and the

appropriate wavevector-frequency descriptor, O(k,w), S00(,k,w), or %o(kw),

of the output field were known, then the corresponding wavevector-frequency

descriptor, P(k,), Spp _,k,), or p(k,w), of the pressure field can be

determined.

Unfortunately, it is a rare instance that the wavevector-frequency

response of a sensor is known. In 1965, under the assumption that g(z,O)

was of the form h(z)S(e), Gilchrist and Strawderman 3 devised a method to

measure the spatial response, h(z), of transducers used to measure the wall

pressure fluctuations beneath turbulent boundary layers. By numerical Fourier

transformation of h(z), the wavevector-frequency response of the transducer of

the form G(k,w) - H(k) could be obtained. Alternatively, it can be demon-

strated from equations (8-4) and (8-8) that, for any given wavevector and

frequency (say kl and wl), the wavevector-frequency response of a trans-

ducer is equal to the ratio of the measured output, o(o,to), of the

transducer at any fixed location, k0, and time, to, to the local pressure,

kolto), being measured at the same location and time whpn that pressure

field is a complex harmonic plane wave of the form exp(i(-kL,- + WIt). To

implement this alternative approach, Powers, 4 in 1980, developed an array of

projectors capable of generating relatively pure pressure waves of the form

cos(k 1x + CIt) over a limited portion of a planar surface and over a

fairly extensive range of kI and w V Despite these feasibility demonstra-

tions, however, no commercially available system exists, at this writing,
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for directly measuring either the space-time or wavevector-frequency response

of transducers.

Inasmuch as (1) the motivation for the measurement of any acoustic field

is to determine the space-time or wavevector-frequency characteristics of that

acoustic field rather than the output field observed by the sensors, (2) know-

ledge of the space-time impulse response or wavevector-frequency response of

the sensors used in a measurement is required to deduce the desired charac-

teristics of the acoustic field from the output field observed by the sensors,

and (3) no commercially available system exists for measuring the requisite

response of the sensors employed in the measurement, the experimenter must

rely on estimates of the impulse or wavevector-frequency response to deduce

the space-time or wavevector-frequency characteristics of the acoustic field

of interest. To exercise some degree of control on the quality of the

estimate of the space-time or wavevector-frequency characteristics of the

acoustic field of interest, estimates of the response characteristics of

candidate sensors should be considered an integral part of the planning phase

of an experiment. Such estimates can normally be made from information

supplied by the sensor manufacturer.

Manufacturers normally publish the sensitivity of their sensors to long-

wavelength (effectively zero wavenumber) input fields as a function of

frequency. Although standard definitions of sensitivity vary with the type of

measuring device (accelerometer, hydrophone, etc.), all definitions of sensi-

tivity are measures of the ratio of the amplitude of the output of the device

to the amplitude of the field to be measured when that field is a plane wave

characterized by a specific frequency and a wavelength much longer than any

dimension of the sensor.

For purposes of illustration, we define the long-wavelength sensitivity,

S(f), of the plavar sensor characterized by equation (8-3) at the frequency

f to be the ratio of the amplitude of the output, o(%,t), of the sensor at

some fixed location, , to the amplitude of the pressure, p(%oJ), at the

same location when the pressure field is a (real) plane wave characterized by

the frequency fI and a wavevector, k.1, approaching zero magnitude (i.e., of

long wavelength). That is, if Amp() denotes the amplitude of a real waveform,
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: Amp (0( o, t) }

S(f1 ) AmptP(p ,t)l (8-16)

when

P(Xo~~t) = PKl,21rfl)cos(kl.Ao + 21flt i- a) (-

and Jkl 1 0. Here, P(k,21f 1) is the (real) amplitude of the plane pressure

wave, and * is the phase of the wave at k = (0,0) and t = 0.

By use of equations (8-3) and (8-8), we can show that the plane pressure

wave described by equation (8-17) produces an output from a sensor located at

that is described by

o(kt) = P(kl,2f I)Re(G(-Kl,2wfl)exp(.k + 21 flt - 1 ))
(8-18)

If we express

G(k1,2if I) IG(k1,2vfl))exp(iO( k1 ,f,)) , (8-19)

where 8(k1 ,fl) denotes the phase of the complex quantity G(k1,2wfl),

we can rewrite equation (8-18) in the form

o(Aot) - P(kl.2,fl)G(-kI 2wf )Icos(&kI 0 i 2,wf t + a +

(8-20)

It follows from equations (8-16). (8-17), and (8-20) that, in the limit as

- (0.0),

- S(fl IG(O,2wfl~ 0121

Thus, the sensitivity of the planar sensor at the frequency f1 is equal to

the magnitude of the wavevector-frequency response of that sensor at Zero

wavevector and frequency f V
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Most sensors employed in acoustics are resonant devices, and the sensor

manufacturer will normally publish measured values of S(f) over a frequency

range that extends from as low as practicable to above the first resonance

frequency of the sensor. Many sensors, such as small piezoelectric devices,

have zero-wavenumber sensitivities similar to that illustrated in figure

8-2. 5 Note here that, between the frequency fl' located above the low

frequency roll-off, and the frequency f u located well below the first

resonance frequency, f res' of the sensor, the sensitivity of the transducer

has an essentially constant value, S For such sensors, it is common
practice for the manufacturer to list the constant sensitivity value, S.,

and the applicable frequency limits, f1 and fu"

Most estimates of the wavevector-frequency response of sensors are made

under the assumption that the impulse response, g(z,e), is a separable

function of space and time. That is,

g- L.e) = h(.I)v(e) (8-22)

This assumption is valid only when the highest frequency of interest is well

elow the first resonance frequency of the transducer. The separable form of

the impulse response of the sensor implies a separable form of the wavevector-

frequency response of the sensor. That is, by equations (8-8) and (8-22),

G(k,w) 1 i(k)V( ) , (8-23)

where

H(k) h(l)oxp(-ik-z) dz (8-24)

and

V(W) v v(O)exp(-iwO) do , (8-25)

By equations (8-21) and (8-23), it is evident that
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Figure 8-2. Sensitivity of a Small Piezoelectric Sensor

IV(2,f)1 - S(fl)/IH(q)I (8-26)

Note, by equations (8-3), (8-22), (8-24), and (6-25), that if a positive

constant pressure, p(xt) - Pot is applied to the sensor, then

o(xt) - P 0 (q)V(O) . (8-27)

Here, because h(z) and v(e) are real functions, H(q) and V(O) are also

real. If a sensor maintains the sense (sign) of the applied field, o(L,t) is

positive. tn this case, H(O) and V(O) must both be of the same sign, and can

both be assumed to be positive. If the sensor does not maintain the sense of

the applied field, then o(j,t). and therefore either H(Q) or V(O), must be

negative. We adopt the convention th4t the polarity of the real function h(j)

i! chosen such that H(O) 0 and that the sense of the 6(0,0) is reflected in
-m -' mv ( o ) .

Undee, this convention, iX(O)j w H(q). Consequently, it follows from
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equation (8'-26) that V(2,rfl) must be of the form

V(21f 1 ) = (S(fI)/H(O)}expj ic(fI )} , (8-28)

where c(fl) is the phase of V(2irf 1). It therefore follows that

H(k)
G(k,2rf) f S(f )exp~ic(fl)" (8-29)

Let us now address the estimation of H(k). Vendors normally offer no

information regarding the spatial or wavevector response characteristics of

their sensors. However, most manufacturers publish the dimensions of their

sensors. In the absence of any other information, let us assume that h(z) is

a positive constant over the active surface of the sensor. Thus, if the
active surface of the sensor is rectangular, with dimensions L1 by L2, we

assume that

A, I z1l <_ LI2 and 1z2 1 <L 2/2
~h(z) IDO, otherwise. 

(8-30)

For this rectangular sensor, it follows from equation (8-24) that

H(k}) sin(kIL 1/2) sin(k,212/) (831)

°i Fhy x(O) (kIL 1 /2) (k 2L2 /2)

If, on the other hand, the active surface of the sensor is circular and of

radius R, we assume that

~A. t l R,
h~z_) (8-32)

h, otherwise.

By equations (8-24) and (8-31). it can be shown that

H(k) . 23 1 (t. r) (8-33)
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The k1 dependence, at k2 = 0, of the wavevector responses for the rectan-

gular and circular, uniformly weighted planar sensors is illustrated in

figures 8--3(a) and 8-3(b), respectively. Note here that the wavevector

response of both the rectangular and circular sensors is characterized by a

primary response lobe centered at k1 = 0 and that, outside the primary lobe,

the envelope of the response decreases as the magnitude of k, increases.

Similar response characteristics can be shown to hold for the k2 dependence at

ki = 0. Thus, sensors having spatially uniform responses act as lowpass

wavevector filters, admitting wavevector components in the ranges IklI < 2/Ll

and Jk2 1 < 2/L2 or Jkj < l/R, with relatively little attenuation, and

effectively attenuating wavevector components in the ranges lk11 > 4/L1 and

Jk2 1 > 4/L2 or J1 > 3/R. By recalling that the wavenumber that characterizes

a wave is inversely proportional to the wavelength of that wave, we conclude

that the spatially uniform sensor responds well to wave components of the

pressure field characterized by wavelength components in the x and x2

directions that are long in comparison with the dimensions of the sensor.

On the other hand, wave components of the pressure field characterized by

wavelength components comparable to or shorter than the dimensions of the

sensor are spatially averaged over the active face of the sensor, thereby

reducing the response of the sensor to such components.

By equations (0-29) and (8-31), we obtain the following estimate for the

wavevector-frequency response of a planar sensor having a uniform response

over a rectangular active surface:

sln(k ILl/2) sin(k 2 L2 /2)
G(k,2() (kIL2) (k2 L2/2) S(f)exp(ic(f)} . (8-34)

Similarly, the wavevector-frequency response of a planar sensor with a uniform

response over a circular active surface is estimated, from equations (8-29)

and (8-33), to be

2Jl(JI R)
G(k,2wf) - S(f)exp(ic(f)) (8-35)

Clearly, it is unlikely that any given commercially available sensor will

have an impulse response that is spatially uniform. Consequently, it is
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Figure 8-3(a). L1 by L2 Rectangular Sensor
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Figure 8-3(b). Circular Sensor of Radius R

Figure 8-3. The k1 Dependence, at k2 = 0, of H(k)/IH()b
for Uniformly Weighted Rectangular and Circular Sensors
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unlikely that the above estimates of G(k,2vf) reflect the actual wavevector-

froquency response of such a sensor. However, for any planar sensor with a

rectangular active surface, H(k) can be written in the form

L1 t

H(V) = I h(zlz 2)exp-i(kzI z1 + k2z2)) dz1 dz2
L I -L 2

1 1

M L1L 2  h(ylLI'y 2L2)exp{-i(klLlyl + k2L2y2)) dy, dY2

- (k L1 ,k2 L2 ;L ,L2 ) (8-36)

We can similarly demonstrate that H(k) for any planar sensor with a circular

active face can be written in the form

H(J) - H(IkMR;R) (8-37)

For any real sensor, h(j) is a real, bounded function over the finite active

surface of the sensor. Thus. it follows that H(k) and its derivatives are

finito for all finite W . Consequently, H(K) and its derivatives are

continuous in the neighborhood of (0,0). so H(k)/H(_) tends smoothly to

unity as I approaches zero from any direction. It therefore follows

that. for any planar sensor with a rectangular active surface,

H(k) H(k1 Llk L ;I LL )
. --.- 9"-? 0 1 (8-38)6 6(OO;LIL 2)

for 1kL 1 and lk2 L 2 1. Similarly, for any planar sensor with a

circular active surface.

H(K) Hl(ljR;R) (8-39)
-(. -a I B-9

R(O;R)

for I IR << 1. Thus, by equations (8-29), (8-38), and (8-39), u- conclude

that, for planar sensors with rectangular and circular active surfaces,
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G(t,21f 1 ) w S(f,)exp{icifl)) (8-40)

if Ik1Ll 1 and «2L21 << 1 or ItIR << 1, respectively. Note that this low

wavenumber behavior of G(k,2*fI) is consistent with that predicted by

equations (8-34) and (8-35).

EquaLion (6-40) provides a reasonably good estimate of xhe wavevector-

frequency response of any sensor at frequencies well below the first resonance

frequency of the sensor and for small products of wavevrctor magnitudes and

sensor dimensions (i.e., for wavelengths touch lonqer than the sensor

dimensions). It therefore providei a bais for defining, during the planning

phase of an experiment, the sensor characterisitics required to ensure that a

good estimate of the wavevector-i'rvquency charactcristics of the acokstic

field of interest can be deduced, over sonme predefined range of wavevector 7nd

frequency, from the output field measured by tho5e sensors. .tn is, for a

deterministit field, subs itution of equatlon-(8-40) into equation (8-7)

yields the relation

O(k,2*f) u S(f)P(k,2vf)exp~ic(f)) (8-41)

valid for IkI1L1 << I and IkIL << I-or lkJR << 1. Here it is evident that

a good estimate of the magnitude of P(k,2*f) can be obtained from the

magnitude of Q(I,2Wf) over some specified range of wavevector and frequency if

the senitivity, S(f), of the candidate sensor is known over the requisite

frequency range and the dimensions of that sensor are sufficiently small that

IlL << I and Ik2 L 2 << 1 or IkJR << I over the entire wavevector range of
interest. Note, hewever, that unless the phase, c(f). of the wavevector-

frequency response of the sensor is specified or experimentally determined,

the phase of P( ,2wf) cannot be determined.

For a stationary, nonhomogeneous pressure field, substitution of equation

(8-40) into equation (8-14) yields

Soo(Yk,2ff) M S2(f)S pkvf) , (8-42)
00 pp,

which is valid within the wavevector ranges 1k1 1I << 1, 1kI - P1lLI << 1,
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Ik2IL2 << 1, and Ik2 - 2 IL2 << 1 for rectangular sensors or within

IKIR << I and 1K - yjR << 1 for circular sensors. Clearly, a good estimate

of the two wavevector-frequency spectrum of the pressure field can be obtained

from the spectrum of the sensor output field only if (1) the sensitivity of

the sensor is known over the requisite frequency range of the measurement and

(2) the dimensions of the sensor are sufficiently small to satisfy the above

stated criteria over the required wavevector ranges in both y and k.

For a stationary, homogeneous pressure field, equations (8-15) and (8-40)

reveal that

§ (k,2if) S 2(f)t p(k,2vf) (8-43)

when Ik ILI << 1 and Ik2jL2 << or WiR << 1. Thus, to obtain a good estimate

of the wavevector-frequency spectrum of the pressure field from the wave-

vector-frequency spectrum of the sensor output field, the sensitivity of the

sensor must be known over the desired frequency range of the estimate and the

dimensions of the sensor must be much smaller than any wavelength anticipated

in the acoustic pressure field. Note that the spectral estimates of equations

(8-42) and (8-43) are independent of c(f), the phase of G(k,21rf).

In the event that no available sensor satisfies the above criteria for a

good estimate of the desired metric of the acoustic field of interest, the

experimenter has little choice but to select, from those available sensors

that have sensitivities specified over the requisite frequency range, the

sensor having the smallest dimensions. An estimate of the desired metric of

the acoustic field can then be obtained by approximating G(k,2 f) by equation

(8-34) or (8-35). The quality of the resulting estimate will depend on the

difference between the actual spatial response of the sensor and the uniform

response assumed in equations (8-34) and (8-35) and on the wavevector range(s)

over which the measurements are required.

8.2 EFFECIS OF SAMPLING

In the previous section, we developed relationships between the space-time

and wavevector-frequency descriptors of the output field measured by identical
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sensors and the corresponding descriptors of the acoustic field being

measured. These relationships were predicated on the assumption that the

acoustic field of interest was measured by identical sensors over all space

and time. However, practical sensors have finite oimensions. Consequently,

in practice, the acoustic field cannot be measured at spatial intervals

smaller than the dimensions of the (identical) sensors. In addition, modern

frequency spectral analyzers utilize computationally efficient fast Fourier

transform (FFT) algorithms to perform frequency spectral estimates. The

requisite input data for such algorithms are samples of the field of interest

taken at regular temporal intervals.

In this section, we explore the consequences of temporal and spatial

sampling on the estimation of the space-time and wavevector-frequency

characteristics of acoustic fields. We start by examining the effects of

temporal sampling.

8.2.1 Temporal Sampling

Consider the output field, o(x,t), obtained by measurement of a surface

pressure field of interest, p(x,t), with identical sensors over all space and

time. We wish to determine how temporal sampling of the output field affects

our ability to estimate the characteristics of the pressure field.

Because (1) the motivaiton for temporal sampling is to accommodate the

aforementioned FFI algorithms that facilitate digital signal processing and

(2) the requisite inputs to such FF1 algorithms are data samples obtained at

uniform incremenP in time, we will restrict attention in this text to uniform

temporal sampling.

The concept of uniform temporal sampling is illustrated in figure B-4.

Here, the temporally continuous output, o(iot), of the sensor located at

k is sampled at equal increments, T, over all time, with a sanpling origin,

to. As a result of this temporal sampling, our knowledge of o( o,t) is

limited to the data set o(AO,t0 + nT) for all integer values of n between

plus and minus infinity. By synchronous application of the same temporal
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o (X0, t)

SJ/ tot

Figure 8-4. Illustration of lemporal Sampling

sampling to the outputs of the (identical) sensors at all other spatial

locations, the time-sampled output field from any single trial of the

measurement comprises the data set o(x,t0 + nT) over all x and for all

positive and negative integer values of n.

If the surface pressure field and, thereby, the output field are known to

be deterministic, they are completely characterized by their respective

wavevector-frequency transforms, P(k,w) and O(Qu). By reference to equation

(8-6), the determination of O(k.w) requires knowledge of the sensor output

field, o(x,t), over all space and time. However, owing to the temporal

sampling, our knowledge of the sensor output field is limited to o(E,t0 + nT)

for all x and for all integer values of n in the range - < n < -. Therefore,

we cannot exactly detennine O(k.w) from the sampled data; we can only obtain

some estimate of it.
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By examination of equation (8-6), it is evident that the time-sampled

sensor output field supports an estimate, O(kw), of the wavevector-frequency

transform of the output field of the form

-( T I I I (2't0 + nT)exp(-i( 'K + w(t0 
+ nT)]) dx (8-44)

n=-o -0w -6

By employing the sampling property of the Dirac delta function, we can write

o(x,t0 + nT)exp[-iw(t0 + nT)} o(x,e)exp(-io)e}(e - to - nT) de

(8-45)

By substitution of equation (8-45) into (8-44), we can show that

( J I o(x,e)v(e - to)exp[-i(toj + we)) dx do (8-46)

where v(e) is the temporal sampling function, defined by

v(o) - T 6(0 - nT) (8-47)

It follows, from equation (8-46), that

(2) -i O(tQ)V(w - Q)exp(-i(w - W)to) do , (8-48)

where V(w) is the Fourier transform of the temporal sampling function,

v(o). Thus, we see that the estimate of the wavevector-frequency transform

of the sensor output field is the convolution of the true wavevector-frequency

transform of the sensor output field with a phase-shifted Fourier transform of

the temporal sampling function.

8-22



Note, by equati6n (8-47), that v(8) is a periodic function of 0, with

period T. Therefore, we can express v(e) in a Fourier series of the form 6

v(e) Cex'1 (8-49)

im T

where

T/2

Cm= T- j v(e)exp{ -i2mt do (8-50)

-T/2

By substitution of equation (8-47) into equation (8-50), it is easily verified

that Cm = 1 for all m. By substitution of this result into equation (8-49),

it follows that

V(W) = exp(-i[w - (2mv/T)]e) do = 2w I- 2mw/I) (8-51)

-0 mW-0 o

Thus, we find that the Fourier transform of the temporal sampling function, a

periodic train of Dirac delta functions in the time domain, is a periodic

train of Dirac delta functions in the frequency domain. Note also that the

period, 2WT, of V(w) in w is inversely proportional to the period, T. of

v(e) in 0.

By substituting the appropriate form of equation (8-51) into equation

(8-48) and performing the requisite integration, we obtain the following

relationship between the estlmated and true wavevector-frequency transforms of

the sensor output field:

Oukw) I O(tow - 21n/I)exp(-i2vnt0/T) . (8-52)

n= o

Note here that the estimated transform of the sensor output field is an

infinite sum of frequency and phase-shifted versions of the true wavevector-
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frequency transform of the output field. Both the frequency shift and phase

shift between successive replications of the true spectrum are uniform and are

equal to 2i'/T and 21t 0/T, respectively.

To illustrate the character of the estimated wavevector-frequency

transform, consider a sensor output field that is band limited in frequency,

at all wavevectors, to -wc S W< W c" The true wavevector-frequency

transform, O(k,w), of this field at the wavevector k is assumed to be the
-o

real and even function illustrated in figure 8-5(a). We assume that the

sensor output field is sampled at uniform increments, T, over all time and

that the sampling origin, to, is equal to zero. This choice of temporal

origin simplifies illustration of the estimated transform by virtue of

eliminating the complex phase term in equation (8-52).

Figure 8-5(b) illustrates the estimated transform, O(ko), at the

wavevector k for a temporal sampling increment, T = TV where Tl is

less than v/c. For this choice of sampling increment, the frequency

separation, 2W/Tl, between replications of the true transform is greater

than the total bandwidth, 2ac, of the true transform. Consequently, the

estimated transform is a periodic function comprising the sum of separated

replicates of the true transform at frequency intervals of 2w/TI. For this

choice of sampling, it is evident that

0(k.) - O(K.), JI < wtT1 • (8-53a)

Figure 8-5(c) illustrates the estimated transform, O(k, w), at the

wavevector k for a temporal sampling increment, 7 12, where 12 is
greater than w/wc. For this choice of sampling increment, the frequency

separation. 2/T2. between replications of the true transform is less than

the total bandwidth, 2uc, of the true transform. As illustrated in figure

8-5(c), this choice of sampling interval produces an overlapping of adjacent

periodic replicates of the true spectrum. The regions of overlap are centered

at odd multiples of w/T2, and the bandwidth of the overlap is 2(wc - w/T2).

Note that the estimated transform, 6(kto). formed by the summation of these

overlapped replicates of the true transform, is again a periodic function of

frequency. However, it is evident that the estimated transform is equal to
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-"WC 0 W

Figure 8-5(a). True Transform of Frequency Band-Limited Output

-4v -21r -wC 0 W 2i47

Figure 8-5(b). Estimated Transform of Frequency Band-Limited
Output f or T 11T < wa

-Gw -4r -2 j"C 0 UwC2w 4X o

T2 T2  T2  T2  T2  T2

Figure 8-5(c). Estimated Transform of Frequency Band-Limited
Output for T a 2 > 9Q

Figure 8-5. Comnparison of True and Estimated Wavevector-
Frequency Transforms or Frequency Band-Limited Output Field
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the true transform only in the frequency range IwI < (2IT2) - ; the

estimate in the range (2/T2 ) - c < wII S wc is distorted by the sum of the

overlapped contributions. This distortion of the estimated transform that

results from the overlapping of the replicates of the true transform is called

aliasing7

By the arguments presented above, it is evident that if a deterministic

output field, o(x,t), is sampled synchronously over all space at uniform

increments, 1, over all time, then the estimate, O(k,c), of the wavevector-

frequency transform of the sensor output field obtained by equation (8-44) in

the frequency interval jIw < v/T is equal to the true transform, O(k, ), of

that field if (1) the true transform is band limited in frequency at all

wavevectors and (2) the sampling interval, T, is smaller than one-half the

temporal period of any contribution to O(k,w). Mathematically stated,

O(k, ) = O(k,), Iw < v/T , (8-53b)

if
o(kW) 0. O, 01 > W , (8-54)

for all k, and

1 < w/WC (8-55)

If 0(k,c) is not band limited in frequency, the estimate, 6(k,w), of the

wavevector-frequency transform obtained by equation (8-44) will contain

aliased contributions, and will therefore differ from the true transform.

Note that if 0(kw) is band limited in frequency as described by equation

(8-54) and the sampling conditions of equation (8-55) are met, then the

wavevector-frequency transform of the pressure field being measured can be

exactly determined, given the wavevector.-frequency response of the sensor.

That is, by equations (8-7) and (8-53b),

,P(k') -,) (B-56)

0, otherwise.
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Given knowledge of O(k,w) or P(k,w), o(x,t) and p(x,t) can, of course, be

exactly determined by inverse Fourier transformation.

Consider now the problem of estimating the space-time or wavevector-

frequency characteristics of a random pressure field, p(x,t), from knowledge

of time samples of the sensor output field, o(x,t), measured synchronously

over all space and over all possible realizations of the experiment. Thus,

our knowledge of the output field is limited to o(x,t0 + nT) over all x and

all positive and negative integer values of n for every possible realization

of the experiment.

Recall that random space-time fields are characterized in the wavevector-

frequency domain by their wavevector-frequency spectra, the multidimensional

Fourier transforms of their autocorrelation functions. However, given the

ensemble of time-sampled output fields, o(x,t0 + n), and the definition of

the autocorrelation function (equation (6-44)), our knowledge of the auto-

correlation function of the output field is limittd to

i, j-  Qo(X,!,to_ + nT'sl) - E(o[4,t 0 + nT]o(x_ + j,t 0 + (n 4- s)T]} (8-571

over all and K, and over all positive and negative integer values of n and

S.

Inasmuch as we restrict our attention in this tUxt to stationary pressure

fields and thereby (see equations (8-11) and (8-13)) to Stationary sensor

output fields, the time-sampled autocorrelation function of equation (6-57)

takes the form

Qoo( ,Jt 0  00 ns) o(x,l,sl) (8--58)

If the pressure field, and thereby (see equations (8-12) and (8-13)) the

sensor output field, is homogeneous as well as stationary, then

00(,1,t0 + n0,sT) v Q 0 ,sT) .(8-59)

Consider first the estimiation of the wavevector-frequency spectrum of a
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homogeneous, stationary output field. From the ensemble of time-sampled

output fields, we know Q00(,sT) over all L and over all positive and negative

integer values of s. By approximating the temporal integration in equation

(6-90) by a summation, we estimate the wavevector-frequency spectrum of the

homogeneous, stationary output field by

I(k, ) Tj Qoo ( ,sT)exp(-i(j.j + wsT)) d. (8-60)

By again making use of the sampling property of the Dirac delta function, we

can write

Q°°(tsT)exp(-iwsT) = 00 (tO)exp(-iwO)6(O - sT) do (8-61)

By substitution of equation (8-61) into equation (8-60) and use of the

definition of v(0) given in equation (8-47), it follows that the estimate,

1 (k,w), of the wavevector-frequency spectrum is related to the true

autocorrelation function, Q (.0), of the homogeneous, stationary
output field by

0 00kt,O)v(O)exp(-i(- +. (A)) dj do (8-6&2)

By use of equation (6-91), it is straightforward to show that the estimated

and true wavevector-frequency spectra of the sensor output field are related by

the convolution

2) 4 *0(t,Q)V( 1 - Q) dQ (8-63)

By substitution of the form of V(w) given by equation (8-51) in equation

(8-63), it follows that
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q0

S=- 2vn/T) (8-64)

n=..

Thus, the wavevector-frequency spectrum of the stationary, homogeneous field

of the sensor output field estimated from the ensemble of time-sampled

measurements is seen to be equal to an infinite sum of frequency-shifted

replicates of the true wavevector-frequency spectrum of the sensor output

field.

Note, by comparison of equation (8-64) with equation (8-52), the

similarity in the mathematical relationships between true and estimated

wavevector-frequency spectra of a random output field and the true and

estimated wavevector-frequency transforms of a deterministic field. Indeed,

the only difference between the forms of these expressions is the absence, in

equation (-64), of the uniform phase shift exp(-i2nt0 /l) between replica-
tions. Recall, however, that statistical descriptors, being average quanti-

ties, do not preserve absolute phase iifor ation, whereas the wavevector-
frequency trasforni preserves both the amplitude and absolute phase of each

wvevector-frequency cte~onent of a detorministic field.

Owing to the mtheifatical similarity between equations (8-52) and 8-64),

we cin apply the anilysis and Interpretation of equation (8-52) to equation

(8-64) to deoznstrate that

foA M - 4o(.t). l' l 'W /T, (8-65)

if

0 (k.c) 0. IWI > WC  (8-66)

f o r a l I , a n d T( -7

if I > IC or it , is not frequency band limited for all k, then the

estimate of the wavevector-frequency spectrum provided by equation (8-60) will
differ fromn the true wavevelter-frequency spectrum in the frequency range

% I as a result of aliasing.
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Given a wavevector-frequency spectrum of the sensor output field that is

band limited as described by equation (8-66), a sampling period satisfying

equation (8-67), and knowledge of the wavevector-frequency response, G(k,u)

of the identical sensors used to measure the random pressure field, then it

follows from equations (8-15) and (8-65) that the true wavevector-frequency

spectrum of the homogeneous, stationary pressure field can be recovered from

the measured data. That is,

f o( ' )  , I I r/T,

p iG(_k,=)1 2  (8-68)

0, otherwise.

Arguments similar to those applied i. the time-sampled autocorrelation

function of the stationary, homogeneous sensor output field can be applied to

estimate the two wavevector-frequency spectrum of the stationary, nonhomo-

geneous sensor output field from the time-sampled autocorrelation function

described by equation (8-58). That is, we estimate the two wavevector-

frequency spectrum (defined by equation (6-121)) of the sensor output field by

0 0 0

0 o(Tm Q0 (x, .sT)exp(-i(px + k.I + wsT)) dx dj

(8-69)

and use the sampling property of the Dirac delta function to write

SOULiw QO %(x..O)v(O)exp(-i( 1'x +~ k-I + we)) dxi dj do

(8-70)

By employing equations (6-124) and (8-51), it is easily shown that

Soo(y, , ) S00 (ptw - 2nw/1) (8-71)

n=

8-30



Here again, we find that the two wavevector-frequency spectrum of the

stationary, nonhomogeneous sensor output field estimated from the ensemble of

time-sampled measurements is equal to an infinite sum of frequency-shifted

replicates of the true two wavevector-frequency spectrum of the sensor output

field. By recognizing the mathematical similarity between equation (8-71) and

equations (8-52) and (8-64), we can immediately conclude that

Soo0(y-,t, ) = Soo (y .w) , u I :1 v /T ,(8-72)

if

Soo(v,, ) = 0 Ju > WC (8-73)

for all p and k, and

T < /wc  (8-74)

If the conditicAs of either equation (8-73) or (8-74) are not met, the

estimate of the two wavevector-frequency spectrum of the sensor output field

will differ from the true spectrum of the output field over some, or all, of

the frequency range Jul < v/i.

If the conditions of equations (8-73) and (8-74) are satisfied, then it

follows from equations (8-14) and (8-72) that the true two wavevector-

frequency spectrum of the pressure field can be recovered from the ensemble

of time-sampled output fields. That is,

~s

00Ju * jw w/T

. ,otherwise.

(8-75)

Many signal processing texts describe temporal sampling and its effects in

terms of the sampling frequency (or rate). fs 5 1/1, rather than a sampling

period, 1. The frequency fN = f s/2 = 1/(21) is defined as the Nyquist

frequency. Consider a space-time field that is frequency band limited such

that it contains no contributions at frequencies above f a c /2*. If we

specify the Nyquist frequency such that fN > fc' we thereby realize a
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sampling frequency, fs = 2fN9 sufficiently high to ensure an unaliased

estimate of the transform or spectrum of the field within If : f N"

By the analysis and discussion presented in this section, it is abundantly

clear that an unaliased estimate of the wavevector-frequency transform or

spectrum of a space-time field can be obtained from a uniform temporal

sampling of that field, applied synchronously over all space, only if the

field is band limited in frequency at all wavevectors. A practical method of

ensuring this frequency band limitation is to lowpass filter the output of

each sensor in the frequency domain prior to the temporal sampling. By such

filtering, contributions to the output of each sensor from frequencies outside

the range -wc S ( < wc are of negligible magnitude. However, it must be

realized that the magnitudes of the various frequency contributions to the

lowpass filtered version of the field depend on the specific frequency content

of the true field as well as the frequency response characteristics of the

candidate lowpass filter. Therefore, the selection of a lowpass filter and

subsequent identification of a suitable value of wc is, to some degree, a

trial and error process.

8.2.2 Spatial SAmpling

As implied by previous remarks, temporal sampling is performed as a matter

of choice so as to take advantage of the computational speed and efficiency of

FFT algorithms in performing temporal Fourier transforms. Spatial sampling,

on the other hand, is performed as a matter of necessity because no two

(identical) sensors can be located closer than the minimum dimension of the

sensor.

In this section, we explore how spatial sampling affects our ability to

estimate the space-time or wavevector-frequency characteristics of the

pressure field. Althotigh it is not necessary that a field be sampled at

uniform intervals in space, most sampling arrays are designed with uniform

sensor spacings in order to exploit the advantages or FF1 algorithms in

performing spatial Fourier transformations of the measured data. For that

reason, we will restrict our attention to uniform spatial sampling.
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Consider a pressure field, p(x,t), that is measured, over all time, by the

uniformly spaced array of sensors illustrated in figure 8-6. The array is

infinite in spatial extent, with uniform spacings d1 and d2 between adjacent

sensors in the x1 and x2 coordinate directions, respectively. The spatial

origin of the array is located at AO = (xol'x 02)" In any single trial of

the measurement, the use of the array of sensors limits our knowledge of the

sensor output field to o(x01 + mdl,x02 + nd2,t) over all time for all

positive and negative integer values of m and n.

If the pressure field and, consequently, the sensor output field are

deterministic, the output field is completely characterized by its wavevector-

frequency transform, O(k,w), which is defined by equation (8-6). However,

from the limited set of output data measured from the array of sensors, we can

form only an estimate, O(k,w), of this wavevector-frequency transform. That

estimate is

. d + nd.,t)

m=--0 n=--0 -0

exp(-i[kl(x 01 + md I) + k2(x02 + nd2) + wt]) dt . (8-76)

By defining the spatial sampling function, s(x_), as

Go M

Ss(x) dd 2  1 1 6(x1 - md1)6(x2 - nd2) , (8-77)

m=-M n=--

we can rewrite equation (8-76) in the form

O(k, ) j o(z,t)s(z - )exp(-i(k.z- t)) dz dt (8-78)

By writing o(z,t) in the form of its inverse Fourier transform, we can show

that

_(kw) = (2,)2 O(_,)S(k - V)exp(-i(i - } dy , (8-79)
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xi

xd2

Figure 8-6. Illustration of Uniform Sampling

where S(t) is the spatial Fourier transform of the spatial sampling function,

s(x).

Note that s(xi) can be written in the separable form

SOO) jd C 6(x~ -d rd)j1dz 6(x2  nd2)} (8-80)
W. -M n-

In this form, we recognize s(s) to be the product of two summnations of the

form of equation (8-47). We can therefore employ equation (8-51) to show that

J0 0

_ _,, r (2w)2  , , 6(k , - Zmv/d,)6(k2  - Znw/d 2 ) (8-81)

rn=- r-
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By substituting the appropriate form of equation (8-81) into equation (8-79)

and performing the requisite integration, we obtain the following relationship

between the estimated and true wavevector-frequency transforms of the sensor

output field:

_[i- .. ,

ik) = o(kI - 2mir/d k2 - 2nr/d2,W)

exp[-i(2mwx01/d1 + 2nrx02/d2)) (8-82)

Note that the estimate of the wavevector-frequency transform of the sensor

output field is equal to a double infinite summation of wavevector and phase-

shifted replicates of the true wavevector-frequency transform of the output

field. The replicates of the true spectrum occur periodically in both kl

and k2, with periods 2v/d1 and 2v/d 2, respectively. The incremental phase

shift between replicates is 2rx01/d1 in the kI coordinate direction and

2x 02 /d2 in the k2 direction.

To illustrate this replication in the wavevector domain, consider the true

wavevector-frequency transform, 0(k,w0 ), of a sensor output field at the

frequency w0 illustrated in figure 8-7. As illustrated in the perspective

view shown by figure 8-7(a), O(kw O ) is a real and even function of k,, and

k and is wavevector band limited such that 0(k.w0 ) is equal to zero for

lk11 > kIc or I k2 1 > k2c. For future reference. a contour plot of O(k,uo)

is shown in figure 8-7(b).

This wavevector band-limited sensor output field is spatially sampled by

an infinite, two-dimensional array of uniformly spaced sensors similar to that

illustrated in figure 8-6, but with !0 coincident with the spatial origin of

the output field: that is, with 0 -- (0,0). This choice of k is made to

eliminate the complex phase term in equation (8-82), and thereby simplify the

illustration of estimated transforms.

Figure 8-8 illustrates a contour plot of the estimated transform,

O(ko), of the wavevector band-limited output field at the frequency WO

that results from choosing the uniform spatial sampling intervals. d1 and
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h I

Figure 8-7(a). Perspective View of Wavevector Band-Limited
iransform, (,(j)

Figure 8-7(b). Contour Plot of Wavevector Band-Limited
Transform, O(t,w(J)

Figure 9-7. Perspective and Contour Plots of the
Wavevector Band-Limited, Wavevector-Frequency Iransform, O(tko)
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Figure 8-9. Contour Plot of 0(l,wO) for a Wavevector Band-Limited
Output Field for < w/lklcl and < v/jk 2cl

d,, such that d1 < w/kIc and d2 < v/k2c. For this choice of sampling

intervals, the separation between replicates, in both the k and k2

coordinate directions, is greater than the total bandidths, 2k1c and k2c ,

of the true transform in the respective wavenumber coordinates. Therefore,

the estimated wavevector-frequency transform, at any wavevector, comprises the

sum of contributions from a two-dimensional array of separated replicates of

the true wavevector band-limited transform. Owing to this separation between

the band-limited replicates, it is evident from figure 8-B that
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Figure 8-9. pC contour Plot of thew)Fo esiae trBan d-m Limited o

the wavevector band-limited output field at the frequency W0that results from

choosing spatial sampling intervals such that d I > w/k lc and d 2> v/k 2c'
Note that this estimated transfoiim is again a periodic function of both k I and
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k2. However, the above stated choice of sampling intervals results in wave-

number separations, 2v/dI and 2 /d2 , between replicates that are less than the

total wavenumber bandwidths, 2kcl and 2kc2 , of the true wavevector-frequency

transform in the k1 and k2 coordinate directions. Thus, as illustrated in

figure 8-9, the periodic replicates of the true transform overlap in both

the k and k2 coordinate directions. The regions of overlap are centered at

k = [(2m + l),/dl,(2n + l)ir/d 2 ] for all m and n, and the bandwidths of overlap
are 2(klc - '/d1 ) and 2(k2c - '/d2) in the respective k and k2 coordinate

directions. Inasmuch as the estimate of the wavevector-frequency transform,

at any wavevector, is the sum of the contributions from all replicates at

that wavevector, it is evident that the estimated transform will equal the

true transform only within the wavevector range k Ik < 2ir/d I - klc and

Ik 21 < 2%/d2 - k2c. The estimate in the wavevector ranges defined by

(21/d 1 - klC < 1k1 1 < v/dI and/or (21/d 2 - k2c) < Ik2 1 < v/d 2 will differ

from the true transform due to contributions from the overlapped replicates

(i.e., due to aliasing in the wavevector domain).

By the above examples, it is evident that when a deterministic output

field, o(x,t), is sampled at spatial intervals dI and d2 over the infinite

extent of xI and x2 , continuously over all time, then, if the true wave-

vector-frequency transform of the field is wavevector band limited such that

0(0M 0, Ik11 > klc and Ik21 > k2c, (8-84)

the estimate of the transform, O(k,u), is given by

O(k,) - O(k,), Ikli v/dI and jk2 S v/d2 , (8-85)

over all w provided that the sampling intervals are chosen such that

dI < v/kc andd 2 < v/k2c . (8-86)

If either (1) the true wavevector-frequency transform of the field is not

wavevector band limited or (2) the spatial sampling criteria of equation

(8-86) are not met, then the estimate of the wavevector-frequency transform
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will contain aliased wavevector contributions and will therefore differ from

the true transform at some (or possibly all) wavevectors within the range

Jk11 Sw/d I and Jk21 <w/d2.

If the conditions of equations (8-84) and (8-86) are satisfied, then it

follows from equations (8-7) and (8-85) that the wavevector-frequency

transform of the pressure field, P(k,w), can be exactly determined from the

estimate of the wavevector-frequency transform of the sensor output field,

given the wavevector-frequency response of the sensor. That is,

f O (k, ) , Ikl _ :S /d and 1k2 1 < v/d 2

O(k,cW) J

0 , otherwise.

Given O(k,w) or P(k,w) over all k and w, then o(x,t) or p(X,t) can be obtained

by inverse Fourier transformation.

Let us now address the problem of estimating the space-time or wave-

vector-frequency characteristics of a stationary, random pressure field,

p(x,t), from the ensemble of spatial samples of the sensor output field,

o(xoi + md1 x02 + A d2,t), measured (by use of an infinite, two-dimensional

array of sensors) over all time for all possible realizations of the random

pressure field. From this ensemble of spatially sampled data, our knowledge

of the stationary autocorrelation function of the output field is limited to

the discrete set of functions

Qoo (x 01+ md,x 02 + nd2;qdlsd2;)

E(o[x01 + mdVX02 + nd2,t]olx01 + (m + q)d1,x02 + (n + s)d2,t +

(8-88)

over all i for all positive and negative integer values of m, n, q, and s.

If the pressure field, and thereby the sensor output field, is homogeneous as

well as stationary, our knowledge of the autocorrelation function of the

output field is limited to the set of functions Q00(qdlsd2,T) over

all v for all integer values of q and s.
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Let us first consider the estimation of the wavevector-frequency spectrum

of the stationary and homogeneous sensor output field from the measured

samples of the autocorrelation field. We formulate this estimate, which we

denote by i 0(jw) by replacing the spatial integrals in equation (6-90)

by appropriate summations. That is,

0 (k,) = dId 2  . Ooo(qdl ,sd21T)

q=-- s=-o -

exp[-i(k 1qd1 + k2sd2 + cor)) dr (8-89)

By making use of the sampling function of equation (8-77), we can write

equation (8-89) in the form

00 CO

00(k0 Q,(,t~~jep(iQj+ w-r)) dj dr 8-0

By writing %o(0,) as the inverse Fourier transform of t we can show,
by making use of equation (8-81), that the relation between the estimated

wavevector-frequency spectra of the sensor output field is related to the true

spectrum of that field by

0 to (k I - 2imw/dok 2 - 2nw/d 2#W) .(8-.91)

m=-<o n --M

Note that the mathematical form of equation (8-91) is identical to that of

equation (8-82) with 4 set to zero. Therefore, the arguments and illustra-

tions used to interpret equation (8-82) can be applied to equation (8-91) to

show that when the true wavevector-frequency sjectum of the stationary,

homogeneous output field is wavevector band limited such that

9 (kw) - 0, Ik1l > k1C and 14,jk > , (8-92)

then the estimate of the spectrum, 0o(_,w), will be equal to the true
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spectrum in the wavevectur range Iklj o /d1 and 1k2 l w /d2 if the spatial

sampling intervals are chosen such that d1 < /k 1C and d2 < w/k 2c That is,

4 (k,W) = 4o(k,a), k 1S /dI and k2 1 < v/d2  (8-93)

for all w if the sampling intervals satisfy the restrictions

d I < v/klc and d2 < r/k2c (8-94)

If the true wavevector-frequency spectrum of the homogeneous, stationary out-

put field is not wavevector band limited, or if the true spectrum is band

limited but the spatial sampling criteria of equation (8-94) are not satisfied,

then the estimate of the wavevector-frequency spectrum will contain aliased

wavevector contributions, and will therefore differ from the true spectrum.

Given knowledge that (I) the true wavevector-frequency spectrum of the

sensor output field is band limited as described by equation (8-92), (2) the

output field is sampled at spatial intervals that satisfy the requirements of

equation (8-94), and (3) the wavevector-frequency response, G(k,Q), of the

identical sensors used to measure the random pressure field is known, then it

follows from equations (8-15) and (8-93) that the true wavevector-frequency

spectrum of the homogeneous, stationary pressure field can be recovered from

the measured data. That is,

. - . . Ik I w/d, and Ik~I /d 2 ,

*O(kow)

0, otherwise., (8-g5)

Consider now th4 estimation of the two wavevector-frequency spectrum of

the output field from the discrete set of stationary, nonhomogeneous auto-

correlation functions specified by equation (8-88) over all time delays, i,

and for all positive and negative integer values of M, n, q, and s. in this

case, the estimate of the two wavevector-frequency spectrum of the sensor

output field, . is formulated from the discrete set of auto-

correlation functions by approximating the spatial integrals in equation
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(6-121) by appropriate summations. By this procedure, we obtain

S d d Qoo (Xol +mdl,X 0 2  nd 2 ;qdlrd2 ;T)

m=-o n=-m q=-o r=-o -o

exp(-i[ul(xol + mdI) + P2 (x02 + nd2) + k1qd1 + k2rd2 + WT]} d-

(8-96)

By making use of the spatial sampling function of equation (8-77), we can

rewrite equation (8-96) in the form

0 0 CO Go Go

~ f ~ JQOO~~,)( - o;m,n)s(_K;q,r)
-W - -0 -W -OD

exp(-i(-,x + kI + wi)) . d d , (8-97)

where the indices ";m,n" and ";q,r" are appended to the argument of the

sampling function to serve as a reminder that the summation indices of the two

sampling functions are different.

By substituting equation (6-124) for Q(x,,t) and performing the

resultant integrations, we obtain the following relationship between the

estimated and true two wavevector-frequency spectrum of the stationary,

nonhomogeneous sensor output field:

03 00 M

-- -C -- -- C (

exp-.i(V - 9),k) 6a d (8-98)

By substituting aopropriate forrt of equation (8-81) for S( - q) ;.nd S(k -

we then obtain

S.(,- 2Wv/dl?,, 2 - ?1r'/d ; k1  2q'rd 6 k'W

Soo(w, r)w *-

exp[-i(Zmwxo0 d . nvx 0/d 2)) 01-99.)
01 1 02 2



Here, we see that the estimate of the two wavevector-frequency spectrum of the

sensor output field comprises a quadruple infinite sum of periodic replicates

of the true two wavevector-frequency spectrum. These replicates occur

periodically in ul' u2' kit and k2, with periods 21/dl, 21/d 2, 2v/dl, and

2,/d respectively. In addition, the replicates occurring in the V, and U.2

coordinate directions are phase shifted by 2mwx01/d1 and 2nwx02/d2, respec-

tively, where the integers m and n denote the indices of the replicate.

The primary difference between equation (8-99) and equation (8-82) or

(8-91) is that the replications of the spectra occur in four, rather than two,

wavenumber dimensions. However, inasmuch as V and k are independent wave-

vector variables, we can apply our previous experience with sums of period-

ically replicated functions in two-wavenumber dimensions in an iterative

fashion to interpret the consequences of spatial sampling on the two wave-

vector-frequency spectrum of the sensor output field. That is to say, if the

two wavevector-frequency spectrum of the stationary, nonhomogeneous pressure

field being measured and, by equation (8-14), the stationary, nonhomogeneous

sensor output field are wavevector band limited in both R and k such that

S: I0: I 1  > vc' 12 > u2c' Jkli > kc' and 1k21 > k2c

(8-100)

then, if the output field is spatially sampled at periodic intervals of

and d2 over all xI and x2, continuously over all time, we find that

go0 S(ikh): l0l0 ,/d1, u21 C w/d2,

Ik I I IdlV and 1k2 1 <vd (.-101)

for al, w provided the s.ampling intervals are chosen such that

d < H'iN'6v/P 1 r/kC) and d, < HIN(w/2c,v/k2) , (8-102)

where MIN{} denotes the mnnimr value of the arguments enclosed by the

braces. Thc restrittions on the spatial sampling intervals must be expressed

in the form of such minima inasmuch as the wavenumber interval between
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replicates in both the v, and k, coordinates is 21/d, and the interval between

replicates in both the v2 and k2 coordinates is 21/d Therefore, to avoid

overlap of the replicates (i.e., aliasing) in both the V and k domains, the

sampling intervals must be selected to preclude overlap of the larger of the

wavenumber bandwidths, pIc or klc, in the V, and k, coordinate directions,

respectively, and the larger of the wavenumber bandwidths, 2c or k2c,

in the v2 and k2 coordinate directions, respectively.

If S 00 is not band limited in both y and k, or if S oo(,k,W) is

band limited in R and k but the spatial sampling requirements of equation

(8-102) are not satisfied, then aliasing will occur, and the estimate of the

two wavevector-frequency spectrum of the sensor output field will differ from

the true spectrum in those wavevector regions where the spectral replicates

overlap.

Given that S o(V,k,w) is band limited in p and k and that the spatial

sampling requirements of equation (8-102) are satisfied, then it follews,

from equations (8-14). (8-100), and (8-101), that the two wavevector-frequency

spectrum of the pressure field can be recovered from the estimate of the two

wavevector-frequenty spectrum of the sensor output field. That is,

01 <. w/dI

1,021 v/d 2
__ o__ ,_ ,k) I < w/d2

Soo(, ,o, ) I -V,-w)G()G. ) Ik., < ,!d 2

0, otherwise. (8-103)

Given knowledge of So(.,k,w) or S(, over all . k, and w, then

o0(00 ,,) or Q pp(X,,t) can be obtained by appropriate inverse Fourier

transformation.

We have established that the spatial characteristics of any sensor output

field cannot be measured continuously over space. Rather, in any practical

experiment, the sensor output field can be measured only at spatial intervals

equal to or greater than the dimensions of the sensors employed in the

measurement. In this section, we examined the limitations that spatial

sampling of the sensor output field imposes on our ability to deduce the
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space-time or wavevector-frequency characteristics of the pressure field being

measured. In this examination, we assumed that each realization of the sensor

output field was sampled at uniform increments, d1 and d2, over all xI and

x2, respectively, from a sampling origin 10" Each spatial sample was

assumed to be measured continuously ever all time. Under these assumptions,

we showed that the true wavevector-frequency transform of a deterministic

output field or the true wavevector-frequency spectrum of a stationary and

homogeneous output field could be recovered from this ensemble of sample

functions of the output field only if (1) the respective true wavevector-

frequency transform or spectrum of the output field was wavevector band

limited such that O(k,w) or 0 (k,w) was zero for Ik11 > klc and Ik21 > k2c and

(2) the sampling intervals were selected such that d1 < o/klc and d2 < /k2c.

We further showed that the true two wavevector-frequency spectrum of a

stationary, nonhomogeneous output field could be recovered from the ensemble

of sample functions of the output field only if (1) the true two wavevector-

frequency spectrum of that output field was wavevector band limited in both

and k such that Sn( ,k,w) was zero for Jvlj > 1c' IP2 1 > 02c' 1kli > klc.

and lk I > k and (2) the sampling intervals were selected such that

dI < MIN[w/vic, AkIc and d2 < MINtw/P2c,i/k2c). Given the true wavevector-

frequency transform or spectrum, as appropriate, of the sensor output field

and the wavevector-frequency rev:Donse of the (identical) sensors, the

corresponding wavevector-frequency transform or spectrum of the measured

pressure field can be deduced.

Clearly, the true space-time or wavevector-frequency characteristics of a

field cannot be recovered from spatial samples of that field unles the

%avevector-frequency transform or spectrum of the field is appropriately

wavevector band limited. If the wavevector-frequency transform or spectrum of

the pressure field being measured is not band limited in the wavevector

domain, one can (according to the theory presented in section 8.1) render the

wavevector-frequency transform or spectrum of the sensor output field to be

wavevector band limited by measuring the pressure field with sensors designed

to have wavevector-frequency responses that pass, without attenuation, those

wavevector components within the wavevector range of interest and that

strongly attenuate wavevector components outside that range. Then, in theory,

the true wavevector-frequency transform or spectrum of the sensor output field
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can be recovered from the spatial samples of that output field within the

wavevector passband of the sensor. Given knowledge of the wavevector-

frequency response of the identical sensors and the wavevector-frequency

transform or spectrum of the output field within the wavevector passband, the

corresponding wavevector-frequency transform or spectrum of the pressure field

can be determined within that passband. However, at this writing, we have not.

demonstrated the ability, with current sensor technology, to design and

construct sensors that provide prespecified lowpass characteristics in the

wavevector domain.

8.3 EFFECTS OF FINITE SAMPLING CONSTRAINTS

In the previous section, we examined the consequences of temporal and

spatial sampling, over infinite limits of time and space, on our ability to

estimate the space-time and wavevector-frequency characteristics of acoustic

fields. In practice, however, we can obtain temporal or spatial samples of

any sensor output field only over a limited portion of time or space. In this

section, we examine the consequences of these temporal and spatial sampling

constraints on our ability to estimate the space-time and wavevector-frequency

characteristics of the acoustic field being measured. We will begin by

examining the effects of finite constraints on temporal sampling of the sensor

output field.

8.3.1 Finite Temporal Sampling

Assume that the sensor output field, o(x,t), obtained by measuring the

surface pressure field, p(x,t), with identical sensors, is sampled synchro-

nously over all x at uniform increments, T, in time, starting at the time

to. At each spatial location, N temporal samples are obtained. This

sampling is illustrated in figure 8-10 for the spatial location x. As a

result of this uniform temporal sampling over a finite interval of time, our

knowledge of o(x,t) from iny realization of the measurement is limited to the

set of functions o(x,t0 + nT) over all x for integer values of n between 0

and N - 1.

If the pressure field and, thus, the output field are deterministic, then
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Figure 8-10. Illustration of Finite Temporal Sampling

the output field is completely characterized by its wavevector-frequency

transform, O(k,w). However, given only N temporal samples of o(x,t) at any x,
we can only estimate O(k_,). To obtain this estimate, which we denote by

O(k,), we approximate equation (8-6) by

N-1ww

T I I I o(X,t 0 + nT)exp(-i(k-x + ((t 0 + nT)]) dx. (8-104)

n=() -o -0

By making use of the sampling property of the Dirac delta function, we can

rewrite eouation (8-104) in the fon

nW (O- 05)N-
,o(2,t) 2 6(t - to - nT) exp(-i(k-x + wt)) dx dt

I - nt (8-105)

We define the finite temporal sampling function as

N-1

Vf(t;N) w I I 6(t - nT) (8-106)

n-0

and write equation (8-105) in the form
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~(ka) J ~o(E,t)vf,(t - t0;*N)exp[-i(k-2x + wt)) dx dt (8-107)

However, this equation has the form of equation (8-46), which, according to

equation (8-48), can be expressed in the form

O(,M = (2w) -l  O(kQ)Vf(w - Q;N)exp{-i(o - Q)t0 da , (8-108)

-. 0

where Vf(w;N), the Fourier transform of vf(t;N), is given by

N-I

Vf(o;N) = T exp(-ihnT} = T exp[-io(N - l)T/2} sin(NT/2)" (8-109)

n=O

Substitution of equation (8-109) into equation (8-108) yields

z0

T Ok sin[( - Q)NT/2]
( Tsin(( - Q)T/2] exp(-i[W - Q][t 0 + (N - 1)T/2]} dQ

(8-110)

Note that the mathematical form of equation (8-108) is identical to

oquation (8-48), which relates the estimated and true transforms for an

infinite number of temporal samples of the sensor output field. However, as

is evident by comparison of equation (8-109) with equation (8-51), the

temporal Fourier transform, Vf(w;N), of the finite temporal sampling

function, vf(t;N), is not so mathematically simple as the infinite train of

Dirac delta functions that characterize the transform, V(w), of the infinite

temporal sampling function, v(t). Consequently, for a finite temporal

sampling of the sensor output field, the estimate of the wavevector-frequency

transform is related to the true transform by the convolution shown in

equation (8-110) rather than the simple summation obtained in equation (8-52)

for the case of infinite temporal sampling.
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One impediment to either the interpretation or computation of the convolu-

tion in equation (8-110) is the phase term exp{-i[w - s][t 0 + (N - 1)T/2]),

which varies rapidly with frequency. We can eliminate this phase term by

noting that the wavevector-frequency transform, O[k,ca;'], of o(x,t +- x) can be

written as

O[ke";]= o(x,t + x)exp(-i(k.x + wt)) dx dt
-0

o(x,O)exp(-i[k.x + w(O - T)]} dx de = O(k,w)exp~icT}

By employing equation (8-111), and by denoting O(k,w)exp(iw T as O[k, ;T], we

can write equation (8-110) in the somewhat simpler form

T- O sln[( - Q)NT/2]
O[ ,W;t0 + (N - 1)T/2] = 21 0[kQ;t0 + (N - 1)T/21 sinL(ca Q)T/2] dQ

(8-112)

Here, we see that the estimate, O[k,Q;t 0 + (N - 1)T/2], of the wave-

vector-frequency transform of the temporally shifted sensor output field,

o[x,t + t0 + (N - 1)T/2], is proportional to the convolution of the true

wavevector-frequency transform, O[k,Q;t 0 + (N - l)T/2], of that time-shifted

sensor output field with the function sin(QNl/Z)/sin(QT/2).

As illustrated in figure 8-11, sin(QNl/2)/sin(aT/2) is a periodic function

of Q, with major acceptance lobes occurring at intervals of 21/T. These major

acceptance lobes have amplitudes N and bandwidths (between zero crossings) of

4w/(N1). Thus, for a fixed temporal sampling interval, T, the amplitudes of the

major acceptance lobes increase, and the bandwidths of these lobes decrease,

as the number of temporal samples, N, and thereby the total sampling time, NI,

increases. Recall that V(w), the transform of the uniform, infinite temporal

sampling function, was characterized by an infinite, periodic train of Dirac

delta functions. The period of these delta functions in w was also 2W/.
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sin (ONT/2)

sin (OTI2)

N-
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TT i --tYY

sin(QNT/2)
Figure 8-11. The Function sin(T/2)

When the output field was uniformly sampled over all time, the estimate of

the wavevector-frequency transform of the output field was obtained by the

convolution of the true transform of 'that field with the periodic train of

Dirac delta functions that characterized V(4). In that case, we found that if

(1) the true transform was band limited in frequency such that 0(k,W) = 0 for

W > Wc and (2) the period, I, between temporal samples was selected such

that I < f/C , then the estimate of the transform of the output field

comprised an infinite series of periodic, separated replicates of the true

transform. The true transform was then deduced from the estimated transform

within the frequency range lul S m/T. By reducing the number of temporal

samples of the output field from an infinite to a finite number, we reduce our

knowledge of the temporal characterist'cs of that field and, thereby, further

restrict our ability to estimate the true space-time or wavevector-frequency

characteristics of the output field. Inasmuch as the space-time or wave-

vector-frequency characteristics of a sensor output field cannot be deduced

from an infinite number of uniformly spaced temporal samples of that field

unless O(k,w) - 0 for w > wc and the sampling period is selected such that

I < IriC, we must anticipate that the space-time or wavevector-frequency

characteristics of an output field cannot be deduced from a finite number of

temporal samples of that field unless these same frequency band limitations

and temporal sampling restrictions are satisfied. Note, however, that, even

if these band limitations and sampling restrictions are satisfied, the

convolution of equation (8-112) cannot yield, for finite N, an estimate,
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kft 0" to + (N - 1)T/2], of the wavevector-frequency transform of the time-

shifted output field o[2,t + t0 + (N - 1)T/2] that comprises periodic,

separated replicates of the true transform, O[k,w;t0 + (N - 1)T/2], of that

output field.

Unfortuhately, even if O(k,w) is band limited in frequency, we cannot

exactly solve equation (8-112). However, by investigation of the inte-

grand of equation (8-112), we can gain some insight into how the estimate,

Okw;t 0 + (N - 1)T/2], of the band-limited transform O[k,Q;t0 + (N - 1)T/2]

is affected by the number, N, of temporal samples of the output field. Figure

8-12 shows both the (assumed real) transform O(ko,Q;t 0 + (N - 1)1/2], band limit-

ed to frequencies between -wc : (a < c, and sin[(w - Q)NT/2]/sin(ca - Q)T/2]

as functions of Q. The sampling period has been selected such that T < flac

The convolution in equation (8-112), evaluated at the frequency W, is

simply the integral, over all Q, of the product of the two functions illustra-

ted in figure 8-12. Note, from this figure, that if O(o,Q;t0 + (N - 1)T/2]

is a smoothly varying function of Q, the value of this integral is dominated

by contributions from the products in the vicinity of the major acceptance

lobe of sin[(w - Q)NT/2]/sin[( - 9)1/2], which is centered at the frequency.

within the band limits, -w. :S <c. of O(ko,Q;t0 + (N - 1)T/2]. By expanding

O~kAt0 + (N - 1)T/2] in a Taylor series about the frequency w, we obtain

O[oQ;t0 + (N - 1)T/2] - O[ko,w;t0 + (N - 1)1/2]

aO[oQ;t0 + (N - 1)T/2]

(Q 2 a 2 O(kn,Q;to + (N - 1)T/2]
+ 2 a2a =

(8-113)

If N is chosen sufficiently large that, within the bandwidth of the major

acceptance lobe of sin[( - o)NT/2]/sin[(w - Q)T/2], O[ o,Q;t0 + (N - 1)1/2]
changes only linearly with frequency, then it follows that equation (8-112)

can be approximated, at any value of k, by
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sin [(w - 0) NTI2I

0 [kO, 0; to + (N - 1)T/2] sin [(w - 0) T/2]

4r 21r -Wc  W Wc  27r
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Figure 8-12. Illustration of the Terms Comprising the
Integrand of Equation (8-112)

0 C

O[kw;t0 + (N- 1)T/2]- 2 {Okt,;t0 + (N - 1)T/2]

80[j,+;t0 + (N - 1)T/2110 - in( - Q)NT/2] dQ

(").- sin[( - Q)T/2]
(8-114)

when -w< w < wc" However, inasmuch as sin[(w - O)NT/2]/sin[(w - Q)T/2) is

an even function about a 0 w whereas a - w is odd, it can be demonstrated that

the integral of the second term in equation (8-114) is small in comparison

with the integral of the first term. Consequently, a relatively small error

results from neglecting the integral of this second term. We assume that a

similarly small error is introduced by extending the limits of integration to

the range 101 1 w/1. Under these assumptions, equation (8-114) takes the form

T wIT sil(( - Q)NI/2]

6[jW;t0 + (N - 1)T/2] T 0[k,w;t0 + (N - 1)T/2] w sin(w - Q)Ti2] do .

(8-115)

By use of equation (8-109), it can be shown that, if N is odd,
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/T

sin[(o - Q)NT/2) 2-

sin[(a - Q)T/2] d T T (8-116)

-w/T

However, equation (8-116) is also approximately true if N is even, with the

degree of approximation improving as N increases. Thus, for N sufficiently

large that the bandwidth of the major lobe of sin(wNT/2)/sin(uT/2) is much

smaller than the bandwidth of any variation of O[k,w;t 0 + (N - 1)T/2] with

frequency, it follows that

O[kw;t0 + (N - 1)T/2] NsO[k,o;t0 + (N - 1)1/2], I w /T. (8-117)

By returning our attention to figure 8-12, we note that if the transform

is estimated at any of the frequencies w k 2wn/T, a major acceptance lobe of

sin[( - Q)NT/2 + nNa]/sin[(w - Q)T/2 + nw] will again be centered at

9 = w, and the resulting convolution of O[k,Q;t0 + (N - I)T/2] with

sin[(w - Q)NT/2]/sin[(w - Q)T/2] is identical to that required to estimate

the transform at the frequency w. Thus, it is evident that, when O(k,w) is

band limited such that O(k,Q) = 0 for JwJ > wc and the sampling period

is selected such that T < w/wc , the estimate, O[k,o;t 0 + (N - 1)T/2],

of the wavevector-frequency transform of the time-shifted output field,

o[,t + t0 + (N - 1)T/2]. is a periodic function of frequency. That periodic

function of frequency consists of an infinite series of approximations to

O[k,W;t 0 + (N - 1)T/2], repeated at intervals of 2w/T. It can be demonstra-

ted, by examination of the major acceptance lobes of sin(wNT/2)/sin(WT/2).

that successive approximations are of the same sense (or sign) when N is odd,

and are of alternating sense when N is even.

By the above arguments, it is evident that if (I) O(k,w) is band limited

such that

0 , > '(8-118)

(2) the temporal sampling period is chosen such that

T<W/ C , (8-119)

and (3) the number, N, of temporal samples is chosen sufficiently large th t
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the bandwidth, 4w/(NT), of the major response lobe of sin(wNl/2)/sin(QT/2) is

small compared to the bandwidth of any fluctuation in O[k,u;t 0 + (N - I)T/2]

with frequency, then the estimate, O[k,w;t 0 + (N - 1)T/2], of the transform

O(k,w;t 0 + (N - 1)T/2] can be approximated by

O[kw;t0 + (N - l)T/2]- 2 (-l)( [k, - 2ni/T;t0 + (N - l)T/2]
n=-o

(8-120)

and therefore

:OCW;t 0 + (N - l)T/2] a O(k,;t0 + (N - 1)T/2] , II :c i/T (8-121)

The quality of these approximations improves as the number, N, of temporal

samples increases.

To demonstrate the effect of the number of temporal samples on the quality

of the estimate of the wavevector-frequency transform, we assume that, at the

wavevector k ; k., the true transform, O[ko,w;t0 + (N - 1)T/2], of the time-

shifted output field, o[x,t + to. + (N - l)T/2], is the real, frequency-band-

limited function shown in figure 8-13(a). We assume further that the sensor

output field o(j,t) is sampled as illustrated in figure 8-10, with the samp-

ling intervals, T, chosen to be less than oloc to avoid aliasing. Figures

8-13(b) and (c) illustrate estimates, 6[k,w;t0 + (N - l)T/2], of the transform

Okow;t0 + (N - I)T/2] for two different choices of the number, N, of

temporal samples of the field o(2,t).

Figure 8-13(b) depicts O[k, w;t 0 + (N - l)T/2] as a function of w for a

choice of N such that the bandwidth, 4v/(NT), of the major acceptance lobe of

sin(ONT/2)/sin(Ql/2) is about 20 percent of the total frequency bandwidth,

24c , of O(k-o,0). This choice of N is equivalent to requiring the total sam-

pling time, NT. to be about five times greater than the period, 1 W 2/o

* associated with the band limit, w., of O(kw). Figure B-13(b) shows that,

for this choice of N, 6[kw;t0 + (N I)T/2] closely approximates an infinite

sum of replicates of 0[ow;t, + (N - 1)T/2], spaced periodically at intervals

of 2v/T. Indeed, the only apparent differences between Ot O,=;t0 + (N - 1)1/2]

and an infinite sum of replicates of 0[ko,w;t 0 + (N - I)T/2], spaced periodi-

cally at intervals of 2w/T, are the slight rounding (or smearing) of the estimate
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Figure 8-13. Comparison of True and Estimated Wavevector-Frequeocy
Transforms of a Frequency Band-Limited Output fild



in the vicinities of the frequencies 2nw/T ± wc and the slightly negative value

of the stimate in the frequency intervals 2nr/T + c < w < 2(n + I)/T - c,

Figure 8-13(c) illustrates 6(kk,;t0 + (N - l)T/2] as a function of for

a choice of N such that the bandwidth, 41r/(NT), of the major acceptance lobe

of sin(UNT/2)/sin(QT/2) is approximately one-half the total frequency band-

width, 2 c , of 0( Here again, we see that O[ko,w;t0 + (N - l)T/2] is a

periodic function of frequency that somewhat resembles an infinite sum of

replicates of O[ko,w;t 0 + (N - l)T/2] separated in frequency by 21/T. However,

owing to the relatively small number, N, of temporal samples, the bandwidth of

sin(QNT/2)/sin(QT/2) is comparable to the bandwidth of O(ko,), so the

replicates of O[sko,;t0 + (N - l)T/2] are smeared by the convolution process,

especially in the vicinity of the frequencies 2nv/T ± wc and in the frequency

intervals 2nv/T + c < w < 2(n + l)w/T - c"

Figure 8-13 shows that if O(kto) is band limited such that O(ko,n) - 0

for JIw > w and the temporal sampling period is chosen such that T < /wc

then the estimate of the transform, O(ko,;t0 + (N - l)T/2), formed by

the convolution of the true transform, Oko,w;t0 + (N - l)T/2], with

sin(".4T/2)/sin(wT/2) is a periodic function of frequency. It further

illustrates that tko,w;,to + (N - I)T/2] tends toward a summation ot

replicates of O(to,=w;t 0 + (N - l)T/2], periodically spaced at frequency

intervals 2,/T, as the number of temporal 5amples, N, of the output

field increases. However, it muit be emphasized that, for finite N,

sin(wNT/2)/sin(uT/2) is a continuous function of fiequency, and 'the

convolution of sin(uNT/2)/sin(wT/2) with 0tk,w;t0 + (N - l)T/2] cannot

produce exact replicates of O[ko,t 0 + (N - i)T/2].

Given that the conditions of equations (8-118) and (8-119) are satisfied

and that N is chosen sufficiently large that the estimate O[lk ,w;t0 + (N - I)T/2]

provides a good approximation to the true wavevector-frequency transform,

OL,W;t0 + (N - 1)T/2], of the time-shifted field oLx,t + t0 + (N - I)1/2],

then an estimate of the true wavevector-frequency transform, O(j,w), of the

field o(_,t) can easily be obtained. That is, because

ON .;t 0 + (N - 1)T/2] - O(kow)exp(iw[t0 + (N - 1)T/2]) , (8-122)
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it follows from equations (8-111) and (8-121) that

O(k,w) = OUto.w;to + (N - l)T/2]exp(-bc[t0 + (N - 1)T/2]} O(.s)

I / iiT (8-123)

Therefore, given the wavevector-frequency response, G(k,W), of the identical

sensors used to measure the pressure field p(x,t), the wavevector-frequency

transform of the pressure field can be estimated by use of equations (8-7) and

(8-123). That is,

( )= J G(-k, P(k ) (8-124)

0, otherwise

Consider now the estimation of the space-time or wavevector-frequency

characteristics of a stationary, random pressure field, p(x,t), from knewledge

of N uniformly spaced temporal samples of the output field, o(i,t), measured

synchronously over all space and over all possible realizations of the experi-

ment. If we assume that, at each spatial location, N temporal samples of the

output field are taken at intervals T, starting at time to, for each realiza-

tion of the measurement, the resultant data comprise the ensemble of functions

o(xt 0 + nT) over all x and over the integer vlues of n between zero and

N - 1. Therefore, by equation (6-52), our Knowledge of the autocorrelation

function of the stationary output field is limited to

0o0(Qi.sT) - E(o(,t 0 + nT]o[ + j'£0 + (n + s)7]) (8-125)

over all _x and y, and over all integer values of " between -N + 1 and N - 1.

If the pressure and output fields are homogeneous as well as stationary, we

instead have knowledge of Qoo(&,sT) over all j and for integer s between

4 + I and N - 1.

Owing to our lncom lete knowledge of the tempt,#al behavior of the auto-

correlation function of the outpmt field, we can only estimate the appropriate

wavevector-frequeacy spectrum of the output field. These estimates are formed

by approuimatng the temporal intvgrations in the definitions of the wave-
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vector-frequency spectrum (equation (6-78)) and two wavevector-frequency
spectrum (equation (6-121)) by appropriate summations. Thus. we write the
estimate, 0o(k,0), of the wavevector-frequency spectrum, o0 of
the homogeneous and stationary sensor output field as

= = N-1

o(k,) J JT Qoo(_KnT)exp[-i(k.. + wnT)) dk , (8-126)
-w -= n=-N+l

and the estimate, 00(},k, ), of the two wavevector-frequency spectrum,
So00 ),of the nonhomogeneous, stationary output field as

O 0 T C N-I

S T~~> Q00  j,nT)exp-iV2 k.I + nT)J dx k00-- I I -2 -0 -00

(8-127)

By again using the sampling property of the Dirac delta function, we can
rewrite equations (8-126) and (8-127) in the formis

*0(k000 %(j'T)exp{-i(k.j + or01f) 1 6(v - ni)} dj di
-W -o -M n -N+l

and

W-W _-W -W

{T I 6(y - nT) dx dj dt (8-129)

However, by a change of index, we can write

N-I 2(N-1)
1 6(t- nT) - T 6[v + (N - 1)T - sI vf(T + (N - 1)T.2N 1]

n =-N+l S=D

(8-130)I B-59



Therefore,

OA J 00 Ok-~ Vf ( + (N - 1)7;2N + 1]x(-wT ' ~)} dj dT
-C -4W -W

(8-131)
and

Soo(Y-A.Q Q00,(? .. )Vf(T + (N - )T;2N - 1]

exp(-i(.x + k.+ on)) dx d. dT (8-132)

By substituting equation (6-79) into equation (8-131), and equation

(6-124) into equation (8-132), we obtain, after performing the integrals over

che spatial, wavevector, and temporal variables,

0

tO(&,=) =(2) *o(k.Q)Vf(w - Q.2N - 1]exp(i(w - Q)(N - 1)T) do

(8-133)
and

Soo(gEkw) - (2w) S00(My.Q)Vf[c - Q;2N - 1]exp(i(w - Q)(4 - 1)T) do

(8-134)

Howevwr, by equation (8-109).

sin[Q(24 - 1)T/2]
Vf[Q;2N - 11 - I expi-io(N - 1)T) sin[QT/2] (8-135)

Thus. by substitution of equation (8-135) into equations (8-133) and (8-134),

'4e find that thi estimates of the single and two wavevector-frequency spectra

are related to their true values by

T sin[(u - 9)(2N - 1)/2]
4 k - d (8-136)

0 -sin(uc - Q)T/21
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and

T sn[(w - Q)(2N - 1)T/2]
S S o0(Pk,.Q) - da (8-137)

Equations (8-136) and (8-137) show that, for the finite temporal sam-

pling of the sensor output field, the estimated wavevector-frequency spectra

are given by convolutions of the true spectra with the periodic function

sin(Q(2N - l)T/2]/sin[QT/2]. Recall that for an infinite number of temporal

samples, the estimated wavevector-frequency spectra were given by convolutions

of the true spectra with an infinite, periodic train of Dirac delta functions.

The period of the function sin[Q(2N - l)T/2]/sin[QT/2] is 2v/T, the same as

the period of the train of delta functions associated with the infinite

temporal sampling. This mathematical effect of finite temporal sampling on

the relation between the estimated and true wavevector-frequency spectra of a

random sensor output field is similar to that observed between the estimated

and true wavevector-frequency transforms of the deterministic output field.

Indeed, the mathematical forms of equations (8-136) and (8-137) are mathe-

matically similar to that of equzJion (8-112), which relates the estimated and

true wavevector-frequency transforms for the finite temporal sampling of a

deterministic sensor output field.

As a result of the above cited mathematical similarities, we can apply the

analysis and interpretation of equation (8-112) to equations (8-136) and

(8-137) to determine the effects of a finite number of temporal samples on the

estimate of the wavevector-frequency spectra of the sensor output and surface

pressure fields. From these similarity arguments, we can deduce that the true

wave-vector-frequency spectrum of the sensor output field cannot be recovered

exactly from a finite temporal sampling of that field. However, we can also

demonstrate that If (1) the true wavevector-frequency spectrum of the output

field is band limited in frequency such that either

0l o(k,) - 0, 1'WI > Wc (8-138)

or

Soo(0,k, ) , I I1 > Wc (8-139)
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(2) N temporal samples of the band-limited output field are taken at uniform
temporal increments, T, which are smaller than w/ c, and (3) the number of
temporal samples, N, is sufficiently large that the bandwidth, 4w/[(2N -)T],

of the major acceptance lobe of sin[Q(2N - 1)T/2]/sintQT/2] is small in com-

parison to the bandwidth of any variation, in frequency, of 0(k, ) or
S oo(,k,w), as appropriate, then

00D

t %o(k,c - 2nw/T) (8-140)

n=-m

or

S~o(,kw) - S(,k, - 2nw/T) (8-141)

Under these conditions,

o o(kW), IwI S 2w/T (8-142)

or

S 0Riw SOO( ,kw), S 2,w/T (8-143)

and, by equations (8-14) and (8-15), the appropriate single or two wavevector-

frequency spectrum of the random surface pressure field is estimated by

10-jw) 2 Q
Sp (k~w) 2 0 4° = p(k.,W) (8-144)

t, otherwise -

or

S 00o(k k,' ) It<2v/T

gpp ' ' __ __ __ __ ___G( -}

S ~ PpI
0. otherwise

G( 00 as
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respectively. It should be noted that the quality of the estimates given by

equations (8-140) through (8-145) improves with increasing numbers of temporal

samples.

The analysis presented in this section demonstrates that the finite

limits, imposed by practical considerations on the number of temporal samples

of the sensor output field, significantly inhibit our ability to estimate the

space-time or wavevector-frequency characteristics of the acoustic field of

interest. To avoid aliasing errors in the estimate, the acoustic field being

measured must be band limited in frequency and the temporal sampling period
must be chosen to be less than one-half the period associated with the

frequency of the band limit. These constraints are identical to those imposed

for an infinite number of temporal samples, and are therefore a consequence of

any uniform temporal sampling process. Given that the acoustic field of

interest is frequency band limited and that the temporal sampling period is

chosen to avoid aliasing, we previously demonstrated that the true space-time

or wavevector-frequency characteristics of the acoustic field could be exactly

recovered from an infinite number of temporal samples of the sensor output

field. However, given any finite subset of those temporal samples of that

output field, we can obtain only some approximation to the true space-time or

wavevector-frequency characteristics of the acoustic field. The quality of

that approximation depends on the bandwidth, 4w/(NT), of the main response

lobe of the Fourier transform of the finite temporal sampling function

relative to the bandwidth of any fluctuation, in frequency, of the transform

or spectrum (as appropriate) of the sensor output field. Only wben N is

sufficiently large that the bandwidth of the Fourier transform of the temporal

sampling function is small in comparison to the bandwidth of any frequency

fluctuation in the transform or spectrum of the output field can a good

estimate of the space-time or wavevector-frequency characteristics of the

acoustic field of interest be obtained.

8.3.2 Finite Spatial Sampling

Just as finite limits on the number of temporal samples inhibit our

ability to estimate the temporal or frequency characteristics of an acoustic

field, finite limits on the number of spatial samples inhibit our ability to
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estimate the spatial or wavevector characteristics of that acoustic field.

Assume that, for practical reasons, we are constrained to measure the

surface pressure field, p(_,t), with the M by N rectangular array of sensors

depicted in figure 8-14. For each realization of the measurement, the outputs

of the sensors comprising the array are measured over all time. Thus, our

knowledge of the sensor output field is limited to the ensemble of functions

O(xol 01 mdl ,x02 + nd2,t) over all time for integer values of m and n between

0< m <M -1 and 0< n <N -1.

If the pressure field is deterministic, we can estimate the wavevector-

frequency transform of the output field from any member function of the

ensemble by approximating the spatial integrals in equation (8-6) by

appropriate summations. That is,

~M-1 N-1

S 1 dld 2  O(X01  mlX02 + nd21t)

m-=O n=O --

1exp(-i~kl1(x 01 + mdlI) + k 2(x 02 + nd2) + At]) dt . (8-146)

By defining the finite spatial sampling function, sf(x), by

M-I N-1

s f(X_;M,N) - d1d2 1 > 6(xI - md )6(x2 - nd2) , (8-147)

m-O n-O

we can write equation (8-146) in the form

0(k~) ~ (!'t)S f U - V4,N)exp(-i(kq~ + 01t) dj (it . (8-146)"'. --. m - -0-0,,

I ,If we write o(z_,t) in the form of its inverse wavevector-frequwcy tra ysform,

it follows that

(2v) -2  0, p;MN)exp(-i(k - V)'A) dp (8-149)
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x1

X22

X2 Y2

Figure 8-14. M by N Array of Sensors

where Sf(k;HN), the wavevector transform of sf(xL;HN), is given by

Sf(J;M.N) - d1d, exp(-t[k1(N - 1)dl/2 + k2(N - 1)d2/2])

sin(klI4d1/2) sin(k 2Nd 2/2) (8-150)

sin(kId 1/2) sin(k2d2/2)

Substitution of equation (8-150) into equation (8-149) yields

dl d2 sin(kIMd1/2) sin(k2Nd2/2)

(2)2 0(£, ) sin(kId 1/2) sin(k 2 d 2 /2)

exp(-i{[k I - I][xol + (H - 1)dl/23

+ (k2 - 02 [Xt02 + (N - I)d2/2])) d . (8-151)

From our experience with the analysis of finite temporal sampling, we

rs~cognize that

(8-152)
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where O[k,w;r] designates the wavevector-frequency transform of the spatially

shifted output field o(x + r,t). By denoting the estimate of O[k,w;r] by

--_[kc;r, it is straightforward to demonstrate that equation (8-151) can be

written in the form

Ofk"W;[Xo1 + (M - 1)d1/2,x02 + (N - 1)d2/2]}

(21d)2 O , 0;[xOl + (M - l)dl/2,x02 + (N - I)d2/2])
0-

sin[(k I  - l)Mdl/2] sin[(k 2  - 2)Nd2/2]  dy (8-153)

sin[(kI _ jl)dl/2] sin[(k 2 - u2)d2/2]

From equation (8-153), we can demonstrate that the estimate of the wave-

vector-frequency transform of the spatially shifted sensor output field,

o[x I + x + (M - l)dl/2,x2 + x02 + (N - l)d2/2,t], is proportional to the con-

volution of the true transform of that spatially shifted field with the product

of the periodic functions sin(viMd,/2)/sin(pld,/2) and sin(V 2Nd2/2)/sin( u2d2/2).

Recall that, for the case of sampling over infinite space, the estimate of the

wavevector-frequency transform of the output field was proportional to the

convolution of the true transform with a product of infinite, periodic trains

of Dirac delta functions in the P, and P2 coordinate directions. For given

spatial separations, d1 and d2, between samples of the output field, the

periods of the trains of Dirac delta functions in the v, and P2 domains are

the same as the respective periods between the major acceptance lobes of

sin(,PiHd 1/2)/sin(Padl/2) and sin( P2Nd2/2)Isin(P 2d2/2).

The differences between the estimates of the wavevector-frequency

transform of the space-shifted output field obtained from infinite and finite

numbers of spatial samples are mathematically analogous to the differences

between the estimates of the transforms of the time-shifted output field

obtained from infinite and finite numbers of temporal samples. Indeed, it is

easily determined that equations (8-79) and (8-01), which relate the estimated

and true wavevector-frequency transforms for an infinite spatial sampling of

the output field, are the two-dimensional mathematical analogs of equations

(8-48) and (8-51), which relate the estimated and true wavevector-frequency
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transforms for an infinite temporal sampling of the output field. Similarly,

equation (8-153), which relates the estimated and true wavevector-frequency

transforms for a f'inite spatial sampling of the output field, is the mathe-

matical analog, in the two-dimensional wavevector domain, of equation (8-112),

which relates the estimated and true wavevector-frequency transforms for a

finite temporal sampling of the output field.

Given that equation (8-153) is the analog, in the wavevector domain, of

equation (8-112), we can interpret the effects of finite spatial sampling on

the relationship (equation (8-153)) between the wavevector characteristics of

the estimated and true transforms as the analog of the effects of finite

temporal sampling on the relationship (equation (8-112)) between the frequency

characteristics of the estimated and true transforms. By applying such

analogical reasoning, we conclude that if (1) the sensor output field is band

limited in the wavevector domain such that

O(k,w) = 0, Ik1l > klc and Ik2 1 > k2c, (8-154)

(2) the spatial sampling intervals are chosen such that

d1 < r/klc and d2 < r/k2c , (8-155)

and (3) the numbers, M and N, of spatial samples in the xI and x2 coordinate

directions are chosen sufficiently large that the bandwidths, 4W/(MdI) and

4w/(Nd2), of the major acceptance lobes of sin(kI MdI/2)/sin(kId 1 /2) and

sin(k 2 Md2/2)/sin(k 2d2/2) are smaller than the bandwidths of any variations

of O(t,w) in kI and k2, respectively, then

O{&,W;[xOl + (M - l)d1/2.x02 + (N - I)d2/2])

OP.W;[x01 + (M - l)d1/2,x02 + (N - I)d2/21)

1k I I w/d1 and jk2j 1 w/d2  (8-156)

Given that equation (8-153) Is true, it then follows (see equation (6-152))

that
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(~ 4X0 1 + (M - 1)d1/2,x02 + (N - 1)d2/2]

exp(-i(k1(x01 + (M - l)d1/2] + k2[x02 + (N - I)d2/2]1}) O(k,)

1k II < f/d1 and Ik2 1 < i/d2 , (8-157)

and therefore, by equation (8-7),

I .G(-k,) ' Ik2I <S w/d2

-k -21 < 
P(k,) (8-158)

0, otherwise

Thus, we see that when the acoustic field of interest is band limited in the

w3vevector domain and measured at proper intervals In the spatial domain, an

approximation to the wavevector-frequency transform of that field can be

obtained from a finite number of spatial samples of the sensor output field.

The quality of this approximation depends on both the wavevector character of

the acou.tic field being measured and the numbers of spatial samples obtained

in both the and coordin~te tdirections. For any specific acoustic

field, the quality of lite approximation improves with increasing numbers of

spatial samples.

If the pressure field of interest is random, the ensemble of sample

functions o(Xo1 + di 1 ,x0 2 + nd 2,t), measured over all time f o- inrteger

values of m and n between 0 < m <S H 1 and 0 < n < - 1, provides knowledge

of the (assumed stationary) autocortclatitn function

Qoo[X01 - l1 x02 + nd 2;(q - m)d1, (s - )d2,

E(o(x01 + mdllX 02 + Rd2,t)o(x01 + qdl,x 02 i sdt + V)) (8-159)

over all v and for integer values of m ani q between 0 and M - I and integer

values of n and s between (1 and N - 1. If the pressure field is Itomogeneous

as well as stationary, the ensemble of sample functions provides knowledge of

the autocorrelation function of the homogeneous sensor output field
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Q0OO(Ud 1 ,vd2,")

E(ob.'.1 + mdlx 02 + ni 2,tO[Xo0 1 + (fi + u)dlX 02 + (n + v)d2 ,t + T~j

(8-160)

over all i for integer values of u and v between 1 - M < u < N - 1 and

I - N < v < N - I, respectively.

For the case of the homogeneous, stationary output field, the above stated
knowledge of the autocorrelation function supports an estimate, i.(k), of the
wavevector-frequency spectrum, YLo(k,Q), of the sensor output field in -Le form

14-1 N-1

0d 1d2  N 00 (ud ,vd 2 , 
- u -M+I v -- N+l

exp-i(klud1 + k2vd. + v)} dT (8-161)

Alternatively, by making use of the sampling property of the Dirac delta
function, we can write

0(L.W) 0 0 (j,)exp-i(jj + o)1

14-1 N-1
d' u ,6(t, - udl) d 2  - 6(2 - v d2) dj di . (8-162)

However, by applying arguments similar to those employed in equation (8-130)

to equation (8-147), we can shiow that

d6 - ud I}d' 1 6(t2 - vd2)I
u=-N+ v--N+l

2(14-1) 2(N-1)

d, at1 + (14 - 1I)d1 ~ 1.1 ") 6[t2 + (N - 1)d 2 - nd2I WO n-0I~d 2 2J
Sf [ + (14 - I)dlt1 v + (N - 14d;2M - I,2N - 1] . (8-163)
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Thus, it follows that

0 0 0

O= O Qo(.c)sf[gl + ( -I)dl ' 2 + (N -1)d 2;2M- 1,2N -1]

exp-i(k.jq + wx)) d_ dT (8-164)

By substituting equation (6-79) into equation (8-164) and performing the

integrations over the spatial, temporal, and frequency variables, we obtain

0 (&.=) =(20,-2 Io(-, Sf(t- ;2M -W2N - 1)

expji[(k I - vy)( - 1)dl + (k2 - 2)(N - 1)d1) dU , (8-165)

Substitution of equation (b-150) into equation (8-165) then yields the

following relationship between the true wavevector-frequency spectrum of the

sensor output field and the estimate of that spectrum obtained from a finite

number of spatial samples of the output field:

_,! sin((kI - 1)(2M - 1)d1/2]# 2 (14.
(21r)2 sint(k I - ul)dl1/2

sin[(k )(2N- 1)d212]
S.... x d(8-166)

sint(k2 - 2)d2/2 ]

Uomparison of equation (8-166) with equation (8-136) reveals that the

relationship between the wavevectir-freqency spectrum estimated from a finite

spatial sampling of the output field and the true wavevector-frequncy

spectrum of that field is the arvalog, in the wavevector domain, of the

relationship between the wavevector-frequency spectrum estimated from a finite

temporal sampling of the output field acd the true wavevector-frequency

spectrum of the output field. Furthermore, it is easily established, by

comparison of equations (8-64) and (8-91), that the relationship between the

wavevector-frequency spectrum estimated from a uniform sampling of the output
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field over all space and the true spectrum of that field is the analog, in the

wavevector domain, of the relationship between the wavevector-frequency

spectrum estimated from a uniform sampling of the output field over all time

and the true wavevector-frequency spectrum. Owing to these mathematical

analogies, we can employ arguments, in the wavevector domain, analogous to

those presented in section 8.3.1, in the time domain, to interpret the

relationship between the estimated and true wavevector-frequency spectrum

described by equation (8-166). By such arguments, we conclude that if

(1) the true wavevector-frequency spectrum of the sensor output field is band

limited in the wavevector domain such that

0o0kQ, 0) - O, l > k IC and tk2 1 > k2c, (8-167)

(2) the uniform separations, dI and d2 , between the spatial samples in the

A1 and x2 coordinate directions, respectively, are chosen such that

dI < VkIt and d? < Ik2c , (8-168)

and (3) the numibers, M and N, of spatial samples obtained in the xI and x2

coordinate directions, respectively, are sufficiently large that the

wavevector bandwidths, 4v/[(2M - I)d!] and 4/[(2N - l)d,. of the major

acceptance lobes of the functions sin[pI(2M - l)dI/21/sin(1d 1/21 and

sMtIA(2N - l)d2/2]/sin[U 2d2/2] are small in comparison to the bandwidth, in

kI or I2' of any variation of ok0

then

00 2

msf -oo -

so

,, (k,,,,) 11 1 < 2,/d 1 and II 21 2w/d 2 . (8-10)

Under tese conditions, an approximation to the wavevector-frequency spectrum

of the pressure field (see equatior (8-15)) can be recovered from the estimate

of the spectrum of the sensor output field. Ihat is,
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go~k, )  , ki <_ 2/d1
0'-_ IG'%" 2  ik21 -< 2v/d2

_~ IG'k* l ,C(k,, (8-171)

0. otherwise

The quality of the estimates of the wavevector-frequency spectra of the sensor

output and surface pressure fields improves with increasing numbers (i.e..,

and N) of spatial samples of the output field.

Considor now the estimation of the two wavevector-frequency spectrum of

the nonhomogeneous, stationary output field from the limited spatial samples

of the autocorrelation function described by equation (8-159). According to

equation (6-121), this sampling of the autocorrelation function supports an

estimate, Soo( ,k,c), of the two waievector-frequency spectrum of the sensor

output field of the form

V( .=) 2 2

= dld 2

N-I N-i 1-m-1 N-n-I c

IV.22 I Q [x0  + mdx nd ;(q - m)d1,(s -n)42,T)
m0n- q-ia- s-n--n

exp(-i[pI(x 01  mdl) + 2(x02 + rd2) + kl(q - m)d1 + k2 (s - n)d2 + ]) d'

(8-172)

By defifling
Am (x0I + md,,x2 + nd 2) ,(8-1'73)

we can rewrite equation (8-172) in the form

M-i N-I M-1 N-I

in n-0 u-0 v-O -

expt-i[m.= v- - .m) + w3 d . (8-174)

By making use of the sampling property of the Dirac delta function, we can
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write equation (8-174) in the form

S= dld' Qoo(Xi.,T)exp(-i(y-x + k.L + aT)}

I ( - 6( - %v + mn dx dj dT (8-175)
WO n=o u=O v=o

However, it is easily demonstrated that

M-1 N-1 H-1 N-1

mO n=O u=O v=O

-- 1 N-1 9-1 N-1

Mo n-i UMO v=OI 14-1 N-i
dd 2  1 6(x1 - XO1 - WI X)62 - x0 2 -nd 2

Como n-o

d 4W X " O1 * 1 Udll6(x2 - X02 + 2 -vdz)}

u4O v'O

sf( - o;.N)st(x - o + ;NH) (-1716)

Thus,

oo ) - Q00(x.i91)sf(x- " :- N)sf( - + k;HiN)

exp(-i(M.x + k* c)) dx djL d. (8-177)

To obtain a relationship between the estimated and true tolo wavevector-

frequency spectra of the sensor output field, we substitute the inverse
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Fourier transformation of equation (6-124) into equation (8-177) and perform

the integrals over the temporal and frequency variables to obtain

COW 0 0 CD W W 0 0

S ~ -~- 00J (21 4 J J 0oA9Ws -1;M,N)
(2w

sf(x - 20 + _K;MN)exp(-iL[( - a)q. + (j - i)-.]1 dx d1 da d.

(8-178)

By performing the integrals over the spatial variables, it follows that

C0 O W 00

_ 1 4 Soo(a..,)Sf(p - S + ft - k;MN)Sf(k - ;tM,N)

exp(-i( - j)-1 do, di. (8-179)

Substitution of equation (8-150) into equation (8-179) subsequently yielhs

d dd 2  o 0

S - 4(24

sin((k I - 01 )Hd1/Z] sin((k 2 - 82 )Nd2/2]

sin[(k 1 - al) l1/21 sin[(k 2  a 2)d2/2]

sin[(U - CA + 0 - kI)Md1/2] sin[( 2 - c12 + B2 - k2 )Nd/2]

sin[(U - %, + 0, kl)dl/2) stn((P 2 - Q2 + 82 - k2 )d2/2)

exp(-1L[,1 - + (M - 1)d!/2] + i12 - +2][x02 + (N - 1)d2/2])) dG d.

(8-180)

Note that the two wavevector-frequency spectrum of the space-shifted

autoco-relation function Qoo(X + ,), which we denote by So0 k;Ao]. is

given by
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S 
000

exp[-i(V-2x + i-+ wT)} dx djK dT

CO 0O 0 0 ODO

- Soo(i,k,=)exp~i-l .i (8-181)

If we denote the product oo (y,k,w)exp{ik. O by Soo[,k,.;k], it follows

from equations (8-180) and (3-181) that

] dld 2  0 c 0

00 (2~Pr)-oo

sin[(ul - a l - kI)Md1/2] sin[(v 2 - C2 + B - k2)Nd2/2]

sin[(Ijl- *1 + Bl - kl)dll2] sin[( 2  "2 + B - k2 )d 2121

sin[(k - 31 )Md1/2] sin[(k 2  - 2 )Nd2/2] do d , (8-182)

sin((k I  31)dl/2] sin[(k2 - 2)d2/2] -

where xc denotes the spatial location of the geometric center of the M by N

array of sensors. That is,

x * 101 + kM - 1)d/2,x02 + (N - I)d2/2] (8-133)

Equation (8-182) shows the estimate, ,00  , of the two wavevector-

frequency spectrum associated with the space-shifted autocorrelation function

Q0 (A + x ,jr) to be proportional to a double convolution, in the wavevector

variables a and a, of the true two wavevector-frequency spectrum, S 0o[, 3,w;C).

with functions of the form sin[(a 1  0 1)MdI/2]/sin[(ol - 0l1)d1/2],

sin( 1Md 1/2)/sin(Id 1 12), sin((., 2 B 2 )Md2/2]/sin[(, 2  a 2)d2/2], and

sin(O Md2 /2)/sin(82d2/2). This convolution cannot be iMlustrated in the

8-75



four wavenumber variables t,2 B1, and B2* However, we can gain

some insight into the relationship between the estimated and true two

wavevector-frequency spectra by examining the behavior of the product of

sin[(,g - a, + B1 - k,)Mdl/2]/sin[(vl - al + B1 - kl)dl/2] and

sin[(k 1 - B1)MdI/2]/sin[(kI - 01)d 1 /21, which, in the convolution process,

filters the true spectrum, SooE,!,;Xc). in the a1 and 81 wavenumber

variables.

We have previously observed that sin(MkldI)/sin(k1d ) is a periodic

function of kl, with major acceptance lobes located at k1 = 2nir/d1 for all

positive and negative integer values of n. The amplitudes of these major

lobes are proportional to M and the bandwidths are inversely proportional to H.

It therefore follows that the product of sin[(B 1 - al1)RdI/2]/sin[( 1 - cl)d 1/2]

and sin(O1Md1/2)/sin(B1 d1/2), which is equal to the product of

sin[(u 1 - a1 + 1 - kI)Md1/2]/sin[(u 1 - al + D1 - kl)d 1 /2] and

sin[(k 1 - 01)Rd1/2]/sin[(k1 - B1 )d1/2] evaluated at P, = k 0 - 0, is

characterized by major acceptance lobes at the intersections of B1 = 2mv/d1

and a1 - B1 = 2nw/dl for all positive and negative integer values of m and n.

The amplitudes of these major lobes are proportional to H2 and the bandwidths.

in both the a1 and B1 coordinate directions, can be shown to be inversely

proportional to M. The locations of these major acceptance lobes in the

(OlB1) domain are illustrated in figure 8-15. The shaded region shown in

figure 8-15 defines, for future reference, the primary (or unaliased) wave-

vector range of the M by N array in the (ai,131) domain. This primary

acceptance region is bounded by 1 1 1 r/d1 and 1%, - a I I/d 1 .

If we assume that M is sufficiently large that the bandwidths,

in =1 and B1, of the major acceptance lobes of the product of

sin((n1 - C1 + C. 1- k)Md1/2]fsin((uIl - 1 + aI kl)d 1/2) and

sin((k1 - 81)RdI/2]/sin[(k I - 61)d1/2] are small in comparison

to the bandwidth of any variation of S00  ,a,w; ] in a1 and 6l, then

we can approximate the convolution of S [oo[,w;x ) with the product of00~ -
sin( -1 - - kI)Md1 /2]/sin[(p1 - a1 + 01 k1)dl/2] and

sin[(k 1 - B1 )MdI/2]/sin[(k I - B1)d1/2] as a weighted summation of the

sample values of So00[ ,I.;x] at the locations of all major acceptance

lobes in a.1 and B3.
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MAJOR ACCEPTANCE LOBE (TYP)

I d d, di

di di

Figure 8-15. Locations of the Major Acceptance Lobes of the Product

sin[8 1Md /2] sin[( 1 -a)Mdl/2)

sin[old 1/2] sin[(l1 - l)dl/21

The locations of the major acceptance lobes of the product of

sin[(u I -a + 01 - k.I)Mdl/2]/sin[( I - a, + 01 - kl)dl/2] and
sin((k I - 031)MdI/2]/sin[(k I - 1l )d1/2] are illustrated in figure 8-16. Also

illustrated, in dashed lines, is the primary wavevector range in the (Q,,8)

domain. According to figure 8-16 and the above stated approximation, the
estimate of Soo[_.,,;xc] at the wavevector components V, and kI, for any
given values of v, and k2, will comprise, in general, a weighted sunwation of

the spectral samples Soo[Cu + 2mv/d1,a2 ;kI + 2n/d,1Q 2 ;Q; i] over all positive
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//d "

Ali

/ ,

di di

Figure 8-16. Locations of the Major Acceptance Lobes of the Product

sin((k - 8l)Mdli2] sin[(p l - a, + 01 - kl)Mdll/]

sirl(k 1 - B1)d 1/2] sin(( 1 - Q1 + 01 - kl)dl/2)

atid negative integer values of m and n. In this summation, the contributions

from the spectral samples associated with nonzero values of im and n are

aliased contributions that contaminate the desired value of the estimate: that

desired value being So0( l,&2;k" ,62Zw). Note, however, that if Soo(y,k.w) is

wavenumber band limited in both and k, such that

S0(,.k.) -0, Jkli > klc and Jul1 - klJ >'1c (8-184)
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and d1 is selected such that

d1 < MIN(w/klc,%/Cl } (8-185)

where MIN[) denotes the minimum of the two arguments, then the summation that

approximates the estimate of S oo[Vl ,12;kl 62;(;xc] comprises only a sing,-

sample term: that sample term being proportional to S0 [0 C 2; 1.1 8 2;;z c

evaluated at a, = UI and 01 = kI .

It is evident from figure 8-16 and the above arguments that if the band

limits and sampling criteria of equations (8-184) and (8-185) are met, then

the estimate of So00E[P.1 2 ;kl B2;f;x] is a periodic function of the variables

-I and k1

Arguments similar to the above can also be made for the convolution of

equation (8-182) in the variahles *2 and B2.

By the arguments presented above, it is evident that the estimate of the

two wavevector-frequency spectrum of the space-shifted output field will be

affected by aliasing errors unless (1) the true wavevector-frequency spectrum

of the output field is wavevector band limited in both p and k such that

S: 1kl1 > k1 .Ik2I > k and

Ip1 - k11 > clc4IlI2 - k21 > c2c (8-186)

and (2) the spacings of the M by N element array are chosen such that

d I < HIN(W/klc"W/Clc) and d2 < MIN(/k 2c v/c2 ] (8-187)

Given that these conditions are satisfied, and that M and N are chosen

sufficiently large that the bandwidths of the major acceptance lobes of the

products (sin(G1 dI/2)/sin( IdI/2)}(sin[(a I - 01)MdI/2]/sin[( I - 81 )d1/2]) and

(sin(0 2Md2/2)/sin(0 2d2/2))(sin( 2 - 02)Md2/2]/sin[(c 2 - a2)d2/2]) are much

smaller than the bandwidths of any variation of Soo[S.L,;=;xc] in al' a 012

or 024 then we can approximate equation (8-182) by
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2d2

1r k ;xc] 12
00 (2) 4 00

/d 1 01  /d1 sin[(Pl - + 81 - k1 )Md1 /2] sin[(k, - 1)Mdl/2]

-vr/d1 3-w/d1 sin((Pi - a + 0 - kl)d,/2 ] sin((k1 - D1)dl/2 ]

ir/d2  2 +/d2 s -nE(P 2 - 2 + 82 - k2)Nd2/2] sin[(kz - 82)Nd2/2]

d 2 dB2

./d2  2 -/d2  s n( - Q2 2 - k2)d2/2] sin((k2  - 2)d2/2] A2

(8-188)

However, by a change of variable and use of equation (8-116), we can easily

show that

rnd 81 /d1  * B1 - kl)Mdl/2 ] sin((k1 - BI)Mdl/2]
dal dO1

-ld 0 1 -Id n - oa + B1 - kl)dl/2] sin[(k1 - 81)dl/2]

vdl sin[(p I  kI  01 l) d oll/2 sin[(k I  - l)Mdll2 ]

Ssin[(p I  k -el)dl/2] } l sin[(k1 - O)dl/2] dl- /dI  - /dl

4f
2

4?_- (8-189)

for 1 odd. Equation (8-189) is also approximately true for N even. Conse-

quently, it follows from equations (8-108) and (8-189) that

00o[V,k,w;! c ] w So[*k,w;_Xc]: 1kl < w!dl.1 k21 < w/d2 and

Jul - kl < v/d1, P2 - k21 < v/d2 . (8-190)

By the above arguments, it is evident that if (1) S is wavenumber

band limited in both p, and k, such that
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So , 00 0: IkII > k1c, Ik 2 1 > k2c and

I 1l - kll > clc'02 - k 21 > c2c (8-191)

(2) the spatial sampling periods, dI and d2, are selected such that

d < HIN(%/kcr/CIc) and d2 < NIN[v/k 2c'/ 2c , (8-192)

and (3) the numbers of spatial samples, M and N, in the x1 and

X 2 coordinate directions, respectively, are chosen sufficiently

large that the bandwidths of the major acceptance lobes of the

Jsin(B 1 Mdl/2)sin[( - B1)Mdl/2])/sin(Sld,/2)sin((a1 - BIl)dl/2])

and (sin(O 2Md2/2)sin((&2 - 02)14d2/2]}/{sin(B 2d2 /2)sin((c 2 - B2)d2/2)}

are much smaller than the bandwidths of any variation of S00[_, ;c;x] in

a2 , l , or B2 , then the estimate, S 00,k, ;x ], of the two wavevector-

frequency spectrum associated with the space-shifted autocorrelatlon function

Qo(x + x j._T) affords an approximation to the true two wavevector-frequency

spectrum, S 0[,0,0;x 3, within the primary (or unaliased) range of the array.

The quality of that approximation improves with increasing numbers of spatial

samples in the x1 and x2 coordinate directions.

inasmuch as S00 t,-] oo(kj)exptik_xc), it follows from

equation (8-190) that, under the above stated conditions,

Soo[ ,k.;3exp[-k,.k) -

Ik II w/dl,lk2 1 5 v/d 2 and 1 -. k1 I_ tdl.1 2 - k 21 < v/d 2

(8-193)

In this instance, given the wavevector-frequency response, G(k,(), of the

(identical) sensors of the array, we can use equation (8-14) to obtain an

approximation, S to the two wavevector-frequency spectrum of the

nonnomogeneous pressure field being measured. That is,
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Soo(y , * Ikl < 1 /d1,lk2 1 < 1 /d2 and

G(k - , lI:-.k l < ,jd1 2 - k21 < i/d2

0, otherwiseI

S- ((8-194)

Another metric of interest for the nonhomogeneous, stationary field is the

space-averaged wavevector-frequency spectrum, t  which (from equations

(6-142) and (6-149)) is defined by

00= L L

0 a~k~ lrn 1 0 LL.~~ep-i + twt)) dx dj, dr (8-195)

However, the ensemble of sample functions described by equation (8-159)

supports only an estimate of the space-averaled wavevector-frequency

spectrum. That estimate, which we denott by ja(k), is

Sdd

%(.. ) 12

N-I N-1 M-m-i N-n--I 4.

q00 oyl t':d1,#X0  nd2;(4~ - t)dl f(s -~

M-0~ ~ "-0QW- -- n4
m=O n,,O q--m,, . s-ne-n -.= .

d I + k2(s - n)d2 4-i ]} d-. (8-196)

However, by reasoning .imfilar to that feilowinrg equation (E-172). we can

rewrite equation %8-196) in the form

0+

L (, d 00s f;N)sf( - i- - ,N)

cxp(1(k', + wr)) dx dj dT (8-197)

Substitution of the Fourier invqrse of (xo(,,) and performance of the

integrations over the temporal and frequency variables then yviads
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ia~k000 : l ( 0 0 )

0(2) NNd d2 - -4_00-a0r

Sf(xi - 2o;MN)sf(x_ - - +  ,;M,N)

exp(i(cx - (k- , - will dx d. de_ d. (8-198)

By integrating over the spatial variables, we obtain

-(t ((k2,0) S 0 (,8t)S( -A - k;M,N)(2) 4Mtdd 2  .. . . .
1 - O -4) __ _

Sf(k - A;MN)exp(i I.k) da d . (8-199)

By substitutting equation (8-150) for Sf(kN), and utilizing the definitions

of equations (8-181) and (8-183). we can show that

Qd 0 W

sin[(k BT)Hd112) sln( .(3. .

•( - d 01)4/2] si N 2  d) dj2 (8."200)

Equation (8 2O0) establi-hes a relationship betweon the stinate of tho
%paccave. raged wasveaor-frequency spectrum of the sensor output fielo and
the true to wavovector-froquency spectrum of that field. RecaO by equatioo
(6.-155?,. tthe true space-averaged wavevector-frequecy s pectrum,

o.  is equaI to tbe integral, over all U, of the prtdct, of the two
wavevector.-frequency spectrum, S0 (y,kt ), with sin(v 1 L)/(u1 L) anid

yia{2 L)i(P2). Consequently, it is evident from equation (8-200) that we
camot establish an exact relationship between the estimated and true
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space-averaged wavevector-frtquency spectra. Rather, we can only relate the

estimate of the space-averaged spectrum, ja(k,.), to the true two wavevector-
0-

frequency spectrum, S (0,k,0), as shown in equation (8-200).

If it is known that (!) So00( ,t,w) is band limited as described in

equation (8-186), (2) the interelement spacings of the array are selected in

accordance with equation (8-187), and (3) the numbers of sensors, M and N, in

the x and x2 coorinate directions are chosen sufficiently large that the

bdndwidths of tie acceptance lobes of sin[(B 1 - a I)Md1/2]/sin[(aI - al1)d1/211,

sin[ 1Md1/21/sinB 1 d /2], sin[(fB2 - a2)Nd2/2]/sin[(B 2 - a2)d2/2], and

sin(B2Nd2/2]/sinB 2d2/2] in al. a2' ' and 02 are small in comparison to the

bandwidths of any fluctuations of S00 (,k,w) in these wavenumber variables,

then we can employ previous argunents to show that

to(tk) S d2 , l _ I k , I< /d I and Ik21 < w/d,. (8-201)

In this case, we can employ equation (8-15) to obtain an estimate of the

space-averaged wavevector-frequency spectrum, ip(k,), of the surfate
pressure field, p( t). That is,

i k., kt 1 S/d 1

2B., t Ik 21 vld 2

p

otherwise

1NdId 2 I(-tw)I2  Md2

As a final example. consider the random pressure field characterized by

the two wavevector-frequency spectrum

S p (Mk,) - (2-)2 6(Y) p (k.) + Wp . * (8--203)
pp p o pp

where # tw characterizes a homogeneous component of the pressure field
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and W pp(y,kw) characterizes the nonhomogeneous components. By equations
(8-14) and (8-15), it follows that the two wavevector-frequency spectrum of
the sensor output field has the form

S26 (  El2
00G(-o= 1 2 G( ,=G-_=

= (2) Z6(P) o(kw) + Woo(V,, - (8-204)

We assume that (1) S00(,k, ) is band limited in k and k as prescribed by
equation (8-186), (2) the spatial sampling intervils are chosen in accordance
with equation (8-187), and (3) N and N are chosen such that the bandwidths of
the major response lobes of S(k;M,N) and S(M - LN,N) are much smaller than
the bandwidths of any variation of either o(K,) in k.I or k2 or

Woo(yiw) in 11 I P2' k,, and k2. Under these retrictions , w- can
employ the arguments developed previously to show that the tstim'te of the
space-averaged wavevector-frequency spectrum of the sensor output fieid can be

approximated by

_ W ld(qkw d)o

M d 2  ( 2 NN - "

fw/dlsin[(k1 - 1R)d1/21 2 21 sin[(.

1 1 sin[(k1  ol)d 123l/21 do I sin[(k2 6 i. d 2l
V-w/d 1  21

However, by use of equations (8-147) and (8-I50), it is straightfivard to

show that

j / I sfni(k -I O IK.N1I/21 d 2 In[(I _ 0 )Nd Z/2

sln((k- 8)dI/]j I sin(k2  - t)d 2 /2]

w/d1  w/d2

(8-206)
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Thus, we see that when the true two wavevector-frequency spectrum of the

sensor output field has the form of equation (8-204), and the above listed

wavevector band-limit and spatial sampling restrictions are satisfied, then

the estimate of the space-averaged wavevector-frequency spectrum is

approximated by

-a W 0 OkW
0(K.0) o(k,) + - MNd1d 2 , Jk1 1 < r/d1 and Ik2 1 S/d 2 • (8-207)

It follows that the estimate of the space-averaged wavevector-frequency

spectrum of the surface pressure field is approximated by

va kk v/

O0, otherwise

1P( 0(9O,.) (0 P (8208
2 1Nd d - W I d

Thus, we see that the estimate of the space-averaged wavevector-frquency

spectrum of the pressore field approximates the sum of the wavevector-

frequenvcy spectrum of the hoQogeneous component of the field and the average,

over the effective area of the array, of the two wavevector-frequelicy spectrum

of the fionhomgeneous cowponent evaluated at (0,0). Recall (see equation

* (155)> that the exact space-averaged wavevector-frequency spectrum of the

pressure field characterized by equation (8-203) was equal to the wavovector-

frequency spectrum of the homogeneous co&ponent of the field: that is,
a k

Clearly, the finite limits on spatial sampling significantly restrict our

ability to estimatq the space-time and wavevector-frequency characteristics of

any acoustic field of interest. To avoid aliasing errors in such estimates,

the output field from the sensors used to measure the acoustic field of

interest must be band limited in all wavevector variables of interest, and the

spatial intervals between sensors, in each coordinate direction, taust be less
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than one-half of the wavelengths associated with the largest corresponding

wavenumber components c :he band limits. Given that these wavevector band

limits and spatial sampling requirements are met, we can obtain only &n

approximation to the true wavevector-.frequency characteristics of the sensor

output field, and thereby of the acoustic field of interest, from any finite

number of spatial samples of the field. The quality of that approximation

depends on the wavenumber bandwidths of the main lobe of the response function

of the array relative to the bandwidths, in the corresponding wavenumber

directions, of fluctuations in the transform or spectrum of the sensor output

field. In general, the quality of the approximation improves with increasing

numbers of spatial samples.

8.4 SUMMARY

A complete characterization of any acoustic field requires knowledge of

that field over all space and time for all possible realizations of that

field. In the measurement of an acoustical field, practical limitations

preclude any such complete characterization. Therefore, measurements can

provide only some estimate of the space-time or wavevector-frequency character

of the field. In this chapter, we have examined the effects of certain

measurement limitations and decisions on the quality of such estimates.

In measurements, it is rare that the acoustic parameter of interest can be

measured directiy. Rather, most measurements utilize transducers or sensors

that convert the acoustic parameter of interest to an electrical variable.

Transducers are resonant devices and have finite spatial extent. The resonant

character of the sensor causes the ratio of the amplitudes of the sensor

output and the acoustic variable to vary as a function of frequency at any

fixed location within the field. In addition, the phase between the sensor

output and the acoustic variable at the sensor location varies as a function

of frequency. The finite spatial extent of the sensor results in the various

wave components of the acoustic field being spatially 'averaged" over the

active surface of the sensor. If the acoustic field of interest was measured

over all space and time with identical sensors, these resonance and spatial

Characteristics of the sensor would cause the wavevector-frequency charac-

teristics of the resulting sensor output field to differ from the wavevector-
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frequency characteristics of the acoustic field. As shown and discussed in
section 8.1, the measured sensor output field is a filtered version, in both

the wavevector and frequency domains, of the acoustic field of interest.

Given knowledge of the wavevector-frequency response of the sensor, the

space-time or wavevector-frequency characteristics of the acoustic field can

be recovered from the corresponding characteristics of the sensor output

field. Inasmuch as the purpose of the measurement is to characterize the

acoustic field in the space-time or wavevector-frequency domains, it is

imperative that the sensors selected for any measurement have either (1) known

response as a function of wavevector and frequency or (2) resonance frequen-

cies much higher than any acoustic frequency of interest and spatial dimen-

sions much less than the wavelength associated with the highest wavenumber

component in the acoustic field.

To take advantage of the computationally efficient fast Fourier transform

techniques, it is common practice to samDle each sensor output at uniform

increments of time. Further, because the finite spatial dimensions of

practical sensors preclude temporally synchronous measurements of the acoustic

field over all space, the acoustic field is usually measured by arrays of

sensors, uniformly separated in each spatial coordinate of interest. If the

sensor output field is sampled at unifom intervals I over all time, and at
uniform intervals dI and d2 over all space, it is demonstrated in section
0,2 that the exact space-time or wavevector-frequency description of the

sensor output field can be recovered from the sampled data if (1) the sensor

output field is band limited in frequency and in all wavevector variables such

that either

0,) 0: IWI > Wc' kII > klc' and 1k2 1 > k2c, (8-209)

0o(I.W) U: IW > WC "k I > klc, and Ik21 > k2c' (8-210)

or

SOO(M,,) M 0: W)1 > c' 1kl1 > klc' 1k21 > k2c'

IV1 - klI > Clc, and 'P2 - k21 > c2c, (8-211)
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and (2) the temporal and spatial sampling intervals are selected such that

T < tWC (8-212)

and

dl S MIN(w/cic,w/klc) and d2 < MIN(/c2cw/k2 ) (8-213)

In equation (8-213), Clc and £2c akr4 taken to be zero for deterministic or
homogeneous sensor output fields. Given that equation (8-209), (8-210), or
(8-11), as appropriate, and equations (8-12) and (8-13) are satisfied, and
-ivpn the wavevector-frequency response of the (assumed identical) sensors

comprising the measurement array, then the exact space-time or wavevector-
frequency description uf the acoustic field can be recovered from the sampled

output field over all space and time.

Sampling of the sensor output field over infinite limits of space and time
is, of course, a physically impossible task. Practically, we can obtain some
finite number, Q, of temporal samples of the sensor outp,-t field over some
finite interval of time. Similarly, we can, at best, utilize some M by N
array of sensors to spatially sample the output field within some bounded
region of space. Given that the sensor output field is band limited in both
the wavevector and frequency domains according to equation (8-209), (8-210),
or (8-11), as appropriate, and that the temporal and spatial sampling
intervals are chosen in accordance with equations (8-12) and (8-13), we
established in section 8.3 that the true space-time or wavevector-frequency
description of the sensor output field could not be recovered from the finite
numbers of spatial and temporal samples of the output field. Rather, the
finite numbers of spatial and temporal samples provide only sufficient

information to support an approximation to the true wavevector-frequency
descriptor of the sensor output field. As more fully described in section
8.3, the quality of this approximation depends on the bandwidths of the
primary response lobes of the wavevector and frequency transforms of the
spatial and temporal sampling functions relative to the bandwidths of the
fluctuations, in the respective wavevector ar, frequency domains, of the
descriptor of the cutput field. Inasmuch as the bandwidths of the primary
re-ponse lobes of the wavevector and frequency transforms of the spatial and

8-89



temporal sampling functions decrease with increasing numbers of samples, the

quality of the approximation of the desired wavevector-frequency descriptor of

the sensor output field generally improves with increasing numbers of spatial

and temporal samples. Obviously, given only an approximation to the wave-

vector-frequency description of the sensor output field, we can, at best,

recover only an approximation to the space-time or wavevector-frequency

description of the acoustic field of interest.

Given that the purpose of any measurement of an acoustic field is to

describe, as accurately as possible, the space-time or wavevector-frequency

characteristics of that field, it is evident that careful consideration must

be given, during the planning phase of the experiment, to the choice of

sensors, the number of sensors and the geometry of their spatial disposition,

and the number and period of the temporal samples. Intelligent choices of

these experimental variables can be made given reliable estimates of (1) the

wavevector and frequency content of the acoustic field to be measured and

(2) the material resources available for the measurement.
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CHAPTER 9

ESTIMATION OF WAVEVECTOR-FREQUENCY SPECTRA

In chapter 8, we established that measurements of acoustic fields can be

obtained only over finite limits in space, time, and possible realizations of

the field of interest. We further established that measurements of acoustic

fields are normally made with sensors that convert the local acoustic field

variable to an electrical variable. Consequently. the data obtained from the

measurement of any acoustic field usually consist of some sampling of the

sensor output field over limited ranges of space, time, and possible

realizations.

By definition, specification of the wavevector-frequency transform of a

deterministic field requires knowledge of that field over all space and time;

specification of the wavevector-frequency spectrum of a random field requires

knowledge of that field over all space and time for all possible realizations

of the field. Clearly, data obtained from practicable measurements of any

acoustic field of interest are insufficient to determine the true wavevector-

frequency transform or spectrum of that field. Therefore, as we argued in

chapter 8, any set of measured data can yield only an approximation to the

wavevector-frequency descriptor appropriate to the field of interest. The

quality of that estimate depends on the specific limitations imposed on the

experiment.

The use of sensors and limitations on spatial and temporal sampling are

problems common to measurements of deterministic and random fields. The

consequences of these common problems on the quality of the estimates of

wavevector-frequency descriptors of deterministic and random acoustic fields

were treated in the previous chapter.

The limited number of replications of apparatus or trials affordable in

any practicable experiment is a problem specific to the measurement of random

fields. Recall, from chapter 6, that statistical metrics of random space-time
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fields are defined in terms of average values over all possible realizations

of that field. Given that we can afford only a limited number of trials or

replications of any experiment, it is evident that we cannot observe all

possible outcomes of any random space-time field. Therefore, measurements of

any random space-time field can produce only an estimate of the desired

statistics of that field.

This chapter addresses the estimation of the wavevector-frequency spectra

of stationary random space-time fields from measured data, and examines the

effects of measurement decisions on the quality of the resulting estimate.

9.1 PERSPECTIVE

Consider an experiment designed to characterize the statistics of the

stationary random acoustic field p(x,t). Owing to practical limitations, the

data resulting from even the most carefully designed experiment will comprise

some finite number of realizations of sample functions, over finite limits of

time ,nd space, of the output field, o(x,t), of the (identical) sensors used

to measure the field. The consequences of the use of sensors, and of finite

space and time limitations, on our ability to estimate the wavevector-

frequency spectrum of p(x,t) were examined in the previous chapter. We now

wish to examine the consequences of limited trials or replications of the

experiment on the quality of our estimate of the statistics of p(2,t).

To conduct this examination, we must first define

(1) the statistical metric we wish to estimate,

(2) the specific mathematical procedure to be used to produce the desired

estimate from the measured data, and

(3) the measure of the quality of the estimate.

In keeping with the focus of this text, we define the desired statistical

metric to be the wavevector-frequency spectrum appropriate to the statistical

nature of the acoustic field, p(K,t). However, inasmuch as the experimental
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data only provide samples of the output field, o(x.,t), from the sensors

employed in the measurement, we can directly estimate only the wavevector-

frequency spectrum appropriate to the sensor output field. Given this

estimate of the wavevector-frequency spectrum of the sensor output field and

knowledge of the wavevector-frequency response of the (presumed identical)

sensors employed in the measurement, the desired estimate of the wavevector-

frequency spectrum of the acoustic field can then be obtained by use of

equation (8-14) or (8-15).

Recall that an estimate of the wavevector-frequency spectrum of a random

space-time field is defined as some approximation to the true spectrum of that

field. We now define an estimator of the wavevector-frequency spectrum to be

a specific mathematical procedure for obtaining such an approximation to the

true spectrum from some given set of data. To develop an estimator of the

wavevector-frequency spectrum of a stationary random space-time field, we

require knowledge of (1) the format of the measured data, (2) the homogeneity

of the field of interest, and (3) the specific form of wavevector-frequency

spectrum to be estimated.

Several experiments designed to investigate the wavevector-frequency

characteristics of pressure fluctuations in a turbulent boundary layer have

been conducted since Maidanik and JorgensenI proposed their direct

measurement technique in 1967. However, these experiments employed a variety

of types and configurations of sensors and produced measured data in a variety

of formats. Consequently, these experiments produced a variety of estimators

of the wavwvector-frequency spectrum of the (presumed) stationary and homo-

geneous turbulent pressure field. In contrast, only one estimator2 of the

two wavevector-frequency spectrum of a stationary, nonhomogeneous field has

been described in the open literature as of this writing.

Clearly, no single e~timator of the wavevector-frequency spectrum can

accommodate all random fields, experimental designs, and formats of measured

data. Therefore, in practice, we are faced with two alternatives; we either

develop an estimator to suit each design of experiment and field of interest

or we design the experiment to be compatible with an existing estimator

appropriate to the field of interest. In the next section, we address the

9-3



development of estimators of wavevector-frequency spectra of homogeneous and

nonhomogeneous, stationary fields suitable to measured data in the format of

limited numbers of realizations of discrete spatial and temporal samples of

the sensor output field over limited regions of space and time.

The quality of estimates of statistical descriptors of random temporal

fields has been address3d by signal processing specialists. To define metrics

of the quality of estimates of wavevector-frequency spectra of stationary

random space-time fields, we apply arguments similar to those advanced by

Bendat and Piersol3 for quantifying errors in estimates of statistical

descriptors of random temporal fields.

Assume that an experiment designed to measure a stationary random

acoustic field p(xt) produces N independent realizations uf the stationary

random sensor output field, o(K,t), over some finite limits of space and

time. Let r denote the true value of the wavevector-frequency spectrum

appropriate to the sensor output field at some particular wavevector(s) and

frequency of interest, and let T denote some estimate of this spectral value

formed from the measured data. That is, for a homogeneous field, r repre-

sents o(ko,wo) and ro represents 1 (k w For a nonhomogeneous field,

r denotes either S00(oko,wO) or V (k0,0), and r represents their respec-

tive estimates: that is, o or (k,,). Here, go , and
represent the (fixed) wavevectors and frequency of interest. Given that the

measured data comprise only N sample functions of o(x,t) over finite limits of

space and time, it is evident that these measured data represent some subset

of the ensemble of all possible sample functions of o(A,t) over those limits

of space and time. Inasmuch as it is highly improbable that eny subsequent

repetition of this sxperiment would produce the identical N sample functions

of o(X,t), the estimate of the wavevector-frequency spectrum of -the output

field, ?o, will vary randomly from experiment to experiment. Consequently,

for any fixed values of VO , k0 and w0, the estimate of the value of the

wavevector-frequency spectrum, 0o, is a random variable. Therefore, the

question of whether Fo provides a good estimate of r0 can be addressed

only from a statistical viewpoint.

Clearly, it is desirable that, if the experiment were repeated many times,
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the mean value of 'he resultant spectral estimates would aoproach the true

value of the wavevector-frequency spectrum at the wavevector(s) and frequency

of interest. Thus, if J represents the number of independent estimates of

ro, we desire that

lim  r(9-)

An estimate that satisfies equation (9-1) is said to be unbiased. If Eff 0}

doe; not satisfy equation (9-1), then the estimate is said to be biased. We

define the bias error, B0 0, to be

8(ix, 0 Eff 0) -o E(ix) -E(.) = E[0 -v r. (9-2)

Here we have used the facts that (1) the true wavevector-frequency spectrum at

any fixed wavevector(s) and frequency is a constant, (2) the iean value of a

constant is equal to that constant, and (3) the sum of the means is equal to

the mean of the sum. Note, from equation (9-2). that the bias error is simply

the mean value of the difference between the estimated and true values of the

wavevector-frequency spectrum. It should be recognized that, when fo and

r represent the estimated and true values of the two wavevector-frequency

spectrum, BO ) Is a complex quantity.

Bendat and Piersol4 point out that, Inasmuch as the bias of an estimate

addresses the average propert'as of all possible realizations of that esti.o

mate, the fact that r provides an unbiased estimate of re0 does not Imply

that the value of ro resulting from any particular realization of the

experiment will be equal, or even close in value, to the true value, ro'

Therefore, it appears desirable, given an ensemblk of (possibly complex)

values of F from many repetitions of the experiment, that the mean value

of the squared magnitude of the difference between the estimated and the true

values of the spectrum approach zero as tha number of repetitions of the

experiment increases. That is, we desire that the mean square error (PSE),

defined by

MSE = E(I o - re 12) (9-3)
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approach zero as the number (say J) of independent estimates of r becomes

large. An estimate having this property is said to be consistent. Mathe-

matically stated, a spectral estimate is said to be consistent if

lrn - 2ltm E{i ° F. - re 1 0 (9-4)

Note that, by adding and subtracting the mean of fp we can write

Fo - re = (0 - Eio0 ) + (E(i 0 - r0 ) (9-5)

Thus, the mean sqiare error can be expressed as

14SE = Ef((r E(o}) + (E(' o } - ro)11)

- E(If o - E(Fo}l') + E{IE['o} - re1i }

2E.Re(V - _ I)Re(EJF 0 - r0)) + 2E(Im(ir - Q o ))Im(E(F 0) 0))

(9-6)

Accoeding to Papoulis,5 th e first term on the right-hand side is the

variance of the generally complex random variable f 0 By the recognition that

E(Io} and r0 are constants, the second term on the right-hand side of equation

(9-6) can be idantified (from equation (9-2)) as the squared magnitude of the

bias error, and the last two terms can be shown to be identically zero. Thus,

if we denote the variance of Fo by Varo ), it follows that

MSE - Var(r ) + 8(r)I 1 (9-7)
0 0

The bias error and the mean square error provide the desired metrics for

assessing the quality of estimates of the wavevector-frequency spectrum at any

desired wavevector(s) and frequency. Given several alternative procedures for

estimating the wavevector-frequency spectral density, it follows from equa-

tions (9-2) and (9-7) that the best estimate will result from the procedure

that, for increasing numbers of independent observations, tends toward the

smallest bias error and variance. By the definition of equation (9-7), this

ideal spectral estimate is one that is consistent.
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9.2 ESTIMATORS AND THEIR DEVELOPMENT

Assume that we wish to estimate the wavevector-frequency spectrum of a

sensor output field from some given set of measured data. Obviously, we

desire to employ the estimator that produces the best possible approximation

to the desired true wavevector-frequency spectrum at each wavevector and

frequency of interest. By the arguments presented in the previous section,

the best estimator is one that accommodates the format of the measured data

and produces a consistent estimate of the desired spectrum. Clearly then, a

logical first step in our selection of an estimator is to determine whether

any estimators of the desired wavevector-frequency spectrum exist that can

accommodate the format of the measured data.

If such estimators exist, we must then assess the bias and mean square

errors associated with each candidate estimator. If an existing estimator can

be shown to produce a consistent estimate of the desired spectrum from the

available measured data, that estimator is, by definition, ,he best choice.

Otherwise, the choice is limited to those candidates that .-xhibit acceptable

combinations of bias and mean square errors.

If, on the other hand, no existing estimator can approximate the desired

true spectrum from the measured data, or if the bias or mean square errors

associated with existing estimators are unacceptably large, we are then faced

with the prospect of formulating a suitable estimator for the desired

spectrum. This prospect presents two major problems. The first of these is

that there is no "best' procedure for formulating an estimator; an estimator

founded on a serendipitous guess can be as good or better than one founded on

deductive or inductive reasoning. The second problem is that an estimator

cannot be formulated to meet prespecified bias and mean square errors.

Rather, an estimator of the desired spectrum is first formulated, and the bias

and mean square errors associated with that estimator are evaluated
subsequently.

As stated previously, a variety of estimators of the wavevector-frequency

spectrum of stationary, homogeneous fields were developed for experiments

designed to study the wavevector-frequency characteristics of turbulent



pressure fields. 1 '6'' 8 '9 However, the majority of these estimators were

formulated to accommodate a data format specific to a single experiment, and

any attention to quality was limited to the bias of the spectral estimates.

In 1977, Dynatron Corporation of Waltham, Massachusetts, developed the

first general purpose wavevector-frequency analysis system. This hybrid

analog and digital system produced estimates of wavevector-frequency

spectra of stationary and homogeneous space-time fields from the continuous

time outputs from sensors of a two-dimensional array. The hybrid design was

driven by cost considerations; an all digital system required either high

computational power or large bulk memory, both of which were expensive in

1977. The estimator of the wavevector-frequency spectrum employed in this

system was specific to the hybrid design. If the bias or mean square errors

of this estimator were investigated, they were not puiblished.

The Dynatron system demonstrated the feasibility of a general purpose

system for wavevector-frequency spectral estimation. However, since 1977,

the computational power, data transfer rates, and storage capabilities of

digital computers have increased substantially while computer costs (relative

to performance) have decreased. These advances make completely digital

systems an affordable option for general purpose wavevector-frequency analy-

sis of stationary random space-time fields. In recognition of this option,

estimators of the wavevector-frequency spectra of both homogeneous11 and
12

nonhomogeneous, stationary fields have been developed that accommodate

measured data in the format of some finite number of realizatlons of discrete,

uniform spatial and temporal sample functions of the sensor output field.

The remainder of this chapter describes the development of these estimators

and explores the quality of the resultant approximations to the true

spectra.

The motivation for such a detailed examination of these estimators is

twofold. The first is to illustrate one deductive process for formulating

estimators. The second is to detail the development of estimators of the

wavevector-frequency spectra of both homogeneous and nonhomogeneous,

stationary fields that are suitable for general purpose implementation on

modern computer systems.
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9.2.1 Foundation for the Estimator

We know that any practical measurement of a space-time field can produce

only a limited number of independent sample functions of the output field of

the sensors used for the measurement over some finite limits of space and

time. Let us start by considering the extreme case in which the data avail-

able from the measurement of a stationary random space-time field consist of a

single sample function, say o (x,t), of the sensor output field. Because

our primary concern in this chapter is the effect of limited numbers of

independent reailizations on the quality of the estimate of the wavevector-

frequency spectrum, we will assume, initially, that this measured sample

function of the output field defines o (x,t) continuously over the space

x 01 - L1/2< x, xOl + Li/2 and x02 - L2/2 < x2< x02 + L,/2, and over the
2

time t0 - T0/41< t < to + T0/2. We wish to formulate an estimate of the

wavevector-frequency spectrum of the sensor output field from this space- and

time-limited portion of a single sample function.

We know from chapter 6 that the wavevector-frequency spectrum of a random

space-time field is defined as the multiple Fourier transform of the auto-

correlation function of that field on all spatial and temporal variables. We

know further that the autocorrelation function of the stationary random sensor

output field is the mean of the product o(xt)o(x + J,t f Y) over all

possible realizations of that field. However, we have knowledge only of a

Oingle realization, o (x,t), and that knowledge is restricted in bnth space

anO time. Consequently, the product o (x,t)o (x + K,t + v) is undefined over

the spatial regions Ix I - x011 > LII2 and Ix2  X 021 > L 2/2, R I > t-

aod Jt2l > L2, and over the temporal regions it - tol > TOI2 and jx( > To .

If we wish to estimate the wavevector-frequericy spectrum by Fourier trans-

formation of an estimate of the autocorrelation function, that estimatt of t"e

auto~orrelation function must be defined over infinite ranges of all spatial

and teMporal variables. Let us therefore define a function over all space and

tiie that incorporates our limited knowledge of o (.t). That is, let

(At) - a(t -to)b(A - %0o L(,t) ,( 9-)



where

1, -T0/2< t < T0 /2
a(t) = (9-9)

0, otherwise,

and

1, -Ll/2 < x, :S L/2 and -L 2/2 < x2  L L2/2
b(x) = (9-I0)

0, otherwise.

Note from equations (9-8) through (9-10) that the sample function c(xt),

defined over all space and time, is equal to the sample function o (x,t) within

the spatial and temporal limits of the measurement, and is zero elsewhere.

Consequently, the product c (x,t)c (x + lt + v) is defined over all x, 1.

t, and Y, and is equ31 to the function o (xt)o ( + Lt + ,) within the ranges

of spatial variables specified by :xI - xOlil L 1/2' 1x2 - x02 i L 2/2,

Ix I + CI - x01 1 1/2, and Ix2 + 2 *x 02 1 L 2/2, and within the temporal

ranges it - t0 1 S T0/2 and It + T - to, T0/2. However, inasmuch as we are

given only the single sample function o (xt). we have knowledge of only a

single sample of the function c (x,t)c (x + l.t + -r). Given that statistical

metrics are defined in terms of averages over the ensemble of all possible

outcomes, we are faced with the problem of estimating the autocorrelation

function of o(x.t) from the single member function, c (t)c( I + lt + 1),

of such an ensemble.

Recall, from chapter 6, that the autocorrelation function of a stationary,

nonhomogeneous random process is a function of the absolutR spatial variable

x, the spatial separation vector 1, and the time difference t, but is
independent of the absolute temporal variable, t. The single available sample

of the function c (x,t)C (i + ,t + v), on the other hand, is an explicit

function of t (as well as x, l. and T). We exploit this absolute time

dependence of c (x,t)c_(x + ,t + T) to formulate an estimate of the auto-

correlation function of the sensor output field. That is, we note that the

average of i& (xt)c (I + l t over some appropriate interval of absolute

time is a function only of x. j, and i. and provides some estimate of the
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average properties of the function c(x,t)c(x + k,t + T) over the entire range
of these variables. These are precisely the properties we desire for an
estimator of the autocorrelation function of the stationary, nonhomogeneous
sensor output field. Thus, to approximate the autocorrelation function of a
stationary, nonhomogeneous sensor output field, we choose an estimator of the

form

I TB

Qoo( ,) 8 _ TA (,t)Ca( + ,t + T) dt (9-11)
-- B -

TA T

Here, Q0(X,0,r) denotes the estimator for the autocorrelation function
of the sensor output field, and TA and TB denote the lower and upper limits,
respectively, for the averaging over absolute time. It remains to determine
the appropriate values of TA and TB.

Note, from equations (9-8) and (9-9), that thq function c(x,t)c Cx + It + ')
is identically zero where either a(t - t0) or a(t + T - to) is zero. By equa-
tion (9-9), a(t - t0) is zero for It - t01 > T0/2, and a(t + i - t0) is zero
for It + - tol > To/2. One obvious option is to average the function
_ Q%,_Xt)C + j,t + T) over that range of t where that product is nonzero, which
is equivalent to the range of t over which the product a(L' - to)a(t + T - to)
is nonzero. The nonzero range of a(t - t0)a(t + T - to) is depicted in figure 9-i.
Here we see that the range of t over which the product a(t - t0)a(t + C - t )
is Ponzero varies with the choice of the time delay, t. Thus, if we choose to
average the function c Q(t)C (x + J,t + T) over its range of nonzero values
for each value of v, tie limits TA and TB are

to -TOI , /2 > 0,

T 1 (9-12)
St o 0 1 - 0/2, < 0

and

to  -iT fTO 2 , _
T8 tT 0 +0 2> (9-13)

t o0+ TO , 12 < 0



TO

REGION OF NONZERO
VALUES OF a(t - toa(t +,r- to

0 -MMOW0.t

to-TTt t..i

Figure 9-1. Nonzero Region of a~t t t0)a(t e+ t 0
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In this case,

TB TA = TO - [I (9-14)

An alternative option is to select

TA t0 - T0/2 (9-15)

and

TB  to0 + TO /2 (9-16)

so that

T - T A T (9-17)

Whether the limits are chosen to be those in equations (9-12) and (9-13) or

those in (9-15) and (9-16), the only nonzero contributions to the integral of

the function c (xt)c (x + I,t + T) over t will be those within the nonzero

range of the product a(t - t0)a(t + T - t0). That nonzero range is specified

by the limits in equations (9-12) and (9-13). However, for the choice of

limits specified by equations (9-12) and (9-13), the average is formed by

dividing the resulting integral by T0 - lyI, whereas for the choice specified

by equations (9-15) and (9-16), the integral is divided by T0 '

We intend to form an estimator of the two wavevector-frequency spectrum by

Fourier transforming the estimate of the autocorrelation function of the

stationary, nonhomogeneous sensor output field on the variables x, 1, and

T. The temporal Fourier transform (on T) is anticipated to be less compli-

cated if we choose TB - TA to be T rather than T - jIl. For that reason, we

choose the limits specified by equations (9-15) and (9-16). By this choice,

our estfimte of the autocorrelation function of the stationary, nonhomogeneous

sensor output field can be written in the form

QI ) c(,t)% + jt+ -t) dt(-1)
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Here, we can use infinite limits on the integral over absolute time because

the product c (x,t)c (x + _,t + T) is zero outside the temporal limits

specified by equations (i-12) and (9-13).

Before proceeding to Fourier transform equation (9-18) in order to obtain >,

an estimate of the two wavevector-frequency spectrum, let us consider how the

above described estimation procedure must be modified if the sensor output
field is known to be stationary, but homogeneous, rather than nonhomo-

geneous. Recall from chapter 6 that the average properties of a stationary,
homogeneous field, over all possible realizations of that field, are

independent of the absolute spatial and temporal variables., x and t, and

depend only on the spatial and temporal separation variables, 1 and T.

However, the value of the function c (x,t)e (x + I,t + T) fonned from a space-

and time-limited portion of a single sample function of the sensor output
field, o(x,t), is likely to vary with both the absolute spatial and temporal

variables. We desire that our estimate of the autocorrelation function of the

stationary, homogeneous sensor output field be a function of only k and T,

and reflect some average properties of C (X,t)c ( + $,t 4 -r). Both these

objectives can be realized if we formulate our estimate of the autocorrelation

of the stationary and homogeneous sensor output field as an average of the

function c (x,t)e (x + _,t # v) over some appropriate ranges of the absolute

spatial and temporal variables. Inasmuch as space and time are independent
variables, the choice of an appropriate average over absolute time does not

affect the selection of an appropriate average over absolute space, and

vice-versa. Consequently, the average over absolute time selected for the

nonhomogeneous field is also appropriate for the estimate of the auto-

correlation function of the homogeneous field. On the basis of these

arguments, we formulate the estimate of the autocorrelation function of the

stationary, homogeneous sensor output field by

.TT(X - XlA)(X 2B - x2A)

x lB X2

IA 2A
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Here, Qo(.1,T) denotes the estimate of the autocorrelation function of

the stationary and homogeneous sensor output field, XlA and X denote the

lower and upper limits of the average over x1, and X2A and X2B denote

the lower and upper limits of the average over x2. It remains to specify

appropriate values of XIA' XB, X2A, and X28.

From equations (9-8) and (9-10), it is evident that the function

(xt)cCL (2i + j.,t + T) is nonzero only over that region of space where

the product b(x - Xo)b(x + K - Xo) is nonzero. From equation (9-10), the

nonzero range of b(x - Xo)b(x + . - k) is defined by IxI - Xol1 <_ Ll/2,

Ix2 - x02 < L2/2, Ix1 + tl - x01 < L1/2, and Ix2 + 2 - x02  
- L2/2. The

nonzero range of b(x - Ao)b(x_ + I- Xo) in the va iables x, and I is

illustrated in figure 9-2; the nonzero range in the variables x2 and

is geometrically similar. If we choose to spatially average the function

C a (xt)c (x + K,t + T) over its range of nonzero values, the spatial limits

XlA, XB, X2A' and X28 are given by

f 0 1 -L 1 /2 EI > 0

XIA (9-20)

x 0 1 - kl - L1/2 , tl < 0 ,

-- 01x - tl +  LI/ 2 , kI >- 0 ,
x18  (9-21)

x 1
0 o1 + L1/2, 1 < 0,

x0 2  / 2 >_ 0
X2 A~ = (9-22)
x 2A x.02 -2 Z - L2/2 , t2 < 0 ,

x02 - 2 + L2/2 , 2 > 0,

x28 = (9-23)

x02 + L2/2 t2 < 0
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so

XlB - XlA =Ll - It,1 (9-24)

and

X2B - X2A = 2 - 1921 . (9-25)

Note here that, because the limits of integration in x1 and x2 depend on

tl and t2' the averaging area is also a function of these spatial

separations.

An alternative choice of spatial limits is

XIA -L 1/2 , (9-26)

XIB 1/2 , (9-27)

X2A r-L2/2 , (9-28)

X28 L 2 /2 , (9-29)

so that

a - x1A L1  (9-30)

and

X2B - X2A = L2  (9-31)

Either choice of limits produces an identical value of the integral in

equation (9-19) inasmuch as all nonzero contributions to the integral are

confined within the limits specified by equations (9-20) to (9-23). For

the limits of equations (9-20) to (9-23), the estimate of the autocorre-

lation function is obtained by dividing this integral by the product

(L - Il1I)(L2 - IE2 1); for the alternative limits of equations (9-26) to

(9-29), the estimate is obtained by dividing the integral by LIL 2. We

intend to estimate the wavevector-frequency spectrum of the stationary,

homogeneous sensor output field by Fourier transforming the estimate of the

autocorrel-ation function of this field on the variables I and T. We
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anticipate that this Fourier transformation will be a simpler mathematical

exercise if we choose the alternative limits specified by equations (9-26)

through (9-29). Consequently, by use of equations (9-26) through (9-31) in

equation (9-19), we estimate the autocorrelation function of the stationary,

homogeneous sensor output field by

%00(Ur) = T0LL2rCAJ)caCx2 + K,t + T) dx I dx 2 dt . (9-32)
0oo -0-0

Here, we can use infinite limits on the integrals over x1 and x2 because

C (xt)c (x + I,t + T) is identically zero outside the spatial limits

specified by equations (9-20) through (9-23).

We should note that the space-averaged autocorrelation function, Qo( ,T).

of a stationary, nonhomogeneous sensor output field is defined (see chapter 6)

as the average of the stationary, nonhomogeneous autocorrelation function,

00(x,0,t). over all absolute space, x. We therefore estimate the space-

averaged autocorrelation function of the stationary, nonhomogeneous sensor

output field in the form of a spatial average of the estimate of the auto-

correlation function of the stationary, nonhomogeneous sensor output field

given by equation (9-18). That is,

(00 T 0('1B - XIA)(X 2 B - X2A)

- X20 XIB

X2A X A

Here, X1A and X are the (as yet undefined) lower and upper limits of

integration for the component xI of the absolute spatial vector x, and X2A

and X are the lower and upper limits of integration for the component x2
of that absolute spatial vector, x.

Comparison of equation (9-33) with equation (9-19) reveals that the
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estimate of the space-averaged autocorrelation function has the same
mathematical form as the estimate of the autocorrelation function of a
stationary, homogeneous field. Recall from chapter 6 that the true
space-averaged wavevector-frequency spectrum, defined as the Fourier transform
of Q a(K,r) on the variables _ and T, represents the wavevector-frequency
spectrum of the homogeneous constituents of a generally nonhomogeneous,
stationary field. Because we will estimate the space-averaged wavevector-
frequency spectrum by Fourier transformation of the estimate of the space-
averaged autocorrelation function, it is reasonable to select the spatial
limits (and thereby the spatial average) in equation (9-33) to be consistent
with the limits chosen for the estimate of the autocorrelation function of the
homogeneous, stationary field. Those limits are listed in equations (9-26) to
(9-29). By applying these limits to equation (9-33), we obtain the following
estimate of the space-averaged autocorrelation function of the nonhomogeneous,

stationary sensor output field:

a, T) 1 (,t)C (x + It + T) dx1 dx2 dt (9-34)

Note that this estimate is identical to the estimate of the autocorrelation
function of the stationary, homogeneous sensor output field given by equation

(9-32).

We estimate the wavevector-frequency spectra of homogeneous and nonhomo-
geneous, stationary fields by Fourier transforming the estimates of the
autocorrelation functions of these fi3lds according to the spectral
definitions presented in chapter 6. Thus, by equations (6-121) and (9-18), we
estimate the two wavevector-frequency spectrum of the stationary, nonhomo-

geneous sensor output field by

exp(-i(y.x + kl + wT)) dx dj dT dt (9-35)
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Here, Soo(y,k,w) denotes the estimate of the two wavevector-frequency

spectrum, and V, k, and w are the respective Fourier conjugate variables of

the spatial vectors x and K and the time delay T. A simplification in the

form of equation (9-35) can be realized by defining E (je) to be the

wavevector-frequency transform of c(k,e). That is,

= (x,t)exp(-i(k.x + wt)} d, dt (9-36)

and

CO-A 3 E.(k,w)exp(i(k-2x f wt)) dk, dw (9-37)(21r) 3 ..

By use of equation (9-37), we can write equation (9-35) in the form

W 0 0 CO (00 0 0 CO

(2w) 3T0 - - 3-3 - c-X -) -m -)

exp(i[,(x + k) + Q(t + T)])exp(-i(R-.i + ko. + wT))

d, dj dr dt da dQ . (9-38)

By employing equations (2-38) and (9-36), we can easily show that

S- (9-39)

By equations (9-36) and (9-39), we see that our estimate of the two wave--

vector-frequency spectrum of a stationary, nonhomogeneous sensor output field

is proportional to a product of Fourier transforms of the single space- and

time-continuous sample function (x,t) on both the spatial and temporal

variables.

By reference to equations (6-78) and (6-149), we estimate the wavevector-

frequency spectrum of the stationary, homogeneous sensor output field and of
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the space-averaged wavevector-frequency spectrum of the stationary, non-
homogeneous sensor output field by Fourier transforming the mathematically
identical estimates of the autocorrelation functions specified by equations

(9-32) and (9-34) on the variables y and T. That is,

( AW) = tok,w) ; ToLIL 2 AQ+'It+)

exp{-i(k.E + wt)) dx d_ dv dt (9-40)

By writing c_(x * + ,t + T) in the form of equation (9-37), we can then
use equations (2-38) and (9-36) to show that

a , jL. 1 ( 290(,) k 0o,) = ToL1L2 _ .(9-41)

Thus, the estimate of the wavevector-frequency spectrum of the stationary,

homogeneous sensor output field and the estimate of the space-averaged
wavevector-frequency spectrum of a stationary, nonhomogeneous sensor output
field are mathematically identical, and are proportional to the squared
magnitude of the Fourier transform of the single space- and time-continuous

sample function c (,t) on both the spatial and temporal variables,

The estimators of the wavevector-frequency spectra given by equations
(9-39) and (9-41) have a very desirable property; they depend only on the
wavevector-frequency transform of the (assumed continuous) measured output
field over the spatial and temporal extent of the measurement. That is, by
equations (9-8). (9-9), (9-10), and (9-36), it is easily demonstrated that

t 0 #T /2 x01+L, /2 x02 +L 2/2

1 0 a (ox,t)exp(-i(k-K + wt)) dx dt (9-42)
t0 T0 /2 x01-Ll/2 x02-L2/2

Consequently, these estimators of the wavevector-frequency spectra from a
single conti:-1 ous, but spatially and temporally limited, sample function of
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the sensor output field are computationally simple. Further, for a single,

spatially and temporally discrete, but limited, sample function of the output

field, the forms of these estimators appear to be suitable to the application

of the computationally efficient fast Fourier transform. However, before we

adapt the estimators of equations (9--39) and (9-41) to a discrete, rather than

continuous, sample function of the sensor output field, we should first

examine the quality of these estimators. Let us start with the estimator

having the simplest mathematical form: that is, the estimator, i o(k,W),

of the wavevector-frequency spectrum of the homogeneous, stationary sensor

output field.

For any fixed values of k and w, we can show (from equations (9-8), (9-9),

(9-10), and (9--41)) that the mean value of the estimate 0 (kc) is given by
0

0) C0 O CO 00 0

E(i a(t - toalt + to)b(x -o)b(L +To0L IL 2 -IM0

E(o (4,t)o (x + jt + r))exp(-i(k.- + wi)) dj dj di dt

(9-43)

Here, we have used the fact that the expectation operator is commutative with

linear operations. However, for the homogeneous and stationary sensor output

field, it follows from equations (6-65) and (6-79) that

E{o (.*,t)o( ,t + 09)),T)

-(2w) ~ 0 %( .c)exp(i(K.j i ci)) dk dcw

(9-44)

Uy substituting equation (9-44) into equation (9-43). we can show that

- IB( I 0 I o
(2)ToLL 12
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where

A =w) a(t)exp(-iwt) dt (9-46)i °o°

and

B(k) b(x)exp(-ik.x) dx (9-47).

Recall that the spectral estimates of equations ( -39) and (9-4i) were

obtained by appropriate Fourier transformations of estimates of the auto (or-

relation functions of the respective nonhomogeneous and homogeneous, station-

ary sensor output fields. The estimate of the autocorrelation function of the

nonhomogeneous field was formed by averagirg a single sample function of the

product c (xt)C_(x + ,t + *) over the ;imited temporal extent, lO, of the

measurement of the sensor output field, The estimate of the autocorrelation

function of the homogeneous field was formed by averaging the sanm single

sample function of that product over both the limited temporal extent, TQ. and

the limited spatial area, LL 2, of tne measurement, tn formulating the

estimates of the autocorrelation function of the nonhomogeneous field by suLh a

temporal average, we are hoping that the function of x. , and i obtained by

evaluating c (xt)C (x * I.t + T) at absolute time t, will be statistically

independent of the function of x, _. and v that results from evaluating

£ ~.t c~ + Jt + t) at absolute time t 2. Similarly, in the zstimate of the

autocorrelation function of the homogeneous field, we hope that the function of

_ and x that results from evaluating c( (.t)c (x + I.t + i) at the absolute

time tI and absolute spatial location x1 will be statistically independent of

the function of I and i obtained by evaluating the same product at absolute

time t2 and absolute spatial location x2" Thus, in the estimatlon of

the autocorrelation function and the two wavevector-frequency spectrum of the

nonhomogeneous field, the number of independent observations contributing to

the estimate is assumed to be proportional to the absolute tine interval. T0'

over which the sample function c(x.t)c (x * .t 4. t) is averaged. Similarly,

in the estimation of the autocorrelation function and wavevector-frequency

spectrum of the homogeneous field, the number of independent observations

contributing to the estimate is presumed to be proportional to the product of
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the absolute time interval (To) and the area (L1L2) in absolute space over

which the sample function c (x,t)C (x + j,t + T) is averaged.

It should be recognized that, in most experiments, the areal extent of and

the intervals between spatial samplings are fixed and limited by the numbers

of sensors and attendant amplifiers or line drivers affordable within the

budget of the experiment. The temporal extent of an observation is limited by

the storage capacity of the data recording system affordable to, and

compatible with the requirements of, the experiment. Generally speaking,

modern data recording systems have storage capacities in excess of the

requirements of most experiments. Conversely, the cost of sensors and their

requisite amplifiers and filters is sufficiently high that the intervals

between, and the extent of, spatial samplings are usually barely adequate for

the objectives of the experiment. In consequence of these arguments, we

assert that the only variable that can practicably affect the number of

(hopefully) independent samples contributing to the estimate of th" auto-

correlation function of either a nonhomogeneous or homogeneous field is the

absolute time of observation, TO. Consequently, for the analysis of the

bias and mean square error of the spectral estimate, we will assume that the

number of independent observations contributing to estimates of the auto-

correlation function and wavevector-frequency spectrum is proportional only

to T o.

To investigate the bias of the vstimate of to(1,w), we wish (according to

equation (9-1)) to determine the relationship between E4 0(k,w) and

So(k,w) as the number of independent observations (i.e., T0 ) approaches

infinity. By equation (9-45),

lim EOo(,)I = m (,)
T0 T0 - (21r)3 TL 020 -0

(2 )ToLL2 -W _-= _W

IA(ca - 0)12 1B( - g)12 da du . (9-48)

Inspection of equations (9-45) to (9-47) and equations (9-9) and (9-10)

reveals that the only term it) the integrand of equation (9-48) that depends
2

on T0 is 1A(w - Q)1 . Indeed, by equations (9-9) and (9-46),
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--w T sin[(o - Q)To/2 ]

- Q) =T 0  [( - Q)T0/2] (949)

Therefore, we can write equation (9-48) in the form

li00

urn _ ~1 2(g~(
--: TO ( 2 1 2 -. 0

I T0  sin 2U Q)T 0/2] uAd (-0[( _W 0 - Q)T0/12] 2  djdQ(-0

However, by arguments advanced by Papoulis,
12

llm sin2 [(c - Q)T0 /2]-- T-o~w 0T 2r6(w Q (9-51)
T 0 - )T0/21 2

Therefore, it follows that

W 0O
ii

T0--P o Efo(,M)} (20) 2 L o(%,o)lB(f - Q112 d . (9-52)

Clearly, by equation (,-v,,, the limit of the expected value of
does not approach 4o(kw) as the number of (hopefully) independent observa-
tions (i.e., TO) contributing to the estimate approaches infinity. Therefore,

according to equation (9-1), the estimate of the wavevector-frequency spectrum
of tho stationary and homogeneous sensor output field provided by equation

(9-41) is a biased one. However, it is easily shown from equations (9-10) and

(9-47) that

In chapter 8 (see figure 8-3a) we showed that the function sin(klL1 /2)/(k1 L1 /2)
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was characterized by a major response lobe of width 4w/L l at k = 0 and that,

outside this primary lobe, the envelope of the function decreased inversely

with the magnitude of kI. Consequently, we can deduce that JB(k - a) 2 has a

primary response lobe at a = k. The width of this primary lobe in the Bi and

82 coordinate directions is 4r/L1 and 4v/L respectively. Outside this

primary lobe, IB(j - f)l decreases inversely with the square of the product

(k1 - al)(k 2 - 82). Note that, if L and L2 are sufficiently large that the

bandwidths, in 81 and 82' of the major acceptance lobe of IB(k - a)12 are

much narrower than any fluctuation of § (aw) in B1 and 02' then the role of

IB(k- a)I2 in integral of equation (9-52) is (to first order) to sample t0(6)

at the wavevector k. In this case, we can approximate equation (9-52) by

lim a* co 2km 0 o(ku,) 2 L 2 IB(k - a)! da . (9-54)-W, - (2w)2L1L2 -

However, by use of equations (9-47), (2-38), and (9-10), we can easily show

that

-Bk a)12 da - B(V)B(-V) dg - (2v)? 2 b( i)b(j) (dx

2 , (2w) dx- (?V) LIL2 (9-55)

Consequently, if L1 and L2 are sufficiently large that equation (9-54) is

a valid approximation, then

lnE#i (k,,.))) 4 (k, ) , (9-56)

and the estimate provided by equation (9-41) is essentially unbiased.

It remains to assess the mean square error as 10 4 M. From equation (9-7),

the mean square error is the sum of the variance and the squared magnitude of

the bias error. We can evaluate the bias error from either equation (9-54) or

(9-56). Consequently, to assess the mean square error, we need to evaluate
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only the variance of io(k,~w) as T0  C o. For a homogeneous and stationary
sensor output field, the true and estimated wavevector-frequency spectra are

real. Therefore, the variance of i() is given by

Var{if o( )) = E( 0 (k,o) - E_ 0(k,)}) I2

. EfI (j,)} - (Ef o(k,.)}) , (9-57)

where E(io(k,w)) is given by equation (9-45). Therefore, it remains to

formulate and evaluate Ej2(kw)}.

From equation (9-41), and using the definitions of equations (9-36) and
(9-8), we can dmonstrate that

0 0 0 0 0 0 0oo W 0 00

E(O W,)})l ------ " a(t -t)a( t2 -t)
(ToL-L2 - -4 -& - - - - - - -

_(t 3 - tY)a(t 4 - to)b(j 1 - Ao)b( 2 2 - t))b(3 b(4 - A0)

_~ E{°(Xl'tl)°mA{2't2)°.(2i3,t3loQ(E4,t4))

exp(i(&.L, + wt,))eyp{-i(k. 2  t2)]exp(i(k.x3 + ct 3 ))

exp(-i(.4 + 0 t4 )) dil dE2 d-X3 d64 dtI dt2 dt3 dt4 . (9-SB)

Here again, we have commuted the expectation and integration operations.

Equation (9-58) presents a problem in that we cannot, for an
arbitrary random process, evaluate the fourth-order moment of the form
E(o0(l,tl)oa(.,t2)o (A3 ,t3)o (E4,t4)). Nowever, if we make the (not
unreasonable) assumption that o.(x.t) is a member function of a zero mean
Gaussian random process, then we can employ the relationship given by Bendat

and Piersol:
13
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E(o (x11't1)o(kt2)o m(x 3t3) a (x4t)

Etox O, t I )o (x2.t2 ) JE (a oc(2x3,t2)o *(1,t) I

(9-59)

For the stationary and homogeneous sensor output field of interest, we can

rewrite equation (9-44) in the form

Eto (2iltl)oc(x22t 2)) Qoo(x 2 - 2 1,t 2 -tl)

=(2r)-3 10 k 1 ep1k(. 1) + w(t2 -tl)]) dk dw

(9-60)

From equations (9-59) and (5-60), it follows that

0~~ ~ 0)C ) )

(exp1iM.(x!i- 1 )]exP[iQ(t2 -tl)]exPtia.(X4 - i3)3exp['P(t 4  Yt)

+. OxP(iP-.(1 3 - OfleP~I'(t, t,']ex0(I§.(2 h) ~)expirt t4 -'t 2)]

+ expfi1p(A 2 1 ))exP(1Q(t4 -tl)lexptia .( I -. 2)]exP['r(t3 - t2)D)

dp dQ d d'

Substitution of equation (9-61) into equation (9-58) yields, through careful
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bookkeeping and use of equations (9-46) and (9-47), the following result:

W000 00CO4

((,)}= 1 (o(,£ ((,r

' ' ' 0 2 0 00 R.0) -0 -0 -
. ~ ~~(21r)6(ToL L22_ = =_ =-

0 2 2)

(IA(w - )1 2 jB(_ - p)I2 1A(w - r)1 21( - _)12

+ A*(w - Q)A*(w + a)B*(k - V)B*(k y)A(w - r)A(w + r)B(k -- a)B(k + a)

+ JA(w - Q)12 IB(k - 0I2 JA( + r)l IB(k + 9)12 1 dy dQ da dr .

(9-62)

By recalling, from equations (6-83) and (6-84), that

S*o(k,=) = (kc) = *o(-kt) , (9-63)

0 ~ 00

we can show that

(2) 6(T0 t L2)
2

2 gouialtIA( - Q)l 1k. - M)12 dzK dQ

3_ %(A.r)tA(w - r)12ti~( - g)12 df dr

0 *(AX,)A(W - r)A(w r)O(j - gq)k + a) 4At dr~2

(9-64)

From equation (9-45), we recognize that the first term on the right-hand side
is 2(E(io1 ,))]2. It then follows, from equations (9-57) and (9-64), that
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Vario(k.0)} = [E(o(k,6) ]2 +

(2r)3(T 1L L 0 (.,r)A(a - )A(w + r)B( - a)B(k + 0) da dr 2

(9-65)

Note from equation (9-65) that, independent of the value of To, the

variance of our estimate of the wavevector-frequency spectrum of a homo-

geneous, stationary sensor output field is greater than, or equal to, the

square of its expected value. Consequently, even when the areal extent of the

(continuous) spatial sampling is sufficiently large (see equation (9-56)) that

our estimate is essentially unbiased, the mean square error of our estimate is

greater than, or equal to, the square of the mean of the estimate as TO 0.

That is, according to equations (9-7), (9-56), and (9-65),

TOn MSE( o(k,w)) o(kW] 2  (9-66)

Clearly, the estimate of the wavevector-frequency spectrum of the stationary

and homogeneous sensor output field provided b. equation (9-41) is not a

consistent one. Therefore, equation (9-41) is not an acceptable estimator of

the wavevector-frequency spectrum.

This result is a disappointment, ospec-lly in light of the mathematically

attractive form of equation (9-41). We are now faced with two options; we can

attempt to develop an alternative estimator by utilizing a different approach,

or we can attempt to identify and correct the fault in the estimator provided

by equation (9-41). We choose the latter option.

9.2.2 Refinement-of the..stimators for single, Continuous Sample Function

The estinmatrs of the -aavpve tor-,r3 quecy specttr of ie non,.mePeous

and homogeneous, stationary fields specified by equations (9-39) and (9-41),

respectively, are obtained by Fourier transforming estimates of the auto-

correlation functions of the corresponding fields, given by equations (9-18)
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(or (9-34)) and (9-32), according to the definitions of the various forms of

wavevector-frequency spectra specified by equations (6-78), (6-121), and

(6-149). Inasmuch as (1) Fourier transforms are linear operations and (2) no

approximations were made in the Fourier transformations of equation (9-18),

(9-32), or (9-34) that yielded equations (9-39) and (9-41), we are led to

suspect that the lack of consistency in our estimate of the wavevector-

frequency spectrum of the homogeneous, stationary sensor output field results

from some lack of quality in our estimate of the autocorrelation function of

that field. Let us therefore examine the bias and mean square errors of this

estimate of the autocorrelation function.

The estimate of the autocorrelation function of the stationary, homo-

geneous sensor output field is given by equation (9-32). By use of equations

(9-8), (9-9), and (9-10), it is easily demonstrated that, for any fixed values

of I and v, the mean value of the estimate Q0(0,t) is given by

S{oo,) }  ToLIL 2 _ S - 4 r _-

1 5 a~t to)a(t + to)b(2 - )b(2+,0

E(o (x,t)oc(x * +,t + T)) d!, dt (9-67)

However, we recogrize E~o (x,t)o (x + ,t + T)) to be the true autocorrelation

function, Qo00(,T), of the stationary and homogeneous sensor output field.

With this substitution, equation (9-67) can be rewritten in the form

V0Qo(.0) v(T)w() 0 0o( ,) , (9-68)

where

v(T) 0 a(t - to)a(t + - to) dt (9-69)

and
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W(V) - L ' L jj b( X - -k)b( + -k-k) dx. (9-70)

By equations (9-9) and (9-69), it can be demonstrated that

1 -I , I :! To0V([) = (9-71)

O, otherwise.

In a similar fashion, we can demonstrate, from equations (9-10) and (9-70),

that

(1 - Jtlj/Ll)(l - It2J/L2), tll : L, and 1Y :S L2 ,

w(j) = (9-72)
tO, otherwise.

Consequently, we can write the mean of the estimate as

(I - ITI/To)(l - JlliLl)(l - I 2 I/L 2)Qoo(iT )  .

for ITI S TO and ItJ :S L, and IE21 < L2E(&oo(.&' )) - (9-73)

0 0, otherwise.

Recall that, because the areal extent (i.e., L1L2) of most experiments is

limited, we have assumed that the number of independent observations

contributing to the estimate of the autocorrelation function is proportional

only to the (presumedly more flexible) time of observation. T0* Consequently,

to assess the bias of the estimate of the autocorrelation function of the

stationary, homogeneous sensor output field at any fixed values of I and

v, we evaluate equation (9-73) in the limit as T0 approaches infinity.

This yields

Qoo(, )( - II/L 1)(0 - 1k2I/L 2)

for I 1: L, and Ik21 : L2 ,lir E(Qoo( , ))} (91.4)

O, otherwise.
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Here, we see that this estimate of the autocorrelation function is generally

biased. However, it is evident that the bias results only from the limited

spatial extent of our observations. That is, if L1 and L2 are either (1) much

larger than t1 and 92' respectively, or (2) sufficiently large that the true

autocorrelation function, 00 (1,), tends to zero as t 4 L 1 and g2 4 L21

then the estimate of the autocorrelation function tends to become unbiased.

It can be shown, under the assumption that o (x,t) is a member function of

a zero mean Gaussian random process, that the variance of & 00 at any

fixed values of _ and T, approaches zero in the limit as T0  W . However, the

demonstration of this result is a tedious and trying mathematical exercise

that will be left to the curious reader.

By the arguments presented above, it is evident that our estimate of the

autocorrelation function of the stationary and homogeneous sensor output field

tends toward a consistent one as T 0 4 if L and L2 are much greater than the

largest respective spatial separations, say t1max and 2Mx' '0ssociated with

any significant contribution to the true autocorrelation function of the

field. Consequently, we are led to deduce that the quality of our estimate of

the autocorrelation function is not the source of the large variance in our

estimate of the wavevector-frequency spectrum.

Unfortunately, this deduction is flawed. Jenkins and Watts 14 state the

following: *In fact, it is usually not true that, if there is a consistent

estimator of a statistical parameter, its Fourier transform is a consistent

estimator of the Fourier transform of that parameter.* This observation

arouses our curiosity regarding the relationship between the bias and variance

of the spectral estimate and the bias and variance of the autocorrelation

function. The estimate of the wavevector-frequency spectrum of the homo-

geneous and stationary field was formed from the estimate of the auto-

correlation function of that field by

-- -(.L3)exp(-i(kq + wr)) dj T(
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From equations (9-2), (9-75), and the definition of the true wavevector-

frequency spectrum, 0 (k,t), of equation (6-78), we can show the following

relation between the bias error of the wavevector-frequency spectrum and the

bias error of the autocorrelatlon function:

B= 00 (Q(,)exp[-i(K._k + wTy)) d~k dT (9-76)

Further, by the definition of the variance given by equation (6-9) and the use

of equation (9-75), we can show that the variance of the estimate of the

wavevector-frequency spectrum is related to the statistics of the estimate of

the autocorrelation function by

exp(-i[ko(Q + z) + w(Y + e)]} d d T do (9-77)

where Cov[A,B) denotes the covariance of A and B, as aefined bi equation (6-21).

Equation (9-76) states that the bias of the spectral estimate is a

multiple Fourier transform of the bias of the estimate of the autocorrelatlon

function. Consequently, a condition sufficient to ensure an unbiased estimate

of the wavevector-frequency spectrum at all wavevectors and frequencies is

that the bias error of the autocorrelation function be zero for all k and

v. Note that the variance of the spectral estimate is expressed in terms of

a multiple Fourier transform of the covariance, rather than the variance, of

the estimate of the autocorrelation function. Clearly then, a requirement

that the variance of the estimate of the autocorrelatlon function be zero for

all k and v is not sufficient to ensure that the variance of the spectral

estimate be zero for all and w. It therefore follows that the Fourier

transform of an estimate of the autocorrelation function that is consistent

for all I and 7 will not necessarily produce a consistent estimate of the

wavevector-frequency spectrum over all k and w.

Although the above observations demonstrate that a consistent estimate of
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tfie autocorrelation function of a homogeneous, stationary field does not

ensure a consistent estimate of the associated wavevector-frequency spectrum,

they do not provide useful guidance for reducing the variance of the spectral

estimate. Indeed, our efforts toward deducing the specific defect in our

estimate of the autocorrelation function responsible for the large variance of

our spectral estimate have been singularly unsuccessful. We therefore turn to

standard texts on signal processing in the hope of finding a treatment of an

analogous problem in the estimation of the frequency spectrum from a sample

function of a time series.

This review of standard texts is somewhat more productive than our own

deductive efforts. According to Davenport and Root, 15 a common way to

estimate the frequency spectral density, o(w), from a sample function, x(t),

known over the interval 0 < t < T is by means of a function called the

periodogram. That function is defined by

O(W) tx)2. (9-8

where

T

X(W) x(t)exp(-iwt) dt (9-79)

0

If we recall (from equations (9-8) through (9-10)) that c(.,t) is zero outside

the variable ranges t0 - T0/2< t < t 0 T0/2, x 0 1 - Ll/2 < x, <x,, + L/2,

and x02 - L2/2 4 X x02 + L2/2, it is evident by comparison of equations

(9-41) and (9-36) with equations (9-78) and (9-79) that, with the exception of

the choice of spatial and temporal origins, our estimate of the wavevector-

frequency spectrum of the homogeneouS, stationary sensor output field is a

three-dimensional analog of the periodogram.

Davenport and Root 16 show that, in the limit as the observation time (T)

approaches infinity, the periodogram provides an unbiased estimate of the true

frequency spectrum. However, they also show that, when x(t) is a sample

function of a real Gaussian random process, the variance of the estimate

provided by the periodogram does not approach zero as T - m; rather, the
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variance of the estimate is equal to or greater than the square of the

mean of the estimate. These characteristics of the bias and variance of the

periodogram in the limit as T -* w are analogous to those observed in the

bias and variance of the estimate of the wavevector-frequency spectrum of tho

stationary, homogeneous field given by equation (9-41) in the limit as TO 4 to.

Davenport and Root do not address the cause of the instability (i.e., the

large variance) of the estimate provided by the periodogram. Indeed, although

most standard texts in signal processing treat the periodogram and note the

large variance in the estimate of the frequency spectrum when the periodogram

is applied to random fields, tiey do not provide a cogent explanation of

the cause of that instability. However, several texts describe procedures

for reducing the variance of the spectral estimate associated with the

periodogram. Collectively, these procedures are referred to as "spectral

smoothing' or simply *smoothing.*

Many procedures have been developed to smooth spectral estimates.

However, most of these smoothing procedures are variants of two basic

methods. One method, proposed by Blackman and Tukey,17 convolves the

spectral estimate provided by the periodogram with a spectral window. The

resulting $smoothed' spectral estimate, at any frequency, is a weighted

average of the estimate provided by the periodogram over an effective

bandwidth dictated by the spectral window. As a result of this averaging over

frequency, the variance of the smoothed spectral estimate is mauch smaller than

that provided by the periodogram. Recall that a convolution in the frequency

domain is the result of a product in the time domain. Therefore, it can be

demonstrated that the smoothing proposed by Blackman and Tukey can be achieved

by multiplying the estimate of the autocorrelation function associated with

the periodogram by a 'lag window" in the variable Y prior to Fourier

transfortmtion on that variable. The purpose of the lag window is to

time-limit the estimate of the autocorrelation function in the time delay (or

time "lag') variable to id C max . where Tmax is much less than the

temporal length of the sample function and is inversely proportional to the

desired bandwidth of the spectral window.

The second method of smoothing is that proposed by Bartlett.18 In this
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method, the single sample function of temporal extent T0 is divided into J

segments, thereby creating 3 sample functions, each of temporal extent

T0/3. A periodogram is computed for each of the J sample functions, and the

spectral estimate is formulated by averaging the J periodograms. Oppenheim

and Schafer19 demonstrate that if the 3 periodograms are statistically

independent, then the variance of the spectral estimate obtained from their

average is inversely proportional to 3, and therefore approaches zero as J 4 0.

Either of the above described smoothing procedures can be applied to

reduce the variance of our wavevector-frequency spectral estimates. However,

it appears that the smoothing of our spectral estimates by the Bartlett

procedure can be implemented by relatively minor modifications of our current

estimates. Further, inasmuch as the smoothed spectral estimate resulting from

the Bartlett procedure is expressed in the form of an average of periodograms,

we anticipate that, for measured data in the form of discrete and uniform

spatial and temporal samples of the sensor output field, the smoothed spectral

estimate can be efficiently eva'uated through the use of fast Fourier

transforms. Consequently, we choose to smooth our spectral estimates by

employing a variant of the Bartlett procedure. That variant is known as the

Welch method.

9.2.3 Smoothing of the Estimators for a Single. Continuous Sample Furiction

by the Welch Method

The Welch method20 is a modification of the Bartlett procedure in which

the smoothing is affected by averaging modified periodograms. In this method,

the sample function is first partitioned in time to create 3 sample functions,

each of length T0/J. Identical temporal weightings are then applied to each

of the 3 sample functions, and modified periodograms are formed by' Fourier

transforming each of these windowed sample functions. The smoothed spectral

estimate is then form ; by averaging the 3 modified periodograms. The use of

the temporal weighting affords some degree of control of the shape of the

spectral h;ndow applied in the frequency domain.

We implement the Welch smoothing method to our estimates of wavevector-

frequency spectra as follows. Recall that we are given a single sample
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function, o(x,t), of the sensor output field that (for the present) is
assumed to have been measured continuously over the space within
Xo1 - L1/2 < x1  oX1 + L1/2 and x02 - L2/2< x2 S x02 + L2/2 , and
over the time t0 - T0/2 < t < t0 + T0/2. We first partition the single sample
function in time, thereby creating J sample functions of equal temporal length,
T = TO/3. The 3 sample functions, o01(xt). j = 1,...3, resulting from this
temporal partitioning are defined continuously over the space within
Xo1 - L1/2 < x1 :x 1 + L1/2 and x02 - L2/2 < x2 S x02 + L2/2, and over the
temporal intervals to - T0/2 + (j - 1)T < t : to + TO/2 + iT. We next apply
Identical temporal weightings to each of the 3 sample functions. The temporal
partitioning and weighting is illustrated in figure 9-3. The temporal
weighting, which we denote by aw(t), is a real and even function of time
within the temporal range Iti : T/2, and is zero for Itl > T/2. A temporal
weighting function satisfying these requirements is illustrated in figure 9-4.

We presume that the spatial extent of practical measurements will, owing
to fiscal constraints, be barely adequate for the objectives of the
experiment. Consequently, we do not propose to partition the data in space.
However, it is evident from equations (9-48) and (9-65) that the mean and
variance of the spectral estimate depend on B(k), the wavevector transform of
the spatial window, b(X). Therefore, it appears prudent to provide for
spatial weighting of the sample functions so as to offer an additional means
of influencing the bias and variance of the spectral estimates. To that end,
we apply identical spatial weightings, bw(A -k ), to each of the J sample
functions. Here, bw(X) is a real and even function of both x1 and x2
within 1x1l S Ll/2 and Ix21 < L2/2, and is zero outside these spatial bounds.

Let us now define, in a fashion similar to equation (9-8), a function over
all space and time that incorporates our knowledge of each of the J spatially
and temporally weighted sample functions. That is, let

C j(Kt) = aw[t - t o + T0/2 - (2j - l)T/ 2 ]bw(X - Xo)O%(2,t), j = 1,2,...J

(9-80)

for all x and t. Note by equation (9-80) that c p(j,t) is equal to the meas-
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Figure 9-3. Illustration of Temporal Partitioning and Weighting

aw(t)
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ured sample function o (x,t), subject to the desired spatial and temporal

weightings, within the spatial area defined by x01 - L1/2 < xI 1 < 0 L 1 /2

and x02 - L2/2 < x2  xo2 L2/2, and within the temporal interval

to - T0/2 + (p - )T < t < t + TO /2 + pT. Outside these spatial and temporal

regions, c p(X,t) is identically zero.

We ,iow proceed to define estimates of the autocorrelation functions of the

sensor output field from each of the J sample functions by applying arguments

similar to those advanced in section 9.2.1. If the sensor output field is

known to be stationary, but nonhomogeneous, we form an estimate of the auto-

correlation function from the j-th sample function by a form similar to that

given by equation (9-11). That is,

TBj

T - T (xt) C Mx + ,t + ) dt (9-81)

,Aj TAj

for all x, K, and r. Here, &0o(XK.- )J denotes the estimate of the

autocorrelatlon function of the sensor output field formed from the J-th

sample function, and TAj and TBj denote the lower and upper limits, in

absolute time, over which the product c d(.,t)c (X +,t + v) is averaged to

form the estimate.

We choose the limits T and T by applying arguments similar to those

used in section 9.21. As is evident from equation (9-80), the function

C*J(Xt)c j(K + k,t + T) is identically zero over that range of absolute time

where the product a,(t - to + TO/2 - (2j - l)T/2]aw(t + I - t0 + T0/2 - (2j - l)T/2)

is zero. The nonzero range of this product is illustrated in figure 9-5 as a

function of t and v. Note that the range in t over which the product

aw[t - tO + TO/2 - (2j - 1)T/2]aw (t + T - to 4T/2 - (2J - l)T/2], and thereby

the function % j(t))t j Q + 1,t + T), is nonzero varies wiih the choice of

the time delay, v. Thus, if we select IAj and T6j to correspond to the range of

absolute time over which the function c * t ( )ct j(x + Lt + v) is nonzero for

each T, then it is evident from figure 9-5 that TBj - TAj will equal T - InI

for all j between unity and J. Alternati-ely, if we select TAj and 1Bj to
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be to - T0/2 + (j - 1)T and t0 - T0/2 + JT, respectively, the nonzero

contributions to the integral of equation (9-81), for any given value

of T, will still be confined to that range of t where the product

a w[t - to T0/2 - (2j - l)T/2]a w[t + T - t 0 T0/2 - (2j - l)T/2] is non-

zero, but TBi - T will be equal to T, regardless of the choice of either j

or T. For reasons consistent with those advanced in section 9.2.1, we

select those limits that render T - T independent of T; that is, we choose

TAj to be t0 - T0/2 + (j - l)T and T Bj to be t0 - T0/2 + JiT. Accordingly,

it follows from equation (9-81) that the estimate of the autocorrelation

function obtained from the j-th sample function of a stationary, nonhomo-

geneous sensor output field can be written in the form

OD

o(Xrr)j = .(Xt)%(X +* j,t + T) dt (9-82)o- j T_ 4 =J "~'(-2

for all x, K, and '. Here, the infinite limits on the integral over

absolute time are permissible because, for any choice of j and T, the

function Q j(x,t)c .( + jt + T) is identically zero outside of the

range to - 10/2 + (j - 1)T < t < t0 - T0/2 + JT.

For any given values of x, y,, and i, we formulate an estimate of the

autocorrelation function of the stationary, nonhomogeneous sensor output field

by averaging the estimates of the autocorrelation functions obtained from the

J sample functions at corresponding values of 4, j,, and %. That is,

3 l

1 =jtal

5T Qj (xt)=jl(x_ + jt + V) dt. (9-83)
J.,t -0

If the sensor output field is known to be stationary and homogeneous, we

arque, a, we did in section 9.2.1, that an estimate of the autocorrelation

function from the J-th sample function can be obtained by averaging the
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function e J(x,t)c (x, + K,t + T) over some appropriate ranges of space and
time. We assert that the average over absolute time utilized to obtain the

autocorrelation function from the j-th sample function of the stationary,

nonhomogeneous field is also appropriate for estimating the autocorrelation

function from the j-th sample function of the stationary, homogeneous field.

Therefore, the estimate of the autocorrelation function from the j-tn sample

function of a stationary, homogeneous sensor output field can be written in a

form similar to that in equation (9-19). That is,

Qoo(Ulj = T(XIB - XlA)(X26 - X2A)

aIB 1828

C a e(4.t)CQJ ( + &,t +i) dx1 OX 2 dt . (9-84)

1~XA X2A

Here, Qoo( i) denotes the estimate of the autocorrelation function

of the stationary and homogeneous sensor output field obtained from the J-th

sample function, XIA and X,, denote the lower and upper limits of the

average over x,, and X2A and X2. denote the lower and upper limits of

the average over x2.

By equation (9-80), it is evident that the function (t)cQj(2. + It + )

is nonzero only over that range of & where the product bw ( - N0)bw(x + I -

is nonzero. Recall that bw(A) is nonzero only within -Li/2 < x, L,/2 and

-L2/2 5 x2  L2/2. This nonzero range of bw(Q) is identical (see equation

(9-10)) to the nonzero range of b([). Thus, the nonzero range of the product

ba- Adbw( j + -- ) in the variables A and L is identical to the

nonzero range of the product b(x - + - O), which is illustrated in

figure 9-2. Inasmuch as (1) equations (9-84) and (9-19) are mathematically

similar and (2) the integrands of these equations are nonzero, for any given

,, over identical ranges in x, we can employ arguments identical to those

applied to equation (9-19) to define appropriate values of the spatial limits

XIA, X16, X2A, and X28. These appropriate limits are those specified

by equations (9-26) to (9-29). By employing these limits in equation (9-84),
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and by noting (see equation (9-80) and figure 9-2) that the function

C- a(xt)c (x + j,t + T) is identically zero for all choices of _K when

Ix I I > L1/2 and Ix21 < L2/2, we obtain the following expression for the
estimate of the autocorrelation function of the stationary and homogeneous

sensor output field from the j-th sample function:

O c CO

00,) J TIL 2 3 € j (x,t) j(x + t + v) dxI dX2 dt (9-85)

The estimate of the autocorrelation function of the stationary,

homogeneous sensor output field, &00( ,r), is formed by averaging the

separate estimates formed from each of the J sample functions. That is,

J=1
j~

-J-1 jI l 2 2 CIj(_,t)c j (A + kL,t + T) dx, dx2 dt (9-86)

In accordance with the arguments advanced in section 9.2.1, we estimate

the space-averaged autocorrelation function of a stationary, nonhomogeneous

sensor output field by averaging the estimate of the nonhomogeneous auto-

c9rrelation function of that field over some appropriate region of absolute

space. By applying this argument to equation (9-83), we obtain

X2B Xl B

00 (X 18  X1A)(X28  X2A) A (xA000 ) dxI dx2

j X 2B A18

c t~'a~ + I 't + 'V) dt
-- A J. - 2A X A

(9-87)
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In section 9.2.1, we argued that it was reasonable to select the limits
associated with spatial averaging (i.e., XlA , X1B, X2A, and X28) to be
consistent with those chosen for the estimate of the autocorrelation function
of the stationary, homogeneous sensor output field. Die spatial limits used
to estimate the autocorrelation function of the stationary, homogeneous field
are those specified by equations (9-26) through (9-29). By use of these
limits in equation (9-87), we obtain the following estimate of the space-
averaged autocorrelation function of a stationary, nonhomogeneous sensor
output field:

Q_0, = TL1L Cj (A,t)c (X + I,t + T) dx dx dt . (9-88)
12 =I -'W -0 -0W

Note that this estimate is mathematically identical to the estimate of the
estimate of the autocorrelation function of the stationary, homogeneous sensor
output field given by equation (9-86).

Smoothed estimates of the wavevector-frequency spectra of the sensor
output field are obtained by appropriate Fourier transformations of the
revised estimates of the autocorrelation functions developed above. From the
definition of equation (6-121) and equation (9-83), the two wavevector-
frequency spectrum of a stationary, nonhomogeneous sensor output field is

estimated by

--L ' jlx tlC C C + It + )

1exp(-i(yo. + jot + wv)} dx dj dv dt .(9-89)

A considerable simplification of the mathematical form of equation (9-89) can
be realized by defining the Fourier pair

( cj(jt)exp(-i(k.x + wt)) dx dt (9-90)
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and

j (x, t) - 3  S J(k.oi)exp(i(k.x + ot)) dk do (9-91)
(21r) _ _ i

By writing %j(2 + j,t + T) in the integrand of equation (9-89) in the

form of equation (9-91), we can employ equations (2-38) and (9-90) to show

that the smoothed estimate of the two wavevector-frequency spectrum of a
stationary, nonhomogeneous sensor output field can be expressed by

3

= T (V - k,-)e_ (,) . (9-92)
J=l

In a similar fashion, we can demonstrate, from equations (6-78) and (9-85)

and from equations (6-149) and (9-88), that smoothed estimates of both the

wavevector-frequency spectrum of a stationary, homogeneous sensor output field

and the space-averaged wavevector-frequency spectrum of a stationary, non-

homogeneous sensor output field are given by

3

20o(iw ) - 4(k) - JTLIL2  , l (k J1 " (9-93)

Before we modify the Welch-smoothed estimators of wavevector-frequency

spectra developed for a continuous sample function to accommodate measured
data in the form of one or more discrete sample functions, it would seem

prudent to examine the quality of these estimators in order to determine

whether the smoothing process has been effective in reducing the variance of

the spectral estimate. In section 9.2.1, we examined the bias and variance of
our initial (unsmoothed) estimate of the wavevector-frequency spectrum of a

stationary, homogeneous sensor output field. To determine the effects of the

Welch smoothing process on the quality of the spectral estimates, we will

compare the bias and variance of the smoothed estimate of the wavevector-

frequency spectrum of the stationary, homogeneous sensor output field to the

bias and variance of the unsmoothed estimate.
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By use of equations (9-80), (9-90), and (9-93), we can show that the mean
value of the smoothed estimate of the wavevector-frequency spectrum of a
stationary, homogeneous sensor output field at any fixed values of k and 0 can

be written in the form

-3TL 1L2 ~ bw( - .0)bw(y - x0 )

aw t - t0 + T0/2 - (2j - l)T/2]a w[ - t0 + T0/2 - (2j - I)T/2]

E(o (x,t)o (y,o)exp(i(k.x + wT)1exp(-i(k.y + ce)}

dx dy dt do (9-94)

However, for the stationary, homogeneous sensor output field,

EtoC(x,t)o(Y,O)} Q00(Y - x, - t)

1 C O OD
-2) 3 a,)exp(i[8.(y - 2L) + G(O - t))) dfO dQ

(9-95)

By substituting equation (9-95) into equation (9-94), we can easily demon-

strate that the mean of the spectral estimate is given by

1C 2 2
(2w)3 3) 0 %(,Q)IA w(W - 9~)1 IB W(k - 0jI df dQ .

1 L2  (9-96)

where

-- Aw(w) A a w(t)exp(-iot) dt, (9-97)

B w (k) bw(2i)exp(-ik x) dx (9-98)
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Note, from equation (9-96), that the mean of the spectral estimate is

independent of the number, 3, of (hopefully, statistically independent)

estimates of the spectrum, and is equal to the convolution of the true

spectrum with spectral windows, IAw(w - a)12 and IBw(k -)12, in both the

frequency and wavevector domains. Thus, according to the definition of

equation (9-1), the Welch-smoothed estimate of the wavevector-frequency

spectrum of the stationary, homogeneous sensor output field is, in general, a

biased one.

Recall that the temporal and spatial weighting functions, aw(t) and

b w(X), are real and even functions of time and space, respectively. It

therefore follows that the spectral windows IAW()I 2 and IBw(k)I 2 are real and

even functions of their respective independent variables. The temporal and

spatial weighting functions are normally specified such that IAw()l 2 is

characterized by a maximum at w - 0 and JBw(k)j2 is characterized by a maximum

at k = (0,0). If aw(t) and bw(K) are chosen such that the bandwidths

associated with the maxima of JAw(W)I 2 and 18w(k)12 are narrower than any

fluctuation of the true wavevector-frequency spectrum in o, kl, and k2, then

we assert that, in the convolution of equation (9-96), the role of the

spectral windows, IAw(W - Q)I2 and IBw(k - )12. is to "sample* the true
wavevector-frequency spectrum, 0(a,Q), at the frequency 9 - w and at the

wavevector a k. In this case, equation (9-96) is well approximated by

1 1IBw() dj . (9-99)1(21)2LIL2 - ewa l

However, by arguments similar to those used in equation (9-55), it is

straightforward to show that

2,T 2 dQ= - a2(t) dt (9-100)
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and

1 (2O) 2(1P2 d" 2 (9-101)

Note that, if aw(t) and bw(x) are chosen such that (1) equation (9-99) is
a valid approximation and (2) the integrals of equations (9-100) and (9-101)
are both equal to one, then

# -O=i (koc) (9-102)

and the smoothed estimate is essentially unbiased.

To evaluate the mean square error of the smoothed estimate, we must (by
equation (9-7)) evaluate the variance of the estimate. To evaluate the
variance of the wavevector-frequency spectrum of the stationary, homogeneous
sensor output field, we must first (see equation (9-57)) formulatv an

-2
expression for E[#o2(k1W))-

From equation (9-93), by using the definitions of equations (9-90) and
(9-80), we can show that

j 3 0 a 0 0 0

(JTL 1L2)-

aw[t1 - to + T0 /2 - (2j - 1)T/2]aw(t2 -to + TO/2 - (2j - t)T/2]

a w [t3 - to + T0/2 - (2m -l)T2]a [t4  tO + 10/2 - (2m - I)T/2]

bw,- 2!9bW(X2 - SO)bV(3 - VVb -KO)

Efo (x1 ,t *)om(A2't2)oe( 3 ,t3)o(4,t4))

_exp( t)exp-i(kx 2 + Ot2 )]exp(i(k.x 3 + Wt3))

exp[-i(kj 4. + wt4)) dxI d 2 d 3 d4 dt, dt2 dt3 dt4  (9-103)
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Recall, from section 9.2.1, that in order to evaluate the fourth-order moment

E(o (Xl,tl)O (x2 ,t 2 )o (x3 ,t 3 )o(A ,t4)), we assurmed that o(x,t) was a

Gaussian random process. By again assuming o(x,t) to be a Gaussian random

process, and by employing the consequent relationship given by equation (9-61)

in equation (9-103), we obtain

1( (yQO ar
3 2 Lw) 3 3T((2v)3JTL1L2]2 "= - - - -0 -0o-

(IAw(W - Q)121Bw(j - 2)21Aw(w r)121Bw(k - A)12

+ (. - Q)Aw(w + Q)Bw(k - P).w(k + P!)

AW(W - r)Aw(w + r)Bw(k - k)Bw(k .a)exp[-i(s + r)(j - m)T]

io IA(( - Q)I 2IBw(k - 01121w(w + r) 121w(K_ + a)I2

exp(-i(o + r)(j - m)J]) d d df dr . (9-104)

However, by use of equation (9-63), we can demonstrate that equation (9-104)

can be rewritten in the form

(- [(k.,)) _
E#0

I - # *J.Q)IAW(w - Q)I 2IiiW(t - p)1 dv do
[(2w) 3 31L11L2 12 I I -1

*o(a.r)lAw(- r~l218w(k_ g d12 a dr

+1 = °(r)A(w - r)j(w + r)ow(- - a)Bw( + a)exp(-ir(j - m)TI d§ dri 2

+ #0(fi~r)IAw(cj - r) 2 IB(k, - g)i 2exp(-ir(j - m)T] da dr 21

(9-105)
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The first term on the right-hand side of equation (9-105) is independent of J
2

and, by reference to equation (9-96), is equal to (E[i (k,)]]2 . Thus, it

follows from equation (9-57) that

3 3 CO Ca 0 0

Var{% (k.4o) 3 2 . 0 0 * A r)A w(Wi r)
[(2v) JTL L I 2 =L~~~12] Jl =l | jj. =-

W(c + r)B w(k - )Bw (k + a)exp(-ir(j - m)T) df dr 2

I+ 0 o(a'r)IA w(w - r)1 2

imm

+1 __ t0 ftr)IW(. -M)

-o~ a)12 exp[-iP(j - m)T] da dr l2l (9-106)

We cannot exactly evaluate the variance as stated in equation (9-106).

However, by applying arguments analogous to those presented by Nuttall,21 we

can obtain a good approximation to the variance.

Nuttall first argues that if the frequency of interest, w, is greater than

the bandwidth of the primary response lobe of the spectral window IAw(cj)I 2 , then

the primary response lobes of Aw(w - *) and Aw!w + F) do not overlap significant-

ly. In this case (for useful spectral windows), the product Aw(w - r)Aw(w + r)
2

is much less than JAw(W - r)l . Analogously, if the components (kI and k2) of

the wavevector (K) of interest are greater than the bandwidths of the primary
response lobe of the spectral window JO WkI 2 in their respective coordinate

directions, then the primary response lobes of Bw(t - Q) and Bw(t + 0) do not

overlap significantly. In this case, the product Bw k - OB8 (t + a) is much

less than 1BW(L - 0) . Thus, for such wavevectors and frequencies, the

contribution to the variance from the first term on the right-hand side of

equation (9-106) will be much smaller than the contribution from the second

term, so the variance is well approximated by

Var(io(kw))3 3 0 (ar)IAw(w - r)l2
,m [(Zir)3TL L21

((2 2JTL2  J-1 m- I~ -M -0

miw(t - ) 2exp[-ir(j - m)T] d drj2 (9-107)
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For = = 0 and k - (0,0), the first and second terms in equation (9-106) are

equal, and the variance is twice the value given by equation (9-107).

Nuttall next shows that, by the change of variable n j - m, equation

(9-107) can be rewritten in the form

Vari o(k,0)) - L (1 - tni/J) 0o(I,r)~[(2) 3 LL 2]3 n=-(J-1 ) - -
1 2 2JOB

-m- -r)11Bw(k -_)1 exp(-lrnT) df dr 12 (9-108)

If the bandwidths of the primary response lobes of the spectral windows

IAw(r)1 and IBw(a)12 are narrower than the widths of any fluctuation

of o(13,r) in r, OI, and 02, then equation (9-108) can be approximated by

Vari 0(k, )} - 0
(21)M(TLIL 2 )2 n=-(J-I)

w-IBw( - 9)1d2 d , IAw(w - r)l2exp(-irnT) dr 2

(9-109)

However, we can easily demonstrate that

iAw( - r) 2exp(-irnT) dr - exp(-iwnT) aw(t)aw(t + nT) dt (9-110)
-,w -

and that

_aw(k - 2 d b (x) d (9-111)(2w) 2 - - _

Therefore, it follows that
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0 ~ ~ ~ 00lL

3-1
1 (1 - InI/J) aw(t)aw(t + nT) dt 2 . (9-112)

=-- n=-(3-l1)

Recall that the weighting function aw(t) is a real and even function of

time that is nonzero only within -T/2 _ t < T/2. Thus,

a(a(t+ nT) dt a 2n 5a(t) dt ,(9-113)

where 6nm denotes the Kronecker delta function, which equals unity when

n = m and is zero otherwise.

By substituting equation (9-113) Into equation (9-112) and performing the

summation on n, we obtain

ark,)- (,) 1d 2 2
Var( ..(kw)) 1 2(x) 1211 ( a(t) dtl2 . (9-114)

0-0LI - T w

The weighting function bw(x) Is a real and even function of k, and k2 that is
nonzero only within lxl1 < LI/2 and Ix21 < L2/2. Further, inasmuch as all

practical weightings are finite, aw(t) and bw(x) are finite for all t and x,

respectively. Because aw(t) and bw(j) are both finite, band-limited

functions, the integrals of a (t) and b2 () in equation (9-114) are finite
constants. Therefore, It follows that the variance of the Welch-smoothed

estimate of the wavevector-frequency spectrum of the stationary, homogeneous

sensor output field is inversely proportional to the number (J) of independent

estimates averaged to form the final spectral estimate, and approaches zero as

3 tends to Infinity.

Given thdt the variance of the Welch-smoothed estimate of the wavevector-

frequency spectrum of the stationary, homogeneous sensor output field tends to
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zero as J appruaches infinity, it follows from equation (9-7) that the mean

square error of the estimate is equal to the square of the bias error. Recall

that the mean value of the Welch-smoothed estimate is independent of J, and

approximates the value of the true spectrum only when (1) the bandwidths of

the spectral windows IAw(w)I2 and lBw(k)I2 are narrower than any fluctuationtwh2

of the true spectrum in w, kI. and k and (2) the mean value of aw(t) over

time and of b2 (x) over space (see equations (9-100) and (9-101)) are both

equal to unity. Given that both of these conditions are satisfied, the bias

error is .fectively zero, and equation (9-93) provides an essentially

consistent estimate of the wavevector-frequency spectrum of a stationary,

homogeneous sensor output field.

It is of interest to note (see equations (9-2) and (9-96)) that the bias

error depends on the bandwidths of the spectral windows, JAw()I 2 and

,Bw(k)12 , relative to the bandwidths of the fluctuations of the true

wavevector-frequency spectrum, § (k,w), in w, kl, and k2, whereas the variance

of the spectral estimate (see equation (9-114)) depends on the number, J, of

independent estimates of the spectrum that are averaged to form the final

spectral estimate. To illustrate the practical implications af this

observation, consider the problem of estimating the wavevector-frequency

spectrum of a statioiiary, homogeneous sensor output field from a sample

function, o (xt), observed continuously over the space within jxlj L1/2

and ix2 1L2/2, and over the time Itl < T0/2. We desire to estimate

the wavevector-frequency spectrum by utilizing the Welch-smoothed method, and

therefore we wish to partition the sample function in time to create J sample

functions, each of length T - T0/J. How do we choose J in order to obtain

the best estimate of the wavevector-frequency spectrum?

For simplicity, let us assume that the temporal and spatial weighting

functions are uniform, and are given by

I/T, Ittt S '12 ,

t) (9-11)

1O, otherwise,

and
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1/(LIL), 1xll I L /2 and Ix21 : L2/2

bW(I) 0, otherwise. (9-116)

The consequent spectral windows, JAw(w)I2 and IBw ()l2 , are

IA ( )I 2 = sin2 (T/2) (9-117)
w (0T/2 )2

and

2 sln 2(k L /2)sin 2(k2L 2/2)
IB WWIt 2 (9-118)

(k1L1 /2) (k2L212)2

X , 2The bandwidth of the primary acceptance lobe of JA (WMI can be shown to be

4v/T, and the bandwidths of the primary acceptance lobe of B W(k)l2 in the

k and k2 coordinate directions are 4nw/L 1 and 4v/L 2, respectively.

By equation (9-96) and successive arguments, we desire that the primary

acceptance lobes of JAw(M)I2 and IBW(k)I 2 be as narrow as possible in

order to minimize the bias error. Inasmuch as the bandwidtns of these

acceptance lobes are inversely proportional to T and to L and L2, we

clearly wish to select these parameters to be as large as possible in order to

minimize the bias of the estimate. However, the mean square error of the

estimate is equal to the sum of the variance of the estimate and the square of

the bias error, and the variance of the estimate is inversely proportional to

J, the number of time partitions of the original sample function. To minimize

the bias, we should select the largest possible vaie of T; that is, I t TO0

However, for that choice of T, a would be unity, and the variance of tho

estimate would be relatively large. Conversely, to minimize the variance of

the estimate, we should select 3 to be large. However, given that T0 is

fixed, a large value of J results in a small value of T, a consequent wide

bandwidth of the primary acceptance lobe of IA (w)I' , and thereby a

(potentially) large bias error.

Clearly, in choosing a temporal partitioning of a sample function, one

9-55



must make some tradeoff between the bias error and variance of the estimate.

Given some preknowledge of the wavevector-frequency characteristics of the

true spectrum and some control of the temporal extent of the measurement, one

can often partition the measured data in such a fashion that the bias error
and variance of the spectral estimate are kept within acceptable limits.

By applying arguments similar to those used above, one can evaluate the

bias and variance of Welch-smoothed estimates of the two wavevector-frequency

spectrum and the space-averaged wavevector-frequency spectrum. These

estimates, like that of the wavevector-frequency spectrum of the stationary,

homogeneous field, are generally biased and have variances that decrease with

*increasing J. Detailed analyses of the bias and variance of these spectral

*forms are left as an exercise for the interested reader.

Lut us now adapt the smoothed estimators developed for a single,
continuous, space-time sample function to the more realistic data format of

one or more, spatially and temporally discrete, sample functions of the sensor

output field.

9.3 ESTIMATORS OF WAVEVECTOR-FREQUENCY SPECTRA

FROM DISCRETE SPACE-TIME SAMPLE FUNCTIONS

As we explained in chapter 8, practical considerations prohibit us from

observing the sensor output field over any continuous portion of time and

space. Rather, practical measurements of acoustic fields are made by using

arrays of sensors. From such arrays, we are provided with continuous

knowledge. over some finite interval of time, of the sensor output field at

discrete locations in space. To acconvitodate modern digital signal processing

techniques, the continuous outputs from all sensors of the array are

synchronously sampled at discrete intervals in time.

We assume that the acousti. field of interest is spatially sampled by the

M x N array of sensors illustrated in figure 9-6. Here, the sensors are

unitormly separated by dI in the x1 coordinate direction and by d2 in
the x2 coordlate direction. The choice of the spatial origin is an
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arbitrary one and, for mathematical convenience, we choose it coincident with

the geometric center of the array. The vector location, 'mn' of the center

of the mn-th sensor is therefore given by

~mn j m - (M-j-)]d1 , [n _ (NL + 1)IdJ.(-19

mn lr I [2n 2
For nonhomogeneous fields, the estimate of the two wavevector-frequency

spectrum referred to the spatial origin at the array center can be transformed

to an estimate referred to any other spatial origin by use of equation (8-181).

Because we intend to estimate the wavevector-frequency spectrum by means

of a digital computer, the outputs of all sensors are assumed to be sampled

synchronously at uniform increments in time. Figure 9-7 illustrates the

temporal sampling of the output, O(Amr.,t), of the mw,-th sensor of the

array. As indicated in this figure, the output of each sensor is sampled at

uniform increments of Ts seconds. We assume that a single discrete sample

function of the sensor output field comprises P temporal samples from all MN

sensors in the array. We further assume that the temporal extent of the

measurement is sufficient to yield 3 discrete sample functions.

/ M ELEMENTS

/Z7 7 -S7 Z7
Z7 Z7 Z7 Z7

ONxi

,Z e!! X7
1

d1

Figure 9-6. The Array Geometry
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Figure 9-7. Temporal Sampling of the mn-th Sensor

We will assume that the true wavevector-frequency spectrum of the sensor

output field Is, or has been rendered (by appropriate lowpass filtering), band

limited in both the wavevector and frequency domains. We will further assume

that the spatial and temporal sampling increments have been selected to

preclude aliasing errors in the spectral estimate. There remains one other

sampling issue that should be addressed.

Recall that the Welch-smoothed estimate of the wavevector-frequency

spectrum is formed by averaging the ensemble of wavevector-frequency spectra

estimated from each of the J sample functions of the sensor output field.

Ideally, we desire that the spectral estimates formed from each of the 3

individual sample functions be statistically independent of each other

inasmuch as the bias and consistency of the estimate (see equations (9-1) and

(9-4)) are defined on the basis of the behavior of the mean and mean square

errors with increasing numbers of statistically independent estimates. We

note from equations (9-80), (9-90), (9-92), and (9-93) that spectral estimates

formed from the J-th sample function are functions of o1d(x,t), the J-th

sample function of the random process o (2,t). It can therefore be
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demonstrated, from arguments presented in chapter 6 (see section 6.1.2), that

spectral estimates formed from the j-th and k-th sample functions will be

statistically independent if the sample functions o 0(xt) and Oak(x,t)

are independent random processes.

If we assume that o(x,t) is a Gaussian random process, then 
it follows22

that the j-th and k-th sample functions, oj(xt) and ok(x,t), are jointly23 -'
Gaussian random processes. Papoulis shows that two jointly random

variables are statistically independent if the random variables are

uncorrelated. Therefore, if we make the (not unreasonable) assumption that

o(x,t) is a zero mean Gaussian random process, a sufficient condition for the

statistical independence of the spectral estimates formed from the j-th and

k-th sample functions is that the j-th and k-th sample functions, oj(Kt)

and Ok(It), be uncorrelated for all x and t.

Let us define xmax to be the iargest time delay required for the true

autocorrelation function, Q00(X,,T) or Q00(jr) of the sensor output field

to become effectively zero over the range of x and I afforded by the array.

To ensure statistical independence of adjacent (and thereby all) sample

fur~tions, we require a temporal interval equal to or greater than Tmax

between the last temporal sample of one sample function and the first temporal

sample of the succeeding sample function. Clearly, such a temporal interval

between sample functions reduces the total number (J) of sample functions

attainable from any measurement of a fixed time duration.

In practice, one can effectively eliminate the requirement for such

intervals between sample functions by choosing the temporal length (PTs) of

each of the J sample functions to be much greater than the maximum correlation

time (rmax) of the sensor output field. By this choice (1) oniy adjacent

sample functions are substantially correlated, (2) the temporal extent over

which a given sample function is correlated with its adjacent sample functions

is small compared to the temporal length of the sample function, and (3) such

correlation occurs only at the beginning and end of the sample function.

Inasmuch as each of the J sample functions is uncorrelated with most other

sample functions, and inasmuch as the correlation that exists between adjacent

sample functions occurs only in regions at the ends of each sample function
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that are small in comparison to the total length of the sample function, we

assert that this choice for the length of the sample functions renders them,

for practical purposes, essentially statistically independent.

We therefore assume that the temporal lengths, PTs, of the sample

functions are chosen to be much greater than Tmax so that all sample

functions are, for practical purposes, statistically independent of each other.

Note that if the sample functions obtained by temporally partitioning each

realization of an experiment are statistically independent, thei additional

realizations or repetitions of the experiment simply increase the number of

sample functions and, thereby, the number of sample spectral estimates to be

averaged.

For the spatial and temporal samplings described above, our knowledge of

the sensor output field from any single realization of the measurement is

limited to the J discrete sample functions o~ tJ n'p + (j - I)P]Ts), specified

over the integer values I < m < M, I < n < N, 1 < p < P, I < j < J. However,

given that the J sample functions are statistically independent of each other,

we can interpret each sample function as an independent realization of the

measurement. With this interpretation, we do not require knowledge of the

temporal behavior of each discrete sample function relative to the absolute

temporal origin of the sampling process. Rather, for each independent

realization, we require only temporal knowledge of the associated sample

function relative to a temporal origin defined for that realization. If we

choose the temporal origin of each statistically independent sample function

to be the center of the P sample: and define

tp = [p - (P +. 1)2]T s , (9-120)

we can interpret our knowledge of the sensor output field to be the 3

statistically independent sample functions oJ(Amntp ) specified over the

integer values 1 < m <, 1 < n < N, 1 < p 5 P, 1 < j S5J.

Recall that in the Welch-smoothing process, temporal and spatial

weightings a w(t) and bw(x), respectively, are applied to each sample
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function. We require aw(t) to be an even function of t and bw(2) to be an

even function of both x1 and x2. By applying these weightings to each of

the discrete sample functions of the sensor output field, we form the discrete

analog, ej(xmntp), of cj(xt) defined by equation (9-80). That is,

a aw (t p)b w(Xmn)OCLJ(Xmn't p )  for 1 < m <M I < n < N,
SP l p P, lZj J,

tj (Xmn'tp) =((9-121)

0, otherwise.

The Welch-smoothed estimates of wavevector-frequency spectra given by

equations (9-92) and (9-93) are expressed in terms of products of the

wavevector-frequency transform of c*J(xt). However, our knowledge of

C j(x,t) is limited to the set of discrete sample functions defined by

equation (9-121). Therefore, we cannot obtain the exact wavevector-frequency

transform of c j(2,t). Rather, at best, we can approximate the wavevector-

frequency transform of cj (xt) by the discrete wavevector-frequency

transform of c J(Xmn,t). That discrete wavevector-frequency transform,

which we denote by e jd (L.,), is obtained by replacing the integrals in

equation (9-9Q) by appropriate summations, and is given by

M N P

ejd(klw) = dld 2Ts  , , r cj(XNn.tp)exp{-i(k.Xmn + wtp)) . (9-122)

m=l nol p-l

Welch-smoothed estimates of wavevector-frequency spectra from measured

data in the format of discrete spatial and temporal samples of the sensor

output field are formulated by substituting appropriate forms of CJd(Aw) in

place of e£j(k,) in equations (9-92) and (9-93). By applying this substi-

tution to equation (9-92). and by recognizing that the temporal length (T) of

each continuous sample function in equation (9-92) must be replaced by the

effective temporal length (PTs) of each discrete sample function, we obtain

the following smoothed estimate for the two wavevector-frequency spectrum of a

stationary, nonhomogeneous sensor output field:

J1
---- d( - k,)) (9-123)

Sjwl
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By applying similar arguments to equation (9-93), and by recognizing that the

area of continuous observation (L1L2) must be replaced by the effective

area of discrete observations (Md1Nd2), we obtain Welch-smoothed estimates

for both the wavevector-frequency spectrum of a homogeneous, stationary sensor

output field and the space-averaged wavevector-frequency spectrum of a

nonhomogeneous, stationary sensor output field. These estimators are

mathematically identical, and are given by

3

-a 1 - /~ 20 0i(J MdlNd2PTs ] jd(kW) 1 (9-124)

( 24j=l

It remains to determine the quality of these estimators of wavevector-

frequency spectra that have been formulated to accommodate measured data in

the format of discrete spatial and temporal samples of the sensor output field.

9.3.1 Bias of the Estimators Formulated to Accommodate

Discrete Space-Time Sample Functions

To assess the bias of the estimators of wavevector-frequency spectra

specified by equations (9-123) and (9-124), we must first (see equation (9-2))

determine the mean values of these estimates.

By substituting appropriate forms of equations (9-121) and (9-122) in

equation (9-123), it is straightforward to show that the mean of the estimate

of the two wavevector-frequency spectrum can be written in the form

d2d2T 2 M N P M N P

j-l m=l n-l p=l q=l r=1 s=l

bw(x n)bw(_xqr )E(xn tp) ° ( Nr, ts ))

exp(-i[(p - ])'m - wtp])exp{-i(k'x 1ts)} (9-125)

_ -k)nXn -wp ---qr +ws)

Here, we have commuted the summation and expectation operations. However, for
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a stationary, nonhomogeneous sensor output field, it follows from equations

(6-52) and (6-124) that

EoJ(-Xmntp)Oj(Xqrts)) =oo-nqr - Xmn-ts - tp)

(21r)-' I S0 (oo ,Q
-W -0-00 -40

exp[[(i(xmn + -*(xqr - xmn) + 1Q(ts - tp)]) dO d dQ

(9-126)

independent of the value of J. By substituting equation (9-126) into equation

(9-125), we can show that

1 5 0(a.csa)IA WN V2

(210 PTSJ

Bwd( - i + - )wd(k - ) da do do , (9-127)

where

P

Awd() Ts  .aw(tp)exp(-iwt p  (9-126)

p=1

and

M N

_d dd 2 ' b )exp(-Jk.1 n) (9-129)

m=l n=l

The mean values of the estimates of the wavevector-frequency spectrum of a

stationary, homogeneous fieTU and the space-averaged wavevector-frequency

spectrum of a stationary, nonhomogeneous field are obtained by similar

arguments. That is, by substituting appropriate fonz of equations (9-121)

and (9-122) in equation (9-124), we can show that
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J M N P M N P
dld 2Ts E E Eaw(tp)aw(ts)

JMNP j=l m=l n=1 p=1 q=1 r=1 s=1

b ) bw(xqr)E(oj (xan ,tp)oj (qrt s) }

exp(i(kIxmn + t p))exp(-i(k.Xr + Wt s)} (9-130)

Here, it must be recognized that the equal sign between E(io(k,w)} and

E ia(k,,)} denotes only equality between the mathematical forms of these

means and not equality of the means. That is, for a nonhomogeneous field,

E(o imn'tp )0°i(o -ts)) is related (see equation (9-126)) to the two

wavevector-frequency spectrum of the sensor output field, whereas, for a

homogeneous field.

E(o mntp)oj(qrt s )) = Qoo(Ar - Xmnts - tp)

CO 0C 1 CO
()-3 1 40(9-0)ePI[*( q 6 o(+)exp i[Q(r- .(ts - tp)]) do dQ

(9-131)

By substituting equation (9-126) into equation (9-130), we obtain the

following expression for the mean value of the estimate of the space-averaged

wavevector-frequency spectrum of a stationary, nonhomogeneous field:

_ _ _ _C C CO2
* 1 ) 3 S0 (a~.Q)IA~( 2

0 (2w) 5 d Nd PI - -00s

Bwd( - - 9)Bwd(_ - g)Q dg do (9-132)

where Awd(w) and Bwd(k) are given by equations (9-128) and (9-129),

respectively.

Substitution of equation (9-131) into equation (9-130) produces a
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relationship between the mean value of the estimated wavevector-frequency

spectrum of a stationary, homogeneous field and the true wavevector-frequency
spectrum of that field. That relationship is given by

E(k,) 3 % (g-1.1A Q)I
-(203dlNd 2PTs

lowd(i - g)12 do do . (9-133)

Note, by inspection of equations (9-127), (9-132), and (9-133), that the
mean values of the estimates of all forms of the wavevector-frequency spectra
are independent of the number, J, ot spectral estimates, formed from
statistically independent sample functions, that were averaged to obtain the
final estimates of these wavevector-frequency spectra. Further inspection of
these iquations reveals that the mean values of the estimates of all forms of
wavevector-frequency spectra differ from the true values of the respective
spectra. Therefore, we must conclude that the estimates provided by equations
(9-123) and (9-124) for the two wavevector-frequency spectrum and the space-
averaged wavevector-frequency spectrum, respectively, of the stationary,

nonhomogeneous sensor output field are biased. The estimate of the
wavevector-frequency spectrum of the stationary, homogeneous sensor output
field provided by equation (9-124) is also biased. To determine the degree of
bias Qof these estimates, it is necessary to examine the characteristics of

A and Bw(k).

By the definition of Awd(w) in equation (9-128) and the definition of
t in equation (9-120), one can easily confirm that

A Wd (w i 2uv/T5 ) = (-1)u(P+l)A wd() (9-134)

for all positive and negative integer values of u. Thus, it follows that the
frequency window lAwd(u) is an even, positive periodic function of w, with
period 2/T s . To illustrate the characteristics of IAwd(w)I consider the
exa.aple of unifom temporal weighting: that is. aw(t) equal to unity. For
this temporal weighting, it is easily shown that the frequency window

IA( )l2 is given by
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2 2 1sin(wP s /2) 12

iAwd() I (PT )2 f i - 1 (9-135)

As illustrated in figure 9-8, this frequency window is characterized by

periodic major acceptance lobes centered at the frequencies 2uir/T s , for all

positive and negative integer values of u. The bandwidths of these major

acceptance lobes are seen to be inversely proportional to the temporal length,

PTs , of the sample function. Weightings other than uniform can produce

different widths of the major acceptance lobes and higher ratios of amplitudes

of major to minor acceptance lobes. However, for uniform intervals (Ts)

between temporal samples, the locations of the major acceptance lobes are

independent of the specific forai of the temporal weighting, aw(t).

With regard to the wavevector window Bwd (j), it is easily demonstrated

from equations (9-119) and (9-129) that

Bwd(k I + 2-Kv/dl,k 2 + 2w/d2) = (-,)[v(M+l)+w(N+)]Bwd(kk 2) (9-136)

for all positive and negative iriteger values of v and w. Clearly, IB wd(k)l2

is a real, even periodic function of both kI and k2, with periods of 2/dI

in the kI coordinate direction and 2ir/d2 in the k2 coordinate direction. To

further illustrate the wavevector characteristics of B wd(k), consider the case

of uniform spatial weighting where bw(K) - 1. For this weighting, the

wavevector window Bwd(k) is given by

{sin(Mkl1dl1/2))11 sin(Nk 2d2i/2)l
Nsin2k = /2)N1 . (9-13?)

Bwdk 12 d~ 21fMsil(k~-~ Id1/ sin(Nk 2d2 /2)

Figure 9-9 illustrates the kI dependence of this wavevector window at k2 M 0

for an odd number (M) of sensors in the coordinate direction of the array.

Here it is evident that Bwd(klO) is characterized by periodic major

acceptance lobes centered at the wavenumbers 2vw/d l , for all positive and

negative integer values of v. The bandwidths of these major acceptance lobes

are inversely proportional to the spatial aperture, Pdl, of the array in the

xI coordinate direction. When the array comprises an odd number (M) of
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Figure 9-9. The k Dependence of the Wavevector Window
B(k) at k2 - 0 for N Odd
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sensors in the x1 coordinate direction, all major acceptance lobes (at

k2  0 0) are positive. On the other hand, if the array comprises an even

number (M) of sensors in the x coordinate direction, the major acceptance
lobe at the origin is positive, and successive major lobes alternate in sign.

Spatial weightings other than uniform can be used to alter the bandwidth of

the major acceptance lobes and the ratio of the amplitudes of major to minor

acceptance lobes. However, the locations of the major acceptance lobes are

independent of the specific form of the spatial weighting, bw(x), and depend

otly on the spatial interval (dI) between sensors. By similar arguments, it

can be shown that Bwd(2iv/dI k2) is characterized by major acceptance lobes

centered at the wavenumbers 2ww/d2 1 for all positive and negative integer

values of w. The bandwidths of these major acceptance lobes are inversely

proportional to the spatial aperture, Nd2, of the array in the x2 coordinate

direction. By equation (9-136), it is evident that the sign of the vw-th

major acceptance lobe will be positive when [v(M + 1) + w(N + 1)] is even and

will be negative when Cv(M + 1) + w(N + 1)] is odd.

Let us now apply our knowledge of the characteristics of these spectral

windows in the frequency and wavevector dzmains to the evaluation of the bias

of our estimates of the various forms of wavevector-frequency spectra. We

recognize from the previous chapter that the periods between the major

acceptance lobes of the spectral windows Awd(w) and Bwd(k) arc dictated

solely by the intervals between the discrete temporal and spatial samplings of

the sensor output field. The shapes and bandwidths of the major acceptance

lobes and the ratios of the amplitudes of major to minor lobes of these

spectral windows are dictated by the temporal ana spatial extent (i.e., PTs,

RdI, and Nd2) of the discrete sample functions and temporal and spatial

weightings, aw(t) and b,(x), applied to the sample functions. The effects of

such finite temporal and spatial s mplings on spectral estinate-s were treated

in the previous chapter, and we will draw on those treatments to assess the

extent of the bias of our spectral estimates.

By equation (9-127), we note that the mean value of our estimate of the

two wavevettor-frequency spectrum of the stationary, nonhowogeneous sensor

output field is given by the integral, over all a. g, and 0, of the true

two wavevector-frequency spectrum of that field, Soo(fg,Q), with the
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spectral windows JAwd(U - !Q)I2 and Bwd(y" -k + )Bwd (k - _). The

locations of the major acceptance lobes of IAwd(Q)i2 are illustrated in figure

9-8, and the pattern of the major acceptance lobes of the spectral window

Bwd(P - k + - -M)wdk - g) is illustrated in figure 8-16 (if *I represents

B I and ft, represents ol). We assumed at the outset that the true wavevector-

frequency spectrum S oo ( ,Q) was, or was rendered, band limited in both the
wavevector and frequency domains and that temporal and spatial sampling

intervals were chosen to avoid aliasing err-ors in the spectral estimate. By

the arguments presented in sections 8.3.1 and 8.3.2 of chapter 8, this

implies, at the least, that

= 0o , lQl >_ /T s , fll v Id I, 1021 >vi/d 2,

18, l  l - I  /d I , 1B2 - (21 > I/d 2 . (9-138)

If (1) the temporal length (PTs) and weighting aW(t) of the discrete

sample function are selected such that the bandwidtns of the major acceptance

lobes of Awd(Q) are narrower than the bandwidth of any fluctuation of

S00o(A,g,Ql) in a and (2) the spatial extent (Md1Nd,) and weighting bw(K) of

the discrete sample function are selected such that the bandwidths of the

major accept3nce lobes of Bwd(g - Mswd(g; in 010 01 O2 and a2 are much

narrower than any fluctuation of So00 (,g,2) in these wavvector variables,

then it follows frcm eqLations (9-127) and (9-138) that, 'Oith'n the frequency

range Iwl <_uT S and within the wavenumber ranges 1k I I < v/dl, Jk2 1 < Id2 ,

I - kl 1 *-d!, and J1A - k2 l /d,, the mean value of goo(u,_,) is well

approximated by

E3 IQoo,k )  s u12
00 (21) 5PT 3 r/ s

s -vIT s

w id 2 /dI v/u2

S wd(~-L + - f)BwdC' 9 ) d g
-/d ,/d2 -/d1 2 1 -39)

However, from eauations (9-)4O) and (9-128), it can be demonstrated tha
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iw/T5
2Pf IAwd(2 - 2  = 2vT s  aw(tp) (9-140)

-,IT s  p=l

Further, by use of equations (9-119) and (9-129), we can write

wg/ci. r /d2  .!d1 , /d2

id 2  Bwd(_ - A)Bwd (g) df do = (2) 4r(p;MN)
.- id I  -z d2  -Vd I  - d 2

M N

(2w)4  E {,-i. e(m,M)(n,N), (9-141)

m=l n=1

where {6 J,(Jzll)/2 for J odd,
ej,,) "(9-142)

sin{[L. - (J+Jl l , for J even.
[ - (0 + 1)/2,

By ecuations (9--139), (9-140), and (9-141), it follows that

Pj

for kIw </T s,  Ikll <_td l. Ik2 I < l/d2

-l " I v- Id, 1P2 - k j < '#2 (9-143)

Clearly, if

p

j-a-(t; ) = 1 (9-144)

an~d
1 , (9-145)

then the mean value of the estimate of the two wavevector-frequency spectrum
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provides a good approximation to the true two wavevector-frequency spectrum

within the ranges of frequency and wavevectors specified by equation (9-143).

We should note, from equations (9-141) and (9-142), that if M and N are

both odd,

r(p;M,N) = b2(0,0) (9-146)

However, if either M or N is even, r(p;M,N) is a function of V. For purposes

of illustration, figure 9-10 depicts the V, dependence, at P2 = 0, of r(P;M,N)

for an array in which bw () = 1, M = 10, and N = 9. Note that, except near

the limits of the fundamental range (i.e., near v, = -%/dl and V, = i/dl),

r(pl,0;l0,9) is approximately equal to b2(0,0), which equals unity. Note,

in this example, that the mathematical expression for r(vl,O;lO,9 ) obtained

from equations (9-141) and (9-142) resembles a 10-term Fourier series

approximation to a unit amplitude square wave of period 4u/d I.

Thus, given that (1) the true two wavevector-frequency spectrum of the

sensor output field is band limited in both the wavevector and frequency

domains, (2) the temporal and spatial sampling intervals (Ts, dl , and d2 ) are

chosen such that equation (9-138) is satisfied, (3) the temporal length (PTS)

and weighting aw(t) of the discrete sample function are selected such that the

bandwidth of the major acceptance lobes of Aw (Q) are narrower than the

bandwidth of any fluctuation of S00 (a,g,Q) in 9, (4) the spatial extent

(Md Nd 2) and weighting bw(2.) of the discrete sample function are selected such

that the bandwidths of the major acceptance lobes of B wd( - 9)Bwd (g) in 61,

01, O2, and a2 are much narrower than any fluctuation of S o(ft,q,Q) in the
respective wavevector variables, (5) the temporal weights are chosen to

satisfy the restriction of equation (9-144), and (6) the spatial weights are

chosen to satisfy equation (9-145), then the estimate of the two wavevector-

frequency spectrum provided by equation (9-123) will be, for practical

purposes, an unbiased one.

Recall, from the arguments presented in section 6.5.2.3 of chapter 6, that

the true space-averaged wavevector-frequency spectrum represents the

homogeneous constituents of a generally nonhomogeneous field. Therefore, to

evaluate the bias of our estimate of the space-averaged wavevector-frequency

9-71



r ( , o; 1o, 9)

0 7"

Figure 9-10. The u1 Dependence of r(p;MN) for
a l0-by-9 Element Unweighted Array

spectrum, we assume the true two wavevector-frequency spectrum, S00(ag,). of

the sensor output field is of the form

Soo0 ((,,Q) - (2) 26(ga)o(gQ) + N oo(At,,Q) , (9-147)

where 0(gQ) represents the stationary and homogeneous contributions to the
field and N (00 ,oQ) characterizes the stationary, but nonhomogeneous,

contributions to the field. By substituting equation (9-147) into equation

(9-132), we obtain the following expression for the mean value of the estimate

of the space-averaged wavevector-frequency spectrum:

W O W

E0 a k~w))0 (gQ)A
0(2w) 3 Rd Nd 1 1 i 0( ,)IA( - 2)

'1 2 S -W - -WO

Iwdlk_ - g)12 da_ do

0 O 40 W 0

+ 5 - N00 (ago,) IAwd(w - )I

(2w) Nd1Nd2PTs  -. - -0 -

Owd(_ - k - k)Bwl(k - g) df do do . (9-148)

We have assumed all true wavevector-frequency spectra to be band limited
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in both the wavevector and frequency domains. Further, we have assumed that

the spatial and temporal samplings were selected to avoid aliasing errors in

the spectral estimates. Therefore, it follows (see sections 8.3.1 and 8.3.2

of chapter 8) that

_ 0o(gQ) = 0, I > ITs, I1 1 >i/d1  !d21 > r/d2  (9-149)

and that the two wavevector-frequency spectrum, N (,ci,Q), satisfies the

constraints of equation (9-138).

If (1) the temporal length and weighting of the discrete sample function

are selected such that the bandwidth of the major acceptance lobes of

IAw()l 2 are much narrower than the bandwidth of any fluctuation of

S(g,Q) or Noo (a,g,Q) in Q and (2) the spatial extent (Md1Nd2) and weighting

bw([) of the discrete sample function are selected such that the bandwidths

of the major acceptance lobes of IBwd( )12 are much narrower than those of any

fluctuation of # 0 (g,Q) in a and o2, and the bandwidths of the major

acceptance lobes of Bwd(9 - f)awd(9) in the variables O1 C1' 02' and a2

are much narrower than the bandwidths of any fluctuation of Noo (k,,Q) in the

corresponding variables, then it follows from equations (9-138), (9-148), and

(9-149) that, within JwI < /Ts, k1f 1 u/d1, k21 S v/d 2 , 1i1 - kl1 I S/d,

and lu2 - k21 S v/d2, the mean value of the estimate of the space-averaged

wavevector-frequency spectrum is well approximated by

,-a 4 - w Awd(w _ g)12 d

(w)a(2,v)3Md1 Nd PT do

v/d 1  w/d2

+ - -wT) d 12

(2w)
5NdINd2PTs 

w d/T s

v 1 /c 2  s v/T s/l

---- g 8(- k - ft)d(j -) dft do ,(9-150)

-V/d 1 -W/d2 -w/d1 -v/d 2
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where 0 denotes the vector (0,0).

By use of equations (9-119) and (9-129), we can demonstrate that

ir/d1  i/d 2  M N

Bwdk- _)12 d1o = (2v)2 did 2  b2(xn) (9-151)
w m

-r/dI -v/d2  m=l n=1

This result, in combination with equations (9-140).and (9-141), allows us to

rewrite equation (9-150) in the form

P M NE a )jjE a 2(tp)1 E~ -
p=l m=l n=l

P
S+ N Oo(V'k'W') q1MN pE a(

MdlNd2  (O;,N) 2 p

for jwj <lw/T, k I <I /dl,  Ik2 1 v/ l2  (9-152)

Inasmuch as the true space-averaged wavevector-frequency spectrum represents

the homogeneous constituents of a generally nonhomogeneous field, the estimate

of the space-averaged wavevector-frequency spectrum provided by equation

(9-124) will be unbiased only if

P

a (t ) 1 , (9-153)p-=l

M P

E : 2 1,(9-154)

and

0 (9-155)
NdlNd2

However, by reference to equations (9-141) and (9-142). it is evident that the
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conditions of equations (9-154) and (9-155) are mutually incompatible. If we

enforce the conditions of equations (9-153) and (9-154), and if we denote the

function r(O;M,N) that results from the enforcement of equation (9-154) by

rr(O;M,N), we can write equation (9-152) in the form

Err(O;M,N)

0 0k 00 k +N , Md1Nd2

Vt < ir/Ts, 1k1 1 S w/d1, Ik 2 1 ir/d2  (9-156)

Clearly, the mean value of the estimate of the space-averaged wavevector-

frequency spectrum differs from the true wavevector-frequency spectrum,

0o(ka), of the homogeneous contribution to the generally nonhomogeneous

field. Therefore, the estimate of the space-averaged wavevector-frequency

spectrum provided by equation (9-124) is a biased one. By equations (9-2) and

(9-156), the bias error is well approximated by

r r(O;M,N)
t{(,) 0 N oo(Pi,) Md I Nd 2 (9-157)

and decreases with increasing aperture (MdINd2) of the array.

Given that all wavevector-frequency spectra are band limited in both the

frequency and wavevector domains, and given that the temporal and spatial

sampling intervals have been selected to avoid aliasing errors, then it

follows that the true wavevector-frequency spectrum, %0(k,), of the

stationary, homogeneous field satisfies the condition of equation (9-149). If

the temporal length and weighting of the discrete sample function are selected

Such that the bandwidths of the major acceptance lobes of tA wd (Q)2 are much

narrower than the bandwidth of any fluctuation of 4o (S,Q) in 9, and the spatial

extent (Md Id 2 ) and weighting bw () of the discrete sample function are

selected such that the bandwidths of the major i:ceptarice lobes of IBwd )I2

are much narrower than those of any fluctuation of 0 (q,Q) in aI and aV then

it follows from equation (9-133) that, within the v&riable ranges 1IW v/Ts ,

l w/d1 , and 1k21 w/d2. the meaw value of the estimate of the

wavevector-frequency spectrum of a stationary, homogeneous field is well

approxitated by
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ir/TE(10 (k_,4)} U °(k-'a) S

(2) 3d 1Nd2 PT f . JiAw (W

1 -v/T

ir/d1  r/d2

j I Bwd(k_ g-)12 do dQ. (9-158)

-/d1 -'v/d 2

By employing equations (9-140) and (9-151), It follows that

P M N
---. E(#o(iw)} " aok,= b (l

p=l 1 f=l n=l

Jl <wi/T s, Jk1 1 < w/d1 , 1k2 1 <Sv/d 2  (9-159)

If a w(t p) and bw(Amn ) are selected to satisfy the conditions of equations
(9-163) and (9-154), respectively, then

E(-o# A.0) }W #o(k ,Q1 (9-160)

within Icol w/T5 , kl, < k :/d, Ik21 _ w/d2 . Thus, within this variable
range, equation (9-124), with suitable restrictions, provides an unbiased
estimate of the wavevector-frequency spectrum of a stationary, homogeneous
sensor output field.

By 'the arguments presented in this section, we have shown that if

(1) the true wavevector-frequency spectrum is band limited in both the

wavevector and frequency domains,

(21 the spatial and temporal sampling intervals are selected to avoid

aliasing errors,

(3) the temporal length and weighting of each discrete sample function is
selected such that the bandwidths of the major acceptance lobes of
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IAwd(1)2 are narrower than the bandwidth of any fluctuation

of the true wavevector-frequency spectrum in the frequency domain,

(4) the spatial extent and weighting of the discrete sample function are

selected such that the banawidths of the major acceptance lobes of

m Bwd( - a)Bwd(9) are much narrower than any fluctuation of the

true wavevector-frequency spectrum in any wcvevector variable,

(5) the temporal weights satisfy the restriction of equation (9-144), and

(6) the spatial weights satisfy, as appropriate, the restriction of either

equation (9-145) or (9-154),

then equation (9-123) provides an unbiased estimate of the two wavevector-

frequency spectrum of a stationary, nonhomogeneous sensor output field, and

equation (9-124) provides an unbiased estimate of the wavevector-frequency

spectrum of a stationary, homogeneous sensor output field. However, under

these same conditions, the estimate of the space-averaged wavevector-

frequency spectrum provided by equation (9-124) is biased by nonhomogeneous

contributions existing at u - (0,0). By reference to section 6.5.2.3 of

chapter 6, it can be shown that this bias is a consequence of the finite

aperture of the measurement array, and is therefore unavoidable in practical

measurements. However, as is evident from equation (9-157), this bias error

decreases with increasing aperture of the measurement array.

9.3.2 varl~n~e of the Estimators Formulated to Acco _date .D.sc ete

space-Tlme S1ampl Functions

According to Papoulis 15 the variance of a cowlex random variable, say

r, is given by

Var(r) - E(Ir - [r) 2  . (9-161)

However, inasmuch as E{r)* - E(r*). it can easily be shown that

Vatir] - E(I' 2) - IE(r) 2 . (9-167)

Clearly, therefoe, to evaluate the variance of our wavevector-frequency
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spectral estimates, we must first evaluate the mean values of the squared

magnitudes of these estimates.

According to equation (9-123), the squared magnitude of the estimate of

the two wavevector-frequency spectrum of the stationary, nonhomogeneous sensor

output field is given by
'34]

2 (JPTs)2 "E Egd(v -

- 9=I J=1

-jd(Ii - k' ) jd(k,.) (9-163)

From equation (9-124), it is evident that the estimates of the wavevector-

frequency spectrum of the stationary, homogeneous sensor output field and the

space-averaged wavevector-frequency spectrum of the stationary, nonhomogeneous

sensor output field are real and positive. Thus, it follows that

i i(a.I ,a 2 _ iao2(k, )

3 3
1 7-2 E E IEg .) 1 M 2 (9-164)

(J~d1Nd2PTs) g-I J=l

By use of equations (9-121) and (9-122), we can demonstrate that
2E(IS oo(1.k,)1 ) can be written in the form

E(3 V.k~jj2 (dd 4T2 J 3 N P M N P
•~~~ ~ E. El Fao .k 11} a E: E0 (jp)2  gl J-1 mml nal pal q=l ral s-l

N R P M N P

uul Val wl yal Zul B,

b w(-m) w(ir bw(-uv bwfyz )

E~o W~t)o (x A )o A~x *t )0 (x *Vt 0))Eo o tpOg -qr s cj -uv w j' t

exp(-i((p - k.n + k r + c(ts -tp)])

exp(i{(p - k). + c- Vz + w(te - tw)]) (9-165)
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Similarly, by using equations (9-121) and (9-122) in equation (9-164), we can
show that E{(%(k,w)] and E(ja2 (k,w)) can be written in the identical0 0
mathematical forms

-2-a9(- (k,ca4) E

(dId2TS)2  J 3 M N P M N P

(JMNP)2 g=1 j=l m=l n=l p=I q=1 r=1 s=1

M N P M N P

Fa Fa2: FaFa E a w(t p)a w(t s)a w(t w)a w(t 6
u=1 v=1 w=l y=l z=l 0=1

bw(x ) )(x qr)bw(xv )bw(y Z)

E ( °g (Anp 't °g (qr't s)°cj (x, tw)0 j (-yz.to)}

exp(-'iC-(qr - x ) + w(ts - tp)]

exp('i~'( z - u~v ) + w(t0 - t w)] (9-166)

Recall that we have assumed that the temporal length of each sample
function is much greater 1han the largest time delay required for the true
autocorrelation function to become zero over the range of x and afforded
by the spatial saawling of the sensor output field. By this assumption, each
sanple function of the sensor output field is rendered, for practical

purposes, statistically independent of all other sample functions. Given this

statistical independence ot the sample functions, it follows that

EO { ag ( , =tp )og xqr t s )oaj (uv' tw)° J (Ayz' to) )

= gjEto (%n. t p )O0(qr#t s )j-uvIt WOJ(Ayz' t i ) )

+ (I - 6 g)E(o ag(I tp )O g(xqr ts))
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If we further assume that each statistically independent sample function.

0 Mj(2 ,e), is a member functien of a zero imean Gaussian random process,

then it follows from equations (9-59) and (9-10i) that

Ecofg(4 p )o g(2qr' Is) 00J2u'wo (x z *to)I

=6 [EfEo CJ(xmI ,t )o C (2 rIt s))JEo *(x ,'t )oC (x -te))

+ Efo *(x tp )o 0i(xi .tw)}E~o Cx(q *ts )oa (XyI to) )

+ Efo a(-x ,tp )o Cx ,y t e)IE(o 0i(x ,r t s)o C (x ,v t WM

+ (1 - 6 g )E~o Q(x 'tp )o Q(x ,q t s)IE~o ft(x ~t )o '(2ix t)

(9-168)

For a stationary. nonhomogeneous field, we know from equation (6-69)

that

E(o M (4nx ,t )o (xi t t )) =QOO(-X ,xi - x ,ts - tp) 1 (9-169)

independent of the index J. Thus, for a stationary, nonhomogeneous field, we

can write equation (9-168) tn the form

E~o ag(xm ,t )o Q(x ,t )o C~x ,vtw)o j(xztO))

Q (( x0q x- xts - t )Q(x y xKv - t )

+6gj (oo(-inn-v - imn w -p )oo-qr-Az - jr 0 s

+ Q (x ,x - - tp)Q Cx , - xr ,t w- t S~oo-lnn-yz p oo-qr--uv -q w s

(9-170)

However, according to equation (6-124),
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~oo(-xmn'Aqr - -n's- tp) 19v i ) 00

ex-p ~t - ) ]I da dcr dg (9-171)

Therefore, for a stationary, nonhomogeneous field,

E~o ag(xm I t P)o ag(x qr t s)o mi(x ,v t w)o cL(xy~t

COC CW COa (a CO C c3 ~

- 10 333 3 3 3 3 3 3 (P-2 ,2Q2)(i) - -0W -W0 -0 -.0 -0 -0 -. 0 -0W -0W

(eXPiiLQ1.-m +-l(qr 2n + 9(s- pH

expfi(k*.uy ' 92*(yz kv) + '2(t6 - t WA)

+. a j(xO IS + !1 ,L-%v - 2im + 2( - t p"

eKpi~k9*3qr + 92(y - t'qr) + e ' t

+ exp (i t._x, + .( - + 0a1(to -t

nonhomogeneous, we know (see equatioq (6-73)) that

EJ CO(W 0%Qrt) 00 (.Xq - .tA -tp) (q-173)

indope nit of -14e index J. Therefore, for a stationary, homogeneous field,
equation (6-168) can be rewritten in the foru



Efo -inn lp og qr 4s~3 -uvlto Clj -yz~t

+6~ [Q (x mn rIst- t)Q2y -(xu~ - tw)

+agj Qoo-uv pXnt oo- 00(yz -qNr 0 e s)

+ o(yz-rn'to - tpQo-u - -qr w - ts) (6-174)

However, according to equation (6-88),

QOO(xi -x ,ts - tp) 1 3 g!Q

expi[,Ci(x - x mn) + Q(t s- t p)]) dodsa (9-175)

Consequently, for a stationary, homogeneous sensor output field,

E~o a(2imtp )o e(x ,ts)oaj(x ,tw)oaj Kx 't0)

0O O0 0 0 0O 0 M0 0 0 W

(2w)6

lexP'191(I - 6 )n + a1(t5  t )JM

exp(i E92.( yz 2- v + Q2(t0 -w'

exP[a 2.(3yz - q + Qa2(te - tsf)

+ 69jexplig(~I.(y, - !Mn + 0a1(te - t)

expi 12*(v- -%r + 12(tw - ts)])] do I dal dg2 dp'2  (9-176)

Both the two wavevector-frequency spectrum and the space-averaged

wavevector-frequency speLtrum are descriptors of ntnhomoqeneous fields. By

9-82



substituting equation (9-172) into equation (9-165) and perfurmin6 the summa-

tions on g and J, we ian demonstrate, through careful bookkeeping, that

2 1
S(2)10 -pT

Bwd( - k + - 1A8Iwd ( t - g-) dal dg, 19,

-- 00-d

Bwo( 92 +_ - a2)Bwd( K + 92) dL% 4,12 da',

Owd(a - j, +! g- A-)Bw(Lt - k + j=1 ) dal do do,

& W

- ~ + g2 A)Iw~ + ) Q2 4~,21

w*

Owd(k + - ) +g, - A ,) dal dgj d ,(

S Oc 0 (P2 19V 2.)~Awd~w -*'Yk~ 2

-- d-j -- dQ d 2 (-

-. w ~43034-03



By substituting equation (9-172) into equation (9--166) and perforiming the

summations on g and J, we can similarly show that the mean value of the square

of -the estimate of the space-averaged wavevector-frequency spectrum can be

written In the form

E{a2(kw 1
E140 Q-0 1

(2r)lO(MdlNd2PTs 2

=2

8wd(-k + -1 - gI)Bwd(k - a,) dal dg, dQl

%V 0 CO CO 0

i S o o0 (k 2 , 2 Q 2 
)  IA w d (W -- 2 ) 2

aewd l -- + -2 - k2)ewd(- - g2) dO2 do 2 do 2
0 @ 0 €0

+ Soo (El gl.slAwd(w + )Awd-

00 wd wd0 0Bwd(-k + g, l I)Bwd ( - t- - -gl) dQ do 1 dsl

S 0(9*9*02)Awd(O- 2)Awd(w + 22

Bwd(-  2 - 2)ewd(k - 2 dft2 d-2 ds2

CO 001

w ) w (ft + a) wd( do d 2

k--2 - 02)ewd('- " ) dA2 d 2 do2I (9-178)
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The mean value of the square of the estimate of the wavevector-frequency

spectrum of a stationary, homogeneous sensor output field can be expressed in

terms of the true wavevector-frequency spectrum of that field by substituting

equation (9-176) into equation (9-166). By making this substitution and

performing the summations over g and J, we can show that

E-2 
1__ _ __ _ _ _

4o(_9l(klAd( - 6Ol)2 Bwdlk_ gl )  dg, dal

(O) O d4 1 2 dyd

o(_2,2)lAd(w 02)1  - dd 2 dQ2

j 0€ Aw.d (w- Q )Aw

0W 0

4 0 2.2Aw+ -92Adw+9 )

m ud (t- + -gI)Bwd ( k  -1 g ) dg-2 do10- CO COC

+o 4D (g.1I 1 Od gI o1 dk.b+ o(ud l ,Q AWd( + 2 Qaw( *-

m mWe can achieve considerable simplification of equations (g-117), (9-178),

and (9-179) by making use of certain properties of the true wavevector-

frequency spectra and of the spectral windows 4wd (w) and B Wd(Q). That is,

by equations (6-224) and (6-227), we know that
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oo= Soo(-,-_,-) = S00( , - k,-a) (9-180)

Further, as demonstrated in equations (6-82) and (6-83),

*(_,) (-k,- ) = o(k,=) .(-181)

Finally, Inasmuch as aw(tp) and bw(26n) are real, it follows from equations

(9-128) and (9-129) that

and Awd(-w) = A w(w) 
(9-182)

awd (-k) = Bwd(k) . (9-183)

By employing equations (9-180), (9-182), and (9-183) in equation (9-177),

we can demonstrate, with suitable changes of variables, that

E{I go)o(X.k)!2) 1

(2,W) 10P212

SSoo(al '-91 -Ql) lu('u " PY 12

Bwd( - + ('I 9)l ) wdA - g1) d d 1 d-1 f2

S~ ~ ~ 0 5 5SO1a. 03I1)AW4(w -3)
wd ( Ij t + a, a" - )B d (  -  gt)  d a- oI d ulg

Owd(k -3)8wd ( k + 93 " 92) dQ2 d9-3 dQ3

+ j i i Soo(A2 -2  )Awdpw - 2)wd((O 2)1!-0 -0 -.. 1 '" '= -(

BwA + S!2 - _2)Bwd( -k + _2 ) df_2 dg2 d"2 2 (9-184)

9-86



From equation (9-127), we recognize the first term on the right-hand side of

equation (9-184) to be jE{Soo(_,k,co)} 2, and the second term to be the product
ES o(O,k - ,w)}Egoo(O,k, ). However, from equations (9-123) and (9-124),

_ 00 , ) = dNd2 ia(,) (9-185)

Therefore, by reference to equation (9-162), it follows that

i 1 2 -a -
VarfS00(Ik,) (R4d Nd) E(40( - pw)

1 2 0 0

+ 10122 SCo(a 2 2.Z)Awd( - 1) Awdw +'
r2i) T -

*y)d 2 (9-186)awd(-, +-02 - 2)owd(u - 2 21 d -2 dQ 2

Note that if E( k~ - u,o), E{ia(O,k,)), and the multiple integrals on
the rlght-hand side of equation (9-186) are flnite, then

lim Var((,,)GO 0 (9-1"?)

The multiple Integral of equation (9-186) has the general form

SWOW'9 -2 Q2

(9-188)
wlere

Swd(" Q2 )Awd(u + Q2Awd -2 - fawd(  - k +

~(9-189)

.If the integral I(X,k,c) is to be finite, we reqt'rre that j1(,k.)l < =.

It is well knoiin that
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0 0 0 0a.2Q)(29';V'')d2d2dI

Moreover, it is easily established from equations (9-128) and (9-129) that

P

IAwd(w)l < Ts E law(tp)1 (9-191)

p=l

and

M N

I8dlK)l <_ dld 2 E F Ib w(kn)l (9-192)

Mn= n=l

Therefore, it follows from equations (9-189), (9-191), and (9-192) that

IGf_2,_ 2,Q;.k-t)I < G=ta x - constant , (9-193)

where

Gmax 0 Ts  law(tp)1 4 2  bw(x)tl (9-194)

P.! W tI1 n1J

From equations (9-190) and (9-193), It is evident that

00 03 0 0 C0G

C'a Is 00(92'92-"2)1Ifti2 d22 '02  (9-195)

For realistic weightings, Gmax is finite. Therefore, if jllp,k.,w)l is

to be finite, we require

is00(ft2. YJ d92 '92 d"2 : (9-196)
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By applying arguments similar to those employed above to equation (9-132),

we can demonstrate that equatioi (9-196) is also the requisite condition for

E{(k - p,w)} and E( to be finite. According to Sneddon, 2
4

equation (9-196) is A sufficient condition for the existence of the Fourier

transform of S oo(A2,_22Q) oi the variables a2' -2' and Q. Thus, we conclude

that if the multiple Fourier transform of Soo (y,k,c) exists, then the

variance of the estimate of So o(y,_,w) tends to zero as the number (J) of

independent observations approaches infinity.

By appropriate use of equations (9-180), (9-182), and (9-183) in equation

(9-178), we can show that

E,-a2(,,,) _1
0 (2) 1 (MdINd 2PTS) 2

S0 (9I '-°i l) d(w - j)I 2

ewd - + g, - a, Ow Bw(K - -g, ) dal dg, d,1 2'I

+ Soo( 2,v .Q2 )AW ( - Q21

4 -t + 02- 92)BWp - 92 d 2  121

+ 2

Swd~j - gl8d(_ + o I A, dft dd ,1  2 (9-197)

However, from equation (9-132), we recognize the first term on the right to be
-E((k ) , and the last term on the right, to be 1E((, c)}2. Therefore,
0 t

according to equation (9-162). it follows that



90

+ - 1 0  2 1 2 3 ooa'g'2

°2 s
da(2w)lO(Md1Nd2PTs)2J -0 -0. -0= -

Awd(w - "2)Awd(w + Q2)Bwd.(. + d2 - 2)Bwd(k - 2 df32 d_2 dQ212

(9-198)

By arguments similar to those employed in assessing the variance of the

estimate of the two wavevector-frequency spectrum, we can show that if the

multiple Fourier transform of S00 (,k,w) on the variables y, k, and (

exists, then it follows from equation (9-198) that the variance of the

estimate of the space-averaged wavevector-Frequency spectrum tends to zero as

the number (J) of independent estimates approaches infinity.

By appropriate use of equations (9-181), (9-182), and (9-183) in equation

(9-179), and by employing equations (9-133) and (9-162), we can use arguments

similar to those used to assess the variances of the estimates of the two

wavevector-frequency spectrum and the space-averaged wavevector-frequency

spectrum to demonstrate that the variance of the estimate of the wavevector.-

frequency spectrum of the stationary, homogeneous sensor output field is given

by

1 1

+ -6 2 fI 1 o(92 Q2) Awd~cj + Q2)Awd(w - 2
(2w (MdNd2Psi 1= -..,,

Bwd(k - 22 )Bwd( + 2) d02 d"2 12

It can be demonstrated, by arguments simlar to those employed previously,

that if the multiple Fourier transform o" 0 (k,w) exists, then

limVar(o,w)) 0 (9-203)
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9.3.3 Some Practical Observations Regarding the Quality of the Estimators

Recall (see section 9.1) that our metrics of the quality of an estimate

are the bias and mean square error. Recall further (see equation (9-7)) that

the mean square error of an estimate is the sum of the variance and the

squared -agnitude of the bias error of that estimate. Clearly, the ideal

estimator is one that is unbiased and has zero variance.

In section 9.3.1, we showed that the estimates of the two wavevector-

frequency spectrum and the space-averaged wavevector-frequency spectrum of a

stationary, nonhomogeneous field given by equations (9-123) and (9-124) and

the estimate of the wavevector-frequency spectrum of the homogeneous field

given by equation (9-124) were generally biased, and that the bias errors were

independent of the number (3) of statistically independent sample functions

used in the estimates. However, given that all true wavevector-frequency

spectra were band lifolted in the wavevector and frequency domains, we also

showed that the bias error of any estimztor was significantly reduced when the

bandwidths of the primary acceptance lobes of the spectral filters A(w) and

8(k) were substantially narrower than the bandwidths of any fluctuation of the

aisociated true wavvector-frequency spectrum in the respective frequency and

wavevector domains.

for uniform teworal weighting of the discrete space-time sample function,

we showed that the bandwidth of the primary acceptaece lobes of A(w) were

inversely proportional to the temporal length (PI of the sample function.

Similarly, for uniform spatial weighting of the discrete sample function, we

showed that the bandwidths of the primary acceptance lobes of 8(Q) in the k1

and k 2 coordinate directions were inversely proportional to the spatial

lengths (Kd, and Nd2) of the sample function in the respective xI and

x2 coordinate directions. It can be demonstrated (Although we will not do

so here) that these inverse relationships between bandwidths of the primary

acceptance lobes of A(w) and B(:) and the temporal and spatial dimensions of

the discrete space-time sample function also hold for practical weighting

futictions, aw(tp) and bw( _x.). other than uniform,

Clearly, given some preliminary knowledge of the wavevector and frequency
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characteristics of the true wavevector-frequency spectrum of the sensor output

field of interest, the bias error of the estimate of that wavevector-frequency

spectrum can, within pra( cal constraints, be controlled by judicious design

of the experiment.

In the previous section, we demonstrated that the variance of the

estimates of all forms of wavevector-frequency spectra decreased as the number

(3) of statistically independent space-time sample functions comprising that

estimate increased. It should be recalled that, given the discrete space-time

sample function resulting from any single realization of an experiment of time

duration To, some finite number (3) of (essentially) statistically independ-

ent, discrete sample functions can be realized by appropriately partitioning

the measured sample function in the time domain. To ensure the practical

statistical independence of the sample functions resulting from this parti-

tioning, the temporal length (PT s) of each sample function must be much

greater than the maximum time delay (Tmax) required f- the autocorrelation

function to become effectively zero within the ranges of the spatial variables

2 and I afforded by the array of sensors utilized for the measurement.

Clearly, to reduce the bias of our spectral estimate and to ensure

statistical independence of the space-time sample functions used in that

estimate, we desire the temporal length (PT ) of these discrete sample

functions to be large. However, given that the temporal duration of any

realization of the experiment is limited to T., it is evident that the

number (3) of sta'istically independent sample functions available from that

realization is an integer less than or equal to T0/(P7s). Consequently,

as the temporal length (PTs) of the sample function increases, the number

(3) of statistically independent sample functions decreases, and the variance

of the estimate increases. Thus, given a discrete space-time field resulting

from a single realization of an experiment, it is evident that a decrease in

the bias of an estiuite can usually be achieved only at the expense of an

increase in the variance of the estimate.

Inasmuch as the mean square error of an estimate is the sum of the

variance and the squared magnitude of the bias error, it is desirable to
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select the number and the temporal lengths of the statistically independent

sample functions to achieve that mix of variance and bias error that results

in the minimum mean square error. However, because the bias error and the

variance are both functions of the (unknown) true wavevector-frequency

spectrum of interest, this optimization can only be addressed by a process of

trial and error.

9.3.4 Comutationg! Forms of the Spectral Estimates

Numerical evaluation of the wavevector-frequency spectral estimates given

by equations (9-123) and (9-124) is facilitated by shifting the origins of the

spatial and temporal coordinates. To this end, we choose the new spatial

origin to be at the location of the (l,l)-th sensor of the array and the new

temporal origin to be coincident with the first time sample. The spatial

vector from the (1,1) sensor to the geometric center of the array, which we

denote by x , is

__-_)2 (N-I)d 21  (9-201)

and the time between the first temporal sample and the center of the P

samples, which we denote by tc, is

S(Ptc W - ---2 (9-202)

If we denote the spatial vector relative to thQ (1,l) sensor by and the time

relative to the first temporai sensor by It. we can establish the following
relationships:

.- = n [(m - 1)dl. (n - l)d2]. 1 < m < M. 1 < n < N , (9-203)-win -in -t +A

and

tn t + tc V (p - l)Ts, 1 < p < P (9-204)

Let us now define
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( - J) = o (, tp , (9-205)

aw(tp) =a(t) , (9-206)

and

bw(-_mn) = bw(xmn) , (9-207)

for I <m <M, 1 < n < N, and l < p ' P. If we then define

Cj-mn- p awt p gw-Ymn oj xn *P (9-208)

it is evident that

cJ(x nt) = cj(x ,tp), 1 < m < M, 1 < n < N, 1 < p < P (9-209)

By substitution of equation (9-209) into equation (9-122), we can easily

show that

= ejd(k,)expl(koic + wtc)) , (9-210)

where

M N P

E d dTs ' Z(: ,nj)exp(-ik. +Wt) (921
m=l n=i p=l

However, by use of equation (9-208) and a change of the indices of summation,

we can rewrite equation (9-211) in the computationally convenient form

M-i N-i P-i

Jd-) = dld 2Ts aw(uTs)bw(qdl rd2)oj1 (qdlrd2.uTs)
q-O r=0 u-0

exp(-i(klqd1 + k2rd2 + wuTs)) (9-212)

To avail ourselves of this computatiinally afficient form for 8JAk .

we make use of equatlon (9-210) to write the estimate of th two wavevector-
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frequency spectrum of the stationary, nonhomogeneous sensor output field,

given by equation (9-213), in the form

- exp(ip-.Kc)
0 - JPTs -~j.1

101 :w/Tst Ik k I /d1, 1k2 1 i4/d2 , JI - kll S w/dl, 1U2 -k21 S i/d2

(9-213)

Similarly, by substituting equation (9-210) into equation (9-124), the

mathematically identical estimates of the space-averaged wavevector-frequency

spectrum of the stationary, nonhomogeneous sensor output field and the

wavevector-frequency spectrum of the stationary, homogeneous sensor output

field can be expressed in the form

3

_~N __ OdNd2PTs  Il jd ( i ' w) 1 .

j ~1

Jwl :Sw/T s, Ik I I :S /d1,l 1k 21 5 rt/d2 .(9-214)

Equations (9-213) and (9-214), in conjunction with equation (9-212), are

relatively efficient computational forms for estimating wavevector-frequency

spectra from discrete space-time sample functions of the sensor output field.
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A wavevector-frequency spectral estimation, discrete
Absolute spatial coordinates (or vector) space-time sample functions, 9-72-9-77

definition of, 6-31 Bending stiffness, infinite plate, 3-52-3-54
Fourier conjugate of, 6-48 Bias errors, wavevector-frequency spectral estimation
See also Spatial sampling defined, 9-5-9-6

Absolute temporal variable discrete space-time sample functions, 9-62-9-77
definition of, 6-27 estimator quality, 9-24-9-26
See also Temporal sampling estimator selection criteria, 9-7

Acceptance lobes quality control considerations, 9-91-9-93
finite spatial sampling, 8-76-8-78 single, continuous sample function refinement, 9-31-9-37
wavevector-frequency spectral estimation spectral estimate vs. autocorrelation bias, 9-33-9-37
estimator quality, 9-24-9-26 Welch smoothing method, 9-46-9-54
Welch smoothing method, 9-50-9-56 Boundary conditions

Acoustic half space finite plate, fluid loaded, 5-39-5-50
coupled linear systems, fluid-loaded plate, 5-7-5-12 infinite plate, fluid loaded, 5-15-5-25
finite plate, fluid loaded space-limited, time-invariant linear systems

forced response, 5-34-5-50 Green's function, 4-39-46
geometry of, 4-58 wavevector-frequency response, 4-50-4-55
infinite plate, fluid loaded space-varying, time-invariant systems, Green's
forced response, 5-28-5-34 functions, 4-33-4-34
free response 5-14-5-25 wavevector-frequency response, acoustic

pressure fields, 4-57-4-79 half space, 4-58-4-79
Acoustic systems

classification and definitions, 3-4-3-5 C
Aliasing errors Cauchy integral theorem, 4-77

finite spatial sampling, 8-79-8-80 Causal systems
finite temporal sampling, 8-63 finite plate, fluid loaded, 5-37-5-50
infinite spatial sampling, 8-42-8-47 infinite nonuniform time-invariant systems,
wavevector-frequency spectral estimation Green's function, 4-34-4-37
discrete space-time sample functions, 9-58-9-62 infinite plate, fluid loaded, forced response, 5-27-5-34

Arithmetic average of trial values, 7-3-7-12 space- and time-invariant linear systems
Array geometry damped infinite plate, 3-50-3-51

discrete space-time sample functions, 9-56-9-59 damped infinite string, 3-41-3-42
unweighted array, 9-72-9-77 Green's function, 3-24-3-25

Autocorrelation function random space-time fields, 7.2-7-12
egodic random process, 6-29 summary, 3-56
finite string, fixed ends, displacement fields, uniform infinite string, 3-30-3-32

harmonic wave excitation, 7-36-7-51 space-limited, time-invariant linear systems, 4-42-4-44
homogeneous random processes, 6-30.6-32 space-varying linear systems, 7-24-7-22
nonhomogeneous random processes, 6-34-6-36 Central limit theorem, 6-23-6-25
random space-time field classification, 6-25-6-26 Central moments
linear system response, 7-2 multiple random variables, 6-15.6-17
space-time domain, 6-21-6-25 single random variable metrics, 6-8-6-10
stationary, nonhomogeneous Input field, 7-9-7-12 Circular frequency, 2-18

space- and time-Invariant linear systems, 7-3-7-12 Coincidence frequency, 5-23-5-25
stationary, homogeneous Input field, 7-6-7-9 Conjugate variables

space-time cota iation, summary, 6-33-6-35 stationary, homogeneous random space-time
space-varying linear systems f;eld, 6 -37-o-44

stationary, homogeneous Input field, 7-22-7-27 sttionary, ninhomogeneous random space-time
stationary, nonhomogeneous Input field, 7-14-7-22 fieIJ, 6-46-6-47

spatial sampling Corc.os model
homogeneous, stationary output fields, 8-42-8-47 turbulent flow excitation, 7-30-7-36
stationary sensor fields, 8-40-8-47 Correlation function

stationary, homogeneous field, 6-27-6-29 multiple random variables, 6-15-6-17
wavevector-frequency analysis, 6-36-6-44 space-varying linear systems, 7-15-7-22

temporal sampling, statlonarq See also Autocorrelation function
sensor fields, 8-27-8-32 Coupled linear systems

classification 5-3-5-5
B coupling causes and effects, 5-2-5-3
Band-limited output fields fluld-oadee plate, 5-5-5-12
finite spatial sampling forced response, 5-26-5-50

space-averaged wavevector-frequency spectra, 8-82-8-87 finite, simply supported plate, fluid loaded, 5-34-5.50
true and estimated transforms, 8-71-8-87 Infinite plate, fluid loaded, 5-26-5-34

finite temporal sampling, true and estimated free response, 5-12-5-26
transforms, 8-52-8-57 Infinite plate, fluid loaded, 5-12-5-26

temporal sampling, true and estimated transforms, fundamental concepts, 5-1-5-12
8-24-8-26 Covariance, multiple random variables, 6-15-6-17
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D
Damping coefficient F
infinite plate. 3-52-3-54 Fast Fourier transform

Damping force sampled sensor output field, 8-88-8-90
infinite flat plate. 7-28-7-36 spatial sampling, 8-32-8-47
infinite plate, fluid loaded. 5-27-5-34 temporal sampling. 8-20-8-32
infinite string. 3-39-3-47 wavevector-frequency spectral estimation, 9-22-9-30
simply supported plate. 4-89-4-97 See also Fourier tansform

Delta function Feedback systems, fluid-loaded plate. 5.10-5-12
defined. 2-11-2-12 Finite difference equations, discrete space-time
Fourier transform of, 2-12-2-13 system modeling, 3-4
weighted superpositions of, 2-14-2-15 Finite sampling constraints
See also Dirac delta function spatial sampling, 8-3-8-87

Differential equations temporal sampling, 8-47-8-63
space- and time-invariant linear systems, 3-20-3-22 Finite, simply supported plate
space-varying. time-invariant systems, 4-30-4-32 fluid loaded
infinite, nonuniform systems, 4-34-4-37 forced response, 5-34-5-50
space-limited systems, 4-37-4-41 geometry, 5-34-5-36

Dirac delta function schematic diagram, 5-34-5-36
defined, 2-10-2-11 space-varying time-invariant systems, 4-18-4-28
finite spatial sampling, 8-63-8-87 Finite string, fixed ends
finite temporal sampling, 8-47-8-63 free response. 4-4-4-17

periodic f unction, 8-49-8-52 harmonic wave excitation, 7-36-7-51
See also Green's function Flexural rigidity, 3-12, 5-13

Discrete space-time sample functions. 9-56-9-95 Fluid-loaded plate
bias of estimators, 9-62-9-77 coupled linear system, overview. 5-5-5-12
quality control considerations, 9-91-9-93 finite plate
variance of estimators, 9-97-9-95 forced response, 5-36-5-50

Displacement field light fluid loading, 5-46-5-50
finite plate, fluid loaded vs. infinite space-invariant plates, 5-45-5-50

forced response, 5-34-5-50 infinite plate
finite string, fixed ends forced response, 5-26-5-34

free response, 4-4-4-17 geometry, 5-6-5-7
harmonic wave excitation, 7-36-7-51 schematic diagrams, 5-7-5-11

infinite plate summary of effects. 5-50-5-52
fluid loaded turbulent flow excitation, 7-29-7-33

forced response, 5-26-5-34 Forced response
free response, 5-13-5-25 coupled linear systems. 5-26-5-50

turbulent flow excitation, 7-27-7-36 finite, simply supported plate, fluid loaded, 5-34-5-50
space- and time-invariant linear systems defined, 3-4
forced response examples, 4-96-4-97
damped infinite string, 3-46-3-47 finite string, fixed ends, harmonic wave excitation, 7-38-7-41
undamped infinite string, 3-36-3-39 infinite plate, fluid loaded, 5-26-5-34

free response space- and time-invariant linear systems, 3-20-3-56
infinite flat plate, 3-16-3-18 damped, infinite string, 3-39-3-47

wavevector-frequency response Green's function or impulse response, 3-22-3-25
simply supported plate, 4-81-4-97 summary of characteristics, 3-55-3-56

Distribution function, random variable, 6-4-6-7 superposition principle, 3-20-3-22
Dynatron system wavevector-frequency spectral uniform infinite string, 3-28-3-39

estimation, 9-8 wavevector-frequency response, 3-25-3-28
wavevector-frequency response, damped infinite plate,

E 3-47-3-54
Ergodic random process space-varying, time-invariant systnms. 4-30-4-97

random space-time field classification, 6-29-6-30 Green's functions, 4-32-4-46
summary of characteristics, 6-34 infinite, nonuniform, time-invariant linear systems,

Estimation procedures 4-34-4-37
measurement techniques. 8-2 space-limited, time-invariant linear systems,
wavevector-frequency spectral estimation, 9-30-9-37 4-37-4-46

Estimators, wavevector-frequency spectra wavevector-frequency response, 4-46-4-56
development procedures, 9-7-9-56 examples, 4-56-4-97
foundation for, 9-9-9-30 infinite, nonuniform, time-invariant linear systems,
single, continuous sample function 4-46-4-49
refinement for, 9-30-9-37 pressure field in acoustic half space, boundary
Welch method for smoothing, 9-37-9-56 excitation, 4-57-4-79

quality control considerations. 9-91-9-93 space-limited, time-invariant linear systems.
Evanescent waves. 4-74-4-79 4-49-4-55
'Exact Green's function," 4-42-4-44 simply supported plate, forced vibration, 4-79-4-97
'Expected value," single random variable metrics, 6-8-6-10 summary, 4-55-4-56
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Fourier Integral theorem, 2-8 phase of, 2-2
Fourier transform velocity parameters, 2-5-2-6

convolution of functions, 2-16 wavelength, 2-6-2-7
generalized functions, 2-10-2-12 wavevector-frequency analysis
review of, 2-8-2-10 space-tims dependence, 2-20
superposition property, 2-13-2-15 wave field description, 2-17-2-18

Free response Heaviside (unit step) function
coupled linear systems, 5-12-5-25 defined, 2-11

infinite plate, fluid loaded, 5-12-5-25 space- and time-invariant linear systems
defined, 3-4 forced response
space- and time-invariant linear systems, 3-5-3-19 damped infinite string, 3-42-3-43
Infinite flat plate, 3-12-3-18 uniform infinite string, 3-31 3-32
Infinite string, 3-6-3-12 space-limited, time-invariant linear systems, 4-37-4-46
summary of characteristics, 3-18-3-19 wavevector-frequency response, acoustic

space-varying, time-invariant systems, 4-3-4-30 half space, 4-63-4-64
finite, simply supported plate, 4-18-4-28 Homogeneous fields
finite string with fixed ends, 4-4-4-17 random processes
summary, 4-28-4-30 characteristIcs, 6-30-6-32

Free wavenumber strict and weak, 6-33-6-35
infinite plate, fluid loaded, 5-21-5-24 spatial sampling
space- and time-invariant linear systems finite duration, 8-68-8-87

infinite flat plate, 3-14-3-18 infinite duration, 8-40-8-47
Infinite plate vs. Infinite string, 3-14-3-15 wavevector-frequency spectrum of, 6-36-6-44

summary of effects, 5-51.5-52 Hydrodynamic wavenumber, 7-31-7-35
Frequency-dependent modal coefficients, 5-40-5-50
Frequency spectral density, 9-35-9-37 I
Frequency window, 9-65-9-77 Impedance, 3-27-3-28

Impulse response
0 acoustic half space, 4-67-4-70
Gaussian random process wavevector-frequency measurements, 8-12-8-14

Real Gaussian random process, 9-35-9-37 Inertial forces, 3-45-3-47
space-time domain, 6-23-6-24 Infinite, nonuniform time-invariant systems
Zero mean Gaussian random process definition of, 4-3

discrete space-time sample functions, 9-59 Green's function, 4-32-4-37
variance errors, 9-80-9-95 wavevedor-frequency response, 4-46-4-49

estimator quality, 9-26-9-27 Infinite plate
Generalized functions fluid loaded

mathematical relationships, 2-12-2-16 exact vs. approximate values, 5-23-5-25
review of, 2-10-2-12 forced response, 5-26-5-34
See also specific functions, e.g., Dirac delta function free response, 5-12-5-25

Green's function vs. In-vacuo plate, 5-22-5-25
coupled systems space- and time-invariant linear systems
finite plate, fluid loaded, 5-34-5-50 forced response, 3-47-3-54
Infinite plate, fluid loaded, 5-26-5-34 free response, 3-12-3-18

space- and time-Invadant linear systems, 34; -325 turbulent flow excitation, 7-27-7-36
damped infinite plate, 3-47-3-54 Infinite string
damped Infinite string, 3-3M-47 forced response
uniform infinite string, 3-20-3-39 damped string, 3-43-345
wavevector-frequency response, 3-27-3-28 uniform string, 3-33-3.35

Tpace-varylng, time-invarlant linear sytems free response, 3-6-3-12
nflnite, nonuniform itystems, 4-34-4-37 wavenumber-frequency analysis
acoustic half space, 4-57-4-79 vs. finite strings, 4-13.4-17
wavovedor-frequency response, 4-46-4-49 Input-output relationships

space-limited systems, 4-37-4-46 See Green's function
exact Gr&sn's function, 4-42-4-44
finite string, fixed ends, 7-38-7-39 J
simply supported plate, 4-79.4-96 Joint distribution function
wavevector-frequency response, 4-49-4-55 multiple random variables, 6-12-6-17

space-time domain descriptors, 6-18-6-25
H Joint metrics, multiple random variables, 6-12-6-17
Harmonic waves Joint modal weightings, 7-46-7-49

defined, 2-1 Joint moments
plane harmnIc waves, 2-1-2-8 homogeneous random processes, 6-30-6-32
frequency of, 2-3 multiple random variables, 6-14-6-17
Infinite, nonuniform tim3-invariant systems, 4-46.4-49 space-time domain descriptors, random
mathematical relationsnips, 2-13-2-15 variables, 6-19-6-25
period of, 2-2-2-3 stationarily, 6-27-6-29
phase front, 2-3-2-5 Joint probability density function, 6-12-6-17



K Mean values
Kronecker delta function, 9-53-9-56 homogeneous random processes, 6-31-6-32

random processes, space-time domain, 6-23-6-25
L space-time correlation, summary, 6-33-6-35
Linear operator stationary homogeneous random space-time field, 6-40-6-44

space- and time-invariant systems, 3-20 wavevector-frequency spectral estimation. 9-4-9-6
space-varying systems. 4-30-4-32 biasing errors, 9-62-9-77

Linear systems variance errors. 9-78-9-95
definition of, 3-3 Measurement techniques
forced response of finite sampling

coupled systems constraints, 8-47
concepts, 5-26 finite spatial sampling, 8-63-8-87
finite fluid-loaded plate, 5-34-5-50 finite temporal sampling, 8-47-8-63
infinite fluid-loaded plate, 5-26-5-34 mathematical modeling. 8-1-8-2
to turbulent flow excitation, 7-27-7-36 sampling effects, 8-19

space- and time-invariant systems sensors. 8-2-8-19
concepts, 3-20-3-22 spatial sampling, 8-32-8-47
damped infinite plate, 3-47-3-54 summary of techniques, 8-87-8-90
damped infinite string, 3-39-3-47 temporal sampling, 8-20-8-32
Green's func.ion of, 3-22-3-25 See also Sampling techniques; Statistics
to random space-time fields, 7-2-7-6 Metrics
to stationary, homogeneous fields, 7-6-7-9 joint, for multiple random variables, 6-12-6-17
to stationary, nonhomogeneous fields, 7-9-7-12 random processes, space-time domain, 6-23-6-25
uniform infinite string, 3-28-3-39 single random variables, 6-8-6-10
wavevector-frequency response, 3-25-3-28 statistical, random processes, 6-11-6-12

space-varying systems Modal coefficients
acoustic half-space, 4-57-4-79 finite, simply supported plate
concepts, 4-30-4-34 fluid loaded. 5-43-5-50
finite string, 7-36-7-51 space-limited systems, 4-20-4-28
Green's function of, 4-37-4-46 finite string, fixed ends, 4-7
simply supported plate, 4-79-4-96 free, finite string, 4-10-4-17
to random space-time fields, 7-12-7-14 Modal critical damping, 7-45-7-47
to stationary, homogeneous fields, 7-14-7-22 Modal natural frequency, simply supported plate, 4-83
to stationary, nonhomogeneous fields, 7-22-7-27 Modal wavevectors, simply supported plate, 4-87-4-97
wavevector-frequency response, 4-46-4-49 Modal weighting function. 7-41-7-44

free response of Moments
coupled systems, fluid-loaded infinite plate, 5-12-5-25 joint, multiple random variables, 6-12-6-17
space- and time-invariant systems single random variable, 6-8-6-10
infinite flat plate, 3-12-3-18 Multicomponent coupled systems
infinite string, 3-6-3-12 coupling causes and effects, 5-2-5-5

space-varying systems forced response, 5-26
finite flat plate, 4-18-4-28 summary of, 5-50-5-52
finite string, 4-4-4-18 Multidimensional Fourier transform

Lowpass filtering superposition property, 2-15-2-16
spatial sampling, 8-46-8-47 wave fields, 2-9
temporal sampling, 8-32 wavevector-frequency analysis, 2-17

M N
Mathematical modeling Nonhomogeneous fields

acoustic system parameters, 4-1-4-2 random space-time field, 6-44-6-65
coupled linear systems, 5-4 space-averaged wavevector-frequency spectrum, 6-51-6-5S
measurement techniques, 8-1 -8-2 space-varying wavevector-frequency spectrum, 6-45-6-47
space-varying time-invariant linear systems, 4-1-4-3 spectral properties, 6-56-6-65
systems theory, 3-2-3-4 two wavevector-frequency spectrum, 6-47-6-51

Mean of a random variable, 6-8-6-10 space-varying linear system, 7-22-7-27
Mean square error (MSE), wavevector-frequency spatially samp!ed measurement, 8-43-8-47

spectral estimation two-wavevector-frequency spectra
defined, 9-5-9-6 transducer effects on field descriptors, 8-7-8-9
discrete space-time sample functions, 9-78-9-95 wavevector-frequency spectral estimation, 9-4-9-6
estimator quality, 9-26-9-27 discrete space-time sample functions
estimator selection criteria, 9-7 biasing errors, 9-62-9-77
quality control consideratiuns, 9-92-9-93 variance errors, 9-78-9-95
single, continuous sample function refinement, 9-31-9-37 ,. timator development, 9-10-9-12
Welch smoothing method, 9-49-9-56 estimator quality, 9-22-9-30

Mean square value two wavevector-frequency spectrum, 9-18-9-30
single random variable, 6-8-6-10 We!ch smoothing method, 9-42-9-56

Mean value theorem for integrals, 6-6-6-7 Nyquist frequency, 8-31-8-32
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0 measurement techniques, 8-1-8-2
One-dimensional wave fields, 2-18-2-21 sensors, overview of descriptors, 8-2-8-19
Orthogonality condition plane harmonic wave, 2-2

finite, simply supported plate, 4-20-4-21, 4-28 random processes, 6-10-6-12
finite string, fixed ends, 4-6-4-7, 4-15-4-17 random space-time fields

Output field geometry, 6-19-6-20
finite temporal sampling of, 8-47-8-63 mathematical concepts, 6-2-6-3
impulse response, sensor, 8-3-8-5 spatial sampling, 8-32-8-47
spatial sampling of, 8-32-8-47 temporally sampled measurement, 8-21-8-32, 8-26-8-32
temporal sampling of, 8-20-8-32 transducer effects on field descriptors, 8-5-8-7
wavevector-frequency transform wavevector-frequency analysis, 1-1
spectral estimation, 9-2-9-6 acoustic half space
transducer effects on field descriptors, 8-5-8-7 boundary excitation, 4-57-4-79
true and estimated transforms, frequency Fourier transform of, 4-78-4-79

band-limited output, 8-24-8-26 one- and two-dimensional wave fields, 2-19-2-21
space-limited, time-invariant linear systems, 4-52-4-55

P spectral estimation, 9-3
Period of harmonic wave, defined, 2-2-2-3 Probability, 6-2-6-3
Periodic function, temporal sampling constraints, 8-50-8-62 Probability density function
Perodograms defined

wavevector-freq eicy spectral estimation, 9-35-9-37 joint, 6-14
Welch smoothing method, 9-37-9-56 multiple random variables, 6-14

Phase front single random variable, 6-5
harmonic wave, 2-2-2-4 random processes, 6-11-6-12
wavevector-frequency analysis, 2-20 random space-time fielnRs, 6-4-6-7

Phase gradient, harmonic wave, 2-7 space-time domain descriptors, 6-18-6-25
Phase information Projected wavelength, 2-7

infinite plate, fluid loaded, 5-33-5-34
plane harmonic wava, defined, 2-2 R
space-varying time-Invariant linear Radiation condition, 4-60-A-62

acoustic systems, 4-9-4-12 Random processes
uniform, infinite flat plate defined, 6-10-6-1 I

displacement field, 7.28-7-36 ergodic process cefinoi, 6-29-6-30
wavevector-frequency analysis homogeneous random ' ,,cess defined, 6-30
acouslic half space, 4-71-4-73 random space-tima fielas, 6-10-6-12
stationary homogeneous random space-lime field, 6-40-6-44 space-time domain merm-s, 6-23-6.25
wave field desciltion, 2-18 mathematical forms, 6-17-6-23

Phase planes stationary random process defined 6-27
harmonic wave, 2-4-2. Random space-time fields
wavovectorfrequoncy enalysis, space-time dependence, 2-20 classification, 6-25-6-32

Phase shift ergodic random process, 6-29-6-30
spatially sampled measurement, 8-44-8-47 homogeneous random process, 6-30-6-32
temporally sampled measurement, 8-22-8-24 stationary fields, 6-27-6-29

nspace-time fields, 8-29-8-32 definitions arid terminology, 6-3-6-8
Ptezoelactlc sensors, long-wavelength sensitivity, 8-12-8-14 linear system response
Planar sensor, long-wavelength sensitivity, 8-11-8-14 finite string displacement field, fixed ends, 7-36.7-51
Planar transducer, Impulse response, 8-2-8-5 overview, 7-1-7-2
Plane harmonic wave, 2-1-2-8 random space-time input fields, 7-2-7-12

frequency of, 2-3 space- and time-invariant systems
mathematical relationships and, 2-13-2-15 stationary, homogeneous input field, 7-6-7-9
period of, 2-2-2-3 stationary, nonhomogeneous input field, 7-9-7-12
phase front, 2-3-2-5 space-varying systems, 7-12-7-27
phase of, 2-2 stationary, homogeneous input field, 7-14-7-22
velocity parameters, 2-5-2-6 stationary, nonhomogeneous input field, 7-22-7-27
wavelength, 2-6-2-7 uniform, Infinite flat plate, turbulent flow
wavevectot-frequency analysis excitation, 7-27.7-36
space-time dependence, 2-20 mathematical concepts, 6-2-6-3
wav field description, 2-17-2-18 multiple random variables, joint metrics, 6-12-6-17

Pressure field overview, 6-1-6-2
coupled linear systems random processeos, 6-10-6-12

Iluid-loaded pla's, 5-8-5.9 real random space-lime fields, 6-35
summary of effects, 5-51-5-52 single random variable metrics, 6-8-6-10

finite plate, fluid loaded space-time domain descriptors, 6-17-6-25
forced response, 5-34-5-50 classification, 6-25-6-32

finite spatil sampling, 8-63-8-87 metrics of random processes, 6-23-6-25
finite temporal sampling, 8-47-8-63 random process descriptors, mathematicai turm, 6-17-6-23
Infinite plate, fluid loaded, 5-27-5.34 summary, 6-33-6-35
forced response, 5-27-5-34



Random space time fields (continued) Space-averaged wavevctor-frequency spectra
wavevector-frequency domain descriptors, 6-36-6-65 estimator development, 9-21-9-30
stationary, homogeneous field. 6-36-6-44 finite spatial sampling, 8-82-8-87
stationary, nonhomogeneous field, 6-44-6-65 space-varying linear system, 7-24-7-27

space-averaged wavevector-frequency spectrum, wavevector-frequency spectral estimation
6-51-6-56 autocorrelation function, Wolch smoothing

space-varying spectrum, 6-45-6-47 method, 9-44-9-46
spectral properties. 6-56-6-65 discrete space-time sample functions
two wavevector-frequency spectrum. 6-47-6-51 biasing errors, 9-63-9-77

wavevector-frequency spectral estimation, 9-1 -9-2 variance errors, 9-78-9-95
frequency spectral density, 6-65-6-69 Space limited, time-invariant systems
summary of characteristics, 6-69-6-74 coupled linear systems, fluid-loaded plate, 5-9-5-12

Random variable finite, simply supported plate, 4-18-4-28
metrics of single variables, 6-8-6-10 space-varying, time-invariant systems
probability density function, 6-4-6-5 classification criteria, 4-3
random space-time fields. 6-3-6-8 Green's functions, 4-32, 4-37-4-46
weighted sum, space-time domain. 6-24-6-25 wavevector-frequency response, 4-49-4-55

Real Gaussian rando3m process, wavevector-frequency Space-time descriptors, random space-time field, 6-17-6-25
spectral estimation, 9-35-9-37 mathematical forms, 6-17-6-23

Real random space-time fields, characteristics of, 6-35 random process metrics, 6-23-6-25
Resonance frequency, finite plate, fluid loaded, Space-time fields

5-48-5-50 classification, 6-33
Resonance wavenumber, infinite plate, fluid loaded, displacement field, finite string, 4-7-4-17

5-32-5-34 finite plate, fluid loaded
forced response, 5-42-5-50

S wavevector-frequency analysis, 2-19-2-20
Sampling techniques Space-time impulse response. See Green's function

random processes, 6-11-6-13 Space-varying linear systems
spatial sampling, 8-32-8-47 background, 4-1-4-3
temporal sampling, 8-20-8-32 forced response, 4-30-4-32

Sensitivity parameters, 8-10-8-19 examples of wavevector-frequency response, 4-56-4-57
Sensors Green's functions, 4-32-4-46

acoustic measurement, spatial averaging. 8-87-8-88 pressure field in acoustic half space, boundary
circular sensors, 8-15-8-18 excitation, 4-57-4-79
dimensions, 8-14-8-19 simply supported plate, 4-79-4-97
long-wavelength sensitivity, 8-11-8-14 summary of wavevector-frequency response, 4-55-4-56
measurement techniques, 8-2-8-19 wavevector-frequency response
rectangular sensors, 8-15-8-18 infinite, nonuniform, time-invariant linear systems, 4-46-4-1
spatial response, 8-9-8-10 space-limited, time-invariant linear systems, 4-49-4-55

Simply supported plate. wavevector-frequency free response, 4-3-4-30
response, 4-79-4-97 finite simply supported plate, 4-18-4-28

Single, continuous sample function fiuite string, 4-4-4-17
estimator refinement, 9-30-9-37 summary, 4-28-4-30
Welch method for smoothing, 9-37-9-56 random space-time fields, 7-12-7-27

Smoothing stationary, homogeneous input field. 7-14-7-22
wavevector-frequency spectral estimation, 9-36-9-37 stationary, nonhomogeneous input field, 7-22-7-27
Welch method for, 9-37-9-56 time-invariant linear acoustic systems

Space- and time-invariant linear systems free response, 4-3-4-30
acoustic system classification, 3-4-3-5 finite, simply supported plate, 4-18-4-28
forced response characteristics, 3-20-3-56 finite string, 4-4-4-17
damped, infinite string, forced vibration, 3-39-3-47 summary, 4-28-4-30
Green's function, 3-22-3-25 wavenumber-frequency analysis, 4-2-4-3
summary, 3-55-3-56 wavevector-frequency spectra
superposition principle, 3-20-3-22 nonhomogeneous random space-time field, 6-46-6-47
uniform infinite string, forced vibration, 3-28-3-39 random space-time fields, 7-2
wavevector frequency response Spatial constraints
damped, infinite plate, 3-47-3-54 Fourier transforms, 2-15-2-16
generally, 3-25-3-28 Green's function. 4-44-4-46

free response characteristics, 3-5-3-19 Spatial response measurements, 8-9-8-10
infinite flat plate, 3-12-3-18 Spatial sampling
Infinite string, 3-6-3-12 finite constraints, 8-63-8-87
summary, 3-18-3-19 sensor dimensions, 8-32-8-47

infinite plate, fluid loaded, 5-14-5-25 wavevector-frequency spectral estimation
random space-time input fields computational forms, 9-93-9-95
overview, 7-2-7-12 discrete space-time sample functions. 9-59-9-62
stationary, homogeneous input field, 7-6-7-9 biasing errors, 9-66-9-77
stationary, nonhomcgeneous input field, 7-9-7-12 estimator quality, 9-23-9-30

system theory and classification, 3-1-3-4 Welch smoothing method, 9-37-9-56
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Spatial variables Temporal freq-jentcy, harmonic wave, 2-3
absolute, 6-22 Temporal partitioning and weighting, 9-38-9-40, 9-53-9-56
absolute spatial vector, 6-48 Temporal sampiing

Fourier conjugate variable of, 6-4U acoustic field measurement, 8-20-8-32
relative, 6-22 finite sampling constraints, 8-47-8-63
spatial separation vector, 6-31 wavevector-frequency spectral estimation

Fourier conjugate variable of, 6-37 computational forms, 9-93-9-95
Spatially Invariant models, acoustic systems, 3-4-3-5 discrete space-time sample functions, 9-56-9-62, 9-59-9-6
Spatially varying models biasing errors, 9-66-9-77

acoustic systems, 3-5 variance errors, 9-79-9-95
free response, space-varying time-invariant linear estimator quality, 9-23-9-30

acoustic systems, 4-4 quality control considerations, 9-92-9-93
Spectral smoothing, 9-36-9-37 Welch smoothing method, 9-37-9-56
Spectral surface Impedance, 4-70-4-78 Temporal variables
Spectral transfer function, 4-70-4-72 random, stationary fields, 9-9-9-11
Spectral window two wavevector-frequency spectrum., 9-14-9-18

discrete space-time sample functions Tensile forces, 3-45-3-47
biasing errors, 9-66-9-77 Three-wavenumber-frequency response, acoustic half
varl'ance errors, 9-85-9-90 space, 4-66-4-79

Welch smoothing method, 9-37-9-56 Time history
Stationary fields nonhomogenaous random space-time field, 6-46-6-47
finite spatial sampling, 8-68-8-87 random space-time fields, 6-2-6-3
finite temporal sampling constralints, 8-58-8-60 Time-Invariant systems, defined, 3-3-3-4
homogeneous and non1homogeneoum fields, 6-34-6-35 Transducers
random space-time fiekl classlficai~on, 6-27-6-29 overview of descriptors, 8-2-8-19

ergodlo random processes, 6-29-P-30 spatial averaging, 8-87-8
homatgeneous random processes, 6-30-63-32 spatial response measurements, 0-9-8-10
space-time field, 6-36-&.44 Turbulent flow excitation, uniform,

nonhomogoneous field, 6-44-6-65 infinite flat plate, 7-27-7-36
space- and time-Invariantl linear systems Two-dimensional Laplacian operator, 5- 14-5-25
homogneous Input fIeld, 7-6-7-9 Two-dimensik-ial space-limitting function
nonhomtogeneous inpot field, 7-9-7-12 finite, simply suoported plate

SPWe- varying linear systems flukl loaded, 5-37-5-6O
neo us Input fiel, 7-14-7-22 space-limited systems, 4-18-4-28

nonhomogeneous Input fields, 7-22-7-27 Two wavovoctor-frequoncy spectra
strict and waak degrevs, 6-33-6-35 acoustic half space, 4,66-4-79
temporally sampled maauremeont, 8.27-8-32 estimator development, 9-139-18
two-wavevector-frequency soecra, P17-8-9 finitfi spatial sampling. 8.67-8-87
wavevector-frequency spectrtal estimation finite string, harmonic wave excilation, 7-36-7-41
estimator foundatin, 9-9-9-30 finite temporal samplingj constraints, 0-60-8-63
random space-time field, 9-2.9-6 infinite, nonuniform timie-invariant systemrs. 4-47-4 -49
two wavavedouw-raquency speolrum. 9- 13-9-18 nonhomoganeous random space-time field, &-47-6-51

Statatlics output field, 8-7-8-9
Metrics pressure field, sensor spectra, 6-f 8-8- 19

random procasaes. 6-11-6-12 simply supported plate. 4-85-4-97
wavevectar-froquency swctal estimation, 9-2-9-6 space- and time-invariant linear systems, 7-9-7- 12

rand,,m space-time filkl, 6-2.-3 space-limitad systemns, 4-50-4-55
Stoehaslic Inputs space-varying linear systems. stationary,

acoustic systems, 3-5 nonbomogeneou3 input field, 7-1 7-7-27
random space-time tieks, 6-1 -6-2 spatially sampled moagurementl, homogeneous, stationary

Subsonic. components, 6-45-5-50 output fielas, 8-42-8-47
Superposition principle temporally sampled measurement, space-time
in Fourier transforms, 2-13-2-16 fields, 8-30-8-32
random processes, space-time domaIn, 6-24-6-25 wavevactor-Iroquency spectral estimation
space- and tima-invariant linear systems, 3-20-3-22 computational form%, 9-93-9-95
spaice-limited, lime-Invariant inear systorms, 4-41-4-42 discrete space-time sample functions
space-varying, time-tnv"ran systems, 4-31-4-32 biasing errors, 9-68-9-77

Symmetly properties, variance errors, 9-82-9-95
stationary, homyogeneous fields, 6-38-6-44 Welch smoothing method, 9-45-9-54
stationary, nonhamogeneous fields, 6-44-6-56

Systams theory I)
dollnitiors, 3-1-3-2 Uniform spaceo-limited acoustic systems, 4-3
rmathematical ifvodes v&. physical systerms. 3-2-3-4 Uniform spaial Lampling, 8-33-8-34

Uniform spatial weighting, biasing errors, 9-66-9-68
T Uniform temporal weighting, biasing errors, 9-66-9-68
Temporal darivkttves,

Fourier transfor'ms and, 2-15-2-16
restrictions, simpily supported plate, 4-832A-84



V wave field description, 2-16-2-21
'Value of a random variable." S.e Random variable one and two spatial dimensions, 2-18-2-21
Variance errors, wavevector-frequency spectral estimation review and perspective. 2-17-2-18

discrete space-time sample functions. 9-77-9-95 Wavevector-frequency spectral estimation
spectral estimate vs. autocorrelation variance, 9-33-9-37 biasing errors, 9-62-9-77
Welch smoothing method. 9-46-9-54 computational forms, 9-93-9-95

Velocity field discrete space-time sample functions, 9-56-9-95
acoustic half space, 4-70-4-79 bias of estimators. 9-62-9-77
finite, simply supported plate variance of estimators, 9-7-9-95
fluid loaded, forced response. 5-44-5-50 estimation techniques
space-limited systems, 4-20-4-28 development of estimators, 9-7-9-56

free response, finite string. 4-4-4-17 foundation for estimator, 9-9-9-30
space- and time-invariant linear systems. 3-16-3-18 overview, 9-1-9-2

Velocity vectors, harmonic wave, 2-5-2-6 statistical parameters. 9-2-9-6
Vibration field single, continuous sample function

coupled systems, summary of effects. 5-51-5-52 refinement for. 9-30-9-37
space- and time-invariant linear systems, 3-8-3-12 Welch method for estimator smoothing, 9-37-9-56
wavevector-frequency analysis, 1-1 variance errors, 9-77-9-90

Wavevector-frequency transform

W finite plate, fluid loaded. 5-37-5-50
Wave fields finite temporal sampling constraints. 8-48-8-63

Fourier transforms, 2-9 mathematical relationships and, 2-13-2-14
random space-time fields, 6-2-6-3 measurement techniques, 8-1-8-2

Wavelength, harmonic wave, defined. 2-6-2-7 output field, transducer effects on
Wavenumber components field descriptors. 8-5-8-7

harmonic waves, 2-7-2-8 review of, 2-9-2-10
Wavevector band-limited transform. 8-35-8-39 spatial sampling, 8-33-8-47
Wc.vevector-frequency analysis true and estimated transforms, frequency band-limited

band-limited output fields. 8-55-8-57 output field, 8-35-8-47
defined. 1-1 temporally sampled measurement, 8-21-8-32
harmonic wave, 2-4-2-6 true and estimated transforms, frequency band-limited
historical background, 1-1-1-3 output field, 8-24-8-26
infinite, nonuniform, time-invariant systems, 4-46-4-49 We:.h smocthing method
infinite plate, fluid loaded discrete space-time sample functions, 9-58-9-62
free response, 5-15-5-25 wavevector-frequency spectral estimation, 9-37-9-56
forced response. 5-28-5-34

motivation and objective, 1-3-1-4 Z
random space-time fields, 6-36-6-65 Zero mean component, stationary

stationary, homogeneous fields, 6-36-6-44 homogeneous random space-time field. 6-40-6-44
stationary, nonhomogeneous fields, 6-44-6-65 Zero mean Gaussian random process
properties, 6-56-6-65 discrete space-time sample functions. 9-59
space-averaged spectrum, 6-51-6-56 variance errors, 9-80-9-95
space-varying spectrum, 6-45-6-47 estimator quality, 9-26-9-27
two wavevector spectrum, 6-47-6-51 single, continuous sample function refinement, 9-33-9-37

space- and time-invariant linear systems
forced response

infinite flat plate. 3-51-3-52
overview. 3-25-3-28
summary. 3-55-3-56
uniform infinite string, 3-28-3-39

free response
infinite flat p!ate, 3-13-3-18
Infinite string, 3-7-3-12
summary, 3-18-3-19

space-limited systems
finite, simply supported plate, 4-21-4-28
summary, 4-28-4-30
time-invariant systems, 4-49-4-55

space-varying linear systems, 7-16-7-22
space-varying time-invariant systems

free response systems, infinite flat plate, 3-16-3-18
Green's functions, overview. 4-33-4-34

spactral estimation. See Wavevector-frequency
spectral estimation

transforms. See Fourier transform; Wavevector-frequency
transform.

uniform, inlinite flat plate
turbulent flow excitation, 7-28-7-36
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