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ADAPTIVE CONTROL OF TELEROBOTIC SYSTEMS WORN BY HUMANS
' 1. INTRODUCTION

The focus of a substantial amount of research in the field of robotics has been in the areas
of autonomous systems and remotely teleoperated systems. These areas represent two popular
approaches to a class of applications where man is incapable of performing a given task due to
his physical limitations. The autonomous or remotely operated machines provide a more capable
means for accomplishing the task; however, these two approaches have their own inherent
limitations. A great deal of ability is required to create an autonomous robot that can operate in
an unstructured environment. This limitation as well as the problems encountered with response
requirements and the creation of situation awareness hinder teleoperated systems.

A third approach to this class of problems, combining results of initial investigations into
robotics systems worn by humans with the fields of adaptive control and system identification, is
discussed.[1] A system is produced that harnesses the versatility of adaptive control to perform
dissimilar physical tasks that humans are unable to achieve. This approach lays the foundation
for putting the abilities of man back "into the loop" as opposed to trying to remove him.

The concept of a device used to increase the strength of a human operator using a master-
slave system with the operator maintaining supervisory control has existed since the early
1960s.[2] Early work performed at the Cornell Aeronautical Laboratory for the Department of
Defense starting in 1962 was directed at assessing the feasibility of such a master-slave system.
The result of this initial investigation determined that it was impractical to duplicate the full
range of human motion and that this type of system would be limited by the physical size of the
components required to construct it.[2]

General Electric (GE) Company also investigated the man-amplifier concept between
1966 and 1971.[2] GE designed a master-slave system, known as Hardiman, which consisted of
an inner exoskeleton that was coupled to its human host; its motions were controlled by the ;

movements of the host. This linkage provided the master control for a hydraulic outer
exoskeleton which acted as the slave. This system advanced to the prototype phase where work
ceased.

A more recent investigation has been performed by H. Kazerooni, at the University of
Minnesota, who has written a series of papers on a nonmaster-slave approach to the concept of a
man-amplifier.[1-5] Kazerooni's concept, known as "Extenders,” provides a starting point for
the work described in this report. Extenders, as defined by Kazerooni, are a class of robot




manipulators used to extend human arm strength through the transfer of both power and
information signals.[1]

Traditional master-slave systems employ a second set of actuators to provide force
feedback to the operator. These actuators are also involved in the production of the master
control signals used to drive the slave. An operator is never in direct contact with his
environment and relies on the duplicate actuators for sensory input. An alternative approach,
proposed by the extender concept, eliminates the need for this second set of actuators. The
extender senses the force exerted on it by its host and senses the forces which it exerts on the
environment. These two signals are used to control the dynamics of the extender. The extender
controllers are designed to maintain a relationship between these forces, while the human
provides overall control for the extender/host system. Kazerooni states, “Force reflection occurs
naturally in the extender system, because the contact forces between the human and the extender
let the human feel a scaled-down version of the actual environmental forces on the extender.”[1]

A characteristic of this architecture is that a model of the extender’s operating
environment is incorporated into its controller design imposing a dependence on the extender’s
capability to operate in an unstructured environment. Modem adaptive control techniques
incorporate estimation algorithms to identify unknown system parameters in the absence of a
fully specified system model.[6] These techniques can also apply to a system model with
inaccurate parameters. The application of parameter estimation allows one to extract parameter
information from the data contained within a system. Adding an estimation algorithm to the
extender architecture would allow the extender to adapt to an unknown or unstructured
environment.

Experimental verification of Kazerooni’s work is described in section 2 of this report,
which includes a derivation of the system expressions for the components of his architecture, the
experimental state space forms used to implement a test system, and simulation data provided to
verify Kazerooni’s results. This information leads to a description of the case where there is a
mismatch between the environmental model and the actual environment. Section 3 introduces
the least squares estimation technique as it applies to the environmental mismatch problem. A
recursive least squares estimator is then specified and introduced into the overall architecture.
Analysis is provided to describe the overall system’s performance in the presence of an unknown
time invariant environment. Section 4 deals with the applicability of this approach to the time
varying parameter case. A bounded gain forgetting (BGF) estimator is specified and added to the
original architecture. Analysis is provided to assess the performance of this system. The report
concludes with a summary of results and a discussion of topics related to future work.




2. VERIFICATION OF EXTENDER ARCHITECTURE

This section describes the procedures used to verify the extender architecture, which
consists of a transfer function description of the models for each of the components comprising
the extender system. State space implementations for each subsystem are also provided for the
experimental setup used for verification. Differences between the design and experimental
configurations are presented, and a description of the composite system is then discussed.
Simulation data are used to verify the performance of the basic system. An interactive
simulation for dynamic nonlinear systems, called Simnon, is used to verify the extender
architecture. The validation of the extender architecture provides a basis for expanding its
capabilities. Each of the following descriptions approaches the modeling of a portion of the
extender system from an input/output standpoint, placing less importance on the internal
structures of each component.

2.1 DEVELOPMENT OF THE EXTENDER MODEL

The dynamic behavior of the extender itself is the first subsystem to be described. Figure
1 shows the block diagram for the extender dynamics. Block G represents the primary
compensator for the extender and accepts a control input U, which is generated by the extender
controllers. This block consists of the models for the extender’s physical hardware and either a
position or velocity compensator that governs the motion of the extender based on the input U.

X

!

0

Figure 1. Extender Dynamics




The Sh block represents the model for the extender’s sensitivity to forces exerted on it by the
human and maps these forces Fp, into the output motion of the extender. Sensitivity of the
extender to forces generated by interaction with the environment is represented by block Sp,
which maps these environmental forces Fp, into extender motion. The sum of the outputs from
the plant dynamics G and the two force mapping models Sh and Sp, results in the output position
X of the extender. Equation 1 describes this relationship:

X=GU+ShFh+SnFn. 1

The experimental hardware used by Kazerooni to test his extender architecture consisted
of a hydraulic rotary actuator connected to two hollow tubes. The forearm of the operator is
placed within the inner tube. A piezoelectric force sensor is placed between the inner and outer
tubes to measure the forces exerted on the extender by the operator. A second force sensor is
placed at the point of contact with the environment to measure the interaction forces of the
extender. Figure 2 depicts this configuration.

INSERT
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Figure 2. Extender Hardware Setup

The following transfer functions are based on tests performed by Kazerooni with the
experimental hardware:[1]

X 18860.0

G=U= 33735552+ 1594.25 s + 18860.0 2¥/r2d: @
_Fn_ 1.07x10-2 5 +2.53x10°1

Sh =X = 33735552 + 1504 25 s + 188600 V/1bf: )




rad/1bf. “)

i | 3.2x10-2 5 + 7.54x10-1
n= X

= s34 35.5552 + 1594.25 5 + 18860.0

These transfer f.-.ctions are then converted into a state space representation used by
Simnon. A standaru control canonical form is used for these models. The state space
relationships are described by the following equations:

x(t) = A x(t) + B u(t), (5)
y(t) = C x(t) + D u(t). (6)

The values for the matrix A and the vectors B, C, and D are derived from the following
equations. For a given transfer function H(s),

Y(s)  bosN +bisN-1+basN-2+ . bN

HE) = gs) = sN +aisN-1 4+ anN ’
-a] -a2 . . -ap 1
1 0 . . O 0
A = 0 . . . . B = 8
0 . 01 0 0
C=[by-ajbg b2-a2bg ...bp- anbg] D =by. ¢))

State space descriptions of the extender dynamics are provided in section 2.5, which discusses
the experimental implementation.

2.2 HUMAN ARM DYNAMICS

The modeling of the operators physical dynamics is also included in the architecture of
the extender system. This model accounts for the human contact with the extender. Kazerooni
assumes that the human arm dynamically behaves as a nonideal source of force interacting with
another system.[2] Figure 3 shows the block diagram for the arm dynamics.




Figure 3. Human Arm Dynamics

The force Fh, placed on the extender by the operator is produced from two inputs. The
first is Up, representing the information signals which are a result of the humans intent to move
his arm. The second is a result of the extender motion X and how this motion is mapped to the
contact force. This mapping is accomplished by the transfer function T, which is a measure of
human amn sensitivity. The following equation describes this relationship:

Fh=Up-TX. t3)
An approximate model for the human arm was derived based on experimental data.[1] The

model for T was based on both low- and high-frequency experiments conducted at the University
of Minnesota, with the following result:

T=2(0.143 s + 1)2 Ibf/rad. 9)

An alternate expression was used for simulation because equation (9) cannot be realized in
canonical state space form. The alternate expression is

122001435+ )2 K2

(s +K)2 (10)

where K is an arbitrary constant chosen to place the added poles well into the left half of the
s-plane. A value of 100.0 was chosen for K. An expansion of equation (10) gives

1o (4.09x10252+572x10-1 5 +2) K2
B s2 + 2Ks + K2 ’

(11

which yields a canonical state space representation of

A=[ -2x1102 -1x(}04] B-[ ) ]




C =[-7.6x10* -4.06x105] D =4089. (12)
These values were then implemented in Simnon as the model for the operator’s arm.
2.3 OPERATING ENVIRONMENT MODEL

As with the human arm dynamics, a model for the operating environment is also required.
For Kazerooni’s hardware configuration, an automotive strut was mounted below the
extender.[1] The task to be performed was the compression of this strut. The resulting force is
measured as the contact force between the extender and its environment. Figure 4 shows the
block diagram for the environment dynamics.

Fn

Figure 4. Environment Dynamics

As with the human arm portion of the extender system, there are two sources for environmental
force Fy. The first source of this contact force results from the extender motion in which the
transfer function E maps this motion to the contact force Fn. The second source of Fp, is an
external force P applied by the environment on the extender. Throughout all of Kazerooni’s
work, P is set to zero, meaning that the contact forces sensed by the extender are solely a
function of the extender motion. The following eqration describes this relationship:

Fn=-Ex+P. (13)
The automotive strut exhibits a stiffness and damping, which is represented by a first-

order model. The inertia of the strut is negligible. Following is an expression for the model of
the automotive strut E:

E = 200s + 2050 Ibf/rad. (14)




A canonical state space form for E was not used in experimental verification. The implemen-
tation of E will be described in the discussion of the composite system detailed in a later section.

2.4 CONTROLLER EQUATIONS

The final component of the extender architecture consists of the controllers which
generate the command input for the extender system. Figure 5 shows the block diagram for the
extender controllers.

Fn Hp | H

Figure 5. Extender Controllers

There are two controllers in the extender architecture which perform similar tasks: controller Hp
maps the operator contact force Fh to the command input U, and controller Hp maps the
environmental interaction force Fp to the same command input U. The following equation
describes this relationship: '

U=Fh Hh + Fp Hn. (15)

Two different types of controllers are described in the remainder of this section. The first
of these controller configurations maintains a desired relationship between the input force Fh and
the output force Fn. This configuration results from the derivations in Kazerooni’s papers.[1-5]
The second controller configuration maintains a desired relationship between the input force Fp
and the output position X. This configuration is an additional form resulting from this
investigation.

The derivation for the force-force relationship is based on the following desired
dynamics:

Fn=Q-1 Fh (16)




where Q-1 maps the operator input force Fp, to the output force Fp. Following is the derivation

of this relationship that starts with equation (1):

X=GU+SpHFh+ShFn.

If a primary controller G is chosen with a large open-loop gain, and the gains in Sp and Sp, are

small, then combining equation (1) with equation (15) yields

XEGHhFh‘I'GHnFn.

Hp, and Hp, are chosen to have the following forms:
Hp=-2GlE1Q],

Hn = G'l E'l

Substituting (18) and (19) into (17) yields

X=-2E1Q!Fh+E1F,

Assuming that P = 0 for equation (13), equation (20) can be rewritten as

ElFp=-2E1QlF,+E!F,

Equation (21) reduces to the target relationship

Fh=QFp.

(17)

(18)

(19)

(20)

(21)

(22)

The value for Q can be chosen as a constant or transfer function. For the purposes of this report,
Q is chosen as a positive constant. Substituting equations (2) and (14) into equations (18) and

(19) gives the following transfer function descriptions for the force-force controller case:

He =2 s3 + 35.55 s2 + 1594.25 s + 18860.0
h=3g 18860.0 (200.0 s + 2050.0)  °

He = s3 + 35.55 52 + 1594.25 s + 18860.0
n=""18860.0 (200.0 s +2050.0) -

(23)

(24)




As with the equations for the human arm dynamics, these two equations are not realizable in
canonical form. Two additional poles in the left half of the s-plane are added to each equation
yielding

_2 (s3+35.5552 +1594.25 s + 18860.0) K2

Hh=Q “18860.0 2000 s + 2050.0) s + K)2 (25)
Ho = (s3 + 35.55 s2 + 1594.25 s + 18860.0) K2
n= ) (26)
18860.0 (200.0 s + 2050.0) (s + K}
A value of 100.0 is chosen for K. Equations (25) and (26) yield the following state space
representations:
For Hn,
-210.25 -12050.0 -102500.0 1
A =[ 1 0 0 ] B =[ 0 ]
0 1 0 0
C =[-4.63x10-1 -27.72 -221.73] D =-2.65x10"3, vX))

Values for Hp, are the same as those for Hp with the following changes:
C(Hn) =2/Q C(Hn) D(Hp) = 2/Q D(Hp).
The derivation for the force-position form of the extender controllers follows a similar

format starting with equation (1) and subsequently equation (17). H}, and Hp, are chosen to have
the following forms:

Hph=2G 1R, (28)

Hp=G1lE (29)

Substituting (28) and (29) into (17) yields:

X=z2R-1F, +E-1 Fp,. (30)

10




Assuming P =0 in equation (13), and substituting equation (13) into equation (30) results in

X=2R1F,-X. 31)

Rearranging terms produces the following desired target dynamics:

Fh=RX. (32)

As with Q, R is chosen to be a positive constant. The transfer function form of Hp does not
change. Substituting (2) into (28) yields the following transfer function for Hp:

2534355552 +1594.255 + 18860.0
Hh=f 18860.0 (33)

This equation is not realizable in canonical state space form. Three poles are added to equation
(33) yielding

_3 (s3+35.55 52 +1594.25 5 + 18860.0) K3

Hn 18860.0 (s + K)3 34
In this case, a value of 10.0 was chosen for K. The following canonical state space
representation results from equation (34):
-30.0 -300.0 -1000.0 1
A =[ 1 0 0 ] B =[ 0 ]
0 1 0 0
=[294x10-1 68.62 946.98] D =5.3x10-2 (35)

The models described by equations (25), (26), and (34) represent continuous time
implementations of the extender controllers. Most of the test results are based on continuous
time forms. The extender controllers described by equations (23) and (24) were also discretized
using the bilinear transform [7]

_2(z-1
“T@E+1)

(36)

where T is the discrete sampling time. Applying the bilinear transform to equations (23) and
(24) yields the following discrete transfer functions for T = 0.01:

11




2 1.36x10-7 23 - 3.5x10°7 22 + 3.12x10°7 z - 9.5x10-8

Hh@ =3 3-1572+07122-01 ’ 37
Hor o 1:36x107 23 - 3.5x107 22 + 3.12x107 2 - 9. 5x10-8 38)
n(z) = 23-15722+0712z- 0.1

Several simulation runs were done to verify the controllers in a discrete form. The results of
these runs are presented in a section 2.7.

2.5 EXPERIMENTAL IMPLEMENTATIONS

Kazerooni presents the derivations of his extender architecture in two sections. The first
of these deals with the analytical derivation of the extender system description.[2,4] Sections
2.1, 2.2, and 2.3 of this report describe the components of the "design" system. The second
portion of Kazerooni’s work describes the "experimental” hardware used to verify the design
system.[3,5] This section addresses the differences between the analytical design expressions
and the experimental hardware setup. The implementation differences between the design
discussed previously and the simulation system used to verify the extender architecture are also
described. The two areas where differences occur are in the models for the extender dynamics
and the environmental dynamics.

The extender hardware model used by Kazerooni to implement the extender architecture
differs from the analytical description described in section 2.1. The simplified architecture
depicted in figure 1 is replaced by the hardware setup depicted in figure 6. Block Gp corres-
ponds to the open loop transfer function that maps the input current I to the extender position X,
which is similar in form to the block G from figure 1. This block is described by the following
transfer function:

_ 553888.75
P~ 2 435555+ 1560.25

rad/ampre. (39)

This equation yields the following control canonical state space form:

A=[ 3555 156025 B=[1]

C =100 553888.75] D =0. (40)

12
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Figure 6. Experimental Extender Dynamics

The block Gdh represents the mapping from F, to the output X, which is similar to the Sp block
of figure 1. The transfer function for Gdp, is

_8.92x104s +2.11x10-2
s2 +35.55 s + 1560.25

rad/(1bf inch). 41)

Equation (41) has the following state space form:

A=[ 3555 156025 ] B=[1]

C =[892x10-4 2.11x10-2] D =0. (42)

The block Gdn represents the open loop transfer function, which maps Fp, to the extender
position X. Gdn corresponds to Sp, in figure 1 and has the following transfer function:

_ 2.67x10-3s + 6.32x10-2
s2 +35.55 s + 1560.25

rad/(1bf inch). 43)

Equation (43) yields the following state space form:
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A= [ -351.55 ’15%0.25 ] B= [ (l) ]

C =[2.67x10"3 6.32x102] D =0. (44)

It should be noted that the transfer function descriptions for Gp, Gdh, and Gdn are one
order lower than their corresponding models from figure 1. This factor of 1/S was extracted
from each of the design transfer functions and appears in figure 6. Both position and velocity are
fed back to provide primary compensation for the extender dynamics. Table 1 lists values for the
gains shown in figure 6.

Table 1. Experimental System Gains

Gain Symbol Value __ Upits
Servo Controller Board Gain Kp 4.65x10-3 amps/volt
Tachometer Gain K¢ 1.69x10-1  volts/(rad/sec)
A to D Converter Gain Kad 2048/1.25 volts
Encoder 1/O Gain Kio 1592.0 number/rad
Precompensator Gain Ko 1592.0 n/a
Position Gain Kj 9.4x10-1 n/a
Velocity Gain K2 9.77x10-3 n/a
D to A Converter Gain Kda 10/2048 volts

The second area where a difference exists is in the implementation of the environmental
model. This difference occurs between the design implementation discussed in section 2.3 and
the simulation implementation used to verify Kazerooni’s results. The extraction of the 1/S
factor from the extender dynamics models allows for a simpler implementation of the transfer
function described by equation (14). Figure 7 shows the experimental implementation of the
environmental transfer function E, where E( represents the environmental stiffness and Ej
represents the environmental damping. These two constants have the corresponding values of
2050 Ibf/rad and 200 Ibf/(rad/sec). The signal V represents the sum of the outputs from Gp, Gdh,
and Gdp, and the output of the summation corresponds to the output of the environmental model.

14
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Figure 7. Experimental Environmental Dynamics

2.6 COMPOSITE SYSTEMS

The combination of the components described in the previous sections produces the
composite extender system. Two forms of the composite system exist: the design extender
composite system and the experimental composite extender system. The first of these represents
the design system which is described in figure 8.

HUMAN ENVIRONMENT

Fn

EXTENDER

! L— | fn
| _CONTROLLERS

Figure 8. Design Extender Composite System
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This figure shows the interconnection of the extender dynamics, environment, human operator
and controller models. The relationship of Fj, and Fp, can be verified using Mason’s rule.[8] The

resulting overall system transfer function is

_ _ShE+HhGE
= T+S,E+HyGE" (45)

H(s) = -::—;:—

Using the assumptions described for equation (17) and substituting equations (18) and (19) in for
Hp and Hp, produces:

20-1
H(s)=£—: = %’— (46)

Rearranging terms produces the target relation for the overall system transfer function:

Fn=-Q!Fp. - 47

The minus sign results from the environmental force acting in the opposite direction from the
operator force. This result will also appear in the graphs of the test data for the force-force
verification. If the sign of the force is ignored then equation (16) results from the above
derivation. The experimental composite system differs from the design composite system (refer
to section 2.5). Figure 9 shows the block diagram for the experimental composite system.

2.7 SIMNON SIMULATION RESULTS

Simulations were performed to verify Kazerooni’s architecture and results.[1] A dynamic
system modeling software product called Simnon was used for these simulations. Initial tests
were aimed at verifying the relationship derived for the force-force case. Subsequent simulation
runs were also performed to examine the force-position relation and test the use of digital
controllers in the baseline system. Simnon simulation code for the composite system is provided
in the appendix.

A periodic low-frequency signal was selected by Kazerooni for the input signal U}, in the
experimental extender system. The selection of this signal is based on the frequency
characteristics of the signals associated with human motion.[2,3] An initial input sinusoid of
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magnitude S and period 2r was used for Up, during the initial Simnon simulation runs, and a
value of 0.5 was selected for Q from equation (16), which results in a factor of two force
amplification. Figure 10 shows the graph of the input force Fp, and the output force Fp, for the
initial Simnon setup. The data presented shows that proportionality between Fp, and Fp was
achieved for the baseline extender system. This result verifies the extender architecture.

12,

FORCE _ |
(1bf) '

] Fh

- —

0. N 2.5 . 5. ) 7.5 ’ 10.

TIME (SECONDS)

Figure 10. Simnon Force-Force Simulation Results

Simulation runs were also made with different values of Q, ranging from 1.0 to as low as
0.01 producing force amplification factors from 0 to 100. Input frequencies were also varied to
test the extender system. Sinusoids with frequencies as high as 1.6 Hz were used to drive the
simulation system. Results from these test cases also verified the force relation described by
equation (16).

The initial sinusoidal input and amplification factor used to test the force-force relation
were also used to test the force-position relation. Figure 11 shows the graph of the input force Fh

and the output position X for the Simnon simulation, and the data verify that the target
relationship described by equation (32) is maintained.
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Figure 11. Simnon Force-Position Simulation Results

The baseline extender system was also tested with discrete controllers described by
equations (37) and (38) for the force-force relationship. Simnon simulation code for the discrete
controllers is provided in the appendix. The discrete controllers were tested with the same force
amplification factors and input frequencies as in the continuous time case, and their performance
was identical to that of the continuous time controller models. A discrete sampling rate of 0.01
second was chosen for these cases.

The simulation data collected during these simulation runs verify that the extender
architecture developed by Kazerooni produces the proportional force amplification of the target
relations for both discrete and continuous time controllers. Test data also verify that the extender
controllers can be designed to maintain a force-position relationship. The verification of these
relationships provides a base upon which further expansion of the extender principle can be
achieved.
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3. ESTIMATION OF AN UKNOWN TIME INVARIANT ENVIRONMENT

This section focuses on a characteristic of the extender architecture described in section 2.
Equations (18) and (19) define the structures on the extender controllers which produce the
proportional force dynamics. Both equations contain the term E, which represents the model for
the extender operating environment. For the simulations performed to test the extender
architecture, E is modeled as a spring damper with constant coefficients.[1] The necessity of
having this term in the controller model limits the performance of the extender system to a
unique environment. Interaction with another environment would result in different behavior,
and the extender controllers would have to be changed to allow for interaction with different
environments. The extender would be unable to perform a task if the environment was unknown.

Section 3 addresses the application of parameter estimation to this problem. Implications
of an environmental mismatch on extender performance are discussed, the estimation theory is
developed, and how it applies to the problem of an unknown environment is discussed. Finally,
simulation results are analyzed to assess the effectiveness of parameter estimation in the extender
environment.

3.1 ENVIRONMENTAL MISMATCH

Simnon simulations were performed to examine the impact of an environmental model
mismatch. Several tests were performed to evaluate extender performance when the controller
model for the environment did not match the actual operating environment. Figure 12 shows a
plot of two cases of an environmental mismatch, with three curves representing the extender
output force Fp. The first curve shows the reference output produced by the matched system
discussed in section 2, and the second curve shows the output force when the stiffness and
damping of the actual environment are reduced by 20 percent. This environment is described by
equation (48):

E1 = 160s + 1640 Ibf/rad. (48)

The third curve shows the output force for a system with a stiffness and damping that
have increased by 20 percent. Equation (49) describes this environment:

E1 = 240s + 2460 Ibf/rad. (49)
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Figure 12. Output Force Fp for Mismatched Environments

The subscripted E 1 refers to the actual environment and E( will be used to represent the design
environment implemented in the extender controllers in subsequent equations. The data
described by the second and third curves show that force amplification is affected by a mismatch
in the environmental model. Curve two shows a reduced force amplification factor. Curve three
shows an increased force amplification factor. Simulations showed that system response time
was also affected by a mismatched environment. Changes in the actual environment caused the
output force Fp, to lead or lag the output from the original baseline simulation run. Different
combinations of stiffness and damping produced varied force factors and lead/lag delays.

The behavior shown by figure 12 can be attributed to a pole-zero cancellation, which
occurs when the actual environment matches the design environment. An environmental
mismatch produces a pole-zero mismatch in the overall system transfer function. The following
derivation describes the pole-zero mismatch relationship starting with the relation shown in
equation (17):

X =G HyFh+GHpFp.
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Hp and Hy, are chosen to have the same forms as described by equations (18) and (19) noting that
E-! has been replaced by Eg-1.

Hp=-2G-1Eg1 Q] (50)

Hp=GlEp!l. (51)

Substituting (50) and (51) into (17) produces

X =-2Eg9! Q-1 Fp + Eg-1 Fy. (52)

Assuming P =0, substituting E| for E in equation (13), and combining this with equation
(52) yields

-E1-1 Fh=-2Eg1 Q1 Fp + Eg'1 Fp,. (53)

Rearranging terms in equation (53) results in the following:

14l
% = E;-ET '~ Fn=Fnr (54)

Multiplying the left side of equation (54) by EQ/E( yields

2 BoE1l+ )Fa=Fpy (55)

The resulting transfer function for the extender system is described by equation (56):

Fa2_ 1
H(s) =Fn, Q m (56)

where E( has the form as + b and E has a similar form ¢s + d. If the coefficients of these two
first-order polynomials match, then equation (56) reduces to the proportional relationship
described by equation (22). If these forms are substituted into equation (56) then the following
transfer function description results:
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H(s)_—_&l(cc ) S+(c) ) (57)
S

Equation (57) describes the first-order system which results when 2 mismatch occurs in
the environmental models. If a match occurs in the environment, then the single pole and zero of
equation (57) cancel and H(s) reduces to a constant Q'l. The remainder of this section addresses
the application of a parameter estimator to produce values for the actual stiffness and damping of
the environment, and these values can then be used to update the extender controllers. This
process will match the controller parameters of EQ to the actual environment modeled by Ej.

3.2 PARAMETER ESTIMATION

A continuous time implementation of a recursive least squares estimator was selected to
produce parameter values for the extender environment. These estimated values are based on the
input and output signals of the extender system Fh, and Fp. This selection was primarily based
on the fact that the extender system fits into a linear model for a dynamic system. A continuous
time implementation was selected to remain consistent with the baseline extender system. In
general, the least squares technique provides relatively smooth convergence and good robustness
with respect to noisy data.[6] If a system can be described by the following relation, then a linear
estimator can provide information about system’s parameters based on available data. This
model is expressed as

Y(t)=W() © (58)

where Y(t) is a vector of output data, W(t) is a matrix of known signal data, and Q is a vector of
unknown parameters. The standard least squares technique is based on minimizing the integral
of the squared error with respect to the unknown parameters of Q. This error is expressed as

t
= [Y (@) - W) &0 12 dt (59)
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where § is the predicted value of ©. The minimization of equation (59) produces the batch form

of the estimator in matrix form:

t t
&=( JW«)T W) do-! JW«)T Y(t) dt, (60)

which is written recursively producing the following [6,9):

de

a5 = POWOT QO - YO), 61)
& =Py WOT W() PQ). 62)

P(t) is a matrix of gains used to weight the measurement signals W(t). Equations (61) and (62)
provide the continuous time relations used to update the estimates of the terms in @. The error
expressed as ¢(t) - Y(t) provides a measure of the convergence of the parameter estimates. The
next section will apply these general expressions to the extender system.

3.3 EXTENDER PARAMETER ESTIMATOR DERIVATIONS

Section 3.2 described the principles used to derive the expressions for the estimates of the
extender environmental parameters of E1. The derivation begins with the transfer function
development described in section 3.1. The formulation in section 3.1 resulted in a first-order
transfer function for the mismatched extender system described by equation (57), which is based
on the analytical expressions for the extender controllers. Experimental expressions for the
extender controllers contain two additional poles that were introduced to make the controllers
realizable in canonical state space form. The derivations from section 3.1 will be repeated to
account for this difference starting with equation (17). The following are the forms of the
experimental controllers:

—(rG-1Enl o1 K2
Hh=(2G1Eg1Q )—-2-(8+K) , (63)
=G1Ey] K2 64
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Substituting (63) and (64) into equation (17) yields

2
X =(2Eg! Q-1 Fp +Eqr! F"’Gf_mz' 65)

Assuming P = 0 for equation (13), equation (65) is rewritten as

E1'lFh=(-2Ep! Q1 Fy +Eg-l F Kz. 66
1"*Fn=(-2E0*' Q' Fh+EQ n)m (66)

Rearranging terms in equation (66) results in the transfer function for the experimental extender
system:

Fn 2 1
Hi)=s-=% . 67)
Fh Q (EOEI'I S;K)2+l)

Substituting as + b for EQ and cs + d for E] in equation (67) and multiplying out the terms of the
denominator results in

s+§

2Kb, o K2 K% K2
a )S+ a + a

2
H(s) = ZIéac

(68)

s3 + (2K + )s2+(

The third-order equation described by equation (68) is then rewritten as follows to simplify
notation:

Y s+20
(' =em =
His ==k s3+a)sé+ays+a3
where
_2Kx d - _,..b Kb, g2, K2c _K2 K2
ko= Qa = a1-2K+a a2 = +K a3="+——. (69)

Variables kQ, z0, a2, and a3 are the unknown parameters to be estimated. The variable aj is a
function of known constants. Equation (68) describes the transfer function that is then filtered
and placed in the desired form described by equation (58). Notation that is used to describe the
filtering operation makes reference to both time domain and frequency domain data.[6] The
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filtering operation starts with multiplying both numerator and denominator of equation (69) by
1/1§3 where I¢ is a known constant. This multiplication is performed to provide unity scaling in
the filters. The resulting transfer function is expressed as a ratio of two polynomials in s.

He < YO . BO)

U(s) ~ A(s)
where
_ko ko2
B(s) = 3 s+ if
A(s) = 1 s3~b-al 52+a25+£. (70)
VR VR VR VS

At this point, the known polynomial is introduced:

AOS)=(+AD3 =53 +3Ars2+3 A2 s + Af3. an

Equation (70) can be rewritten in the following form:

A(s) Y(s) = B(s) U(s). (72)

Multiplying both sides of (72) by the filtering operation A£3/A0(S) results in

A3 B(s)

A3 A(s)
AQ(s)

AQG) Y®=

U(s) . (73)

Separating out the term Y in equation (73) results in

AQ(s) - A3 A(s) Af3 B(s)
A0S YO A

Y(s) = UGs) . (74)

Equation (74) describes the third-order extender system in terms of the output Y, signal
data consisting of the filtered input U and filtered output Y, and unknowns © in A(s) and B(s)

where

s2Y(s) sY(s) Y(s) sU@s) U(s)
Wes) = [ A0S) A0s) A0G) A0 A0G) ]
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8 = [(3Af-a1) (BAf2-22) (A3 -a3) ko kozo] T. (75)

The first product of this system of five terms is known. Moving this product to the left of
equation (74) reduces the system to four terms, resulting in a new system equation:

Yf(s)=W()© (76)

where Yf has the following form:
Y()_[I_M]m an
f(s)= AQGS) s).

An inverse laplace transform can be applied to equation (76) to produce the time domain form.
W and © are expressed in their final form with a factor of A3 moved from © to W:

W) < | M25YE A3 Y(s) A3 s UGs) A3 UEs)
®=| TA0m) A0 A0 AGG)

3 a2 a3 ko kozp
O=|C-—753.1-—=.—4=.— )| 78
[(xf AT AP AST AL )} 79

Equation (78) describes the extender system in the form discussed in section 3.2. The
terms of the vector © in equation (78) can then be used to arrive at formulas which map the four
unknowns ©1.4 to the environmental parameters ¢ and d of equation (57). Solving the first term
in © for ¢ yields

f2a 2b  O1aif
C=—K2—-T<—-a-—K2—' . (79)
The third term in © can also be solved for ¢:

. 83QaA8

—EEZ— . (80)

The second term in O is solved for d yielding
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3 3
da%g-b--ez—;;i-. (81)

Finally, the fourth term in © can also be solved for d producing

_84Qa)f

d= 2Kz

(82)

Equations (79) through (82) give four formulas to arrive at two unknowns. To maximize the
information provided by each of the results, they are combined into a matrix representation:

- k2 - _ -
2= 0 3 2Kb K2
gl a 3f K2 Af a lf; Af3
a Af
84 Qai  py2 0
i 0 3 L 0 -
Qaif’ -

Y = w 2] + N

This matrix equation can then be solved in the least squares sense yielding a single expression
for the unknowns ¢ and d in terms of ©1-4. The following series of equations reduce equation

(83) to these expressions.

, N Wi 0

w=wTwrl=[ ' @ ] (84)
, s W2 0 W3 0

W =W wT-[ 0 W2 0 w3]. (85)
C

HERT (86)

where
Q2 a2 A6 __-Qaifd __2Qais3
Wi=gdqZ+ad °© V2°RIQi+akZ © TR Q242
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. 3 2Kb K27

01-—+——
Y axf32 PYS
K<b
= - = 1+
o3
- ©4 -
3 2Kb K2
=W2(01-—+— + W3 63, 87
c 2(61 A are 7~_3) 3093 (87)
K2b
d=W2(602-1+—=)+W304. (88)
aAf

Equations (87) and (88) represent the final results of the derivation for the parameter estimator
equations. The equations throughout this derivation provide the basis for the Simnon simulation
implementation of the parameter estimator provided in the appendix. Results produced in this
section will be applied to the baseline extender system to produce a new composite adaptive
system. A description of this new architecture and the results of simulation runs using this
technique are discussed in sections 3.4 and 3.5.

3.4 COMPOSITE ESTIMATION SYSTEM

The formulas described in section 3.3 provided a detailed description for the implemen-
tation of the environmental parameter estimator that starts with prefilters described by equations
(77) and (78). Equation (77) describes the form for the output prefilter, which produces the
filtered output Y(t). The four terms in the expression for W from equation (78) describe the
forms of four signal prefilters that produce filtered input signals from U(t) and Y(t). These
filtered inputs and filtered outputs are then used by three models that implement the actual
parameter estimator. The first of these models updates the gain matrix P(t), and its implemen-
tation is based on equation (62). Then, the output of the gain model is used by the second model,
which produces the estimates for the four unknown parameters ©1.4. This parameter update
model is an implementation of equation (61). The third model uses the parameter estimates &
produced by the parameter update model to generate the error term described by the following
equation:

Parameter Error = §(t) - Y(t) = W(1) & - Y(1). (89)
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This parameter error is then fed back into the parameter update model. The interconnection of

the prefilters and estimator models is shown in figure 13.

PREFILTERS
o(t) W(t)
P (t) O (¢)
PDOT AHAT
YHAT
Y (t)
W(t)
PREFILTERS
Ye
GAIN UPDATE MODEL PDOT
PARMETER UPDATE MODEL AHAT
PARAMETER ERROR MODEL YHAT

Figure 13. Parameter Estimator Implementation

The parameter error provides a weighting function, which is used in producing the
parameter estimates. Figure 13 shows the structure that was first tested as a standalone system to
evaluate the estimator implementation and behavior. This standalone testing was performed in
two phases. The first phase of testing was intended to verify the estimator in a configuration
independent of the extender system. In this phase of testing, a linear combination of input
signals was fed into the estimator system with no prefiltering. These tests were aimed at
verifying the three core models of the estimator implementation. W(t) consisted of a vector of
the input signals, © was a vector of integer constants, and Y(t) was produced from the product of
W(t) and ©T. These signals were fed into the estimator which produced accurate values for o.

Different combinations of input signals and © values were used during this phase of testing. In

each case, accurate estimates for @ were produced.
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The second phase of testing expanded on the results of the first phase. As in the first
phase of testing, the input signals W(t) and output Y(t) were fabricated and fed into the estimator
system. The goal of these tests was to verify the complete estimator system in the presence of a
simplified extender model. Values for the coefficients of the actual and design environments are
substituted into equation (68) to produce a third-order transfer function, which was then used to
produce the output Y(t) based on a given input U(t).

Initial tests identified two important characteristics of the least squares estimator. The
first of these addresses the idea of persistent excitation. The input signal used to drive a system
should contain sufficient information to produce parameter convergence.[6] In the case of the
simplified extender model, the input signal required sufficient frequency content to excite the
modes of the extender system. A sum of low-frequency sinusoids was chosen to drive the
simplified extender model instead of using a single sinusoidal input signal. This sum provided a
level of excitation which produced quick parameter convergence.

The second characteristic of the least squares estimator is the selection of an initial value
for the gain matrix P(t). P(0) was chosen as a diagonal matrix with the non-zero terms chosen to
be as large as possible to produce quick convergence without being influenced by noise.[6] A
higher initial gain also produced larger overshoot in the parameter convergence. The only
limitations encountered in the second phase of testing were imposed by the numerical limits of
the Simnon simulator when calculating the matrix products of equation (62).

A variety of simulation runs were performed to test the prefiltered estimator with the
simplified extender model. During these runs, different combinations of the unknown
environmental coefficients were used in generating the input and output signals. Table 2
presents parameter estimate data for six of these test cases. The tests used to produce the data in
table 2 were based on a controller environment Eq = 200s + 2050, and an initial gain P(0) =
10,000. Simulation runs were 2 seconds long. The data in table 2 show that the parameter
estimator described in section 3.2 converges to predicted values when driven by the simplified
extender model. Based on this performance, the full adaptive system can be tested and verified.
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Table 2. Unit Test Simulation Results

El 01x10-3 x10-1 03x102  €4x10°!
c d Pre Act Pre Act  Pre Act Pre Act

200 1845 795 794 8.0525 8.003 40 399 3.69 378
220 2050 695 693 795 7947 44 44 41 411
180 1845 895 8.83 8.0525 7.876 3.6 357 3.69 4.1
220 1845 695 694 80525 8.045 44 44 369 37
180 2255 895 9.09 7.8475 7912 3.6 359 451 437
200 2050 795 799 795 801 40 40 41 399

Pre => Predicted values
Act => Simulated values

3.5 FULL SYSTEM ANALYSIS

The final series of simulations tested the full adaptive extender architecture in the
presence of an unknown time invariant environment. The estimation system verified in section
3.4 was connected to the extender system described in section 2. Figure 14 illustrates the
complete composite adaptive extender system and shows that Fp, and Fp, are used as the input and
output signals for the estimator system. The output of the estimator © is sampled by the discrete
system DCE, which extracts the final estimates for the environmental coefficients. The discrete
system DCE is described by equations (83)-(88). This update is triggered by a threshold value of
the parameter error. The coefficient estimates are fed into the controllers, which have been
modified to accept new parameter values, the controllers are updated, and the extender system
maintains the force-force relation based on these new parameters.

A number of simulations were performed to evaluate the composite system. Values for
the environmental coefficients, estimator gain, and input sinusoids were varied to examine
estimator performance. The composite system tests lead to similar conclusions concerning the
estimator setup. A persistently exciting input signal is required to provide sufficient information
for parameter convergence. As in the unit test case, a signal with frequency content within the
bandwidth of the composite system produced better convergence. The estimator gain also
affected parameter convergence. An increased gain produced faster convergence, and increased
overshoot as the parameters converged. Table 3 provides parameter estimate data for six of the
simulation tests. Initial values and inputs are based on the characteristics described above.
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Table 3. Full System Simulation Results

E1 01x10-3 x10-1 63x10-2 O4x10-1
c d Pre Act Pre Act Pre Act Pre Act

200 1845 795 801 8.0525 8056 40 396 3.69 3.63
220 2050 695 696 7.95 8.073 44 438 4.1 3.84
180 1845 895 8.86 8.0525 7.813 3.6 355 3.69 4.13
220 1845 695 692 8.0525 8.096 44 438 3.69 3.6
180 2255 895 9.17 7.8475 7903 3.6 3.55 4.51 438
200 2050 795 806 795 7991 40 396 4.1 401

Pre => Predicted values
Act => Simulated values

The simulations that produced the data in table 3 had initial estimator gains set to 6000
with the initial controller environment coefficients set to Eg = 200s + 2050. Simulations were 2
seconds long. Figure 15 shows plots of the parameter convergence for the first case of table 3.
Plot 15e shows the error of the estimator as the four parameters ©1-4 converge to their final
values. At time 0.45, the estimator error has steadied at a level below the error threshold, at
which point the routine DCE is triggered. The values of © are taken and new values are
calculated for the environmental coefficients ¢ and d. These values are then sent to the
controllers Hp and Hp, which update their models. Figure 16 shows the parameters ¢ and d as
they converge to their final values. The data presented in table 3 and figures 15 and 16 show that
the least squares parameter estimator converges to the correct results for the environmental
coefficients of E1, and this validates the idea that the extender system can be modified to allow it
to adapt to an unknown time invariant environment. The process of changing controller
parameters is auiomated, which enables the extender to interact with a varied environment and
with an environment where the model is unknown. This process greatly increases the abilities of
the extender system.
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4. ESTIMATION OF AN UNKNOWN TIME VARYING ENVIRONMENT

The results from section 3 show that the adaptive extender architecture can interact with
an unknown time invariant environment, which is accomplished through the inclusion of a least
squares parameter estimator that produces values for the unknown environmental coefficients.
These data are then used to update the extender controllers. Section 4 expands on this capability
and addresses the behavior of an extender in the presence of an unknown time varying
environment. Section 4.1 discusses the expansion of the least squares algorithm through the
introduction of a forgetting factor. The resulting Bounded Gain Forgetting (BGF) estimator will
be added to the baseline extender system. Simulation results from tests of this composite system
are then presented, which leads to a discussion of the effects of time varying transfer functions
on the extender/BGF system. An alternate approach to the time varying estimation case is also
discussed, which addresses the requirements of time varying transfer functions. Simulation
results are then presented to examine the behavior of the full composite system.

4.1 BOUNDED GAIN FORGETTING ESTIMATION

The standard least squares estimator used in section 3 performs poorly when tracking
time varying parameters.[6] This estimation can be explained from a mathematical standpoint.
As the parameter estimates settle on their values, the gain matrix P(t) converges to zero
essentially shutting off the parameter convergence.[6] The least squares estimator attempts to fit
all the data to the parameter estimates, from the start of convergence to the present time.
Introducing a forgetting factor favors the more recent data and filters out older data allowing the
estimated parameters to continue to converge to new values. The resulting P(t) matrix no longer
converges to zero. Adding this forgetting factor enables the estimator to track time varying
parameters. From an implementation standpoint, the forgetting factor is introduced into the gain
matrix update formula. Equation (62) is rewritten yielding

%’;-= o(t) P(0) - P(t) W(OT W(o) P(t) (90)

where 0)(t) is the time varying forgetting factor. The parameter update formula (61) stays the
same for the bounded gain case, the term w(t) P(t) is added to the original gain update formula to
produce the weighted result, and the selection of the weighting function w(t) determines the
behavior of the estimator. If w(t) is set to zero, then the standard least squares estimator from
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section 3 results. If the weighting function is set to a positive constant, then the resulting gain
matrix goes to infinity in the absence of a persistently exciting input signal.[6]

A time varying forgetting factor is selected that filters data when the input signal is
persistently exciting and remains inactive when the input is not. Based on this criteria the
following form of w(t) was chosen:

m(t)=mo(1-'{(%"). 1)

The term @) is a positive constant that represents the maximum forgetting factor, kQ represents
the upper bound of the gain matrix magnitude, and lIPll represents the norm of P. For the
extender implementation, the Frobenius norm was chosen. If the norm of P is small, then the
forgetting speed is increased, which occurs when the input data are persistently exciting. When
the norm of P becomes large and approaches k(, then the forgetting factor is reduced. Large
values of w() produce faster forgetting, but allow the estimator to be influenced by noise. The
constant () is chosen based on this tradeoff and k( has a similar effect on parameter conver-
gence. In general, the value of kQ can be chosen to equal to the norm of P(0). The estimator,
which includes the gain update equation described by equation (90) and the forgetting factor
formula described by equation (91), is known as the BGF estimator.[6]

4.2 BGF ESTIMATOR IMPLEMENTATION

The simulation implementation of the BGF estimator was similar to the least squares
estimator as described in section 3. The simulation configuration used to produce the data for
section 3 was a starting point for the bounded gain implementation. Formulas for the gain matrix
update model PDOT from figures 13 and 14 were modified to account for the changes described
by equations (90) and (91). This new gain matrix update model includes calculations for the
norm of P(t), calculations for the forgetting function w(t), and an implementation of the new

gain update equation; these were the only changes required to produce the BGF system.

From a simulation standpoint, initial values for wQ and k( needed to be identified. Forms

for the input signals and parameter variations also had to be selected. Several tests were
performed to aid in this process. Various values for wQ, k(, P(0) and parameter variation were

tested, and the values for these parameters were selected based on these tests.
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The selection of w( is based on the desired performance of the estimator. The following
equation was used to select wQ:

Ts=— (92)

where Tg is the desired settling time of the parameter estimates. A value of 16 was chosen for
Q, producing a settling time of 0.25 second.

Initial simulation results showed that a larger initial value for the gain matrix P(t) is
required for the BGF estimator. Based on these results, an initial value of 10,000 was chosen for
P(0), which produces an initial value for kg of 20,000 from the norm of P(0). This value is the
upper limit of the gain matrix P(t). The input signal to the estimator should meet the
requirements for persistent excitation. Input signal selection was based on the experiences of
section 3. A sum of low-frequency sinusoids was chosen for the input signal. The input signal
variations over time produce enough information data to stimulate the parameter estimator.

The final form which needed to be determined was the selection of the parameter
variations. Initial tests showed that parameters vary as step or ramp functions change too quickly
for the BGF estimator. The maximum parameter variation is influenced by the selection of w(,
which controls the settling time of the estimator. If the parameter varies too quickly for a given
value of @, then the estimator will not be able to track these changes. Based on this
performance, the parameter variation was chosen to be a low-frequency sinusoid. The following
function was chosen for the parameter variation:

Parameter Value = Base Value + sin ( %) 93)

where t( is a positive constant which controls the period of the parameter variations. An initial
value of 2.0 was selected for t().

A number of simulation runs were performed for different selections of «wq, kQ, input
signal, and parameter variation to evaluate the performance of the BGF estimator. As in
section 3 these tests were performed in three phases. The first phase of testing was designed to
examine the performance of the BGF estimator when running alone. This configuration is shown
in figure 13. The second phase of testing coupled the estimator with a simplified extender
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model. Finally, the third phase of testing examined the full composite system comprising the
BGF estimator and extender architecture.

In the first phase of testing, a data signal W(t) was produced from a number of input
sinusoids. The parameter vector €(t) consisted of three positive constants and one time varying
function defined by equation (93). The output signal Y(t) was produced from the product of
W(t) and ©(t). Signals W(t) and Y(t) were fed into the BGF estimator, producing estimates for
the parameters §. BGF estimation constants were initialized to the values discussed in the
beginning of this section. Figure 17 shows the performance of the BGF estimator for this setup.
The BGF estimator results in figure 17 show convergence for the three constant parameters
similar in behavior to the results from section 3. Figure 17 also shows that the BGF estimator
tracks the time varying parameter. The plot shows that when the predicted parameter value
strays from the actual value the estimator activates and converges to a new result, and this
behavior produces the steps seen in the parameter track. This behavior can also be seen in a plot
of the estimator error. Figure 18 is a plot of the error for this simulation run.
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Figure 17. BGF Parameter Convergence
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The tracking behavior of the BGF estimator is controlled by the settings of the estimator
constants. Variations in the initial gain matrix produce little effect in the resulting parameter
convergence. A smaller initial gain limits the speed of convergence and results in a larger
parameter-error, but also reduces the amount of overshoot as the parameters converge.
Conversely a larger initial gain produces faster convergence with less parameter error and more
parameter overshoot.

A smaller value of wQ slowed the response of the estimator and resulted in a smaller step
magnitude that greatly increased the parameter error and decreased the estimators ability to track
the time varying parameter. Larger values of w( reduced the parameter error, but also introduced
oscillations in the parameter convergence. Changes in the value of w() greatly affected the

behavior of the BGF estimator.

Reducing the input sinusiod frequencies increased the step period of the parameter
tracking and reduced the number of oscillations in the parameter error, but increased the error
magnitude. Lower frequency inputs provided less information for the parameter estimator.
Below a certain threshold, the input signals were not persistently exciting, which resulted in no
parameter convergence. Conversely, increasing the frequency of the input sinusoids decreased
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the period of the steps in the estimator track and introduced more oscillations in the parameter
error, but reduced the error magnitude. Higher frequency inputs provide more information to the
estimator. The upper limit on frequency was bounded by the targeted operating frequencies of
the extender. The extender is designed to operate at relatively low frequencies, which places an
upper limit on the information content of the input and output signals. These results show that in
some cases the ideal signals for the parameter estimator and extender are mutually exclusive.

In general, these results verified the behavior of the BGF estimator implementation. The
first phase of testing showed the BGF estimator’s ability to track time varying parameters, and
provided insight on how the BGF constants control parameter convergence. Tests were also
performed with two and three parameters varying in time. Increasing the number of time varying
parameters placed more demands on the estimator and required more information content from
the input signals. Parameter tracking slowed as more parameters were changed from constants to
time varying functions. The baseline estimator was subsequently tuned to handle the increased
load, and acceptable tracking performance was achieved for these cases.

The second phase of testing coupled the BGF estimator, which was verified in the first
series of tests, with the simplified extender model described by equation (68) from section 3.
Parameters ¢ and d were now produced by time varying functions described by equation (93),
and the values for c(t) and d(t) were fed into state space models producing a time varying system.
As in section 3, a sum of sinusoids was used as an input signal to test the simplified model. This
input signal and the resulting output signal were passed to the BGF estimator, which produced
the parameter estimates (). Figure 19 shows results from a simulation test based on an initial
controller model of EQ = 200s + 2050. BGF estimation constants were initialized to the values
discussed in the beginning of this section. The environmental parameter ¢ is a constant = 200,
while d is a time varying function = 1845 + (10 sin (¢/2)). This phase of testing also included the
filtering models used in section 3. Data plotted in figure 19 show that the BGF estimator
performs poorly with data provided by the simplified time varying extender model. These results
showed that the filtering operations were developed for time invariant models. Further tests also
showed that this system exhibits similar behaviors when the BGF estimator parameters are
modified. Initial estimator gain P(0), input sinusoid frequency, and estimator time constants ®Q
were varied to examine estimator performance. The results of these tests matched the behaviors
described for the first phase of testing, although the estimator performance was poor. These
results lead to the third set of tests performed to examine the full composite BGF/extender
system.
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Figure 19. Simplified Time Varying Extender Parameter Results

The third and final phase of testing examined the composite extender/BGF estimator

system shown in figure 14. For these tests, a time varying function was substituted for the
environmental coefficients EQ and E1. These functions were included in the derivations from

section 3.3 to produce a time varying composite system. The input signals U, gain matri~
values P(0), and estimator time constants () and kQ from the second phase of testing were also
used for these tests. The BGF estimator implementation was the same for both the second and
third phases of testing.

Data from the simulations in section 3 showed that the simplified third-order extender
model described by equation (68) produced the same results as the full composite system using
the same estimator implementation, which was also the case for the composite extender/BGF
simulations based on the derivations from section 4. The results from the second phase of testing
showed that the BGF estimator performed poorly when attempting to track the time varying
coefficients ¢ and d of the simplified third-order extender model. In the case of the composite
extender/BGF system, estimated values of the time varying coefficients EQ and E did not track
the actual values. The estimated coefficients showed the same behavior as the results from the
second set of tests, but were offset from the correct values and showed similar poor performance.
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This lack of performance prompted a fresh examination of the derivations for the time varying
composite extender/estimator system.

4.3 TIME VARYING TRANSFER FUNCTION ANALYSIS

The first two phases of the initial tests verified the ability of the BGF estimator to track
time varying parameters. Results from the final phase of testing showed that the formula
reduction of the composite extender system described by figures 8 and 9 did not equate to the
third-order transfer function described by equation (68). The transfer function reduction rules
used for the time invariant case cannot be applied to the time varying case. For the time
invariant case, the system block diagram from figure 8 can be reduced using standard transfer
function block diagram rules, or through the application of Mason's rule to arrive at a final
composite system transfer function. The transfer function described by equation (45) results.
The two coefficients of the environmental model E appear in almost every term of the resulting
22nd-order transfer function. For the time invariant case, many of the poles and zeros of this
transfer function cancel, resulting in the simplified third-order model. For the time varying case,
this cancellation is not assured.

The block diagram in figure 8 should be reduced in a way to account for the time
variation in the environment. The standard techniques mentioned previously can be applied to
the time invariant portion of architecture. Figure 20 shows the resulting block diagram based on
a single input Fp, and a single output Fp. E1(t) is the first-order time-varying environment. Hj
and H3 are third-order time invariant transfer functions resulting from the reduction of figure 8.
E1(t), H], and H2 have the following forms:

_2p,1 K2 2 ko2
Hl"QEO (s +kg)2  Q (as +b) (s2 + 2kgs + kg?) 4
= '1 k02 = k02
H2=B0" ok = s +b) (52 + 2kgs + K0D) ©3)
E1() = (c(®s + d@®) sflkl : (96)
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These three transfer functions can then be combined using their canonical state space
representations.[10] The following equations are used for this process (for the feedback
connection of E1(t) and H2):

_ [ AE-BEYHDHCE -BE YH CH ]
A@)=AELHD "[ BHYECE  AH-BHYEDECH

BEY
B(Z)=B(E1.H2) = [BH%E%E]

C@Z)=CE1H2)=[ YECE -YEDECH ]
D(Z) = D(E1HY) = [ YE DE ] where
YE=A+DgDH)! and Yy=d+DyDErl 97)

Applying these equations produces a fourth-order state space description for the time varying
system. This system shall be referred to as Z. The system Z is then combined in series with H}

to produce a final composite system description using the following equations:

AH O BH
A2 <[ BCq Az ] BG1.2)= 57 by
CH1,2)=[ DzCH Cz | D@#H1,,2=[DzDH]. (98)

The final result of this reduction is a seventh-order state space representation of the time varying
extender system. A number of the coefficients of this state space model are functions of the time
varying parameters of E1(t). This state space model describes a system in the following form:

x(t) = A(t) x(t) + B(t) u(v), (99)
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y() = C(1) x(t) + D(t) u(®). (100)

Equation (99) can be rewritten as

EQL'%EA«- Dx-1)+B(t-1u-1). (101)

Solving equation (101) to x(t) and substituting the result into equation (100) yields

y(® = C@) [At(AGt- Dx(t- 1) +B(t- Dut- 1)) +x@t- D] + DO u@).  (102)

If Dt is small enough, then the values of the state space model coefficients at time t are close to
their values at time t - At. Based on this assumption equation (102) can be rewritten as

y)=C(t-1) [At(A(t- Dx(t-1)+B(t-1)u(t-1)) +x(t- 1)] +D(-1Dut-1). (103)

Multiply the terms of equation (103) and rearrange the resulting equation to produce an equation
of the following form:

Y() = W) 6t (104)

where W(t) consists of functions of the input u(t) and the state variables x(t). The variable &(t)

from equation (104) is a vector of the unknown parameters that map back to the unknown
coefficients of the environment E1(t).

This approach to deriving a system form that can be used for estimation produces a result
of the proper form; however, a problem is also introduced which makes it unfeasible. The
measurement vector W(t) is a function of the state variables of the composite system that cannot
be extracted directly from the extender system. A state observer could be used to produce values
for these state variables, but the results would be functions of the unknown coefficients of E1(t).
This mutual dependence of state variables and unknown parameters introduces the problem of
having to estimate both sets of unknowns at the same time, and this dependence in itself is a
complex problem that goes beyond the scope of this report. The examination of time varying
model and state space descriptions does lead to an alternative solution for the extender system.
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4.4 UTILIZATION OF MULTI-INPUT DATA

As part of the investigation of time varying state space models, the extender system was
examined to determine if the unknown state variables could be observed. Two signals that are
present and measurable in the extender experimental architecture can provide the data required to
estimate the unknown time varying coefficients of E]. Figure 6 shows that both the extender
position and velocity are fed back to provide primary compensation for the extender system.
Figure 7 shows that these signals are fed forward through the environmental coefficients to
produce the output Fp. Figure 21 shows this relation.

ENVIRONMENTAL MODEL

X Ep d

Ey

Figure 21. Extender Environmental Relation

The output F, can be written as a function of the position X and velocity V in the following
form:

Fn=P-(EQX)-(E1V). (105)

Equation (105) can easily be rewritten in the desired estimator form:

Y=Fa=wo=1X V1[5 (106)

This simple second-order model can be implemented as a BGF estimator described in
section 4.1. The estimator utilizes the extender position and velocity to produce estimates of the
unknown time varying coefficients Eg and E1. Previous implementations of the extender/

estimator system were of a higher order, but the input signals which were part of W(t) were
created from filtered values of a single input F,. This approach uses two separate unfiltered

input signals X and V to form W(t).
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This approach was implemented in Simnon and tested using the same configuration that
was used in the initial tests of the BGF/extender system. These tests uncovered another
requirement that is placed on the extender system for parameter convergence when position and
velocity are used as inputs. The first simulation runs used a sum of unit magnitude sinusoids for
an input signal. In past tests, the force amplification produced an output signal with similar
orders of magnitude. Variations in the input and output forces were on the order of 101. The
resulting position and velocity signals used as inputs to the multi-input estimator system varied
on the order of 10-3, but these input signals did not provide enough information for persistent
excitation. This problem was solved by increasing the input magnitude of the input sinusoids by
a factor of 10, which caused an associated increase in the magnitude of the position and velocity
signals. At these levels, sufficient information was provided to allow for parameter convergence
and tracking.

Simulation runs were performed to test the multi-input approach with the new input
signals. Figure 22 shows the results of the multi-input BGF/extender simulation. The parameter
EQ was replaced with the same time varying function that was used for the initial tests: EQ =
1845 + (10.0 * sin (t/2)). The frequencies of the input signals and the selections of w(Q = 16 and
kQ = 12,000 remained the same as in past tests. Figures 22a and 22b show that accurate
estimates for time varying parameters can be generated for the extender system based on the
extender position and velocity, which places an additional requirement on the magnitude of the
input Fh. Small variations in the input force may not provide sufficient information for
parameter convergence based on position and velocity signals. This technique represents an
alternative that addresses the requirements of the time varying parameter case, places the same
conditions on the input signal Fp, for the time invariant case, and represents a potential tradeoff

in capability. This approach can be applied to the time invariant case described in section 3.

Updating the controllers with the parameter estimates allows the extender to adapt to an
unknown time varying environment. The BGF estimator tracks the changes in the environment
and generates parameter values. These estimates allow the extender controllers to maintain the
proportional force relation in continuous time. Using the extender velocity and position as inputs
provides sufficient data to allow the extender system to track environmental changes.
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5. CONCLUSION

The extender architecture developed by Kazerooni describes a telerobotic system that
produces force amplification by using a single set of actuators, which improves upon the
traditional master/slave architectures. The extender allows the human operator to perform tasks
beyond the physical capabilities of the human body. In this document, it is reported that the
extender architecture can be modified to produce a force to position relationship, allowing the
input force of the operator to map to the motion of the extender in the absence of an external
contact force. Presently, these two configurations are mutually exclusive. Each of these
capabilities can be achieved with either digital or continuous controllers. Reliance of the
extender system of a complete model of its operating environment places a limitation on its
usefulness. This report has approached this problem in two steps.

5.1 SUMMARY

When dealing with an unknown time invariant environment, a least squares estimator can
be used to produce estimates of the environmental parameters. The input and output forces
provide information for the estimator. When the estimator has converged to a solution based on
parameter error, the extender controllers are updated. The new controllers maintain the force
relationship based on the parameter estimates. If the information signal is persistently exciting,
then parameter convergence can be achieved.

In the case of an unknown time varying environment, a similar approach was examined.
A forgetting factor was added to the least squares estimator producing a BGF estimator, which
displayed the ability to track time varying parameters in tests using a simplified extender model.
When coupled with the composite extender system, the BGF estimator tests lead to the
realization that the transfer function reduction of time varying composite systems did not fit into
the framework used for the time invariant case. Time varying state variables used to produce the
parameter estimates also depended on the values of these estimates. The simultaneous estimation
of unknown mode! parameters and state space variables introduced a level of complexity that is
beyond the scope of this report. An alternate choice of input signals consisting of extender
position and velocity avoids the time varying transfer function problem. Using these inputs, a
BGF estimator can track time varying environmental model parameters. Values of the parameter
estimates are then used to update the extender controllers to maintain the force relationship in
continuous time. As with the time invariant case, characteristics of the input signal determine the
level of parameter convergence. The selection of position and velocity as input signals
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introduces additional constraints on the input signal for parameter convergence.

In general, the extender system can be improved with the application of parameter
estimation. The estimator can produce values for unknown environmental model parameters.
These data when applied to the extender controllers allow the extender to adapt to an unknown
time varying environment. The adaptive extender system could then operate in differing
environments without changing its performance characteristics.

5.2 FURTHER DEVELOPMENT

This report represents an initial investigation into the development of an adaptive system
based on Kazerooni’s extender architecture, and the results are closely tied to the experimental
framework used to verify the extender system. There are a number of areas where new
technology could be applied to improve upon the baseline extender idea resulting in a more
capable system. These areas include the following:

1. The application of joint torque sensing could replace external force sensing, which
would eliminate the reliance on measuring force at the point of contact with the environment.
This procedure removes the limitation on how or where the extender interacts with the
environment.

2. New types of actuators based on harmonic drives or possibly shape memory alloy
could greatly reduce the size of the hardware used to produce extender motion. Currently, the
extender system is anchored to a fixed base. The inclusion of these actuators may allow for
greater mobility. The extender controller design is closely tied to the hardware configuration.
New hardware designs could also introduce new areas of investigation including a multi-input
multi-output extender system.

3. The results presented in this report show that adaptive control techniques can be
applied to the extender system, but these results do not represent a final or completely robust
solution. Force amplification and force/position relations should be combined into a composite
system. Estimator settings such as gain could be updated through the application of neural nets,
which would tune parameter convergence based on characteristics of parameter error. This
optimization of estimator settings for parameter convergence would be based on learned
experience of extender operation. The problem encountered with the single input time varying
approach based on extender input force should be addressed. These improvements would result
in a robust controller implementation that could operate in a truly dynamic environment.
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The results of the these adaptations would be a self sufficient exoskeletal suit. This
telerobotic device would be mobile and would enable its operator to perform a wide variety of
tasks in differing environments providing the ability to place human experience into areas where
traditional approaches removed man from the loop and replaced him with a machine. This
technology could have a number of applications in areas such as space exploration and
development. The system results in the combination of the best features of both, the intellect of
man coupled with the physical attributes of the machine.
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APPENDIX A
SIMNON SIMULATION CODE

This appendix contains the Simnon source code implementations of the model described
in this report. These listings appear in the same order as the material presented in the text of this
paper. References to figure numbers are included with each listing.

Second-Order Human Arm Dynamics Model “T” (figure 3)

Continuous System TK2
input u

output y

state x1 x2

der x1d x2d
c1=k*k*(0.572-0.04089*%2*k)
c2=k*k*(2-0.04089*k*k)
al=-1%2%k

a2=-1*k*k

d=k*k*0.04089

y=(cl *x1) + (c2 * x2) + (d * u)
x1d=(al *x1) + (a2 *x2) + u
x2d=(a3 * x1) + (a4 * x2)
a3:1.0

24:0.0
k:100.0
end

Third-Order Force-Force Extender Controller “Hp” (figure 5)

Continuous System HH

input u

output'y

state x1 x2 x3

der x1d x2d x3d

d=0.00000026511*k*k
c1=k*k*(0.0000094247-0.00000026511*(2*k+10.25))
c2=k*k*(0.00042265-0.00000026511*(k*k+20.5*k))
¢3=k*k*(0.005-0.00000026511*(k*k*10.25))
al=-1*(2*%k+10.25)

a2=-1*(k*k+20.5%k)

a3=-1*k*k*10.25

y=(2/z*c1*x1) + (2/z*c2*x2) + (2/2*c3*x3) + (2/z*d*u)
xld=(al *x1) + (a2 *x2) + (a3 *x3) +u

x2d=(a4 * x1) + (a5 * x2) + (a6 * x3)

x3d=(a7 * x1) + (a8 * x2) + (a9 * x3)

a4:1.0

as:0.0

26:0.0

a7:0.0

a8:1.0




a9:0.0
z:0.5
k:100.0
end

Third-Order Force-Force, Force-Position Extender Controller “Hp” (figure 5)

Continuous System HN

inputu

output y

state x1 x2 x3

der x1d x2d x3d

d=0.00000026511*k*k
¢1=k*k*(0.0000094247-0.00000026511*(2*k+10.25))
¢c2=k*k*(0.00042265-0.0000002651 1 *(k*k+20.5*k))
¢3=k*k*(0.005-0.00000026511*(k*k*10.25))
al=-1*(2*k+10.25)

a2=-1*(k*k+20.5%k)

a3=-1*k*k*10.25

y=(cl *x1)+(c2*x2) +(c3 *x3) +(d * u)
xld=(al *x1)+ (a2 *x2)+ (a3 *x3) +u
x2d=(a4 * x1) + (a5 * x2) + (a6 * x3)
x3d=(a7 * x1) + (a8 * x2) + (a9 * x3)

a4:1.0

a5:0.0

a6:0.0

a7:0.0

a8:1.0

a9:0.0

k:100.0

end

Third-Order Force-Position Extender Controller “Hp” (figure 5)

Continuous System HH

inputu

output y

state x1 x2 x3

der x1d x2d x3d

d=0.000053*k*k
c1=k*k*(0.0018-0.000053*(2*k+10.25))
c2=k*k*(0.0845-0.000053*(k*k+20.5*k))
¢3=k*k*(1.0-0.000053*(k*k*10.25))
al=-1%3%k

a2=-1%*3*k*k

a3=-1*k*k*k

y=(2/z*c1*x1) + (2/z*c2*x2) + (2/z*c3*x3) + (2/z*d*u)
x1d=(al * x1) + (a2 * x2) + (a3 *x3) +u
x2d=(a4 * x1) + (a5 * x2) + (a6 * x3)
x3d=(a7 * x1) + (a8 * x2) + (a9 * x3)
a4:1.0
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Third-Order Discrete Force-Force Extender Controller “Hp” (figure S)

Discrete System HH

input u

output y

state x1 x2 x3

new x1d x2d x3d

timet

tsamp ts
k1=8*a+4*b*tk+2*c*tk*tk+d*tk*tk*tk
k2=-24*a-4*b*tk+2*c*tk*tk+3*d*tk*tk*tk
k3=24*a-4*b*tk-2*c*tk*tk+3*d*tk*tk*tk
k4=-8*a+4*b*tk-2*c*tk*tk-+d*tk*tk*tk
k5=-24-4*e*tk+2*f*tk*tk+3*g*tk*tk*tk
k6=24-4*%e*tk-2*f*tk*tk+3*g*tk *tk *tk
k7=-8+4*c*tk-2* ¥tk *tk+g*tk*tk*tk
k8=8+4*e*tk+2**tk*tk+g*tk*tk*tk
e=2*k+10.25

f=k*k+20.5*k

g=k*k*10.25

ts=t+dt

dd=k1/k8*k*k
cl=k*k*(k2/k8-k1/k8*k5/k8)
c2=k*k*(k3/k8-k1/k8*k6/k8)
c3=k*k*(k4/k8-k1/k8*k7/k8)
al=-1*(k5/k8)

a2=-1*(k6/k8)

a3=-1*(k7/k8)

y=(2/z*c1*x1) + (2/z*c2*x2) + (2/z*c3*x3) + (2/z*d*u)
x1d=(al *x1) + (a2 *x2) + (a3 *x3) +u
x2d=(a4 * x1) + (a5 * x2) + (a6 * x3)
x3d=(a7 * x1) + (a8 * x2) + (a9 * x3)
dt:0.01

tk:0.01
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a9:0.0
k:100.0
z:0.5
end

Third-Order Discrete Force-Force Extender Controller “Hp” (figure 5)

Discrete System HN

input u

output y

state x1 x2 x3

new x1d x2d x3d

time t

tsamp ts
k1=8*a+4*b*tk+2*c*tk*tk+d*tk*tk*tk
k2=-24%*a-4*b*tk+2*c*tk*tk+3*d*tk*tk*tk
k3=24%a-4*b*tk-2*c*tk*tk+3*d*tk*tk*tk
k4=-8*a+4*b*tk-2*c*tk*tk+d*tk*tk*tk
k5=-24-4*e*tk+2*f*tk*tk+3*g*tk*tk*tk
k6=24-4*e*tk-2*f*tk*tk+3*g*tk*tk*tk
k7=-8+4*e*tk-2*P*tk*tk+g*tk*tk*tk
k8=8+4*e*tk+2*fFtk*tk+g*tk*tk*tk
e=2%k+10.25

f=k*k+20.5%k

g=k*k*10.25

ts=t+dt

dd=k1/k8*k*k
cl=k*k*(k2/k8-k1/k8*k5/k8)
c2=k*k*(k3/k8-k1/k8*k6/k8)
c3=k*k*(k4/k8-k1/k8*k7/k8)
al=-1*(k5/k8)

a2=-1¥(k6/k8)

a3=-1*(k7/k8)

y=(cl *x1)+(c2*x2) + (c3 *x3) +(d * u)
xld=(al * x1) + (a2 * x2) + (a3 *x3) +u
x2d=(ad4 * x1) + (aS * x2) + (a6 * x3)
x3d=(a7 * x1) + (a8 * x2) + (a9 * x3)
dt:0.01

tk:0.01

a:0.0000002651




Second-Order Experimental Extender Dynamics Model “Gdh” (figure 6)

Continuous System GDH
input u

output y

state x1 x2

der x1d x2d

y=(cl * x1) + (c2 * x2)
xld=(al *x1)+ (a2 *x2) +u
x2d=(a3 * x1) + (a4 * x2)
¢1:0.0008925

¢2:0.02106

al:-35.549

a2:-1560.25

a3:1.0

a4:0.0

end

Second-Order Experimental Extender Dynamics Model “Gdn” (figure 6)

Continuous System GDN
input u

output y

state x1 x2

der x1d x2d

y=(cl *x1) + (c2 * x2)
xld=(al *x1)+ (a2 *x2)+u
x2d=(a3 * x1) + (a4 * x2)
¢1:0.0026775

¢2:0.06319

al:-35.549

a2:-1560.25

a3:1.0

a4:0.0

end

Second-Order Experimental Extender Dynamics Model “Gp” (figure 6)

Continuous System GP
inputu

output y

state x1 x2

der x1d x2d

y=(cl * x1) + (c2 * x2)
x1d=(al *x1) + (a2 *x2) +u
x2d=(a3 * x1) + (a4 * x2)
¢1:0.0

€2:553888.75

al:-35.549

a2:-1560.25
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First-Order Integrator Model (figure 6)

Continuous System SS
input u

output y

state x1

der x1d

y=x1

x1d=u

end

Experimental Composite System Connections (figure 9)

Connecting system CON
timet

out=y([ss]

uh=y(sins]
sum=y[gdh]+y[gdn]+y[gp]
u[gpl=kb*kda*(k1*(k0*(y[hh]+y[hn])=kio*y[ss])-k2*kad*kt*sum)
u[gdh]=uh-y[tk2]
u[hh}=uh=y[tk2]
u[gdn]=p-(e0*y[ss]+e1*sum)
u[hn]=p-(eQ*y{ss}+e1*sum)
u[tk2]=y[ss]

u[ss]=sum

kb:0.00465

kda:0.004883

k1:0.94

k0:1592.0

ki0:1592.0

k2:0.00977

kad:1638.4

kt:0.169

€0:2050.0

€1:200.0

p:0.0

end

Input Sinusoid Generator for Input Signal uh
(magnitudes, frequencies, and phases can be altered to suit a given simulation run)

Continuous System SINS

output sqr qq XX Yy ZZVV WW X Y Z
time t

vv = i*sin(n*(t-phi))

ww = h*sin(o*(t-phe))

qq = g*sin(p*(t-phi))
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sqr = a*sin(t*(t-phum))
x = b¥*sin(u*(t-phe))

y = a*sin(w*(t-phi))

z = c*sin(v*(t-pho))

xx = e*sin(q*(t-phe))
yy = d*sin(r*(t-phi))
zz = f*sin(s*(t-pho))

f
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Fourth-Order Gain Update Model “PDOT” (figure 13)

Continuous System PDOT

input yf1 yf2 ufl uf2

output pd1 pd2 pd3 pd4 pd5 pd6 pd7 pd8 pd9 pd10 pd11 pd12
output pd13 pd14 pd15 pd16

state pl p2 p3 p4 p5S p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16
der p1d p2d p3d p4d p5d p6d p7d p8d p9d p10d p11d p12d p13d
der pl4d p15d p16d

pdl=pl
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pdl4=pl4

pd15=pl5

pd16=p16

wl=yfl*yfl

w2=yf2*

w3=ufl*yfl

wé=uf2*yf1

wi=yf2#

wb=ufl1*yf2

w7=uf2*yf2

w8=uf1*ufl

w9=uf2*ufl

w10=uf2*uf2

il=(pl * wl) + (p5 * w2) + (p9 * w3) + p13 * wd)

i2=(p2 * wl) + (p6 * w2) + (p10 * w3) + p14 * wd)

i3=(p3 * wl) + (p7 * w2) + (p11 * w3) + p15 * w4)

i4=(p4 * wl) + (p8 * w2) + (p12 * w3) + p16 * wd)

i5=(p1 * w2) + (p5 * w5) + (p9 * w6) + p13 * w7)

i6=(p2 * w2) + (p6 * w5) + (p10 * w6) + p14 * w7)

i7=(p3 * w2) + (p7 * w5) + (p11 * w6) + p15 * w7)

i8=(p4 * w2) + (p8 * w5) + (p12 * w6) + p16 * w7)

i9=(p1 * w3) + (p5 * w6) + (p9 * w8) + p13 * w9)

i10=(p2 * w3) + (p6 * w6) + (p10 * w8) + p14 * w9)

i1l=(p3 * w3) + (p7 * w6) + (p11 * w8) + p15 * w9)

i12=(p4 * w3) + (p8 * w6) + (p12 * w8) + p16 * w9)

i13=(p1 * w4) + (p5 * w7) + (p9 * w9) + p13 * w10)

i14=(p2 * w4) + (p6 * w7) + (p10 * w9) + p14 * w10)

i15=(p3 * wd) + (p7 * w7) + (p11 * w9) + p15 * w10)

i16=(p4 * w4) + (p8 * w7) + (p12 * w9) + p16 * wl0)

pld=-1*((il * p1) + (i5 * p2) + (i9 * p3) + (i13 * p4))

p2d=-1*((i2 * p1) + (i6 * p2) + (110 * p3) + (i14 * p4))

p3d=-1*((i3 * p1) + (i7 * p2) + (i11 * p3) + (i15 * p4))
=-1*((i4 * pl) + (i8 * p2) + (112 * p3) + (i16 * p4))

p3d=-1¥((il * pS) + (i5 * p6) + (i9 * p7) + (113 * p8))

p6d=-1*((i2 * p5) + (i6 * p6) + (110 * p7) + (114 * p8))

p7d=-1*((i3 * p5) + (i7 * p6) + (i11 * p7) + (115 * p8))

p8d=-1*((i4 * p5) + (i8 * p6) + (112 * p7) + (i16 * p8))

p9d=-1*((il * p9) + (i5 * p10) + (19 * p11) + (113 * p12))

p10d=-1*((i2 * p9) + (i6 * p10) + (110 * p11) + (i14 * p12))

plld=-1*((i3 * p9) + (i7 * p10) + (i11 * p11) + (i15 * p12))

p12d=-1*((i4 * p9) + (i8 * p10) + (112 * p11) + (i16 * p12))

p13d=-1*((i1 * p13) + (i5 * p14) + (i9 * p15) + (113 * p16))

p14d=-1*((i2 * p13) + (i6 * p14) + (110 * p15) + (114 * p16))

p15d=-1*((i3 * p13) + (i7 * p14) + (i11 * p15) + (i15 * p16))

p16d=-1*((i4 * p13) + (i8 * p14) + (112 * p15) + (116 * p16))

end

Fourth-Order Parameter Update Model “AHAT” (figure 13)
Continuous System AHAT
input yf1 yf2 ufl uf2 y yh p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

input p12 p13 p14 p15 pl6
output ah1 ah2 ah3 ah4
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statc al a2 a3 a4

derald a2d a3d a4d

el=yh-y

ahl=al

ah2=a2

ah3=a3

ahd4=a4

ald=-1*el*((yfl * p1)+(yf2 * p2)+(ufl * p3)+(uf2 * p4))
a2d=-1*e1*((yfl * p5)+(yf2 * p6)+(ufl * p7)+(uf2 * p8))
a3d=-1*e1*((yfl * p9)+(yf2 * p10)+(ufl * p11)+(uf2 * p12))
a4g=-l*el*((yf1 * p13)+(yf2 * p14)+(ufl * p15)+(uf2 * p16))
en

Parameter Error Model “YHAT” (figure 13)

Continuous System YHAT

input yfl yf2 ufl uf2 al a2 a3 a4

output yh

yh=(yfl * al)+(yf2 * a2)+(ufl * a3) + (uf2 * a4)
end

Input Signal Generator for Phase 1 Testing

Continuous System YBLD
inputvwxy

output yh
yh=(v*al)+(w*a2)+(x*a3)+y*ad)
al:l

a2:2

a3:3

a4:2

end

Phase 1 Least Squares Estimation Testing Connections

Connecting System CON
time t
v[ybld]=x[sins]
w{ybld]=y[sins]
x[ybid]=z[sins]
y[{ybld]=xx[sins]
uf1[pdot]=z[sins]
uf2[pdot]=xx[sins]
yf1[pdot]=x[sins]
yf2[pdot]=y[sins]
uf1[ahat]=z[sins]
uf2[ahat}=xx[sins]
yf1[ahat)=x[sins]
yf2[ahat]=y[sins]
y(ahat}=yh(ybld]
yh[ahat]=yh[yhat]
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p1[ahat]=pd1[pdot]
p2[ahat]=pd2(pdot]
p3[ahat]=pd3([pdot]
p4[ahat]=pd4[pdot]
pS[ahat]=pdS[pdot]
p6[ahat]=pd6[pdot]
p7(ahat]=pd7([pdot]
p8[ahat]=pd8[pdot]
p9(ahat]=pd9[pdot]
p10[ahat]=pd10[pdot]
pl1[ahat}=pd11[pdot]
p12[ahat]=pd12[pdot]
p13[ahat]=pd13[pdot]
pl4[ahat]=pd14{pdot]
pl5[ahat]}=pd15[pdot]
pl6[ahat]=pd16[pdot]
ufl[yhat]=z[sins]
uf2[yhat)=xx[sins])
yf1[yhat]=x[sins]
yf2[yhat]=y([sins]
al{yhat]=ah1[ahat]
a2[yhat]=ah2[ahat]
a3[yhat]=ah3[ahat]
ad[yhat]=ah4[ahat]
end

Third-Order Estimator Input Prefilter “UFn” (figure 13)

Continuous System UFn

input u

output uf

state x1 x2 x3

der x1d x2d x3d
al=-1*3.0*lamda
a2=-1*3.0*lamda*lamda
a3=-1*lamda*lamda*lamda
c3=lamda*lamda*lamda

uf=cl *x1 +c2 *x2 +¢3 * x3
x1d=al *x1 +a2*x2+a3*x3 +u
x2d=a4 * x1 + a5 * x2 + a6 * x3
x3d=a7 * x1 + a8 * x2 + a9 *x3
a4:1.0

a5:0.0

a6:0.0

a7:0.0

a8:1.0

a9:0.0

¢1:0.0

c2:0.0

lamda:100.0

end
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Third-Order Estimator Output Prefilter “YFn” (figure 13)

Continuous System YFn

inputy

output yf

state x1 x2 x3

der x1d x2d x3d

al=-1*3.0*lamda

a2=-1*3.0*lamda*lamda

a3=-1*lamda*lamda*lamda
«c3=lamda*lamda*lamda

yf=cl *x1 +¢2 *x2 +¢3 *x3

xld=al *x1 +a2*x2+a3 *x3 +y

x2d=a4 * x1 + a5 * x2 + a6 * x3

x3d=a7 * x1 + a8 * x2 + a9 * x3

Third-Oder Estimator Input Prefilter “YT” (figure 13)

Continuous System YT

input u

output y

state x1 x2 x3

der x1d x2d x3d

a0=2*k+bb/aa

d=1.0

cl=(a0-3*If)

c2=0.0

c3=0.0

al=-1*%3.0*If

a2=-1*3.0%1f*lf

a3=-1*If*1f*1f

y=cl *x1+c2*x2+c3*x3+d*u
xld=al *x1+a2*x2+a3*x3+u
x2d=a4 * x1 + a5 *x2 + a6 *x3
x3d=a7 * xi + a8 * x2 + a9 * x3
a4:1.0

a5:0.0

a6:0.0

a7:0.0

a8:1.0

a9:0.0

c1:0.0

c2:0.0
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1f:100.0
k:100.0
aa:200.0
bb:2050.0
end

Third-Order Input Signal Generator for Phase 2 Testing

Continuous System ABCD

input u

output y

state x1 x2 x3

der x1d x2d x3d

al=-1¥%(2*k+b/a)

a2=-1%(2*k*b/a) + k*k + k*k*c/a)

a3=-1*(k*k*b/a + k*k*d/a)

c2=2*k*k*c/(q*a)

c3=2*k*k*d/(q*a)

xld=al*x1 + a2*x2 + a3*x3 +u
=ad*x1 + a5*x2 + a6*x3

x3d=a7*x1 + a8*x2 + a9*x3

y=cl1*x1 + c2*x2 + c3*x3

a4:1.0

a5:0.0

a6:0.0

a7:0.0

a8:1.0

a9:0.0

c1:0.0

a:200.0

b:2050.0

¢:200.0

d:1845.0

q:0.5

k:100.0

end

Phase 2 Least Squares Estimation Testing Connections

Connecting System CON
time t
sigl=x[sins]+y[sins]+z[sins]
sig2=xx[sins]+yy[sins]+zz[sins]
sig3=qq[sins]
sigd=sigl+sig2+sig3
u[abcd]=sigd

ufufl]=sigd

ufuf2)=sig4

u[yt]=y[abcd]
y[yf1]=y[abed]
ylyf2]=y[abed]
uf1[pdot}=uffufl]
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uf2(pdot]=uffuf2]
yfl[Pdo:]=Yﬂyf 1]

yf2[pdot] ]
uf1[ahat]=uf[ufl]
yel{ahatioytlytt)

tl=
yf2[ahat]=yf]yf2]
y[ahat]=y[yt]
i,
pl[ahat])= ot
p2[ahat)=pd2(pdot]
p3[ahat]=pd3[pdot]
p4[ahat}=pd4[pdot]
pS[ahat}=pd5[pdot]
p6[ahat]=pdé[pdot]
p7(ahat]=pd7[pdot]
p8[ahat]=pd8[pdot]
p9[ahat]=pd9[pdot]
p10[ahat])=pd10{pdot]
pll[ahat}=pd11[pdot]
pl2[ahat}=pd12[pdot]
p13[ahat}=pd13[pdot]
pl4[ahat]=pd14[pdot]
p15[ahat}=pd15[pdot]
p16[ahat}=pd16[pdot]
uf1[yhat]=ufTufl]
uf2[yhat]=ufluf2]
yf1{yhat]=yf[yf1]
yf2[yhat]=yf[yf2]
al[yhat]=ah1[ahat)
a2[yhat]=ah2[ahat]
a3[yhat}=ah3[ahat]
a4[yhat]=ah4[ahat]
end

Parameter Mapping System “DCE” (figure 14)
(parameters default to cs,es until routine is triggered at time = 1.0)

Discrete System DCE

input tl {213 t4

outputce

state x3 x4

new nx3 nx4

time t

tsamp ts

c=x3

e=x4

h2=1/(cs*cs*1*1) + 4/(q*q*cs*cs*1*])

b3=1 - es/(cs*1)

b4=3/1 - (2*es)/(1*1*cs) - 1/1
mn3=(t4*2)/(q*cs*1*h2) - (12-b4)/(cs*1*h2)
mn4=(13*2)/(q*cs*1*h2) - (t1-b3)/(cs*I*h2)
nx3= if t<1.0 then cs else if t>1.01 then x3 else mn3
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nx4= if 1<1.0 then es else if t>1.01 then x4 else mn4
ts=t-+dt

dt:0.01

Q:0.5

1:100.0

¢s:200.0

es:2050.0

end

Third-Oder Adaptive Force-Force Extender Controller “Hp” (figure 14)

Continuous System HH

inputceu

output y

state x1 x2 x3

der x1d x2d x3d

d=(1.0/(c*18860.0))*k*k
cl=k*k*((1.0/(c*530.52))-(1.0/(c*18860.0))*(2*k+(e/c)))
c2=k*k*((1.0/(c*11.83))-(1.0/(c*18860.0))*(k*k+2.0*(e/c)*k))
c3=k*k*((1.0/c)-0.(1.0/(c*18860.0))*(k*k*(e/c)))
al=-1¥(2*k+(e/c))

a2=-1*(k*k+2.0*(e/c)*k)

a3=-1*k*k*(e/c)

y=(2/z*c1*x1) + (2/z*c2*x2) + (2/z*c3*x3) + (2/z*d*u)
xld=(al * x1) + (a2 * x2) + (a3 *x3) +u

x2d=(a4 * x1) + (a5 * x2) + (a6 * x3)

x3d=(a7 * x1) + (a8 * x2) + (a9 * x3)

a4:1.0

as5:0.0

a6:0.0

a7:0.0

a8:1.0

a9:0.0

z:0.5

k:100.0

end

Third-Order Adaptive Force-Force Extender Controller “Hp” (figure 14)

Continuous System HN

inputceu

output y

state x1 x2 x3

der x1d x2d x3d

d=(1.0/(c*18860.0))*k*k
cl=k*k*((1.0/(c*530.52))-(1.0/(c*18860.0))*(2*k+(e/c)))
c2=k*k*((1.0/(c*11.83))-(1.0/(c*18860.0))*(k*k+2.0*(e/c)*k))
¢3=k*k*((1.0/c)-0.(1.0/(c*18860.0))*(k*k*(e/c)))
al=-1*(2*k+(e/c))

a2=-1*(k*k+2.0*(e/c)*k)

a3=-1*k*k*(e/c)
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y=(c1*x1) + (c2*x2) + (c3*x3) + (d*u)
x1d=(al * x1) + (a2 * x2) + (a3 * x3) +u
x2d=(a4 * x1) + (a5 * x2) + (a6 * x3)
x3d=(a7 * x1) + (a8 * x2) + (a9 * x3)
ad:1.0

a5:0.0

a6:0.0

a7:0.0

a8:1.0

29:0.0

k:100.0

end

Phase 3 Least Squares Estimation Testing Connections

Connecting System CON

time t

out=y[ss]
sigl=x[sins]+y[sins]+z[sins]
sig2=xx(sins]+yy[sins]+zz[sins]
sig3=qq[sins]+ww[sins]+vv[sins]
uh=sigl+sig2
sum=y[gdh]+y[gdn]+y[gp] .
u[gp]=kb*kda*(k1*(k0*(y[hh]+y[hn])=kio*y[ss])-k2*kad*kt*sum)
u[gdh]=uh-y[tk2]
u[hh}=uh=y[tk2]

c[hh]=cldce]

e[hh]=e[dce]
u[gdn]=p-(e0*y[ss}+e1*sum)
u[hn]=p-(e0*y[ss]+e1*sum)
c[hn]=c[dce]

e[hn]=e[dce]

u[tk2]=y[ss]

u[ss]=sum

uf{ufl]=uh=y[tk2]
u[uf2]=uh=y[tk2]
ufyt]=-1*(p-(e0*y[ss]+e1*sum))
ylyfl)=-1*(p-(e0*y[ss]+e1*sum))
ylyf2]=-1*(p-(e0*y[ss]+e1*sum))
uf1[pdot]=uflufl]
uf2[pdot]=ufuf2]
yf1{pdot]=yf[yf1]
yf2[pdot]=yf[yf2]
uf1[ahat]=uflufl]
uf2[ahat]=uf[uf2]
yf1[ahat]=yf[yf1]
yf2[ahat]=yf[yf2]

ylahat]=y[yt]

yh[ahat]=yh[yhat]
p1[ahat]=pd1[pdot]
p2[ahat]=pd2{pdot]
p3[ahat]=pd3(pdot]
p4{ahat]=pd4[pdot]

A-15




pS[ahat]=pdS[pdot]
p6[ahat]=pd6[pdot]
p7[ahat]=pd7[pdot]
p8[ahat}=pd8(pdot]
p9[ahat]=pd9(pdot]
p10[ahat]=pd10[pdot]
pl1[ahat)=pd11[pdot]
p12[ahat}=pd12[pdot]
p13[ahat]=pd13{pdot]
pl4[ahat]=pd14[pdot]
p15[ahat]=pd15[pdot]
pl6[ahat]=pd16[pdot]
uf1[yhat]=ufTufl]
uf2[yhat]=uf{uf2)
yf1[yhat]=yf[yf1]
yf2[yhat]=yfyf2]
al[yhat]=ah1[ahat]
a2[yhat]=ah2[ahat]
a3[yhat]=ah3[ahat]
a4[yhat]=ah4[ahat]
t1[dce]=ah1[ahat]
t2[{dce]=ah2[ahat]
t3[dce]=ah3[ahat)
t4[dce]=ah4[ahat]
kb:0.00465
kda:0.004883

k1:0.94

k0:1592.0

kio:1592.0
k2:0.00977
kad:1638.4

kt:0.169

€0:2050.0

e1:200.0

p:0.0

end

Input Signal Generator for Phase 1 BGF Testing

Continuous System YBLD

timet

inputvwxy

output yh

a2h=1.0 + sin(t/2.0)

adh=2.0 + sin(t/2.0)

a2=if t>0.0 then a2h else a2s
ad=if t>4.0 then a4h else a4s
yh=(v*al)+(w*a2)+(x*a3)+y*ad)
al:1l

a2s:2
a3:3
ads:2
end
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Third-Order Input Signal Generator for Phase 2 BGF Testing

Continuous System ABCD
timet

input u

output 'y

state x1 x2 x3

der x1d x2d x3d
dh=1845+(10.0*sin(t/2.0))
c=CS$

d=if 0.0 then dh else ds
al=-1*(2*k+b/a)
a2=-1*(2*k*b/a) + k*k + k*k*c/a)
a3=-1*(k*k*b/a + k*k*d/a)
c2=2*k*k*c/(q*a)
c3=2%k*k*d/(q*a)
x1d=al*x1 + a2*x2 + a3*x3 +u
x2d=ad4*x1 + a5*x2 + a6*x3
x3d=a7*x1 + a8*x2 + a9*x3
y=c1*x1 + c2*x2 + c3*x3
a4:1.0

a5:0.0

a6:0.0

a7:0.0

a8:1.0

a9:0.0

c1:0.0

a:200.0

b:2050.0

¢s:200.0

ds:1845.0

q:0.5

k:100.0

end

Fourth-Order BGF Gain Update Model “PDOT” (figure 14)

Continuous System PDOT

input yf1 yf2 ufl uf2

output pd1 pd2 pd3 pd4 pd5 pd6 pd7 pd8 pd9 pd10 pd11 pd12
output pd13 pd14 pd15 pd16

state pl p2 p3 p4 pS p6 p7 p8 p9 p10pl1 p12 p13 pl4 p15 pl6
der p1d p2d p3d p4d p5d p6d p7d p8d p9d p10d pl11d p12d p13d

der pl4d p15d p16d

sum1=p1*p1+p2*p2+p3*p3+p4*p4+p5*p5+p6*p6+p7*p7+p8*p8+p9*p9
sum2=p10*p10+p11*p11+p12*p12+p13*p13+p14*p14+p15*p15+p16*p16

sum3=suml+sum?2
norm=sqrt(sum3)
lam=10*(1-(norm/k0)
pdl=pl

pd2=p2
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pd10=p10

pdl1=pll

pd12=p12

pd13=p13

pd14=pl4

pd15=p15

pd16=pl6

wl=yf1*yfl

w2=yf2*yfl

w3=ufl*yfl

wd=uf2*yf1

wi=yf2*

wé=uf1*yf2

w7=uf2*yf2

w8=ufl*ufl

wI9=uf2*ufl

w10=uf2*uf2

il=(pl * wl) + (p5 * w2) + (p9 * w3) + p13 * wd)

i2=(p2 * wl) + (p6 * w2) + (p10 * w3) + pl14 * wd)

i3=(p3 * wl) + (p7 * w2) + (p11 * w3) + p15 * wd)

i4=(p4 * wl) + (p8 * w2) + (p12 * w3) + p16 * w4)

i5=(pl * w2) + (p5 * w5) + (p9 * w6) + p13 * w7)

16=(p2 * w2) + (p6 * wS5) + (p10 * w6) + p14 * w7)

i7=(p3 * w2) + (p7 * w5) + (p11 * w6) + p15 * w7)

i8=(p4 * w2) + (p8 * w5) + (p12 * w6) + p16 * w7)

i9=(p1 * w3) + (p5 * w6) + (p9 * w8) + p13 * w9)

110=(p2 * w3) + (p6 * w6) + (p10 * w8) + p14 * w9)

i11=(p3 * w3) + (p7 * w6) + (p11 * w8) + p15 * w9)

i12=(p4 * w3) + (p8 * w6) + (p12 * w8) + p16 * w9)

113=(p1 * wd4) + (p5 * w7) + (p9 * w9) + p13 * w10)

i14=(p2 * wd) + (p6 * w7) + (p10 * w9) + pl4 * w10)

i15=(p3 * wd) + (p7 * w7) + (p11 * w9) + p15 * w10)

i16=(p4 * wd) + (p8 * w7) + (p12 * w9) + p16 * wi10)
pld=(lam*p1)-((i1 * p1)+(i5 * p2)+(i9 * p3)+(i13 * p4))
p2d=(lam*p2)-((i2 * p1)+(i6 * p2)+(i10 * p3)+(i14 * p4))
p3d=(lam*p3)-((i3 * p1)+(i7 * p2)+(il1 * p3)+(i15 * p4))
pAd=(lam*p4)-((i4 * p1)+(i8 * p2)+(i12 * p3)+(i16 * p4))
p3d=(lam*p5)-((i1 * p5)+(i5 * p6)+(i9 * p7)+(i13 * p8))
p6d=(lam*p6)-((i2 * p5)+(i6 * p6)+(i10 * p7)+(i14 * pR))
p7d=(lam*p7)-((i3 * p5)+(i7 * p6)+(i11 * p7)+(i15 * p8))
p8d=(lam*p8)-((i4 * pS)+(i8 * p6)+(11.2 * p7)+(il6 * p8))
p9d=(lam*p9)-((i1 * p9)+(iS * p10)+(i9 * p11)+(i13 * p12))
p10d=(lam*p10)-((i2 * p9)+(i6 * p10)+(il0 * p11)+(i14 * p12))
plld=(lam*p11)-((3 * p9)+(@i7 * p10)+(ill * p11)+(i15 * p12))
pl2d=(lam*p12}-((i4 * p9)+(i8 * p10)+(i12 * p11)+(i16 * p12))
pl13d=(lam*p13)-((i1 * p13)+(i5 * p14)+(3i9 * p15)+(i13 * p16))
pl4d=(lam*p14)-((i2 * p13)+(i6 * p14)+(i10 * p15)+(i14 *p16))
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p13d=(lam*p15)-((i3 * p13)+(i7 * p14)+(il1 * p15)+(i15 *p16))
p16d=(lam*p16)-((i4 * p13)+(i8 * p14)+(i12 * p15)+(i16 *p16))

k0:12000.0
10:16.0
end

Second-Order Multi-Input Gain Update Model “PDOT”

Continuous System PDOT

input wl w2

output pd1 pd2 pd3 pd4

state p1 p2 p3 p4

der pld p2d p3d p4d
suml=p1*pl+p2*p2+p3*p3+p4*p4
norm=sqrt(sum1)
lam=10*1-(norm/k0))

11=(p1*j1)+(p3*j2)
i2=(p2*]1)+(p4*;2)
i3=(p1*;2)+(p3*j3)
14=*p2*j2)+(p4*;3)
pld=(lam*p1)-((11*p1)+(i3*p2))
p2d=(lam*p2)-((i2*p1)+(i4*p2))
p3d=(lam*p3)-((i1*p3)+(i3*p4)
p4d=(lam*p4)-((i2*p3)+(i4*p4))
k0:12000.0

10:16.0
end

Second-Order Multi-Input Parameter Update Model “AHAT”

Continuous System AHAT
input wl w2 y yh p1 p2 p3 p4
output ahl ah2

state al a2

der ald a2d

el=yh-y

ahl=al

ah2=a2
ald=-1*e1*((wl*pl)+(w2*p2))
a2d=-1*el1*((w1*p3)+w2*p4))
end
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Multi Input Parameter Error Update Model “YHAT”

Continuous System YHAT
input wl w2 al a2

output yh
yh=(wl*al)+(w2*a2)

end

Multi Input BGF Estimation Testing Connections

Connecting System CON

time t

out=y({ss]

eOh = 1845.0+(10.0*sin(/2.0))
elh = 200.0+(10.0*sin(1/2.0))
e0=if t>0.0 then eOh else e0s
el=if t>10.0 then elh else els
sigl=x[sins]+y[sins]+z[sins]
sig2=xx[sins]+yy[sins]+zz[sins]
sig3=qq[sins}+ww[sins]+vv" ins}
uh=sigl+sig2
sum=y[gdh]+y[gdn]+y(gp] _
u[gpl=kb*kda*(k1*(k0*(y[hh]+y[hn])=kio*y[ss])-k2*kad*kt*sum)
u[gdh]=uh-y[tk2]
u[hh]=uh=y[tk2]
c[hh]=ah2[ahat]
e[hh]=ah1{ahat]
u[gdn]=p-(e0*y[ss]+e1*sum)
u(hn]=p-(e0*y[ss]+e1*sum)
c[hn]=ah2[ahat]
e[hn]}=ah1[ahat]

u[tk2]=y[ss]

u[ss]=sum

w1[pdot]=y[ss]

w2[pdot]=sum

wl[ahat]=y[ss]

w2[ahat]=sum
y[ahat]=-1*(p-(e0*y[ss]+e1*sum))
yh[ahat]=yh[yhat]
pl{ahat]=pd1[pdot]
p2[ahat]=pd2[pdot]
p3[ahat]=pd3[pdot]
p4[ahat]=pd4[pdot]
wl[yhat]=y[ss]

w2[yhat]=sum
al{yhat]=ah1[ahat]
a2[yhat]=ah2[ahat]

kb:0.00465

kda:0.004883

k1:0.94

k0:1592.0

kio:1592.0

k2:0.00977
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r-

kad:1638.4
kt:0.169
¢0s:2050.0
el1s:200.0
p:0.0

end
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