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Hydrogen Peroxide Electrodes Based on Electrical Connection of Redox
Centers of Various Peroxidases to Electrodes through a Three-Dimensional

Electron Relaying Polymer Network.

Mark S. Vreeke and Adam Heller

Abstract

Hydrogen Peroxide has been shown to be efficiently electroreduced at an
electrode modified with a hydrophilic, permeable film of horseradish peroxidase

covalently bound to a 3-dimensional epoxy network having polyvinyl pyridine
(PVP)-complexed [Os(bpy)2CITH2/+3 redox centers.! Four peroxide sensing
cathodes based on peroxidases from Arthromyces ramosus, horseradish and
bovine milk are compared. Their sensitivity at 0.0V (SCE) ranges from 0.1 - 1.0
A ecm™2 M-1, and their limiting currents relate to the enzyme's ability to complex

with the redox epoxy network.
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Hydrogen Peroxide Detection
Electrochemical and optical hydrogen peroxide detection forms the basis for
several medical diagnostic tests. Electrochemical detection offers the
advantages of smaller required sample size and ease of integration into a flow
system. A common electrochemical scheme uses an oxidase to catalyze the
selective translation of a substrate concentration to an H202 concentration. This
translation is followed by amperometric assay of the H202, e.g. by its oxidation
on platinum at 700mV (SCE). At 700mV (SCE) electrooxidation of various
reducing species in the biological samples can interfere with the assay.
Peroxidase enzymes (POD) catalyze the reduction of H202 by electron
donors (HA) in the following reaction

2HA + HPZﬂP 2H20 + 2A

(1)

Amperometric peroxidase based H202 sensors have been made by using fast
reversible redox couples (see Tables | and Il). In these, the reducing member of
donates electrons to H202 , is oxidized. and is then cathodicly reduced.
Horseradish peroxidase (HRP) is the most commonly used peroxidase for
diagnostic testing (Table 1). Other peroxidases (Table I1) are used less frequently
because they are less easily available or cost more. Tables | and I show the
detection schemes vary in their method of immobilization of mediator and
enzyme. At one extreme one finds systems based on the direct transfer of
electrons from the electrode surface through surface bound mediators to HRP
redox centers contacting the surface. At the other extreme one finds systems

with freely diffusing mediators and enzyme.

H202 Detection based on 3-Dimensional Redox Epoxy Networks




Here we describe electrodes based on peroxidases from horseradish (HRP),
Arthromyces ramosus (ARP), and bovine miik (LOP) immobiiized in a three
dimensional redox epoxy hydrogel on a current collector. In the case of HRP we
used either the purified native enzyme or its sodium periodate oxidized derivative
(HRPox). The redox hydrogel was made of a poly(4-vinyl pyridine) backbone
partally complexed by osmium bipyridine redox centers are eiectron donors
(species HA in reaction 1) and relay electrons from the electrode to the reactive
centers of the peroxidase (Figure 1). The ethyl amine groups enable the cross
linking of the enzyme containing polymer film with a polyethylene glycol diglycidyl

ether (reaction 2).

H
HO
R-NH-C-C-R"

R-NH, = c;%-w )

The three dimensional redox epoxy offers some of the advantages of both
the freely diffusion systems and the immobilized systems. As in freely diffusing
mediator based systems, not only the electrode adsorbed enzyme molecules, but
also those in the redox polymer containing volume are electroactive. At the same
time, there is no need to add mediator to the sample, and the mediator can not
leach out or contaminate the sample.

POD enzymes are rather small (40 = kd), and their active groups are
positioned relatively close to the enzyme surface. This allows direct electron
transfer between the POD enzymes and the electrodes. Figure 2 shows the
dependence of the current on potential for HRP immobilized in a hydrogel similar
to the electron relaying one but without the electron relaying osmium redox sites.
Here only those enzyme molecules actually adsorbed on the electrode surface in
electrical contact with it contribute to the signal. In contrast, when the enzyme is

immobilized in the hydrogel with electron relaying osmium centers, there is a




hundred fold increase in current because enzyme molecules contacting relays

are also "wired". (Figure 3)

Peroxidase Sensor Response

The dependence of the current response on H202 concentration for optimized
HRP, HRPox, ARP, and LOP cathodes is shown in figure 4. The ARP and
HRPox cathodes show a linear range from 0.1 to 100uM H202. The limit of
detection for HRPox is 10nM. The cathode is slightly less sensitive then the
HRPox cathode, however it has the advantage of increased dynamic range. The
LOP cathode does not exhibit the good sensor response of the other enzymes.
Its linear range is narrow, and sensor deteriorates more rapidly than the HRP
sensor, that shows only a 10% loss over the course of 3 days continuous
operation. The LOP sensor looses 10% of its output in hours.

The weight fraction of POD in the redox epoxy film effects the sensor
response. As the amount of enzyme is initiaily increased in the film the current
increases, reaching a maximum at 8 to 50% weight POD. As more enzyme is
added current then decreases. The shape of the curve reflects the fact that at
low enzyme loading the sensor is limited by the number of catalytic sites.
However, as the fraction of electricaily insulating POD increases the sensor
becomes electron transport limited, and as more enzyme is added the current
decreases.

Figures 5 to 8 show this effect. The ARP (figure 5), LOP (figure 6) and
HRP (figure 7) obtain their respective maximum currents at 20 to 45%, 35 to 50%
and 20 to 40% enzyme loading. These percentages are similar to the results
obtained for anodes using the same redox polymer and glucose oxidase.21 Itis
interesting to note the variation in current maximum for the two HRP enzymes.

For NalO4 oxidized HRP the current maximum is found at 8-20% enzyme loading




(figure 8) vs. 20-40% enzyme loading for native HRP (figure 7). NalQO4 treatment
cf the glycoprotein is a standard procedure for generation of aldehydes by the
oxidation of sugar residues. The aldehydes produced can be covalently bound to
the redox polymer, which is a polyamine, in a reaction where multiple Shiff bases
are formed. Formation of a dense system of covalent bonds implies tight binding
of the enzyme and its “wiring” redox polymer. It resuits in effective electrical
connection of a large fraction, perhaps most, of the enzyme molecules present.
Thus the current rises rapidly and to a high level as enzyme is added. then
becomes limited by the network's current carrying capacity when the fraction of

insulating enzyme becomes excessive.

Electrostatic Interaction of Polymer and Enzyme

We account for the differences between the sensors by the different electrostatic
interactions between the polymer and enzyme. Strong electrostatic interaction
between the enzyme and the redox polymer is expected to lead to tight coupling
of the enzyme and the “wiring” polymer, and thus to a shorter average distance
for electron transfer. Because the redox polymer is a polycation, the greater the
negative charge of the enzyme at neutral pH, the higher the current. This
explanation is consistent with the interpretation of the behavior of the response of
different FAD enzyme sensors made with the present redox polymer.22 The
formation of polymer-enzyme complexes is readily observed in isoelectric
focusing (IEF) experiments. Figure 9 shows IEF runs for the 4 enzymes. ARP,
HRP and LOP are respectively negatively, slightly positively and positively
charged at pH 7. Native HRP focuses as two separate isoenzymes with very
close PI's. The HRPox forms a complex mixture, and does not focus to a single

spot, but is more negative than HRP.




Comparison of the resuits of the isoelectric focusing experiments with the
limiting currents supports the proposition that a positive electrostatic interaction
contributes to sensor performance: the order of increasing negative charge

LOP<HRP<HRPox<ARP parallels the increase in limiting currents.
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Figure Captions

Figure 1. Redox cycles occurring in the 3-dimensional redox epoxy hydrogel.
POD represents any of the following enzymes: native horseradish peroxidase,
NalQ4 treated horseradish peroxidase, {actoperoxidase. or Arthromyces ramosus
peroxidase.

Figure 2. Dependence of current on potential for a NalO4 oxidized horseradish
peroxidase immobilized in a 3-dimensional epoxy hydrogel free of electron
relaying osmium redox centers. (A) no H202; (B) 0.1mM H202 Conditions:
aerated pH 7 physiological phosphate buffer solution: scan rate 2.5 mV s-1: 500
RPM.

Figure 3. Electrode as in figure 2, but with osmium electron relaying redox
centers. (A) no H202; (B) 0.1 mM H202; (C) 0.5 mM H202 Conditions for A

and B are as in figure 2. C was done as 2000 RPM.

Figure 4. Dependence of current density on hydrogen peroxide concentration for
cathodes based on different peroxidases. (open circles) NaiQ4 treated
horseradish peroxidase; (closed circles) native horseradish peroxidase: (open
squares) lactoperoxidase: (closed squares) Arthromyces ramosus. Each
electrode contains approximately 10ug osmium redox polymer, 1ug polyethylene
glycol diglycidyl ether crosslinker and 1 to 4ug peroxidase. Conditions: aerated
pH 7 physiological phosphate buffer solution; 1000 RPM.

Figure 5. Dependence of current on the weight fraction of Arthromyces ramosus
peroxidase (ARP) in the film. The osmium redox polymer and crosslinker
amounts were held constant at approximately 10 and 1ug. Conditions: aerated
pH 7 physiological phosphate buffer solution; 1000 RPM.

Figure 6. Dependence of current on the weight fraction of lactoperoxidase (LOP)

in the film. The osmium redox polymer and crosslinker amounts were held




constant at approximately 10 and 1ug. Conditions: aerated pH 7 physiological
phosphate buffer solution; 1000 RPM.

Figure 7. Dependence of current on the weight fraction of horseradish
peroxidase (HRP) in the film. The osmium redox polymer and crosslinker
amounts were held constant at approximately 10 and 1pg. Conditions: aerated
pH 7 physiological phosphate buffer solution; 1000 RPM.

Figure 8. Dependence of current on the weight fraction of NalO4 treated
horseradish peroxidase (HRPox) in the film. The osmium redox polymer and
crosslinker amounts were held constant at approximately 10 and 1pg.
Conditions: aerated pH 7 physiological phosphate buffer solution: 1000 RPM.
Figure 9. Isoelectric focusing of the 4 enzymes. The agrose gel was loaded with

3.5 to 9.5 pH ampholite to set up the gradient.
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