
In. Os w~;rce 14*

An MS-DOS File System for UNIX

Alessandro Form n
Gerald R. Malan
September 1993

CMU-CS-93- 196

,,rEECT.E

\VII QUALITYU=E(f

4 .Ca*iei

94-07793

943 9049

An MS-DOS File System for UNIX

Alessandro Forin

Gerald R. Malan

September 1993
CMU-CS-93-196

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

A shorter version of this document will appear in the

Proceedings of the 1994 Winter USENIX Conference

Januarv 17-21, 1994 San Francisco, CA.

This research was sponsored by the Advanced Research Projects Agency (DOD), under contract number

DABT63-93-C-0054. The views and conclusions contained in this document are those of the authors and should not

be interpreted as representing the official policies, either expressed or irrIied, of the Defense Advanced Research

Projects Agency or the US Government.

Best
Available

Copy

Keywords: Operating Systems. File Systems. Disk Storage. Unix. MS-DOS, Mach. DosFs

Abstract

We have written DosFs, a new file system for UNIX that uses MS-DOS data structures for permanent storage.
DosFs can be used anywhere a traditional UNIX file system can be used, and it can mount disks written by MS-DOS
as regular UNIX partitions. DosFs can be used as the root partition, and exported by an NFS server. Our motivation
for this work was efficient disk space utilization; DosFs provides from 10% to 13% better disk utilization than the
4.3 BSD Fast File System (FFS). In addition, we found that the disk block allocation algorithm used by DosFs lets
us exploit large contiguous disk operations, providing a five-told improvement over FFS for uncached operations.
To the best of our knowledge, this is the first file system implementation that allows the user to specify the logical
block size at mount time. A user can mount the same file system with a larger block size when file accesses tend to
be sequential and a smaller one when they tend to be scattered. The MS-DOS structures were designed for a
single-user system and do not support access control. We solved this problem with simple extensions that are
backward-compatible with MS-DOS.

Aoqeusion For

VriS ;RA&II
DTIA" T.,u•3 5l

iJaz i, ý;_ w i, i: lon

Di -tiIon .
Av.a ilebily .At,

A"11 and/or

Dist I_

3

1. Introduction
Today's micro-kernel architectures make it possible to run multiple operating system environments

simultaneously. For example. a notebook computer running Mach 3.0 121 can have both UNIX and MS-DOS disk

partitions. In fact, an MS-DOS emulator 1121 can be started from within the UNIX environment so that Windows

applications can run in parallel with UNIX applications. Unfortunately. UNIX cannot access files on the MS-DOS

partition while the MS-DOS emulator can access all UNIX files. The perception from UNIX is that part of the disk

is missing, causing inconvenience both in resource utilization and in the sharing of data between applications that

belong to the two different worlds. Other commercial MS-DOS emulators have similar limitations. A number of

toolsets do exist to let UNIX users access MS-DOS floppies and disks, but they only transfer data between the

UNIX and MS-DOS file systems. The best solution is an integrated tile system that empowers all existing tools and

applications.

We had both technical and practical motivations for this work. On the technical side, we wanted to examine and

compare the permanent data structures used by MS-DOS and FFS. check whether it was possible to extend a

single-user file system like the MS-DOS one into a multi-user sate, networked file system. and understand some

initial performance figures for uncached disk accesses. On the practical side. we wanted to extend our UNIX system

to support more disk formats, including MS-DOS and the ISO 9660 151 disk formats. Some of our users expressed a

desire to have the UNIX backup and restore utilities work on their MS-DOS data. Finally. a UNIX local tile system
should be usable as the root file system for a multi-user UNIX system.

There are very few file systems for UNIX that handle permanent storage. the latest BSD 4.4 release has added

LFS to the only one that was previously provided. There are a few other file systems outside of the BSD sources.

but they all use permanent data structures similar to the original UFS ones. The permanent data structures used by

MS-DOS are different enough trom the standard UNIX ones to make it interesting to explore the effects on

functionality and performance. For example, there are no inodes in MS-DOS.

The MS-DOS file system was designed for a single-user environment, on a personal computer. UNIX is used in

multi-user, possibly security-sensitive environments. On security grounds. the single-user file system model is not

acceptable on UNIX. For instance. MS-DOS has no provisions for storing user ids or access control information, but

it is not acceptable to make files and directories readable and writeable by all users. The models of the expected file

system usage might instead be closer. On UNIX. it is common to assume a time-sharing model, such as was traced

by John Ousterhout [101 in his investigations of the 4.2 BSD file system. But even the most powerful workstations

today are typically used by a single user at a time. and the file systems themselves use sophisticated caching

strategies. It might well be that the MS-DOS model is quite appropriate for most UNIX users after all.

In our initial tests we found that native MS-DOS 5.0 was up to five times taster than our emulated UNIX (BSD

4.3 on top of Mach 3.0) for large uncached reads, and four times faster than the monolithic Mach 2.5. We traced the

disk operations with a SCSI bus analyzer to find an explanation. We found that the MS-DOS file was contiguously

allocated and was being accessed with tour times larger block sizes (e.g. 16 KB at a time) just like our user program

was requesting. The FFS file was allocated in an interleaved fashion to cope with rotational delays 181. and was

being accessed at the file system block size. 4 KB. The extra seek times accounted for the remaining discrepancies.

Assurr 'ig we were able to reach the same Optimal disk allhcation for tiles as in MS-D()S. we realized that we

could provide new functionalitv to oLur users. namely the ability ti specify the disk access size logical block size)

dynamically, at mount time. I)ependiionl On prevailing use. with Dosl-s we can either use a small or a large block
size. whichever gets the best performance. wilhout any need for rebuilding the file system. A smaller block size is

preferable in case buffer-cache misses are non-sequential and dispersed across the tile system. A larger block size is
best in the more common case that accesses tend to be sequential and clustered around a few tiles at a time.

4

Finally, we wanted to support the ISO file system organization (and the RockRidge extensions for

POSIX/UNIX [13]) that is standard in CD-ROM disks. We started the project with some code written by Pace

Willisson at Berkeley, which provided a read-only ISO file system implementation. The code was missing the

RockRidge (RR) extensions and the file handle operations for use with NFS. Both were easy to add. Support for

the MS-DOS file system looked, at first, like another simple addition because the ISO file system has various

similarities with the MS-DOS file system. We just had to add the write-part--- which turned out to be more than

twice the initial code.

The remainder of the paper is structured as follows. Section 2 describes the organization of the MS-DOS file

system and permanent disk data. We assume the reader has some knowledge of the BSD FFS data structures,

descriptions can be found in [8. 71. Section 3 details the main design and implementation problems. Section 4

illustrates the programs we wrote for file system maintainance. In Section 5 we look at the performance

optimizations from the following viewpoint. We use native, uncached MS-DOS as the base for each test. Each

optimization is described and its individual effect quantified relative to either the base or the final performance

figure. In many cases we can use run-time flags to toggle a specific optimization on or off to help us understand the

measurements. Section 6 reports on the first evaluation criteria we used, namely the disk utilization profiles for FFS

and MS-DOS. Section 7 describes the testing setup and the results of various performance tests. The tests

themselves were taken from those ccmmonly used in the file system literature and were selected to illustrate the

effects of one or more performance optimizations. In Section 8 we point out similar and related work and finally

draw a few conclusions from our experience and illustrate the status and availability of the code.

2. The MS-DOS File System Structure
Starting from the first sector of a disk, the MS-DOS file system layout is as follows: further details can be found

in [11. The initial section of the disk contains the primary (I sector) and the secondary bootstraps (a variable number

of sectors). This is followed by one or more copies of the File Allocation Table (FAT), which is followed by the

root directory entries. The rest of the disk is divided into dynamically allocated clusters. Figure I graphically

depicts this layout.

The first sector of the disk contains the primary bootstrap code, intermixed with geometry information about the

disk and possibly partitioning information. It also records the location, size and number of FATs, the size of the

root directory, and the size of physical sectors and clusters. The primary bootstrap code uses this information to

load the secondary bootstrap code into memory and transfer control to it.

The FAT is a fixed size table that describes the allocation status of the disk's clusters. Entries are either 12 or 16

bits wide, depending on the total number of clusters in the disk partition. A floppy has a 1. bit FAT, a fixed disk a

16 bit FAT. The first two FAT entries are reserved. MS-DOS uses a single FAT copy on floppy disks, and two

copies on fixed disks to protect against disk corruption. DosFs accepts and keeps coherent any number of copies of

the FAT.

To determine which disk blocks are allocated to a tile (or directory) we must start from the file's directory entry.

The entry contains the file's starting cluster number. e.g. the first block of the file. To find the next block, we use

the cluster number as an index in the FAT. The value at that entry is the cluster number of the second block, and so

on. The last block of the file has a FAT entry value of - I. It a cluster is not allocated. its FAT entry is zero. Other

distinguished values are used to indicate reserved clusters (bad blocks. lor instance).

5

Beginning Boot Sectors
of DiskFile Allocation Table

o • Index 22 • -.
Value 34

Value 56
Index 56
Value -1

Root Directory
An example directory entry has

afile starting at cluster 22.

File Clusters

Cluster #

22 File data block 1

34 File data block2

56 File dt lc

End of Disk
i

Figure 1: Organization Of The MS-DOS File System

Directory entries are fixed in size, 32 bytes each. Every entry contains the name and extension, an attribute byte
that indicates, among other things, if this is a directory or a file, a timestamp, the size of the entry (zero for

directories), and the starting cluster number. There is room for 10 more bytes that are defined as reserved by the file
system specifications. The upper two bits of the attribute byte are also reserved/undefined. In the initial versions of
MS-DOS, the root directory was the only directory and it could not grow. Later versions of MS-DOS are backward

compatible and also have a fixed, contiguously preallocated root directory. The root directory is therefore special,
fixed both in size and disk location at file system creation time. Other directories can be grown/shrunk as necessary.
Some directory entries are special. and identified as such by the attribute byte. The MS-DOS image itself. for

instance, is marked invisible and read-only. Label entries contain information about the creation time of the file

system, and the volume name. There is only supposed to be one such label entry, in the root directory.

Clusters are logical blocks. e.g. multiples of the physical sectors. Their size is typically 5 12 bytes on small
floppies and 2048 bytes on fixed disks. Just as in FFS, any cluster can contain either file data or directory
information. Unlike FFS, no other type of information (metadala) is recorded in the clusters. The cluster size can
actually be set to any power of two multiple of the physical sector size. similarly to the fragment size in the UNIX
BSD file system. Unlike BSD, the cluster size can be up to a 16 bit multiple of the sector size. In practice. the
upper limit supported by MS-DOS is 64 KB.

6

3. Design Issues
The MS-DOS file system evolved from its CP/M predecessor, it is aimed exclusively at a single-user machine.

with no protection between users of the file storage. It strives to minimize resource utilization, both in memory and

on disk. But it lacks features present in UNIX tile systems, such as file links.

DosFs is implemented as a layer of code below the virtual file system (Vnode) layer [6]. The Vnode layer has a
well defined interface, which must be fully implemented to cover all aspects of UNIX file system functionality.

This presented us with various design issues, which we will describe in the rest of the section. Table I summarizes

these issues, and indicates how they are solved in the various file systems.

Problem FFS loFs MS-DOS DOsFT

Access Control inodes extended attributes none directory ext. or
mount option

Filename size 255 30cr 1t II
RR unlimited

Filename chars ASCII Upcase+ Upcae++ mount option

[node numbering Inode Table Extent num N/A Cluster num

Links hard+soft hard+soft with none soft
RR extensions

NFS access inode num inode + dir N/A inode + dir

Special devices standard RR ext. no directory ext.

Setuid files standard RR ext. no directory ext.

Table 1: Permanent Data Structures And UNIX Functionality Issues

3.1. Protection
In FFS, a directory entry contains only the name of the file and the inode number. A separate table, the inode

table, contains a 128 byte record for each inode with various inftrmation. including the user-id. group-id and access

permissions of the inode, its type and (a portion of) the list of blocks owned by the inode. There are no inodes in the

MS-DOS file system, and a directory entry does not have the user-id. group-id, or access mode information (except

for read-only files). There are two approaches for adding access protection to DosFs. We could use the 10 reserved

bytes to store the extra information or we could dynamically calculate the access permission for each file.

The first approach is acceptable if MS-DOS applications ignore those 10 bytes (they do) or if backward

compatibility and interoperability are not concerns. It is our goal to interact as smoothly as possible with MS-DOS.

including potential applications that might themselves store information in those reserved bytes. Therefore we

provide the extended information option only if DosFs is mounted as the root partition. or if explicitly requested via

mount options. In practice. we have not yet found an MS-DOS application that would look at the content of

reserved bits and bytes, nor does MS-DOS itself complain or reset these bytes. A disk utility (sut;h as our dosts'ck)

can simply reset the extra protection information. to guarantee 1(0)% compatibility with MS-DOS. We have
designed our extensions so that no data is lost if the access information is destroyed.

For the second approach there are several possibilities:
1. Iroot.wheell owns all files: write permissions depend on mount mode (read-only prevents all writes)

and on the read-onlv hit in the attribute hyte: all selrS havC eqlual access rights;

2. same as above, but the user who issued the mount command is substituted for Iroot.wheell; access
modes are taken from the umask and propagated to all files: other users have access rights as per the
umask;

7

3. allow the user to specify an arbitrary user-id, group-id, and access mode mask; otherwise, same as #2
above;

All three options essentially give the same ownership to all files, they just specify this ownership differently. We

selected option #2 as default because it allows a user to mount his/her volumes and access them safely via NFS

without any special options. Privileged users or operators can use option #3.

Regardless of the mount options, if a file on disk has the special extension marker we use the protection

information stored on disk; only the mode mask is used to mask otf specific bits. An interesting use of the

user-specified mode mask is to disable setuid programs or execute permissions, regardless of their value on disk.

This could be used by a cautious operator when mounting suspicious floppy disks on a general-purpose machine, to

get rid of Viruses.

A possible alternative was to make use of the special label directory entries. MS-DOS specifies that they are

optional and they would only appear in the root directory. We could put a label entry on each directory. to store the

protection information. This idea is similar to the AFS Access Control Lists, which are set on a per-directory. not

per-file basis [141. We were told by Microsoft that it is not a good idea to misuse label entries.

The ISO file system defines extended attributes that provide protection intormation, including owner and group

identifiers, and permissions. These are stored along with the file data in the first block of the file. separated from

any directory entry information. ISO leaves open the mapping of this information onto the receiving system's

administrative database.

3.2. File Naming
MS-DOS file names are limited to 12 characters, 8 bytes of name proper, an implied dot character to separate the

file extension, and three characters of extension (suffix). The ASCII space character must be used to pad both the

name and the extension fields. The MS-DOS specifications only dictate 8-bit ASCII characters but some internal

MS-DOS functions converts all characters to uppercase. Therefore in practice all file names in MS-DOS have

uppercase only ASCII characters, and digits. Special punctuation symbols are discouraged; some might produce

peculiar effects.

The ISO file system sets a tota! !;nit of 30 characters on a file name, not counting the dot separator between name

and extension and the trailing version information (a semicolon followed by a digit). The only permissible

characters are digits, uppercase letters, and underscore. The RockRidge (POSIX) extensions use only the ASCII

codes for letters and digits, period. underscore and hyphen. Extra information is added to a directory entry to

express a file name in this POSIX format and bypass the ISO restrictions. This file name encoding scheme has no

maximum length.

UNIX BSD file names have a set limit of 255 characters, and no restrictions on their content except for the first

seven bits of the ASCII code. In principle. raising, the 255 limit would be just a matter of modifying one define and

recompile. There is only one function that imposes the seven bit restriction in our 4.3 BSD file system code.

To cope with this jungle of rules and exceptions we wrote separate file name comparison and translation functions

for the FFS, DosFs and the ISO file systems. In the case of the ISO file system, these handle the RR extension and

recover the original UNIX names. bypassing the ISO limitations. The tile name length limitation for MS-DOS was

found to be the most irritating to our users. We resolved the problem using one of the reserved bits in the attribute

byte to signify the entry contains a long name. The immediately following directory entry has an attribute byte that

qualifies it as a label entry. but contains instead 31 more bytes of the file name. Under DOS the name appears

truncated.

We also removed the uppercase-only limitation: at mount time it is possible to specify one of three translation
options. File names can be untranslated (except for the implied dot between name and extension) and look exactly
as they would under MS-DOS. Or we can map letters to lowercase and clean up the extra spaces, to make tile
names look more UNIX-like. This is the default option. When used as a root file system we use a third scheme that
treats name and extension as a single string, without any implied "dot" and without case conversions. This third
option provides the most "proper" feeling for UNIX users, but it might make the file name unacceptable to native

MS-DOS.

3.3. Inode Numbering
FFS maintains permanent inode tables on disk. and there is a direct mapping from inode number to disk address.

Since ISO file systems do not have mode tables we used the first block number of directories and files (the extent, in
ISO parlance) as the inode number. We maintained this scheme for the DosFs file system, the only modification is

that our dosfs_ialloc() function must procure a cluster each time we create a new "inode". For directories this is not
a problem since a directory by definition must contain at least the dot and dot-dot entries (this is true of both UNIX
and MS-DOS) and therefore can never be totally empty. For files this means that zero-length files still own at least
one cluster. Special devices are the only inodes for which we might safely and quickly optimize away this cluster.
by dynamically generating impossible cluster numbers and modifying the file system utilities to recognize these

directory entries.

This simple scheme no longer worked when we added the RockRidge extensions to the ISO file system. The
problem is with symbolic links. In ISO a symbolic link is entirely defined in the directory entry. it does not have
any associated disk space. We could have used extension-specific knowledge. such as looking into the extra
information provided by the RR records that include an inode number. Instead. we took an approach that should still
work with some other future extensions to the ISO standard. The high hits of the inode number are the extent, and
for regular files and directories, the low bits are zero. For smlinks. the high bits are the extent of the director'
where the symlink lives, the low bits are a function of the directory entry (e.g. the offset in the extent). Any gisen
ISO extension need only tell if this is a syymlink or not. the existing code will build the mode number appropriately.

3.4. Hard/Symbolic Links
MS-DOS has neither symbolic links nor hard links. Implementing symbolic links was simple. We just took one

unused bit in the attribute byte of the directory entries to mark the entry as having our special extensions, and
another bit in the extension bytes to indicate a symbolic link. We store in the link's cluster the file name the link is

pointing at, just like FFS. For MS-DOS the file is a regular file of length equal to the link name. and the content of
the file is the link name itself.

Short FFS symlinks can be optimized by using the direct block fields of the inode to store the file name this is a
link to, avoiding one disk access while doing expansion of symbolic links. DosFs has no inodes and cannot use this

optimization. Notice. however, that in terms of disk accesses DosFs is always at par with the optimized case. FFS
must access the directory entry, the inode, and ipossibly) the link name. l)osFs must access the directory entry, and

(always) the link name.

Hard links are more difficult. One approach is to just build another entry that points to the same starting cluster.

This creates two problems: uniqueness of inode numbers is lost. and there is no obvious way to keep (on permanent

storage) a reference count of the number of entries that point to the same inode. The first problem means. for

instance, that size and other attributes that are stored in a directory entry are not kept coherent, unless the entry that

9

is a hard link actually points back to the original entry it is a link to. Since a cluster can hold a number of diiectory
entries this variation can still perform well. for the higher probability of finding the pointed-to entry in memory. But
more importantly, the second pro I:in means that there is no way to know when an inode can actually be released.

One solution to this problem use mnore of those 10 reserved bytes to hold a hard link count.

Note that these issues do not arise on ISO CD-ROM file systems for the simple reason that the file system is
immutable. The RockRidge extensions do support symbolic links, and they also provide reference counting.
Implementinig hard links and making a mutable ISO file system is therefore feasible.

I., expediency, we chose to implement symlinks but not hard links. We needed symbolic links to handle the tile
system structure with more flexibility. especially when DosFs is the root. We did not find any mandatory reason to
have hard links, so we left the issue open for future extensions.

3.5. NFS Access
Exporting a (local) file system via NFS is not difficult. The NFS layer gives to client machines a handle on

Vnodes. the local file system provides functions to build such a handle and map it back to a Vnode. FFS handles
contain just the inode number and a generation number for coherency purposes. Neither ISO nor MS-DOS have
inode tables separate from directory information, we could not use lust the inode number as is done in FFS. If the
inode is not in the cache we need to refer back to some directoiry entry to recover size. modes and timestamps W1 a
DosFs or ISO inode. This is also true with the RockRidge extensions to ISO.

The handle that is exported to remote nodes in NFS has a predefined size. but fortunately it is opaque. No
application appears to make special use of the content of an FFS handle. We added two more fields to the FFS file
handle scheme, the cluster number of the directory that contains an entry for the given inode, and the offset of this
entry. If the inode is not in core it can be reconstructed by recovering the original directory., checking its coherency.
and looking up the directory entry. Note that protection issues are no different when access is via NFS than when
access is local.

3.6. Other extensions
When we first tried to use DosFs as a root tile system on a DEC Alpha workstation we discovered a small number

of other problems. To begin with. we had to modify both the boot programs and the Mach default pager 131 to
understand the MS-DOS file system structures. The first must he able to find. read in. and transfer control to the

boot image. The second has similar needs with respect to the UNIX server image. In addition, it might have to use
a DosFs file system for paging purposes.

We then found a number of instances in lile system-independent UNIX code where FFS data structures and
semantics were assumed. For instance. mounting of the root file system itself was special cased for FFS and NFS
and so was the checking of special device close operations ajuainst mounted tile systems. Even the shutdown o' the
system assumed the root was an FFS file Nslesie. We also saw no reason why the root file Isystem should not he
un-mounted. e.g. on clean shutdowns of the system.

Two more extensions were necessary to g:e the ,systen up in multiuser mode. The first and most obvious. III
hindsight. was the need for special devices. We used the ,mh'dc extension held to mark a tile .is a U NIX IX.cial

device and stored the major/minor in format.ion in the reserved Iites. Special devices are the directors entries thai
make the most use of the reserved htles in MS-D)OS directory entries: all 10 bytes are used up.

The second, slightly less obvious, was the need for setuid programs. CMU UNIX runs the single user shell not as

I0

root but as the less privileged user opr. theretore we just could not do much without encountering a protection block.

Once again, we used the mode field for this information, making it almost identical to the FFS imode field. The

only difference is that DosFs does not support the special mode value used by badsect(l) for creating bad block

files. There is no need for this. the FAT defines special entry values to mark unusable clusters.

4. Tools
While developing DosFs we found the need for tools to accomplish a variety of tasks, such as file s2stem

construction, check and repair. bad block handling, analysis, and tuning. We patterned a small set of tools after the

well known UNIX ones: dosmkfi. dosfck,. dosbadsect. dosduntpft;. All of the tools are considerably simpler and

smaller than their FFS counterparts. The dostuieps program is actually just a compaction tool that reallocates

clusters on disk to keep file/directory data contiguous tor best pertormance. We hardly ever use it. A similar effect

can be obtained simply with a dump/dosmkts/restore. but with tunets there is no need for a separate tape or

temporary disk partition.

Once we started to use DosFs as root partition we decided to actually integrate dosfsck back into fsck. which can

now handle either type of file system, including support for the so-called "preen mode". This is the way fsck

operates non-interactively. e.g. during automatic reboots. There are only two very embarrassing cases where fsck

will not automatically repair the disk: when an allocation chain in the FAT has a loop and when two allocation

chains merge. FFS and fsck have many more mutual understandings of accidents that "should not happen".

Another strange property of the DosFs fsck is that it is CPU-intensive, not 1/O intensive. Most otf the time is spent

verifying the FAT allocation chains in memory. 1/0 operations to read directory entries take little time.

5. Optimizations
A number of optimizations came to us tor free, by using the UNIX buffer cache for 1/O. These include the

caching of 1/0 buffers, read-ahead for sequential file accesses, and delayed-writes. Other optimizations were trivial

to add, such as caching of name lookups. Handling of the FAT table was simplified by its modest size. Based on

our SCSI traces, and on McVly's work on extent-based performance 191. we implemented large 1/O operations.

The effects of 1/0 buffer caching are illustrated in Section 7, by comparing native MS-DOS and DosFs small file

accesses. On a well-tuned UNIX system. cached read and write operations should perform almost at memory copy

speed. For illustration purposes, we have intentionally avoided the use of any of the many native MS-DOS

extensions that would perform file caching. For instance. Microsoft provides the SmartDrive optional driver which

Windows 3.1 installs by default. With this proviso, read and write operations that hit in the cache are from 3 to 15

times faster in DosFs than native MS-DOS.

The benefit of delayed writes is illus:rated by the crtdel test. where a relatively small file is created, written and

deleted a number of times. The performance gain over the uncached case is up to a factor of 40. If we disable

read-aheads. the elapsed time for the sequential. uncached read of a 5 MB DosFs file in 2 KB blocks increases 30%.

The effective bandwidth drops from 4X() KB/sec to 3401 KB/sec.

The crtdel test reveals the eftecis of one interesting difference hetween FFS and DosFs. In FFS. directory entries

and the inode table must he kept coherent in spite of potential Ipwer failures. When creating a new directory enlry

FFS incurs a cost of three writes. The first one is to the imode table. the second to the directory entry. and the last

again to the inode table to set the reference count properly. Hard links require a proper handling of the reference

count field. In DosFs we only need two writes, one to the directory entry and one to the FAT. This is still true even

if we implemented hard links, because the reference count would have to be part of the directory entry itself. not (of a

I1

separate inode table.

Another optimization is caching of name lookups, which also came to us for free since the name cache operates
on Vnodes and is therefore file system-independent. The effects of this optimization can be partially quantified in
the open tests, where a file is repeatedly opened and immediately closed. FFS and DosFs get better times on the
longer pathnames than MS-DOS, but the times show that MS-DOS is also doing name caching. If we disable the
name cache DosFs incurs a 15% higher cost per component. Note that in this test the read operation necessary to
reconstruct the inode will always hit in the buffer cache. If the system is loaded the read might miss, and the price
will be much higher.

We decided to keep the FAT entirely in memory, to speed up many file access operations. The maximum size of

a FAT is 128 KB, which would describe a 512 MB partition at a cluster size of 8 KB. In practice, most MS-DOS
disk partitions are much smaller than this, for instance on a floppy the FAT is approximately 4 KB and on a 60 MB
disk partition of 2 KB clusters the FAT is 60 KB. In terms of main memory consumption the FFS inode cache alone
is much more expensive (in our system) than the DosFs FAT table. In the Mach 3.0 system this memory is
pageable. If we find that keeping the FAT in memory creates problems we can take advantage of the 1/0 buffer
cache and reduce this memory cost to a user-specified number of 1/0 buffers per mounted file system. If frequently
accessed, the FAT blocks will be found in the buffer cache. It is difficult to isolate the performance effects of this
optimization, because the occasional I/O operations to recover the FAT would be unpredictably intertwined with the
other 1/0 operations.

We applied other minor optimizations in the FAT handling code. For instance, every DosFs Vnode has a lookup
hint that is used when mapping file offsets to disk clusters. We do not have to scan the entire allocation chain when
doing sequential reads. We also optimized the rewriting of the FATs since they tended to be a noticeable cost.
especially on the slow floppies. On each sync(2) call we rewrite (if modified) only the primary FAT. the alternate
FATs are rewritten only when the disk is unmounted. If we encounter a power failure the status of the disk will be
as of the last sync(2) call, and dosfsck takes care of rewriting the alternate FATs.

Our disk block allocation algorithm is extremely simple and similar to the one used by MS-DOS Il1. When
extending a file we scan forward in the FAT starting' from the last block of the file. If we do not find a free block.
then we scan backward from the last block of the file. When creating a new file or directory we start from (an
estimate of) the lowest numbered free block in the FAT. The first two rules tends to enforce sequentiality and
clustering, the third tends to accumulate in-use blocks at the beginning of the disk, reducing seeking. The algorithm
is extremely simple, and extre. 'y effective if executed sequentially. It is not executed concurrently in MS-DOS.
or for the most part, in our UNIX wvorkstations.

The optimization that had the single most visible payoff was to perform I/O in sizes larger than the file system s

cluster size. This is possible because the block allocation algorithm is very effective in keeping a file's data
contiguous. We can essentially chose any size for I/O and use it as the equivalent of the FFS logical block size. The
DosFs logical block size is specified by the user at mount time. The default value of 16 KB was chosen because it is
the knee in the performance curve across several disks, and across three types of workstations, but we make no
claims as to its generality and applicability. The implementation is simple. we use a special version of binapp , that
returns the start and size of the contiguous chunk of',isk that contains a given cluster.

One last optimization we adopted from MS-DOS: we do not force the users to discover optimizations on their
own, unless they are really obvious. This is in sharp contrast with the FFS philosophy. In 181 it was advocated that

users would know the characteristics of all disks and even the speed of' their processors relative to the disks they
used. Users would otherwise perform experiments to define the correct values for the file system parameters. and

12

use tunefs(I) to optimize them. There is only one tuning parameter in DosFs, the logical block size for large i/Os.
This is optionally decided at mount time, has an appropriate default, and the meaning is more intuitive than most
FFS parameters (and/or combinations thereof).

6. Disk Utilization
In this section we analyze the overheads and the costs for metadata in DosFs, and we compare them with FFS.

We have performed a simple experiment involving the storing of a set of files on a floppy disk, and we have derived
the formulas that characterize the space requirements of the two file systems.

Allmation Size Wafte FFS free DOl_ free Difference

512 50 KB 326 KB 422 KB +29%

1024 105 KB 273 KB 368 KB +34%

2048 220 KB 138 KB 260 KB +88%

4096 475 KB -86 KB 4 KB nia

Table 2: A Simple Utilization Test: Moving Data To A Floppy Disk

The data set included two software packages in sources, objects, documentation files and man pages for a total of
978,634 bytes in 194 files and 7 directories. The floppy media has a formatted capacity of 2880 sectors, or
1,474,560 bytes. Table 2 illustrates the results of unpacking the data from a tari /) file onto the floppy file system.
Four cases each for FFS and DosFs are presented, with fragment/cluster sizes ranging from 512 to 4096 bytes. The
FFS block size was kept constant, 4096 bytes. We report the amount of free space after the unpacking (a negative
value indicates the amount of data that did not fit), as reported by df(I). The FFS entry at 4096 bytes is misleading
since not all of the data fit on disk. DosFs leaves from 30% to 80% more free blocks than FFS, depending on the
allocation size. If we compute the overhead in disk bytes used versus bytes in the data set we find that FFS costs
between 16% and 36%, while DosFs costs between 6% and 23%.

The first column reports the number of bytes wasted due to fragmentation. Suppose we put a one-byte file in a
single directory on the floppy. We will need one disk block for the directory, and one for the file. Most of the bytes
in the two blocks are wasted, in DosFs we really needed 33 bytes and we used instead 1024 bytes. or more. We
computed the fragmentation by looking at each tile and directory and evaluating the extra bytes on disk that were
allocated and unused because data did not fill a block. The space wasted is approximately the same in the two file
systems and originates for the most part from files. This measure is important in two respects. It shows that an
improper allocation block size can easily cost 40% of the available space on disk. It demonstrate that Extent Based
allocation, which is equivalent to even larger allocation sizes, is an expensive proposition for typical UNIX tiles.

Let us now look more closely at the overheads incurred tor meta-data in the two tile systems. by comparing the
total per-file disk costs for a file of length F in a tile system of fragment/cluster size A. In the formulas. ceil(XY) is
the function that rounds up X to the nearest Y multiple. DosFs will use

DosFSCost = D + (B *Ceil(F/A, 1)) + Ceil(F, A)

D - Ceil(Nd * 32 , A) / Nd

bytes on disk. where Nd is the number of tiles in the same directory and B is the number of hytes per cluster in
the FAT. e.g. 2 for a disk and 1.5 for a floppy. The three terms of the sum represent the cost D in the directory
entry, the FAT, and the file itself. The FAT cost is paid once at tile system creation time, and with the exception of
the root directory all other costs are dynamic allocations. The fixed. upfront cost for DosFs in the (best) floppy case

13

is 2 KB, in a 60 MB disk partition this is 64 KB.
.•100001 OM

S-0 F=I. Nd=1
S...... F=50k, Nd = 1

.F 8000 -- F100k. Nd=I

S7000 F = 500k, Nd = 1
CSo.• 6000 ' F=1M, Nd=I

> 5000
0 --
cn 4000
M) 3000 ,'
8 2000

C; 1000
LL

0 2 4 6 8 10 12 14 16
Number of files in thousands (Nf)

Figure 2: Metadata Costs: FFS Over DosFs

For FFS, we arrive at the following expressions

FPSCoet - D + 128 + Ceil(F/(8 * A), 1) + C / Uf + Ceil(F, A

D - Ceil(Sum(Max(12, 8 + nazelen(i))), A) / Nd

Where Nf is the total number of tiles on disk, and C is the fixed cost in cylinder groups and replicated

superblocks. For a floppy this cost is at minimum 104 KB in three cylinder groups, for a 60 MB disk partition it is

1.4 MB. The five terms of the sum are the amortized directory entry cost D, the inode, the allocation bitmap. the

amortized fixed cost, and the file itself. For FFS all but the directory entry and file data costs are paid at disk

creation time. The formula above is only valid for (relatively) small files, for large files we must also add the costs

in double and triple indirect blocks.

Figure 2 shows what happens as we add more files to the file system. The curves assume a given file length F.

and a fixed number of files per directory. Note that up to a file length of 64 KB FFS does not use indirect blocks to

indicate the blocks that belong to files, it uses the direct block list in the inode which is a pre-paid cost. This fact is

illustrated in more detail in Figure 3, where we vary the size of the average file in a file system with 6,000 files and

an average of 20 files per directory. In both Figures the fragment size is 512 bytes and the logical block size is 4 KB.
in a 60 MB partition. The ramps are the points at which FFS must allocate a new block for the (indirect) block list.

Once that cost is paid DosFs has a lesser advantage, but the DosFs costs still grow at half the speed of the FFS costs.
This is because FAT entries are 16 bits while FFS disk block numbers are 32 bits.

-o 12000
S9000-

0

U) 6000

C')

0 3000

u. 0 500 1000 1500 2000
u. File size in KB (F)

Figure 3: File System Overhead In Bytes, As A Function Of The File Size

V~14

If we look at directory entries alone, FFS would score better than it does overall. DosFs uses a fixed 32 bytes per

entry, including information that FFS stores in the inode table. FFS instead uses a minimum of 8 bytes plus the file

name, and will typically be able to fit more directory entries per block, In Figure 4 we plot the directory entry costs

D for the two file systems, and their difference. By growing the number of files per directory the initial cost is

amortized and the remaining cost is dominated by the file name length (we have assumed file names of length 12).

0)100

(U)

t 80 _ _ _ __ _ _

m
70-- DOSFS Directory Overhead per File

- - - FFS Directory Overhead per File

60 Difference of above (DOSFS - FFS)

50

40

20 I*0 .• • ''• ' '--

10 '' .'" I "'""'"°" ""."......"...."

0 50 100 150 200 250 300 350 400
Files per directory (Nd)

Figure 4: Costs Of Directory Entries

Note that the block allocation algorithms used in the two file systems have no effects on disk utilization, but they

do affect performance as indicated in Section 7.

7. Performance Evaluation
John Ousterhout published, as part of the Sprite OS sources, a set of file system tests I I l1, which we use to

summarize the performance of our file system at the micro-benchmark level. The open test opens (and immediately

closes) the same pathname a large number of times. and reports the average time per iteration. The crtdel test

repeatedly creates, writes to, and deletes a file. The read test reads from stdin in 16 KB sizes, until the end of the

file. The file is then reset and the cycle is repeated at least I(X) times, for timing purposes. Similarly write writes the
given number of KB to stdout, in no more than 16 KB sizes. This is also repeated at least IWX) times.

Most of the well-known macro-benchmarks are UNIX-specific and do not have an identical implementation and

meaning under MS-DOS and UNIX. This is true for the Andrew benchmark 141. for which we do not have a native

MS-DOS version. Similarly for the unpacking of the tar file described in Section 6: we can only compare the times

to do the unpacking between FFS and DosFs. The lostone test is a synthetic benchmark that models a timesharing

load. The test was written by Arvin Park and Jeff Becker at UC Davis. and it is based on the traces John Ousterhout

collected on a general-purpose machine at UC Berkeley I 101. For MS-D)OS. we repiort on typical operations a user

would perform on a large number of files. such as copying or dcleting file trees.

The test machine is a Gateway 2W) 496/33C running Mach 3.0 (MK83+UX42), with a 33 Mhz Intel i486

processor, 16 MB of main memory and "a 4(X) MB Maxtor SCSI disk interfaced via an Adaptec 1541k SCSI HBA.

Effective memory bandwidth is about It) MB/sec. The disk is split into a 04) MB initial MS-DOS partition and the

15

remaining disk space for UNIX partitions. Both the MS-DOS and FFS partitions are over two years old. The
MS-DOS partition is about 40% full, the cluster size is 2 KB. The FFS partition is about 60% full, fragsize is 512

bytes, block size is 4 KB. rotdelay is 4 ms. maxcontig is I. there are 62 cylinder groups. Using fresh file systems
would lead to a more repeatable experiment, but using old file systems shows what happens to the performance

numbers when the file systems age. The discrepancy between our results and the results presented in 171 seems to
indicate that DosFs has a better degradation than FFS.

Test Native MS-DOS FFS DasFs

open 'foe" 0.50 ms 0.75 ms 0.75 ms

open "aib/foo" 0.82 ms 0.82 as 0.82 as

open Iongpath 1.16 ms 0.95 Ms 0.95 as

crtdel 0 KB 32 ms 3ms 3 ms

crtdel 10 KB 521 ms 36 ms 20 ms

crtdel 100 KB 3671 ms 107 ms 87 ms

read I KB 0.1 MB/s 1.1 MB/s 1.1 MB/s

read 8 KB 0.5 MB/s 2.2 MB/s 2.5 MB/s

read 100 KB 1.2 MB/s 3.0 MB/s 3.3 MB/s

write 1 KB 0.1 MB/s 1.3 MB/s 1.3 MB/s

write 8 KB 0.5 MB/s 3.7 MB/s 3.7 MB/s

write 100 KB 0.5 MB/s 5.8 MB/s 7.4 MB/s

Table 3: John Ousterhout's Basic File System Tests.

The results of the micro-benchmarks are illustrated in Table 3. DosFs is faster than FFS on cached read and write
operations, but this is simply the result of the way data is moved between the UNIX server and the user process.
Mach's Virtual Memory works best on large amounts of data. and in the case of DosFs it can move the entire 16 KB

segment by remapping it at once. In the FFS case, data is split across 4 buffers and disjoint virtual addresses.

The lack of caching and/or prefetching in MS-DOS makes it run slower, on average, than the UNIX file systems.
We modified the native MS-DOS read test to read different amounts of data with various blocking factors; the best

bandwidth was 1.2 MB/sec when reading a 100 KB file in 16 KB blocks. In order to explain the results of the open
test we must assume that native MS-DOS is doing some caching anyway. This was confirmed with the Mach 3.0
MS-DOS emulator.

To evaluate the performance on uncached operations we use the read and write tests above, on much larger files.
The tests include both networked and local cases. Read and write performance of DosFs over NFS are nearly
identical to the FFS performance, as indicated in Table 4. The client was a DECStation 5(XX)/2(X). the server was a
DEC Alpha workstation, both running Mach 3.0. The user-to-user bandwidth (measured by ttcp) between the two
machines over a UDP transport was 86() KB/sec. Both the NFS and the networking code in the UNIX server are
old, and these numbers show it.

Test I"S I.'vl` MS-DI)OS NIvi,,i

Uncached read 5MB 1711 8501 1200

Uncached write 5MB 178 382 624

NFS read 5MB 377 379 n/a

NFS write 5MB 749 749 n/a

Table 4: Uncached Data Transfers, For Local Disk And Over NFS. In KB/sec

16

The UNIX server has disabled mapped files, therefore we incur data movement overheads that make local

performance lower than in a monolithic kernel. To quantify the maximum disk performance, we wrote a program
that accesses the disk directly through the Mach 3.0 kernel. This is the closest equivalent of the raw character
device for traditional UNIX. This program uses multiple threads to guarantee that a request for the next sequential
block is always ready in the disk driver queue by the time a request completes. This was verified with a SCSI bus
analyzer. On the test machine this program obtains a 1.5 MB/sec read rate at a block size of 16 KB. Higher block
sizes obtain bandwidths in excess of 1.6 MB/sec 1 . By contrast, a dd(I) of the raw device via the UNIX server only

obtains 1.2 MB/sec, which indicates a 20% overhead in the UNIX emulation code along the I/O path.

In Table 4 we indicate the results of reading or writing a 5 MB file for each of the three file systems. The buffer
cache size was set at 1.3 MB and the file systems were unmounted between each of five test runs. We report the
best results, but there is little variation even if the machine was running in multi-user mode on a regular Ethernet.
Extra data copies make DosFs slower than MS-DOS. But the most remarkable result here is the five fold speedup of
DosFs over FFS. This result can be explained in the same way as in (71: DosFs performs I/Os on a file that is
contiguous, whereas FFS allows for presumed rotational delays and interleaves blocks on the disk. Every track is
only 1/4 utilized by FFS, losing most of the benefits of the track-level caching done by the disk. The speedup is a
little higher than four because the FFS file system is not empty and occasionally FFS cannot allocate its blocks
optimally. DosFs is still capable of reaching optimal allocation in its partition. despite the utilization.

We obtain another important result if we disable the large I/O optimizations, e.g. if we force DosFs to perform I/O

at the 2 KB cluster size. The DosFs bandwidth becomes 480 KB/sec, almost three times higher than FFS which
does 1/0 in 4 KB blocks. The disk compensates for the small access size by read-caching an entire track, but it
cannot compensate for the extra seeks that FFS incurs. Adding track caches on the disk drives is quite common with
SCSI disks.

Table 5 shows the results of our macro-benchmarks. The modified Andrew benchmark is commonly used to
simulate the load of a programming environment. The test has five phases which mainly involve the creation of
various directories (phase I), copying of files (phase II). doing many stat(2) over the file tree (phase III), sequentially

scanning all files (phase IV) and performing some compilations (phase V). DosFs is faster than FFS in all phases.
the larger gains are obtained in the phases that actually access file data, e.g. phases IV and V. Among all the tests we
ran, this is the one with the least controlled execution environment. It uses scripts and system programs, for
instance, which on the test machine are paged in from a different partition but on the same disk. The distance
between the DosFs partition and the FFS partition from system data and code is not the same. and DosFs is
penalized. To use this test effectively we would need a different test setup.

We report three cases for the lostone test, in each one we used a different number o"' instances of the test, running
in parallel directories. Each instance uses approximately 5 MB of disk space. to overflow the buffer cache. We

selected this test to get a worse-case behavior from DosFs. beca'ise it invalidates the assumptions about a single-user
load. When we checked the block allocations for the larger tiles we found them very scattered, as expected. But
DosFs is still from 13% to 20% faster than 4.3 FFS when large 1/0 operations are enabled. If we disable large I/Os
(times in parentheses) DosFs becomes at most 20% slower than FFS.

We rewrote lostone tor native MS-DOS. MS-DOS is not a multi-tasking operating system. therefore we can only

report the results from running a single instance of the test. The lack of caching has. as expected. a terrible effect on
performance. Native, uncached MS-DOS is five times slower than l)osls. If we install the SmartDrive caching

'Poor cabling prevented us from making usc ol Ihe lxtcr SCSI ,,ynchronour triansler mode.

17

software on MS-DOS the results (time in parenthesis) are better, but both FFS (28%) and DosFs (50%) outperform
MS-DOS.

Test Native MS-DOS FFS DosFs

Andrew - Plhs I Iv/a 0.5 0.5

Andrew- Phase 11 n/a 9 8

Andrew. Phase III n/a 8 6

Andrew- Phase IV n/a 12 9

Andrew - Phase V n/a 49 40

Iostone-I 996 (3O) 233 195(257)

lostone-2 n/a 654 550(700)

Iostone-3 n/a 1089 963 (913)

Unpack Tar File n/a 187 150

Copy Windows 48 76 58
Delete Windows 11 5.4 1.2

Table 5: Results For Selected Macro-Benchmarks, All Times In Seconds

We had expected DosFs to be as much as twice as slow as FFS in the lostone test, due to the smaller 1/0 size (2

KB versus 4 KB). This is not the case, and the explanation is not immediate. The majority of the files used by the
test are small, only 12 of the 404 work files are larger than 16 KB, 192 files are one sector or less. and 40 files are
between 4 KB and 16 KB in size. Even the larger files are not totally fragmented. Two distinct phenomena help
explain the results '4f this test. DosFs keeps the many little files close to each other, making better use of the
disk-level cache, and when using the large buffers DosFs has a higher hit rate in main memory.

We measure the unpacking of a I MB tar file to a floppy disk for two reasons. It is an example of a common
activity in UNIX, and the floppy is extremely slow when compared to a disk and does not have any read or write
caches to help performance. Here the FFS optimizations show much gain, the difference versus DosFs is no longer
a factor of two as in the uncached write test but a much smaller 25%. The test involves creating many files.
therefore FFS pays the extra costs discussed in the crtdel test above.

For the last two tests we also have native MS-DOS times. The first one is a recursive copy of a large tree of
MS-DOS system files, the Windows 3.1 directory. The tree is larger than the buffer cache, and the test was

performed on a cold cache to guarantee pure uncached behavior. The results confirm the trend of the previous
uncached micro-benchmarks, but the gap between systems is reduced. Deleting the Windows tree shows once again
the advantage of delayed writes, as was partially indicated in the crtdel test.

There is one optimization we did not apply to DosFs which is instead present in FFS: caching of inodes. The
UNIX server, for instance, uses an in-memory inode table of about 1,200 FFS inodes. Even of released (usually
because of name cache spills) FFS in(oles stay around and can be reused without disk accesses. None of the tests
above would be strongly affected by this optimization, but for instance the traversal of the whole file system name
space probably would. Caching could be done at the Vnode layer. provided it benefits all file systems.

7.1. Performance in Mach 2.5
As previously noted, there is a certain amount ot overhead along the 1/0 path in the Mach 3.0 Unix emulation. To

quantify this overhead we have retrofitted the DosFs code into the monolithic Mach 2.5 kernel. Although the code
is not very stable, we were able to repeat a number of the experiments above. The testing conditions are as indicated

18

above, the only difference is the Operating System kernel.

The first thing we noted was that the memory tests indicated a memory bandwidth twice as high as with the 3.0

system. Cached operations, as indicated in Table 6, perform in excess of 21 MB/sec. We can only explain this

assuming that the coding of the bcopy routine for Mach 3.0 is inefficient when compared to the copyout and copyin
routines in the Mach 2.5 kernel.

Another anomaly that must be explained is why FFS is so slow in the write test. There is an optimization in the

4.3 FFS code that would issue a call to hawrite when the user program writes sequential blocks of the file in
multiples of the block size. This routine, contrary to bdwrite. actually does issue the !/O operation but just does not
wait for its completion. The idea behind this optimization is to reduce buffer usage, on the assumption that the user

will not need to read back in the near future the file that was just created. Unfortunately, the test must be repeated a
number of times to obtain a cumulative elapsed time that can be measured. Therefore on all subsequent runs the

buffer cache will block the user program waiting for the asynchronous writes from the previous run. Therefore the
test is basically run uncached.

Test FFS DosFs

read 16 KB 14.6 MB/s 21.0 MB/s

write 16 KB 0.5 NB/s 19.3 MB/s

read 7 MB 1.2 NIB/s 1.4 MB/s

Copy Windows 1 18 60

Delete Windows 9.8 2.7

Table 6: Mach 2.5 Test Results On Gateway.

The uncached I/O operations now work at least as well as or better than MS-DOS. Some of the results are.
however, worse than the Mach 3.0 results. This is particularly acute in the copy/delete Windows test for FFS. We
can explain this with the more optimized buffer cache code in the 3.0 system, which turns many synchronous writes
into asynchronous writes.

Still DosFs does not reach the full disk bandwidth on the Gateway. To verify that this is a problem with the disk

device driver we tried a different setup. We used a DECStation 5000/20 workstation, with a 20 Mhz MIPS R30(X)
processor and an HP C2247 1.2 GB SCSI disk drive and repeated once again the tests. This time the disk was
dedicated exclusively to the tests (system code was on a separate drive), and we optimized FFS for sequential
allocation (large maxcontig, rotdelay 0). The memory system performs at an apparent 29 MB/sec bandwidth, and
the disk delivers 2.6 MB/sec in the multi-threaded read test. As can be noted in Table 7, on this machine DosF;

does indeed reach the maximum disk read bandwidth. The SCSI disk driver used was the same as is used in the
Mach 3.0 kernel (for both Gateway and DECStations).

We do not have an explanation for why FFS is now faster than DosFs in the open test, we just did not have
enough time to investigate the anomaly. Some other tests also raise questions. For instance, why do the cached
operations run so far from memory speed. Or why i.s there such a large drop in bandwidth for the I0() KB file read
test, given that it fits in the buffer cache.

The lostone tests reveals a close competition between the two file systems. This supports the explanations we

gave before of why DosFs is so vastly superior to un-optimized FFS. It is interesting to note that, once again
contrary to intuition, DosFs wins at higher levels of parallelism. We believe FFS spreads the many files involved
across cylinder groups more widely than DosFs, resulting in more seeks.

19

Test FFS DosFs

open "Too" 0.20 us 0.23 is

open "a/.Woe" 0.26 ms 0.31 is

open loapalth 0.39 ins 0.43 ms

crtdei 0 KB 3 ms 3 Ms

crtdel 10 KB 69 ns 60 ms

crtdel 100 KB 257 ma 173 ms

read I KB 4.6 MB/s 5.1 MB/s

read 8 KB 17.5 MB/s 17.5 MB/s

read 100 KB 7.9 MB/s 8.5 MB/s

read 7 MI 2.0 MB/s 2.6 MB/s

write I KB 4.7 MB/s 4.5 MB/s

write 8 KB 16.9 MB/s 17.1 MB/s

write 100 KB 0.7 MB/s 15.2 MB/s

lotone-I 103 121(117)

lostone-2 324 279(264)

Iostone-3 563 496(471)

Andrew - Phase 1 0.5 0.5

Andrew - Phase 11 7 6

Andrew - Phase !11 5 5

Andrew - Phase IV 7 7

Andrew. Phase V 52 52

Table 7: John Ousterhout's Basic File System Tests, Mach 2.5 DECStation

The modified Andrew benchmark indicates almost no difference between DosFs and optimized FFS.

8. Related Work
Sun provides the pcfs file system in its UNIX offerings, which is a read/write Vnode based file system for

MS-DOS disks, like our DosFs. Next has a similar file system in the NeXTStep product. Recently there was a

posting on alt.sources of a "Filesystem Survival Kit" which provides the ISO and MS-DOS file systems for

System-V UNIX systems. These file systems are strictly MS-DOS specific, and offer no protection extensions. or

symlinks. They do not provide performance optimizations. and cannot be used as the root file system.

The SunOS 4.1 code lets the user change floppy disks without using umount/mount. It does this by serializing all

operations and performing consistency checks between in-memory and on-disk data. As a result, the code is less

effective at caching. NeXTStep uses the hardware to detect a change in floppy media, and auto-mounts floppies on

insertion. The use of hardware detection should enable more optimizations.

In the non-UNIX world. IBM's OS/2 offers multi-user extensions to the PC-DOS FAT-based file system which

they call extended attributes. These can support more than just protection information: they can be used for

presentation purposes for instance. Extensions by the same name are defined in the ISO 9660) standard, and serve

similar purposes.

Our optimizations for uncached accesses are similar, but unrelated to the optimizations described in 19. 71 for

Extent Based File Systems. DosFs adds to McVoy's work the ability to specify the extent size at mount time. The

20

implementation of large operations is similar to the BSD 4.4 cluster idea, the bmap() changes are almost identical.
But while our optimizations are specific to DosFs, the BSD 4.4 clusters are not file system-specific and can be used
by any file system code. We ,a! ",ir bmap() only from within DosFs code, in 4.4 we would call the DosFs bmapf)

from the file system-independent clustering code.

9. Conclusions
With DosFs we have demonstrated that it is possible to provide full UNIX semantics in a file system with simpler

data structures than traditionally used in UNIX file systems. Removing inodes provides better disk utilization, better
disk/power failure behavior, and eliminates many synchronous write operations in the handling of meta-data. The

only cost is a more cumbersome and slow implementation of hard file links.

In the implementation of DosFs we have used a new block allocation algorithm, derived from MS-DOS [Il. The
algorithm obtains both contiguous allocation of disk blocks and compact disk utilization. DosFs is both faster than
4.3 BSD FFS and more efficient in disk space. The performance gains are equivalent to Extent Based allocation, but

without the high fragmentation costs. DosFs allocates small blocks, but close to each other. In this way it can take
advantage of disk-level read and write caches, and obtains a three fold performance improvement over FFS.
Moreover, DosFs takes advantage of the contiguous block allocation to perform large size 1/O operations and
obtains a five fold speedup over FFS.

An important factor in the DosFs performance profile is the effect of seek times, or more precisely the time spent
by the disk to service a given 1/O request. Today's disks use a variety of multi-track caching strategies that make
the old FFS model [81 unrealistic. Unfortunately, the service time has become very difficult to model. In our SCSI

analyzer traces we observed large variations in service times, anywhere from 3 milliseconds to 45 milliseconds. on

the same disk, and not at all a simple function of the distance between disk blocks. When the disk drive uses a write
cache, not only the distance, but the type of access and previous history affects the service time. Finally. the zoning
techniques used in recent drives add another variable to the already complicated model. All of these factors

contribute to make DosFs' performance better than FFS, even in cases where we did not expect it.

The only deficiencies in the MS-DOS permanent data structures are in handling large files and large disks. Large

files create two problems, both related to the choice of a linked list to represent the clusters of a file. In the first
place, is it is impossible to represent files with holes, all clusters must be allocated by DosFs and the "holes" truly
must be zeroed for security reasons. The programmer does not have to issues the intervening writes, but there is no
way to indicate in a FAT entry that the block ought to be zeroed when accessed. FFS uses a tree as its data

structure, and can easily mark the holes as missing blocks, to be zeroed on access. But files with holes are not
commonplace, and a copy of the file will fill the holes anyway. The second problem is we must traverse the whole
list to get to the last cluster of a file. We have argued that it is feasible to cache the entire FAT in memory so that
the cost is just in memory accesses, and much less than the case where FFS must actually fetch an indirect block

from disk.

Large disks create the problem of representing cluster numbers, which are currently 16 bit integers in the
permanent data structures. It is possible to use a new FAT type. with 32 bit entries. It is not possible to
transparently change the format of the directory entries to hold a 32 bit starting cluster instead of the 16 bit one. A
temporary solution can be to grow the cluster size. but this can only gain a few more bits, if the cluster size becomes

32 KB the fragmentation (most MS-DOS files are small) is unacceptable. If we ignore MS-DOS compatibility this

problem disappears.

We implemented DosFs inside the Mach 3.0 UX UNIX server. The file system code is the same as the

21

monolithic Mach 2.5 kernel and uses Sun's Vnode layer. We started from Pace Willisson's ISO file system code
which is based on a different Vnode layer, therefore we know that retrofitting the changes back into a BSD 4.4
environment is not difficult. Given the similarities in the bnmap() function, it would be interesting to port DosFs to a
4.4 BSD system and re-evaluate the performance profiles.

9.1. Status and Acknowledgements
The code described in this paper has been integrated in the CMU sources (releases UX42/43). and is available for

general use at CMU and elsewhere. Mike Dryfoos, Mahadev Satyanarayanan, Robert Baron, Daniel Stodolsky,
Howard Gobioff and Peter Dinda gave us many helpful comments on earlier versions of this paper. Thanks for her
patience, and good luck to Kelly.

23

References
[1] Ray Duncan.

Advanced MSDOS Programming.
Microsoft Press, 1986.

[2] David Golub, Randall Dean, Alessandro Forin, Richard Rashid.
Unix as an Application Program.
In Proceedings of the USENIX Summer Conference, pages 87-95. USENIX. Anaheim, CA, June, 1990.

[3] David Golub and Richard Draves.
Moving the Default Memory Manager Out of the Mach Kernel.
In Proceedings of the USENIX Mach Symposiunm. pages 177-188. USENIX. Monterey, CA. November,

1991.

(41 Howard, J. et al.
Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems 6(l), February, 1988.

(5] ISO 9660: 1988 (E).
Information processing - Volume and file structure of CD-ROM for information interchange.
International Organization for Standardization, 1988.

[6] Kleiman, S. R.
Vnodes: An Architecture for Multiple File System Types in Sun UNIX.
In Proceedings of the Summer 1986 USENIX Conference. pages 238-247. June, 1986.

[71 Margo Seltzer, Keith Bostic. Kirk McKusick. Carl Staelin.
An Implementation of a Log-Structured File System for Unix.
In Proceedings of the USENIX Winter Conference, pages 201-220. USENIX, San Diego. CA. January,

1993.

181 Kirk McKusick. William Joy, Sam Leftler, R. Fabry.
A Fast File System for UNIX.
ACM Transactions on Computer Systems : 181-197. August. 1984.

[91 Larry McVoy and S. Kleiman.
Extent-like Performance from a Unix File System.
In Proceedings of the USENIX Winter Conference, pages 33-44. USENIX. Dallas. TX. January. 1991.

[101 John Ousterhout, et al.
A Trace-Driven Analysis of the UNIX 4.2 BSD File System.
In Proceedings of the Tenth Symposium on Operating Systems Principles, pages 96-108. December. 1985.

[111 John Ousterhout.
Why Aren't Operating Systems Getting Faster As Fast As Hardware'?
In Proceedings of the Summer 1990 USENIX Conference. June. 1990.

[121 Richard Rashid, Gerald Malan. David Golub. Robert Baron.
DOS as a Mach 3.0 Application.
In Proceedings of the USENIX Mach Symposium. pages 27-40. USENIX. Monterey. CA. November. 1991.

[131 Rock Ridge Interchange Protocol, Version I.
An ISO 9660:1988 compliant approach to providing adequate CD-ROM support for Posix file systemn

semantics.
Rock Ridge Technical Group. 199 1.

[141 Satyanarayanan. M.
Integrating Security in a Large Distributed System.
ACM Transactions on Computer Systems 7(3). August, 1989.

