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~ Abstract

Probabilistic planning methods can have various objectives: usually they either max-
imize the probability of goal achievement or minimize the expected execution cost
of the plan, and therefore assume that the agent that executes the plan has a risk-
neutral attitude. Although there are many situations where risk-sensitive behavior is
more appropriate, researchers have largely ignored the question how to incorporate
risk-sensitive attitudes into their planning mechanisms. Utility theory shows that it is
rational to maximize expected utility, given that the agent accepts a few simple axioms
and has unlimited planning resources available. Thus, researchers might helieve that
one could allow for risk-sensitive attitudes by replacing all costs with their respective
utilities (for an appropriate utility function). We show that this is usually not the case
and, moreover, that — in general — the best action in a state can depend on the total
cost that the agent has already accumulated (that is, the Markov property does not
need to hold). However, we demonstrate how one can transform planning problems
for risk-sensitive agents into equivalent ones for risk-neutral agents provided that ex-
ponential utility functions are used. The transformed planning problems can then be
solved with probabilistic Al planning methods or, alternatively, dynamic programming
methods. If the agent is risk-seeking, then one can use any planning method on the
transformed planning problem that either minimizes (or satisfices) the expected execu-
tion cost or, alternatively, maximizes (or satisfices) the probability of goal achievement.
The better a plan is for the transformed planning problem, the better it is for the origi-
nal planning problem as well. Thus, one can extend the functionality of these planners
to risk-sensitive planning. — To demonstrate our algorithms, we use a probabilistic
planning framework (“probabilistic decision graphs™) that can easily be mapped into
Markov decision problems. It allows one to describe probabilistic effects of actions. ac-
tions with different costs (resource consumption), and goal states with different. rewards
(goodness). We then apply probabilistic decision graphs to finding optimal plans for
risk-sensitive agents in a stochastic blocks-world domain and a stochastic path-planning
domain.




1 Introduction

In recent years, numerous planning methods have been developed that are able to
deal with stochastic domains.! Probabilistic planning methods are important, because
actions in the real world usually do not have deterministic effects. This uncertainty
can be an inherent part of the domain, but is often due to limitations of the planner
or the agent that executes the plan: the planner might have an insufficient model of
the domain, or the agent might not be able to execute its actions with the required
precision.

Not all probabilistic planning methods have the same planning objective: different
planners consider different plans to be optimal for the same planning problem. In this
paper, we concentrate on three possible planning objectives: to maximize the proba-
bility of goal achievement, to minimize the expected execution cost, and to maximize
the expected utility of plan execution.

In some domains, it is impossible to determine probabilistic plans that are guaranteed
to achieve the given goal. When planning in such domains, one is usually satisfied
with finding plans that succeed with a given probability, see [Bresina and Drummond.
1990] and [Kushmerick et al., 1993]. Even if a plan exists that achieves a goal with
probability one, time might not permit to find it. Then, planners often use an any-time
approach: they increase the probability of goal achievement over time by incrementally
extending the plan envelope.

In other domains, however, it is easy to construct plans that always succeed for sure
(at least, in the limit). Then, one needs a criterion for choosing among these plans.
Such a metric is for example the total execution cost of the plans?: One quantifies
the “resource consumption” (for example, time, energy. or money) of an action with a
single real number that depends only on the action, the state it is executed in. and the
resulting state. Then, the total execution cost is defined to be the sum of the resource
consumption costs of all actions executed from the time at which the agent is started
in the start state until it stops in a goal state (given that it obeys the plan).

Since the total execution cost of probabilistic plans can vary from plan execution to
plan execution, almost all planning methods reported in the literature use the erpected
total execution cost as ranking criterion: Qut of all plans that guarantee to achieve
the given goal, they choose the one for execution that minimizes the expected total
execution cost (when optimizing) or, at least, one whose expected total execution cost
is smaller than a given number (when satisficing). Thus, they assume that the agent
that executes the plan has a risk-neutral attitude.

Examples of probabilistic planning methods include [Smith, 1988], [Bresina and Drummond, 1990).
[Christiansen and Goldberg, 1990], [llansson ¢t al.. 1990]. [Koenig, 1991], [Dean ot al., 1993], [Kush-
merick el al., 1993), and many others.

2An example is travel planning. When planning how 1o get to a given conference, one can casily
devise plans that are always successful (at least under normal circumstances). Possible evaluation
metrics for these plans include travel cost or travel time.




However, people are usually not risk-neutral for non-repetitive planning problems.
Whereas a risk-neutral agent does not care about the variance, a risk-seeking agent
(“gambler”) is willing to accept a plan with a larger expected total execution cost if
the uncertainty is increased and vice versa for a risk-averse agent (“insurance holder”):
If a plan is executed only once (or a small number of times), then — among all plans
with the same expected total execution cost — the larger the variance of the total
execution cost, the larger the chance to do much better than average. Of course, the
chance to do much worse rises as well.

Imagine, for example, that your task is to design a robot for the annual AAAI robot
competition, where it has to complete a given task (for example, “find the coffee pot™)
in as short a time as possible. You want the robot to win the competition, but —
in case it loses — do not care whether it makes second or last place. You know that
your robot is not much faster than your competitors’ robots, maybe even a bit slower,
but cannot assess the capabilities of the other robots in enough detail to use them for
determining the utilities of the various task completion times of your robot. In this
case, you probably want your robot to take chances, and thus a risk-seeking attitude
should be built into the robot’s planning mechanism.

On the other hand, there are also many situations where people want to avoid risk.
The plans produced by planning methods should reflect the risk-attitudes of the people
that depend on them. However, researchers have largely ignored the question of how to
incorporate risk-sensitive attitudes into their planning mechanisms. In fact, the term
“decision-theoretic planning” is often incorrectly equated with optimal (meta-)planning
for a risk-neutral agent. '

It is possible to achieve a risk-sensitive attitude by ranking plans not according to their
expected total execution costs, but according to their expected total execution costs
plus or minus a fraction of the variances [Filar ¢t al., 1989] [Karakoulas. 1993]. or by
searching for plans whose total execution costs are optimal in the best or worst case
(“nature acts like a friend or enemy”) [Witsenhausen, 1966] [Heger. 1992, see also
[Moore and Atkeson, 1993a). However, utility theory [von Neumann and Morgenstern.
1947) -— a subfield of decision theory — provides a normative framework for making
decisions according to a given risk attitude, provided that the agent accepts a few simple
axioms and has unlimited planning resources available. [Its application to planning
problems has been studied by [Etzioni, 1991], [Russell and Wefald. 1991], [Haddawy
and Hanks, 1992], [Wellman and Doyle, 1992], [GGoodwin, 1992], and others. Therelore.
we would like to stay within this framework.

The utility-theoretic approach encompasses the other two approaches: Maximizing the
probability of goal achievement is rational according to utility theory il the agent does
not incur action costs. but receives total reward r,, lor achieving a goal state and
total reward yon—gou Otherwise, where v, _ o < Fyear. Minimizing the expected total
execntion cost is rational according to utility theory if the agent is risk-neutral,

In the following, we will first review the basic concepts ol utility theory and then
describe a planning framework (“probabilistic decision graphs™) that can casily be
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mapped into Markov decision problems and of which cost-annotated decision trees
(the kind that are used in utility theory) are a special case. It allows one to describe
probabilistic effects of actions, actions with different costs (resource consumption), and
goal states with different rewards (goodness). Next, we will show that replacing all
costs and rewards with their respective utilities, but leaving the planning mechanism
unchanged, usually leads to erroneous results and, moreover, that — in general —
the best action to execute in a state can depend on the total cost that the agent has
already accumulated when deciding on the action. However, for utility functions with
a certain property, we will demonstrate how planning problems for risk-sensitive agents
can be transformed into equivalent planning problems for risk-neutral agents, that can
then be solved with dynamic programming methods or, alternatively, probabilistic Al
planning methods. The better a plan is for the transformed, risk-neutral planning
problem, the better it is for the original, risk-sensitive planning problem as well. We
will show that this approach can, at least for risk-seeking agents. be implemented with
any Al planning method that minimizes (or satisfices) the expected total execution
cost. The same statement holds, perhaps surprisingly, for all planners that maximize
(or satisfice) the probability of goal achievement. Finally, we will use hoth a blocks-
world and a path-planning example to illustrate our ideas and show how the optimal
plan depends on the degree of risk-sensitivity of the agent.

The purpose of this paper is to motivate the importance of risk-sensitive planning and
introduce our approach to it that builds on previous work by [Howard and Mathe-
son, 1972 in the context of Markov decision theory. It contains a summary of our
results, but describes the ideas only informally. Mathematical derivations, more pre-
cise statements, and additional qualifications are given in [Koenig and Simmons. 1994].
Although our discussion can easily be applied to meta-planning problems if planning
resources are limited, that is, the theory of “limited rationality” [Horvitz, 1988] [Rus-
sell and Wefald, 1991] (for example, making decisions when to stop refining a plan and
start to execute it), we assume throughout this paper for simplicity that the agent has
unlimited planning resources available.

2 Utility Theory

In this section, we will briefly review some of the concepts of utility theory — a theory
that explains why people do not always minimize expected costs or maximize expected
rewards. Daniel Bernoulli studied around 1778 the lollowing scenario. known as the
“St. Petershurg paradox”:?

You can participate in a lottery at most once. The lott rv involves
the snuccessive tossing ol a fair coin until heads appears for the lirst time.
If heads appears on the ith toss, you win 2' dollars. What is the dollar

3From here on, we use the terms “rewards” and “costs” as follows: Rewards can be positive or
negative values, but costs are always negative values.




amount ¢y, that you are willing to pay at most for a ticket that allows
you to participate in this lottery?

If people who own w dollars initially (“their wealth”), choose not to participate in the
lottery, then they maintain their assets. On the other hand, if they buy the ticket for ¢
dollars and then play the lottery, they own 2! +w—c dollars afterwards with probability
1/2¢. Thus, the expected reward of the lottery is 2, 2%=¢ = 0o dollars afterwards.
No matter how large the price of the ticket, the expected reward of participating in the
lottery is larger than the expected reward of abstaining. Since we assume in this paper
that people prefer a larger reward over a smaller one, they should be willing to wager
all their assets if they were indeed maximizing expected rewards. In reality, however,
most people offer only around ten dollars for the ticket.

Bernoulli suggested that people do not average over rewards, but over the pleasure
(“utility”) that the rewards provide. For every risk-attitude, there exists a strictly
monotonically increasing utility function that transforms rewards c into real-valued
utilities u(c) such that it is rational to maximize expected utility, given that the decision
maker accepts a few simple axioms and has unlimited planning resources available [von
Neumann and Morgenstern, 1947].

A lottery is recursively defined to be either a reward that is received for sure (that
is, with probability one) or a probability distribution over lotteries. If L is a lottery,
then we use u[L] to denote the expected utility of the lottery (or, in later sections, the
expected utility of a state).? u~!(u[L]) is called the certainty (monetary) equivalent of
lottery L. Maximizing expected utility is therefore equivalent to maximizing certainty
equivalents.

The utility of not participating in the St. Petersburg lottery is w(w). where u is
the utility function of the decision maker. Participating in the lottery results in the
expected utility 372, ﬂz'—;—,’”;c)- Thus, people should wager at most c¢pq, dollars, where
u(w) = 3%, 1(2""",1,4‘5)- The following table shows ¢4 depending on w for people
with utility function u(c) = log, c (for ¢ > 0):

W | Cmag
1.00 | 2.832
10.00 | 1.97

100.00 | 7.79
1000.00 | 10.95
10000.00 { 11.24
100000.00 | 17.55

These numbers appear to be in the right range. although Bernonlli did not elaim that
people have this particular utility function.

‘Note the subtle difference: u() maps costs into utilitics, and uf] teansforms lotteries (or states)
into expected utilities. Il lottery I, contains reward ¢; with probability p;, then u[L] = 3. pia(e;).
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Figure 1: A Concave Utility Function

People are not willing to pay more for the ticket, because they are risk-averse. To them,
losing parts of their stake has more weight than winning a fortune. More formally,
people are called risk-averse (risk-seeking, risk-neutral) if and only if their expected
utility of every non-deterministic lottery L is smaller than (larger than, equal to) their
utility of the expected reward E[L] of the same lottery. (People who are not risk-neutral
are called risk-sensitive.) If risk-averse people have to decide between participating in
an arbitrary non-deterministic lottery L and receiving its expected reward E[L] for
sure, they would prefer the latter option. In order for them to be indifferent between
the two alternatives, the expected reward of the first lottery must be larger than the
value of the reward of the second lottery. In other words, for risk-averse people. the
certainty equivalent CME|[L] of every non-deterministic lottery L is smaller than its
expected reward E[L].

People are risk-averse (risk-seeking, risk-neutral) if and only if their utility functions
are concave (convex, linear). Figure 1 illustrates, for example, why risk-averse people
have concave utility functions. It shows for a lottery L with two rewards ¢; (won with
probability 1 — p) and c; (won with probability p) that indeed «[L] < «(F[L]) and
CME[L) < E[L].

Since utility functions encode the individual risk-prelerences of people, they must be
elicited from the decision maker on an individual basis. Since utility functions are
determined only up to arbitrary strictly positively lincar translormations. one can
establish an arbitrary scale by fixing the ntilities of two rewards, say the utility of
the smallest possible reward ¢; and the one ol the largest possible reward ;. Assume
u{c;) = 0 and u(cz) = 1. To determine the utility of any reward ¢, one asks the decision
maker for the probability p that makes him/her indifferent between the following two
lotteries: Either s/he receives reward ¢ —w for sure, or s/he receives reward ¢ — w0 with
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probability 1 — p and reward c; — w with probability p, where w is the initial wealth of
the person. Then, u(c) = u(c— w+ w) = (1 = plu(c; — w + w) + pu(c; — w + w) = p.

3 The Planning Framework

The following representation of probabilistic planning problems was used in [Koenig,
1991). A similar framework has recently been used by [Dean et al., 1993] and is com-
monly used for table-based reinforcement learning. Although we use this particular
planning framework here, our method for integrating risk-sensitivity into planning ap-
plies to all planning frameworks that associate “action costs” with action-outcome pairs
such that the execution of a plan can be evaluated according to the sum of the “action
costs” of the executed actions and their outcomes (“time-additive value functions™). It
can, for example, be used in conjunction with Smith’s planner [Smith, 1988].

Planning is done in a state space. S is its finite set of states, so € S the start state, and
G C S a set of goal states. A plan determines at every point in time which action the
(artificial) agent has to execute in its current state. In a goal state s, the agent receives
a (positive or negative) one-time reward (“goal reward”) r[s] and then has to terminate.
The goal rewards reflect that different goal states can be of different value to the agent.
However, to keep the following discussion simple, we will use only planning examples
for which all goal rewards are zero. In a non-goal state s, the agent can choose an
action a from a finite set of actions A(s). Nature then determines the outcome of the
action with a coin flip: with transition probability p®[s, s'], the agent incurs a negative
reward® (“action cost”) c¢*[s,s’] < 0 and is in successor state s’. Thus, we assume in
this paper that the outcomes of all action executions are mutually independent given
the current state of the agent (Markov property). The action costs reflect the prices
of the consumed resources, for example time needed or effort spent. We assume that
the values of all parameters are completely known and do not change over time. We
do not assume, however, that the planner uses a planning approach that operates in
the state space (instead of, say, the space of partial plans).

For a given plan, we define the probability of goal achievement of state s as the proba-
bility with which the agent eventually reaches a goal state if it is started in s and obeys
the plan. If this probability equals one, we say that the plan solves s. A plan that
solves the start state is called admissible. In the risk-neutral case, a plan is evaluated
according to the expected total reward of the start state. The expected total reward
v[s] (“net profit”) of state s for a given plan is the cxpected sum of the reward of the
goal state (measured in some unit) and the total cost of the actions (measured in the
same unit) that are executed from the time at which the agent is started in s until it
stops in a goal state (given that it obeys the plan). Similarly. the expected total utility

The assumption ¢*[s, 8] < 0 can be weakened. We adopt it thronghout this paper for two reasons:
First, it is consistent with goal oriented planning problems, sinee one has to put cffort imto achieving
a goal. The goal itself is the reward. Second, it is a simple and sufficient condition for being able to
guarantee that an agent that maximizes expected total reward shonld indeed try to reach a goal state.
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u[s] of state s is the expected utility of the sum of the goal reward and the total cost
of the executed actions.

The planning framework described above is very general. For example, one can easily
represent goal states in which the agent does not have to stop (that is, that the agent
" can leave in order to reach a different goal state that has a larger goal reward). This
is necessary if one wants unsolved states to have an expected total execution cost that
is finite instead of minus infinity. One could, for example, allow the agent to stop in
any state, but penalize it for stopping in a non-goal state. (In this case, all non-goal
states must be converted to goal states that have a very small goal reward and can be
left again.)

For risk-neutral agents, the planning framework is isomorphic to Markov decision prob-
lems [Mine and Osaki, 1970}: Assume that a planning problem is given. We distinguish
the parameters of the corresponding Markov decision problem by adding a hat. For
example, we use S for the set of states of the Markov decision problem. Then, the
planning problem corresponds to the following Markov decision problem, where § and
a are two arbitrary symbols with 3 € S and @ € U,es\g A(s). Every state s of the
Markov decision problem that corresponds to a goal state of the planning problem
has exactly one applicable action, namely a. The execution of this action causes the
Markov process to receive reward r{s] and change state to state 3. Action @ is the only
action applicable in state $. It has action cost zero and leads deterministically back
to 3. Once the Markov decision process has reached state 3, it can no longer leave
the state and its expected total future reward is zero. To summarize, when the agent
reaches a goal state s of the planning problem, it receives total future reward r[s]. This
corresponds to the Markov process reaching state s of the Markov decision problem,
in which case its total future reward is rs] as well.

§ = SU{s)
. A(s) ifseS\G 3
= A . o $€S
A(s) { (@) ifs € GU {4) for all s €
p*ls,s’] ifse€S\Gand s €S
o )0 ifses\Gand =3 ., . -
Pl =1y s € GU{a)and s gy Prallss’€Sandae )
1 ifseGu{sland & =38
s, 8] ifseS\Gands €S .
&[s, 8] = § rls] ifs€ (and &' =3 for all .5 € 8 and a € A(s)
0 ifs=S8and &' =4

Although the planning framework is isomorphic to Markov decision problems and can
therefore be described with a STRIPS-like notation [Koenig, 1991]%, we nse an casier-to-
depict representation here (“probabilistic decision graphs™) that resembles the kind of

fFor the original STRIPS-notation, that applics only to deterministic domains, see [Fikes and
Nilsson, 1971].

-]




non-goal state

goal state

actions !

outcomes
transition probabilities / action costs

Figure 2: Building Blocks of Probabilistic Decision Graphs

decision trees that are used in utility theory. Its building blocks are shown in Figure 2.
Every state corresponds to a (large) circle. The large circle of a non-goal state s
contains a decision tree that consists of a decision node (square) foliowed by chance
nodes (small circles), one for every a € A(s). For every outcome of an action, one
specifies its transition probability and action cost. The circle of a goal state contains
a value node (diamond) for the goal reward.

To represent a planning problem, these building blocks have to be connected so that
there are no dangling outcome arrows. In addition, the start state is marked with an
incoming arrow that has no source state and is labeled “start.” As an illustration. con-
sider a simple planning problem in a blocks-world with three indistinguishable blocks.
In every blocks-world state, one can move a block that has a clear top onto either the
table or a different block with a clear top. Moving a block takes one minute. With
probability 0.1, the moved block ends up at its intended destination. With probability
0.9, however, the gripper loses the block and it ends up directly on the table. (Thus.
moving a block to the table always succeeds.) In such a probabilistic blocks-world.
it is easy to determine at least one admissible plan for every solvable planning prob-
lem: First, unstack ¢very block. (Remember that moving a block to the table always
succeeds.) Then, stack blocks as needed for the goal configuration. (If a stacking ac-
tion fails, repeat it until it finally succeeds.) Figure 3 shows the representation ol the
planning problem to unstack fully a stack of three blocks.” Figure 1 contains one par-
ticular state-action mapping (“plan”™) that solves the planning problem. A state-action
mapping (“stationary, deterministic policy™) specifies for every state the action that
the agent has to exeente when it is in that state. For Markov deeision problems, one
can restrict plans to state-action mappings without losing optimality. Figure | also

"The symbols “X” and “Y” are introduced only to enable us to express the actions. They do net
mark specific blocks and can therefore be used to denote different. blocks in different states.

8



0.90/-1.00 0.10/-1.00

0.10/-1.00

nrn

goal reward: 0

Figure 3: A Probabilistic Decision Graph (“Planning Problem™)

introduces the shorthand notation that we will use in this paper to represent plans.

Note that probabilistic decision graphs can have cycles: cycles do not imply that a
decision depends on itself, but that a decision depends on the same decision made at
an earlier point in time. In the following, we will distinguish two simplifications of this
planning framework, namely acyclic probabilistic decision graphs and the even simpler
acyclic probabilistic decision graphs without shared subtrees (“cost-annotated decision
trees”). The last two varieties are commonly used in decision theory. For example.
Figure 5 represents the planning problem 1o decide between *buyving a ticket for the
St. Petersburg lottery for ¢ dollars” or “abstaining from the lottery™ as an acvelie
probabilistic decision graph without shared subtrees and without action costs (that is.
all action costs are zero).?

®Note that the decision tree has — in contrast to the planning framework outlined above  an
action with an infinite number of outeomes.

Y




move X o table
1.00/ -

move X]to table
1.00/

nnm

goal reward: 0

Figure 4: A State-Action Mapping (*Plan™)

4 The Problem

We suspect that researchers have largely ignored the question of how to incorporate
risk-sensitive attitudes into their planning mechanisms, because they assume that by
replacing all costs and rewards with their respective utilities (for an appropriate util-
ity function) one can achieve risk-sensitive attitudes without changing their planning
mechanisms. In the following, we will use acyclic probabilistic decision graphs to
demonstrate that this is not necessarily the case, but first we will review how to use
dynamic programming techniques to determine optimal plans for risk-neutral agents.

4.1 Planning for Risk-Neutral Agents

A risk-nentral agent has to solve planning task PT1: given a complete specilication
of the planning problem, find a plan for which the start state has the largest expected
total reward.

10



risk-neutral agent w 2+4w-¢ d+w-¢ 8+w~c Q+w-¢
risk-sensitive agent u(w) u(Z+w-c) u(d+w~-¢) u(8+w-¢) u(Z +w-c)

Figure 5: St. Petersburg Paradox

First, we would like to point out that every planning task PT1 can be transformed into
an equivalent planning task that has only one goal state, which has goal reward zero.
Planning task PT1 is equivalent to the following planning task PT1’ for a risk-neutral
agent:

Introduce a new goal state with goal reward zero. and replace every
(old) goal state s € (G with a non-goal state in which only one action
can be executed, that leads with probability one and action cost r[s} —
maxyeg r[s’]—1 < 0 to the new goal state. Otherwise, the planning problem
remains unchanged.

Planning task PT1’ satisfies all requirements of our planning [ramework. It is equivalent
to planning task PT1 in the following sense: the better a plan is for planning task
PT1, the better it is for planning task PT1’ as well. and vice versa. This is the case.
because the expected total reward of every admissible plan for planning task PT1 is
maxyei r[s']+ 1 lower than the expected total reward of the same plan for planning task
PT1. An inadmissible plan has expected total reward minus infinity for both planning
tasks. {Note that a plan is either admissible for both planning tasks or inadmissible
for both of them.)

An optimal statc-action mapping for planning task P'T'l can he determined in polyno-
mial time with dynamic programming techniques (“Markov(ian) decision algorithims™).
As an example for how to solve a given planning task PT1 for acyelic probabilistic de-
cision graphs consider the (only partly specified) example shown in Figure 6. To solve

1




start

050/ ... 0.50/-0.10

0507/ ...
0.50/-1.00
" shared subtree
" 1.00/-0.48 0.50/-0.10 0.50/-1.00
0.00 0.00 0.00

“...” means: irrelevant for the example

Figure 6: A Planning Problem with a Shared Subtree

this cost-annotated decision tree, we could transform it. First, we propagate the action
costs to the value nodes. This amounts to duplicating shared subtrees, since every path
from the start state to a goal state needs to have its own value node. The resulting
decision tree can then be solved in time linear in its size, as shown in Figure 7: the
expected total reward of a value node is the goal reward, the expected total reward
of a chance node is the average over the expected total rewards of its snccessor nodes
weighted with the transition probabilitics, and the expected total reward of a decision
node is the maximum of the expected total rewards of its successor nodes. The action
that achieves the maximum is the optimal decision for the decision node. The expected
total reward v{s] ol a (non-goal) state s equals the expected total reward of the decision
node that it contains, and the optimal action a[s] for the state is the action that is
optimal of its decision node. Actions that are sub-optimal are “erossed ont”™ with two
horizontal lines in the figures.

The transformation outlined above can be done in linear time if no subtrees are sharved.
However, if subtrees are shared, it is expensive, since the number of paths - and there-
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0.50/0.00

-0.58 = -0.10 + (~0.48) +0.00 etc.

=0.20 = - 0.10 + (-0.10) +0.00

Figure 7: Solution for a Risk-Neutral Agent |

fore the size of the transformed decision tree — can bhe exponential in the number of
states of the original tree. Fortunately, it is well known that the following dynamic
programming technique (“[averaging-out-and-|folding-back™) solves acyclic probabilis-
tic decision graphs for risk-neutral agents on the original tree in linear time, that is,
without duplicating shared subtrees, as shown in Figure 8. Dynamic programming
algorithms, such as this one, can be used to solve planning task PT1, because the
Markov property holds for all states: the expected total reward v[s] of every state (and
thus the optimal action e[s] for the state) is independent of how the agent reached the
state.

{ r[s] for s € (/

ol+] MaXaga(s) Laes ' [% ¥[34 + 0[+]) otherwise

als] = argmax,ea O P SN[+ 0[]) for s € S\ G

seS
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-0.48 = max(-0.48.-0.55)

-0.5§ = (- 0.10 + 0.00) +0.50 (- 1.00 + 0.00)

-0.48 = 1.00(- 048 +0.00) {-048 -0.55 9
1.00/-048 0.50/-0.10 0.50/-1.00
0.00 0.00 0.00

Figure 8: Solution for a Risk-Neutral Agent II

Thus, one evaluates every subtree only once and the run-time of the algorithm is linear
in the size of the original decision tree.

4.2 Planning for Risk-Sensitive Agents

A risk-sensitive agent has to solve planning task PT2: given a utility function and
a complete specification of the planning problem, find a plan for which the start state
has the largest expected total utility.” As outlined earlier, planning task PT2 can
he solved for probabilistic decision graphs without action costs by first replacing all
goal rewards with their respective utilities and then using any planning method for
risk-neutral agents. This is illustrated for the St. Petershurg paradox in Figare 5.

In reality, however, the probabilistic decision graphs of planning task P'I'2 do have

*The expected total utility uls] of a state s for a given plan is the expected utility of the total
reward (that is, goal reward plus action costs) received when starting in s and exeenting the plan. We
have to use u[s] instead of u(s), since starting in s corresponds Lo participating in a lottery.
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0.50/0.00 0.50/0.00

~0.76 = -/~ (-0.58) = u(-0.58) 1 etc.
045 = - /-(-020) ) = u(~0.20)

Figure 9: Solution for a Risk-Sensitive Agent

action costs. Similarly to how we proceeded earlier for risk-neutral agents, we could
first propagate the action costs to the value nodes (which involves duplicating shared
subtrees if they exist). Next, all rewards at the value nodes are replaced with their
respective utilities. Finally, folding-back is used to determine an optimal plan. Re-
member that this method has an exponential run-time in the worst case (and is not
directly applicable to cyclic probabilistic decision graphs).'® Consider for example the
planning problem for a risk-neutral agent again that was shown in I'igure 7. The cor-
responding planning task for a risk-seeking agent with utility function u(¢) = —/=¢
(for ¢ £ 0) is shown in Figure 9.

It is not optimal to simply replace all costs and rewards with their respective utilities,

""For acyclic probabilistic decision geaphs and some ntility functions one can try to do mnch better
by remembering for every state the functional dependency between the atility of the state and the
wealth of the agent. However, it is important to keep in mind that a probabilistic planning method
must bhe able to cope with cyclic probabilistic decision graphs as well, sinee -~ for many planning
problems — cither the agent cannot avoid to repeat some of the states or it is not optimal to do so.

—
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0.50 / u(-0.10) 0.50/...
0.50 / u(-1.00

Figure 10: Transformation [ {does not work)

as shown in Figure 10, and then use folding-back on the resulting tree, because in
general u(c; + ¢2) # u(c1) + u(c) for two rewards ¢, and c; (that is, the value function
is no longer time-additive). In fact, dynamic programming methods cannot be used
any longer in any way without considering the wealth of the agent, because the Markov
property does not necessarily hold for risk-sensitive agents [Railfa. 1968].

Consider again the planning problem that was stated in Figure 6. The shared subtree
represents the choice between a deterministic lottery A (reward -0.18 for sure) and
a non-deterministic lottery BB (rewards -0.10 and -1.00 with equal probability). As
demonstrated in Figure 9 for u(e) = —/=c. the agent should choose lottery B il it has
wealth -0.10 when deciding between the two lotteries. However, if its wealth is -1.00,
it should prefer lottery AL This can be explained as {ollows: The agent is risk-secking,
since its ntility function —/=¢ is convex, but the convexity decreases the more negative
c gets.'! Remember that the wealth of the agent has to be added to all rewards of a

"For a quantification of this statement, see for example [Pratt, 1964].
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lottery. For example, if the agent has acquired wealth -0.10, then lottery B becomes
“rewards -0.20 and -1.10 with equal probability.” If the agent has already accumulated
cost -1.0, then lottery B becomes “rewards -1.10 and -2.00 with equal probability.”
Thus, the more negative the wealth of an agent is, the more negative the total rewards
become and the less risk-seeking the agent is. Since the agent accumulates more and
more action costs over time, it becomes less and less risk-seeking.

Since the optimal action for a state depends on the wealth of the agent, the Markov
property does not hold and dynamic programming methods cannot be used on the
original probabilistic decision graph without taking the “wealth™ of the agent into
account, which makes planning very inefficient. This problem exists only for risk-
sensitive planning, but not for risk-neutral planning.

One can circumvent this problem with planning methods that have a limited look-
ahead, say n. The planner of [Kanazawa and Dean, 1989], for example, determines
the plan that generates the largest expected total utility in the first n steps. executes
the first action of the plan, and repeats. Such planning methods still duplicate shared
subtrees (since they “unroll” the underlying Markov decision problem). but one can
now control the amount of work required for one iteration by varying the look-ahead
n. Since these and related heuristic planning methods rely on hill-climbing, they suffer
from the limited horizon problem and their success depends critically on the structure
of the planning task.

5 A Solution

In the following, we will outline one possible way for incorporating risk-sensitive at-
titudes into arbitrary planning methods. This is done by transforming planning task
PT2 into a planning task PT3, which can then bhe solved with any standard (that is.
risk-neutral) planning method. The resulting, optimal plan for planning task PT3 is
optimal for the risk-sensitive planning task PT2 as well. The key to accomplishing this
task is to utilize utility functions that maintain the Markov property.

Consider utility functions with the following property (called “constant local risk aver-
sion” !? [Pratt. 1964] or “delta property” [Howard and Matheson. 1972]): il all rewards
of an arbitrary lottery are increased by an arbitrary amount. then the certainty equiv-
alent of the lottery is increased by this amount as well. The only utility functions
with this property are the identity function. convex exponential functions u(e) = +4¢
for 4 > . concave exponential functions u(c¢) = —4" for 0 < 5 < |, and their strictly
positively linear transformations [Watson and Buede. 1987]. Since these utility fune-
tions are paramecterized with a parameter 4, one can express a whole spectrum of
risk-sensitivity ranging from being strongly risk-averse over being risk-nentral 1o heing
strongly risk-seeking. The larger v, the more risk-seeking the agent is. and vice versa.

n''ge)

iy Which is called “local risk aversion.”

12«Constant local risk aversion™ means that the quantity

does not depend on the reward ¢.




These utility functions are exactly the ones that maintain the Markov property [Howard
and Matheson, 1972): if the agent executes an action in its current state and behaves
optimally afterwards, then it faces a lottery. There is one lottery for every action that
the agent can execute in its current state. The lottery with the largest expected utility
or, equivalently, the largest certainty equivalent identifies the optimal action. Before
determining the certainty equivalents, however, one has to add the wealth of the agent
to all (goal) rewards of every lottery. This increases the certainty equivalent of every
lottery by the wealth of the agent, since the utility function has the delta property.
Thus, when comparing lotteries, one can ignore the wealth of the agent.

Howard and Matheson [Howard and Matheson, 1972 apply utility functions with the
delta property to Markov decision problems with finite and infinite time horizons. In
the later case, they assume a non-goal oriented task, and every state-action mapping
has to determine an irreducible (that is, strongly connected) Markov chain. As shown
in [Koenig and Simmons, 1994], their analysis can be applied to non-goal oriented
planning and reinforcement learning tasks (“behaving in the world”) if the agent is
risk-sensitive towards variations of the reward that it receives per action execution.!?
Unfortunately, our goal-oriented planning task PT2 does not possess the properties
required by Howard and Matheson, and thus we either cannot proceed in exactly the
same way or have to confirm that their theory is still applicable.

5.1 Planning for Risk-Seeking Agents

In the following, we will temporarily restrict our attention to risk-seeking agents with
utility function u(c) = %°¢ (or any strictly positively linear transformation thereof) for
risk parameter v > 1.'

First, we would like to point out that every planning task PT2 can be transformed into
an equivalent planning task that has only one goal state. which has goal reward zero.
The argument, however, is different from the one for the risk-neutral case. Planning
task PT2 is equivalent to the following planning task PT2’ for a risk-seeking agent:

Introduce a new goal state with goal reward zero, and replace every
(old) goal state s € (7 with a non-goal state in which only one action

13Assume that a lottery with expected reward c is repeated n times and let ¢; denote the reward
received on the ith trial. The law of large numbers shows that, as 2 increases, Z:;, e approaches
nc and the variance of 3.7, ¢; approaches zero. Thus, i€ an agent can participate in a lottery a large
number of times, it can evaluate the lottery according to ¢ no matter what its attitnde towards risk
is provided that il is only mlercsied in its final wealth. This might not be the ease, however. As an
example, consider an agent that can choose every month one lottery from i given set of lotteries that
supply it with food for the month. The agent cannol stock unused food. sinee it spoils within *hirty
days. Such an agent is certainly interested in the expected amount. of food provided by a lottery,
llowever, instead of paying attention to the variance of ZL, e; it will probably he more interested
the varianee of ¢;, which does not vary with n.

"We will show the derivations for w(e) = 17, ‘They can easily be extended to utility functions of the
form u(c) = my" + n (for m > 0), although these functions do not increase the power of the planning
mechanism, since utility functions are defined only up to strictly positively linear transformations.
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can be executed, that leads with probability one and action cost r[s] —.
maxyeg r[3’]—1 < 0 to the new goal state. Otherwise, the planning problem
remains unchanged.

Planning task PT2’ satisfies all requirements of our planning framework. It is equivalent
to planning task PT2 in the following sense: the better a plan is for planning task PT2,
the better it is for planning task PT2’ as well, and vice versa. This is the case, because
the certainty equivalent of every plan for planning task PT2’ is maxyeq r[s'] + 1 lower
than the one of the same plan for planning task PT2. Note that this argument depends
on the utility function having the delta property — it does not hold for arbitrary utility
functions.

In the following sections, we will show how to calculate the expected total utility of a
given plan. Then, we will transform the planning problem into one for a risk-neutral
agent and show how to solve it. Finally, we will demonstrate our ideas on a small
blocks-world example and a path-planning example.

5.1.1 Calculating the Expected Total Utility of a Plan

Assume that, for some planning problem, a plan (that is. a state-action mapping) is
given that assigns action a[s] to non-goal state s. The expected total utility of this
plan, that is, the expected total utility u[sg] of its start state sg, can recursively be
calculated as follows.

The (expected) total utility of a goal state s is u[s] = u(r[s]) = 7"0. After the
agent has executed action afs] in a non-goal state s, it incurs action cost ¢*¥l[s, /]
and is in successor state s’ with probability p**l[s,s]. In state s'. it faces a lottery
again. This lottery has expected total utility u[s'] and certainty equivalent v="(u[s']) =
log, u[s’]. According to the axioms of utility theory, the lottery can be replaced with
its certainty equivalent. Then, the agent incurs a total reward of ¢*Ml[s, '] + u=" (u[+"])
with probability p**l(s,s’]. Thus, the expected total utility of s can be calculated as
follows:!*

uls] = Y pll[s, s Tu(cP[s, 8] + = (u[+]))

s'es
= Z pu[s] [8, sll,yc“l’][s.s']+n" (ufs'])

s’'eS

= % sy ey

s'EN

= Z pa[s][s.N/]_y.«'(-'l[s..s']"[h_/]

s’'eS

15This corresponds to the policy-evaluation step in [Howard and Matheson, 1972] with the “cortain
equivalent gain” g = 0.
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= Z pa[a] [3, sl],yc“['][g,a']u[sll
#€S\G

a[s cololfs,s']  rs'
+Zp“[s,s']7 (s8] rl#')
s’eG

In matrix notation, we get the closed-form solution

[ufsliessa = [p™[s, 8T "N, vesioluls]lesic
+[p"s, 8Ty N e s wrea [T e
= (id = [p"¥[s, 10, vesra) ™!
(s, oIy uesv et ec

where id is the identity matrix of size |S \ G|?. (The matrix inverse in the expression
always exists.)

For v approaching one, the certainty equivalent of any state for any plan approaches
the expected total reward of that state. Therefore, the optimal plan for a risk-neutral
agent is the one that is best for a risk-seeking agent if v approaches one.

Proof: Assume that the execution of the plan leads with probability p; to
total reward c; if the agent is started in state s. Then, the expected total

reward of s equals ¥_; p;c; and its certainty equivalent is u=!'(¥; piu(c:)).
|n(§ IPl'VC')

Thus, lim,—, v™(Z; piu(ci)) = limy—y log, (i piv®) = limy—, T

L'Hspital . O e/ Y piv . piciv®i _ limyy
- lim,—., 1/~ = lim,—, P T limay
PiCi

Z‘—, = ¥, pici.

Pecey@ -

P
’

In contrast, for v approaching infinity, the certainty equivalent of any state for any plan
approaches the total reward of that state if nature acts like a friend (that is, chooses the
action outcomes not with a coin flip, but deliberately so that it is best for the agent). Of
course, in reality, nature does flip coins. We call an agent that assumes (wrongly) that
nature helps it as much as it can and calculates it total utilities accordingly “extremely
risk-seeking.” Thus, max-max-ing (“both the agent and nature maximize the total
reward for the agent™), which calculates the total utility of a non-goal state s for a
given plan as u[s] = maxyes(c®™[s, s'] + u[s']), determines the plan that is best for a
risk-seeking agent il 4 approaches infinity.

Prool: Assume again that the exeention of the plan leads with prob-
ability p; to total reward ¢; il Lthe agent is started in state s. Then,
max; ¢; = log, y™** = log, 3, piy™* ™ = log, X, piv" = max; log, (pi™)
= max(log, p; + ). It follows that max;¢; = liny_ max;e; >
lim,— log, Z;piv™ 2 lim,— maxi(log, pi + ¢;) = max;e;, and thus
limy—ne ™ (T pinle)) = limyong log, i piy™ = miax; e,
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5.1.2 Transforming the Planning Problem

To show how every planning task PT2 for a risk-seeking agent can be transformed
into an equivalent planning task PT3 for a risk-neutral agent, we assume again that a
state-action mapping is given. We use the same symbols for planning task PT3 that
we used for PT2, but overline them.

Since (without loss of generality) a risk-neutral agent has utility function @(c) = ¢, it
holds that @[s] = ©[s]. A goal state s has (expected) total utility a[s] = a(7[s]) = #[s].
The expected total utility of a non-goal state s is

i[s] = Zﬁ“[’][s,s']ﬁ(é"[’][s,s']+1T'(ﬁ[s’]))
s'€S

= Z pelel [s,s'](é"[’][s,s'] + a[s'])
s'eS

Comparing these results with the ones in the previous section shows that ii[s] = u[s]
for all states s € S and all planning problems if and only if three equalities hold:
7[s) = v for s € G. Furthermore, p*I*l[s, s'] = pli[s, s}y =T and &ll[s. ] = 0 for
s€S\Gand s €S.

Thus, planning task PT2 for a risk-seeking agent with utility function u(c) = ¢ is
equivalent to the following planning task PT3 for a risk-neutral agent:

Introduce one additional state 3 with expected total reward zero. (State
3 could for example be modeled as a “sink”: a non-goal state in which only
one action can be executed. This action has action cost zero and leads back
to state 3 with probability one. State 3 could also be modeled as a goal
state with goal reward zero.) Otherwise, the state space, action space. start
state, and goal states remain unchanged. The goal reward of any goal state
s # 3 i3 y""l. When the agent executes action a in a non-goal state s # s,
it incurs an action cost of zero and is in successor state s’ with transition
probability p“["l[s,s’]'y"“[’l[""']. These probabilities do not sum up to one.
With the complementary transition probability 1 - ¢y pelel [.%,.s"].),c“(’][s-“,l.
the agent incurs an action cost of zero and is in successor state .

Thus, given v, one transforms planning task PT2 into the above planning task. for
which one then determines the plan with the largest expected total reward. The trans-
formation is trivial and can be done in lincar time. since both representations are of
the same size.

The only reason for introducing state s is to make the probabilities sum up to onc,
Since its expected total reward is zero, it will not show up in the calculations. The
specification of PT3 for the risk-seeking planning problem [rom Figure 6 is shown in
Figure 11. (State $ is modeled as a non-goal state.) Note that, although they can both
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Figure 11: Transformation II (does work)

be expressed with probabilistic decision graphs of the same topology. the specification
of the planning problem for PT3 differs fundamentally from the one of PTI. For
example, an obvious difference is that all actions of planning task PT3 have action cost
zero. Therefore, action costs can be ignored for risk-sensitive planning.

5.1.3 Finding Optimal Plans

Planning task PT3 can be solved with probabilistic Al planning methods or, alterna-
tively, with dynamic programming methods, called Markov decision algorithms.

It is interesting to note that the plan with the largest expected total utility is not
necessarily admissible even if an admissible plan exists, as shown in Figure 12 for a
risk-seeking agent with utility function u(e) = 2°. If the agent chooses action \. then
the expected total utility of the plan is 0.501(=20) + 0.50u(—=1) = 0.25, but the plan is
not. admissible. Il the agent chooses action B then it achieves a total (expected) utility
of 1.00u(-3) = 0.125 and reaches the goal state for sure. Thus, the inadmissible plan
results in a larger expected total utility. This cannot happen for risk-nentral agents,
since the optimal risk-neutral plan is always admissible (if an admissible plan exists).
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Figure 12: A P'lanning Problem with an Inadmissible Optimal Plan

The reason why the plan with the largest expected total utility is no longer guaranteed
to be admissible for risk-seeking agents is shown in Figure 13: While for risk-neutral
agents all inadmissible plans have certainty equivalent minus infinity. this is no longer
true for risk-seeking agents. The table also shows that this “problem” cannot arise for
risk-averse agents.

It should be pointed out that, from the standpoint of utility theory, there is absolutely
no problem with optimal plans that are inadmissible. In the AAAI robot. competition
example, for instance, one might risk that the robot will not he able to finish the
competition with a certain probability. However, if one insists on using utility theory
only to choose the bhest plan among all admissible plans, one can utilize that the optimal
plan for a risk-seeking agent is guaranteed to be admissible il crery state is solvable,'®
Thus, if some states are unsolvable, one can casily remove the unsolvable states from
the planning problem before solving it [Koenig, 1991]. The optimal plan of the resulting
planning problem is then guaranteed to he admissible.

The optimal plan for the transformed planning task I3 can be determined with

'5Properties such as this one can casily be proved using the any-time property of Markov decision
algorithms such as the policy-iteration algorithm.
p 8
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dynamic programming algorithms. If the transformed probabilistic decision graph is
acyclic, it can be solved in linear time with folding-back. For cyclic probabilistic
decision graphs, it can be formulated as Markov decision problem, that can then be
solved in polynomial time with Markov decision algorithms. The representation as
Markov decision problem proves that one can indeed restrict plans to state-action
mappings without losing optimality and, furthermore, that there exists at least one
state-action mapping that is optimal for all possible start states.!” It turns out that
the Markov decision problems for planning task PT3 have a simpler structure than the
ones for PT1 (namely, all state-action mappings determine absorbing Markov chains).
This simplifies the optimization algorithms.

In order to determine an optimal plan for planning task PT3, one can for example use
value-iteration [Bellman, 1957], policy-iteration [Howard, 1964], Q-learning [Watkins.
1989], or linear programming. As an example of such a dynamic programming tech-
nique consider (a simplified version of) Howard’s (single-chain) policy-iteration algo-
rithm [Howard, 1964] [Howard and Matheson, 1972]. One can either use the algorithm
on the transformed planning task PT3 or, as we have done here, adapt the algorithm
so that it works on the original planning task PT2:

1. Choose an arbitrary state-action mapping a[s] € A(s) for all s € S\ G.

2. (value-determination operation) Set

. ols alslfy st -
[u[s]]JGS\G = (“i - [P [ ][873’]76 [s.e ]]s,s'ES\G) !
afs clel]s,s’ rs
[P [ ][S,S’]’)’ fo.e 11365\6.3'66[7 [ ]]se(l
3. If no u[s] for any s € S\ G has changed in the previous step (from the value that
it had in the previous iteration), then stop. An optimal state-action mapping is
to select action «[s] in state s € S\ G.

4. (policy-improvement routine) Set for every s € S\ &G

als] = argmax,ea,)( 3 P8y )
s'eS\G

+ 3 pls Ny

s'el;s

5. Go to 2.

This algorithm is an any-time algorithm. The term *any-time algorithm™ was coined
by [Boddy and Dean, 1989}), and [Bresina and Denmmond. 1990] first developed an
any-time planner. Any-time planning methods can be used to determine  acecording
to decision-theoretic criteria — when to stop planning and start executing the plan,
becaunse the possible future increase in plan quality does not. justify the effort of planning

"See [Bertsekas, 1987] for a good review of Markov decision theory.
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any further. The policy-iteration algorithm is an any-time algorithm in the sense that
the expected total utility of no state can decrease from one iteration to the next, but
the expected total utility of at least one state strictly increases, until the optimal state-
action mapping is found in finite time [Howard, 1964]. Thus, the expected total utility
of the currently best plan cannot decrease from iteration to iteration. A solved state
remains solved in the following iterations and an admissible plan stays admissible.

When implementing a risk-sensitive planning method, however, one will usually only
want to approximate optimal plans and therefore use more incremental (and faster)
dynamic programming techniques that restrict their attention to certain states without
having to look at the whole state space, determine for which states accurate expected
total utilities are not that important, and utilize initial heuristic knowledge (see [Dean
et al., 1993] and [Moore and Atkeson, 1993b] for approaches in this direction). Dynamic
programming methods for risk-sensitive planning can also he extended to cases where
the action models are not given in advance, but have to be learned from reinforcement
that is provided externally in response to action executions (“experiments™) of the
agent (so called “reinforcement learning”).

However, dynamic programming algorithms are brute-force search algorithms. since
they do not utilize available domain knowledge such as how different actions interact
with each other. Al planning methods, on the other hand. are knowledge-based. Al-
though Al planning methods are usually not able to guarantee the optimality of their
plans, they can be used for risk-seeking planning instead of Markov decision algorithms.
The larger the expected total reward of the plan that they determine for planning task
PT3, the larger is the expected total utility of the same plan for the corresponding
planning task PT2.

Instead of planning methods that maximize or satisfice expected total reward. we
can also use Al planning methods that maximize or satisfice the probability of goal
achievement, but do not take cost considerations into account. First., we have to
transform planning task PT2 into the equivalent planning task PT2’. Remember that
PT2’ is a risk-seeking planning task that has only one goal state. which has goal
reward zero. Now consider the risk-neutral planning task PT3 that corresponds to
planning task PT2’ and assume that state 5 has heen modeled as a non-goal state.
Since the total utility of the goal state of PT2’ is 4° = 1. it has goal reward one for
planning task PT3. Because all actions of planning task PT3 have action cost zcro.
the probability of reaching the goal state of PT3 for any plan equals its expected
total reward for the same planning task, which in turn equals its expected total utility
for planning task PT2. Thus, planning methods that determine plans that maximize
the probability goal achievement (or whose probability of goal achievement exceeds a
given probability) can be used to maximize (or satisfice) expected total ntility (or. in
the limit, expected total reward). Althongh one cannot apply these planning methods
directly, one can first transform the planning problem and then apply the planning
methods to the transformed planning problem. Thus. perhaps surprisingly. they can
be used to take cost considerations into account provided that they are able to deal
with planning tasks for which not all states are solvable. In fact. every non-goal state of
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Figure 13: Possible Certainty Equivalents of Plans

PT3 is unsolvable (even if every non-goal state of PT1 is solvable), since the unsolvable
state 5 can be reached from every non-goal state with positive probability. Therefore,
finding optimal plans is not solely a matter of extending the number of states that are
covered by the state-action mapping (the so-called “plan envelope”), since the agent
cannot recover from state s and thus has to minimize the probability of reaching this
state if it wants to determine an optimal plan.

To summarize, planning task PT3 can be solved with Al planning methods that either
maximize (or satisfice) the expected total reward or, equivalently, the probability of
goal achievement. Whether state 3 should be modeled as a goal state or non-goal state
depends on which one of the two kinds of planning methods one wants to use. If 3 is
modeled as a non-goal state, then — as mentioned in the previous paragraph - no plan
is admissible for PT3 if the start state is a non-goal state. In this case, it is sensible
to rank plans according to their probability of goal achievement. If 5 is modeled as a
goal state, then all plans are admissible for PT3 and it makes sense to choose among
them according to their expected total reward.

5.1.4 Example 1: A Stochastic Blocks-World

We use the blocks-world problem that is stated in Figure 14 to illustrate our ideas. Its
state space contains 162 states. Figure 15 shows four of the state-action mappings that
solve it, and Figure 16 illustrates how the certainty equivalents w='(u[so]) = log, u[so]
of the four plans vary with the natural logarithm of the risk parameter 4 (calculated
for example with the policy-iteration algorithm stated above, which — depending on
the initial policy — typically converges after around flive iterations).

Plan A, that involves no risk and can be executed in six minutes (that is. has total
reward -6.00), has the largest expected total reward of all plans (not just the fonr plans
shown) and will therefore be chosen by a risk-neutral agent. However, plan A is not
necessarily optimal for a risk-seeking agent. When using plan D, for example, the agent,
reaches a goal state in only three minutes il it is lucky.
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There are seven goal states, all of which are equally preferable.

In every blocks-world state, one can move a block that has a clear top
onto either the table or a different block that has a clear top, or paint a
block white or black.

Moving a block takes only one minute to execute, but is very unreliable.
With probability 0.10, the moved block ends up at its intended destina-
tion. With probability 0.90, however, the gripper loses the block and it
ends up directly on the table. (Thus, moving a block to the table always
succeeds.)

Painting a block takes three minutes and is always successful.

goal

Figure 14: A Blocks-World Problem

The optimal plan for a risk-seeking agent is the one with the largest expected total
utility or, equivalently, certainty equivalent. Since Plan A is deterministic, its certainty
equivalent equals the (expected) total reward of its start state, no matter what the
risk-attitude of the agent is. The other three plans are non-deterministic. Thus, their
certainty equivalents increase, the more risk-seeking the agent hecomes, and different
plans can be optimal for different degrees of risk-seeking attitude. Figure 16 shows
that plan A is optimal in the interval In+y € (0.00,0.93). For Iny € [0.94,4.58]. plan C
is optimal, and plan D should bhe chosen for Invy € [4.59,00). (These statements hold
for all plans, not just the four plans shown in the figure.)

For Iny approaching zero (that is, 4 approaching one), the certainty equivalent of any
plan approaches its expected total reward. For plan D, for example, the certainty
equivalent approaches -21.00. (See Figure 21 to verify this.) Since plan A is opti-
mal for In~ approaching zero, it is optimal for a risk-neutral agent. In contrast, for
In+y approaching infinity (which is equivalent to ¥ approaching infinity), the certainty
equivalent of any plan approaches its total reward for the case that nature acts as a
friend. When executing plan D, for example, the agent can reach a goal state in only
three minutes if it is lucky. Thus, the certainty equivalent approaches -3.00, and plan
D is optimal for an extremely risk-seeking agent. (The certainty equivalent of plan
C also approaches -3.00. Thus, it is also optimal [or an extremely risk-secking agent.
However, for In~y > 4.59 plan ) dominates plan O for a risk-seeking agent in that it
always has a larger certainty equivalent.)

In order to be able to apply probabilistic planning methods other than Markov decision
algorithms, we explicitly transform the planning problem into one for a risk-neutral
agent. The original planning problem can for example be expressed with augmented
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Figure 15: Some Plans for the Blocks-World Problem
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Certainty Equivalents of some Plans for Different Degrees of Risk-Seeking Attitude gamma
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Figure 16: Certainty Equivalents of the Four Blocks-World Plans (Risk-Seeking Agent)

STRIPS-rules'® [Koenig, 1991], three for the move actions (“move block X from the
top of block Y on top of block Z,” “stack block X on top of block Y,” “unstack block
X from block Y”) and one for the paint action (“paint block X with color C"). The
first move action can be expressed as follows:

move(X,Y,2Z)

precond:

outcome:
prob:

rewvard:
delete:

add:
outcome:
prob:

reward:
delete:

add:

on(X,Y), clear(X), clear(2Z), block(X), block(Y),
block(Z), unequal(X,Z)

/* the primary outcome */

0.1

-1

on(X,Y), clear(Z)

on(X,Z), clear(Y)

/* failure: block X falls onto the table */
0.9

-1

on(X,Y)

clear(Y),on(X,table)

18The original STRIPS-notation [Fikes and Nilsson, 1971] applies to deterministic domains only.
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The transformation changes the transition probabilities, action costs, and goal rewards.
In accordance with our earlier comments, we do not model the transition into state 3.
The goal states remain goal states, but now get assigned a goal reward of one. The
STRIPS-rules are transformed as shown in Section 5.1.2. For example, for ¥ = 2, the
above STRIPS-rule is transformed into the following one:

move(X,Y,Z)
precond: on(X,Y), clear(X), clear(Z), block(X), block(Y),
block(Z), unequal(X,Z)

outcome: /* the primary outcome */
prob: 0.05
reward: 0
delete: on(X,Y), clear(Z)
add: on(X,Z), clear(Y)

outcome: /* failure: block X falls onto the table */
prob: 0.45
reward: 0O
delete: on(X,Y)
add: clear(Y),on(X,table)

With the complementary probability (0.5), the action execution results in the new
state 3, that has a total reward of zero. Now, one can use any planning method that
maximizes expected total reward or, in this case equivalently, the probability of goal
achievement on the transformed STRIPS-rules to determine an optimal plan for the
risk-seeking agent. (If the probabilistic planning method maximizes expected total
reward, it might be advantageous to model state 3 as a goal state with goal reward
zero. If the planner maximizes the probability of goal achievement, state 3 has to be
modeled as a non-goal state from which no goal state can ever be reached.)

5.1.5 Example 2: Stochastic Path-Planning

As a second example, consider the simple path-planning domain shown in Figure 17.
The states of this grid-world correspond to locations. In every state, the agent has at
most four actions available, namely to go up, right, down, or left. All actions take the
agent one minute to execute, hut they are not necessarily deterministic. They succeed
with probability 3£, but their outcome deviates ninety degrees to the left or right of
the intended direction with probability 1=% cach. Thus, & € [0,1] is a parameter for
the certainty of the actions: the larger the value of .« is, the more certain are their
outcomes. Actions have deterministic outcomes if ¢ = I; their intended onteome and
its two deviations arc equally likely for the other extreme, & = 0.

In every state, the agent can execute all of the actions whose intended direction is not
immediately blocked by a wall. Besides standard walls, the grid-world also contains
“one-way walls,” that can be traversed from left to right, but not in the oppaosite
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Figure 17: A Path-Planning Problem
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direction. (They might for example be steep slopes that the agent can slide down, but
not climb up.) If the agent executes an action and it has the intended outcome, the
agent cannot bump into a wall. However, running into a wall is possible for unintended
outcomes, in which case the agent does not change its location. As an example, consider
state X in figure 17 and assume that z = 0.5. In this state, the agent can go up, right,
or down. Ifit tries to go up, it will succeed with probability 0.6, unintentionally go right
with probability 0.2, and unintentionally remain in state X with the same probability.

The agent can reach the goal state from the start state on two different paths. If the
actions have deterministic effects (that is, if z = 1), the traversal of path B takes 13
minutes and the one of path A 15 minutes. Thus, the agent prefers path B over path
A, independently of its risk-attitude. If the actions do not have deterministic effects.
however, the agent risks to traverse a one-way wall unintentionally when following path
B, in which case it has to retrace parts of its path. Since path B is better than path A
in the best case, we expect path A to become less attractive when the agent becomes
more risk-seeking.

Figure 18 shows how the value of the action certainty parameter r that makes the agent
indifferent between the two paths varies with the risk-attitude of the agent (expressed as
the natural logarithm of risk parameter 4). The figure actually comprises risk-seeking.
risk-neutral, and risk-averse behavior. Here, we are only interested in the risk-seeking
part: Iny > 0. If, for a given risk-attitude, the actual value of & is below the graph.
then the agent chooses path A, otherwise it chooses path B. As expected, the value of x
that makes the agent indifferent hetween the two paths decreases the more risk-seeking
the agent becomes. For In+y approaching infinity, it approaches zero: an extremely
risk-seeking agent prefers path B over path A, since path B can be traversed in 13
minutes in the best case, whereas path A cannot be traversed in less than 15 minutes.

5.2 Planning for Risk-Averse Agents

For risk-averse agents, one can proceed as outlined for risk-seeking agents in the pre-
vious section. In this case, one has to use a function from the family u(c) = —5¢
(or any strictly positively linear transformation thereof) for 0 < v < 1. Al-
though the values p*l*l [s,.s’]‘yc“("]["""1 can no longer be interpreted as probabilities (since
Tes pP[s, 81y "1 > 1), one can use the same methods as in the risk-seeking case
if one takes care of one complication: The solution u[sg] of the system of linear equa-
tions from Section 5.1.1 can now be finite even for plans that have expected total
utility minus infinity. The planning methods can then erroneously return such plans
as optimal solutions. Fortunately, these plans are casy to characterize (“plans that
have at least one cycle with *probability’ greater than one™), and one can remedy the
problem by either initializing the dynamic programming algorithms more restrictedly
or extending them slightly.'?

19Gee (Koenig and Simmons, 1994] for details. For plans that have cycles with “probability” greater
than or equal to one, the dynamic programming rquation is no longer a contraction mapping. The
case of cycles with “probability” larger than one can be approached similarly to the case of cyeles with
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Action Certainty for which the Agent is Indifferent between the Two Paths
1 T = T T T

action certainty —

action certainty x
o
(%]
r

0 ] 1 [ '
-1 -0.5 0 0.5 1 1.5
ln gamma

Figure 18: Action Certainty for which the Agent is Indifferent between the Two Paths

For 7 approaching zero, the certainty equivalent of any state for any plan approaches
the expected total reward of that state if nature acts as an enemy (that is. chooses
action outcomes not with a coin flip, but deliberately so that it is worst for the agent).
We call an agent that assumes (wrongly) that nature hurts it as much as it can and
calculates its total utilities accordingly “extremely risk-averse.” (Such an agent believes
in Murphy’s law: If anything can go wrong, it will.) They have recently been studied
in the Al literature by [Heger, 1992] and [Moore and Atkeson. 1993a]. Thus, max-
min-ing (“the agent maximizes and nature minimizes the total reward of the agent.” in
game-theoretical contexts also called min-max-ing), which calculates the total utility
of a non-goal state s for a given plan as u[s] = minyes(c*Pl[s, s/ +u[+]), determines the
plan that is best for a risk-averse agent if 4 approaches zero. (For 4 approaching one.
the certainty equivalent of any state for any plan approaches — as in the risk-sceking
case — the expected total reward of that state.)

If there are cycles in probabilistic decision graphs. then - unfortunately -~ the ex-

probability one, which — as is well known in the fickd of Markov decision theory -~ can also be solved hy
either initializing the dynamic programming algorithms more restrictedly [Koenig and Simmons, 1994]
or extending them slightly, see for example the multiple-chain policy-iteration algorithm [Howard,
1964).
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Figure 19: A Plan for Stacking Two Blocks

pected total utilities of admissible plans (and thus their certainty equivalents) can be
minus infinity, see also Figure 13. Imagine for example an extremely risk-averse agent.
Thus, given a plan, the agent assumes that nature will try to keep it away from a
goal state. The agent assigns a plan an expected total utility of minus infinity (it
is scared”) if a vicious nature could indeed prevent it from reaching a goal state. In
this case, utility theory might no longer be able to distinguish admissible plans from
inadmissible ones. Figure 14 shows that this problem can not arise for risk-neutral or
risk-seeking agents. '

Consider for example the plan shown in Figure 19 that solves the problem of stacking
two blocks with a move action that fails with probability p. The total reward of state
o is —i — 1 with probability p‘(1 — p) (for all integers i > 0). Thus

ulse] = Spi(1 = p)u(=i—1)

=0

Y Pl =p)(=y~"Y)

i=0 .

P-1¢ (z)
7 &3

{ 2 forp<y

=
-00 otherwise

How the certainty cquivalent of the plan depends on p is shawn in Figure 20, The
expected total utility of the plan is minus infinity for p > 4. If the agent can choose
hetween a move action with action failure probability py and a different, move action
with action failure probability p; where ;v > p, > 4, it cannot decide which one to
prefer although it should clearly choose the later move action over the former one.

The example also demonstrates that plans can have fixed points that do not correspond
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Certainty Equivalent of the Plan to Stack Two Blocks for Different Action Failure Probabilities p
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Figure 20: Certainty Equivalent of the Plan for Stacking Two Blocks

to their expected total utility. The following system of linear equations is the one used
in Section 5.1.1 to calculate the expected total utilities of the states:

ulso] = py~"ulso] + (1 —phy~"ulsi]

u[sl] - _70
Its solutions are
l—p
"‘ .3 - ——
ufs] = -1

This shows that, for p > v, the expected total utility of the plan differs from the value
of u[sy}.

Finally, consider again the example domains from Sections 5.1.1 and 5.1.5. Figure 21
shows how the certainty equivalents of the lour plans for the blocks-world problem
vary with the natural logarithm of the risk parameter v if the agent is risk-averse,

35




Certainty Equivalents of some Plans for Different Degrees of Risk-Averse Attitude gamma
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Figure 21: Certainty Equivalents of the Four Blocks-World Plans (Risk-Averse Agent)

The optimal plan for such an agent is always plan A, independent of v. Although the
certainty equivalent of plan A is defined for all values of In v, the certainty equivalents
of plans B, C, and D are finite only for —0.11 < Invy < 0 (that is. 0.9 < v < 1). They
are minus infinity for smaller values of In+. For the path-planning domain. Figure 18
already contains the results for negative attitudes towards risk, that is, for Iny < 0.

6 Conclusion

In this paper, we were concerned with probabilistic planning for risk-sensitive agents.
since there are many situations where it is not optimal to determine plans that minimize
expected total execution cost or maximize the probability of goal achievement. We nsed
acyclic and cyclic probabilistic decision graphs as STRIPS-like planning framework
and utilized utility functions that possess the delta prope ty. These utility functions
cover a whole spectrum of risk-sensitive attitudes from being strongly risk-averse over
being risk-neutral to being strongly risk-secking. They fill a gap between approaches
previously studied in the Al literature, namely the approach to minimize expected total
execution cost (risk-neutral attitude) and the approach to assnme that nature acts like
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Figure 22: Continuum of Risk-Sensitive Behavior

a friend (extremely risk-seeking attitude) or enemy (extremely risk-averse attitude),
all of which they can asymptotically approximate as shown in Figure 22. We obtained
the following results:

While it is indeed true that — in order to incorporate risk-seeking attitudes into plan-
ning methods — one only has to change the planning problem and can leave the
planning method untouched. it is not enough to replace all costs and rewards with
their respective utilities.

For acyclic probabilistic decision graphs. one could first propagate all action costs to
the value nodes. replace all accumulated costs with their respective utilities. and then
use folding-back to determine the optimal decisions for the decision nodes. This works
for all utility functions, although one might be forced to duplicate all shared subtrees.
which makes the run-time in the worst case exponential in the size of the probabilistic
decision graph. However. if the utility functions possess the delta property, one can
easily transform the acyclic probabilistic decision graph into a different probabilistic
decision graph of equal size. that one can then optimize for a risk-neutral agent in
linear time with dyvnamic programming methods. (‘vclic probabilistic decision graphs
can be solved in a similar way in polynomial time with Markov decision algorithms.
(For very risk-averse agents and some cvclic probabilistic decision graphs. however. the
agent can become so “scared” of the risk that not reaching a goal state becomes as
preferable as reaching a goal state even il the planning problem is solvable.)

Figure 23 summarizes the worst case run-times of the algorithms that we have discussed
in this paper. \lthough we primarily discussed dynamic programming algorithms. our
approach to risk-sensitive planning can be used to angment other risk-acutral proba-
hilistic planning algorithms as well. After the planning problem has been transformed.
one can use probabilistic Al planning methods or. alternatively. dvnamic programming
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Figure 23: Worst Case Run-Times

methods on the transformed planning problem to determine optimal (or good) plans for
the original, risk-sensitive planning problem. For risk-seeking agents, one can use any
planning method on the transformed planning problem that maximizes (or satisfices)
expected total reward (for example, the planner of [Smith, 1988]) or, equivalently, the
probability of goal achievement (for example, the planner of [Kushmerick et al., 1993})
to determine an optimal (or satisficing) plan. The better a plan is for the transformed
planning problem, the better it is for the original planning problem as well. Since our
approach allows one to use existing probabilistic planners unchanged for risk-seeking
planning and — depending on the planner — maybe for risk-averse planning as well,
it extends their functionality. Although the derivation of the transformation requires
some knowledge of utility theory and Markov decision theory, the transformation it-
self is very simple and can be applied without any understanding of the formalisms
involved.
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