519

4
;
“I" xS R
YR ©
f

\ .. b Mellon

]

LT

AD-A276

=t

An Analysis of Instruction-Cached SIMD
Computer Architecture

Todd E. Rockoff

December 1993
CMU-CS-93-218

" \pTIC QUALITY mmcmn 3

\

appg ot

\Camegle

¥

A
{

94-() 74 o CP. s o L o
lllllltl’llIllﬂllilllllﬁl‘lﬂllllllIIHIIl 04 8

ELECTE
SMARM 1994. H

..
e TR

Best
Available

Copy

An Analysis of Instruction-Cached SIMD
Computer Architecture

Todd E. Rockoff

December 1993
CMU-CS-93-218

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
Jor the degree of Doctor of Philosophy

Thesis Committee:
Allan L. Fisher, Chair
Robert F. Sproull
Peter A. R. Steenkiste
Norman P. Jouppi, DEC WRL

Copyright © 1993 Todd E. Rockoff

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under
Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of ARPA or the U.S.
Government.

Keywords: Data-parallel computation, SIMD computer architecture, VLSI computer architec-
ture, total chip area, throughput-to-area ratio, SIMD instruction cache, generic SIMD computer,
multi-clock SIMD computer, I-cached SIMD computer, instruction cache management

School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

An Analysis of
Instruction-Cached SIMD Computer Architecture
TODD E. ROCKOFF Accesion For
NTIS CRA& g
DTIC TAB

Urannouiced

O
Justifice M %I
Submitted in Partial Fulfillment of the Requirements Dricton e Lt
for the Degree of Doctor of Philosophy By

Distibution |

Avaitability Codes

. Avail ard|or
Dist Special

ACCEPTED: JH_ I
wa iy 12./15/973

THESIS COMMITTEE CHAIR DATE

113/94

O DEPARTMENT HEAD DATE

APPROVED:

L T2 /2e/9¢

<J DEAN DATE

Abstract

In a single instruction-stream/multiple data-stream (SIMD) computer, calculations are performed
by simple processing elements (PEs) that are not independently capable of program-control opera-
tions. In lock-step, the PEs execute one program that is sequenced by a single system controller.
Large numbers of these simple PEs are obtained through replication of a PE chip containing many
identical PEs.

A state-of-the-art SIMD computer is regulated by a single system clock that is distributed through-
out the computer. On each system clock cycle, the system controller broadcasts the next instruction
to be executed by the PEs. The system clock interval allows time to distribute a PE instruction
throughout the computer, an action that typically requires more time than the minimum interval of
a clock regulating the PEs themselves within the PE chips. The disparity between the highest rate of
PE operation and the rate of global instruction broadcast gives rise to a heretofore un-compensated
clock-rate limitation.

To overcome this limitation, instruction-cached SIMD computer architecture provides for a small
instruction buffer to be placed within the replicated PE chip. This buffer stores repeated instruction
sequences for subsequent retrieval at the relatively high rate attainable within the PE chip. The
instruction buffer and its control mechanism comprise a SIMD instruction cache, or I-cache.

Throughput measures computer performance, while total chip area is a primitive measure of a
computer’s monetary cost that is most appropriate for high-PE-count multiprocessors. The ratio
of throughput to area is a figure of merit expressing a multiprocessor’s ratio of performance to
hardware cost. My thesis is that even the simplest I-cache variants increase throughput-to-area
ratios significantly.

I-cache increases the rate at which instructions are delivered to the PEs. However, I-cache takes
up space in the PE chip that would otherwise have been used for PEs themselves. If the total chip
area of the computer is fixed, then I-cache reduces the chip area used for PEs. For scalable data-
parallel problems, reducing the number of PEs reduces the throughput. Therefore, the magnitude of
the throughput-to-area ratio impact of I-cache depends on the balance between the competing factors
of instruction execution-rate increase and displacement of PEs from the PE chip.

In analyzing SIMD instruction cache, the dissertation considers the interacting characteristics
of data-parallel program properties and SIMD computer electrical characteristics in I-cache design.
Designs of two simple I-cache variants are presented and their chip-area costs are estimated. For
a diversity of data-parallel problems, these I-caches are evaluated over a range of underlying PE
architecture and system characteristics. The evaluations are performed using register-transfer-level
simulations of SIMD computations on a clock-phase by clock-phase basis.

The simple I-cache variants occupy negligible chip area and yet yield speedups ranging from 1.3
to 7.6 for the simple problems under realistic assumptions about the electrical characteristics of the
SIMD computer. The computations for which these results are obtained include such problems as
sorting and tree-reduction which are commonly thought to be inherently inter-PE-communication-
bound because of their characteristic frequency and complexity of inter-PE communication. The
simulation results suggest that there is a wide range of problem characteristics over which I-cache
makes for the best use of chip area in a SIMD computer.

Reason with Love from Beauty.

Acknowledgments

Ithank my thesis committee chairman Allan Fisher for providing an opportunity to make a SIMD
PE chip, for getting me thinking about fast SIMD computers, and for helping me to identify what was
of scientific value. Allan saw me safely through the Black Friday mine-field, when the odds were long
against my making it through alive. I thank Allan especially for his stories about the less-restrained
days back in Jersey, which stories were reassuring to me at important times.

Committee member Bob Sproull read very carefully and suggested numerous specific improve-
ments. Bob understood the basic idea of I-cache very early on, and he encouraged me at times
when my confused ramblings were easily construed as wrong-minded craziness. Bob’s intuition is
excellent, and his advice has been unerring throughout.

Committee member Peter Steenkiste required me to make sense. Peter asked probing questions
whose answers clarified my results. Peter gave me the benefit of the doubt when I needed it.

Committee member Norm Jouppi, an experienced designer of very fast computers, woke me
up initially to the possibilities of PLL-based clock generation for fast chips. More recently, Norm
taught me about transmission lines, and thereby greatly improved the dissertation’s treatment of
fast instruction broadcast options.

My “shadow committee” — Chris Marlin, Skef Wholey, Marc Donner, and Wes Clark, provided
well-timed support and continual encouragement that boosted me over a succession of obstacles, both
internal and external. Skef provided much-needed information about commercial SIMD computers
and their programming. I am especially indebted to Chris for his logistic support and strategic
guidance through some rough patches. Chris loaned me the proximal courage to begin writing
chapters. The top-down approach advocated by Chris came at just the right time to complement the
bottom-up relevant-fact-enumeration method practiced by Wes. The goods lay in the middle. Wes
Clark, Marc Donner, Doug Clark, and Richard Wallace together helped to sharpen my thesis defense
talk during a halcyon afternoon in the Eagles’ Nest.

Klaus Gross reminded me that I had to write an outline eventually. Klaus also demonstrated to
me for years the importance of living in firm contact with one’s animal nature: life is a bushwalk.

Brad White, Dean Rubine, Michael McCarthy, Bennet Yee, and Bert Enderton each gave gener-
ously in response to my recurrent pleas for C and Unix programming help. More competent, mellow
crew would be hard to find. Michael McCarthy, in keeping my tools sharp, gracefully accepted far
more whinging and far less praise than he deserved. Dean and Sid Chatterjee gave helpful LaTeX
advice. Dale Moore and Roy McDougall helped me out with practical problems printing PostScript.
James Tizard helped early on with plotting tools. Wes Clark provided a remarkable suite of custom
PostScript plotting tools.

I enjoyed many varied interactions over a period of about 6 years at CMU Computer Science.
I hope never to relinquish the Reasonable Person Principle. I thank my Pittsburgh office mates
for years of tolerance: Randy Brost, Robert Stockton, Bert Enderton, Bennet Yee, Chris Lebiere,
Dave Abramowitz, and Greg Nelson. For their help in maintaining my sanity, I am grateful to Blaine
Burks, Charlie Krueger, Eric Nyberg, Dean Rubine, and Brad White, fine musos all who never turned
off my mikes even during the wailingest of jams. For providing an opportunity to vent my frustrations
in a relatively safe manner, I am indebted to Tom Sullivan and to all the stalwart fore-checkers who
turned up for the weekly hockey games.

Most of this research was conducted while I was an Honorary Visiting Scholar with the Com-
puter Science Discipline at Flinders University in Adelaide, Australia. Ivan Sutherland suggested
that Australia would be a good place to develop perspective. The initial move was facilitated by a
generously funded CSIRO position, boldly tendered by Craig Mudge. The gentle folks at Flinders
Uni were extremely tolerant through the last year and a half of work. I am especially grateful to my
supportive friends downunder, especially Chris Marlin and Paul Calder, for helpful discussions, for

vii

providing advice, and for asking insightful questions. Gary Glonek generously helped me through
the statistical analysis of the I-cache speedup data. Bill McFarlane posed important questions that
were hard to ask. Dennis Jarvis, Jon Baxter, Neil Bergmann, Jim Entwisle, and Stuart Beck read
some of what I'd written and offered helpful comments.

I am grateful to my parents, Maxine L. Rockoff and S. David Rockoff They have always made
it possible for me to pursue the ideal of truth without compromise. I discovered on my own the
apparently unavoidable necessity of compromise, but I count myself among the luckiest for the
latitude I have almost always had in choice-making. I further thank Maxine for maintaining such
close contact, through frequent email, and for her sharp editorial comments on chapter drafts.
Thanks, Ma!

I also thank the remainder of my family, especially Lisa, Kevin, and Jacqueline for their constant
love and support, of which I am always aware.

This work has benefited enormously from the comprehensive mentoring generously provided by
Wes Clark. With his unique clarity of thought, Wes gently guided me in distilling an idea soup into
the bullion of a thesis proposal. Over the subsequent 3 years, he persistently asked hard questions
about the details and insisted on clear consistency. Wes’ PostScript programming made some of the
figures in the dissertation look good, while his design sense helped me to improve others. It is not
possible for me to overstate the improvements in prose and in modes of exposition that resulted from
Wes’ tireless editing and suggesting. Any reader who is sufficiently committed to work through the
details herein should hesitate not to believe that the going would have been far more difficult had
Wes not graciously intervened. Thanks, Wes!

Finally, Trudie, my love. May kindness and tenderness continue to bind us, always.

Contents

1 Introduction

1.1 The Thesis v v et e
1.2 TheStructureoftheDissertation i i i i it i et et

The SIMD Instruction Cache Idea

2.1 Instruction Deliveryin SIMDComputers
2.2 Overcoming Slow InstructionDelivery
2.3 A New Use of the Term “InstructionCache”
2.4 I-CacheDesignParameters
2.5 ManagementofI-Cache
2.6 AnExampleofI-CacheUse
27 I-CacheSpeedup. i e

SIMD Computer Implementation
31 GenericSIMDComputerot ittt e e e e e
3.2 ProcessingElement e e e
3.3 An Example of SIMD Computation: Tree-Summation
3.4 Representations of Multi-Chip Subsystems
3.5 Constraints Arising from VLSI Implementation
36 OperationStepoountst i e
37 PEChipModel e e e
3.8 How Largeis pp? i i i i it e
39 ClockIntervalsandp-Sets
3.10 Alternatives for Maximum-rate Instruction Delivery
3.10.1 PE Microprogrammingt ittt e e e e
3.10.2 Wide-InstructionBroadecast
3103 SIMDInstructionCache e

I.-Cached SIMD Computer Design

4.1 I-cacheDesignElements i i ittt
41.1 Multi-<clockGenerator i ittt e
41.2 Cache MemoOry. i i ittt e e e e e e e e e e e e e e
41.3 CacheManagement.,
41.4 Cache-control Protocol i i
415 CacheController« ittt et et et e e

4.2 AFamily of Single-Port I-cache Variants

4.3 I-Cache Chip-Area Estimates

4.4 Effectsof Program Properties
4.41 Proportion of Repeat Instructions

442 Quantization. e e e e e e e e e e e 61

443 LOOPStrUCtUre o oottt 61
444 MCS-Intensiveness v v vt i it e e e e e e 63
4.4.5 Relative SubsystemClockRates 65
446 ProblemSizeandPECount, 65
447 Data-dependence e 66
4.5 SIMD Instruction Cache Management 67
4.5.1 Step1: Identify Cachable Instructions 68
4.5.2 Step 2: Determine Which Sequences Become CacheBlocks 69
4.5.3 Step 3: Determine Where in CachetoPlace Blocks 70
4.5.4 Step4: ScheduleCacheBlocks 70
455 Step5:StoreCacheBlocks, 71
4.5.6 Step6: ActivateCacheBlocks 71
4.6 Examples of Static I-Cache Management 72
I-Cache Evaluation 75
51 A Simulator for SIMD Computations 75
5.2 Speedup MeasurementMethod Lo L. 77
5.3 Preparing A Subject Computation 79
54 Four SIMD ComputerVariantst enenenenne.. 79
5.4.1 Sensitivity of Speedup to SIMD Computer Variant 80
55 EightSampleProblems e 81
5.5.1 Tree-Summation(tree®) i i i i e e 81
55.2 Plus-scan(scan) 81
5.5.3 Linear Array Bubble Sort(bubble) 82
5.5.4 Mesh Row-Column Sort(xroweol)00uueenenin... 82
5.5.5 BitonicSort(bitonic) e e e e e 82
5.5.6 Matrix Multiply (matmmul)ttt 82
5.5.7 MeshSobelFilter(sobel) 83
5.5.8 Linear Array Median Filter(median) 83
5.5.9 Summary of Program Characteristics 83
56 p-SetsforI-CacheSpeedupBounds. 83
5.7 Speedups for Multi-Clock SIMD Computers 85
58 I-CacheSpeedupBounds. 85
5.81 tree e e e e e e e e e e e e e 87
5.8.2 SCaNn e e e e e e e e e e e e e e e e e 88
583 bubble e e e e e e e e e e e e 89
5.8.4 xowCol e e e e e e e e e e e e e e e 90
5.85 bitoniC e e e e e e e e e e e e e e e 91
586 matmul L e e e e e e e e e e e e e e 92
5.8.7 80b@L e e e e e e e e e e e e 93
588 median e e e e e e e e e e e e e e e e 94
59 ResultsSummariest ittt it e e e 95
5.10 “Simple-Equivalent” Speedups e 95
5.11 Maximum I-Cache Speedup: F7 Estimates 99
5.12 Sensitivity of I-Cache Speedup to Inter-PE Communication 105
5.13 Sensitivity of I-Cache Speedup to Local External Memory Access 111

X

6 Providing Chip Area for I-Cache

6.1 Strategies for Providing Chip AreaforI-Cache
6.2 Method for Measurirz Speedups at Fixed ChipArea
6.3 Speedups Using Strategy 0
6.4 Speedups UsirzStrategyl
6.5 SpeedupsUsingStrategy2
6.6 SpeedupsUsingStrategy3
6.7 WhichStrategyIsBest? L.

Conclusion

71 FutureDirections i i e e e e e e e e
71.1 Problem Characteristics i i i it e e e e
71.2 SystemCharacteristics
71.3 I-CacheCharacteristiCs « o i i i i i e e e e e e e e et e e e
71.4 EvaluationMechanism

7.2 How Important is SIMD Instruction Cache,Really?

7.3 Final Comments o i i i e e e e e e e e e e e e e

The Basis Computer
Al PE | e e e e e e e
A.2 Local External Memory Subsystem
A3 SystemController
A.4 Machine Code Programming Language
A.4.1 System Controller Instructions
A.42 PEMachineCodeInstruction
A5 PEChiplocalController.
A.6 Changed Globally Broadcast InstructionFormat
A7 Twol-Cache Variants: FoandFs

B Assembly Language Programming and Translation

B.1 Assembly Language v. High-level Languages
B.2 Assembly LanguageSyntax e
B.2.1 System ControllerInstruction.
B22 PEInstruction. i e e e e
B.3 Assembly Language Re-Programming forI-Cache
B.4 Scheduler. e e e e
B.41 BasicBlockDefinition
B.4.2 Pipeline Optimization
B.4.3 Phase-Splitting e
B44 CodeReorganizer
B.4.5 Calculating I-cacheSpeedups L.

INlustrated Example of Speedup Measurement

C.1 Operationally Structured Computation
C.2 Summary of Generic SIMD Computer Parameters
C.3 Physically Structured Generic SIMD Computation
C.4 Derivation of Multi-Clock Computation
C.5 Derivation of I-Cached Computations
C.6 Measured ThroughputandSpeedup

117
117
119
121
126
127
131
140

The Sample Programs

Dl @ e e e e e e e e e e e e e
D2 8Ca/n e e e e e e e e e e e e e e
D.3 Bubble e
D4 roweol e e e e e e e e e
D5 bitonic e e e e e e e
D6 matmial L e e e e e e e e e e e e e e e e e e e
D.7 80b@L e e e e e e e e e e e e e
D8 median e e e e e e e e e e e

Measured Fy and F; Speedup Bounds

El median e e e e e e e e e e e e e e
E.2 80b@L e e e e e e e e e e
E.3 tzee e e e e e e e e e e
Ed scan e e e e e e e e e e e e e e e
E.5 xmowcol e e e e e e e e e e e e e e
E6 bitonie e e e e e e e e e e
E.7 bubble e e e e e e e e e e e e e e e e
E8 matmul e e e e e e e e e e e e e

Summary of F, Speedup Bounds
F1 LowerBounds. @ ...ttt
F2 UpperBounds. e

Summary of F, Speedup Bounds
Gl LowerBounds. e
G2 UpperBounds. e e

List of Figures

1.1 Successive Computer Architecture Improvements 3
21 Global Instruction Broadcastin a SIMD Computer 10
2.2 Loop iteration count J limits I-cache speedup for program simplest 17
31 SIMDCOMPULEr ¢ . it e e e e e e e e e e e e e e e e e 20
3.2 SIMD ComputerBuildingBlock 21
33 GenericSIMDLocalController 22
34 SIMDProcessingElement e 22
3.5 AnExample: Tree-Summationt innennnnn.. 23
3.6 Tree-SummationInnerLoop. il 24
3.7 Generic Abstraction of a Multi-Chip Subsystem as a Function Unit Equivalent 2L
3.8 Assembly Language Program for Tree-Summation. 27
3.9 Machine Code Program for Tree-Summation 29
310GridofSitesonaChip i e 30
3.11 GenericSIMDPE ChipFloorPlan 32
3.12 Global Instruction Broadcast Using Direct Transmission Lines 39
313 SIMDComputerRackLayout 40
314 SIMDComputerPCBLayoutt ninnneenn.. 40
3.15 SIMD Computer PCBRowDetail 41
3.16 Practical Fast Global Instruction Broadcast Network 41
3.17 Parameters Determining the Relative Speedsof MCSs 46
3.18 Alternatives for Maximum-rate InstructionDelivery 49
41 Local ControllerwithI-cache, 51
4.2 +vv. Cache SizeforEachof Four}. Chips. 58
43 ~v. Aforeachofthe4 PEChipsat N=100. 58
4.4 Ideal I-Cache Speedup for Program simple 60
4.5 I-Cache Speedup for Program simple with Quantization, when B=0 62
4.6 I-Cache Speedups forPrcgramthrash 64
51 Method for Measuring I-Cache Speedup 78
5.2 Characteristics of Sample Programs 84
5.3 I-Cache Speedup Bounds fortreeonSIMD-D 87
5.4 I-Cache Speedup BoundsforscanonSIMD-D 88
5.5 I-Cache Speedup Bounds forbubbleonSIMD-D 89
5.6 I-Cache Speedup Bounds forxowcolonSIMD-D 90
5.7 I-Cache Speedup Bounds forbitoniconSIMD-D 91
5.8 I-Cache Speedup Bounds formatmul on SIMD-D 92
5.9 I-Cache Speedup BoundsforsobelonSIMD-D 93

ese

5.10 I-Cache Speedup Bounds formedianon SIMD-D 94

511 Summaryof Fospeedupsat pp=8. o 95
512 Summaryof Faspeedupsat pp=8. e 96
5.13 Summary of I-Cache Speedupson SIMD-A 97
5.14 Summary of I-Cache Speedupson SIMD-B 98
5.15 Summary of I-Cache Speedupson SIMD-C 98
5.16 Summary of I-Cache Speedupson SIMD-D 98
5.17 Ideal I-Cache Compared with Fy fortreeonSIMD-D. 101
5.18 Ideal I-Cache Compared with Fp forscanon SIMD-D. 101
5.19 Ideal I-Cache Compared with F forbubbleon SIMD-D 102
5.20 Ideal I-Cache Compared with Fy for rowcol on SIMD-D 102
5.21 Ideal I-Cache Compared with F; forbitoniconSIMD-D 103
5.22 Ideal I-Cache Compared with F, formataml on SIMD-D 103
5.23 Ideal I-Cache Compared with Fo forsobel onSIMD-D 104
5.24 Ideal I-Cache Compared with F; formedianon SIMD-D 104
5.25 I-Cache Speedups v. Inter-PE Communication Stepcounts fortree 107
5.26 I-Cache Speedups v. Inter-PE Communication Stepcountsforscan 107
5.27 I-Cache Speedups v. Inter-PE Communication Stepcounts forbubble 108
5.28 I-Cache Speedups v. Inter-PE Communication Stepcounts forrowecol 108
5.29 I-Cache Speedups v. Inter-PE Communication Stepcounts for bitonic 109
5.30 I-Cache Speedups v. Inter-PE Communication Stepcounts formatmal 109
5.31 I-Cache Speedups v. Inter-PE Communication Stepcounts forscbel 110
5.32 I-Cache Speedups v. Inter-PE Communication Stepcounts formedian 110
5.33 I-Cache Speedups v. Local External Memory Access Stepcounts fortzee 112
5.34 I-Cache Speedups v. Local External Memory Access Stepcounts forscan 112
5.35 I-Cache Speedups v. Local External Memory Access Stepcounts for bubble 113
5.36 I-Cache Speedups v. Local External Memory Access Stepcounts for roweol 113
5.37 1-Cache Speedups v. Local External Memory Access Stepcounts for bitonic 114
5.38 I-Cache Speedups v. Local External Memory Access Stepcounts formatml 114
5.39 I-Cache Speedups v. Local External Memory Access Stepcounts for scbel 115
5.40 I-Cache Speedups v. Local External Memory Access Stepcounts formedian 115
6.1 Cache Area-Provision Strategies 118
6.2 Method Adapted for Measuring Speedup at FixedChipArea 120
6.3 Fg, Speedup versus Cache Sizefortree 122
6.4 Fo Speedup versus Cache Sizeforscan 122
6.5 Fg Speedup versus Cache Size forbubble 123
6.6 Fy Speedup versus Cache Sizeforrowecol 123
6.7 Fo Speedup versus Cache Size forbitonic 124
6.8 Fo Speedup versus Cache Sizeformatmmal 124
6.9 Fo Speedup versus Cache Sizeforsobelc0iuuee... 125
6.10 Fo Speedup versus Cache Size formedian 125
6.11 Effect of Strategy 2 for matmul on S{MD-A measured at p-set {8,8,8,4,2}. 128
6.12 Effect of Strategy 2 for matmul on SIMD-B measured at p-set {8,8,8,4,2}. 129
6.13 Effect of Strategy 2 for matmul on SIMD-C measured at p-set {8,8,8,4,2}. 129
6.14 Effect of Strategy 2 for matmul on SIMD-D measured at p-set {8,8,84,2}. 130

6.15 Speedup and Cache Size for tree on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} . . 132
6.16 Speedup and Cache Size for scan on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} . . 133
6.17 Speedup and Cache Size for bubble on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} . 134

xiv

6.18 Speedup and Cache Size for zowcol on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} . 135
6.19 Speedup and Cache Size for bitonic on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} 136
6.20 Speedup and Cache Size for matmul on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} . 137
6.21 Speedup and Cache Size for sobel on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} . 138
6.22 Speedup and Cache Size for median on SIMD-D v. FU Complexity at p-set {8,8,8,4,2} . 139

A.l PE Architectural Components 150
A.2 Local External Memory Subsystem 151
A3 SystemController e 152
A.4 machine code Instruction Word Components 152
A.5 System Controller Instruction Word Components 153
A.6 PE Machine Code Instruction Word Components 155
A7 PEExecutionPipeline o o 155
A.8 Local Controller for GenericSIMD Computer 157
A9 Local ControllerwithI-Cache 158
A10F, State Transition Diagram 161
AllFgandFyCacheControllers i it e 162
B.1 Phase-Splitting and OperationOverlap 169
C.1 Square Matrix Layout on a P-Element Linear Array 174
C.2 LinearArrayMatrixMultiply e, 175
C.3 Assembly Language Program for Linear Array Square Matrix Multiply 176
C.4 Machine-code Program for Baseline Linear Array Square Matrix Multiply 178
C.5 assembly Language Program for Fy Linear Array Square Matrix Multiply 180
C.6 assembly Language Program for Fy Linear Array Square Matrix Multiply 181
C.7 Results for 1K Square Matrix Multiplyon SIMD-A 182
C.8 Results for 1K Square Matrix MultiplyonSIMD-B 183
C.9 Results for 1K Square Matrix Multiplyon SIMD-C 184
C.10 Results for 1K Square Matrix Multiplyon SIMD-D 185
D.1 Assembly Language Program fortree 188
D.2 Assembly Language Programforsecan. 189
D.3 Assembly Language Program forbubble 190
D4 (continuednmextpage) e e 191
D.4 (continuedmextpage) it i e e e e e e e e e 192
D.4 Assembly Language Program forrxowcol 193
D.5 (continuedmextpage) e e 194
D.5 Assembly Language Program forbitonic 195
D.6 Assembly Language Program formatmal 196
D.7 (continuednextpage) i i e e e e e 197
D.7 Assembly Language Program forsobel 198
D.8 (continuednextpage) e e 199
D.8 (continuednextpage) e 200
D.8 (continuednextpage)t e e e e e 201
D.8 (continuedmextpage) e e e 202
D.8 Assembly Language Program formedian 203
E.11 Speedup Bounds formedianon SIMD-AandB 208
E.1r Speedup Bounds formedian on SIMD-CandD 209
E.21 Speedup Bounds for scbel on SIMD-AandB 210

Xv

E.2r Speedup Bounds for scbel on SIMD-CandD 211

E.31 Speedup Bounds fortreeonSIMD-AandB 212
E.3r Speedup Bounds fortreeonSIMD-CandD 213
E.4]1 Speedup Bounds forscanonSIMD-AandB 214
E.4r Speedup Bounds for scanon SIMD-CandD 215
E.51 Speedup Bounds for zowcol on SIMD-AandB 216
E.5r Speedup Bounds for rowecol on SIMD-CandD 217
E.6]1 Speedup Bounds forbitoniconSIMD-AandB 218
E.6r Speedup Bounds forbiteniconSIMD-CandD 219
E.7r Speedup Bounds forbubbleon SIMD-CandD 221
E.8]1 Speedup Bounds formatmul on SIMD-AandB 222
E.8r Speedup Bounds formatmul on SIMD-CandD 223
F1l Fo Speedup Lower BoundsonSIMD-AandB 226
Flr Fo Speedup Lower Boundson SIMD-CandD 227
F.21 Fo Speedup Upper Boundson SIMD-AandB 228
F.2r Fo Speedup Upper Boundson SIMD-CandD 229
G.11 F; Speedup Lower Boundson SIMD-AandB 232
G.1r F; Speedup Lower Bounds on SIMD-CandD 233
G.21 F3 Speedup Upper Boundson SIMD-AandB 234
G.2r F; Speedup Upper Boundson SIMD-CandD 235

List of Tables

3.1
3.2
3.3
34
3.5

4.1
5.1

Register Assignments for Tree-SummationloopBody 26
Physical Parameters and Payload Estimates for Four SIMDPE Chips 34
SIMDComputerSpeedst e 37
ChipSpeedst 37
SummaryofDelayModel Termsttt ennen.. 48
Summary of I-Cache Chip-AreaEstimates 57
Summary of Speedups on a Multi-Clock Variant of SIMD-D 85
xvii

Chapter 1

Introduction

Some computational problems demand the fastest possible computers. The two main technologies
used for attaining maximum throughput are VLSI and parallelism. VLSI is a fabrication technol-
ogy that exploits the inherent speed and cost advantages arising from packing computer system
components together inside chips. Parallelism is an organization technology that exploits the speed
advantages of harnessing the collective efforts of large numbers of computational units. These com-
putational units are processing elements (or PEs), each of which is physically small enough to fit
inside a modern VLSI chip.

The inherent performance and cost advantages of placing systems within chips impel both re-
ductions in transistor dimensions and increases in the physical sizes of chips. The size of a chip, as
measured in the number of transistors it contains, increases over time.

Parallel computers containing large numbers of coordinated PEs are the fastest computers for
some problems. The data-parallel problems [41] constitute one class of computational problem for
which the solution speed is roughly proportional to the number of PEs. For a scalable data-parallel
problem, the fastest parallel computer is that containing the greatest number of PEs, all else being
equal.

There is an interaction between VLSI and parallelism that warrants caution on the part of
the computer architect: VLSI implementation technique imposes an upper limit on the number
of PEs that may be packaged together in a chip. The compromise with respect to this technical
reality is to decompose the target system into modules of manageable size, each containing as many
PEs as will fit on one chip when accompanied by whatever circuitry may be needed to facilitate
the decomposition. Coordinating large numbers of PEs requires inter-chip communication, which
typically occurs at a lower rate than communication within chips. The speed advantages of parallel
computers are tempered by the extent to which the activity of a PE can no longer be confined
to a single chip. Coordination among PEs, access by PEs to non-integral storage or functional
components, and movement of input and output data sets to and from the PEs, all incur significant
speed penalties. These speed penalties tend to lessen as VLSI implementation technique improves,
because an increasing fraction of the total activity occurs at the relatively high rates achievable
within the confines of a chip.

This dissertation addresses managing one interaction between VLSI and parallelism in the design
of Single Instruction-stream/Multiple Data-stream (or SIMD) computers. A SIMD computer is a
parallel computer whose PEs are as simple as possible, so as to occupy as little chip area as possible.
Because SIMD computer architecture packs a maximum number of PEs into the available total chip
area, one might expect a SIMD computer to be among the fastest possible for data-parallel problems.
Unfortunately, generic SIMD computer architecture introduces a throughput limitation by requiring
that a new instruction be broadcast to the PEs on each clock cycle. Instruction broadcast to large
numbers of chips occurs at a lower rate than the PEs’ maximum rate of intra-chip operation.

1

2 CHAPTER 1. INTRODUCTION

Of the many cost factors juggled by computer designers, including monetary cost, power consump-
tion, size, and cooling, total chip area is not often the most important. However, there are application
contexts wherein making the best use of chip area is very important. Making good use of chip area is
paramount where the greatest throughput is sought for a given implementation budget with respect
to total chip area. Examples of this type of application include physical simulations, scientific models,
and commercial data analysis. Alternatively, it is important to make the best use of chip area where
the physical size of the computer is limited. Examples of computer systems for which size is critical
include portable computers, commodity signal processors, and embedded systems.

Because of its chip-area parsimony, generic SIMD computer architecture would be appealing, if
not for its inherent throughput limitation. The importance of making good use of chip area leads one
to wonder: Is it possible to re-formulate SIMD computer architecture slightly, without relinquishing
all of the chip-area advantage, to allow the PEs to operate at their highest rate?

The stakes are high enough for the answer to this question to be interesting, because while a PE
in a SIMD computer occupies between 20% and 50% of the chip area of a microprocessor with the
same calculation components, PEs in existing SIMD computers operate at clock rates 8 to 12 times
below the maximum achievable using their VLSI implementation techniques. While a factor of up
to 5 decrease in total chip area may be compelling, surrendering a factor of 8 in operation rate to
achieve it is a poor exchange where speed is the ultimate objective.

SIMD instruction cache (or I-cache), introduced in this dissertation, is an explicitly managed in-
struction buffer added to the PE chips of a SIMD computer. Globally broadcast instruction sequences
that are to be repeated are stored in I-cache for subsequent re-broadcast at the high rate attainable
within the PE chip. Whereas SIMD computer architecture simplifies PEs by eliminating program
control that is redundant for some problems, adding I-cache re-introduces some redundant program
control into the PE chip. How much chip area does the re-introduced program control occupy? Fur-
ther, by how much does I-cache increase throughput? Clearly, the answers to these questions depend
on the characteristics of computational problems, of PE architecture, of VLSI implementation tech-
nique, and of the target computer’s decomposition into chips. The analysis of I-cache reveals how
these characteristics interact. Detailed evaluations of the simplest I-cache variants over a set of
diverse sample problems show that throughput increases are two to three orders of magnitude larger
than the concomitant chip-area cost of I-cache in a modern PE chip.

1.1 The Thesis

The ratio of throughput to total chip area is a useful computation metric in a world of finite re-
sources: For a given total chip area used in a computer, a higher throughput-to-area ratio implies
higher throughput. Equivalently, for a given required throughput, a higher throughput-to-area ratio
implies lower total chip area. For scalable data-parallel problems, high throughput-to-area ratios are
exploitable either as high throughput or as low chip area, depending upon application requirements.
Throughput-to-area ratio is an especially important metric in designing computers for problems
demanding the highest possible throughput given a limited implementation budget with respect to
total chip area.

This section introduces my thesis by providing the background for understanding the throughput-
to-area ratio consequences of I-cache. Figure 1.1 illustrates a sequence of improvements to computer
architecture leading from generic uniprocessors to maximum-throughput programmable VLSI-based
multiprocessors. Each step in the sequence increases the throughput or decreases the cost of the
computer. Each step is applicable only to a subset of the computations at that step, so the domain
of problems narrows as successive steps are taken. This particular sequence describes one path
towards the goal of fast, inexpensive computations, rather than all such paths.

The last two steps in the sequence shown in Figure 1.1 are new, resulting in I-cached SIMD

1.1. THE THESIS

Algorithmic Process Implementation:
implementable in VLSI:
Integrate components
v
(microprocessor computation) D fast & cheap
parallelizable problem:
replicste PEs with program-control
£ v
(MIMD computationj D D faster & costlier
data-parallel problem:
efiminate N-1 of N programs
v
(SPMD-programmed computation) <-ommmnnn simpler
common control sequence:
eliminate redundant local program-control
: "
Gorsmee s cheaper
differing subsystem-operation-rate maxima:
operate easch subsystem at lts maximum rate
J' v
<---e-- faster & costlier
repeated instruction sequences:
eliminate redundant re-broadcast
of instruction sequernces
: v

<-meene- faster & costlier

Figure 1.1: Successive Computer Architecture Improvements

4 CHAPTER 1. INTRODUCTION

computers. My thesis is that significant speedups are exhibited even for simple I-cache variants over
a broad range of data-parallel computations.

The first step in Figure 1 1 characterizes the advent of the microprocessor in the 1970s [76],
whereupon it became possible to place substantial parts of all of the main subsystems of a computer
on a single chip, thus enabling appreciably fast computation at a relatively low cost.

The second step in Figure 1.1 reflects the possibility of multiprocessor computers being faster,
though of course more expensive, than their single-processor counterparts. This step can be taken
for computations that admit parallel solutions. It is interesting historically to note that the second
step shown in Figure 1.1 was in fact applied first, in the construction of non-VLSI multiprocessors
including Solomon [74] and ILLIAC IV [3] in the 1960s. This variance with historical progress
underscores the fact that the sequence represented in Figure 1.1 is not prescriptive of the development
of inexpensive fast computers, but rather merely suggestive of one path leading in that direction.

The most general form of parallel computer is a Multiple Instruction-stream/Multiple Data-
stream (or MIMD) computer, wherein each PE comprises counterparts of the uniprocessor’s calcula-
tion and program-control components, adapted for inter-PE communication. It is increasingly com-
mon for MIMD computers to contain microprocessors and memory chips in their replicated building
blocks. Because they are used in a very large number of applications, microprocessors and memory
chips are manufactured in high volumes. High-volume manufacture typically leads to low monetary
cost. Low monetary PE cost underlies the popularity of this style of MIMD computer design.

The common parallel-programming practice of replicating a single program in all PEs of a MIMD
computer is called Single Program/Multiple Data-stream (or SPMD) programming. Although SPMD
programming is a method-of-use specialization of a MIMD computer rather than an improvement to
the computer itself, the simplicity of SPMD in some cases reduces the programming costs associated
with multiprocessor computation. This step can be taken only for computations solving data-parallel
problems.

The next stepin the sequence shown in Figure 1.1 can be followed for SPMD computations wherein
all PEs’ executions of the single program happen to proceed in a common sequence. In these cases,
the replication of program storage and program sequencing in every PE is redundant. Eliminating
the redundant program control from the PE, so that instead a system controller provides a single
sequence of instructions for all PEs via a global instruction broadcast network, significantly reduces
the chip area occupied by a PE. This control sharing characterizes SIMD computer architecture.

In general, a SIMD computer is less convenient to program than a MIMD computer, because of
the requirement that all PEs receive a common sequence of instructions. This inconvenience restricts
the class of problems for which SIMD computers are appropriate. Primarily, these problems are the
scalable data-parallel problems. The low production volume of SIMD PE chips makes the monetary
fabrication cost per chip characteristically high. A consequence of high PE chip cost is that the
applications for which SIMD computers are practical are further restricted to those in which making
the best use of chip area is paramount.

The shading of the “generic SIMD computer” box in Figure 1.1 indicates that it is the starting
point for the modifications suggested in this dissertation.

Inter-chip wire delays tend to be large compared to intra-chip wire delays. The broadcast of a new
instruction every clock cycle from a central repository, as occurs in a generic SIMD computer, means
that every instruction’s execution involves inter-chip signaling. Therefore, instruction execution
proceeds at a relatively low inter-chip signaling rate. Generic SIMD computers suffer from an
inherent instruction delivery-rate limitation.

The maximum operation rates of a SIMD computer’s subsystems are determined principally by
VLSI implementation technique and by the electrical propagation characteristics of inter-chip wires.
The next step in Figure 1.1 is to adapt a generic SIMD computer so that clocks are available to
regulate the various subsystems, including the PEs, each at its maximum rate. Such a computeris a

1.1. THE THESIS 5

multi-clock SIMD computer. A multi-clock SIMD computer might incorporate a clock-rate multiplier
in the PE chip resembling the high-rate clock generators that are increasingly commonly used in
microprocessors [5, 88]. A multi-clock generator provides a PE clock within the PE chip.

Note that in a multi-clock SIMD computer, even when the rate of the PE clock exceeds that of
the clock regulating global instruction broadcast, PEs still receive instructions at the relatively low
instruction broadcast rate. I-cache is one means to overcome the instruction delivery-rate limitation.
I-cache is an explicitly managed instruction buffer inside the PE chip. In an I-cached SIMD computer,
repeated instruction sequences are stored within the PE chip for subsequent retrieval at the relatively
high PE clock rate.

While it is reasonable to expect an I-cached SIMD computer to be at least somewhat faster than a
generic SIMD computer, it is not clear a priori just how costly are multi-clocking and I-cache. Indeed,
some computer scientists might reasonably object to the improvement claimed for the final two steps
in Figure 1.1: How can multiple clocks and I-cache speed up SIMD computation, which we suspect
to be inherently limited in the rates of inter-PE communication or local external memory access?
Such objections may be lodged, and indeed need to be addressed, with respect to every subsystem of
a SIMD computer in relation to the global instruction broadcast subsystem, which is the focus of the
thesis.

This dissertation provides evidence that adding I-cache is very attractive: while occupying less
than 1% of the area of a modern PE chip, I-cache significantly increases the throughput of a diversity
of data-parallel computations. Detailed simulations of simple I-cache variants reveal that the I-cache
tradeoff has many facets, including the following:

¢ I-cache speedups depend strongly on the relative clock rates of the computer’s subsystems.
Where the disparity between PE clock rate and global instruction broadcast rate is a factor
of 8, these simple I-cache variants yield speedups ranging between factors of 1.3 and 7.9 for a
diverse set of sample programs. For sample programs with simple loop structure, simple I-cache
variants do nearly as well as possible. Some of the sample programs have more complicated
loop structures, for example wherein repeated instruction sequences alternate execution. These
programs with complex loop structures demand more complex I-cache variants.

¢ Surprisingly, the interaction between I-cache speedup and PE chip pin time-sharing for multi-
chip subsystems depends on the relative clock rates of the subsystems. When a multi-chip
subsystem’s clock rate is as low as the instruction broadcast rate, I-cache speedup decreases
with the degree of PE chip pin time-sharing. However, if the subsystem’s clock rate is higher
than the instruction broadcast rate, I-cache speedup in fact increases with the degree of PE
chip pin time-sharing. I-cache acts in some cases to reduce communication bottlenecks that
typically occur at chip boundaries.

¢ Appropriate management of I-cache has important consequences for speedup. For some sample
problems, straightforward static management of I-cache yields near-maximum speedups. Other
sample problems, for example those wherein loop iterations are data-dependent or loop-index-
dependent, demand dynamic cache management mechanisms.

o Avariety of strategies for providing chip area for I-cache in a PE chip of fixed size are presented.
Empirical evaluations of these strategies indicate that while no one strategy works best in all
cases, it is very likely that small I-cache can be accommodated with slight impact on the
operational structure of a SIMD computation.

6 CHAPTER 1. INTRODUCTION

1.2 The Structure of the Dissertation

The reader may currently be using (or thinking about using) data-parallel computation to solve a
particular problem. Such a reader is likely interested in learning how much faster an I-cached SIMD
computer would be than its generic counterpart for that problem, and at what cost. Unfortunately,
there is a huge number of cases, and the dissertation does not provide a closed-form analytic tradeoff
equation. The dissertation does characterize a heretofore unexplored region of the design space
for the fastest possible computers for scalable data-parallel problems. This characterization takes
the form of analysis and evaluation, grounded in detailed examples, that elucidate the issues and
tradeoffs relating to I-cache.

Chapter 2 presents the essential facets of the I-cache idea. The instruction delivery-rate limitation
of SIMD computers is developed in a qualitative manner, and I-cache is proposed as a means to
surmount that limitation. Although the dissertation focusses specifically on I-cache added to SIMD
computers’ PE chips, the central problem of distributing instructions through a relatively slow
channel to many PEs arises also in loading programs into the PEs of MIMD computers. The use of
the term “I-cache” to describe an explicitly managed PE chip instruction buffer may surprise those
who are familiar with the direct-mapped instruction caches ordinarily used in microprocessors. A
clear distinction is drawn between SIMD instruction cache and ordinary instruction cache. A space
of possible I-cache designs is then painted in broad strokes, to provide a framework in which to
consider the mechanisms and functions. To illustrate the essential functions of I-cache, an example
program for a SIMD computation is presented and its I-cache speedup is calculated and discussed.
Chapter 2 reveals the complexity of the interactions between I-cache and the various characteristics
of computations, so Chapter 2 motivates the detailed analysis to follow.

Chapter 3 provides the definition of a SIMD computer that is the starting point in the analysis
of I-cache. Chapter 3 introduces the SIMD computer’s components and their general functions. A
small set of abstractions are incorporated in the model of a generic SIMD computer that allow the
model to encompass a broad range of existing and foreseeable SIMD computers. A detailed example
of a SIMD computation grounds the discussion. I-cache is added to the local controller of a PE chip.
To provide a basis for assessing the chip-area impact of I-cache, a physical model for the PE chip
is presented. A practical estimate for the disparity between PE clock rate and global instruction
broadcast rate is developed which shows that it is very likely for the disparity to exceed a factor of
2. Chapter 3 concludes with a consideration of the options for overcoming the throughput limitation
that arises from that disparity in generic SIMD computers.

Chapter 4 describes the I-cache design elements and introduces a family of related single-port
I-cache variants. The chip area occupied by members of this family is estimated. These I-cache
variants occupy as little as 1% of the chip area originally occupied by PEs in a PE chip made
with present-day VLSI implementation technique. Interactions of I-cache speedup with program
properties are considered, as are interactions with electrical characteristics of the computer. These
considerations provide clues as to what effects to look for in the empirical evaluations of I-cache.
Finally, the I-cache management problem is discussed in detail, illustrated with examples for the
family of I-cache variants.

Chapter 5 describes the empirical method used to measure throughput of SIMD computations.
Measurements are taken from register-transfer-level simulations of a basis computer that is param-
eterized to represent a broad range of generic, multi-clock, and I-cached SIMD computers. Chapter 5
also describes the set of SIMD computer variants on which speedups are measured and the set
of sample problems for which evaluations are performed. Each simulated computation comprises
a problem running on a SIMD computer variant assumed to contain an inter-PE communication
network topology appropriate for the problem. After giving an overview of I-cache speedups for
the various problems, Chapter 5 presents summaries of the measured speedups. The measured

1.2. THE STRUCTURE OF THE DISSERTATION 7

speedups are compared against estimates for the greatest possible single-port I-cache speedups, and
the chapter concludes with measurements that reveal the sensitivities of I-cache speedups to the
intensiveness with which programs utilize the SIMD computer’s multi-chip subsystems.

The I-cache evaluations in Chapter 5 are performed under the assumption that any additional
chip area needed for I-cache is provided without changing the operational structure of the subject
computation. Such would be the case, for example, if the physical size of the PE chip were increased to
accommodate I-cache. Chapter 6 considers alternative strategies for providing the chip area occupied
by I-cache, under the realistic assumption that the PE chip’s physical size is limited. Chapter 6
presents I-cache speedup measurements wherein I-cache chip area is provided by limiting cache size,
reducing PE register count, reducing PE chip PE count, or reducing PE function unit complexity.
The results show that while none of these strategies for providing chip area for I-cache is universally
desirable, it is important to make the I-cache large enough to contain entire loop bodies.

Appendices are included that describe in detail the basis computer, the assembly language used
to describe the computations for the sample problems, an example of developing a sample problem’s
solution and then adding I-cache to the computation, the set of sample programs, and the complete
set of measured I-cache speedups.

The dissertation shows that for diverse problems, even simple I-cache variants yield significant
throughput-to-area ratio increases over generic SIMD computers. The factors by which I-cache
increases throughput-to-area ratio depend on the properties of programs, of VLSI implementation
technique, of PE architecture, and of the architecture of the replicated chip containing the PEs.
Significant speedups are measured for each of a diverse collection of problems, under reasonable
assumptions regarding the electrical characteristics of the computer. That significant speedups
arise in each case shows that even some problems whose computations are ordinarily assumed to be
communication-bound benefit from I-cache.

The simulation results show that I-cache makes good use of chip area in the PE chip. Therefore,
scalable data-parallel applications for which it is paramount to make good use of chip area demand
I-cache. The observed I-cache speedups, along with the modest estimated chip-area cost of I-cache,
suggest that an I-cached SIMD computer would exhibit the highest throughput of any programmable
multiprocessor for scalable data-parallel problems.

CHAPTER 1. INTRODUCTION

Chapter 2

The SIMD Instruction Cache Idea

In SIMD computers, maximum PE instruction execution rate is higher than global instruction broad-
cast rate. The ratio between these rates is denoted p,. The alternatives available for achieving max-
imum throughput when py, > 1 include SIMD instruction cache, or I-cache. I-cache in this context
is new. Its function, and therefore its design, are subtly different from those of the more familiar
caches that are used in microprocessors.

By presenting some of the main hardware and control choices for I-cache, this chapter sketches
the I-cache design space. This chapter concludes with an example of how I-cache is used and how it
impacts the throughput of a SIMD computation.

2.1 Instruction Delivery in SIMD Computers

The PE of a SIMD computer contains only the minimum circuitry needed to operate its data storage
and function units under control of the single instruction stream which it shares with the other PEs.
Conceptually, a SIMD PE may be thought of as a MIMD PE whose program-control components that
store, fetch, and decode instructions have been removed.

On one hand, the SIMD PE’s simplicity means that it occupies minimum chip area. Minimum
chip area per PE allows the greatest number of PEs to be packed into a given total chip area. The
densest packing of PEs should translate into maximum performance per hardware cost for scalable
data-parallel problems.

On the other hand, the SIMD PE’s simplicity introduces a new limitation in the rate at which
instructions are executed. The simplified PE does not perform its own program contrcl. Instead,
the system controller provides a new machine code instruction on each cycle of the system clock.
The limitation arises when the rate at which instructions are provided from afar is lower than the
maximum rate of PE calculation.

The SIMD PE’s simplicity allows many PEs to be packaged within a PE chip of modest size using
current VLSI implementation technique. The system controller in a SIMD computer performs the
program-control function once for all PEs, providing a fresh instruction to the PEs on each cycle of
che system clock. This arrangement is sketched in Figure 2.1.

PE calculation takes place entirely within the confines of the PE chip. By contrast, the electrical
pathway carrying instructions from the system controller must cross between chips at least once
before it arrives at any PE.

The set of wires through which instructions are delivered to the PE chips from the system
controller is the global instruction broadcast network. Let R denote the highest rate at which the
PEs within the PE chip can execute instructions. Let B denote the rate at which instructions are
delivered to the PE chips through the global instruction broadcast network. Then pb=§ is the ratio

9

10 CHAPTER 2. THE SIMD INSTRUCTION CACHE IDEA

=

System
Controller

S Clock
e
Instructions

PE Chip |[PE Chip PE Chip

HAE| HEE |BER
flc]|[=]5]SI_.IS]E]E

Figure 2.1: The system controller provides a system clock and broadcasts a new instruction on each
clock cycle.

of these two rates. That is, p1, denotes the factor by which the highest rate of PE operation exceeds
the rate of global instruction broadcast.

In existing SIMD computers, pp=1 because R=B. This parity between R and B arises in existing
SIMD computers not because global instruction broadcast networks are carefully engineered (so that
B is high) but rather because PEs are artificially slow (making R low). As a typical example, consider
CM-2, a well-known SIMD computer whose PE contains a bit-serial function unit [22]. The system
clock rate in CM-2 is about 8MHz. For comparison, chips of complexity greater than that of the
CM-2 PE have been fabricated using similar VLSI process technology that run at clock rates as high
as 100MHz [86). This disparity is a factor of 12. Other SIMD computers whose PE chips operate
surprisingly slowly include VASTOR (2MHz) {87], CLIP7A (5MHz) [32], AIS-5000 (7MHz) [68], AAP2
(10MHz) [53], CAAPP (10MHZz) [73], MP-1 (14MHZz) [62], and Blitzen (20MHZz) [36].

One ostensible reason for making R artificially low might be to reduce the cost of a PE chip. For
example, it was possible to use relatively inexpensive external memory chips with the slow PE chips
in CM-2 at no performance penalty. Unfortunately, an economic rationale for making R artificially
low is inconsistent with the design objectives of SIMD computer architecture. Making best use of
chip area is paramount for a relatively small subset of all computational problems, so PE chips for
SIMD computers are produced in relatively small quantities. Economies of scale make SIMD PE
chips relatively costly per part. Given that the monetary cost of a PE chip is high, saving cost by
under-designing the PE chip or by using inexpensive external memories is not a good reason for R to
be as low as B. If monetary cost is the prevalent concern, then SIMD computer architecture is not
likely to be an attractive choice. However, where maximum throughput is desired for the available
total chip area, or where minimum total chip area is desired in achieving a given throughput target,
SIMD computer architecture is a compelling alternative, so long as R is not unnecessarily low.

Making the PE chip as fast as possible, such that R is maximum for the PE architecture and for the
VLSI implementation technique, presents design challenges for system integration. While p;, need
not be as large as the factors around 10 suggested by the operation rates and VLSI implementation
techniques of existing SIMD computers, it may be the case that even using high-speed interconnect
techniques to globally broadcast instructions, py, is yet greater than 1, perhaps as high as 2 or 3. Fast
instruction broadcast requires careful engineering of the global instruction broadcast network, and it

2.2. OVERCOMING SLOW INSTRUCTION DELIVERY 11

reduces the flexibility of the system with respect to scaling and geometric re-arrangement of the PEs.
Therefore, higher values of pp, are associated with SIMD computers designed for scalability at lower
system re-integration costs. A further potential drawback of fast broadcast of instructions is that it
demands the system controller, which performs a potentially complicated control function, to operate
at high speed. Finally, the pin-limited nature of PE chips makes time-sharing of instruction receiver
pins attractive, if time-sharing can take place without compromising throughput. Compromise in
respect of any of these factors leads to large values of py.

2.2 Overcoming Slow Instruction Delivery

If the PEs are to perform calculations at the highest possible rates, it may be possible to bring B
into parity with R through careful electrical engineering of the global instruction broadcast network.
However, if it is impractical to do this, then py, is larger than 1. This possibility leads the computer
designer to wonder: What are the architectural alternatives to overcoming the instruction execution
rate limitation that arises when py, is significantly greater than 1? Is it possible to take advantage of
a value of R that is greater than B, or must R be made artificially low?

One option is to make the PE chips microprogrammed. With microprogramming, globally broad-
cast instructions encode sequences of single-cycle PE operations. A microcontroller inside the PE
chip sequences each globally broadcast instruction’s microprogram for the PEs within the chip.

The global broadcast of microcoded instructions has been applied in limited ways in existing SIMD
computers. For example, multiply and divide operations in SLAP are controlled using a pair of glob-
ally broadcast instructions, one to initiate and one to terminate an arithmetic sequence [27](p.373).
The PE instructions carrying out the arithmetic sequence are provided from within the PE chip.
This design choice was made for SLAP to free up the PE chip’s instruction pins so that inter-chip
communication operations could be controlled concurrently with multiplication or division. The PE
chip in SLAP is clocked at the rate of global instruction broadcast.

CM-2 incorporates microprogramming in a limited way. Driven by a high-level language pro-
gram, the CM-2 front end generates complex instructions that are decomposed into single-clock-cycle
operations for the PEs by a microcoded sequencer. This design choice was made for CM-2 to simplify
the computer’s high-level programming interface. The CM-2 sequencer is not integrated in the PE
chip, so it could not help alleviate the consequences of a large value of py,.

An alternative to microprogramming the PEs is SIMD instruction cache. SIMD instruction cache,
or I-cache, exploits temporal locality in the broadcast instruction stream. The I-cache is a buffer
within the PE chip that stores instruction sequences that are identified as being repeated. Repetitions
of a stored sequence are subsequently delivered to the PEs at the highest rate of PE operation. Each
PE does not necessarily need its own I-cache; one I-cache is able to provide instructions to the
collection of PEs located in a PE chip.

I-cache and microcoding both involve beefing up the program control provided within the PE chip.
Comparing these two alternatives, it is apparent that I-cache suffers the relative disadvantage that
instruction sequences must first be stored at the slow broadcast rate B before they can be retrieved
at the high chip rate R. An inherent advantage of I-cache where chip area is limited is that only the
instruction sequences needed for a given computation are stored in an I-cache. By contrast, a set of
microprograms committed to ROM in the PE chip may be large and, at best, difficult to modify.

2.3 A New Use of the Term “Instruction Cache”

A SIMD instruction cache differs in a number of important ways from the direct-mapped instruction
caches typically used in microprocessors. This section highlights the main differences.

12 CHAPTER 2. THE SIMD INSTRUCTION CACHE IDEA

The principal difference between conventional instruction cache and SIMD I-cache is that SIMD
I-cache requires explicit control. The presence of ordinary instruction cache is not apparent in
programs and involves no change to the instruction set architecture of the computer. A SIMD I-cache,
by contrast, is explicitly managed in programs through the use of a small number of cache-control
instructions added to the set of globally broadcastable instructions. A SIMD I-cache operates under
the programmer’s control in a pre-determined manner, whereas an ordinary instruction cache exploits
temporal locality in an instruction stream opportunistically without the programmer’s intervention.

Instructions are read from an ordinary cache on an individual basis to satisfy cache hits, and
instructions are stored in an ordinary cache as fixed-size blocks (or lines) to exploit expected spatial
locality in an instruction stream. A SIMD I-cache is not read for individual instructions, nor are
instructions written into it in fixed-size lines. Rather, a SIMD I-cache stores instruction sequences
of varying lengths. The length of a SIMD I-cache block matches the length of the corresponding
repeated sequence of instructions. For example, the body of an inner loop is managed as a single
block in a SIMD I-cache.

SIMD i-cache is managed differently from ordinary instruction cache. Whereas with an ordinary
cache comes hardware to determine dynamically whether each successive instruction reference may
be satisfied from cache, the SIMD I-caches discussed herein use no such hardware. Rather, these
SIMD I-caches are managed statically, by the programmer, perhaps in conjunction with a compiler.
This characteristic is not inherent, but it is appropriate for demonstrating the concept of SIMD
I-cache with programs whose flow-graph structures are easily statically analyzed. From the point
of view of how the cache memory is managed, static management of SIMD I-cache resembles the
well-known compile-time problem of register allocation.

A microprocessor contains a program-control component that, among other things, generates
instruction memory references. Those instruction memory references are sped up through the use
of ordinary instruction cache. By contrast, a SIMD PE chip does not generate instruction memory
references, because it instead passively receives a sequence of globally broadcast instructions. There-
fore, instructions are placed explicitly in a SIMD I-cache, under the direction of globally broadcast
instructions. Subsequently, the PE chip’s local controller is directed explicitly to retrieve a stored
sequence of instructions from I-cache for execution by the PEs.

The difference between SIMD I-cache and ordinary instruction cache can be summed up by
observing that while some accesses to an ordinary instruction cache miss, all accesses to a SIMD
I-cache hit. If a needed instruction is not present in I-cache, then it is globally broadcast as it would
have been in a SIMD computer without I-cache. I-cache does not change the lock-step nature of
instruction execution among the PEs of a SIMD computer. All PEs still receive a common sequence
of instructions, but a single I-cache in the PE chip makes it possible to provide repeat instructions
at the highest rate to the collection of PEs within the chip.

It is now evident that there are many differences between a SIMD I-cache and the architectural
component ordinarily connoted by the term “cache”. Despite these differences, the term is used here
to refer to PE chip instruction buffers because in its most general sense, “cache” means a relatively
small, fast repository used to speed up computation. The reader need only bear in mind that instead
of circumventing redundant slow accesses to some larger repository of instructions, SIMD I-cache is
used to eliminate redundant instruction broadcasts through a slow network.

2.4 I-Cache Design Parameters

Just what does a SIMD instruction cache look like? This section outlines the I-cache design space by
identifying four major physical design choices.

2.4. I.CACHE DESIGN PARAMETERS 13

1. Number of cache blocks: An I-cache may contain a single block at a time, or it may contain
multiple blocks.

A single-block I-cache is simplest with respect to delimiting blocks in cache memory and also
with respect to managing the available memory, because there is a unique starting address for
any cache block. For a multi-block I-cache, the globally broadcast instruction activating a cache
block must specify the starting address of the block in cache.

Containing more than one block at a time is advantageous for computations wherein a number
of repeated instruction sequences alternate over the course of the program’s execution. With
a single-block I-cache, the alternating sequences must be re-stored in I-cache prior to each
use, because the alternating sequences displace one another. Such re-storing of instruction
sequences in cache is a form of thrashing that reduces I-cache effectiveness.

2. Number of iterations per cache block activation: An I-cache controller may sequence single
passes through a cache block, or it may be capable of sequencing multiple passes in response to
a global broadcast instruction activating the cache block.

A single-pass I-cache is simplest with respect to managing iterations. A multi-pass I-cache
variant requires an equivalent of an iteration counter. A multi-pass I-cache variant might, for
example, be one in which loop-control instructions may be placed in cache.

A multi-pass I-cache is advantageous for instruction sequences whose duration is not an integer
multiple of pp. After each pass through such a sequence, a single-pass I-cache variant awaits
the next globally broadcast instruction to arrive. A multi-pass I-cache variant, by contrast,
does not wait after completing one iteration; rather, it begins sequencing the next iteration
immediately.

3. Number of cache memory ports: Cache memory may have a single port, or it may have more
ports.

Single-port memories are electrically simpler to design than multi-port memories, and their
cells lay out more compactly than do multi-port memory cells.

Using a two-port cache memory in conjunction with a multi-block I-cache variant, it is possible
to pre-store one cache block while another cache block is active. Using a second cache memory
port in this way is a form of prefetching that minimizes the time spent idly by the PEs waiting
for the next block to %2 placed in cache.

4. Nesting of cache blocks: A multi-block I-cache variant may or may not allow cache blocks to
activate one another.

An I-cache without nesting is simpler, because no cache block execution stack is needed.

Allowing cache block activation instructions to be placed in cache memory means that arbitrarily
complex loop structures may be cached entirely. Once an entire program is stored in cache, the
PE chips need not wait for globally broadcast instructions over the course of the computation.

A PE chip containing an I-cache variant of this complexity may be viewed as a SIMD computer in
its own right, because the program stored in cache which controls the collection of PEs in the PE
chip may execute independently of the other PE chips in the computer. SIMD computers with
multiple program-control units are called Multi-SIMD (or MSIMD) computers, as exemplified
in GPA [10].

This dissertation evaluates in detail two of the simplest I-cache variants, Fp and Fy. Fy is the
simplest I-cache variant. containing one block at a time that is executed in single passes. Fy is a
“one-block, one-shot” I-cache variant. Of course, Fg has only one port and the question of cache block

14 CHAPTER 2. THE SIMD INSTRUCTION CACHE IDEA

nesting is moot. Fj is almost identical to Fy, with the addition of the ability to execute multiple
iterations of a cache block from a single globally broadcast activation instruction. F; is a “one-block,
multi-shot” I-cache variant.

2.5 Management of I-Cache

All components of a SIMD computer are centrally controlled (by the system controller), and I-cache
is no different. Although each PE chip has its own I-cache, the states of all of them are identical.
The I-cache replicated in each PE chip is logically redundant, but it serves to remove redundantly
repeated instructions from the global broadcast instruction stream. With I-cache, those repeated
instructions may instead be delivered to the PEs within the PE chip from the fast on-chip repository
also within the PE chip.

I-cache is managed by the system controller using globally broadcast cache-control instructions.
The local controller within the PE chip is directed when to begin storing instructions in cache, when
to stop storing instructions there. Subsequently, the system controller instructs the local controller
to begin executing a cache block by providing the parameters needed to activate the cache block.

Management of SIMD instruction cache is performed either statically by a programmer or com-
piler, or dynamically by a cache management algorithm running on the system controller. Static
cache management occurs prior to execution of a program. Static management is accomplished by
modifying the program controlling the computation that is loaded into the system controller before
the outset of the computation. Static management is sometimes useful also for ordinary instruction
caches; a compiler that statically re-arranges instructions in memory to increase the efficiency of
uniprocessor caches is reported in [57]. The static management of I-cache is reminiscent of the over-
laying used in programs to manage the small main memories of early computer systems including
the DEC PDP-11 and the IBM 360-370 [11)(p.15). Dynamic [-cache management amounts to a case
of the well-known memory management problem that arises, for example, in implementing virtual
memory [72)(Sec.5.2).

Whether I-cache is managed statically or dynamically, and however complex the I-cache design
variant, there is a single set of cache-management sub-problems that are solved in all cases. These
sub-problems are:

—

. identifying the cachable instruction sequences,
. determining which sequences are stored in cache,

. determining where in cache to store cache blocks,

2

3

4. scheduling cache blocks appropriately,

5. directing the storing of the scheduled cache blocks in cache prior to their use,
6

. and activating stored cache blocks at the appropriate points in the computation.

These sub-problems are considered in more detail later (in Section 4.5). Although the I-caches
evaluated herein are managed statically, this has been done for simplicity in the system controller.
The evaluations are performed for sample problems for which the best use of I-cache is straight-
forward. For programs whose flow graphs are difficult to analyze well statically, the system controller
should contain a unit that performs dynamic I-cache management. Such an I-cache management
unit would maintain a model of which instructions are stored where in I-cache. Before globally
broadcasting a cachable instruction sequence, the I-cache management unit would be consulted to
determine if the sequence were already in cache. If so, the sequence would be executed from cache.

2.6. AN EXAMPLE OF I-CACHE USE 15

If not, the decision would be made at that point whether to place the sequence in cache, and where.
The examples of static I-cache management given in this dissertation are indicative of how those
decisions are made.

2.6 An Example of I-Cache Use

This section presents a simple example of how I-cache is used. For an industrial-strength example
for an assembly language, the reader should consult Appendix C.
Consider the skeleton for program simplest, consisting only of a simple loop:

program simplest;
for § =1 to J
A
end;
and simplest;

The symbol A in program simplest denotes the sequence of instructions that is the loop body.
Assuming that A is a cachable instruction sequence, the problems of determining which sequence to
store in cache, when to store it, and when to activate it have obvious solutions.

Recall that an Fy I-cache is the simplest I-cache variant, capable of storing only one cache block at
a time and executing only single passes through the stored block. The following skeleton for program
simplest_cache illustrates how program simplest is modified to use an an F¢ I-cache:

program simplest_cache;
store sequence A in cache

for j =1 to J do
activats cached sequence A
end;
end simplest_cache;

Ideally, each pass through cached sequence A in simplest_cache is p,, times faster than each
corresponding iteration of the inner loop in simplest. However, storing A in cache is an extra pass
through that sequence of instructions in simplest_cache that has no counterpart in simplest.

2.7 I-Cache Speedup

In general, the benefit of using I-cache for a program can be measured directly by comparing the
execution time of the program on a baseline generic SIMD computer against that of a version modified
to run on a SIMD computer with I-cache. The ratio of these two times gives the speedup due to I-cache
for the subject program.

A convenient unit to measure the time taken to run a SIMD computation is numbers of cycles of
the system clock. For example, the time to run program simplest above is given as

time for simplest = J*|A|cycles

where [A| denotes the number of system clock cycles taken for instruction sequence A.
Assuming that instruction sequence A is cachable and that it runs faster from cache by the factor
pb, then the time for the modified program to run with I-cache is given as

A
time for simplest_cache = |A|+ J+* 1;;' cycles

16 CHAPTER 2. THE SIMD INSTRUCTION CACHE IDEA

The I-cache speedup is given as the ratio of these two execution times:

Jx|A|
speedup for simplest = —M
P A+ 7+ 10
- @1
1+ ﬁ
J*py
T m (2.2)

Equation 2.2 suggests that the speedup for program simplest approaches py, as J approaches .
At the other extreme, if sequence A is executed just once (so that J=1), then the speedup is less than
1. While I-cache makes it possible to speed up a computation when py, is large, if used inappropriately
then I-cache can actually slow down a computation. This possibility arises because the time needed
to store an instruction sequence in a simple I-cache is not negligible.

Equation 2.1 points up an analogy between I-cache speedup and speedup due to parallelism.
Recall that a P-PE multiprocessor achieves up to P times the throughput of its uniprocessor counter-
part, although in practice multiprocessor speedup is usually considerably less than that limit [78]. In
general, C of the N instructions executed in the uniprocessor computation are inherently sequential,
such that they cannot be run faster through parallel execution. The multiprocessor speedup limit is
given in Equation 2.3:

. N
speedup due to parallelism < -C-‘_j—;_g (2.3)

Amdahl’s law is the observation that multiprocessor speedup cannot exceed &, irrespective of
the number of PEs in the multiprocessor. For example, if 90% of the instructions executed on a
uniprocessor execute P times faster on a P-PE multiprocessor while the rest of the instructions
execute no faster on the multiprocessor (such that g—=9), then the speedup from parallelism cannot
exceed 10. In this example, for P=1000, the actual speedup is just over 9.9.

The analogy with Amdahl’s law for I-cache speedup is that speedup cannot exceed J, irrespective
of the value of pp. In an I-cached SIMD computation, some instructions must be globally broadcast,
for example to store them in I-cache as in program simplest_cache above. Just as the actual
speedup from multiprocessing is usually less than the number of PEs P, the actual I-cache speedup
is usually less than the limit of p}, even for ideally suitable problems. This limiting effect of J is
evident in the small speedups for simplest for low values of J in Figure 2.2.

This analogy with Amdahl’s law shows the dangers in assuming naively that the benefit from
I-cache is proportional to pp. In fact, the interactions among I-cache design, system design, and
program properties are complex. The difficulty in ascertaining a priori the impact of I-cache on
the throughput and chip area of a given SIMD computation necessitates the empirical evaluation of
I-cache variants that is the focus of this dissertation.

2.7. I.CACHE SPEEDUP

I-cache Speedups for simplest

BT T T T T T =512
14 J=128
12

=32
10

Speedup 8

6

J=8
4
2 J=2
0 A I | 1 1 1 1 1 | | I | { 1 ~L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pb

Figure 2.2: Loop iteration count J limits I-cache speedup for program simplest

18

CHAPTER 2. THE SIMD INSTRUCTION CACHE IDEA

Chapter 3

SIMD Computer Implementation

I-cache is an architectural element added to the PE chips of a SIMD computer to increase the rate
at which repeated instructions are provided to the PEs. So I-cache changes the physical structure
of the computer and the time required to perform a computation. Because it is explicitly managed
by broadcast instructions, I-cache also changes the logical structure of a SIMD computation. To be
able to assess the impact of these many changes, analysis of I-cache requires a model of the SIMD
computer that encompasses both the physical structure of the machine and the logical structure of
the computations it performs.

The SIMD computers produced over the years have been designed under continually changing
technological constraints with a diversity of specific application targets. The great variety in PE
architectures, sizes, interconnection topologies, and engineering cost relationships frustrates the
goal of describing all SIMD computers with a single, universal model.

Nonetheless, it is possible to identify the salient elements that differentiate a SIMD computer
from any other kind of multiprocessor. Furthermore, it is possible to combine those elements in a
model that is parameterized to capture a broad range of implementation alternatives.

This chapter describes the model of generic SIMD computation underlying the analysis of I-cache.
The model highlights the PE, whose replication in large numbers at least cost is the main objective
of SIMD computer architecture. An example illustrates how the SIMD computer’s components carry
out computation.

The SIMD computer’s subsystems that move information between chips (multi-chip subsystems,
or MCSs) are represented in the model in the same way as PE function units (or FUs). This uniformity
of representation facilitates writing assembly language programs that describe SIMD computations
as sequences of FU and MCS operations without regard to the detailed implementation of these
sometimes complicated components.

The SIMD computer executes machine code programs which specify the clock cycle by clock cycle
activity. Assembly language programs are drawn on a sequential model wherein each instruction’s
execution completes before the next instruction’s execution begins. Machine code programs reflect
the physical characteristics of the computer, wherein the length of time required to complete an
instruction depends on the operation it specifies, and wherein mutually independent operations are
performed concurrently, resources permitting.

The most important aspects of this model of SIMD computation reflect the characteristics of
VLSI-based implementation. The PE chips contain many PEs whose FUs can operate at the high
rates attainable within chips. The MCS, for example that through which the PEs inter-communicate
and that access memory external to the PE chip, contain wires that run between chips. Inter-chip
wires typically present relatively large capacitances and long distances, and circuits containing them
are typically slower than intra-chip circuits. Therefore, MCSs typically operate slower than PE FUs.
The global instruction broadcast network is the MCS whose operation rate relative to that of the PE

19

20 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

SYSTER
BONTROLLER

o GLOBAL
lNSTRUCTlON BROADCAST NETWOHK

OA74

MELMORY

Figure 3.1: SIMD Computer

is crucial to the value of I-cache. Also important are the operation rates of the other MCSs; in the
model, these rates are parametric relative to the PE clock rate.

The model allows I-cache to be described as a detailed change to the structure of a SIMD compu-
tation. The model also provides a basis for evaluating the throughput impact of I-cache.

3.1 Generic SIMD Computer

Figure 3.1 depicts a SIMD computer. The system controller generates a system clock that regulates
all elements. The system controller also sequences instructions and broadcasts them via a global
instruction broadcast network to an array of PE building blocks. Other elements of the computer,
including an inter-PE communication subsystem, a data 1/0 subsystem, and a response subsystem,
each comprises one or more chips connecting through inter-chip wires to at least one PE building
block, and is each therefore a multi-chip subsystem, or MCS. The topology of the inter-PE commu-
nication network is a principal discriminator among SIMD computers; existing SIMD computers
contain inter-PE communication network topologies ranging from linear [27] to grid [4, 30, 36] to
multi-stage permutation [6, 8] to hypercube [42].

The system controller consists of a sequencer and a mechanism for evaluating loop-index-depen-
dent expressions and providing the resulting literal values to the PEs. The system controller provides

3.1. GENERIC SIMD COMPUTER 21

From Giobal Instruction Broadcast Network

SYS_CLK :

3

Local Controlier

Local Instruction Broadcast Network

Local
... External
I Memory
] Control and pin access Array
,,,,,,,, for Multi-chip Subsystems
PE Chip I 1 I
To Inter-PE To Data VO To
Communication Network Response
Network Network

Figure 3.2: SIMD Computer Building Block

the program-control functions required in a SIMD computer. The system controller is here assumed
to use a small set of single-cycle operations. An actual system controller may be optimized for specific
computations being performed on a given computer, as for example is the case in SLAP {28]. The
program-control functions performed by the system controller may be complicated. The potentially
crucial topic of SIMD system controller design is beyond the scope of this work.

Figure 3.2 depicts a building block for a generic SIMD computer. The building block coatains
a PE chip connected via inter-chip wires to memory chips. The memory chips are included in the
local external memory subsystem, an MCS realized within the building block to accommodate PE
data requirements exceeding the memory capacity within the PE chip. The PE chip contains a local
controller, a number of identical PEs, control and pin access for the MCSs.

Within the PE chip, the local controller provides cycle-by-cycle instructions to the PEs via a local
instruction broadcast network. The local controller also generates the clocks regulating the PE chip’s
constituents; in a generic SIMD computer, there is only one such clock, standardized to the system
clock. Figure 3.3 depicts a local controller for a generic SIMD computer.

22 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

From Giobal Instruction Broadcast Network

iSystem
iC PE Chip
Boundary
Standardizer I Instruction
Reai
egister
Clock

To Local Instruction Broadcast Network

Figure 3.3: Generic SIMD Local Controller

3.2 Processing Element

The SIMD computer’s PEs carry the brunt of the computational load. The PE is specialized for
performing calculations, with the program-control functions being relegated to the system controller.

From Local Instruction Broadcast Network

|]

Context Subsyster

i e ubsystemn

azgr‘:sot’e; Manager FU Interface
Registers

T e T]

To PE chip
control and pin access
for multi-chip subsystems

Figure 3.4: SIMD Processing Element

Figure 3.4 contains a sketch of the PE. The calculation component is essentially the same as the
calculation component of a uniprocessor, consisting of a function unit (or FU) and register memory.
Figure 3.4 indicates that the PE contains interfaces to the various MCSs, so that it may access
external memory, communicate with other PEs, obtain input data sets, provide output data sets, and
signal data-dependent conditions to the system controller.

The PE also contains a context manager, which performs a limited program-control function.
The context manager allows a SIMD computer to execute data-dependent programs, wherein the
sequence of executed instructions depends on values of intermediate results. Such data dependence
arises, for example, from conditional IF-THEN-ELSE constructs in the program executed by the PEs.

The context manager maintains a one-bit control flag as directed by context management instruc-
tions contained in the globally broadcast instruction stream. These context management instructions
conditionally set and clear the value of the control flag based on intermediate data values. When the
control flag is clear, the PE is said to be “awake” in the current context, and it executes instructions as
they are broadcast. However, when this control flag is set, the PE is said to be “asleep” in the current
context. When the PE is asleep, all writes to PE state, including registers and external memory, are
inhibited. Instructions broadcast when the PE is asleep do not change the state of the PE, and thus
have no effect.

3.3. AN EXAMPLE OF SIMD COMPUTATION: TREE-SUMMATION 23

A
. Local storage reference

Step 3 :
\ Inter-PE communication
Step 2
6
Al0)+A{1] A2)+A[3] Al4)+A[5) A[6)+A[7)
3 ? ; 3
Step1 ; ;
[FEO 1 PE2 3 [PE4 5 [FE6 7
Al0] Afi} A[i]l AK*J Al4) Al5] Alg) A7)

Figure 3.5: An example of tree-summation with P=8. The PEs communicate in a tree pattern to
calculate the sum Y., A[i]. Time progresses upwards in the figure.

Conceptually, the context manager maintains a stack of contexts within the PE, pushing the
value of the control flag whenever a new context is determined. The context manager may be
implemented as an up/down counter with a small amount of associated control logic [27]. A context
manager occupies far less chip area than do a uniprocessor’s program storage and program sequencing
elements.

3.3 An Example of SIMD Computation: Tree-Summation

The following example illustrates what the PE does over the course of a SIMD computation. In the
computation described here, the PEs form the sum of an array of integers. This example is typical of
PE activity in a SIMD computation, because applying an associative operator to elements of an array
occurs often in data-parallel computations. The program-control activity of the system controller,
I/O, and the details of communication are not emphasized here, in favor of focussing on the PE.

In this example, the PEs are inter-connected by a routed inter-PE communication network. To
perform communication, each PE specifies the index of a target PE and a value to be sent to that
PE. The flexible inter-PE communication allows the summation to be performed in log, P steps on P
PEs, where there are P integers to be added.

Figure 3.5 illustrates the successive steps of the tree-summation for the case where P=8. Initially,
the array is stored one element per PE. Figure 3.5 shows that the pattern of communicating PEs
forms a binary tree. At each leaf of the tree is a PE storing one element of the array. During each
step of the computation, values move one step closer to the root of the tree. Each active PE sends its
value to its parent, and the parent adds together the values it receives. The parent becomes a child
on the next step. Figure 3.5 suggests that one of the two children sending a value to a parent resides
in the same PE as the parent. A PE becomes inactive following a step when its parent in the tree
resides in a different PE. After log, P steps, the root of the tree contains the sum of the P elements.

The algorithm sketch in Figure 3.6 shows the sequence of operations performed by the PE. The
computation consists of a loop wherein each PE maintains a value, sum. sumis initialized in each PE.
to contain its assigned array element. (Where the PE index is denoted 7, sum in PE ~ is initialized

24 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

sum = A7)
targmask = -1; /* initialize target mask to all 1's */
for (i=0 ; i<log, P; i++)
{
targmask = targmask << 1; /* shift target mask left one position */
targ = r && targmask’
if (targ = 1)

targ = -1; /* do not send to self */
rxval = route(sum, targ):; /* send sum to PE whose index is targ, where
it is stored in rxval. */
if (tazg !'= -1)
sleep; /* Once its sum has been sent to another PE,
this PE becomes inactive. */
sum = rxval + sum; /* Active PE accumulates received value. */
}
wakeup PE;

Figure 3.6: The operational structure of the tree-summation loop. = denotes the PE index (7 ¢
{0...P -1}). AQ is the array whose elements are added together, and A[#] resides in the memory
of PE r. sum, targmask, targ, and rxval are local PE variables. The final sum ends up in PE 0.

to contain array element A[x].) In the loop body, the PE determines the index of its current tree
parent and sends sum to the parent. If the PE is not itself a parent at this step, then it is asleep
for the remainder of the tree-summation. Otherwise, the PE remains awake and replaces sum with
the sum of its childrens’ values. The algorithm sketched in Figure 3.6 is executed in lock-step on the
array of PEs.

The loop control variable ¢ is maintained in the system controller, not in the PEs, because the sys-
tem controller performs all of the program-control functions. The PE operations shown in Figure 3.6
are carried out using the components shown in Figure 3.4. The local PE variables used in the loop
body are kept in register memory. The first operation retrieves A[x] from local external memory
and places the value in sum Local external memory is an MCS shown in Figure 3.2. If the variable
targmask is maintained in the PE, then the shift operation is performed in the FU. However, the
value of targmask is not data dependent and it has a common value in all PEs. Therefore, targmask
could be maintained once for all PEs by the system controller. In either case, the loop body begins
with FU operations to calculate targ, the index of the PE to whom the current value of sum will
be sent. sum is then transmitted through the inter-PE communication network (if targ Ax). The
inter-PE communication network is an MCS shown in Figure 3.1. After sending its sum to PE taxg,
a PE is deactivated for the remainder of the computation. PEs that remain active are the tree parents
at the current step. An active PE receives a value from the inter-PE communication network in the
register memory variable rxval. At the end of the loop body, the FU adds rxval and sum, placing
the result back into register memory.

By the end of the last iteration of the loop, all PEs except PE 0 are asleep. The instruction
following the loop body awakens the PEs, removing the contexts pushed during the loop’s execution.

3.4 Representations of Multi-Chip Subsystems

Each MCS may comprise control and pin time-sharing sub-circuits within the PE chip, inter-chip
wires, and components contained in chips other than PE chips. The PE’s interface to an MCS

3.4. REPRESENTATIONS OF MULTI-CHIP SUBSYSTEMS 25

From Global Instruction Broadcast Network

PE Chip

F.ocal ComrollerJ

:MCS as PE
:Function Unit Mutti-chip Subsystem

...

Figure 3.7: Generic Abstraction of a Multi-Chip Subsystem as a Function Unit Equivalent

consists of input and output registers containing data sent out and received through the subsystem.
The numbers of input and output registers in the PE for each MCS depend on the MCS function;
either (but not both) of these numbers is 0 in some cases.

The interface registers associated with each MCS make each MCS behave like the FU, from the
point of view of activity on the PE busses: “operands” are stored into input registers from busses,
a designated “operation” is performed, and at the completion of that operation a “result” may be
driven onto a bus from the output register. Figure 3.7 depicts this analogy between MCS and FU.
Whereas the FU performs arithmetic or logical calculation using an ALU contained in the PE chip, an
MCS performs local external memory access, inter-PE communication, system data memory access,
transmission of a logical value to the system controller, or delivery of a broadcast literal, using
circuits that include inter-chip wires.

The abstraction of MCSs as FU equivalents simplifies programming, in that it allows an assembly
language program to specify MCS activity as register-to-register PE operations, without regard to
the detailed implementation of the MCS.

26 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

Variable | » | sum | targmask | targ | rxval
Register || RO | R2 R3 R4 R1

Table 3.1: Register Assignments for Tree-Summation Loop Body

Table 3.1 shows a register assignment for the variables used in the tree-summation loop. Fig-
ure 3.8 shows an assembly language program for the tree-summation loop using the register as-
signments shown in Table 3.1. A LOAD operation is used to fetch A[x] from local external memory,
while a ROUTE operation specifies routed inter-PE communication. MCS operations resemble FU
operations in the code in Figure 3.8. The code in Figure 3.8 also demonstrates the context manage-
ment operations used to control conditional execution of instructions. (Assembly language syntax is
detailed in Appendix B.)

3.5 Constraints Arising from VLSI Implementation

At least since the advent of microprocessors, the characteristics of VLSI implementation technique
have constrained computer throughput. The minimum time required for a VLSI circuit to change
the voltage on a capacitor through a wire grows with both the driven capacitance and the length of
the wire. A characteristic of VLSI circuits is that capacitances tend to be greater and wire lengths
tend to be longer between chips than within chips. Therefore, a key property of VLSI-based systems
is that intra-chip circuits tend to be faster than multi-chip circuits.

A VLSI manufacturing process determines the maximum number of transistors that can fit into
a chip, although wires that inter-connect transistors typically cause the actual number of transistors
realized in a chip to be well below the maximum. The maximum number of transistors is a function of
the process resolution (characterized by the length unit A [58p.48)) and of the physical dimensions of
a chip that is manufacturable with acceptable yield. Commercial factors tend to cause X to decrease
and the physical size to increase over time [23]. The constituents of the PE chip of a SIMD computer
compete for the limited resources available within the chip. As suggested in Figures 3.2 and 3.4,
these resources are shared among the FU, context manager, and registers of each PE, MCS local
control and interfaces, and the local controller.

Chips have limited numbers of external connections. If the input and output pads to which inter-
chip wires are attached are arrayed around the periphery of a chip of edge length N, then there
are O(N) such pads. This number grows more slowly with N than does the maximum number of
transistors per chip, which is O (¥)2. As VLSI implementation technique improves, N grows while)
decreases. Therefore, the ratio of transistors to pads arranged around the periphery grows as O (;\A{r).
The placement of I/O structures around the periphery is not necessary for VLSI implementation of
the PE chip; however, it is characteristic of inexpensive present-day chips.

A large proportion of the chips in a SIMD computer are PE chips. As indicated in Figure 3.2, each
PE chip is accompanied by a set of memory chips. Other chips are sometimes required for inter-PE
communication, for system data memory access, for problem-specific I/O, or for transmitting status
information to the system controller. The continual use of a global instruction broadcast subsystem
distinguishes a SIMD computer from other multiprocessors. The global instruction broadcast net-
work fans out from the system controller to all PE chips in the system. The total capacitive load
presented by the PE chips’ global instruction receiver pins is large, and the worst-case distance of
these pins from the driver is likely to be as large as that for any signal driven in the SIMD computer.

3.5. CONSTRAINTS ARISING FROM VLSI IMPLEMENTATION

program tree._sum loop (logP,&Api):

! The tree-summation loop. Parameters:

! logP is log(P), P the number of array elements and PEs

! §Api is the address in local external memory of A,
IDX IR0 ‘0’ ; Rl = LITERAL(‘GApi’)

; R2 = LOAD(R1) ! Initialize sum

; R3 = PASS('~1') ! Initialize targ

CJISR FORC LOOP ‘logP - 1’ ; ! logP iterations at label LOOP
; [CLR] ! Awaken all the PEs

HALT ;

LOOP :
; R3 = LSHIPFT(R3, ‘1)
; R4 = AND (RO, R3)
; LC_PUSH.EQ(R4,R0) ! Sleep unless targ == 7
; R4 = PASS(*~-1') ! targ = -1 => send to noone
; [POP] R1 = ROUTE(R2,R4) ! perform inter-PE communication

; LC_PUSH.NE (R4, ‘*~-1') ! Remain awake only if a parent this step

R2 = ADD(R1,R2)
LTST ICTO LOOP ; ! iterate until loop counter reaches 0

27

Figure 3.8: Assembly language for the tree-summation loop. Each line specifies one assembly
language instruction. To the left of the semicolon is a system controller instruction, to the rightisa PE
instruction. Exclamation point begins a comment that continues to end of line. The PE instructions
of the form LC_PUSH. create a new contextin which the PE is conditionally asleep, depending on the
value of the specified condition in the PE. The part of the PE instruction in brackets also manipulates
local context, reverting to the previous context (in the case of [POP]) or unconditionally waking up
the PE (in the case of [CLR]). The system controller instruction CISR begins executing the loop body,

while the system controller instruction LTST performs the loop completion test.

28 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

3.6 Operation Stepcounts

Limited chip area means that there might not be as much chip area available as desired in the
PE chip for FUs and register files. Also, limited pins means that there may not be as many pins
available as desired per MCS. A common compromise introduced by such resource constraints is
to time-multiplex the available resources. FU or MCS operations that are time-multiplexed take
multiple clock cycles to complete.

One way that FU time-multiplexing arises is when the FU has a width (in bits) that is less
than the width of the operands. For example, the MP-1 PE’s 4-bit FU adds 32-bit integers in 8
steps [62]. Another way that FU time-multiplexing arises is when the circuit complexity of the FU
is less than that required for a given operation. For example, there may not be sufficient chip area
for a combinational multiplier, and multiplication may be carried out as a sequence of additions.
The SLAP PE provides an example, wherein its 16-bit FU (with a built-in Booth’s bit-pair recoder)
multiplies 16-bit integers in 8 steps [27].

Depending on the degree of time-sharing of PE chip pins and on network design, an MCS may
use multi-step sequences to perform its data transfers. For example, local external memory access
through a shared port requires a number of steps proportional to the number of PEs in the chip. As
another example, the SLAP I/O subsystem delivers a new datum to each PE in a number of steps
proportional to the total number of PEs [25].

The need for multiple steps to carry out an operation is the principal difference between assembly
language instructions and machine code instructions. An assembly language instruction specifies
an FU or MCS operation. Assembly language semantics are sequential, in which each instruction’s
operation has completed before the next instruction begins executing. Machine code semantics, by
contrast, allow that multiple rachine clock cycles are sometimes needed to perform a given operation.

To make it possible to represent SIMD computers that vary in these ways, a stepcount parameter
is associated with every assembly language FU and MCS operation. FU operation stepcounts char-
acterize FU bit-width and circuit complexity relative to the requirements of application data, while
MCS operation stepcounts characterize PE chip pin sharing and inter-chip network complexity. The
stepcount of an operation gives the number of machine clock cycles in the underlying SIMD computer
required to perform it. As a simplification, the model prohibits pipelined operations.

For some operations, the actual number of steps depends on the specific data involved. This
dependence occurs, for example, in logical word rotation using a distance-1 barrel shifter. This
dependence also occurs in the general case of routed inter-PE communication. Assigning fixed
numbers of clock cycles to operations is sometimes an imperfect approximation that compromises the
validity of results. The sensitivities of results to these approximations are identified and compensated
where appropriate in the analysis of measured results.

As an example of how stepcounts characterize a SIMD computer, the following is a list of step-
counts for some operations of a computer operating on 32-bit integers with 16-bit PEs packed 4 to
a PE chip (as in SLAP [26]) and inter-connected through a three-stage permutation network (as in
GF11 [6]):

3.6. OPERATION STEPCOUNTS

Figure 3.9:

29

System Controller Instruction PE Madule Instruction
O SCopn | A4 [2]8 C | Dest Oparation ScA | SnB | LB.Value | rde
0 LDX 0 0 REG1 LITERAL.0 17
1 LOAD.TX.0 LIT OUT
2 PASS1 -1
3 REG3 PASS.O[N)
4 REG2 LOAD_RX.0
5 CJSR FORC [16 | 9
3 CLR
7
8
9
10
1
12
13
14
15 HALT
16 LSHIFTA REGS 1
17 REG3 LSHIFTO(N]
18 AND.1 REG.0 FU.OUT
19 REG.4 AND.O (N)
20 LCPUSHEQI FU.OUT REG.0
2 LCPUSH_EQO [N]
22 PASS.1 El
23 REG.4 PASS.0(N)
24
25 ROUTE.TX.0 REG.2 REG 4
26
27 POP | REG1 ROUTE.RX.0
28 LC_PUSH.NE.1 REG4 E]
29 LC.PUSH.NE.O (N}
30 ADD.1 REG1 REG.2
L] REG2 ADD.O (N]
32 LTST ICT0 | 16

Machine code for the tree summation loop. Here, P=1024, the array element A[r]
happens to be at address 17 in PE memory (so &A_pi =17), operands are 32 bits wide, PE FUs are 16
bits wide, there are 4 PEs per chip, and inter-PE communication uses a 3-stage permutation network.

| Operation Name

Meaning

Stepcount ||

LITERAL
AND
ADD

LSHIFT

LC_PUSHEQ

LC_PUSHNE

PASS
LOAD
ROUTE

“Broadcast literal

Logical and

Addition

Left shift

Push new context:

PE is active if operands are equal
Push new context:

PE is active if operands aren’t equal
Logical identity

Local external memory load
Routed inter-PE communication

N NNNNN

LN

Using the stepcounts in the above table and assuming that P=1024 and that array element A,
lies at address 17 in PE memory, the assembly language program in Figure 3.8 results in the machine
code program shown in Figure 3.9. (Machine code is detailed in Appendix A.)

30 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

3.7 PE Chip Model

For scalable data-paralle! problems, throughput is proportional to the number of PEs. To maximize
the throughput for scalable data-parallel problems, SIMD computer architecture aims to maximize
the number of PEs realized in a given total chip area. To that end, the PE of a SIMD computer is
specialized, consisting mostly of FU and registers (as sketched in Figure 3.4). This specialization
allows most of the chip area occupied by the PE to contain the components needed to perform
calculations. PE chip payload is a chip-area measure that expresses the “amount of PE” contained
in a PE chip. This section presents a generic model of a PE chip, develops a formula for payload,
and applies the formula to a number of examples. Payload is a useful way to compare PE chips
made using different VLSI implementation techniques. As shown in Chapter 4, payload provides a
uniform quantitative basis for estimating the cost of I-cache.

It is difficult to find a uniform payload metric, because there are many alternative implementa-
tions of a PE chip containing PEs of a given architecture. VLSI implementation technique encom-
passes alternatives in logic designs, in circuit designs, in geometric layout, and in chip fabrication
process. Diverse logic structures for MOS chips are presented systematically in [83]. As an example
of the range of circuit design techniques, circuits with active storage elements (flip-flops) are usually
easier to design than their counterparts with passive storage elements (capacitances), although the
former tend to be larger. As an example of the range of layout techniques, automated layout of circuits
is typically easier than the manual alternative, although the latter method tends to yield smaller
and faster circuits. VLSI fabrication processes vary in geometric resolution, in design rules, in the
physical sizes of switching devices, and in the electrical characteristics of the switching devices.

The diversity of VLSI implementation techniques defies uniform payload comparisons among PE
chips. However, assuming similar design techniques have been used, it is possible to compare the
payloads of chips based on their physical characteristics alone. The parameters H and W represent
the physical dimensions of the PE chip in mm. Typical values for H and W for microprocessors today
range from about 10mm to more than 16mm. The parameter) represents the geometric resolution
of the VLSI fabrication process in um [58)(p.48). Typical values of A for processes used to make
microprocessors today range from as low as 0.3um to as high as 1.0um.

Hm

ohip b i

Figure 3.10: Grid of Sites on a Chip

To approximate its area, a chip can be thought to contain a grid whose resolution is A x A, as
sketched in Figure 3.10. Each grid square is a site on which can be placed integrated circuit elements,
including switching devices or wires. A site is Aum on a side and occupies chip area A2 x 10~12m.
The total number of sites in a computer system is sometimes called its “grain size” [70}(p.1252). The
total number of sites on a chip is shown in Equation 3.1.

3.7. PE CHIP MODEL 31

gites - Hmm + Wmm (3.1)
chip (Aum)2)
HW
= v X 106

The total number of sites on a chip is determined solely by VLSI fabrication process characteristics.
This number ranges over about an order of magnitude for current chips, from about 10° to just beyond
10°.

The site is a unit of chip area that scales with #, W, and A\. For a given number of sites per
switching device, the number of devices scales with the number-of-sites measure of variations in
VLSI fabrication process analogously to the scaling of circuit geometries with the linear resolution
parameter A.

Although the “amount” of PE realized in the available chip area depends on the entire VLSI
implementation technique, PE chip payload is proportional to the number of sites available for PEs.
11 denotes payload, and II is defined in Equation 3.2:

II = # of PE chip sites used for PEs 3.2)

The chip area occupied by a PE depends both on the PE architecture and on the VLSI implemen-
tation technique. PE architecture encompasses such details as datapath width, register count, MCS
interface design, and FU circuit complexity®.

Existing SIMD PE chips are typically organized as linear arrays of bit slices. Figure 3.11 illus-
trates such a PE chip organization. On-chip linear arrays are used in the MP-1 PE chip (pictured
in [56)), in its precursor designed at DEC (pictured in [33]), and in the SLAP PE chip (pictured
in [27)). The PE area in the Blitzen PE chip is tiled with a two-dimensional array of ALU-memory
pairs, as shown in [36]. The Blitzen PE chip is equivalent to a linear array of bit slices, wherein each
bit slice consists of FU and registers alternating in the vertical dimension. The four examples men-
tioned here are representative of the small number of SIMD PE chips for which microphotographs
of working chips have been published.2

Figure 3.11 suggests that I/O structures occupy a ring around the perimeter of the PE chip. This
placement of I/O structures is not necessary for VLSI implementation of the PE chip, although it
is characteristic of inexpensive chips fabricated using present-day VLSI implementation technique.
The sites within this perimeter are not available for PEs. Figure 3.11 reflects that assumption that
the thickness of the I/O ring is 500um, as happens to be the case for each of the three PE chips
examined in detail in this Chapter. Given these assumptions, Equation 3.3 defines I, the interior
chip area of the PE chip that is available for PEs:

interior chip area
PE chip

(H-1)(W-1)
T

1The circuit complexity of the FU refers loosely to the amount of arithmetic work the FU performs in a single operation.
For example, a combinational multiplier array performs multiplicationin a single clock cycles’ operation, whereas an adder
with a built-in multiply step performs multiplication over a sequence of clock cycles. A combinational multiplier has greater
complexity than a simple adder, which typically implies that the multiplier would occupy greater chip area and operate at
a lower maximum rate.

2Floor plans for other SIMD PE chips, including those shown in[87) and in [68], suggest on-chip linear array organization.
CLIP7A, an early VLSI-based SIMD computer, contains just 1 PE within its relatively small PE chip [32).

(3.3)

x 10°% sites

32

physical height Hmm

CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

physical width Wmm

interior width = (W - 1)mm

4 ’ Input/Output Pad Region

net PE area
local

0

controlier T

g

(]

Registers E

-]

K]

&

*
E

g # PE bit slices

T
]
E
o

2 2

8 3

s 5

£ o

[T

MCS Interface Registers

.

Multi—chip Subsystem Control and Pin Access

Figure 3.11: Generic SIMD PE Chip Floor Plan

3.7. PE CHIP MODEL 33

Ideally, the interior of the PE chip would be used entirely for payload. In practical SIMD comput-
ers, some proportion of the interior chip area is occupied by the local controller and by MCS control
and pin-access circuits, as suggested in Figure 3.11. A denotes the interior chip area that is occupied
by the local controller and by MCSs, while II denotes the remaining interior chip area. 4 and II are
related to [as per Equation 3.4:

~
L]

non-PE interior chip area + payload chip area (3.4)
A+l sites

Whereas I depends only on VLSI implementation technique, A depends also on local controller
design and on MCS interface requirements. Therefore, the payload II depends severally on local
controller design, on MCS interface requirements, and on VLSI implementation technique.

Substituting for I from Equation 3.3 into Equation 3.4 yields the the PE chip payload formula
shown in Equation 3.5:

=]
i

of PE chip sites used for PEs (3.5)
interior area — non-PE interior area
(H —1),\§W -1 A sites

Equation 3.5 gives a definition for PE chip payload that is independent of PE architecture.
Equation 3.5 suggests that payload depends only on the following characteristics of the PE chip:

o VLSI implementation technique,
e MCS interface requirements,
¢ and local controller design.

Note that only the last of these characteristics changes when I-cache is added to the PE chip.

Equation 3.5 gives the payload II as a function of H, W, A, and non-PE interior area 4. It
is possible to calculate the payload of a PE chip given a microphotograph of the chip, if the VLSI
fabrication process parameters are known. Published microphotographs of PE chips reveal floorplans
that conform roughly to that sketched in Figure 3.11, with the exceptions that the MCS interfaces
occupy an annular ring just inside the I/O ring, and the local controller occupies a vertical strip
down the center of the chip instead of being to one side of the PE area as shown in Figure 3.11. The
dimensions of the local controller and the MCS interfaces can be measured in the microphotograph
using a ruler. Adding together these measured dimensions and then dividing by the total interior
area yields an estimate of the fraction of the interior area used for MCS interfaces and for the local
controller. Multiplying this fraction by the interior area (I, defined in Equation 3.3) yields non-
PE interior area A. Finally, substituting this value for A and the known physical parameters into
Equation 3.5 yields an value for PE chip payload II.

Table 3.2 shows a summary of the physical parameters and payload for four PE chips: SLAP,
MP-1, Blitzen, and ALAPH. The first three of these chips have been described in the literature, while
the fourth is hypothetical, based on current VLSI process technology.

The SLAP PE chip contains 4 16-bit PEs [27], organized as one row of 64 bit slices. Inspection of
the SLAP chip (shown in the photo in [27]) indicates that the local controller and the MCS interfaces
together occupy about 36% of the interior area.

34 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

SLAP | MP-1 | Blitzen | ALAPH

H (mm) 9.2 9.5 11.0 13.9

W (mm) 7.9 11.6 11.7 16.8

A {(pm) 1.0 0.8 0.5 0.375

interior area I (x10° sites) || 57 141 428 1400
non-PE area fraction 4 (%) || 36 17 17

non-PE area A (x10° sites) || 20 23 72 100
payload II (x10° sites) 36 118 356 1300
PE FU width (bits) 16 4 1
fraction of PE bit-slice

occupied by registers (%) 20 34 60

Table 3.2: Physical Parameters and Payload Estimates for Four SIMD PE Chips

The MP-1 PE chip contains 32 4-bit PEs [62], organized as one row of 128 bit slices. Inspection
of the MP-1 chip (shown in the large color photo in [56]) indicates that the local controller and the
MCS interfaces together occupy about 17% of the interior area.

The Blitzen PE chip contains 128 1-bit PEs [36], organized as 8 rows of 16 PEs per row. Inspection
of the Blitzen chip (shown in the large photo in [37]) indicates that the local controller and the MCS
interfaces together occupy about 17% of the interior area.

The ALAPH PE chip is a hypothetical one whose parameters are taken from the VLSI process
used for the Alpha microprocessor [21]. The estimate for ALAPH’s non-PE area A of 100 x 10° sites
is conservative given the values for the existing chips. ALAPH would contain two or more 32-bit
PEs, each with at least 2000 registers.

Table 3.2 shows the proportion of the PE bit slice occupied by registers in the three existing PE
chips. It is interesting to note that the proportion of chip area allocated to registers increases as the
FU bit-width decreases.

Another interesting feature of Table 3.2 is that the ratio 4 happens to be 17% in both the Blitzen
and MP-1 PE chips, whereas SLAP’s non-PE area represents twice that fraction. There are two likely
sources of this disparity:

1. Multi-chip subsystem interface complexity.

Local external memory access in Blitzen and in MP-1 has the characteristic that the system
controller provides 1 address through the global instruction broadcast network that is used
for all PEs’ addresses. By contrast, the SLAP PEs each supply their own addresses to local
external memory. For this reason, the local external memory interface within the SLAP PE
chip is occupies more chip area than its counterparts in the other two PE chips.

2. Local controller complexity.

Whereas the Blitzen and MP-1 local controllers occupy negligible area in their respective PE
chips, the SLAP instruction decoder occupies almost 20% of the interior. This difference is due
to the different functions performed by the local controllers in these chips.

In all three of these PE chips, machine code instructions are executed in a pipelined manner.
Typically, there are three execution phases, consisting successively of:

3.8. HOW LARGE IS pp? 35

(a) register operand fetch,
(b) FU calculation, and
(c) register result write.

Successive pipeline stages execute on successive PE clock cycles. A machine code instruction
requires three clock cycles to complete, and on any given clock cycle, three successive machine
code instructions are in execution. The instruction provided to the PEs within the PE chip on
each clock cycle controls a single clock cycle’s activity, and therefore has contributions from each
of the three instructions currently in execution.

In SLAP, the system controller broadcasts machine code instructions. The SLAP PE chip’s local
controller decomposes each arriving instruction into its partial contributions on each of three
successive PE clock cycles to the single-cycle control word provided to the PEs. In Blitzen and
in MP-1, by contrast, the system controller broadcasts single-cycle PE instructions. Instead of
broadcasting the machine code instructions themselves, the system controller assembles each
globally broadcast instruction from the relevant parts of the three machine code instructions
currently in execution.

To perform its pipeline control function, the SLAP local controller contains pipeline staging
registers and decode logic that are not present in the Blitzen and MP-1 local controllers. The
design choice in SLAP for the local controller to perform pipeline control decoding represents
a departure from strict SIMD computer architecture. As for other program-control functions,
this decoding is more efficiently performed once for all PEs in the system controller, rather than
redundantly replicatedly within each PE chip. The relatively large instruction decoder in SLAP
highlights the large chip-area cost paid for non-trivial instruction decoding within the PE chip.

3.8 How Large is p,,?

pb expresses the ratio of maximum PE clock rate to global instruction broadcast rate. The speedup
due to I-cache depends on the value of py,, which is in turn determined by characteristics of chips
and their interconnections. There is a range of possible values of pp. In some existing SIMD
computers, py, appears to be greater than 10. Detailed estimates suggest that p, would be at least 2 in
practical SIMD computers made with foreseeable implementation technique. High-rate instruction
broadcast incurs significant PE chip pin and board wiring costs. Minimizing these costs leads to
lower instruction broadcast rates, so that a new SIMD computer whose resources are concentrated
in the PE chips instead of in the instruction broadcast network might exhibit gy, even higher than
observed in existing SIMD computers.

PE clock rate depends solely on the characteristics of the PE chip, whereas global instruction
broadcast rate depends on the size of the computer and on the electrical characteristics of the broad-
cast network. For a given PE architecture, the PE clock rate is determined within a fairly narrow
range by the VLSI implementation technique. By contrast, the sizes of existing and foreseeable SIMD
computers vary widely. Variations in computer size and in system-level implementation techniques
give corresponding variations in the broadcast rate. For example, a very small SIMD computer might
fit within a single chip, wherein instructions are delivered to the PEs at the high on-chip rate. At
the other size extreme, a very large SIMD computer would fill a large chassis, wherein the rate of
instruction broadcast might be considerably lower than the PE clock rate. While it is possible in
principle to construct a network that broadcasts instructions at any reasonable PE clock rate for
a SIMD computer of any size, so doing requires precise matching of wire lengths and of electrical
component characteristics. For some SIMD computers, such precision is prohibitively expensive.

36 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

Maximum PE clock rate is determined by VLSI implementation technique and by PE architecture.
Current single-chip systems, including microprocessors, provide a basis for estimating the PE clock
rate achievable with readily foreseeable VLSI implementation technique. For example, a 32-b PE
made using recent CMOS VLSI implementation technique should operate at rates well beyond
the rate of 200MHz achieved for a 64-b microprocessor [21], while a 32-b PE made using recent
BiCMOS VLSI implementation technique should at least equal the 300MHz achieved for a 32-b
microprocessor [47]. Simplicity of function typically shortens critical paths and allows higher clock
rates. For example, operation rates of one-bit arithmetic components have been measured in excess
of 250MHz using 3um CMOS [89], while a 333MHz 32-b adder has leen implemented in 0.5um
BiCMOS [35]. These examples suggest that the clock rate for a new PE would lie between 200MHz
and 300MHz, or possibly even higher if the function unit operates on narrow words.

Having based PE clock rates on .hose of microprocessors, it makes sense to extrapolate from the
disparity between on-chip and off-chip clock rates observed for modern microprocessors to estimate
pp directly. Most modern microprocessors operate internally at least two times faster than their
external memory interfaces [21, 88, 5]. A primary reason for this disparity between on-chip and
inter-chip operation rates is that off-chip wires are driven as lumped capacitances: The capacitances
of inter-chip wires are typically about an order of magnitude greater than the capacitances associated
with on-chip signals, and the time needed for a MOS circuit to drive a lumped capacitance grows
logarithmically with the capacitance [58)(p.14).

The global instruction broadcast network in a SIMD computer is typically electrically larger and
far more geometrically complicated than a microprocessor’s external memory interface. Were the PE
chips made using the microprocessors’ VLSI implementation technique and the global instruction
broadcast network driven as a lumped capacitance, then g, would certainly be much larger than 2.
For example, in a SIMD computer occupying a single 50cm x 50cm printed circuit board (PCB), each
bit of broadcast instruction might present a lumped capacitance of around 2.5nF. Even using a very
low-resistance driver of R,,=61, the instruction bit rise time would be 33ns. Allowing 3 times the
rise time for the bit interval, this corresponds to a maximum broadcast rate of 10MHz. Against a PE
clock rate of 300MHz, this yields a py, of 30.

In a generic SIMD computer, the PE clock rate equals the system clock rate, which is determined
by the global instruction broadcast rate. One might expect the electrical design of a SIMD computer’s
global instruction broadcast network to be do better than driving the instruction bits as lumped
capacitances, so as to provide instructions to the PEs at their highest execution rate. It is therefore
surprising that there is in fact a significant disparity between maximum possible PE operation
rates and system clock rates in existing SIMD computers. The global instruction broadcast rates of
recent SIMD computers range from as high as 20MHz to as low as 8MHz, as indicated in Table 3.3.
The clock rates indicated in Table 3.3 are significantly lower than the operation rates of circuits of
similar logical complexity to the PE function units implemented using similar VLSI implementation
techniques. A comparison of the operation rates for the chips listed in Table 3.4 against those of the
computers listed in Table 3.3 suggests that PEs in existing SIMD computers execute instructions at
rates about 10 times lower than they otherwise could. In other words, gy, appears to be around 10 in
existing SIMD computers.

High values of py, for existing SIMD computers suggest that board- and chassis-level engineering
factors prevent high-rate global instruction broadcast. An alternative to driving each instruction bit
as a single lumped capacitance is to organize the global instruction broadcast network as a clocked
fanout tree whose nodes drive smaller lumped capacitances. In such a network, a high-rate clock
regulates the advance of instructions from the system controller through a tree of clocked registers
to the PE chips. The instruction fans out by a modest factor at each successive level of the tree.
Assuming that the system clock is distributed with sufficiently low skew, instructions progress at the
rate of inter-chip signaling. Of course, inter-chip communication in this network incurs module and

3.8. HOW LARGE IS py? 37

System Clock-rate | Technology | Year Single-cycle PE Op PE FU Width
GF11 [6]| 20MHz mixed 1985 | floating-point multiply 32b
CM-2 [16] 8MH:z 2.0pm CMOS | 1987 1 add 1b
SLAP (28] 8MHz 2.0um CMOS | 1988 2-b multiply step 16b
Blitzen (36] | 20MHz |(1.0um CMOS | 1988 add 1b
MP-1 [62)] 14MHz | 1.6um CMOS | 1990 add 4b
CM-200 [16,17] | 10MHz | 1.54m CMOS | 1991 } add 1b

Table 3.3: SIMD Computer Speeds

Chip Clock-rate Technology Year | Single-cycle Op | Operand Width
Divider {861 | 100MHz 2.0um CMOS | 1987 | 1-bdivide step 54b
Yuan [89] | 250MHz 3.0um CMOS | 1989 count 4b
DataWave [67] | 125MHz 0.8um CMOS | 1990 | 2-b multiply step 12b
Yuan [90] | 700MHz | 2.0ymCMOS | 1991 count 8sb |
Alpha [211 | 200MHz | 0.375um CMOS | 1992 | 4-b multiply step 64b
Hitachi [63] | 250MHz | 0.3um BiCMOS | 1992 add 32b

Table 3.4: Chip Speeds

board crossings, and the need for all levels in the distribution tree to be synchronized likely means
that pp, > 2. The fanout tree achieves fast insruction broadcast at the cost of high latency, which price
is paid as PE idle time at each global data-dependent branch in a program. The greatest drawback
of a clocked fanout tree is that it contains a large number of chips and wires, which resources could
otherwise be used for PE chips themselves.

PCB traces typically have low resistance and may be modeled as distributed inductors and
capacitors, such that when run over a ground plane they may be used as transmission lines. The
design of a high-speed broadcast network that contains fewer chips than a clocked fanout tree would
exploit the electrical properties of transmission lines. The time for a voltage step to propagate
through a terminated transmission line is given as the time of flight delay, ¢;:

tf = - (36)

where [is the length of the line and v is the propagation velocity. v is typically on the order of the
speed of light, so transmission lines minimize signaling delays between chips.

More important with respect to high-rate instruction broadcast is the fact that a unit voltage
step does not deteriorate as it propagates through a uniform lossless transmission line. The rate
at which signals are delivered through a transmission line is determined not by the propagation
delay for a single voltage step, but rather by the time interval needed for a receiver to be able to
distinguish between successive voltage steps. Where the time of flight (¢) through a transmission
line is significantly greater than the driver’s rise time (¢,), a transmission line makes high-rate
signaling possible by allowing multiple voltage steps to be in transit through the line at any given
time.

The global instruction broadcast network is driven at one point (at the system controller) and
is received by every PE chip. Unlike typical one-to-one inter-chip signal paths or many-to-many

38 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

busses (where many is small), the broadcast network is designed for one-to-many communication
where many is large. Among well-known electrical engineering problems, the design of the broadcast
network is closest to the design of a clock network.

The SIMD computer’s PEs operate in lock-step, often exchanging information. To minimize
the time required for inter-PE communication, and to avoid the myriad design issues related to
synchronizing independent signals, assume that the clocks of the PEs are kept in-phase. One
way to keep the PEs in-phase is to distribute the system clock with minimum skew. Low-skew
clock distribution has been widely studied. Ordinarily, low-skew clock distribution demands careful
matching of signal path lengths in the distribution network [1}(Chap.8). Some clock distribution
techniques exploit the inherent regularity of a clock signal. One such technique is to distribute the
clock as a standing wave, the phase of which is constant within regions bounded in diameter by half
the wavelength of the standing wave [13].

The physical device characteristic mis-matches that give rise to skew in a clock distribution
network also cause skew through the global broadcast instruction network. The time allowed for
each broadcast instruction bit must allow for variations in the time for the bit to arrive at each of the
PE chips. Although this skew problem resembles that arising for the system clock, it is more difficult
to solve for two reasons: First, a clock signal is simply repetitive, whereas the broadcast instruction
is not. Second, a clock is typically only one signal, whereas an instruction contains many bits. This
multiplicity exacerbates the skew problem for broadcast instructions by increasing the number of
signals whose arrival times need to be matched.

Figure 3.12 illustrates the design of a broadcast network using transmission lines. If the trans-
mission lines in Figure 3.12 are ideal, properly terminated, and of equal lengths, then the rate of
instruction broadcast is determined by the rise time ¢, of the driver. (A driver is indicated at point B
in the Figure 3.12.) The time allowed per bit might be 3 times t,, to ensure meeting the set-up and
hold constraints on the PE chip latch that receives the instruction bit. (A latch is indicated at point
D in Figure 3.12.) Using a high-speed ECL driver, such as MC100E111 [59] with ¢,=400ps, the bit
interval would be 1.2ns, for a broadcast rate of 833MHz.

The network sketched in Figure 3.12 would therefore provide instructions to the PEs as fast as the
PEs can execute them. However, that network is not practical, because it contains a transmission
line carrying each bit of the instruction directly from the system controller to each PE chip. In
a SIMD computer with a 32-b instruction that is delivered to each of 100 PE chips, the network
sketched in Figure 3.12 requires driving thousands of transmission lines from the system controller.
The number of driver chips needed, and the density of wiring near the system controller, make such
a large number of direct lines prohibitive.

A more realistic scenario is constructed by considering a specific hypothetical SIMD computer
with the following characteristics:

¢ The broadcast instruction is 32 bits wide.

The computer contains 4800 PEs.
The PEs are packed 4 to a chip, so there are 1200 PE chips.

Each PE chip is mounted along with local external memory on 2 3cm x 6cm multi-chip module
(MCM).

e The MCM and its board-level wiring take up a 4cm x 8cm region on a PCB containing PEs (the
PE board), so the PE board contains 6 rows with 10 PE chips per row.

e The computer fits in a single rack of 50cm x 50cm PCBs.

[]

¢ 20 PE boards make up the entire computer, along with a PCB containing the system controller.

3.8. HOW LARGE IS pp? 39

System Controller
5002

1 bit of instruction

7

O
o
/K
(o
® PE chip receiver pin
)
®
50Q
O
T 1°
50Q 5PF?

Figure 3.12: One way to implement a very fast global instruction broadcast network uses a set of
transmission lines leading directly from the system controller to each PE chip.

¢ The 21 boards fit in a rack that is 65cm wide, with the system controller occupying the middle
slot.

Figure 3.13 shows the rack layout. 32 bits driven to each of 20 PE boards means that 640
transmission lines are driven from the system controller board. This is still a very large number of
wires to route from the system controller, but it may not be prohibitively large.

Figure 3.14 shows the layout of the PE board, and Figure 3.14 shows how the broadcast instruction
might be delivered along one row of the PE board.

A broadcast network is shown in Figure 3.16, wherein each instruction bit is driven only once to
each PE board.

The system controller generates instructions which are fanned out and buffered on the system
controller board. The instructions are delivered to the PE boards via transmission lines. The column
of fanout buffers down the middle of the PE board receives the broadcast instruction, fans it out, and
drives 12 tapped transmission lines half the length of the board, 2 such lines for each of the 6 rows
shown in Figure 3.14.

As shown in Figure 3.15, a buffer on the PE board drives a transmission line “bus” that is tapped
by number of PE chips. This arrangement conserves the number of driver chips in the network, and
it further reduces the overall wiring complexity as compared to that of the network in Figure 3.12.

Allowing 3t, per bit for set-up and hold times at the instruction latches in the PE chips, the
minimum interval of the broadcast instruction is given as

minimum bit interval = 3t, + worst-case total skew 3.7
The contributions to skew are as follows:

skew components = driver delay variations at system controller

40 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

/ //

1

RIRRIFRIRIRRRIE S RRRRRRRRRR] L
HHHAH AR R
aaaiaaaaaa gaaaaaiasi'a
S H 3 H 1 C SV S G S B N G S O = o B S

£

a

Figure 3.13: The layout of a rack containing a 4800-PE SIMD computer. The system controller is in
the center of the rack, from where it broadcasts instructions to the PEs.

50cm
[PE] [PE] [PE] [PE] [PE PE] [PE| [PE] [PE] [PE ’
+11+++]1+ +[|+11+1+]]+
it e fpen
[PE] [PE] [PE] [PE] [PE PE] [PE] [PE] [PE] [PE]
&1- +f]+ + +11+1]+ +11+
e fr || e))P
[PE| [PE] [PE| [PE] [PE|| £ |[FE] [PE] [FE] [FE][PE
+[1+]|+]]+]]+ (7] ++|1+]]+]]+
CoEp TR 8 g il
PE| [PE| [PE| [PE| [PR)| £ |[PE}[PE)[PE} [FE| [FE Socm
+tl+]| +]]1+]f+ § + |+ +]1+1]+
ot EprneR g e O B e
PE| [PE] [FE| [FE] [FE|| 2 |[PE| [PE] [FE] [FE] [FE
+ll+11+]1+1]+ + |l +11+]1+]1+
e e oo oo pagieigid
PE| [PE] [PE] [PE] [PE PEPEPE
+|t+]]+]]+1]|+ +{{+11+1]l+
merlepm_elg : men ny
g

Figure 3.14: Layout of the PCB containing the PEs. The PE board has a set of low-skew fanout
buffers in the center that drive the broadcast instructions to the PE chips on the board.

3.8. HOW LARGE IS pg? 41

PE PE PE PE PE
Chip Chip Chip Chip Chip
6cmi Mem| [Mem Mem| [Mem Mem | [Mem [Mem| [Mem Mem | [Mem
Mem| |Mem Mem Mon?l Mem| | Mem Mem | {Mem Mem| |Mem
Mem| |Mem Mem} |Mem Mem| | Mem Mem| {Mem Mem| | Mem
Mem| { Mem l Mem{ | Mem Mem | | Mem lMem Mem Mem | |Mem
. Instruction
[[[1 [e
son% 22 Butior
20cm

Figure 3.15: Detail of one row of the PE board. The instruction is driven through a tapped transmis-
sion line along each row of the board. The PE chips along each row tap a shared line.

L un System Controlier Board ,Coax Cables
] 1

1 bit of instruction 50Q

System Controller

D

spieog 3d 1610 o}

2
z,
l————Fz— o ¢
: m3
[[}
Pva-Bs.lI;"e;vr ,—ZD—— o GND plane PE chip receiver pin
soQs |- 28
Z, ® % % %
- = e e e[;
—J c 2,
(tapped transmission fine) P P -"I- P 9)
L]
' on PE Board !

Figure 3.16: A more practical implementation of a fast global instruction broadcast network. Instruc-
tions generated on the system controller’s board are distributed to the PE boards through coaxial
cables where they are buffered and driven through tapped transmission lines.

42 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

+ coax cable length variations

+ driver delay variations at PE board

+ PCB trace length variations on PE board

+ bit arrival time variations on PE board

+ dispersion

+ rise time variations at PE chip receiver stubs (3.8)

The following paragraphs estimate the skew components:

The best readily available driver is the MC100E111 low-skew fanout buffer [59]. Although the
rise time (¢,) of the MC100E111 is just 400ps, single-ended delays through the drivers on different
chips vary by up to 400ps.

There will be some variation in the lengths of the coax cables leading from the system controller
to the PE chips. The longest coax cable would need to be at least 82cm (half the system controller
board length (25cm) plus half the length of the rack (32cm) plus half the PE board length (25c¢m)).
Assuming that the coax runs vary in length by as much as 5%, or 4.1cm, the worst-case skew arises
from a path length difference of 8.2cm. Signals propagate at about 20cm/ns in coax, so a length
difference of 8cm corresponds to a skew of 440ps through the coax cables.

The low-skew fanout buffer on the PE board contributes another 400ps skew.

The instruction bit is received at one point on the PE board. From the point of reception, the
instruction bit is fanned out and buffered within the middle column of the PE board shown in
Figure 3.14. Ultimately, the instruction bit is driven horizontally from the center of the board
through the tapped transmission line shown in Figure 3.15. The lengths of the PE board traces that
route from the reception point through the buffer to the horizontal drive point vary by up to 25cm,
half the length of a 50cm PCB. The propagation velocity through a PCB trace is about 15cm per
ns [1)(p.241). At that velocity, a 25cm variation in trace length yields a skew contribution of 1700ps.

The use of busses on the PE board, instead of point-to-point drivers supplying each PE chip
directly with its own copy of the instruction, conserves driver pins as well as wires in the broadcast
network. An unfortunate consequence of this economy is that the time for the broadcast bit to arrive
at every PE chip tapping one such bus differs by as much as the time of flight along the bus. The bus
is 25cm in length. The PE chip receiver pin at each tap adds to the capacitance of the transmission
line. The capacitance of a PCB is typically about 1pF per cm. Adding 5pF per pin spaced at 4cm,
the PE chips increase that capacitance by a factor of 2.2. The propagation velocity ¢ through a

transmission line is given as
1

VvIC
where L and C are the total inductance and capacitance of the line. Multiplying the capacitance
by 2.2 ¢ _reases v by a factor of 1.5, from 15c¢m per ns to 10cm per ns. Substituting /=25cm and
v=10cm per ns into Equation 3.6 gives t; along the tapped transmission line of 2500ps.

Unfortunately, PCB traces do not make ideal transmission lines. The trace widths are not
perfectly uniform, dielectric thickness varies, and the traces have finite series resistance. These
deviations from ideality give rise to dispersion, whereby the propagation velocities of signals are
frequency dependent. A step input contains a range of spectral components, so the step input in fact
degrades as it propagates through a PCB trace. Dispersion measures the frequency dependence of
propagation delay through an imperfect transmission line. Dispersion tends to be greater at higher
frequencies. Because of its path dependence, dispersion is a skew component that is added to the
time per bit. Dispersion might contribute a skew of up to 50% of the signal rise time, or 200ps in this
case.

The signal is not terminated inside the PE chips, so a single-ended instruction bit brought onto
the PE chip represents a capacitive stub. (A PE chip pin is indicated at point C in Figure 3.16.) The

v=

3.8. HOW LARGE IS pg? 43

stub capacitances may vary by as much as 2.5pF due to variations in tap geometries for the various
bits of one instruction. Rise time of a lumped capacitance is 2.2RC, so a difference of up to 2.5pF
through 50 gives a time difference of up to 225ps.

Substituting the various skew estimates for the terms in Equation 3.8 yields the following totals:

worst-case total skew

400ps

+ 440ps

+ 400ps

+1700ps

+ 2500ps

+ 200ps

+ 225ps

= 5865ps 3.9

Substituting ¢,=400ps and the value from Equation 3.9 into Equation 3.7 yields the following
estimate for the instruction broadcast interval:

minimum bit interval = 1200ps + 5865ps
~ 7.0ns (3.10)

At 7.0ns per bit, instructions are broadcast at about 142MHz. For a PE clock rate near 300MHz,
this gives a py, of about 2.

The broadcast rate estimates given above neglect reflections in the broadcast network. Parasitic
impedances, such as are formed at corner turns in PCB traces or by imperfect connectors, cause
reflections that erode signal quality and lower the maximum distribution rate.

Beyond the physical limitations discussed above, there are other practical considerations that
tend to keep the global broadcast rate low.

One consideration is the chip area occupied by the broadcast network. Economy of chip area is the
principal engineering motivation for SIMD computer architecture. Driver chips used in a fast global
instruction broadcast network displace PE chips from the PE boards, thereby eroding the chip-area
economy of SIMD computer architecture.

The speed of the resulting network is in any case limited in the rate at which instructions are
provided by the system controller (indicated at point A in Figures 3.12 and 3.16). The system con-
troller sequences instructions from memory, perhaps modifying loop-index-dependent literal fields
before driving the instruction to the broadcast network. Broadcasting instructions at a very high
rate requires the system controller to be able to supply them at that high rate. High-rate instruction
distribution requires a fast system controller whose cost may be high. SIMD computer architecture
leverages the optimized design of a PE chip through replication, but there is only one system con-
troller. A high-cost system controller may not be desirable. If an inexpensive system controller were
used, instructions might then be broadcast at a modest rate. For example, if the system controller
were a commercial microprocessor, instructions might be broadcast over the microprocessor’s I’O bus.
Low-cost implementations of the system controller and global instruction broadcast network tend to
yield large values of py,.

Chips typically have limited numbers of signal pins. It is advantageous to allocate a least number
of PE chip pins to receiving instructions, such that a greatest number are available for the other
inter-chip communication requirements of the PEs. One way to conserve PE chip pins is to time-
share the global instruction broadcast network receiver pins. Time-sharing the global instruction

44 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

broadcast receiver pins increases pp by a factor equal to the degree of time-sharing. For example,
bit-serial distribution of a 32-bit instruction word increases p, by a factor of 32, while freeing 31
PE chip pins for use in other multi-chip subsystems. Bit-serial instruction broadcast has the added
benefit of reducing the complexity of the skew problem for broadcast instructions.

Another consideration is power consumption. Terminated transmission lines and high-current
bipolar drivers typically dissipate large amounts of power. In application contexts with small power
budgets, fast global instruction broadcast using transmission lines as illustrated above would not be
feasible.

It might be nice to be able to upgrade an existing SIMD computer by making its PE chips faster
using newer VLSI implementation technique. If the new PE chips have the same pinouts as the
original ones, and if power supplies and cooling are adequate, then such an upgrade would occur
simply by replacing the PE chips. As the boards would be unchanged, the resulting increase in py,
is proportional to the increase in PE clock rate. Even if p;, was about 1 in the original computer, it
would be higher in the upgraded one.

Finally, the SIMD computer architecture might be scalable, such that a single PE chip design
is intended to be used in a range of computers whose sizes match the varying size requirements of
a range of problems. A fast global instruction broadcast network requires solving the board-level
electrical design problems for each instance. Simpler, slower global instruction broadcast networks
are not so constrained in the size of the network or in the geometry of the wires, and therefore lend
themselves more readily to scaling of the computer.

Note that the use of transmission lines to distribute instructions introduces a form of pipelining in
global instruction broadcast, because a number of instructions are in transit in the network at any one
time. When a program specifies a branch whose outcome depends on intermediate results calculated
in the PEs, the latency of the branch as measured in the number of instruction times is equal to
the number of instructions in the broadcast pipeline. After broadcasting a branch instruction, the
global instruction broadcast network fills up with (probably wasted) branch delay slot instructions.
The number of instructions in transit through the broadcast network is given by the ratio of the
total delay of the network to the bit interval. If the path length of an instruction bit is about 200cm,
then the time to propagate through the network at 15cm per ns would be about 13ns, or more than
8 instruction times at 600MHz.

A similar global branch latency arises using I-cache. At a global branch, the execution of cached
instructions effectively ceases, awaiting the arrival of the first instruction following the branch. If
the target instruction sequence is in cache, execution resumes at the high PE clock rate. Otherwise,
the needed instructions must be delivered to the PE chips at the low rate. Fast instruction broadcast
is superior in this regard, because the cache store overhead is never incurred, and only the branch
delay slot instructions are potentially wasted.

High-rate global instruction broadcast is attainable, although the highest broadcast rate is at least
a small factor slower than the highest PE clock rate. Furthermore, fast instruction broadcast network
components compete with PE chips for board real estate. I-cache is an architectural enhancement
which, if effective and practicable, allows lower-cost system controller and board-level designs. There
is a broad range of reasonable estimates for py,. High estimates for the PE clock rate are extrapolated
from existing microprocessors, whereas high estimates for global instruction broadcast rate are
speculative and have yet to be demonstrated. Based on these estimates, it appears that py, is as low
as 2 and as high as 16. The mid-point of this range, p=8, is a conservative estimate for p, in existing
SIMD computers.

3.9. CLOCK INTERVALS AND p-SETS 45

3.9 Clock Intervals and p-Sets

Instruction broadcast rate is lower than PE clock rate because the global instruction broadcast net-
work wires are much longer and more heavily loaded than the typical capacitances driven inside
the PE chip. This observation applies not only to global instruction broadcast, but to every MCS,
because every MCS contains inter-chip wires and inter-chip wires typically present greater driving
loads than intra-chip wires. The top operation rate for each MCS is determined by the VLSI im-
plementation technique and by the geometries of inter-chip wires. Inter-chip wire geometries are
in turn are determined by the MCS network topologies and by board-level wiring constraints. It is
reasonable to assume that the top operation rate for each MCS lies somewhere between the PE clock
rate and the instruction broadcast rate.

The PEs in an I-cached SIMD computer are clocked at their highest rates irrespective of the rate
of global instruction broadcast. Similarly, the presence of I-cache means that instruction availability
no longer prevents each MCS from operating at its top rate. Therefore, the model that is the basis
for evaluation of I-cache should allow for the possibility that the top clock rates of the various MCSs
differ.

Let tpg denote the interval of the fastest clock within the PE chip. tpg is determined by PE
architecture and by VLSI implementation technique. For example, tpg exceeds the time required to
drive the PE busses and the time required for the FU to produce a single-step result. PE chips in
SIMD computers tend to exhibit low circuit complexity, as for example do MP-1 {62], Blitzen [36],
and SLAP [27]. tpg tends to be low, significantly lower than the interval of the system clock that
regulates global instruction broadcast. Large wire delays between chips in an MCS mean that its
minimum clock interval is larger than tpg.

Figure 3.17 shows a sketch of the simple delay model used to relate the intervals of the clocks
regulating the various subsystems. The parameters of the model sketched in Figure 3.17 have the
following interpretations:

e tx represents the minimum propagation time through a component of MCS X resident on a chip
remote from the PE chip. For example, ¢) represents local external memory access time, while .
represents packet forwarding time for router-based inter-PE communication. tx is determined
by functional complexity and by VLSI implementation technique.

e Wx is the delay of the wires connecting the PE chip to a remote integrated component of MCS
X. Wx represents the delay of on-chip wire drivers lumped together with electrical propagation
delays along the wires themselves. Wx depends on wire geometry, on capacitive loading, and
on the on-resistance of the transistors driving the MCS’s wires.

o px represents the factor by which the minimum interval of the clock regulating MCS X is greater
than tpg.

In the simple model sketched in Figure 3.17, wires are driven as lumped capacitances, with
the notable exception of the global instruction broadcast network (discussed in Section 3.8). For
simplicity, all MCS operation rates are modeled in a uniform manner here.

Assuming that tx and tpg are roughly equal, and that signaling through inter-chip wires overlaps
with the operation of the remote circuits, Equation 2.11 gives px:

Wx
tpE

Note that if tpg is taken to be 1, then px represents the minimum interval of a clock regulating
MCS X. A lower bound for px is obtained by comparing a lower bound Wy against an upper bound
for tpg.

PX (3.11)

46

CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

System
Controller
/t\ 't
Py = 'o* W
W, 'pE
B iiding gk |
WrE-r [PE Module '
P tr+Wr : t Controller pl _ t|"'W|
r = : =
'pE PE /h tpE
W
: | t. Local
: PE 1= - | External
Memory

Communicating System Data Memory
PE or Router Data /O N rk

Figure 3.17: Parameters Determining the Relative Speeds of MCSs

3.9. CLOCK INTERVALS AND p-SETS 47

An MOS circuit can drive a capacitive load in minimum time using an exponential horn, a series
of inverters of geometrically increasing size, such that the delay is uniform (and minimum) at each
successive stage. The ideal step-up ratio has been estimated to be e [58(p.13), while other estimates
range as high as 10 [61])(p.161). Where the step-up ratio is r and the (scale-independent) parasitic
delay of an inverter is p, then the delay of one stage in the horn is r + p. The ideal step-up ratio r is
determined by the VLSI process and is independent of the number of stages [77].

Assuming the driven signal originates from a minimum inverter, the number of stages is log, %J;,
where C; is the minimum inverter’s gate capacitance. The minimum time ¢¢, to drive a capacitive
load Cy is then given by Equation 3.12:

(r+p)log, & (3.12)

het
Cy
In 2
Inr

Let Cx denote the capacitive load driven between chips in MCS X and C,, denote the worst-case
intra-chip load capacitance determining tpg. Then px is given by Equation 3.13:

tc,

(r+p)

repy B
+
X (rr+ I; n lrnr (313)
y 4 %‘E
In 3%
C,
In 3

Typical capacitances for printed-circuit-board-based (or PCB-based) technology, are as follows:

Cg =~ 10fF
Con < 3pF
Cor > 15pF

Substituting these values into Equation 3.13 yields the rough lower bound in Equation 3.14:

px>1.3 (3.14)

When inter-chip wires are long or where inter-chip wiring networks are heavily loaded with
multiple taps, px exceeds the lower bound given in Equation 3.14. However, the top clock rates for
MCSs other than instruction broadcast are likely to be nearer to the PE clock rate than the system
clock rate. Table 3.5 summarizes the delay model terms for each MCS.

I-cache speedup depends on pyp, but also on the relative clock rates of the

oo, the factor by which the instruction broadcast interval exceeds tpg, is a critical determiner
of I-cache speedup. The benefit of instruction caching depends also on the other px values, which
determine the times for operations using the various MCSs.

A collection of values for the MCS clock intervals comprises a p-set. A p-set is a set of five numbers
of the form

p-set={pw, pr, pi, Pc, P1}

48

CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

Multi-chip Subsystem Important Wire Factor by
inter-chip wires delay | which minimum
clock interval

| exceeds tpg
[Global instr bdcast Global broadcast network W 2
Response Response network W, Pr
Input/output System data I/0 network w; pi
Inter-PE comm Inter-PE comm network We Pe
Local external memory | Intra-building-block connection | W) ”

Table 3.5: Summary of delay model terms. px =~ %’EX

Due to the limited size of a manufacturable chip, a high-PE-count SIMD computer incorporates

more than one PE chip. In fact, a high-PE-count SIMD computer likely encompasses an integration
hierarchy, containing MCMs, PCBs, racks, chassis, and so on. Significant delays are incurred for
signaling across chip boundaries, due to the relatively large energies required for inter-chip signaling.
Similar, although less marked, penalties accrue crossing other boundaries in an integration hierarchy.
Wx depends in part on the level of integration hierarchy boundaries crossed by the wires in MCS X.
The following enumeration considers the likely values of the various Wx:

1. The global instruction broadcast network connects a single source (the system controller) to all

PE chips in the computer. The global instruction broadcast network wires are long, geometri-
cally complex, and electrically heavily loaded, so W}, is large. As pointed out in Section 3.8, for
this reason the broadcast network wires may be driven as transmission lines.

. The response network is system-wide in extent, aggregating fan-in from each PE. W; is therefore

likely to be large.

. The system I/O network structure can vary over a wide range. Depending on the system,

this network may contain long wires and W; may be large. In a specialized SIMD computer, for
example one used for CCD sensor-embedded image processing, the I/O network may incorporate
relatively short wires and so W; may be low.

. To the extent that the wires in the inter-PE communication network are long, W, is large.

Networks of high topological dimension necessarily contain long wires [79].

Regular meshes contain point-to-point wires. At least one wire in a mesh inter-PE network
must cross a boundary at the coarsest level of integration in the system’s hierarchy. By folding
such a network (as described in [19](p.154)), the wires become as short as possible for wires hav-
ing to cross integration hierarchy boundaries. In this case, W, approaches the minimum delay
exhibited by a wire crossing integration hierarchy boundaries in neighbor inter-PE communica-
tion networks. Fast inter-PE communication on regular grids is illustrated for multiprocessors
in Mosaic [71].

. The local external memory array is packaged alongside the PE chip within a PE building

block. The building block is a physically compact system component. If the building block is
implemented using the fastest available inter-chip technology, then local external memory wire
delay W) approaches the minimum possible for inter-chip wiring.

—«

3.10. ALTERNATIVES FOR MAXIMUM-RATE INSTRUCTION DELIVERY 49

As VLSI implementation technique continues to improve, inter-chip wire delays do not decrease
as fast as intra-chip circuit speeds increase. % tends to increase over time, so the values in a p-set

tend to increase over time.

A generic SIMD computer uses a single clock to regulate all subsystems. When W}, > tpg, PEs in
generic SIMD computers are under-utilized. Similarly, when W}, > Wx for some MCS X in a generic
SIMD cowaputer, that MCS is under-utilized.

3.10 Alternatives for Maximum-rate Instruction Delivery

When the highest PE clock rate exceeds the rate of global instruction broadcast, instruction delivery
becomes a bottleneck in generic SIMD computations. What options are available to the architect to
overcome this limitation?

Maximum-rate Instruction Delivery

Broadcast Instructions -
at PE Clock Rate

Broadcast Wide Instructions
Controlling Multiple Cycles’ Activity

Broadcast Complex Instructions
for Microprogrammed PE

Locally Buffer Repeated Instructions
(SIMD Instruction Cache)

Figure 3.18: Alternatives for Maximum-rate Instruction Delivery

Figure 3.18 illustrates a range of possible options for delivering instructions to the PEs at the
maximum rate. The dotted Lne pointing to the fast global instruction broadcast option indicates
that the option is not always available. The remaining options include PE microprogramming,
wide-instruction broadcast, and I-cache.

3.10.1 PE Microprogramming

The inherent chip-area advantage of SIMD computers arises from consolidating replicated program
control that is redundant in some cases. The SIMD computer designer typically attempts to minimize
instruction decoding logic within the PE chip, because this logic is redundantly replicated with each
PE chip. Some decoding is sometimes unavoidable, for example to conserve the number of PE chip
pins used for receiving broadcast instructions.

One way to keep the PE chip supplied with instructions for each of the multiple PE chip cycles
following receipt of each broadcast instruction would be to globally broadcast “complex” instructions
to the PEs. The PE chip local controller in this case would contain a microprogram sequencer. Each
globally broadcast instruction would dispatch a multi-step microprogram that is sequenced within
the PE chip.

Many aspects of PE microprogramming are architecturally undesirable. The main drawback
of PE microprogramming applies also in microprocessors, namely that microprogramming commits
considerable chip area to a mechanism capable of sequencing a fixed complex instruction set, each

50 CHAPTER 3. SIMD COMPUTER IMPLEMENTATION

member of which may or may not be appropriate for the task at hand [65, 38]. Chip area used for
program control that could otherwise be performed off-line is better used for FU and registers where
maximum throughput is the design objective. Chip area is especially precious in high-PE-count
computers, wherein large numbers of replications raise the stakes for efficient use of PE chip area.
An additional unfortunate consequence of PE microprogramming is a degree of inflexibility that
further restricts the class of problems for which the SIMD computer is appropriate.

3.10.2 Wide-Instruction Broadcast

Another way to provide a new PE instruction on each PE clock cycle would be to globally broadcast
groups of instructions in parallel. The global instruction broadcast network would deliver many
instructions to the PE chip in parallel on each system clock cycle. The PE chip’s local controller
would select a sequence of individual PE instructions from each globally broadcast group.

Broadcasting multiple instructions per clock cycle is tantamount to broadcasting one wide in-
struction. Such an approach to instruction delivery is infeasible because of the demand it places on
PE chip pins. There are not likely to be enough pins on an affordable manufacturable PE chip to
allow even 2 or 3 instructions to be received at once, let alone as many as 8 or more.

3.10.3 SIMD Instruction Cache

A SIMD instruction cache is an explicitly managed instruction buffer within the PE chip. I-cache
added to the PE chip local controller comprises instruction memory and means of accessing it.
Repeated sequences of instructions, such as those appearing in loop bodies, are ' ored on-chip in the
I-cache for subsequent execution at the relatively high rate attainable within the confines of the PE
chip.

Compared to the alternative of PE microprogramming, I-cache is a fiexible means of defining
“complex” instructions as sequences of primitive instructions sequenced at the highest possible rate.

I-cache appears to be either more practical or more affordable than the alternative techniques for
overcoming the instruction delivery rate bottleneck that arises when p, > 1.

Chapter 4

I-Cached SIMD Computer Design

Figure 4.1 illustrates a local controller for the PE chip of an I-cached SIMD computer. Whereas the
generic SIMD local controller (illustrated in Figure 3.3) is extremely simple, I-cache introduces some
new design complexity.

From Giobal Iinstruction Broadcast Network

System
iClock PE Chip
l Boundary
Multi—clock
Generator —| Cache
Gesessantercccscsnns CaChe Contro“er pe——
:"Local Memory
: Clock(s)

To Lbcal Instruction Broadcast Network

Figure 4.1: Local Controller with I-cache

The multi-clock generator shown in Figure 4.1 provides all of the required clocks within the PE
chip. The fastest clock output by the multi-clock generator is the PE clock, which is py, times faster
than the system clock. The elements of a SIMD computer operate in lock-step, so all PE chip clocks
are synchronized to the system clock.

Because there are multiple clock rates, and because the number of PE clock cycles required by
an MCS to perform an operation depends in some cases on the particular operation performed, an
MCS operation may conclude on an arbitrary one of the multiple PE clock cycles which occur between
successive system clock cycles. Therefore, the format of globally broadcast instructions is augmented
for an I-cached SIMD computer so that a globally broadcast instruction may specify the index of the
PE clock cycle on which the MCS operation specified by that instruction completes.

The cache controller shown in Figure 4.1 outputs a new instruction for local broadcast within the
PE chip on every cycle of the PE clock. When a new globally broadcast instruction arrives at the PE
chip, the cache controller may provide a copy of that instruction within the chip. The cache controller
also delays instructions terminating high-latency MCS operations until the PE clock cycle specified
by the most recently globally broadcast instruction.

The cache controller also manages the cache memory. Under the direction of globally broadcast
instructions, the cache controller stores repeated instruction sequences, or cache blocks, in cache
memory and subsequently sequences them within the PE chip. With I-cache, cache-control instruc-
tions are added to the generic SIMD computer’s repertoire of globally broadcastable instructions. A

51

52 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

variety of I-cache designs are possible, each associated with a particular set of cache-control instruc-
tions.

I-cache speedup depends on a variety of factors including the set of functions implemented in the
cache controller, the number of instructions that can be stored in cache memory, the programs being
executed, and the means by which the I-cache is controlled in the broadcast instruction stream.

This chapter presents design considerations for the components shown in Figure 4.1. A family of
I-cache variants is presented, and the chip area occupied by an I-cache is estimated. These examples
quantify the displacement of payload from the PE chip ensuing from I-cache. Simplified example
programs are used to illustrate the interactions of properties of programs and cache controller
functions for members of the family of variants. Finally, issues in the programming problem of static
I-cache management are presented.

4.1 I-cache Design Elements

Several detailed implementations of the local controller in an I-cached SIMD computer are possible.
The design of the local controller determines its chip area. Also, the local controller design relative
to the requirements of the program controlling a given computation determines what fraction of
the factor of p, maximum execution-rate increase is realized for the computation. This section
enumerates the design elements, identifying those of greatest concern to the I-cached SIMD computer
designer.

4.1,.1 Multi-clock Generator

The maximum operation rate of each subsystem is determined by the VLSI implementation technique
and by the topologies of the subsystem’s inter-chip wires. If the computer is synchronous and each
subsystem has a unique maximum operation rate, then regulating each subsystem at its maximum
rate requires a unique clock per subsystem.

One way to distribute clocks at the various rates is to broadcast them globally. In a high-PE-
count SIMD computer, global broadcast of high-rate clocks would be performed using transmission
lines [1}(Chap.8). The key design constraint for the resulting clock distribution network is the match-
ing of path lengths and impedances, to minimize skew and reflectance. Such a clock distribution
network forms a clock pipeline, wherein multiple clock events are propagating at any given time.
Pipelined clocking is commonly used to regulate synchronous PE arrays [24](Chap.3). Pipelined clock-
ing cannot provide a clock whose interval is less than the minimum inter-chip signaling interval.
Another potential problem with pipelined clocking is the high chip-area cost of a clock distribution
network containing large numbers of chips in a fanout tree.

An alternative means of obtaining the required clocks is to generate them within the PE chip. One
widely practiced means of generating on-chip clocks uses a voltage-controlled oscillator (VCO) that
is synchronized with other chips using a phase-locked loop (PLL) [12]. PLL-based clock generators
are increasingly commonly in microprocessors, wherein the on-chip clock rate tends to be a multiple
of the off-chip reference clock rate {5, 88). PLLs have been described for use in synchronization
among MIMD PEs [64](Sec.3.3.1). PLLs have also been used for clock skew elimination in SIMD
computers (44, 16], although not for multiplying the system clock rate to obtain a higher PE clock
rate.

The multi-clock generator is a mundane architectural element, because PLL-based clock gen-
erators have long been used in computers, as demonstrated in [46]. What is important about the
multi-clock generator is the chip area that it occupies. Although VCOs tend not to scale with VLSI
implementation technique as readily as does switching logic, they are practically useful for modern
microprocessors [5].

4.1. I-CACHE DESIGN ELEMENTS 53

On-chip generation of a high-rate PE clock that is phase-locked to the system clock does not elim-
inate the low-skew requirement on system cleck distribution. However, it less difficult to distribute
one clock signal with low skew than it is to distribute many.

The multi-clock generator design may introduce artificial constraints among the various clock
rates, as does the design described in Appendix A. The multi-clock generator described in Appendix A
provides a set of free-running clocks whose rates are constrained to be integer multiples of the PE
clock rate and integer sub-multiples of the system clock rate. An alternative multi-clock generator
might allow a clock to be stopped when the subsystem it regulates is idle, or similarly allow a clock’s
phase to be varied dynamically to minimize the delay in starting an operation on an otherwise idle
subsystem. Inevitably, the design of a multi-clock generator encompasses meeting several interacting
system timing constraints. [69] provides an excellent overview of these issues.

4.1.2 Cache Memory

The cache memory may have one or more ports. With a two-ported cache memory, one port is used to
provide instructions already stored while the other port is used concurrently to pre-store instructions
that will be needed subsequently.

Assuming that the best available memory cell with the required number of ports is used, the
only cache memory parameters of interest to the I-cached SIMD computer designer are instruction
word width (in bits) and cache size (in instructions), which together determine the number of cache
memory cells and thus the chip area occupied by the memory.

4.1.3 Cache Management

The decisions as to which cache blocks to place where in the cache, as well as when to put them there
and when to activate them, are all explicit in the global instruction broadcast stream. For simple
programs, good choices can be made statically, in advance of running the computation. Programs
whose loop structure is complex may require these decisions to be made in the system controller
during the course of a computation, in which case the system controller requires a potentially complex
cache-management mechanism. Section 4.5 discusses the management problem in detail, illustrating
good solutions for simple I-cache variants.

4.1.4 Cache-control Protocol

The globally broadcast instructions in an I-cached SIMD computation include cache-control instruc-
tions in addition to the usual PE instructions. The cache-control instructions follow a cache-control
protocol to store cache blocks and to activate them. Each I-cache variant specifies a cache-control
protocol.

4.1.5 Cache Controller

As indicated in Figure 4.1, the cache controller is interposed between the global instruction broadcast
network and the local instruction broadcast network within the PE chip. The cache controller selects
the source of the instruction driven onto the local broadcast network on every PE chip clock cycle.
The cache controller also manages the control inputs to the cache memory, and so contains a program
counter providing a cache memory address.

The cache controller design and the concomitant cache-control protocol are the principal discrim-
inator among I-cache variants.

There are many possible ways to denote the cache locations occupied by a cache block. For
example, a cache block may be delimited by markers placed in the cache memory; alternatively, a

54 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

cache block may be delimited by a parameter supplied upon its activation. Loops may or may not
be unrolled when cached, subject to the details of a given cache design. A cache block does not
necessarily correspond to an entire loop or subroutine body appearing in a program; some I-cache
variants profitably cache subsequences of program bodies. A particular I-cache variant may allow
multiple entries or multiple exits for a given cache block to facilitate a compact representation.

A globally broadcast cache-control instruction alerts the local controller to begin storing a cache
block at a specified cache address. This instruction may also specify the length of that cache block,
or the end may be indicated by a cache-control instruction transmitted at the end of the cache block.

A cache block is activated with a call specifying the parameters required for its execution, possibly
including initial and final cache addresses and iteration count. Some I-cache variants provide
mechanisms allowing cache blocks to activate one another, or to nest, in cache with varying degrees
of generality.

4.2 A Family of Single-Port I-cache Variants
A cache design is characterized by answers to each of the following five questions:

¢ Does cache memory have more than one port?

What is the maximum number of instructions that can be stored in cache memory?

Can more than one block be stored in cache memory at a given time?

Can the cache controller independently iterate cache blocks?

Do cache blocks nest? In other words, can cache blocks activate one another?

The I-cache parameters imply the existence of several distinct classes of cache design. There are
fewer than 16 classes, because some of the parameters are not mutually independent. For example,
it is not possible for cache blocks to nest in a cache that can contain just one block.

The last three questions in the list apply only to the design of the cache controller. To illustrate
the range of possible cache designs, consider the F-family of single-port I-cache variants.

An F-family cache memory has one port, so concurrently pre-storing cache blocks is not possible
with F-family caches. The ends of cache blocks are delimited with sentinels, so that the length of a
cache block is not specified in the block’s activation.

A member of the family is designated F;. The six family members vary in their cache controller
characteristics, as enumerated below:

Fy is a “one-block, one-shot” cache. Fy is the simplest F-family cache. Fy is capable of containing
only a single cache block at any given time and of executing single passes through a cache
block. A cache-control instruction activating an Fy cache block supplies no parameters, because
there is only one possible starting address, the ending address is delimited explicitly in cache
memory, and the iteration count is always 1.

F, is a “multi-block, one-shot” cache. F; is similar to Fy in that it executes only single passes
through cache blocks. However, F; is not as simple as Fy, because F; is capable of containing
more than one cache block at once. The questions relating to where to place each cache block
are germane for an F; cache, giving rise to the myriad of replacement algorithm issues that
have been studied in the contexts of ordinary caches and of virtual memory management. A
cache-control instruction activating an F; cache block supplies a single parameter specifying
the starting address of the cache block.

4.3. I.CACHE CHIP-AREA ESTIMATES 55

F; is a “one-block, multi-shot” cache. F; is similar to Fy in that it contains only a single cache
block. However, F; is not so simple as Fy, because F; is capable of sequencing through a cache
block multiple times in response to a single activation. A cache-control instruction activating
an F; cache block supplies a single parameter specifying a number of iterations of the cache
block. F3 does not require the ability to place cache-control instructions in cache.

F3 is a “multi-block, multi-shot” cache. F3 can contain multiple cache blocks, any of which can
be iterated. A cache-control instruction activating an F3 cache block supplies two parameters,
the first specifying the starting address and the second specifying a number of iterations of the
cache block.

F; is a “multi-nestable-block, one-shot” cache. Fjy is similar to F, in that it contains multiple blocks
that are executed singly. However, F5 has the additional characteristic that cache blocks may
activate single iterations of one another. An Fg cache requires that cache-control instructions
may be placed in cache memory.

F;7 is the most complex member of the F-family. An F; cache may contain multiple blocks that
may activate one another for multiple iterations. An F; local controller contains a scaled-down
replica of the system controller’s program-control components. Since an entire program could
be stored in an F; cache, an PE chip with an F; cache becomes a mini-SIMD computer in its
own right. If the individual local controllers were allowed to progress through different paths
through the program in cache, an F;-enhanced SIMD computer becomes a multi-SIMD (or
MSIMD) computer [10].

Detailed designs for Fy and F; I-cache variants are given in Appendix A.

4.3 I-Cache Chip-Area Estimates

In order to for I-cache to yield significant speedup for real problems, it must not displace too much
of the payload from the PE chip. « expresses the fraction of chip area taken up by I-cache inside the
PE chip, so v expresses the PE chip payload reduction due to I-cache. This section relates v to the
PE chip payload estimates derived in Section 3.7. The lowest values of v are made possible by the
most advanced VLSI implementation technique. chip-area estimates for Fo and Fy caches, two of
the simplest members of the F-family, indicate that Fy and Fy caches are feasible for current VLSI
implementation technique.

The local controller and MCS interfaces compete with PEs for interior area I even in a generic
SIMD computer’s PE chip. I-cache of the local controller further reduces the payload, assuming that
physical dimensions H and W and resolution parameter A are fixed. The extent to which the payload
of the PE chip is reduced by I-cache depends on the chip area occupied by the multi-clock generator,
the cache controller, and the cache memory. The cache controller’s chip area depends on on the set
of functions performed by the I-cache variant, while the cache memory’s chip area depends on the
width (in bits) of an instruction word and the maximum number of instructions that the memory
contains. Reducing the payload in a PE chip means reducing the number of PE bit slices in the chip
and/or reducing one or more of the PE architecture parameters (including datapath width, FU circuit
complexity, and number of registers).

II denotes the payload of a PE chip. Estimates for three existing PE chips and one hypothetical
PE chip are summarized in Table 3.2. Let II; denote the payload of a generic SIMD PE chip, and
let II. denote the payload of the chip when I-cache is added to its local controller. I-cache forces the
local controller to expand by some chip area 6. Let Ag represent the chip area of the interior of that
generic PE chip occupied by the local controller and by MCS interfaces, and let A, be the non-PE
chip area in the chip with I-cache. Then A, is given in Equation 4.1:

56 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

Ac = Ag+$ (4.1)
The payloads of the PE chip without and with I-cache are given in Equations 4.2 and 4.3:

M, = I-Ag “.2)
. = I-A, (4.3)
= I-Ag-6 “4)
= Mg—6 (4.5)

The increased chip area occupied by local controller as a fraction of the generic PE chip payload
is the marginal chip area occupied by I-cache. v represents this marginal decrease in payload, as
shown in Equation 4.6:

é
7 = H_g (4.6)

The ratio of payload with I-cache to payload without I-cache is given in Equation 4.7:

N _ Ng-46
T o @7

= 1~4 (4.8)

Because § > 0, ¥ > 0 and II, is strictly less than II;. It remains to consider the specific sizes of
the various local controller components needed for I-cache.

Existing on-chip clock generators serve as guides in estimating the chip area of the multi-clock
generator. A clock genevrator has been fabricated entirely within CMOS chips [88]. The oscillator
dominating the clock generator’s chip area runs at up to 220 MHz and is phase-locked to a lower-
rate external clock. The entire clock generator occupies .31mm?2 in a A=0.4u process, or roughly
1.9 x 10° sites. Although the analog components inhibit scaling clock generator chip area as readily
as register or FU chip area, the area of this existing clock generator is useful for approximating the
area of the multi-clock generator needed for I-cache. Phase-locking is not the only way to generate
fast clocks; other means to achieve high-rate timing references include the use of synchronous delay
lines, described in [5] as occupying chip area of the same order as the PLL described in [88]. The
most general multi-clock generator derives all required clocks as sub-multiples of from one high-rate
reference. Allowing a factor of two in chip area for the circuits added to the PLL to derive multiple
subsysetem clocks as sub-multiples of the PE clock, a multi-clock generator would occupy less than
4 x 10° sites.

An Fo cache controller contains a state register with next-state logic, 3 counter-registers, two
instruction latches, a 4-input instruction selector, and a small number of other small logic blocks.
An F; cache controller (shown in Figure A.11 to be a superset of an Fy cache controller) contains
an additional counter-register and an associated logic block. The small logic requirement for these
simple I-cache variants is very likely to be dominated by the cache memory itself in the use of chip
area for I-cache.

A typical register memory cell may be used as a conservative estimate for the chip area of the
cache memory cell. A typical CMOS register memory cell occupies 40\ x 40\ area, or 1600 sites.
Note that single-port memories, as used with an F-family cache, occupy less chip area than their

4.3. I|CACHE CHIP-AREA ESTIMATES 57

SLAP | MP-1 | Blitzen | ALAPH
payload without I-cache (IIg) (x10® sites) | 36 | 118 | 356 1300

100-word cache: 6 ~ 10 x 10° sites

payload with I-cache (II;) (x10° sites) | 26 | 108 346 1290
payload decrease () (%) | 28 8 3 1

1000-word cache: é ~ 55 x 10° sites

payload with I-cache (II.) (x10° sites) 0 63 301 1245
payload decrease (77) (%) || 100 47 15 4

Table 4.1: Summary of Chip-Area Estimates for Simple I-Caches in Four SIMD PE Chips

multi-port counterparts such as may be used in the PE register files. 32 of these cells, as needed for
one 32-bit instruction of cache memory, occupies 51,200 sites. A conservative estimate would allow
furthe: chip area equivalent to 20 words of memory for sense amps and bit-line drivers, or about
1 x 10° sites.

The chip area occupied by one of these simple I-cache variants is obtained by adding the areas for
the multi-clock generator area and the memory cell array with drivers. A resulting formula for the
area occupied by an F-family I-cache variant, where N is the number of instructions in the cache, is
given in Equation 4.9:

§ = <5+év—0> x10%sites (4.9)

Figure 4.2 shows values of v against N for the 4 PE chips whose chip area has been measured
above. Figure 4.2 shows that for newer VLSI process technologies with values of A below 0.5xm, up
to 1K words of cache memory correspond to values of 4 less than .15.

Figure 4.3 plots values of « for each of the PE chips at a cache size of 100 instructions. Two curves
are super-imposed on the set of points, the lower one ignoring the data point for the SLAP chip.

VLSI technology continues to improve over time so as to make possible larger manufacturable
chips with decreasing geometric resolution [23]. The number of sites in a chip grows linearly with the
physical area H x W and quadratically with the component density i, as shown in Equation 3.1. The
typical SIMD PE chip organization, wherein the available PE area is tiled with replicated bit slices,
readily exploits increases in the size of the PE chip. As interior area I grows, the allowable number of
PEs, number of registers per PE, and/or FU complexity increases. For example, re-implementation of
a PE chip containing a PE of fixed FU complexity at higher I yields a PE chip containing an increased
number of PEs, each with increased per-PE memory.

By contrast, the MCS interfaces and local controller occupy a number of sites that need not
change as the VLSI technology improves, so that A. remains roughly constant. For fixed A, the
VLSI technology scaling effects of increasing H and W while decreasing) takes v toward 0, so that

value of 11-}-: given in Equation 4.7 tends toward 1. The scaling of VLSI fabrication process parameters

cannot continue indefinitely, however, due to the existence of fundamental physical lower limits on
the sizes of MOS devices and their interconnections {43, 48].

The estimates for 4 suggest that VLSI implementation technique has only recently reached suf-
ficient chip component densities so that a simple I-cache containing about 100 instructions occupies
negligible chip area in a PE chip.

58 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

T

0.9
0.8
0.7 |
06

T

SLAP: 1.0um CMOS,

0.4
0.3
0.2
0.1

MP-1: 0.8um CMOS

Blitzen: 0.5um

: ALAPH: 0 375um-CMOS;—19932

250 500 750 1000
Cache-size (Number of Instructions)

Figure 4.2: v v. Cache Size for Each of Four PE Chips

03 smaP(een * T
~ o
025 F . -
0.2 F . .
A
. & —.005
7Yo1s | .
0.1 MP-1<£19'89)_ .
0.05 | "'Bmz%(lgss)
'ALAPH(10037)
] 1 I3 1 1 1 1 ML |
1 09 08 07 06 05 04 03

A

Figure 4.3: v v. A for each of the 4 PE Chips at N=100

4.4. EFFECTS OF PROGRAM PROPERTIES 59

4.4 Effects of Program Properties

SIMD computers are usually used to solve data-parallel problems. A data-parallel problem is divisi-
ble into a collection of sub-problems, each of which is associated with a subset of the problem-defining
input data set [41]. One way to solve a data-parallel problem is to distribute the sub-problems to
PEs such that the sub-problems are solved concurrently. This distribution induces a requirement
for inter-PE communication that may limit the throughput of the computation. How much inter-PE
communication is required is proportional to how much the sub-problems’ data-subsets overlap. The
degree of overlap varies among data-parallel problems. For a given data-parallel problem, distribut-
ing the sub-problems so as to minimize the amount of required inter-PE communication is important
for achieving efficient computation {50, 51, 84].

High-level data-parallel programming languages often abstract the details of data set sizes and
PE counts, allowing such values to be specified at compile time, or even at run time [18]). When
there are far fewer PEs in the computer than there are sub-problems to solve, the computation
consists of inner loops iterated many times. It is just this sort of computation, with many repeats of
instruction sequences, for which I-cache should be most effective. On the other hand, if not many of
the instructions are repeats, then I-cache cannot be very useful in speeding up the computation.

The observations that inter-PE communication frequency and loop iteration counts affect I-cache
speedups raise the question, what are the properties of programs that should affect I-cache speedup?
How are these properties assessed in estimating the I-cache speedup for an arbitrary program?

This section enumerates characteristics of programs and analyzes how each affects I-cache
speedup.

4.4.1 Proportion of Repeat Instructions

The most important property of a program with respect to I-cache speedup is how many instructions
are repeats. If no instructions are repeated, then I-cache is of no value, whereas if most instructions
are repeats, then I-cache is of maximum value. Loop iteration counts express the degree of instruction
repetition.

Consider the following program, simple:

program simple;
B

for 3 =1 to J &
A

end;
end simple;

The symbols A and B in program simple denote sequences of instructions. Assuming that A is a
cachable instruction sequence, the problems of determining which sequence to store in cache, when
to store it, and when to activate it have obvious solutions.

Where the length of sequence A is denoted A and the length of sequence B is denoted B, the
number of cycles of the system clock to run program simple is given as

time for simple = B +Jx Acycles

Fo is the simplest member of the F-family of I-cache variants. Fy is capable of storing only one
cache block at a time and executing only single passes through the stored block. The following
skeleton for program simple_cache illustrates how program simple is modified to use an an Fy
I-cache:

60 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

program simple_cache;
B

store sequence A in cache

for j = 1 to J do

activate cached sequence A

end;
end simple_cache;

Ideally, each pass through cached sequence A in simple_cache is p, times faster than each
corresponding iteration of the inner loop in simplest. However, storing A in cache is an extra pass
through that sequence of instructions in simple_cache that has no counterpart in simple.

Assuming that instruction sequence A is cachable and that it runs faster from cache by the factor
pb, then the time for the modified program to run with I-cache is given as

time for simple.cache = B+ A+ Jx % cycles (4.10)

The time for program simple._cache reflects the time to execute the instructions in sequence B
in addition to the time to load A into the cache and subsequently execute it from there. The time
for B represents the impact of un-cachable instructions on execution with I-cache, while the extra
pass through A to store it into cache memory represents the run-time overhead of using I-cache. The
I-cache speedup is given as the ratio of the two execution times:

B+JxA
B+A+J*%

B
z*J

B J
7+1+ﬁ

(4.11)

speedup for simple =

Figure 4.4: Ideal I-Cache Speedup for Program simple

Equation 4.11 suggests that the speedup for program simple approaches p, as J approaches
o0, irrespective of the fraction -ﬁi. However, if that fraction is large, so that the great majority of a

4.4. EFFECTS OF PROGRAM PROPERTIES 61

program’s instructions cannot be delivered from I-cache, then the speedup is significantly less than
pb. The impact of un-cachable instructions is greatest when J is low, as illustrated in Figure 4.4.
4.4.2 Quantization

Consider the speedup for simple when B=0, that is, when all of the program’s instructions are
cachable. Equation 4.11 becomes

speedup for simple J+A
= —— (4.12)
when B=0 A+Jx 75
p*J
P+ J

It is interesting to note that the length of sequence A cancels in Equation 4.12, so that the
speedup is independent of the length of that sequence. Unfortunately, this simple expression is not
entirely accurate. The time taken for a single pass through a cache block is quantized to an integer
number of system clock cycles: when execution of a single iteration of a cache block completes in an
Fo I-cache, activity halts pending receipt of the next globally broadcast instruction. For an I-cache
variant incapable of iterating cache blocks, this waiting time is spent after every pass through the
block. Equation 4.13 gives the more accurate time to execute simple_cache with B=0 using an F,
I-cache, and Equation 4.14 gives the corresponding speedup:

tlme-fon' s:i.llgi.l.e.‘fa""“e = B+A+J+* [ﬁ] cycles (4.13)
with quantization Po
speedup for simple T+ A
*
when B=0 = (4.14)
. o ArvIx A
with quantization Pb

Figure 4.5 shows how quantization affects I-cache speedup when B=0. The speedup impact of
quantization is most pronounced for short loop bodies and for high iteration counts. Note that if A
is a multiple of pp, then quantization does not reduce I-cache speedup. The “steps” in Figure 4.5
occur at values of p;, where the quantized ratio [%] decreases. It is apparent in Figure 4.5 that for
fixed J, speedup does not increase simply with the length of the cache block as one might expect.
Quantization causes the speedup curves to cross over one another anomalously at some values of py,.
Higher values of A tend to smooth out the effect of quantization.

4.4.3 Loop Structure

The objective of I-cache is to deliver repeated instructions at the highest rate from a repository within
the PE chip. The actual speedup depends in part on the way in which instruction sequences occur
in a program, and on how they are repeated. In many computations solving data-parallel problems,
most of the time is spent executing instructions that reside in the bodies of inner loops. I-cache
should work well for such programs. For one-block-at-a-time I-cache variants, including Fy and Fy,
loop bodies whose executions alternate in time displace each others’ cache blocks. This alternation
gives rise to a form of thrashing. Thrashing occurs also for multi-block I-cache variants when the
capacity of cache memory is exceeded.

Having to re-store cache blocks reduces the I-cache speedup. To illustrate this effect, consider the
program thrash:

62 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

. HIAI=117, J=1024
|A|=65, J=1024

16

Figure 4.5: I-Cache Speedup for Program simple with Quantization, when B=0

progzam thrash;
for 1 = 1 to I do
for 4 := 1 to J do
A
end;
for §J := 1 to K do
B
end;
and;
and thrash;

Where A and B are the lengths of instruction sequences A and B, respectively, then the runtime
of thrash is given in Equation 4.15:

runtime for thrash = I(JA + KB) cycles (4.15)

Clearly, if both instruction sequences could be accommodated in cache memory at once, as with a
suitably large F; I-cache, then the instruction sequences would not compete, as in thrash_F;:

program thrash F;
store sequence A in cache
store sequence B in cache
for i =1 to I do
for j :=1 to J do
activate cached sequence A
end;
for j := 1 to K do
activate cached sequence B
end;
end;
aend thrash F;;

The runtime and speedup for thrash_one are given below:

runtime for thrash_fone = A+ B+ I1(J % + K %) cycles

4.4. EFFECTS OF PROGRAM PROPERTIES 63

F, speed

vt
. asn A+B+IUA+KE)
ignoring quantization

Fo is a one-block I-zache, capable of containing only one cache block at a time. Therefore, the
cache blocks in thrash replace one another in an Fy I-cache, as shown in thrash_Fy:

program thrash fzero;
for i =1 to I do
store sequence A in cache
for j := 1 to J do
activate cached sequence A
end;
store sequence B in cache
for J := 1 to K do
activate cached sequence B
end;
end;
end thrash fzerxo;

The runtime and speedup for thrash_£zero are given below:

L]

runtime for thrash_f£zero I(A+J % +B+K %) cycles

Fo speed

P tphr” “: I(JA+KB)
_ lorthrasa I(A+JA +B+KE)
ignoring quantization Pb Pb

(JA+ KB)
A B
(A+JE+B+K%)

The thrashing of the cache blocks in thrash F, increases the runtime by (I —1) *(A + B) cycies.
Figure 4.6 illustrates this difference.

4.4.4 MCS-Intensiveness

During each PE clock cycle in an I-cached SIMD computation, some subsystem is busy, be it the
PE FUs, one of the MCSs, the system controller, or some combination of these. When the computa-
tion cannot progress pending completion of an operation by a given subsystem, the computation is
subsystem-bound at that point. For example, when inter-PE communication is in progress and there
are no other operations to be performed that do not depend on the inter-PE communication result,
then the computation at that point is inter-PE-communication-bound.

The likelihood of a computation becoming subsystem-bound by a given subsystem corresponds
to the intensiveness of use of that subsystem in the program controlling the computation. One
aspect of MCS-intensiveness is measured by the calc-to-comm ratio, the ratio of the number of
calculation operations to the number of inter-PE communication operations occurring in a program.
The calc-to-comm ratio expresses a program’s intensiveness of inter-PE communication relative to
FU calculation.

For example, consider the program permuter with the following structure:

program permuter;
for §j =1 to J do

Y: perform inter-PE communication operation

end;
end permater;

64 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

Figure 4.6: F; and Fy Speedups for thrash (assuming 4A=B=40 and I=J=K=15, and ignoring quan-
tization)

The inner loop of permuter contains an inter-PE communication operation (labeled Y') followed
by an instruction sequence A. There are conditions under which I-cache cannot speed up a program
like permutex. Specifically, for simple I-cache variants including F, and F; that are not capable of
iterating stored instruction sequences, there is no I-cache speedup when the following two conditions
obtain:

1. Instruction Y is flow-independent of the instructions in the sequence A. That is, Y may take
place concurrently with any of the operations specified in sequence A.

2. The duration of instruction Y is at least as great as the time to globally broadcast all of the
instructions in A.

The time to execute the loop body cannot be less than the time to execute instruction Y, which is
determined by the duration of the inter-PE communication operation. Under these two conditions,
delivering the instructions from A at a higher rate will not reduce the time needed to execute the
loop body of permuter. Note, however, that these two conditions are highly restrictive. If there is
even a single instruction in A that is flow-dependent on Y and thus cannot overlap Y, then I-cache
may speedup the loop body. It is likely that there will be such a flow-dependence, because the result
of the inter-PE communication specified in Y is likely to be used by another instruction in the loop
body.

An additional condition must be met for an instruction sequence to exhibit no speedup for I-cache
variants, including Fs, that are capable of iterating stored instruction sequences:

3. The duration of instruction Y is divisible by pp.

Even if the first two conditions apply, if condition (3) does not apply, then an F; or higher F-
family I-cache variant can begin executing the next iteration of the loop body without waiting for the
ensuing globally broadcast instruction. For this reason, there may be some speedup unless condition
(3) applies.

4.4. EFFECTS OF PROGRAM PROPERTIES 65

This discussion shows that I-cache speedup depends strongly on the particular operations per-
formed in a program. I-cache speedup depends on the specific latencies of FU and MCS operations,
the degree to which such operations may overlap (as constrained by flow-dependencies), and the
ability of the local controller to iterate cache blocks without assistance from the system controller.

At the outset of a computation, before any instruction has been broadcast, the computation is
global-instruction-broadcast-bound. Indeed, whenever no long-duration operation is outstanding
and there is an operation whose operands are ready in PE registers and whose subsystem is idle,
then the computation is instruction-delivery-bound. One way of viewing the function of I-cache is as
minimizing global-instruction-broadcast-boundedness.

4.4.5 Relative Subsystem Clock Rates

The severity of subsystem-boundedness depends not only on the MCS-intensiveness of the program
controlling the computation, but also on the electrical characteristics of the subsystems carrying out
those operations. Subsystem electrical characteristics determine the time required for the subsystem
to perform one step of an operation. For example, if local external memory is located physically close
to the PE chip (shown together in Figure 3.2), then signaling through the local external memory
subsystem may occur at the maximum inter-chip rate. The local external memory subsystem clock
rate would be high in this case. As an >xample at the other extreme, router-to-router communication
steps in an inter-PE communication network of high topological complexity might occur at as low a
rate as that of global instruction broadcast. The inter-PE communication subsystem clock rate would
be low in this case.

Recall (from Section 3.9) that a p-set characterizes the relative clock rates of the MCSs. A p-set
of the form {N, N, N, N, N}, wherein the PE clock rate is N times faster than the clock rate of every
MCS, characterizes « SIMD computer wherein all MCSs operate at the low rate of global instruction
broadcast. For a given program, subsystem-boundedness is most likely when all MCS clock rates are
low, because MCS operation durations are maximum. A p-set of the form {N,1,1,1,1} characterizes
a computer wherein all MCSs other than the global instruction broadcast subsystem operate at the
high PE clock rate. These two p-sets ratios represent the extremely slow and the extremely fast
possibilities, respectively, for the clock rates of MCSs other than global instruction broadcast. For
a given program, subsystem-boundedness is least likely when all MCS clock rates are low, because
MCS operation durations are minimum.

4.4.6 Problem Size and PE Count

Problem size and machine size are two of the most important parameters of computation. Surpris-
ingly, the speedup due to I-cache is largely independent of the data set size and the PE count.

To the extent that increased PE count decreases the operation rate of MCSs or increases the
stepcount of MCS operations (for example, inter-PE communication, I/O, or response), increased PE
count increases p-set values. Increased p-set values increases the time spent per MCS operation and
thereby decreases I-cache speedup.

Similarly, increasing the problem size increases the amount of problem data stored by each PE.
When the data storage requirement exceeds the PE’s register file, some data is accessed in external
memory at a lower rate than in the register fiie. In this way, increasing the problem size may decrease
I-cache speedup.

As shown in Figure 4.4, I-cache speedup is extremely sensitive to iteration count. To a first
approximation, iteration counts are proportional to the ratio of data set size to PE count. I-cache
speedup is more sensitive to the ratio between data set size and PE count than it is to the absolute
size of either of these parameters.

66 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

4.4.7 Data-dependence

Data-dependent instruction execution occurs in a program when the sequence of instructions is
selected by values derived from the input data set. There are two types of data-dependence in
data-parallel programs: local and global data-dependence. Local data-dependence occurs when the
sequence of instructions to be executed by the PE depends on the value of intermediate data that
1s local to the PE. For example, an IF-THEN program construct specifies locally data-dependent
instruction execution. Global data-dependence corresponds to conditional branching performed by
the program-control portion of the system controller. Global data-dependence depends on aggregate
information about the input data set. For example, a WHILE loop, executed until all PEs converge to
some final state, is an example of global data-dependence.

Surprisingly, the consequences of these two types of data-dependence for I-cache speedup differ
markedly. While global data-dependence tends to lower I-cache speedup, a high degree of local
data-dependence actually favors large I-cache speedups.

As an example of local data-dependence, consider a simple program local-cond, in whose loop
body the PE performs one of two sets of actions, depending on the value of the PE variable z:

program local-cond;
for i =1 to I do
enable memory writes only where (x = 2)
A
enable memory writes only where (x != 2)
B
end;
end local-cond;

In local-cond, the PE should execute either sequence of instructions A or B, but not both,
depending on the value of z in the PE. Because the PEs in a SIMD computer share a single instruction
stream, both sequences A and B are broadcast to the PEs. Context management instructions direct
the context manager (shown in Figure 3.4) to suppress writes to register memory within PEs to
whose data the ensuing instruction sequence does not apply. Assuming that a context management
operation is specified in a single instruction, the number of system clock cycles needed to execute
local-cond in a generic SIMD computation is given below:

runtime for local-cond = J(1+A+1+ B) cycles

If A and B both contain cachable instructions, then the entire loop body can be placed in cache,
resulting in the following program structure:

program local-cond cache;
store loop body in cache
for i =1¢toIdo
activate cached loop body
end;
end local-cond.cache:

The runtime and speedup for local-cond_cache are given below:

1+A+1+B+I(1—+—4—;;-+—B) cycles

runtime for local-cond_cache

ideal I-cache speedup I+ A+1+B)
for 1ocal-cond_cache 1+A+1+B+ 1(_.__1+A,;‘:+B)

4.5. SIMD INSTRUCTION CACHE MANAGEMENT 67

Substituting the constant C=1 + A +1 + B into this equation gives the speedup formula:

ideal I-cache speedup IsC
for local-cond cache C +1 (-,%)
pp*1
po+ 1

which is the simple speedup formula first introduced in Equation 2.2. Here, though, multiple
instruction sequences are concatenated, separated by context management instructions, to form
large cache blocks. Longer cache blocks are less susceptible to the quantization effect. To the extent
that local data-dependence increases the lengths of instruction sequences appearing in loops, local
data-dependence increases the I-cache speedup.

This effect is not surprising, for the following reason: SIMD computer architecture is motivated
by a desire to remove redundant program-control components from the PE. Some amount of pro-
gram control is appropriate for executing locally data-dependent programs, because the sequence of
executed instructions depends on local conditions. I-cache can be seen as a way of putting a small
amount of program-control logic back into the PE chip along with the PEs. It makes sense that the
more independent program control a program requires, the better I-cache performs, within limits.
The trick, of course, with respect to making the best use of available chip area, is to have just enough
program control in the PE chip.

Global data-dependence has a very different impact on I-cache speedup. One reason is that global
branches depend on conditions which require input from all of the PEs. The response network,
usually used to query the state of the PEs, is typically a low-clock-rate MCS. Therefore, a program
with frequent global branches is likely to be response-bound. Another reason that global data-
dependence acts to lower I-cache speedup is that response instructions cannot be placed in cache.
Whenever a response instruction is executed, global information regarding the ensuing instructions
to be executed is required, which prevents the local controller from forging ahead inside the PE chip.
Finally, if the global branch target instructions are not in cache, they need to be stored there through
the slow global instruction broadcast network.

The difference between local and global data-dependence is summed up by observing the sequence
of instructions delivered to the PEs. Althovzh both kinds of data-dependence affect the instruction
sequence executed by PEs, locally data-dependent instruction sequences are delivered to the PEs
obliviously of how they are executed. In other words, the context management instructions determine
what uctually happens within the PE, but the sequence of instructions that is delivered to the PEs
does not depend on the values of intermediate data. Not so global data-dependence. A globally
data-dependent condition selects one of multiple candidate instruction sequences for delivery to the
PEs. Local data-dependence tends to lengthen sequences of cachable instructions, increasing I-cache
speedup, whereas global data-dependence tends to curtail cachable sequences, decreasing I-cache
speedup.

4.5 SIMD Instruction Cache Management

An I-cached SIMD computation embodies two concurrent control threads: one running on the system
controller, and another running replicatedly on the local controller in each PE chip. This control
concurrency represents a departure from generic SIMD computation, wherein a single program
running on the system controller specifies on every clock cycle both the activity within the system
controller and the instruction delivered to the PEs.

The system controller maintains the program’s principal control sequence. The thread running
on the local controller is not always active; when the needed instructions are not present in cache,

68 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

the local controller is said to be locked to the global instruction broadcast stream. Any activity that
occurs within the PE chip while the local controller is locked occurs at the instruction broadcast rate.
When the local controller is locked, either the PEs idle or they execute whatever PE instructions
are broadcast from the system controller, depending on the cache design. In any event, the cache
controller itself operates continually under control of globally broadcast instructions. When a cache
block has been fully stored in the cache, the system controller is able to broadcast a fork activating
that cache block. When the local controller begins executing that cache block, the cache controller
sequences through the cache block at the PE clock rate. When cache block execution terminates, the
local controller re-locks to the globally broadcast instruction stream.

A program counter in the cache controller advances at a rate different from that of one in the
system controller. Since the relative rates of advance are fixed and known statically, it is possible for
the system controller to maintain an accurate model of the state of the cache controller. This model
is used in system controller cache management.

I-cache management is a programming problem of assigning repeated instructions to cache blocks,
causing cache blocks to be stored, and causing them to be activated. Static management of ordinary
direct-mapped instruction caches is used to minimize conflict misses among frequently executed
instructions [57]. This section illustrates the sub-problems of I-cache management by showing
examples of statically managing F-family I-cache variants. For static cache management, the sub-
problems are solved at compile time. The illustrations presented here are representative also of
dynamic I-cache management actions; although the program transformations are applied during
the computation under dynamic I-cache management rather than beforehand, the modifications
themselves are the same as for static I-cache management.

4.5.1 Step 1: Identify Cachable Instructions

An assembly language program specifies a sequence of operations that makes up a SIMD computa-
tion. That assembly language program is translated into a machine code program which is stored in
system controller instruction memory prior to the computation. The assembly language instructions
specify system controller operations as well as PE FU and MCS operations. The instructions that
are globally broadcast during a generic SIMD computation, by contrast, are PE machine code in-
structions that do not specify program-control operations. For I-cached SIMD computation, a limited
set of program-control instructions forming a cache-control protocol are added to the set of globally
broadcastable instructions.

The goal of I-cache is to place all globally broadcast instructions that are repeated in cache
and subsequently deliver them to the PEs from cache memory at a high rate. The machine code
instructions corresponding to some assembly language program instructions cannot be placed in
cache, because a given I-cache variant may lack the facilities to perform the associated program-
control operations.

For example, instructions that alter global control flow are un-cachable with an Fy I-cache variant.
Only a restricted subset of program-control operations, those controlling fixed-iteration-count loop
iteration, are cachable with an Fs I-cache variant.

Some assembly language program instructions specify system controller indexer subsystem op-
erations. These operations calculate loop-index-dependent values and are used to form literals
for global broadcast to the PEs or to form system data memory addresses. The F-family contains
simple I-cache variants that do not include indexer subsystems, so the machine code instructions
corresponding to such assembly language instructions are un-cachable for F-family caches.

A basic block is a sequence of instructions containing no conditional branching and no branch
targets [29)(p.478); the instructions in a basic block are executed in a group irrespective of problem-
instance data. For SIMD programs, PE context management instructions delimit basic blocks with

4.5. SIMD INSTRUCTION CACHE MANAGEMENT 69

respect to code re-ordering because they delimit the boundaries of conditionally executed instruction
sequences. However, context management instructions do not affect cachability, because context
management operations restrict the side-effects of instruction execution rather than the order in
which subsequent instructions are executed.

The fact that some instructions other than conditional branches are un-cachable for simple I-
cache variants means that caching is restricted to sub-sequences of basic blocks. An un-cachable
instruction has the greatest negative impact for I-cache variants that are capable of iterating cached
loops: an un-cachable instruction in a loop body prevents iterating the loop body in cache.

It is straightforward to identify cachable instructions from an assembly language program for a
given I-cache variant. All of the resulting machine code instructions are cachable, with the exception
of those corresponding to assembly language instructions that specify program-control functions that
the I-cache variant is incapable of performing.

4.5.2 Step 2: Determine Which Sequences Become Cache Blocks

The objects that go into a SIMD instruction cache are sequences of instructions, rather than indi-
vidual instructions. The reason is a consequence of the explicit management of I-cache: at least one
extra cache-control instruction is required to place an instruction sequence in cache, and at least
one cache-control instruction is required to activate a cache block. There is no benefit to caching
an individual instruction (unless it appears alone in an iterated loop body, and then only for an F,
or higher I-cache variant capable of iterating cache blocks). This restriction further differentiates
SIMD instruction cache from typical instruction caches, wherein it is profitable to store individual
instructions. (To exploit spatial locality in memory references, fixed-size groups of instructions are
stored collectively as lines in ordinary caches [75)(p.477). However, the use of multiple-instruction
lines is orthogonal to the exploitation of temporal locality that is the fundamental motivation behind
caching [85].)

A cachable instruction sequence that does not become a cache block is said to be excluded from
cache. Not every instruction sequence that is a candidate for caching can be beneficially executed
from cache. There are two possible reasons for excluding a candidate instruction sequence: placing
the instruction sequence in cache may not speed up the execution of that sequence, or the instruction
sequence may compete for cache space with other, more profitably cached alternative sequences.

¢ Exclusion due to ineffectiveness:

Some instruction sequences take no less time when executed from cache than when globally
broadcast. Such is the case, for example, for non-iterated single-instruction sequences. As
another example, caching may not speed up an instruction sequence that is subsystem-bound.
Because storing a cache block represents a time overhead proportional to the length of the
sequence, caching an instruction sequence for which there is no cache speedup actually slows
down the computation.

A single instruction that is not the body of a one-instruction iterated cache block cannot be exe-
cuted faster from cache, irrespective of p}, and of the number of times that particular instruction
is used. Such a cache block is excluded from an Fqy cache. An F; cache is capable of iterating
cache blocks, so single-instruction sequences are not necessarily excluded from an F; cache.

The possibility of ineffectiveness makes it important to estimate statically the speedup from
caching a given instruction sequence. Such estimation is discussed in Section B.4.5.

¢ Exclusion due to competition:

Because Fy and F3 I-cache variants contain only one cache block at a time, all cachable instruc-
tion sequences compete for cache space with each other: whenever a block is cached in an F, or
F3 cache, it displaces the previously cached block.

70 CHAPTER 4. I.CACHED SIMD COMPUTER DESIGN

Competition for cache space as occurs among instruction sequences whose executions alternate
during the computation. Competition may lead to exclusion of some of the competing sequences.
The determination of whether to exclude one or the other of a mutually conflicting pair of
cachable sequences rests on the tradeoffs between the time to store each cache block versus
the time saved by running that block from cache. If the time saved by caching the less-
profitably cached instruction sequence is less than the time to re-store the more-profitably
cached instruction sequence, then the less-profitably cached instruction sequence should be
excluded.

4.5.3 Step 3: Determine Where in Cache to Place Blocks

There is no decision to be made here for Fy or Fs caches, because these caches contain only single
cache blocks at a time. In the general case, this problem is equivalent to the storage management
problem solved, for example, by segmented virtual memory replacement algorithms. Note that the
correct solution depends collectively on the dynamic execution characteristics of a program’s cache
blocks and their sizes; this sub-problem is arbitrarily difficult for arbitrarily complex programs.

4.5.4 Step 4: Schedule Cache Blocks

With respect to scheduling the machine code instructions in a program controlling a SIMD compu-
tation, time is measured in numbers of instruction slots. The time interval of a global broadcast
instruction is pp times the time interval of a cached instruction. Therefore, operation latencies as
measured in numbers of instruction slots are p), times higher for cached instructions than for globally
broadcast instructions.

Quantization affects the latencies of globally broadcast instructions but it does not affect the
latencies of cached instructions, as measured in numbers of instruction slots. The following equations
for the latency of an operation Y using MCS X whose stepcount is S(Y) illustrate this point:

Po

latency of Y global broadcast instructions

S (Y) *px cached instructions

The difference between the two latency measures reflects the fact that MCS X receives %% clock
pulses during every global instruction broadcast interval, which corresponds to one clock pulse every
px cached instructions.

The latency difference means that in general, the machine code instruction sequence correspond-
ing to a given assembly language instruction sequence occupies more cached instruction slots than
global broadcast instruction slots. The lengthening of instruction sequences for caching has a nega-
tive impact on I-cache speedup, because the time to store a cache block is proportional to the length
of the cache block. The cache block store time becomes significant if it is not amortized over many
iterations of the cache block’s execution. Furthermore, lengthier cache blocks require larger cache
memories, increasing the chip-area cost of a useful I-cache.

In any event, the scheduling dilation of cache blocks motivates the compression of sequences of
NOOPs that is common to all the F-family caches: in a manner reminiscent of the NOOP compression
technique used to conserve instruction memory in VLIW computers {15](Sec.6.5.1), a sequence of
NOOPs added as place holders representing timing delays is represented compactly in an F-family
cache. The simple encoding scheme associates a parameter with a cached NOOP that specifies a
number of cycles for which to suspend incrementing the cache program counter before advancing
to the next instruction in the cache block. Note that the need for such a compression scheme
would be eliminated were the multi-clock generator augmented with control inputs that allow clocks

4.5. SIMD INSTRUCTION CACHE MANAGEMENT 71

regulating idle subsystems to be stopped and restarted at arbitrary phase. These observations
suggest that although times as measured in instruction intervals are large for cached instructions
than for globally broadcast instructions, this difference does not translate into cache blocks that are
proportionally larger than their globally broadcast counterparts.

4.5.5 Step 5: Store Cache Blocks

A cache block is stored in cache before it can be activated. The storing of a cache block is accomplished
by globally broadcasting the body of the cache block in-between a pair of cache-control operations
demarcating the beginning and the end of the cache block. For F-family I-cache variants, L + 2
broadcast instructions are needed to store a block of L machine code instructions. The sequence of
L + 2 instructions used to store the cache block into the cache is called the preamble. In F-family
caches, the final instruction of the preamble is stored directly in the cache as a sentinel identifying
the end of the cache block. Alternatives would have been to store block-bounds information in a
special part of the cache, or to designate the bounds on each activation of a cache block. Each of these
alternatives requires storage and/or control logic comparable in size to the single cache location it
would save.

A question that arises in relation to storing the cache block is where in the program to place
the preamble. The general answer to this question seems to be that it doesn’t matter where in the
program the preamble appears, subject to the following constraints:

o The preamble should be executed as infrequently as possible, because doing otherwise amounts
to redundantly re-storing the block in the cache.

¢ The preamble should be executed as late as possible before the cache block is executed, because
doing otherwise may cause the cache block to over-write another cache block that is still usefully
resident in cache.

4.5.6 Step 6: Activate Cache Blocks

Upon activation of a cache block, all instructions globally broadcast prior to completion of the cache
block’s execution are not executed by the PEs. The number of system clock cycles for the execution
of a cache block with an F-family I-cache variant is known statically. The system controller is free
to performa useful work while a cache block is active. For example, for two-port I-cache variants, the
system controller could globally broadcast another cache block to be pre-stored through the second
cache memory port. Such pre-storing is not possible for F-family I-cache variants, as they have but
a single cache memory port.

With Fy I-cache variants, the globally broadcast instruction activating a cache block supplies no
parameters, because the length of the block is determined by an embedded delimiter, the starting
location of the block is always 0, and there is no iteration of the cache block. The number of system
clock cycles that occur during execution of an Fy cache block of length L is given in Equation 4.16:

duration of Fy cache block execution = [L * 1] system clock cycles (4.16)

The additional instruction time is that spent recognizing the cached sentinel instruction demar-
cating the end of the cache block.

With Fy I-cache variants, the globally broadcast instruction activating the cache block specifies
an iteration count. The number of system clock cycles that occur during execution of an F; cache
block of length L iterated I times is given in Equation 4.17:

[I*(L+ 1)'|
Pb

duration of Fy cache block execution = system clock cycles 4.17)

72 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

4.6 Examples of Static I-Cache Management

This section illustrates static I-cache management for F-family I-cache variants for a program con-
taining multiple cachable instruction sequences whose executions alternate. Consider the program
twine:

program twine;
for 1 =1 to I do

for j := 1 to J do
A
end;
for § := 1 to K do
B
and;
for j :=1 to L do
C
end;
and;
and twine;

Executions of instruction sequences A, B, and C alternate during the course of the computation.
All three are cached in a multi-block I-cache variant with sufficient cache size. For one-block I-cache
variants, or for multi-block variants with insufficient cache size, the three instruction sequences
compete for cache space and replace one another each time round the outer loop. In this case, the
cache block for A would be used J times before being overwritten by the cache block for B, which
would be used K times before being over-written by the cache block for C, which would be used L
times before being over-written once again by the cache block for A.

Note that a simply nested loop structure is a special case of twine. For example, if I > 1, J=1,
K >1, and L=0, then A represents the outer loop body and B represents the inner loop body.

Static Management of twine for an F, I-cache Variant

There are many possible ways to manage twine for a “one-block, one-shot” I-cache variant. The best
way depends on the I-cache speedups for the individual instruction sequences. If all three sequences
yield large I-cache speedups, then the best way to use an Fy I-cache variant is shown as program
twine_Fg_all, wherein each block is re-stored in cache on each iteration of the outer loop:

program twine Foall;
for 1 =1 to I do
store A’s cache block
for j := 1 to J do
activate A’s cache block
end;
store B’s cache block
for j :=1 to K do
activate B’s cache block
end;
store C’s cache block
for j :=1 to L do
activate C’s cache block
aend;
end;
end twine Fo.all;

It might be the case, however, the greatest speedup is obtained by placing just one of the sequences
in cache and leaving it there undisturbed throughout the computation. This would be the case, for
example, if sequences A and C were subsystem-bound but sequence B were not. In this case, the

4.6. EXAMPLES OF STATIC I-CACHE MANAGEMENT 73

best way to use an Fy I-cache variant is shown as program twine_F, best, wherein the cache block
for B is stored just once, at the outset of the computation:

program twine Fo B best;
st-re B’s cache block
for 1 = 1 to I do
for jJ := 1 to J do
A
end;
for j} := 1 to K do
activate B’s cache block
and;
for j := 1 to L do
C
end;
and;
end twine F¢ B best;

Static Management of twine for an ¥, I-cache Variant

A “multi-block” I-cache variant, including F;, F3, and F4, is ideal for loop structures such as that
exhibited by twine. Subject to capacity limitations, a multi-block I-cache is able to contain all three
cache blocks at once, so the I-cache speedup from caching each sequence can be realized while paying
the store overhead just once per block, at the outset of the computation. The result of static cache
management for F; is illustrated in program twine_F;:

program twine F;
store A’s cache block
store B'’s cache block
store C’s cache block
for i = 1 to I do
for jJ :=1 to J do
activate A’s cache block
end;
for 3 :=1 to K do
activate B’s cache block
and;
for) := 1 to L do
activate C’s cache block
end;
end;
end twine F,;

Static Management of twine for an F; I-cache Variant

Fs is a “one-block, multi-shot” I-cache variant. Cache management for F3 is subject to the same
considerations as for F;. If all three sequences from twine are profitably cached, then twine F5_all
results:

program twine F; all;
for i =1 to I do
store A’s cache block
activate J iterations of A’s cache block
store B’s cache block
activate K iterations of B’s cache block
store C’s cache block
activate L iterations of C’s cache block
end;
end twine F2.all;

74 CHAPTER 4. I-CACHED SIMD COMPUTER DESIGN

If the instructions in the individual sequences are such that it is best only to cache sequence B,
then twine.F;. B best results:

progzas twine F; B best;
store B’s cache block
for i =1 to I do
for § := 1 to J do
A
end;
activate K iterations of B's cache block
for j :=1 to L do
C
end;
eand;
end twine F; Bbest:

Static Management of twine for an F; I-cache Variant

F3 is similar to F;. F3 has the ability to execute multiple iterations of a cache blocks from a single
activation. If cache memory is sufficiently large to hold all three blocks, then program twine F;
results:

program twine Fs;
store A’s cache block
store B’s cache block
store C’s cache block
for 1 =1 to I do
activate J iterations of A’s cache block
activate K iterations of B’s cache block
activate L iterations of C’s cache block
end;
end twine Fj;

Static Management of twine for an F; I-cache Variant

F; is the most complex member of the F-family. The entire program body may be stored intact with
an F; I-cache variant:

program twine F;;
store A’s cache block
store B’s cache block
store C’s cache block
store the outer loop’s cache block, which activates the others
activate 1 iterations of the outer loop’s cache block
end twine F;;

Chapter 5

I-Cache Evaluation

The complex interactions of I-cache capabilities with logical properties of programs and electrical
characteristics of SIMD computers make it difficult to discern a priori the I-cache speedup for a
given SIMD computation. This analytical difficulty motivates empirical evaluation. Measurements
of I-cache speedup against varying computation parameters provide a basis for evaluating the factors
that affect I-cache speedup.

Designs for Fy and F2, two of the simplest members of the F-family, have been evaluated empiri-
cally on a detailed model of SIMD computation. Speedup measurements have been performed over
a set of SIMD computer variants for a diverse collection of sample programs. The SIMD computer
variants were chosen to represent a range of existing SIMD computers. The PE datapath widths in
the SIMD computer variants range from 1 bit to 32 bits. The sample programs for which evaluations
were performed were chosen to span a broad range of properties of data-parallel problems. Together,
the SIMD computer variants and sample problems on which I-cache variants were simulated cover
a large region of the space of SIMD computations in which to explore I-cache speedups, limitations,
and costs.

Results obtained using the simulator show that the multi-clock generator, introduced to provide
the multiple high-rate clocks needed for I-cache, does not provide substantial speedups on its own
without I-cache. However, even the simplest I-cache variant (Fy) yields substantial speedups. An F,
I-cache has the additional capability of iterating cache blocks. The measured results confirm that the
ability to iterate cache blocks smoothes the quantization effect and yields higher overall speedups.
For the subject problems solved on a SIMD computer with wide-word PEs, the evaluations show that
these simple I-cache variants do not need to be able to store more than 50 instructions. For some
sample problems, the simple I-caches yield speedups near the highest possible, while for others the
speedups are much less than maximum. Measurements of the sensitivities of I-cache speedup to
programs’ MCS-intensiveness show the surprising result that increasing MCS-intensiveness either
increases or decreases I-cache speedup, dependent upon the MCS’ electrical characteristics.

5.1 A Simulator for SIMD Computations

The throughput of a SIMD computation is measured using a detailed simulator for the basis computer
that is described in Appendix A. Programmed in machine code, the simulator represents the state
variables of a SIMD computer explicitly, and it updates the state variables on each clock phase. The
simulator is parameterized so as to be able to capture the characteristics of a broad range of generic
SIMD computers. I-cached SIMD computers with Fy or Fy I-cache variants are also simulated. To
check whether apparent speedup is due to I-cache or merely to the clocking of all subsystems at
their highest rates, the simulator also represents multi-clock SIMD computers. A multi-clock SIMD

75

76 CHAPTER 5. I-CACHE EVALUATION

computer has all of the elements of an I-cached SIMD computer, excluding cache memory and cache
controller in the PE chip.

In the basis computer, there is no program control for the PE FU inside the PE chip. A machine
code instruction controls one PE clock cycle of FU activity. Sequences of single-cycle machine code
instructions are needed to perform some assembly language operations. For example, addition of
32-bit operands requires 8 single-cycle instructions on a 4-bit FU.

The “Control and pin access” block within the PE chip (shown in Figure 3.2) constitutes special-
purpose local control for the MCSs. When an MCS operation requires multiple clock cycles to
complete, this block provides the control for the MCS in clock cycles intervening between a pair of
instructions initiating and terminating the multiple-cycle MCS operation. Why assume that there
is MCS control inside the PE chip when there is no program control inside the PE chip? The typical
simplicity of the control and pin access circuit, as for example that illustrated for local external
memory access in Figure A.2, facilitates its inclusion in the PE chip. By contrast, the sequencing of
primitive instructions to realize arithmetically complicated FU operations is not necessarily simple.
The PE chips of some existing SIMD computers include some FU control, while in others there is no
on-chip MCS control. The assumptions made for the basis computer, reflected in the machine code
instruction set, introduce a degree of “machine-dependence” with respect to the severity of the global
instruction broadcast rate limitation, because the FU is always instruction delivery-bound, whereas
an MCS is not necessarily so. Providing FU control inside the PE chip would lessen the apparent
instruction delivery-boundedness of programs, whereas assuming no MCS control inside the PE chip
would increase the apparent instruction delivery-boundedness of programs. The machine-dependent
assumptions made for the basis computer are a reasonahle middle ground.

A further machine-dependent aspect of the basis computer is the genericity of MCSs. The MCS
abstraction (which was introduced in Section 3.4) limits the faithfulness with which MCSs of some
SIMD computers are represented. On the other hand, this generic representation allows a wide
variety of specific MCSs to be accommodated in the one simulator.

Despite using a specific machine code instruction set, the simulator is parameterized so that it
may reflect closely the widely varying characteristics of existing and foreseeable VLSI-based SIMD
computers. In simulating generic SIMD computations, the following ckaracteristics are parameters:

e program loop structure,
e program data-dependence,
¢ problem size,

¢ inter-PE communication, as determined by the topological relationship between sub-problems
of a data-parallel problem and the inter-PE communication network,

o PE memory usage, as determined by the allocation of problem data and intermediate results to
registers and to locations in local external memory,

e number of PEs in the computer,
¢ number of registers per PE,
¢ PE datapath width,

¢ PE FU circuit complexity, and

¢ number of PEs per PE chip.

5.2. SPEEDUP MEASUREMENT METHOD 77

Values for some of these parameters are explicit in the assembly language program used to
describe an operationally structured subject computation. Those parameter values that determine
operation stepcounts! are specified as inputs to the automatic translation of an assembly language
program into the machine code program that controls the simulated computation.

A p-set? provides five additional parameters used in the simulation of multi-clock SIMD com-
putations. A p-set reflects both the VLSI implementation technique characteristics that determine
electrical propagation characteristics of wires and the MCS topologies that determine wire lengths
and electrical loads. A p-set has the form {py, pr, pi, e, P1}, Wherein each value is the ratio of the
PE clock rate to the rate of a clock regulating an MCS. The values in a p-set specify the clock rates
of global instruction broadcast, response, system memory data /O, inter-PE communication, and
local external memory, respectively. p-set values guide the translation from assembly language into
machine code.

Fo- and F;-enhanced SIMD computations are also simulated. For this purpose, the appropriate
cache-control protocol instructions are available in the instruction set. Cache size, the total number
of cache memory locations, is an additional parameter used in the simulation of I-cached SIMD
computation.

Having verified assembly language program correctness and, where necessary, having measured
data-dependent iteration counts through complete simulation of a computation for a given data set,
throughput can then be measured statically for different p-sets through simple instruction counting.
Measuring throughput in this way saves considerable simulation time.

5.2 Speedup Measurement Method

The empirical method used to measure I-cache speedup is illustrated in Figure 5.1. The method
comprises the following steps:

1. Evaluation begins at the upper-most, left-most shaded box in Figure 5.1. A generic SIMD
computation is represented as an assembly language program. The assembly language pro-
gram used as the starting point reflects problem parameters (including data-dependence and
the topology of sub-problem data sets) and hardware parameters (including inter-PE commu-
nication network topology, PE count, and PE register count). The assembly language program
specifies a sequence of PE and MCS operations and their dependence relationships. The as-
sembly language program is thus an operationally structured description of the computation.

2. The subject computation is then transformed into physically structured variants represented
as machine code programs. Operation latencies are explicit in a physically structured com-
putation. The machine code program therefore reflects PE parameters including FU circuit
complexity and datapath width, and MCS parameters including PE chip pin time-sharing and
communication network diameters. A distinct throughput baseline is established by simulating
the computation described by each distinct set of parameter values.

3. The assembly language description of the subject computation is then again transformed, this
time into physically structured variants of multi-clock SIMD computation. A unique variant is
defined by each unique p-set. Simulations yield throughput measurements that are compared
against the baseline for that computation.

4. The assembly language description of the subject computation is then modified to reflect en-
hancement with either Fy or F3. The modification includes adding cache-control instructions
needed for static management of I-cache, as discussed in Section 4.5.

! As defined in Section 3.6, the stepcount of an operation is the number of clock cycles taken to perform it.
2The use of p-sets to characterize relative subsystem clock rates is introduced in Section 3.9.

78

CHAPTERS. I-CACHE EVALUATION

for data-paraiiel problem

« Pariton and map problem Input dawm for

REORGANIZE AND ADD
CACHE-CONTROL PROTOCOL
~ INSTRUCTIONS FOR SPECIFIED
< HCACHE VARIANT

Figure 5.1: Method for Measuring 1-Cache Speedup

5.3. PREPARING A SUBJECT COMPUTATION 79

5. The resulting assembly language description of the I-cached computation is then transformed
into physically structured variants that reflect hardware parameters including cache size. Sim-
ulations yield throughput measurements that are compared against the baseline for that com-
putation and against same-p-set multi-clock counterparts.

Dotted arrows and ghost boxes in Figure 5.1 indicate that a number of alternative transformations
may be applied at a given step. The large branching factor in the tree of transformations shown in
Figure 5.1 makes apparent the enormity of the I-cached SIMD computer design space.

The translation from assembly language into machine code has a slight impact on results. The
assembler/scheduler that produces machine code from an assembly language program attempts
to achieve the greatest degree of overlap among flow-independent instructions. The scheduling
algorithm is heuristic and imperfect, and variations in the optimizer’s success inject a degree of “noise”
into throughput measurements. In general, good scheduling algorithms are difficult to write [49].
Although imperfect, the scheduling algorithm used uniformly for all translations to machine code
shown in Figure 5.1 happens not to be a very bad one. On one hand, the variability introduced by
idiosyncrasies of that scheduling algorithm adds to the realism of the simulation results. On the other
hand, the scheduler’s imperfections limit the generality of the results. The results reported here,
based on detailed simulations under realistic assumptions, indicate the speedups that would likely
be obtained were a contemplated I-cached SIMD computer actually constructed and its throughput
measured relative to its generic counterpart.

5.3 Preparing A Subject Computation

The assembly language program that is the starting point for I-cache evaluation is an input to
the method illustrated in Figure 5.1. The assembly language program describes an operationally
structured generic SIMD computation. That program is prepared outside of the scope of the empirical
speedup measurement mechanism. Assembly language programs were written by hand for each of
the 8 sample problems for which results have been obtained.

In a subject computation, an explicit mapping from problem input and output data sets to PEs
has already been established. In general, appropriate mappings are difficult to find, although there
are automatic means for finding good mappings in some cases [84].

In a subject computation, the manner in which the PE registers and local external memory are
used has already been established. The register allocation problem for SIMD PEs is an instance of
the corresponding problem in uniprocessor computation. In general, the best register allocation is
difficult to find, although there are algorithms for finding good ones [14].

In an operationally structured subject computation, program branches that are conditional on
PE data has already been converted to PE context management instructions. How little of the entire
program is executed within the scope of PE context management instructions is one measure of the ap-
propriateness of a problem for execution on a SIMD computer. There is a systematic syntactic schema
for converting conditional constructs into PE context management instructions [27](Sec.IV.B).

The system controller both sequences the program controlling a SIMD computation and evaluates
loop-index-dependent expressions for the PEs. The use of the system controller is explicit in the
assembly language program describing a subject computation.

5.4 Four SIMD Computer Variants

The experimental method sketched in Figure 5.1 is used to evaluate I-cache added to each of 4 SIMD
computer variants. The computers differ primarily in the numbers of PEs per chip, in PE FU widths
(in bits), and in VLSI implementation technique. Each is based on an existing SIMD computer, with

80 CHAPTERS. I-CACHE EVALUATION

the exception of the last, which is an extrapolation from the VLSI implementation technique used
for a recent microprocessor.

This section describes the SIMD computer variants by giving representative stepcounts for as-
sembly language operations. The complete set of operations is given in Appendix A. For each SIMD
computer, stepcounts are given in this section for operations representative of a class of operations
applied to 32-bit operands in an instance of the SIMD computer containing 1024 PEs. For example,
NOR is representative of bit-wise logical operations, ADD is representative of carry-chain-based
arithmetic operations, and MULT is representative of more complex arithmetic operations. The
following table describes some representative operations:

([Operation Name |
NOR

ADD

MULT
LC_PUSH EQ
LITERAL
LOAD

LDNO

‘Meaning |

bit-wise NOR

addition

multiplication

context management

global broadcast literal

local external memory read
neighbor-to-neighbor inter-PE communication

Variant SIMD-A is based on Blitzen [36]. SIMD-A’s PE chip contains 128 1-bit PEs, each with
1K register bits.? Variant SIMD-B is based on MP-1 [62]. SIMD-B’s PE chip contains 32 4-bit PEs,
each with 1K register bits. Variant SIMD-C is based on SLAP [27]. SIMD-C’s PE chip contains 4
16-bit PEs, each with 512 register bits. Variant SIMD-D is based on the technology used in a modern
uniprocessor implementation [21]. SIMD-D’s PE chip contains 2 32-bit PEs, each with 8K register
bits. Physical characteristics of the PE chips correspond to those shown in Figure 3.2. The following
table summarizes the characteristics of the 4 SIMD computer variants:

| SIMD-A | SIMD-B | SIMT--C | SIMD-D
A} 0.5pm 0.8um 1.0um | 0.375um
PEs per chip 128 32 4 2
FU bit-width 1 4 16 32
32-bit registers per PE 32 32 16 256
NOR stepcount 32 8 2 1
ADD stepcount 32 8 2 1
MULT stepcount | 1056 263 34 1
LC_PUSH_EQ stepcount 32 8 2 1
LOAD stepcount 128 32 4 2
LDNO stepcount 32 8 2 1

5.4.1 Sensitivity of Speedup to SIMD Computer Variant

One consequence of the assumption in the simulation model that a new machine code instruction is
required for each clock cycle of an FU operation taking multiple steps is that every FU operation is
necessarily instruction delivery-bound. The effect of this assumption is most marked for PEs with
narrow-word FUs, wherein many clock cycles are needed to perform operations on 32-bit operands.
Therefore, SIMD-A (with 1-bit FUs) is the most instruction delivery-bound of the 4 SIMD computer

3The CM-2 is a better-known computer whose PEs are also 1-bit wide [18]. The CM-2 was not used as a basis here
because its design does not exploit VLSI implementation technique for the PEs. 3 local external memory accesses are need
in CM-2 for each single-bit full-adder step performed by the PEs [22](p.20). Also, some of the arithmetic operations are
performed outside of the PE chip in CM-2.

5.5. EIGHT SAMPLE PROBLEMS 81

variants, while SIMD-D (with 32-bit FUs and single-step multiply) is the least instruction delivery-
bound of the 4 SIMD computer variants. The sensitivity to SIMD computer variant is apparent
among the I-cache speedup measurements for each problem presented in Appendix E.

5.5 Eight Sample Problems

This section introduces the 8 sample problems for which I-cache speedups have been measured.
While the problems presented here vary over a broad range in their program characteristics, this
collection should not be construed to represent comprehensively all data-parallel problems. The 8
problems were selected from among those discussed in the literature for their simplicity and for their
diversity. For example, problems were chosen that map conveniently to various inter-PE topologies
and which appeared to possess a variety of degrees of data-dependence and subsystem-boundedness.

The assembly language programs are included in Appendix D. Most of the sample programs
begin with a “prologue”, wherein the input data set is moved to the PEs from system data memory,
continue with a “kernel” computation within and amongst the PEs, and conclude with the transfer
of the output data set from the PEs to system data memory.

Each of the sample programs has been evaluated for computations using very large data sets.
The largest data sets contain aboui one million elements, the number of pixels in a 1K by 1K
image. The objective in choosing large data set sizes was to avoid potentially mis-leading constants
that typically obtain for smaller data sets. Unfortunately, for half of the problems studied, a large
data set under a datum-per-PE mapping means that there is an enormous number of PEs in the
simulated computer. For computations including some simulations of physical systems, the validity
of results grows with the size of the data set. For example, the finest tractable granularity, and
thus the largest possible data set size, is often desirable in finite-element analysis computations [66].
However, despite the apparently good reasons for building computers containing millions of PEs,
their cost is still prohibitive today.

5.5.1 Tree-Summation (tree)

Logarithmic-time summation is a common operation on arrays. tree is based on the algorithm
sketched in [41](Fig. 1), wherein P PEs are arranged as a tree with P leaves. Each PE is assigned
one element of the array and summation takes O (log P) steps. In theiterated loop body, the (2: + 1)
active PE sends its accumulated partial sum to the 2i* active PE, the number of active PEs is halved
by de-activating the odd-indexed PEs, and the still-active PEs add the newly received value into their
partial sums. tree achieves the desired data communication using a routed inter-PE communication
network.

5.5.2 Plus-scan (scan)

The parallel-prefix sum 3 of a vector ¥ is defined as follows:

i-1
s[j1=)_wvlil
=0
Plus-scan (also called “tree +-scan” in [9](p.1535) and abbreviated “scan” herein) uses routed inter-
PE communication in calculating the parallel-prefix sum of a P-element vector using P PEs. scan
comprises log P iterations of an up-sweep followed by log P iterations of a down-sweep. Each of the
sweeps’ loop bodies is structured similarly to the loop body in tree. scan’s complexity is greater
than that of tree because of the need for PEs to carry forward in local memory partial sums from
the up-sweep to the down-sweep (as suggested in Fig. 13 of [9]).

82 CHAPTER 5. I-CACHE EVALUATION

5.5.3 Linear Array Bubble Sort (bubble)

This algorithm is a straightforward generalization of the uniprocessor bubble sort. There is no
asymptotically faster sorting algorithm on a linear array.

On each iteration of bubble’s loop body, first all pairs of PEs indexed 2: and 2 + 1 compare their
values, swapping where PE 2: + 1 contains the lower value. Then pairs of PEs indexed 2: and 2i - 1
compare their values, swapping where PE 2: contains the lower value. That the two PEs indexed 0
and P - 1 must be disabled during the second half of the loop body is slightly inconvenient. The loop
iterates until the values are ordered from least to greatest within the PEs. The number of iterations
depends on the initial permutation of the input data. There are at most £ iterations.

5.5.4 Mesh Row-Column Sort (rowcol)

This algorithm, described in [55)Lec.5,p.16), sorts P numbers on a vP xv/P mesh in time O (v P log P).
The loop body of xowcol first sorts the rows in alternating directions and then sorts the columns
upward. The individual row and column sorts use bubble sort, and so take time O (v/P), the length
of a row or column. Sorting requires at most log(v/P) =0 (log P) iterations of the loop body, so the
asymptotic complexity of rowcol is O(log PvP). In rowcol, as in bubble, the iteration counts
depend on the initial permutation of the data.

5.5.5 Bitonic Sort (bitonic)

bitonic is an in-place merge sort that runs in O (log? P) time. bitonic uses a routed inter-PE
communication network to realize the communication pattern given in the description of Batcher’s
algorithm in [52)(p.112).

The algorithm works as follows: an unsorted P-element array is considered initially to be P sorted
1-element sub-arrays. The inner loop body of bitonic cuts in half the number of sorted sub-arrays
while doubling the size of each; therefore log P iterations of the loop body yield the desired sorted
P-element array.

The basic operation of the bitonic sort is an in-place merge that produces a sorted N-element
array from 2 sorted %-element arrays. The in-place merge exploits the fact that the two initial
arrays are sorted, so that individual element-comparisons yield information about sub-ranges of the
arrays. The fascinating aspect of bitonic is that the addresses of PEs pairwise-involved in element
comparisons depends only on N, P, and the PE indices. The in-place merge comprises O(log N)
comparisons, and while the swaps are conditional on the compared data, the schedule of comparisons
1s independent of the values of the input data.

In the bitonic loop body, the in-place merge is performed concurrently for all of the sorted
sub-arrays. The asymptotic complexity of the sort is therefore given as the product of the number of
iterations of the loop body (O (log P)) and the time of each in-place merge step (ranging from O (1)
up to O (log P) and thus O (log P) on average). The asymptotic complexity is O (log? P).

bitonic shares the property of bubble and rowcol that data are sorted in-place without re-
quiring additional intermediate storage. However, of the three sorts, bitonic alone possesses the
property that its runtime does not depend on the original permutation of the data to be sorted.

5.5.6 Matrix Multiply (matmul)

Matrix multiplication is a classic calculation-intensive data-parallel problem. matmul multiplies two
P x P matrices to yield a third P x P matrix. matml uses a P-element linear array, wherein each
PE calculates one column of the result. matmul is discussed in detail in Appendix C.

5.6. p-SETS FOR I-CACHE SPEEDUP BOUNDS 83

5.5.7 Mesh Sobel Filter (sobel)

The Sobel filter is a simple edge-detection operation on gray-scale images [2)(p.76). At each pixel in
the input image, local gradients are calculated in the horizontal and vertical directions, and the value
of the output image at each pixel is the square-root of the summed squares of the local gradients.

sobel runs on a mesh containing one PE per pixel, wherein each PE calculates a weighted sum
of a neighborhood of pixel values. Repetition of an insfruction sequence occurs only in the integer
square-root calculation at the end of the program. The square-rooting works by successive refinement
of an initial estimate until the value converges within an error threshold; this calculation iterates a
data-dependent number of times, until all PEs’ values have converged.

5.5.8 Linear Array Median Filter (median)

Median filtering replaces each pixel of a P x P image by the median of its local (3 x 3) neighborhood.
median performs the computation on a P-element linear array, wherein each PE calculates a column
of the output image, following the scan-line algorithm presented in [39)(Fig.5.3)*.

median has the most complex loop structure of the 8 sample problems, comprising 3 repeated
instruction sequences used for small numbers of iterations in an interleaved manner. The 3 repeated
instruction sequences are used to sort 3 pixel values, to skip the least value (by updating pointers)
from among 3 sorted lists of values, and to select the output pixel value as the least remaining in the
three lists.

5.5.9 Summary of Program Characteristics

Figure 5.2 summarizes the sample programs’ characteristics relevant to I-cache speedup.

5.6 p-Sets for I-Cache Speedup Bounds

A p-set of the form {N,1,1,1,1} characterizes a SIMD computer wherein the maximum operation
rates of all MCSs other than global instruction broadcast are equal to the highest PE clock rate, while
the global instruction broadcast rate is N times lower than that. A given operationally structured
computation is least likely to be subsystem-bound when the operation rate of the subsystem in
question is high, so a p-set of the form {~,1,1,1,1} corresponds to the least subsystem-boundedness
for a given operation sequence. Therefore, speedups obtained with a p-set of the form {N~,1,1,1,1}
represent upper bounds for speedup obtained with I-cache.

At the other extreme, a p-set of the form {N, N, N, N, N} characterizes a SIMD computer wherein
the highest operation rates of all MCSs are no higher than the global instruction broadcast rate,
which is N times lower than the PE clock rate. A given operationally structured computation is
most likely to be subsystem-bound when the operation rate of the subsystem in question is low, so
a p-set of the form {N,N,N, N, N} describes a SIMD computer which shows the greatest possible
subsystem-boundedness for a given operation sequence. Therefore, speedups obtained with a p-set
of the form {N, N, N, N, N} represent lower bounds for speedup obtained with I-cache.

The sensitivity of I-cache speedup to p-set ratio suggests that I-cache speedup is a rough measure
of the FU-to-MCS ratio. In the basis computer simulated in the evaluations, the PE chip contains
local control only for MCSs but not for the FU, such that FU operation sequences tend to be instruc-
tion delivery-bound but MCS operation sequences tend not to be instruction delivery-bound. This
“machine-dependent” characteristic of the basis computer leads to the expectation that, all else being
equal, programs with the highest FU-to-MCS ratios should exhibit the highest I-cache speedups.

“In that algorithm, the index into array ad appearing on the §th line up from the bottom should be dptz, not aptz.

84 CHAPTERS. I-CACHE EVALUATION
ﬂ Pm " scuﬂrbuhble " zowcol [B)itonic ﬂ matmul ” sobel anedian J]
Loop Structure
nested loops Vv Vv Vv Vv
global conditionals Vv Vv Vv
cachable seq’s 1 2 1 3 2 2 1 3
alternating seq’s Vv Vv
alternating seq’s 2 3

Data-Dependence

local conditionals || 1/ v v v v v v v
mem address calc || v v N4
comm address cale H Vv N4 Vv
Inter-PE-Communication-Boundedness
inter-PE topology R R L M R L M L
data set size || 220 220 212 212 220 220 2% 2%
PE count 220 220 212 212 220 210 220 210
FU-to-MCSratio || ~1 ~1 <1 <1 <1 >1 >1 >1
Other Subsystem-Boundedness
uses local ext mem Vv v v Vv
uses response net Vv Vv N4
Asymptotic Complexity (Order-# system clock cycles)
Nisdatasetsize [logN [[logN || N f[lghvN] ¥ || ¥ | 1 [VN

Figure 5.2: The sample programs have diverse characteristics. (For inter-PE communication topology,
“R” denotes routed inter-PE communications, “I” denotes linear array, and “M” denotes mesh.)

5.7. SPEEDUPS FOR MULTI-CLOCK SIMD COMPUTERS 85

5.7 Speedups for Multi-Clock SIMD Computers

The local controller of a multi-clock SIMD computer is the same as the local controller of an I-cached
SIMD computer, with the exception of the absence of the cache mechanism itself Specifically, the
multi-clock local controller contains a multi-clock generator that regulates each subsystem at its
maximum rate. The multi-clock local controller also contains a means of adapting globally broadcast
instructions for single re-broadcast within the PE chip in-phase with the PE clock.

A multi-clock SIMD computer should be somewhat faster than its generic counterpart, because
MCSs are no longer necessarily rate-limited by the system clock. A multi-step MCS operation may
take place at a higher rate in a multi-clock SIMD computer than in a generic SIMD computer.

Table 5.1 shows the speedup bounds for a multi-clock SIMD computer for the various sample
problems.

[[Po ﬂ tree [scan | bubble [rowcol bitonic ‘ matmual [sobeﬂ median H
2 min || 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
max || 1.42 |} 1.38 1.00 1.02 1.19 1.14 1.01 1.10
4 min || 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
max || 1.80 | 1.69 1.00 1.02 1.31 1.14 1.01 1.10
8 min || 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
max || 2.01 | 1.85 1.00 1.02 1.36 1.14 1.01 1.10
16 min §j 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
max || 2.14 | 1.95 1.00 1.02 1.39 1.14 1.01 1.10

Table 5.1: Speedups on a Multi-Clock Variant of SIMD-D at a range of Values for p,. Speedup upper
bounds are obtained with p-set {p},1,1,1,1}, and speedup lower bounds are obtained with p-set
{Pb, Pb» Pbs Pb, Pb}- These values show very modest speedups for multi-clocking alone.

Table 5.1 shows that, as a lower bound, there is no speedup for any of the sample programs. This
fact is not surprising, because the lower bound is obtained when the MCS clocks are all as slow as
the system clock. In other words, when the p-set is {pp, ob, o, Pb, b}, the MCSs are not artificially
rate-limited by the system clock.

The multi-clock speedup upper bounds for the sample programs range between factors of 1 and
2, even at pp=16. That there is some speedup at the limiting p-set {py,1,1,1,1}. indicates that
the computation is subsystem-bound by some subsystem that becomes faster relative to the system
clock as py increases. In most cases, there is no increase in speedup beyond py,=2. This observation
indicates that, after having made the bounding MCS twice as fast relative to the system clock, the
computation reverts to being subsystem-bound by global instruction broadcast.

In comparison to I-cache speedups, the speedups from multi-clock SIMD computers shown in
Table 5.1 are negligible in most cases. This observation confirms that most of the speedup attributed
to I-cache is in fact due to I-cache and not merely to the presence of the multi-clock apparatus in the
PE chip’s local controller.

5.8 I-Cache Speedup Bounds

A complete set of speedups measurements for each of the 8 sample problems on each of the 4 SIMD
computer variants are provided in Appendix E. For each problem, there are four graphs shown on
two consecutive pages of Appendix E, one per SIMD computer variant. Plotted on each graph, over

86 CHAPTER 5. I-CACHE EVALUATION

a range of pp=1...16 are the upper and lower bounds for the F, and F; I-cache speedups. The upper
bound is the speedup attained with p-set {8,1,1,1,1}, wherein the rate of the clock controlling each
MCS equals the maximum operation rate attainable within the PE chip. The speedup lower bound
is attained with p-set {8, 8, 8, 8,8}, wherein each MCS is regulated at the rate of global instruction
broadcast. The I-cache speedup obtained with any other p-set lies between these two bounding curves.
Superimposed on the measured data is a “simple-equivalent” speedup curve, whose significance is
discussed in Section 5.10.

This section discusses I-cache speedup bounds measured on SIMD-D. The range of cache sizes
required to obtain the I-cache speedups is shown as a range in the text accompanying each graph.
Larger values in a range of cache sizes occur for larger values of py.

5.8. I.CACHE SPEEDUP BOUNDS 87

tree on SIMD-D

L L ¥ L T T T

F2 l-cache at {N,1,1,1,1
F2 |-cache at { NNF:N o 2

1

NN

FO l-cache at {N,1,1

FO l-cache at { NN, “+-

~
v

Speedup Relative to Generic SIMD Computer

.+
------ G!““91'-'-‘-::“-.-.:;:;3““"G:-.::::Gxuu&-.::-.'.ﬂ'.:-.:::B-.-.-.:-.:E:-.:::-.G:-.-.::=¢
o 1 1 'l J L L
2 4 6 8 10 12 14 16
RHO_b

Figure 5.3: I-Cache Speedup Bounds for tree on SIMD-D

5.8.1 tree

Figure 5.3 shows the measured speedup bounds for tree. The required cache size lay in the range
20...23.

The loop structure of t zee is very similar to that of the program simple introduced in Section 4.4,
consisting of a short prolog followed by single iterated loop. The difference between the Fy speedup
upper bound and the F; speedup upper bound in Figure 5.3 illustrates the severity of the quantization
effect for non-iterating I-cache variants. There is very little difference between the lower bounds for
the two I-cache variants, indicating that the computation is subsystem-bound for p-sets of the form
{Pb: Pbs Pbs Pbs PB}-

Problems such as tree-summation are generally expected to be inter-PE-communication-bound,
because of the small amount of calculation to be performed (an addition) per inter-PE communication
operation. In part, the surprisingly significant I-cache speedups apparent in Figure 5.3 are due to the
sequence of address calculations and context management operations that are associated with the
inner loop’s communication step. Such calculation-inteunsive instruction sequences are made faster
with I-cache, which is why the upper bounds are high. However, when the communication operation
is of long duration and it overlaps the calculations, speeding up the calculations does not decrease
the time to execute the loop body, so there is little I-cache speedup.

88 CHAPTER 5. I-CACHE EVALUATION

scan on SIMD-D
9 T T L T L LIS ¥ /t

)
1
-n
N
8
z
£
£z

Speedup Relative to Generic SIMD Computer

.

L 1 1. 1 L L)

8
RHO_b

Figure 5.4: I-Cache Speedup Bounds for scan on SIMD-D

5.8.2 scan

Figure 5.4 shows the measured speedup bounds for scan. The required cache size lay in the range
27...35.

The results for scan are very similar to those for tree. This similarity is not surprising, because
their loop structures are very much alike. Whereas tree contains a single loop, scan has two loops.
However, the executions of the two loops occur one after the other, so the loop bodies do not conflict
in cache memory. More simple loops means a greater number of repeat instructions, which is why
the I-cache speedups for scan are slightly higher than those measured for tree.

5.8. I-.CACHE SPEEDUP BOUNDS 89

bubble on SIMD-D
12 T Y T T -7 T T -4

—

1} F2 l-cache a1 {N,1,1,1,1} &— -
F2 I-cache at {N,N,N.N,N} -8--
FO l-cache at N,1,1i‘}.’1J -

10 FO l-cache at {N.N.N, -+

Speedup Relative to Generic SIMD Computer

Figure 5.5: I-Cache Speedup Bounds for bubble on SIMD-D

5.8.3 bubble

Figure 5.5 shows the measured speedup bounds for bubble. The required cache size lay in the range
28...53.

The iteration count for the inner loop of bubble is globally data-dependent and varies between
1 and N — 1. The local controller of an Fg I-cache variant lacks the ability to make data-dependent
iteration decisions. How then to use in F; I-cache, wherein a fixed number of iterations of the cached
inner loop body are activated for a single globally broadcast cache-control instruction activating the
cache block?

The F» management for which results are shown is to activate 10 iterations of the cached inner
loop body at a time. The original program tests for completion of the sort after every iteration. The
computation is complete when the data is everywhere locally ordered. Completion detection uses a
response operation, by which the PEs signal completion to the system controller. The time for the
response network to settle and for the system controller to make a branch decision is considerable.
The static I-cache management choice for bubble for F; represents an algorithm change, because
completion tests occur once every 10 iterations instead of every iteration. This change means that
the inner loop may be executed up to 9 too many times, but this slight inefficiency is compensated
by the increased rate at which the groups of 10 iterations execute. The fact that the F; speedup is
greater than 1 even when p,=1 suggests that the generic SIMD computation’s throughput would be
improved by unrolling the inner loop, perhaps by a factor of 10.

90 CHAPTERS. I-CACHE EVALUATION

rowcol on SIMD-D

2.5 . | T T T 1 i T L '
F2 l-cache at {N,1,1,1,1} -&—
F2 l-cache at {N.N,N,N,N} -a--
FO |-cache at {N,1,1,1,1} ~+—
= FO i-cache at {N,N,N,N,N} -+--
e 2F -
-]
Q.
E
Q
Qo
s
» 15} N U
o /* __________________
= | S A
2 /
@ -
O /
13 ;o BB @G
2 1+ /7 }1 - B------ e .
3 { / PR B 8. 8
T i S @
3 o
B /"’ur"
® .
& o.s‘b{;-" i
L) I 1 L L 1 1
2 4 6 10 12 14 16

8
RHO_b

Figure 5.6: I-Cache Speedup Bounds for rowcol on SIMD-D

5.8.4 rowcol

Figure 5.6 shows the measured speedup bounds for xrowcol. The required cache size lay in the range
32...58.

As is the case for bubble, the individual row and column sorts each require a data-dependent
number of iterations. In an attempt to take advantage of Fy’s iteration capability, the loop bodies
have been “unrolled” by a factor of 4 in the Fy program variant. The inferior performance of the
Fo I-cache apparent in Figure 5.6 illustrates that, if improperly managed, an Fy I-cache variant
performs less well than an Fy I-cache variant.

5.8. I-CACHE FPEEDUP BOUNDS 91

bitonic on SIMD-D
L] L { L4 T L T 1
9t ,;t———-——'b—-——t—--—-
FO and F2 i-caches at {N,1,1,1,1} —+— //
8 FO and F2 |-caches at {N,N,N,N.N} -+--- 4 .
5 /
ol]
8
o
= 6 .
7]
Q
=
-3
3 .
[
(U]
o
- 4
2
el
[]
m -
Q
p=1
e
2 .
1 1 1 1 L 1 1
2 4 6 8 10 12 14 16
RHO b

Figure 5.7: I-Cache Speedup Bounds for bitonic on SIMD-D

5.8.5 bitonic

Figure 5.7 shows the measured speedup bounds for bitonic. The required cache size lay in the
range 50...53.

The number of iterations of the inner loop of bitonic varies on each iteration of the outer loop as
a function of the outer loop index and the input data set size. The basis computer’s system controller,
described in Appendix A, lacks the capability to specify dynamically calculated iteration counts for
cache block activation. A program using an F; I-cache specifies a single, fixed number of iterations
for a cache block to be executed each time it is activated. This limitation makes it impossible to
take advantage of F; I-cache for a program like bitonic, wherein inner loop iteration counts vary
from activation to activation. Therefore, results obtained for Fy I-cache are identical to those for Fy
I-cache. For clarity, only one set of speedups is plotted in Figure 5.7.

Although clearly suffering from quantization, the speedup upper bound is large. The speedup
lower bound increases steadily as p,, increases, suggesting that even with the lowest MCS clock rates,
there is some room for improvement from faster instruction delivery using I-cache.

92 CHAPTER 5. I-.CACHE EVALUATION

matmul on SIMD-D

13 T — T T T T T /1

12 F2 I-cache at {N,1,1,1,1} -8— e
F2 |-cache at {N,N.N,N,N} -B-- s
1k FO l-cache at N1111 -+ e J
FO i-cache at {N,N,N,N,N} -+-
10 -
o} .
8} -
7r .
6 -

Speedup Relative to Generic SIMD Computer

Figure 5.8: I-Cache Speedup Bounds for matmul on SIMD-D

5.8.6 matmul

Figure 5.8 shows the measured speedup bounds for matmml. The required cache size lay in the range
10...19.

The upper bound speedups for matmul are the best demonstration of the potential severity of the
quantization effect. The F, speedup is identical to the F; speedup at pp=5, but the Fy speedup is flat
after that value of py,. The difference is due solely to quantization. Presumably at some gy, > 16, the
Fy speedup would jump up to meet the F2 speedup again.

The F3 speedup upper bound for this calculation-intensive data-parallel problem scales linearly
with pp.

5.8. I-CACHE SPEEDUP BOUNDS 93

sobel on SIMD-D
4 T Y T T —r ' r
F2 l-cache at {N,1,1,1,1} -&—
Y S el 0 e 1) Ja
) 8 ,1.1,1,1} ~+—
FO i-cache at {N,N,N.N,N} -+--- ,_37’—3—-—3’

Speedup Relative to Generic SIMD Computer

3
-

L L L 1

8 10 12 14 16
RHO_b

Figure 5.9: I-Cache Speedup Bounds for sobel on SIMD-D

5.8.7 sobel

Figure 5.9 shows the measured speedup bounds for sobel. The required cache size was 35 at all
points.

scbel comprises a weighted sum that is performed at each pixel of an image. On a mesh-
connected SIMD computer, wherein there is a unique PE for each image pixel, the sum calculation
itselfis not iterated. The only repeated instruction sequences arise in the root-sum-square calculation
at the end of the program. The number of iterations of the square-root estimate-refinement loop is
data-dependent. The static management decision for F; was toiterate individual activations of cache
block corresponding to the square-root loop body 4 at a time. The F; speedups plotted in Figure 5.9
show that this slight algorithm change has a large impact, even yielding a small improvement at
=1

The small differences between upper and lower speedup bounds confirm that the iterated part of
the program is extremely calculation-intensive. The small total iteration count and the slow response
operation used to detect completion keep the I-cache speedups modest for sobel.

94 CHAPTER S. I-.CACHE EVALUATION

maedian on SIMD-D

3'5 Ll LI L L] T ¥ Ll
F2 I-cache at {N,1,1,1,1} -8— Var/@
F2 l-cache at {N,N,N,N,N} -8-- -8
3r FO l-cache at {N,1,1,1,1} —— e N

FO l-cache at {N,N,N,N,N} -+--

25 F

s
3
E
[<]
(8]
@]
=
n
e 2}
@
c
@
(0}
e
@ 1.5 o
2
[} g
K] A
v V5
[-% o
= 1 -
g ¢
[]
Q.
(7]

05 1

! 1 1 5 3 i PO
2 4 6 10 12 14 16

8
RHO_b

Figure 5.10: I-Cache Speedup Bounds for median on SIMD-D

5.8.8 median

Figure 5.10 shows the measured speedup bounds for median. The required cache size lay in the
range 39...67.

The measured speedups are relatively low because of the complex loop structure of the assembly
language program. There are three repeated instruction sequences nested within the outer loop,
to sort values into local lists and to manipulate those lists to find the median. Executions of these
sequences alternate for small numbers of iterations, so they are frequently re-stored in Fy and in Fy
I-caches, capable of storing but a single block at a time. median is an attractive candidate for I-cache
variants, including Fy, F'3, and F, capable of storing multiple blocks at once.

5.9. RESULTS SUMMARIES 95

5.9 Results Summaries

Section 3.8 concludes that 8 is a conservative estimate for gy, in existing SIMD computers, and that
pb=8 is not unrealistically large for computers with relatively scalable board-level designs. The range
of Fo speedups for each of the sample programs at p,=8 is shown graphically in Figure 5.11, and the
corresponding range of Fy speedups is shown in Figure 5.12. In each of the summary graphs, the
speedup upper bound is obtained at p-set {8,1,1,1,1}, while the lower bound is obtained at p-set
{8,8,8,8,8}. The plotted point for each program on each graph is the I-cache speedup obtained at
p-set {8,8,8,4,2}.

Fo l-cache on SIMD-D

8 I L I 1 T T 1 LN
7 4
61 i .
r
5 -
Speedup 4L .
$
3t -
2 b $ 3 s T4
1r -
0 b i 1 1 1 H 1)]

tree scan bubble rowcol bitonic matmul sobel median

Sample Program

Figure 5.11: Summary of Fy speedups at p,=8.

5.10 “Simple-Equivalent” Speedups

The quantization evident in the I-cache speedups means that picking values at pp=8 is potentially
misleading. Some way of smoothing the results is need, so that it would be possible to summarize
an I-cache speedup curve using a single parameter, or perhaps two parameters. It is safer to use
the value of a curve that fits the data at pp=8 than it is to use the raw measured point, because the
curve’s value reflects information from all 16 points, not just 1.

To this end, reconsider the program structure simple introduced in Section 4.4:

program simple;
B
for §j =1 to J &
A
end;
and simple;

The symbols A and B in program simple denote sequences of instructions. Where the length of
sequence A is denoted A and the length of sequence B is denoted B, the time T, to run simple on a
generic SIMD computer is given as

96 CHAPTERS. I-CACHE EVALUATION

F; I-cache on SIMD-D

8 T T T T — T — —T
7 i -
6 T -
5F r N 1 -
Speedup 4 |)\ ?> 4
3+ L4 -
o L ¢ ¢ 1 T i
1 a %) 4
0 L 1 L - L 1 1 1

tree scan bubble rowcol bitonic matmul sobel median

Sample Program

Figure 5.12: Summary of F3 speedups at pp=8.
T, = B+ JAcycles
The corresponding best time T, on an ideal I-.cache is given as

A
T. = B+A+J;cycles

The speedup is the ratio of these times:

o3

I-cache speedup

N

[4

B+JA

YR Y. (5.1)
A
B+A+pr

Dividing both top and bottom in Equation 5.1 by (A + B) yields an ugly variant of the speedup
equation:

s LoDa
—5— (5.2)
1w

There is a method to this madness: Let g=z-f,‘7 represent the proportion of the program’s instruc-
tions that are cachable (0 < ¢ < 1). Then the speedup equation becomes

I-cache speedup =

1+gJ-g
1+g;;'-;
A+gl)m am
Yy Py (5.3)

I-cache speedup

5.10. “SIMPLE-EQUIVALENT” SPEEDUPS 97

Fo I-cache F; I-cache
lower bound | upper bound lower bound upper bound cache size

Problem C spup C spup C ¢ spup C g sp'up || (#instrs) ¥

tree 3.8 3.3 133 54| 3.9 33| 141 5.5 336 .061
scan 1.3 2.0 175 5.8 13 20| 18.5 5.9 380 .067
bubble 3.8 3.3 525 7.1 4.0 3.3 | 587.2 7.9 540 .090
rowcol 2.0 24 8.6 4.6 11 25 11 28.0 183 2.4 540 090
bitonic || 15.9 57| 649 72 || 15.9 5.7| 64.9 7.2 1138 174
matmul 8.6 4.6 | 401.1 7.9 8.7 4.6 | 859.9 1.9 1196 182
sobel 5.1 3.7 5.3 38| 52 3.8 5.4 3.8 2858 .415
median 0.5 14 4.0 3.3 0.5 14 4.0 33 640 104

Figure 5.13: Summary of I-Cache Speedup Curve Parameters, Speedups at p,=8, and Cache Size at
=8 on SIMD-A.

For programs for which I-cache speedup can be expected to be greatest, the product gJ, represent-
ing the product of the fraction of cachable instructions and the cache block iteration count, should
be large. When g¢J is very large, then the term p—i%:, is nearly 0, and the I-cache speedup may be
approximated as

I-cache speedup = Arglem (5.4)

po+gJ
If we let C=gJ represent the product of the proportion of repeat instructions and the loop iteration
count, then we have the “simple-equivalent” I-cache speedup function:

simple-equivalent _ A+ pm .5)
I-cache speedup pp+C '

Equation 5.5 has a single parameter, C. Fitting Equation 5.5 to the measured I-cache speedup
curves yields a single parameter that characterizes the curve. Appendix E plots the measured data
and superimposes the result of a least-squares fit of Equation 5.5 over each data set. The fits are
excellent, except in the case of Fy used for rowcol. Note t..at the value of Equation 5.5 is never
less than 1. In the case of F; used for rowcol, poor static I-cache management causes speedups to
be mostly less than 1, so the fits with Equation 5.5 are poor. For that computation, the error term
involving g cannot be ignored.

The following set of four tables, one per SIMD computer variant, show the C resulting from the
curve fit as shown in Appendix E for both I-cache variants at both bounding p-sets, along with the
simple-equivalent I-cache speedup corresponding to that value of C. For F3 I-cache on rowcol, the
parameter g is also shown. Also shown are the cache sizes required to obtain the speedup upper
bound. The value of v in the last column of each table is obtained by substituting the required cache
size for N in Equation 4.9, and then substituting the resulting value for § into Equation 4.6, along
with the values for I and Ay appearing in Figure 3.2.

98 CHAPTERS. I.CACHE EVALUATION
! Fo I-cache F, I-cache
lower bound | upper bound lower bound upper bound cache size

Problem C spup C spup C g spup C g sp’up || (# instrs) ¥

tree 2.0 24) 115 51| 2.1 251 141 55 92 .081
scan 1.1 1.8 15.1 56 1.1 1.8 18.2 58 116 .092
bubble 2.9 29| 138 541 4.1 3.4 | 228.2 7.8 156 .108
rowcol 1.6 2.2 5.3 38|30 26 1.0 20.0 13.2 2.2 156 .108
bitonic || 8.1 45| 47.6 7.0 8.1 451 47.6 7.0 298 .169
matmul 8.1 4.5 | 145.2 76 | 8.4 4.6 | 635.1 7.9 307 172
sobel 4.7 3.6 4.9 3.71 5.1 3.7 5.3 3.8 720 .347
median 0.5 14 3.7 321 0.5 14 3.9 3.3 184 120

Figure 5.14: Summary of I-Cache Speedup Curve Parameters, Speedups at p,=8, and Cache Size at
pu=8 on SIMD-B.

Fo I-cache F; I-cache
lower bound | upper bound lower bound upper bound cache size

Problem C spup C spup C g spup C g spup | (#instrs) ¥

tree 0.7 1.6 89 4.7 (1 0.8 16| 14.1 5.5 32 .183
scan 0.7 1.6 { 10.5 5.0 | 0.7 16| 16.5 5.7 41 .196
bubble || 1.6 22| 3.6 3.2 4.3 34| 815 7.4 48 .206
rowcol 0.9 1.7({ 23 26) 3.0 2.7 09| 100 6.7 1.9 55 215
bitonic || 2.9 29| 29.0 6.5 || 2.9 29} 29.0 6.5 86 .258
matmul | 4.9 3.7126.2 6459 401 201.4 1.1 48 .206
sobel 34 31 35 3.1 || 4.6 3.6 4.7 3.6 158 .358
median 0.8 16| 21 25] 0.9 1.7 2.6 2.7 59 221

Figure 5.15: Summary of I-Cache Speedup Curve Parameters, Speedups at p,=8, and Cache Size at
pb=8 on SIMD-C.

Fo I-cache Fy I-cache
lower bound | upper bound lower bound upper bound cache-size
Problem C splup C spup C g spup C ¢ spup | (#instrs) Y
tree 0.4 1.3 7.7 44) 04 1.3 1138 5.4 20 .005
scan 0.4 1.3} 95 48 1 0.4 1.3}16.9 5.8 27 .005
bubble 1.0 18| 1.9 23 || 4.8 3.6 | 51.8 7.1 28 .005
rowcol 0.5 14] 14 201 3.0 2.7 09] 7.0 4.7 1.8 32 .005
| bitonic || 1.7 2.2] 20.7 6.0 || 1.7 2.2 | 20.7 6.0 50 .006
matmul 04 1.3 1.7 44 || 0.4 1.3]13.8 54 10 .004
sobel 1.3 20| 14 201 3.1 30| 3.3 3.0 35 .005
median 0.9 1.7(2.0 24 |1 1.1 1.8 2.7 2.8 40 .005

Figure 5.16: Summary of I-Cache Speedup Curve Parameters, Speedups at p,=8, and Cache Size at
pp=8 on SIMD-D.

5.11. MAXIMUM I-CACHE SPEEDUP: F; ESTIMATES 99

5.11 Maximum I-Cache Speedup: F; Estimates

Looking at the fairly large speedups shown in Figures 5.3 through 5.10, one wonders how the
speedups obtained using the simple I-cache variants compare with the maximum possible speedup
for each of the sample problems.

The best possible I-cache speedup would be obtained using a large, complex multi-port I-cache
variant, wherein all repeat instructions fit in cache memory, all iteration is controlled within the
PE chip, and some of the cache store time for instructions overlaps with execution of other cache
blocks. Because of the characteristic simplicity of their loop structures, the sample programs do not
present much opportunity to exploit prefetching. For the sample programs, nearly the maximum
possible I-cache speedup would be obtained using an F; I-cache variant that has sufficient capacity
to store at one time all repeated instruction sequences. As discussed in Section 4.2, F; is the most
complex member of the F-family of single-port I-cache variants. The program-control component
of an F; I-cache may be as complex as the system controller’s program-control component. An F;
I-cache is able to store and sequence entire programs, whose executions may involve loop nesting
and data-dependent branching. Unlike the very simple Fy and Fy I-cache variants, the F; I-cache
variant yielding the maximum speedup may well occupy substantial chip area inside the PE chip.

Estimates for F; speedups are obtained through a static analysis of assembly language programs
for the sample problems. The method is to run each program directly through a modified version of the
assembler, without any re-programming for I-cache. The modified assembler schedules all repeated
instruction sequences as if they were in cache, assuming an arbitrarily large cache size. Then the run
time of the resulting computation is estimated by cycle counting. A repeated instruction sequence
contributes an amount of time equal to the loop iteration count times the length of the sequence
divided by pyp, plus an additional amount of time equal to the number of instructions in the sequence
which is required to store the sequence in cache. This method ignores the re-storing that needs to
be performed when cache size is exceeded, it ignores all quantization effects, and it ignores the time
spent globally broadcasting cache-control instructions that are added to programs with I-cache.

It is important to be aware of the significant difference between these F; speedup estimates
and the speedup measurements that are the basis of I-cache evaluation. The Fy and F3 speedup
measurements are based on detailed designs, they account for quantization effects and cache-control
overheads, and most importantly, they are simulated to verify their correctness. The F; speedups
are compiler estimates only, rather than measurements taken from the simulator.

Bearing this caveat in mind, it is interesting to compare the speedup measurements obtained
for the simple I-cache variants against estimates for the best possible F; speedups. Figures 5.17
through 5.24 show estimates for F; speedups at the p-sets that give upper and lower bounds. The
F; speedup estimates are plotted along with Fg speedup curves, except for the programs with data-
dependent iteration counts. For those programs, the static management of Fs I-cache amounts to an
algorithm change, which change makes comparison between F7; and F; unfair. For the programs with
data-dependent branching, the F7 speedup estimates are plotted with the Fy speedup measurements
for comparison purposes.

Where iteration counts are moderate, as for tree and scan, F; speedup estimates tail over
significantly, and Fy achieves close to this maximum speedup.

For the data-dependently branching programs, including bubble, rowcol, and sobel, the esti-
mate for the best F; speedup is low. The reason is that each iteration of the inner loop includes a
response operation, whose time is typically long and not appreciably shortened with I-cache. When
a significant fraction of the computation cannot be made faster with I-cache, I-cache speedups are
low. The difference between the Fo speedups and the F; estimates for these problems is due to
quantization and the cache-control overheads.

The three remaining problems, bitonic, matmul, and median, all have high iteration counts

100 CHAPTER 5. I-CACHE EVALUATION

and no data-dependent branching. These are ideal conditions for large I-cache speedups, and indeed,
the corresponding estimates for F; speedup are high. For the first two of these programs, F; achieves
roughly 75% of the F; estimate, suffering from quantization and time spent in cache-control instruc-
tions. For median, however, Fs speedup is well below the maximum. This disparity highlights the
principal shortcoming of an F; I-cache variant, namely that it contains only one block at a time. The
assembly language program for median (shown in Figure D.8) contains several repeated instruction
sequences whose executions alternate during the computation. A single-block I-cache variant such
as Fo must re-store each cache block before it can be used. The small iteration counts for which
each cache block is repeated per activation in median mean that the time spent re-storing is not
amortized over a large number of iterations. median is one program which demands an F; or higher
I-cache variant, capable of storing multiple cache blocks at once.

Of course, the maximum F; speedup is determined by program characteristics. The F; speedup
estimates therefore provide one way of characterizing programs. For example, the spread between
the upper and lower speedup bounds for F; apparent in Figures 5.17 through 5.24 provides a rough
measure of the MCS-intensiveness of each program. With the exception of sobel, all of the sample
programs are MCS-intensive, as illustrated by large spreads between upper and lower F; speedup
bounds estimates. In light of this observation, it is somewhat surprising that the simple I-cache
speedup lower bounds lie in the range of 30% to 100% for these programs when p,=8.

5.11. MAXIMUM I-CACHE SPEEDUP: F, ESTIMATES

tree on SIMD-D
9 T 1 L] L] T
8 r Estimate for ideal |-cache at {N,1,1,1,1} -»—
Estimate for ideal |-cache at { N.N.N,N e
F2 l-cache at N.111,1 -a—
F2 -cache at {N.N -8 g J

Speedup Relative to Generic SIMD Computer

0 L (1 3 1 1 1]

2 4 6 8 10 12 14 16
RHO_b

Figure 5.17: Ideal I-Cache Compared with F; for tree on SIMD-D

scan on SIMD-D

10 T L3 Ll - L v Ll

9 Estimate for ideal |-cache at {N,1,1 1,1 -¥—

Estimate for ideal |-cache at {N,N, ,N -3¢--
F2 i-cache at 11 1,1} 68—

F2 l-cache at {N,N,N,N,N} -B3--

Speedup Relative to Generic SIMD Computer
(3]

4 -
3 -
2
BT - T - EEEEEE] - CEE e ze3ss ::::::ﬁ::::::g::::::ﬁ::::::&

1 J

1 L 4 1 1 1 1

2 4 6 8 10 12 14 16

RHO_b

Figure 5.18: Ideal I-Cache Compared with F; for scan on SIMD-D

101

102

Speedup Relative to Generic SIMD Computer

Speedup Relative to Generic SIMD Computer

CHAPTERS. I-CACHE EVALUATION

bubble on SIMD-D

s T T v Ll T L LS

1 Il 1 L

I

8 10 12 14
RHO b

Figure 5.19: Ideal I-Cache Compared with F for bubble on SIMD-D

16

-+

rowcol on SIMD-D
5 L L] 1] T L] 1})
Estimate for ideal I-cache at {N,1,1,1,1} -»—
45 Estimate for ideal -cache at {N,N,N,N,N} -%--- .
FO I-cache at {N,1,1,1,1} ~+—

FO lcache at {N,N,N,N,N

1 1 — 3 1 i 1

8 10 12 14
RHO_b

Figure 5.20: Ideal I-Cache Compared with Fy for zowcol on SIMD-D

16

5.11. MAXIMUM I-CACHE SPEEDUP: ¥, ESTIMATES

bitonic on SIMD-D
15 T T 1 T T |
4r Esﬁmefogidea“—cad'\smdNJJJJ e X7
Estimate for ideal lcache at {N,N,N,N,N} -x-- /

1B F th-caemm'jmnm - _, .
- F2 l-cache at {N.N.N,N,N} -a-- -
2 12 al / -1
gl !
S
o 10p .
=
7] 9 B
- e
s ° 7
e 7 1
(-4
g ¢ I
€ 5 .
Q
g 4 -
-}

L3 P VAR s i - DI T - e S -

1) -4

L 1 1 L —l. 1 A1
2 4 6 ?aHo R 10 12 14 16

matmul on SIMD-D
16 T T T T L} 7
15
Estimate for ideal I-cacheath, ,1,1,1{ o
14 Estimate for ideal l-cache at {N,},N,N,N{ -3--.
F2 I-cache atJN,1.1,1.1f -
13§ F2 I-cache at {N.N.N.N,N} -B--
12
1§
10

Speedup Relative to Genaric SIMOD Computer

-‘N(dh‘hm\lwlo

Figure 5.22: Ideal I-Cache Compared with F, for matmul on SIMD-D

103

104 CHAPTERS. 1-CACHE EVALUATION

sobel on SIMD-D

T T T T L] L§ L

n
~
[5)]

g
)

2.26

n

1.75

-
wn

1.25

Speedup Relative to Generic SIMD Computer

A L I L L L i

10 12 14 16

8
RHO_b

Figure 5.23: Ideal I-Cache Compared with F, for sobel on SIMD-D

maedian on SIMD-D
16] T L4 T

18
14
13
12
11

-
o

Speedup Relative to Generic SIMD Computer

N WA 0 N8 B ©

Figure 5.24: Ideal I-Cache Compared with F; for median on SIMD-D

5.12. SENSITIVITY OF I-CACHE SPEEDUP TO INTER-PE COMMUNICATION 105

5.12 Sensitivity of I-Cache Speedup to Inter-PE Communication

How sensitive is I-cache speedup to inter-PE communication intensiveness? The way to investigate
the effect of inter-PE communication intensiveness is to vary the stepcount parameters of inter-PE
communication operations for each of the subject programs. The stepcount of an operation is the
number of subsystem clock cycles taken to perform the operation.

A reasonable expectation is that as inter-PE communication stepcounts increase, a greater pro-
portion of the total computation time is spent in inter-PE communication. Because MCS operations
tend not to be instruction delivery-bound in the basis computer used in I-cache evaluations, I-cache
speedup would drop off as the inter-PE communication intensiveness drops off

The actual effect of increased inter-PE communication intensiveness is surprisingly subtle. Fig-
ures 5.25 through 5.32 show how I-cache speedups vary versus the number of clock cycles required
to perform inter-PE communication operations at a few different p-sets. The graphs show that
sometimes the I-cache speedup actually increases with the inter-PE communication intensiveness.

The reason for this surprising result is that the effect of increased inter-PE communication on
the I-cached SIMD computation is sensitive to the p-set. Increasing the inter-PE communication
stepcount by 1 increases the generic SIMD computation time by one system clock cycle per each
inter-PE communication operation performed in the computation. However, the increase in the time
of the I-cached computation is % system clock cycles per communication operation, because the

inter-PE communication subsystem clock rate is %1: times greater than the system clock rate. When
inter-PE communication steps are faster than global instruction broadcasts, increasing the proportion
of inter-PE communication in a computation actually increases the I-cache speedup. For example,
when %h-s as at p-set {8, 8,1,1,1}, each inter-PE communication step occurs 8 times faster in the
I-cached SIMD computation than in the generic SIMD computation. At the other extremein relative
rates, when inter-PE communication occurs at the same rate as global instruction broadcast, the time
added by increased inter-PE communication is roughly the same in the generic and I-cached SIMD
computations. For example, when %h-l as at p-set {8, 8, 8, 8, 8}, each inter-PE communication step
occurs at the same rate in the I-cached SIMD computation as in the generic SIMD computation. While
flow-dependencies may allow I-cache to overlap other operations with the inter-PE communication,
the tendency of increased inter-PE communication is to add the same amount of time to generic and
I-cached computations, thus reducing the I-cache speedup.

The graphs in Figures 5.25 through 5.32 plot I-cache speedup versus inter-PE communication
stepcount measured for machine variant SIMD-D. Thc graphs illustrate the p-set dependence of
the sensitivity of I-cache speedup to inter-PE communication intensiveness. The stepcounts for
most of the computations vary from 1 to 10, which, for example, reflects a degree of PE pin time-
sharing for neighbor communications on a regular grid. On the computations using routed inter-PE
communication, the stepcount for an arbitrary permutation requires O (log P) steps on P PEs using
a log-diameter communication topology such as a hypercube. The sample computations using routed
inter-PE communications all use 1 x 220 PEs, for a nominal inter-PE communication stepcount of 20.
The graphs for these computations show stepcounts ranging from 15 to 25.

One curve that apparently departs from the general description given above is the Fy speedup for
bubble at p-set {8,8,1,1,1}. That curve, shown in Figure 5.27, rises only slightly to the right, at a
value just under 8. This behavior really is not surprising in light of the fact that a factor of py, is the
maximum possible I-cache speedup, and that factor is already nearly attained for bubble. At p-set
{8,8,1,1,1}, each added inter-PE communication step goes 8 times faster on the I-cache computation.
Each added communication step has nearly the same speedup as the rest of the computation, so the
added steps barely affect the overall I-cache speedup.

The marked quantization effect for matmul is apparent in the Fy, I-cache speedup at p-set
{8,8,1,1,1} shown in Figure 5.30. Each time the inter-PE communication stepcount increases

106 CHAPTER 5. I-CACHE EVALUATION

at p-set {8.8,1,1,1}, the time to execute the inner loop’s cache block increases by 1 PE clock cycle.
The F, execution time is constant as the stepcount increases from 1 to 7, and the I-cache speedup
arises because the generic SIMD computation time increases steadily over that range. However,
when the stepcount increases from 7 to 8, the Fy cache block’s duration becomes just long enough
to require another system clock cycle, causing a jump in the execution time and a corresponding
marked decrease in speedup.

Most of the speedups curves indicate that I-cache speedup is far more sensitive to p-sets than it
is to inter-PE communication stepcounts.

5.12. SENSITIVITY OF I-CACHE SPEEDUP TO INTER-PE COMMUNICATION

Speedup Relative to Generic SIMD Computer

tree on SIMD-D
¥ L ¥ 1§ | L | L] ¥ T
[~ F2 at RHO-set {8,8,1,1,1} -8-- -
F2 at RHO-s61{8,8,8,4,2} -+--
F F2 at RHO-set {8,8,8,8,8} -o-- -
FO at RHO-set {8,8,1,1,1} -8—
B FO at RHO-set {8,8,8,4,2} -+— -
FO at RHO-set {8,8,8,2,8] —o—
T s Geceeneeeee G Gemeemneee e
_________ Q,..-.------a"""'"'G"""""G’- o B 1
? Wﬂ/&_##
- N
-;--—:;"-t- s ol *: """"""" i" """"" '?‘ """""" b R ir. P s ¢
R
L 'y A "l 1 L L L — N
15 16 17 18 20 21 22 23 24 25

19
Inter-PE Communication Stepcount

Figure 5.25: I-Cache Speedups v. Inter-PE Communication Stepcounts for tree

Speedup Relative to Generic SIMD Computer

scan on SIMD-D
8 L 1] L} L§ i ¥) T v
75 F "2 at RHO-set {8,8,1,1,1} -B-- -
F2 at RHO-set {8,8,8,4,2} -+--
7F F2 at RHO-set {8,8,8,8,8} -o-- -
FO at RHO-set {8,8,1,1,1} -&—
65 | FO at RHO-set {8,8,8,4,2} —+— -
6 FO at RHO-set {8,8,8,8,8} -o— J!
____________________ R i > Ah bl
55 4%- [RRRTRe 3 R Be-oennoees Brooene it e -
5 —— -
4.5 "’/_B\‘\B—"‘/B‘* -
4} -
35 F N
3F .
28 I e e b
a - on aneme e e et B -~
2k o
1-5 }- --------- * ---------- e ---------- e ---------- e—e- eY 2. =z, ._.-
1 T— -
0.5 .
1 L L 1 1 Il 1 1 1
15 16 17 18 20 21 2 23 24 25

19
Inter-PE Communication Stepcount

Figure 5.26: I-Cache Speedups v. Inter-PE Communication Stepcounts for scan

107

108

CHAPTERS. I-CACHE EVALUATION

bubble on SIMD-D
1§ L{ L) | T T T L)
10Fr F2 at RHO-set {8,8,1,1,1} -8---
F2 at RHO-set {8,8,8,4,2} -+--
F2 at RHO-set {8,8,8,8,8] -¢--
9 FO at RHO-set {8,8,1,1,1} -8— -
= FO at RHO-set {8,8,8,4,2} —+—
i FO at RHO-set {8,8,8,8,8] -o—
8 F -
§ | WP - TOURRR B s - R IS SRR N - IR S - U T
g 7t -
w
2
s or .
]
(&) |
e 5+ N
_2 Tl
g | e
s 4f P . .
8 . T e, !) e B————T
§ 3 Tl -_‘——e/a—————e’//a_ """"""""""" gL IETEOE O |
§) e
2 S o -+ "“*" ..* -+ 4 -+ -
) Gl— . * " t DR O -oeennnenee S 4
1+ - e 3
1 1 1 1 1 1 1 L
1 2 3 6 7 8 9 10

4 5
inter-PE Communication Stepcount

Figure 5.27: I-Cache Speedups v. Inter-PE Communication Stepcounts for bubble

rowcol on SIMD-D
T L § T LS] k) L § LR
“r F2 at RHO-set {8.8,1,1,1} -B-- 7
3.75 F F2 at RHO-set {8,.8.8.4,2} -+-- i
F2 at RHO-set {8,8,8,8,8} -0---
35} FO at RHO-set {8.8.1,1,1} -&— 4
o FO at RHO-set {8,8,8,4,2} -+
3325} FO at RHO-set {8,8,8,8,8} ~o— 3
13 /'e/
] 3F =
5] -
a L i
S 2.75
© 25} -
3 e
o L T - I VPO
g 2.25 - R Jg— B-eenne 2 9
o 2 e g--eomT -
e [T R B)
2 175§ N \ - + + -
§ 1.5‘:\ -
g 1.25 Frrreei D o ~ .
. | T gL - ad O
2 1 J’- + Hoseeeeeseas eeeeeeneen. B AR esemaaeens [SO 4
-
? o075 O PSR — -
0.5 - DA O rnreeccann b AT TEITE] Qrocecvacanas € ecmrocacans +
025 F N
s (] 1 1 1 1 L 1
1 2 3 4 5 6 7 8 9 10
Inmter-PE Communication Stepcount
Figure 5.28: I-Cache Speedups v. Inter-PE Communication Stepcounts for rowcol

5.12. SENSITIVITY OF I-CACHE SPEEDUP TO INTER-PE COMMUNICATION

bitonic on SIMD-D
8'5 e | T R L3 L] % L] L] 4
8 p
FO and F2 at RHO-set {8,8,1,1,1) -B--
78 FO and F2 at RHO-set {8,8,8,4,2} -+-- 4
FO and F2 at RHO-set {8,8,8,8,8] -o--
5 7 -
g es -
S | e S e
S 6F ... B et & S PR Bpesreetttt a-- $
D - ‘-E ---------- a--
Z 55/} -
(7]
£ Ll .
]
5 45 L
(U] : 7
e
g . T
% 35 L FommTT oo Hooeeee, b St e drnenemannne RARLITITIN 1
c 4 -
Q
g 2.5
o 3o . S emnamnnn o.- -1
-------- Ot e
é 2F > he @oomveaes Gemesenes Ooenaans B ST -
15 -
1} -y
| o 1 [} I) B A 1 1
15 16 17 18 19 20 21 p-ed 23 24 25

Inter-PE Communication Stepcount

Figure 5.29: I-Cache Speedups v. Inter-PE Communication Stepcounts for bitonic

matmul on SIMD-D
10 L ¥ L) 1 L] 1§ Ll
as - F2 at RHO-set {8,8,1,1,1} -8-- -
ol F2 at RHO-set {8,8,8,4,2} -+
F2 at RHO-set {8,8,8,8,8} -o--- 7
85 FO at RHO-set {8.8,1,1,1} &—
. FO at RHO-set {8,8,8,4,2} ~+—
g 8 8,8,8,8,8
>
(=
€
=]
5]
Q
=
@ L
2
e 557 % -
g 5t \’\ -
0 hY
2 45 \ -l
o 4;///3/ \.. o
5 sl """
- 3'3 [N
Q o S
3 TN T e,
'§ 25t \ * IRASARSLARLLE L SACEITTTETPS: b ST [e
S S e
1.5 1!:;:__;_;@:1
.t g g e g,
0.5 |
L L L 1 i - i 4 1
1 2 3 4 5 6 7 8 9 10

Inter-PE Communication Stepcount

Figure 5.30: I-Cache Speedups v. Inter-PE Communication Stepcounts for matmul

109

110 CHAPTERS. I-CACHE EVALUATION

sobel on SIMD-D

4 L L L Ly T 1 4 L L

3.75

3.5

3.25

3

275

25

2.25

Speedup Relative to Generic SIMD Computer

[J
[J

1.7

15 L 1 1 1 1 1 i A
9

4 s 6 7 10
inter-PE Communication Stepcount

Figure 5.31: I-Cache Speedups v. Inter-PE Communication Stepcounts for sobel

median on SIMD-D

3.5 | T L | J L T L L

F2 at RHO-set (8,8,1,1,1} -8---

F2 at RHO-set {8,8,8,4,2} -+--

3.5 |- F2 at RHO-set {88,888} -o--]

: FO0 at RHO-set {8,8,1,1,1} -B—

FO at RHO-set {8,8,8,4,2) —+—

FO at RHO-set {8,8,8,8,8] —o—

Speedup Relative to Generic SIMD Computer
N
n
LJ
(]

$m—t— N N N T
225} - -
o 4
Pocccerennnnn Qo-vrmeocnne b GEE TEP R L SEELLET TR @ -eneannnna.
A GRCLTIT PPN L ALTT R b Aol LE T PRI A QRLTLITTPEPN 1L
175 ¢ o - * * q
1.5 \ R L 1 1 1 1 L
1 2 3 4 5 6 7 8 S 0
Inter-PE Communication Stepcount

Figure 5.32: I-Cache Speedups v. Inter-PE Communication Stepcounts for median

——

5.13. SENSITIVITY OF I-CACHE SPEEDUP TO LOCAL EXTERNAL MEMORY ACCESS 111

5.13 Sensitivity of I-Cache Speedup to Local External Memory Access

How sensitive is I-cache speedup to local external memory access intensiveness? This question is
addressed using the same technique used for inter-PE communication sensitivity. By varying the
stepcounts of local external memory access instructions, it is possible to vary the memory intensive-
ness of a sample program. Figures 5.33 through 5.40 show the results.

Of the eight sample programs, only three use local external memory. For the rest of the programs,
the PE register file is sufficiently large to accommodate all of the program variables. Of course, the
I-cache speedups of the programs that do not use local external memory are flat versus local external
memory stepcount. These five include tree, bubble, rowcol, bitonic, and sobel.

Of the three programs that do use local external memory, scan uses it only lightly, and its I-cache
speedup is therefore barely affected as memory stepcounts change. matmul and median make heavy
use of memory. matmul shows the effects of quantization.

As for inter-PE communication, the effect of increased local external memory stepcounts on the
I-cached SIMD computation is sensitive to the p-set. Increasing the local external memory access
stepcount by 1 increases the generic SIMD computation time by one system clock cycle per each
memory access performed in the computation. However, the increase in the time of the I-cached
computation is % system clock cycles per access, because the local external memory subsystem

clock rate is %11 times greater than the system clock rate. When memory access steps are faster
than global instruction broadcasts, increasing the proportion of memory accesses in a computation
actually increases the I-cache speedup. For example, when %1h=8, as at p-set {8,8,1,1,1}, each local
external memory access step occurs 8 times faster in the I-cached SIMD computation than in the
generic SIMD computation. At the other extreme in relative rates, when memory access occurs at
the same rate as global instruction broadcast, the time added by increasing the number of memory
access steps is roughly the same in the generic and I-cached SIMD computations. For example, when
%]hl, as at p-set {8, 8, 8, 8, 8}, each memory access step occurs at the same rate in the I-cached SIMD
computation as in the generic SIMD computation. While flow-dependencies may allow I-cache to
overlap other operations with the memory access, the tendency of increased memory usage is to add
the same amount of time to generic and I-cached computations, thus reducing the I-cache speedup.
These effects are most pronounced in the I-cache speedups of median shown in Figure 5.40.

112

Speedup Relative to Generic SIMD Computer

CHAPTERS. I-CACHE EVALUATION

vee on SIMD-D
7 L T T L} T ¥ L ¥

65 | RHO-set {8,8,1,1,1} 8- |

- RHO-set {8,8,8,4,2} -+--

RHO-set {8,8,8,8,8} -¢--
6 | RHO-set {8,8,1,1,1} -B— =

RHO-set {8,8,8,4,2} —+—
55 RHO-set {8,8,8,8,8) —o— _
*— ----------- [B -eeneeneees [(3 R L c R B--ecceeeee- L > L R p
5 i -
45 |- -
~—£3- -5 & ~E- 27 4 8 — -8 &
4} -
35F -
T T
25 -
[RERETETETEEYS Hececsenanee B SETTLTPEPPE Hocesecnnanas L LI TREETTPS oreceenanan donmmeccaas dmecesenaonas b ZETIR TR +
2k +— + ~+ + + -+ + — 3

4 5 6 7 8 9 10
Local Extenal Memory Access Stepcount

Figure 5.33: I-Cache Speedups v. Local External Memory Access Stepcounts for tree

Speedup Relative to Generic SIMD Computer

scan on SIMD-D
8 T L 1 T T T T T
75 RHO-set {8,8,1,1,1} -8-- 4
: RHO-set {8,8,8,4,2} -+--
7+ RHO-set {8,8,8,8,8} -o---
RHO-set {8,8,1,1,1} -&— 7
R RHO-set {8,8,8,4,2} —+—
6.5 RHO-set {8,8,8,8,8} o—
® r - o "L
--------------------------------- R VSRR - e - O it S Ahah bt~
55 F 8 e)
5 MM
4.5 B8 i
4 (‘ A
35} .
3 B -
25 Frrremee R S esmnenas B dreewenaeeen o e dronosaeenas onneeenenes Aeeneeaoeaeaed :
2 B -
[— L D EErEH @prasoznasses @:zorennccns, Y ST, asrossarsenas ° PO . B
T]
L L .) I 1 L L) S
1 2 3 5 7 9 10

4 6
Local External Memory Access Stepcount

Figure 5.34: I-Cache Speedups v. Local External Memory Access Stepcounts for scan

5.13. SENSITIVITY OF I-.CACHE SPEEDUP TO LOCAL EXTERNAL MEMORY ACCESS

Speedup Relative to Generic SIMD Computer
"

bubble on SIMD-D
) LS L] T T L 1] T
5 RHO-set {8,8,1,1,1} -8-- J
RHO-set {8,8,8,4,2} -+--
- RHO-set {8,88,8,8] -¢-- s
RHO-set {8,8,1,1,1} -6—
o RHO-set {8,8,8,4,2} —+— h
i RHO-set {8.8.8.8.8) +— |
Geeeeeene =T S TR - - Be-eneeeaene S R PR |
[~ T
o -
------------- RS SN S S SR S R SIS §
? TT— . I O TSR — S @ ©-erennnnnas S —
- o =1 & —a & N =) -a— x
- i
1 1 L 1] 1 1 L
1 2 3 5 6 7 8 9 10

4
Local External Memory Access Stepcount

Figure 5.35: I-Cache Speedups v. Local External Memory Access Stepcounts for bubble

rowcol on SIMD-D
L] L) 1 L] L ¥ T L
RHO-set {8,8,1,1,1} -8--
25 | RHO-set {8,8,8,4,2} -+--
. RHO-set {8.8,8,8,8} -0 |
RHO-set {8,8,1,1,1} -8—
5 RHO-set {8,8,8,4,2} ~—
§_ 2.25 | RHO-set {8,8,8,8,8} —o— -
E
[<]
g zT. - e ! ! T B g ! 2
=
S st
% 1.75 Fromoee B-eeeeenenne B o G--eeemeneens L T L e [ELEECEREEEN B> R
[= " s + - + 4+ -“ +
g — +— + + + +
2 15 L -
.g ° ° © < © ° ° <
% D ramnnanaeee decmeemanaas Hoceeenenaas T —eveeamneeas B Ty e eeccacanuan decmeeenaaand -
o 125 p ~
Q
D
®
s 1} -
() L O--omeneeen ©-eeesean- D O -vecaeomen- O emeeeene O---onranen- B B-eenmmencens *
0.75 - <
0'5 L] 1 1 1 L 1 1
1 2 3 4 5 6 7 8 9 10
Local External Memory Access Stepcount

Figure 5.36: I-Cache Speedups v. Local External Memory Access Stepcounts for rowcol

113

114 CHAPTER 5. I-CACHE EVALUATION
bitonic on SIMD-D
7 T T 1] L 1 1 ¥ L]
6.5 | FO and F2 at RHO-set {8,8,1,1,1} -8 A
) FO and F2 at RHO-set {8,8,8,4,2] -+
6 FO and F2 at RHO-set {8,8,8,8.8} -
- -
5 # ----------- [< R L 2 [- EEEIE R e 1 L= = [2 SETTTREpes L < R]
‘é 55 | .
8 5 = J .
o
=
& 45 -J
g . ’
-
so_, 35 r ----------- denecnneas B L TEPETPR omeneancoann S P dreeenaamenes deermcnnans B T TR deeeneeeeane <
2]
3 |
g 25 n
2 SERERLTEEAL L L ITSRSPTREEE L SERISTRESEE O -omrnenenas L XTEILELEE L L STTTTTIPRPS Q-coverenanns <r
@ 2 -
Q
7]
15 .
1} .
1 1 L 1 j 1 1 —h
1 2 5 6 8 9 10

4 7
Local External Memory Access Stepcount

Figure 5.37: I-Cache Speedups v. Local External Memory Access Stepcounts for bitonic

matmul on SIMD-D

9 F L] - T L L] f 1 L ?

Speedup Relative to Generic SIMD Computer

1 ' 1 1 1 T 1 1 T
3

4 5 6 7
Local External Memory Access Stepcount

Figure 5.38: I-Cache Speedups v. Local External Memory Access Stepcounts for matmml

5.13. SENSITIVITY OF I-CACHE SPEEDUP TO LOCAL EXTERNAL MEMORY ACCESS 115
] sobel on SIMD-D
45} RHO-set {8,8.1,1,1} -B-- -
RHO-set {8,8.8.4.2} -+--
N RHO-set {8.8,8.8.8} -¢--
5, RHO-set {8.8.1.1.1} &— |
a - RHO-set (8,8,8,4,2) ~+—
€ RHO-set {8.8,8.8.8} -+—
S ast i
=
(7]
'§ 3 H::::::::::::ﬂ:::::::::::ﬂ:::::::::::ﬁ::::::::::::E:::::::::::ﬁ:::::::::::!:::::::::::3:::::::::::9:::::::::::;?
5
I3
g 25 | .
>
s
€ 2% P $ @ 3 $ ® & $ $
2
-3
2 15} i
(/5]
1} J
1 2 3 5 6 8 9 10

4 7
Local External Memory Access Stepcount

Figure 5.39: I-Cache Speedups v. Local External Memory Access Stepcounts for scbel
median on SIMD-D

L] t] ¥ T L§ T L

Speedup Relative to Generic SIMD Computer

5 (]

4 7 8 9 10
Local External Memory Access Stepcount

Figure 5.40: I-Cache Speedups v. Local External Memory Access Stepcounts for median

116 CHAPTER 5. I-CACHE EVALUATION

Chapter 6

Providing Chip Area for I-Cache

I-cache increases the chip area occupied by a PE chip’s local controller, due to the addition of a
multi-clock generator, cache memory, and a cache controller. The I-cache evaluation discussed in
Chapter 5 presupposes that PE chip expands as required to accommodate the local controller with
I-cache. Increasing chip area is not always economically feasible, because as the physical dimensions
of a chip increase, production yield decreases [80]. Decreased yield means that unit production cost
increases, so increasing the size of the PE chip increases its cost. A limited implementation budget
therefore imposes a limit on the physical size of the PE chip.

In a PE chip of fixed chip area, cache size is limited. Furthermore, adding I-cache may force the PE
chip payload to be reduced, through reducing PE count, PE register count, and/or FU complexity. The
payload should be reduced in a way that maximizes the overall speedup, so the best way to provide
chip area for I-cache depends on the resource utilization characteristics of a given computation.

This chapter enumerates a variety of ways to accommodate I-cache in a PE chip of fixed physical
size and examines the consequences of each. The chip-area use tradeoffs that are apparent in this
chapter arise also in the design of PE chips for generic SIMD computers. Here, the question of how
best to use the available chip area is re-opened in light of the new requirement to make room for
I-cache.

6.1 Strategies for Providing Chip Area for I-Cache

Figure 3.11 shows a floor plan for a PE chip that matches the floor plans of the PE chips in existing
SIMD computers. In a PE chip of fixed area and fixed VLSI implementation technique, I-cache is
constrained in the chip area it occupies, and adding I-cache may force removing other components
from the PE chip. Using the floor plan in Figure 3.11 as a starting point, Figure 6.1 illustrates a
collection of Strategies for providing chip area for I-cache. The various Strategies, shown in Figure 6.1
as modifications to the fioor plan of Figure 3.11, are as follows:

e Strategy O is to provide chip area for I-cache by using available interior area that has not
already been used for PEs. Strategy O presupposes that in the generic SIMD computer’s PE
chip, substantial areas of the chip interior are unused. Under Strategy 0, that otherwise
unused chip area is occupied by I-cache. As do all of the other strategies, Strategy 0 introduces
a restriction on the number of instructions that can fit in cache at once. Strategy 0 is obviously
the best way to provide chip area for I-cache, because it does not reduce the PE chip payload.
Unfortunately, if there is not much “spare” interior area in the PE chip to start with, then
Strategy 0 may not allow enough chip area for the resulting cache to be as large as required to
realize the maximum speedup for a given computation.

117

118

CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

MCS iniedtace Regaiers

Muti-chip Subsystem Control and Pin Access

Strategy 0

I-cache displaces PE registers

Registers

MCS Interface Registers

MuRi-—chip Subsystem Control and Pin Access

Strategy 2

Figure 6.1: Cache Area-Provision Strategies

£
:
i
§
3
|

Muki-chip Subsystem Control and Pin Access

Strategy 1

®

che reduces PE FU circuit compiexity

{

MCS interface Registers

Muki-chip Subsystermn Cortrol and Pin Access

%

Strategy 3

6.2. METHOD FOR MEASURING SPEEDUPS AT FIXED CHIP AREA 119

e Strategy 1 is to reduce the number of PEs in the PE chip. For a fixed PE chip count, Strategy
1 reduces the number of PEs in the computer. For a fixed problem size, applying Strategy
1 requires re-structuring the computation to reflect reduced PE count: Remaining PEs are
assigned sub-problems that would have been assigned to the displaced PEs.

o Strategy 2 is to reduce PE register count. For some computations, the operational structure
changes to reflect a reduced number of registers per PE. Some sub-problem data allocated to
PE registers in the generic SIMD computation are re-assigned to locations in local external
memory under Strategy 2.

o Strategy 3 is to reduce PE FU complexity. As a result of decreased FU complexity, some FU
operations take an increased number of clock cycles to complete.

6.2 Method for Measuring Speedups at Fixed Chip Area

The I-cache evaluation method illustrated in Figure 5.1 applies to computations wherein the chip
area of the PE chip is permitted to increase to accommodate local controller expansion with I-cache.
Figure 6.2illustrates the method adapted in the following ways to compensate for the local controller’s
expansion within a PE chip of fixed chip area:

¢ Before being transformed into a physically structured multi-clock SIMD coraputation, the as-
sembly language program describing the subject generic SIMD computation is first transformed
to reflect reduced PE count or reduced PE register count.

¢ In addition to the re-organization and addition of cache-control instructions needed to use I-
cache, the subject computation’s assembly language description is transformed also to reflect
reduced PE count or reduced PE register count.

o Intransforming operationally structured computations into their physically structured variants
with I-cache, operation stepcount parameters may increase to reflect reduced FU complexity,
or they may decrease to reflect reduced PE chip pin time-sharing.

120 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

Machine-independent algorithm
for data-paraliel problem

- Partition and map problem input data for
inter-PE communication network
of tpydﬁod generic swlom

S A,

RESTRUCTURE TO REFLECT
REDUCED PE COUNT OR
_ REDUCED PE REGISTER COUNT

R g ————
H

)
]
]
|
o :
RESTRUCTURE TO REFLECT !
REDUCED PE COUNT OR :
REDUCED PE REGISTER COUNT; ;

I

- REORGANIZE AND ADD COMPARE

" CACHE-CONTROL PROTOCOL i
-+ INSTRUCTIONS FOR SPECFIED !
" .7 FCACHE VARIANT :
1 :
]
b

’-‘a t Refiscting reduced FU com-
: plexity or reduced PE count

Figure 6.2: Method Adapted for Measuring Speedup at Fixed Chip Area

6.3. SPEEDUPS USING STRATEGY 0 121

6.3 Speedups Using Strategy 0

The Strategy O case studies show the effects of limited cache size on Fo speedup. The following
8 graphs (Figures 6.3 through 6.10) show how Fy speedup of the 8 sample programs varies with
cache size. Curves are plotted for each of the p-sets {8,8,1,1,1}, {8,8,8,4,2}, and {8,8.8,8,8}. The
speedups decrease to the right, as the chip area available for I-cache decreases, thus limiting cache
size increasingly severely.

The graphs illustrate the small cache sizes of instructions needed to obtain substantial F
speedups for the sample programs on SIMD computer variant SIMD-D. The graphs show that al-
lowing half the maximum cache size required for a given program yields better than half the best
speedup for that program at any p-set. The graphs also show that the rate at which speedup drops
off as cache size is reduced is greatest for small cache memories.

The non-monotonicities of the speedups plotted in Figures 6.3 through 6.10 occur due to inter-
actions of limited cache size with the optimizations performed in the assembler/scheduler. The as-
sembler/scheduler breaks each cache block into two pieces, one sequence of instructions that fits into
cache and a remaining sequence that doesn’t. Splitting cache blocks in this way requires un-doing
some of the re-ordering performed in earlier passes for the purposes of overlapping long-duration
MCS operations. A better compiler would certainly handle limited cache size more gracefully, as there
is no good reason that having more instructions in cache should slow down a SIMD computation.

The graphs show that for a given cache size, speedups are lower at p-sets {8,8,8,4,2} and
{8,8,8, 8,8} than at p-set {8,8,1,1,1}. This phenomenon is due to the conservative cachability test
applied in the assembler/scheduler. Under that cachability test, an instruction is deemed not to fit
in the cache if its latency (in PE clock cycles) exceeds the number of available locations in the cache.
Also, once an instruction is excluded, all subsequent instructions in the cache block are also excluded.
This cachability test for partial cache blocks is too conservative, as the I-cache variants evaluated
here allow timing delays to be represented compactly in cache memory.

The Fy speedup for Sobel filter, plotted in Figure 6.9, appears to be independent of the p-set used.
This similarity in the speedup curves for different p-sets occurs because the part of the program for
which I-cache is used is calculation-intensive, and thus instruction delivery-bound on the simulated
model of SIMD computation.

122

Speedup Relative to Generic SIMD Computer

Speedup Relative to Generic SIMD Computer

CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

tree on SIMD-D
4‘5 1 L L i L]
100
4}] FO speedup at {8,8,1,1,1} - N
: FO speedupatt8.8.8.4.2 +-
: FO speedup at {8,8,8,8,8] -8
as} .
3F ‘:: -
25 F :0--0--0--0--0- Rt i a8 S S ot ot el 2L SR 228 2 -
._Q.‘
‘@«
2 ~ "‘. b
.o__"
mathe o D A D R T et IS T T ittt ST SCE e 1
15 F R -
*-.*_-"
$--8--0--B--8--B--G-G-- G- G- O -B-BD--B--B--5--8-- 8- G- G- G- &--B--D--0--0._
1} B-8.5.4.
0.5 1 1 1 1 L
35 30 25 20 15 10 5
Cache Size (number of instructions)
Figure 6.3: Fy Speedup versus Cache Size for tree
scan on SIMD-D
5 ¥ T ¥ i T L 4 L
45 1;—0-0—0-0—*-0-0-0-0' A
4} : FO speedup at {8,8,1,1,1} -e-- .
: Fo speedupai{B.B.BA,Zl e
: FO speedup at {8,8,8,8,8) -8--
35} i
&-o-o-o-o_
3r .
- 0- 090 ¢00-0-0-0-0-0-0-9,
‘-0
°-0-9,
25 F ©-Q 1
'h_‘
2+ ‘.6‘1
B T e e et et T (
R
-
15 ¢ *"*'*-JT
ta-a-a-a-s-a-s-s-e-a-e-e-e-e-e—-a»-a-a-a-a-s-s-a-e-s-a—a-a-aﬂg_a_a_a.a_g's
1 1 1 1 1 1 L 1 G'B-m
45 40 35 25 20 15 10 5

30
Cache Size (number of instructions)

Figure 6.4: Fy Speedup versus Cache Size for scan

6.3. SPEEDUPS USING STRATEGY 0

Speedup Relative to Generic SIMD Computer

Speedup Relative to Generic SIMD Computer

bubble on SIMD-D
LB L) L T L L]

24 FO speedup at (8.8,1,1,1} -¢-- |
4»-0-0--0--0--0-0-0--0-4‘-0-0-4-0—-0--0--0-&-0-0—-0--0;3:p“dp“dﬁg ggg;g ;
22 | ".. 4

b ot R R R SR Rk UL R R e S t
2 '-_. K -
x
: Y
1.8 ¢ ‘._ ‘.. -
<I--a--a-a-e-e--uua--a-e-q 4 \
L % 2
16 Y 7
.‘.‘ S x‘
&) !
14 % > 4
[} °
R s . e
._ ‘v ..
- : &-G-8--8--8, . -
1.2 &-g--a’ * L% ®
. w
B.. - .
1F E_“ >, "e.__
..E‘-'a--a--a#
L | S 1 L lb.E).B 1
60 40 30 20 10
Cache Size (number of instructions)
Figure 6.5: Fy Speedup versus Cache Size for bubble
rowcol on SIMD-D
] T L T T L
FO speedup at {8,8,1,1,1} -o--
FO speedup at {8,8,8,4,2) -+
2P OG0t 9900 4-4-0-0--¢. g FO speedup at {8,8,8,8,8} -0 _
“
R
18 F -
Bt e S e i i aUT .
16 | -, 4
‘:.l “QQ
14 L-G--B--E}--D-G--G--B--E!--ﬂ. », .’*._ +
’ "o
b"q >, .
» ‘e
12} b e .
Q .. o
B-a-3-6. he
-G - + >
1 B'ﬂ "4‘. 0'.::’
. R SOTU §
b-oa BEEE
L I H L 1 L
60 50 40 30 20 10

Cache Size (number of instructions)

Figure 6.6: Fo Speedup versus Cache Size for rowcol

123

124 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

bitonic on SIMD-D
6 ¥ L] L] L§ L RJ
>0
55 | i
. 5F : FO speedup at {8,8,1,1,1} -e-- e
2 : FO spoedupat{e.s,sA.zi “hee
a : FO speedup at {8,8,8,8,8} -8--
g 4.5 : 1
8] :
o]
g 4 -
@ :
g 1
T 3s} : .
€ :
-] H
O
8 3 -
o :
-% L I A s i = N
s 25T A N 1
o “e.
a ‘6.,
=] DR e A e e S ol o o et atin ot S TED b N -, i
'g =, o,
2 ey e
& . ey I 2L N
1.5% G-43--e--e-e—-a-a--a--a--a--a--e--&-G-a.ﬂ__a e “o..a.. 4
'-B"G“B-ﬂ - ~+----0--...,__"_".“..::_w“0
8--8--8..g..g.._ +*t
1F B-g.3
0.5 L 1 1 1 1 L
60 50 40 30 20 10
Cache Size (number of instructions)
Figure 6.7: Fy Speedup versus Cache Size for bitonic
matmul on SIMD-D
¥ 1 LI L
4 Ft— G- OO b
5 35T -
5 : :
Q
§
O 3F FO speedup at {8,8,1,1,1} -e--- -
g FO speedup at {8,8,8,4,2} -+--
5 FO speedup at {8,8,8,8,8} -8--
o H :
5 25f : =. .
c M 1
s : :
(O]
e
g 2f -
-
©
[+
@ H M
S 15¢ 1
§ T}---a---a--e--a--q! 4..‘ é\
w “. ; 0) e &--- .
1} Y .. o ¢
. el
e, R
\ G- e—ea---0--g
B---8---B--B--B--G--G--G---8---B---0---E---8°
05 1 1 2 1]
30 25 15 10 5

20
Cache Size (number of instructions)

Figure 6.8: F, Speedup versus Cache Size for matmul

6.3. SPEEDUPS USING STRATEGY 0

Speedup Relative to Generic SIMD Computer

Speedup Relative to Generic SIMD Computer

sobel on SIMD-D
¥ L] 1 T L 4 L) L]
&-®
2 29990y aw e i .
S FO speedup at {8,8,1,1,1} -e--
0. FO speedup at {8,8,8,4,2} -+--
.a_ FO speedup at {8,8,8,8,8} -8--
18 | -
8,
%,
&,
16} 2} -
R,
8.
-3
14} &:& 4
e,
’G:Q
12 &:S:a_ .
»:a, .
Byt &tl
1 L L 1 1 A i - A
45 40 35 30 25 20 15 10 5
Cache Size (number of instructions)
Figure 5.9: Fy Speedup versus Cache Size for scbel
median on SIMD-D
) L L} L] LN Ly L
24P 0-00-0-0-0-0-4-0-0¢-0-¢-0-0-90¢ -
Rt e A e i 0 TP S ° FO speedup at {8,8,1,1,1} -e--
3 K FO speedup a1 {8,8,8,4,2} -+--
22 : FO speedup at {8,8,8,8,8} -8-- -
2L % ’, J
I. ‘.0‘
¥t £
18} e i
#-a-e-a-q 2
16 | % °o-0-¢ .
8-9-8-8-8-8-8 BRI
Y oy '._0
14 S %o i
&-8-8-8-8-8-9 YO
E ..‘. b.:*.-@
-y O e,

1.2 .
K ‘.°‘._ 3
b-g-e-8-9-8-9 "'--2:.-}1J

1t 5-8-0-8-8-8-8-8-
1 1 1 1 1 1 i
70 60 50 40 30 20 10

Cache Size (number of instructions)

Figure 6.10: F, Speedup versus Cache Size for median

125

126 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

6.4 Speedups Using Strategy 1

Strategy 1 is to displace PEs from the PE chip. Strategy 1 has a variety of effects on both the
operational structure and the physical structure of a computation, depending upon the context in
which it is applied.

One surprising effect of Strategy 1 is that by reducing the number of PEs time-sharing MCS
pins in the PE chip, Strategy 1 tends to reduce stepcounts for MCS operations, including local
external memory access and inter-PE communication. All else being equal, this effect of Strategy 1
tends increases throughput. Unfortunately, not all else is equal, because the computation must be
restructured to compensate for the PEs displaced under Strategy 1.

The number of PEs P in a generic SIMD computer is given as

P=KM

where K is the number of PEs per PE chip and M is the number of PE chips in the computer.

When I-cache is added to a SIMD computer using Strategy 1, the number of PEs per PE chip is
reduced to anew number K’, such that K’ < K. The number of PEs P’ in the I-cached SIMD computer
is either less than, equal to, or greater than the original number of PEs P. The consequences of these
alternative scenarios are enumerated below:

1. PP<P

This is the case where the number of PE chips cannot be increased. The constraint M'=M
applies, for example, where the total physical size of the computer is limited. Under this
constraint, it becomes necessary to re-program K’'M PEs to do the work of the original P PEs.
This reprogramming corresponds to changing the operationally structured description of the
computation.

The ratio of the number of PEs in the model on which a program is written to the number of PEs

in the computer is commonly referred to as the VP-ratio [181(p.9). Under Strategy 1 I-caching
with fixed PE chip count,

P

P
K
K’

VP-ratio

The virtual processors programming abstraction [18])(Sec.3.2) facilitates writing programs as-
suming one PE per data element without regard to the (perhaps lower) number of PEs in a
computer. A program written using the virtual processing abstraction is translated into an
operationally structured description of the computation in which the available PEs share the
workload evenly [411(p.1171).

Strategy 1 increases loop iteration counts by a factor of [£]. While increasing computation
time, increasing loop iteration counts actually tends to increase I-cache speedup.

Large VP-ratios place a high demand on PE memory [84)(p.106), because the amount of memory
required by the PE increases linearly with its workload, which is proportional to the VP-ratio.
Another effect of Strategy 1, which occurs when the required size of PE memory increases to a
point where it exceeds the size of the PE register file, is to cause some PE data that was located
in registers in the original computation to be re-located to local external memory. Data in local
external memory typically is accessed at a lower rate than data in registers, so throughput and
I-cache speedup decrease under this effect. This effect obtains if each PE in the original generic
SIMD computation has available less than [£;] times the number of registers it requires.

6.5. SPEEDUPS USING STRATEGY 2 127

By reducing the number of PEs, Strategy 1 reduces the amount of inter-PE communication,
replacing those communications with references to local memory. The impact of this effect
on I-cache speedup depends on the relative operation rates of the local external memory and
inter-PE communication subsystems.

2. P'=P

Some computational problems require a specific number of physical PEs. If K’ divides P, then
it is possible to increase the number of PE chips so that
M’ K
ﬁ }{—7 such that
K'M" = KM

In this case, adding I-cache does not change the operational structure of the computation. The
same number of PEs perform the same amount of work as in the computation without I-cache.

The physical structure of the computation does change in this case, to reflect decreased time-
sharing of PE chip pins. Also, p-set values may increase as chips are added, to reflect increases
in MCS’ inter-chip wire lengths and electrical loads.

3. P>P

If the computational problem requires at least a certain number of physical PEs and K’ does not
divide P, then the I-cached SIMD computer is forced to contain K’M’ > P PEs. The extra PEs
are redundant. Consider shifting data around a linear ring of PEs; additional shift steps are
required to move data past redundant PEs in the ring. A further subtle effect in this case is the
operational structure of the computation must change to prevent redundant PEs from altering
data used by the needed PEs. The redundant PEs are inconvenient. Strategy 1 I-caching in this
case introduces unnecessary inter-PE communication operations, which tend to limit I-cache
speedup.

There are a large number of ways to apply Strategy 1, and there are many interacting effects of
reducing the number of PEs. Considering the Strategy 1 effects raises the question, what is the ideal
number of PEs to have in a PE chip? There are many plausible answers to such a question, and no
absolute answer. If the number of PE chips may increase, then Strategy 1 may have little impact on
the structure of the computation. On the other hand, if there are a limited number of PE chips, then
Strategy 1 leads to decreased throughput.

6.5 Speedups Using Strategy 2

Strategy 2 is to reduce the number of PE registers to make room for I-cache. If the removed registers
are unused in a given computation, then Strategy 2 makes room for I-cache at no cost. On the other
hand, throughput suffers for computations that do use the available registers.

Figures 6.11,6.12, 6.13, and 6.14 show the typical effect on I-cache speedup of varying the number
of PE registers for a program that uses all of the registers that are available. The graphs show the
progressively worsening I-cache speedup reduction as increasing numbers of registers are displaced
from the PE chip.

The subject computation for which Strategy 2 I-caching results are shown is a variant of matmul.
The subject program uses the number of available PE registers as a parameter; extra registers are
used as a register buffer for matrix-column data otherwise stored in local external memory.

128 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

matrmul on SIMD-A at RHO-set (888:42)

8 L T B |] 1
! -

7H,
6.5 r-‘:‘-_ 7
6F & F2 l-cache -8-- T
ssf % o }
5 S
45 Y
4t)
s '
3
25
2} : i
15
al Broooeeianena B -eeveicorienaannn. L E

T
|

v
1

.
[l

1
1

Speedup Relative to Generic SIMD Computer

0.5 -

1024 512 256 64 32 16

128
Number of PE Registers

Figure 6.11: Effect of Strategy 2 for matamul on SIMD-A measured at p-set {8,8,8,4,2}.

The graphs show that the register count reduction bites quickly. Reducing the number of registers
by a factor of 2, from 1024 to 512, decreases speedup by more than a factor of 2. By contrast, reducing
the number of registers by a factor of 8, from 128 to 16, reduces speedup by a factor of less than 10%.

These results suggest that Strategy 2 has a drastic negative effect on I-cache speedup. For the
subject computation, displacing more than half of the PE registers for I-cache defeats most of the
I-cache speedup. Given the heavy use made of registers by calculation-intensive programs, Strategy
2 is not a good way of providing chip area for I-cache.

6.5. SPEEDUPS USING STRATEGY 2 129

matmul on SIMD-B at RHO-set {88:8:4:2)

8 ™ — T ¥ ! L
7.5()
7k)
5 5% T
B st F2 l-cache -a-- .
£ 3 FO I-cache -+--
O 55 %]
Q A
= sl 3)
o K
£ asp %)
@ .
2 }
& 4r y]
e “
as b Y i
: 3
T 25}]
g
Py ... '
2 L B i
1.5 "-.- _________________
.1 S S @ enooennenenenas #
05 | i
1 i -L —L 4
1024 512 256 128 64 32 16
Number of PE Registers

Figure 6.12: Effect of Strategy 2 for matmal on SIMD-B measured at p-set {8,8,8,4,2}.
matmul on SIMD-C at RHO-set {8:8:8:42)

8 L T) L} L
7.5 L -
7F -
5 6.5&,: -
g ef: F2 lcache -B--- -
S K FO l-cache -+---
o 5.5j— .
c .
= sh .
(7]
2 ast J
]
& a4l 4
O
8
35 | -
2
s 3r .
& "
o 25¢ =
3
g B,
O 15F M., 8 T
P Beeoeceenniocenne] Bo-cemcecennaennnns Beeeennenaeoonoenns &
05} 4
1 1 A e i
1024 512 256 128 64 32 16
Number of PE Registers

Figure 6.13: Effect of Strategy 2 for matmul on SIMD-C measured at p-set {8,8,8,4,2}.

130 CHAPTER 6. PROVIDING CHIP AREA FOR 1-.CACHE

matmul on SIMD-D at RHO-set {8:8.8:4:2)

8 i) T) |
75} —
: J
s 6.5 ‘
a 6} : i d
g Fol . |
S ssf
= 5% ‘
7
g 45 ‘
[=4 ;
8 4r % ‘
[«] :
S 35t ‘
s [™
g °r .
o
a 25 J
=) ‘.‘..
| e ﬁ
i 1 5 -’:::::::::::z-
. e @recennn.... 1
....... —
1} .. ' ﬁ
05 | -
i : ! i I
1024 512 e " : :
Number of PE Registers

Figure 6.14: Effect of Strategy 2 for matmul on SIMD-D measured at p-set {8,8,8,4,2}.

6.6. SPEEDUPS USING STRATEGY 3 131

6.6 Speedups Using Strategy 3

Strategy 3 is to remove some of the FU circuits to make room for I-cache. Removing circuits simplifies
the FU, so that some arithmetic operations take more clock cycles to perform. This effect is reflected
as increased FU operation stepcount - the simulation model. Varying FU complexity does not
change operationally structured computation descriptions.

Figures 6.15 through 6.22 show the effects of reduced FU complexity on speedup and on required
cache size for each of the 8 sample problems on SIMD computer variant SIMD-D measured at p-set
(8,8,8,4,2}.

The upper graph on each page plots Fy and F; I-cache speedup curves. The lower grapi on each
page plots the corresponding cache size required for each of the two I-cached SIMD computations.

The graphs show that speedup lessens progressively as the FU becomes progressively simpler.
However, the slope of the speedup reduction is less than that apparent for Strategy 2. The reason
for this gradual speedup decrease is that reduced FU complexity has the effect of lengthening in-
struction sequences controlling FU operations, and such sequences are instruction delivery-bound
in the simulation model. Because I-cache speeds up repeated instruction delivery-bound instruction
sequences, the I-cache lessens the impact of FU simplification. However, the fact that the speedups
do decrease as FU stepcounts increase indicates that I-cache does not win back all of the calculation
speed that was sacrificed to make room for I-cache using Strategy 3.

Note that the required cache size grows nearly linearly with reduced FU complexity for all 8
problems. The required cache size growth is due to the machine-dependent assumption that a new
instruction is required on each clock cycle of a multi-step FU operation. On one hand, if the FU
part of the instruction set was similar to the MCS parts of the instruction set, then the cache size
would not grow as quickly as shown in the graphs. On the other hand, hardware used inside the
PE chip to control the FU is redundant and would occupy chip area that could otherwise be used for
the calculation components of PEs. Furthermore, for simple FU operations whose stepcounts are 1,
inside-the-chip FU control is not needed.

The rapid growth in cache size is perhaps the greatest drawback of Strategy 3 I-caching. FU
simplification to make room for I-cache has the courter-productive characteristic of increasing the
number of instructions that must be stored in cache to yield the maximum speedup. Given that chip
area is precious within the PE chip, this effect could render Strategy 3 infeasible.

132 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

tree on SIMD-D at RHO-set {8:8:8:4:2}

¥ T 1 T T ¥ L 1
a.
225 t+ .
5 g F2 |cache -&--
3 FO Icache -+--
: -
e
o
g °f . -
® ..
2
g 17 . T,
AR (--._._- b
9 Y . e
@ . .
B
e 15} T T
3 e e
§ T e
e | T o
125 | A
1 ' | 'l i] 1 A 1 .
1 2 3 4 5 6 7 8

FU operation stepcount (increases with decreased FU complexity)

90] ¥ T T | L T ¥
8
80 _.-';Z:":" .
-B-"‘.‘
.‘..¥
70 | i -
o _,.8'.
N
s V0
% 60 | E <
& .
o
3 50 | ’." e
- o
o -
g
40 - 4
30 | ._;-5'.]
i
-
20 L 1 ' 1 1 L 1 1
1 2 3 4 5 6 7 8

FU operation stepcount (increases with decreased FU complexity)

Figure 6.15: Speedup and Cache Size for tree on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

6.6. SPEEDUPS USING STRATEGY 3 133

scan on SIMD-D at RHO-set {8:8:8:4:2}

LJ L Li T T L L] T
275 4
§ 2.5 o a._. -y
§ . F2 I-cache -8--
S FO l-cache -+-- |
o o
o 28T U.n_
g . . .~
7] *.
o .
& 2 4
&
) L) . ..a.
o175 T
L4 . - Sl el -1
£ R
b U N
E B..._
§ 15} S .:.___.-B
§_ B S |
Tt
? 125} .
1pF y
J 1 1 i L L 1 1 1
1 2 3 4 5 6 7 8
FU operation stepcount (increases with decreased FU complexity)
120 1 | 1 L ¥ T L ¥ ¥
B
110 &+ ._-_'-,-“’ -1
g
Rt
100 |- % -
% | o .
-
[-
N Od
» 80 o 4
@ =
;:
O T70F - -
j: B
3 o
g 60F oo .
€ -
‘.:,:0'
50 |- L -
0 g -
b g -
20 L 1 1 1 1 1 1 1
1 4 5 6 7 8

2 3
FU operation stepcount (increases with decreased FU complexity)

Figure 6.16: Speedup and Cache Size for scan on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

134

6
5.5
B
& s
[«]
[&]
[=]
Q 45
(7]
©
g 4
[=4
3
2 35
2
8 3
[+
g 25
g2
2
S
15
1
110
100

90

80

70

Required Cache-Size

60

50

40

CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

bubble on SIMD-D at RHO-set {8:8:8:42}

1 1) ' ' ' | |
F2 |cache -8-- |
‘. FO lcache -+--
au.‘ ‘
"m.__
8.,
...... o
...... B.. T
""") S
...... o -4
.............. e, “
..... +........-.-.-
i pE LTI LTI S DI
---------------0- W
| | l l , 1 1)
2 3 ! 6 : 8
FU operation stepcount (increases with decreased FU complexity)
) L ! ' i ' r
..
) 2 1
o'," -
""'- -
a's.-'
-"'--
-"""
w”
1 1 L l : 7 L
2 3 c ! 8

6 7
FU operation stepcount (increases with decreased FU complexity)

Figure 6.17: Speedup and Cache Size for bubble on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

6.6. SPEEDUPS USING STRATEGY 3 135

rowcol on SIMD-D at RHO-set {8:8:8:42}

L) R L T L 1 T T
25F @ .
g | F2 l-cache -8--
;{ 225 | | FO lcache -+--- -
[=3
Q
o
= 2f ! .
e 8.
= .
* -~
c
8 175 P .“E._ 1
e e T
g | e - e
2 15F e, .. 7
o s S)
e Tt -
% S S B
125 T e T -
g=r e . °
...... —
1} A
[] L L L 1 L - 1
1 2 3 4 5 6 7 8
FU operation stepcount (increases with decreased FU complexity)
110 T — T T T T T T
-"B
100 b 'g'. -
90 | 4
o
o
N -
® 80 -y -
8
S
o d
3 -
5 70F - .
[~ 4 -
g .
«
.'B
60 b -
.-‘a--
50F . J
-
40 [L A A 1 L L 1
1 2 3 4 5 6 7 8

FU operation stepcount (increases with decreased FU complexity)

Figure 6.18: Speedup and Cache Size for xowcol on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

136 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

bitonic on SIMD-D at RHO-set {8:8:8:42}

¥ ¥ L) ¥ ¥ L] LS T
3.75 -
s 8 F2 |-cache -8-- .
- FO l-cache -+--
]
3 325} .
g 3 p ".;,_ -
=
% 275t ", 1
s
c
8 25 4
2 '
% 22sf T .. .
= | T
o 2 B .
< T 8.
® .l T -
-4 1.75 | =
7]
15 F -
125 | .
1 1 L i L L L L
1 2 3 4 5 6 7 8
FU operation stepcount (increases with decreased FU complexity)
200 L L] L4 ¥ T 1) T T
,"
180 | 4
-'.."'
160 |- -
-'z"
8 1} -
P =
s e
3 120 .
- =
g
& 100} 4
-"".
80 F -
0".'
60 | -
o
40 'l i L 1 1 [1 1
1 3 4 5 8

2 6 7
FU operation stepcount (increases with decreased FU complexity)

Figure 6.19: Speedup and Cache Size for bitonic on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

6.6. SPEEDUPS USING STRATEGY 3 137

matmul on SIMD-D at RHO-set {8 8:8:42)

L L L | T T 1] L]
4} a -1
o F2 I-cache -8--
s FO {-cache -+--
a8 35p -
£
3
Q L B
= 3 -
- 3
(4]
5 X -
5 S-..
0] 25 | '-_. ".‘.‘- -
e 5 e
3 2t | LTI O -~ s - N -
o e T
[-% ‘8-...,
3 Tdmeeeccsenennan - T B
] I e S e .
-3 e T T a
o0 B e,
....... .
1 -
[L 1 L 1 —t 1 el
1 2 3 4 5 6 7 8
FU operation stepcount (increases with decreased FU complexity)
45 L]) T ¥ L] L T
a"n
40 4 4
-B")
35 | -
-]
8 .
o »
O 30F 4
i
3 F
o
D
(0
25 F - .
.
20 @ J
e’
15 [} L 1 L L [L N
1 3 4 5 8

2 6 7
FU operation stepcount (increases with decreased FU complexity)

Figure 6.20: Speedup and Cache Size for matml on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

138 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

sobel on SIMD-D at RHO-set {8:8:8:4:2}

 § R L] L 1 | L] L]
af 8/ F2 l-cache -8-- -
= FO i-cache -+--
-]
S a5} -
= B,
7])
o
=
[]
§ oL .
1] “a .
e
2 . .
.
15} g
g e, "B
: | T —
- B
0 e T 5.,
14 B a o
S
""""" +
L J 1 I L i 1 —t]
1 2 3 4 5 6 7 8
FU operation stepcount (increases with decreased FU complexity)
140 L} 1) L) L] L3 ¥ T Ll
B
130 } J
120 | _-'"'. .
110 b §
o.“'
@ 100 | 4
g oof &]
1]
o
® s} - .
5 -
= .
]
c 70} . -
a”
60 - -
50 |- e -
40 - -
.
30 1 1 L 1 i L i 1
1 2 3 4 8

5 6 7
FU operation stepcount (increases with decreased FU complexity)

Figure 6.21: Speedup and Cache Size for sobel on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

6.6. SPEEDUPS USING STRATEGY 3 139

median on SIMD-D at RHO-set {8:8:8:42)

3 L L T L] L T L | L
a‘». F2 l-cache -8--
s 25 FO i-cache -+-- .
-4 ™
s s,
o 2f ‘ -
= o
e ,
<}
e -
4 .
> *, .
8 15} - 8 <
T .
g_ P ..
§ * """" Q.
QT e s e
* P e
& R *__'_‘:'-. ________ a -
""" -+
1 —r 1 L 1 1) 1
1 2 .3 4 7 8
FU operation stepcount (increases with decreased FU complexity)
160 L L) o L] L) L 1 1
LW
Hr 5’:.'.:”:" -
120 r - 4
(A oo
N et
74 o
@ 2
s .-:3::E
o 100 F L .
2 e
2 A
° e
v en
80 | .
A
60 "-§ -
-
40 1 1 1 L |3 1 L 1
1 3 4 5 6 7 8

2
FU operation stepcount (increases with decreased FU complexity)

Figure 6.22: Speedup and Cache Size for median on SIMD-D v. FU Complexity at p-set {8,8,8,4,2}

140 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

6.7 Which Strategy Is Best?

There is no one Strategy for providing chip area for I-cache that is universally superior. The best
Strategy or combination of Strategies depends on the requirements of the problem, the structure of
the original computation, and the resources available in the PE chip.

Strategy 0, to use spare area for I-cache in the PE chip, has no impact on the PE chip’s payload.
Strategy 0 would thus seem ideal. Unfortunately, the high stakes in SIMD computer architecture
for making good use of chip area lead to PE chips that typically have very little area left spare.

I-cache competes with PEs for chip area. Limited chip area introduces a limit to cache size,
which in turn limits the number of repeat instructions that can be stored for subsequent retrieval at
the high on-chip rate. Limited cache size also increases the quantization effect on I-cache speedup.
A cache block can be iterated in cache only if it is wholly stored there. Some iterated instruction
sequences are too long to fit entirely in a cache of limited cache size. Being able to store only a part
of an iterated instruction sequence means that it cannot be iterated in cache. When the cache size
is too small, the cache block iteration capability of I-cache variants including F5 cannot be exploited,
so quantization effects become apparent as they do for non-iterating I-cache variants including Fy.

Strategy 1, to displace PEs from the PE chip to make room for I-cache, increases the amount of
work that is performed by the remaining PEs. Increasing the per-PE workload tends to increase
iteration counts, which acts to increase the benefit of I-cache. However, a number of programming
problems arise as a consequence of Strategy 1. For example, problem data may no longer fit into
PE registers, thereby increasing the reliance on local external memory. Increased local memory
usage tends to decrease I-cache speedup through increasing the local memory-boundedness of a
computation. Strategy 1 has a surprising throughput-increasing effect: reducing the number of PEs
in the PE chip reduces time-sharing of PE chip pins. Reduced pin time-sharing decreases the time
taken to perform MCS operations, which tends to decrease subsystem-boundedness of computations.
Less time spent waiting for MCS operations to complcte means greater throughput, which in turn
increases the apparent speedup due to I-cache.

Strategy 2, to remove PE registers to make room for I-cache, may have no effect or it may have an
enormous effect. If a computation uses only a small number of registers, then the registers removed
to make room for I-cache were redundant and are removed at no cost. However, a computation that
uses all of the available PE registers makes greater use of local external memory under Strategy
2. Increased local memory-intensiveness means that the computation is more likely to be memory-
bound, thus exhibiting reduced I-cache speedup.

Strategy 3, to remove some PE FU circuits to make room for I-cache, increases the number of
PE clock cycles needed to perform some arithmetic operations. Strategy 3 makes computations more
likely to be calculation-bound. Although I-cache is most useful for calculation-bound computations
on the simulation model of SIMD computation, Strategy 3 yet degrades I-cache speedup. Strategy
3 has the additional negative consequence of drastically increasing the cache size needed to obtain
maximum I-cache speedup by increasing the lengths of machine code instruction sequences used to
control arithmetic operations.

In summary, the objectives of SIMD computer architecture lead to PE chips that are simplified
to the point allowed by the calculation requirements of the problem mix. Unless the PE is overly
complicated for a given problem, for example containing too many registers or unused single-cycle FU
operations, further simplification of the PE as per Strategies 1, 2, or 3, is bound to reduce throughput.

On the other hand, the estimates of Section 4.3 indicate that I-cache with small cache size occupies
negligible chip area in modern chips. Furthermore, the results of Chapter 5 show that, while small,
simple I-cache variants indeed provide substantial speedups for the sample problems. Therefore,
it is unlikely that a large proportion of the PE chip payload would need to be displaced to make
room for I-cache that is useful for simple problems. However, there are problems that demand more

6.7. WHICH STRATEGY IS BEST? 141

complicated I-cache variants or larger caches. If the local controller with I-cache were to become
very large, for example, displacing all but 1 of the PEs in the chip, then the resulting I-cached SIMD
computer would become a tightly synchronized MIMD computer.

142 CHAPTER 6. PROVIDING CHIP AREA FOR I-CACHE

Chapter 7

Conclusion

The addition of I-cache to SIMD computers makes them faster. The speedup depends on program
properties, PE architecture, chip characteristics, and the electrical characteristics of multi-chip
subsystems. Detailed simulations of SIMD computations for a diverse collection of sample problems
on a variety of hardware configurations show substantial speedups, even for simple I-cache variants.

Ideally, an I-cache is large enough to store entire iterated sequences, thereby attaining the
speedup possible from controlling iterations within the PE chip. Also, the larger the cache memory,
the less pronounced the thrashing due to conflict misses. Unfortunately, I-cache cannot be arbitrarily
large because it occupies chip area that could otherwise have been used for PEs. The simulations
show that small I-caches are useful for the subject problems. On this basis, it is reasonable to expect
even small I-cache to be somewhat useful for larger problems. Detailed estimates indicate that
I-cache containing 1000 32-bit instructions would occupy less than 5% of the chip area of a modern
PE chip.

The appropriate complexity of the I-cache design clearly depends on program structure. For
a simple loop with data-independent iteration count, a simple, statically managed I-cache variant
exploits all of the potential speedup. A program containing multiple alternating repeated instruction
sequences demands a slightly more complex I-cache variant. When inner loop iteration counts depend
on outer-loop iteration index values, it is desirable to have a yet more complex I-cache variant that
calculates iteration counts on its own. Finally, exploiting the maximum I-cache speedup for a
program with arbitrary, data-dependent control low may require a dynamically managed I-cache
whose program-control complexity approaches that of the system controller itself The best I-cache
is determined by the requirements of the computation.

Predicting the I-cache speedup for an arbitrary high-level language program is difficult, due to the
complex interactions among PE chip characteristics, system characteristics, I-cache capabilities, and
program properties. Calculation-intensive loop bodies iterated large numbers of times make for large
I-cache speedups. While programs that use MCSs intensively tend to exhibit lower I-cache speedups
than those that don’t, I-cache should yield some speedup. For example, the sample problems include
some that are ordinarily considered to be inter-PE communication-bound. And yet the simulations
show considerable I-cache speedups for all problems. This phenomenon occurs because a high-level
programming language’s “communication” operation is realized using machine code instructions that
perform address calculations or context management operations. I-cache makes such calculations
faster.

This analysis of I-cached SIMD computer architecture emphasizes the throughput performance
metric and the chip-area hardware cost metric. For scalable data-parallel computations, wherein
throughput is proportional to the number of PEs that are brought to bear, minimizing the chip area
per PE maximizes the number of PEs in a given total chip area, thus maximizing throughput, all
else being equal. Unfortunately, not all else is equal, because to drastically reduce the chip area of

143

———_——T

144 CHAPTER 7. CONCLUSION

a PE by removing its program control is to introduce a limitation in the rate at which instructions
are supplied. The measured I-cache speedups confirm the principle that to make the best use of chip
area, a multiprocessor’s PE chips should contain the right amount of redundantly replicated program
control: Too much and there are fewer PEs than there could have been, too few and the PEs execute
instructions too slowly.

This principle implies that a compromise between the MIMD and SIMD architectural extremes
is valuable for data-parallel programs. In general, the electrical propagation characteristics of the
technology used to fabricate the computer dictate the ideal way of distributing program control
throughout the computer. The program control provided within each layer of the integration hi-
erarchy (including chips, multi-chip modules, printed-circuit boards, racks, and so forth) should be
simple so that the greatest proportion of resources are used for PE calculations and yet sufficiently
powerful to be able to provide control within its own layer of the abstraction hierarchy at the highest
rate attainable therein. In this light, the generally accepted taxonomic distinction between MIMD
computers and SIMD computers as “equal” design alternatives appears to be misleading. Rather,
SIMD computer architecture is the specialization of MIMD computers as appropriate for specific
data-parallel computations.

7.1 Future Directions

This analysis introduces the issues pertaining in I-cache design and explores how properties of
programs, systems, and chips interact in determining I-cache speedup. SIMD instruction cache is
a new idea, and an I-cached SIMD computer has yet to be built. In establishing that even simple
I-cache variants yield significant speedups over a collection of sample programs, large portions of
an apparently vast design space have been left unexplored. Only a relatively small number of the
many alternative physically structured variants of a subject computation have been measured, only a
relatively small number of the many alternative transformations of the subject computation to reflect
I-cache have been measured, and only a relatively small number of the many alternative physically
structured variants of the I-cached computation have been measured. This section enumerates some
of the areas in which to extend and improve the analysis.

7.1.1 Problem Characteristics

A natural and important extension is to analyze computations that are larger in scope than the sample
problems used here. For example, programs whose loop structures are not statically analyzable due
to data-dependence would provide a basis for evaluating dynamic cache management techniques.

Extending the study to more complicated problems would be facilitated by a high-level data-
parallel language. High-level language programming introduces an array of compiler issues. It
might prove valuable to quantitatively assess the dependence of I-cache speedup on the mapping
between problem input data and PEs, or the interactions between I-cache speedup and compiler
optimizations including register allocation and scheduling.

7.1.2 System Characteristics

For programs with complex loop structures, it may not be possible for a compiler to determine best
which blocks to place in I-cache and when to store them there. A system controller component to
perform these functions dynamically presents an interesting design challenge.

The simulation model used in the evaluation contains a single PE FU and a single instance of
each type of MCS. Relaxing this assumption, for example so that the PE could contain multiple FUs

7.1. FUTURE DIRECTIONS 145

perhaps operating at different rates, would allow the model to represent a wider range of SIMD
computers.

The simulation model used in the evaluation incorporates synchronous elements throughout
the computer. A multi-clock generator provides the clocks within the PE chip that coordinate the
variously timed subsystems. The multi-clock generator design used in the basis computer is fairly
clumsy. A good multi-clock generator is an interesting design problem.

7.1.3 I-Cache Characteristics

Although the simplest I-cache variants that have been studied in detail yield considerable speedups
for the sample problems, more complicated programs require more complicated I-cache variants.

Beyond examining the properties of the members of the F-family beyond Fy and Fs, it would also
be interesting to evaluate I-caches with multiple ports. With multiple ports, one cache block can be
stored while another is active, a form of prefetching that reduces the time spent waiting for cache
blocks to be stored. Multi-port I-caching introduces the complexities of concurrent accesses to cache
memory. The management problem here includes handling partial block stores, as will occur when
a cache block finishes executing before another has been completely stored through the second poit.

The identical I-cache speedups measured for Fy and for F, on the bitonic sorting problem
show that there is no advantage from Fj in that case. The reason is that the iteration counts of
the inner loop in bitonic depend on the value of the outer loop index. One way to overcome this
limitation is to make it possible to use the system controller’s index register subsystem to evaluate
loop-index-dependent expressions to use in specifying iteration counts in F; cache block activations.

The low I-cache speedups shown for F on the rowcol sorting problem arise from the inflexibility
of iteration in F;. The number of iterations of the inner loop in rowcol depends on the initial
permutation of the data to be sorted, and this number of iterations differs each time around the
outer loop. The iteration count for an F, cache block is specified when the block is activated. If a
local counterpart of the response network were incorporated in the PE chip, then the local controller
could be made to sense the completion condition for its chip’s complement of PEs.

The possibility of the local controller sensing “global” data-dependent conditions among its group
of PEs is one example of how conditional-control-flow programs would exploit I-cache. Execution in
this case resembles pseudo-MIMD computation [10], wherein each PE chip operates independently
as a SIMD computer in its own right during parts of a computation.

If the sequencing performed by the cache controller is able to depend on PE data conditions, then
it becomes possible to incorporate data caching in SIMD computers. With D-cache, the time for a
PE’s local external memory access varies according to that PE’s addressing pattern. If the cache
controller is able to detect cache hits, it may sequence cache blocks appropriately for its complement
of PEs. Inter-PE communication requires re-synchronization of the PE chips, which limits the benefit
of D-caching. A characterization of the benefits of D-cache and the circumstances under which those
benefits are realized might be valuable.

7.1.4 Evaluation Mechanism

Figure 5.1 illustrates the method used to evaluate I-cache speedup for sample problems. The trans-
lation step from assembly language programs to machine code programs uses timing information
about operations to schedule machine code instructions. The scheduling algorithm attempts to over-
lap the execution of mutually flow-independent MCS and FU instructions where possible through
reordering the instructions. As is apparent in Figures 6.3 through 6.10 showing the effects of limited
cache size on speedup, the scheduler’s attempt at optimization interacts in surprising ways with the
cache size. Basic blocks reordering takes place prior to the assignment of instructions to instruction
memory locations. When an instruction sequence turns out not to fit in cache memory, the reordering

146 CHAPTER 7. CONCLUSION

is undone in a conservative manner. The effect of the scheduler’s simple algorithm for handling
limited cache size shows up as the occasional non-monotonicity of I-cache speedup versus cache size
apparent in Figures 6.3 through 6.10.

There is also room for improvement in the clocking assumptions. Each subsystem in the sim-
ulation model is regulated by a clock with a (potentially) unique rate. ‘The multi-clock generator
generates these multiple clocks at the requisite rates, subject to the following restrictions:

1. The PE clock, regulating the PEs and the local controller, is the fastest clock in the computer.
2. The system clock is the slowest clock in the computer.

3. All clocks are free-running.

4. All clocks are phase-locked to the system clock.

All clock rates are integer multiples of the system clock rate.

'CJI

6. All clock rates are integer sub-multiples of the PE clock rate.

Each subsystem clock’s interval can be no less than the duration of the subsystem’s longest
operation step. However, the restrictions listed above force the rate of a clock to be lower than
necessary in some cases. Relaxing the arbitrary restrictions would allow a more complete exploration
of I-cache speedup sen: itivities to p-set values.

The restriction that the clocks are free-running appears to be an unfortunate design mistake on
my part. For example, if the clocks were instead re-startable on an arbitrary cyc.c of the PE clock,
then an otherwise-idle MCS could begin an operation on the earliest possible PE instruction. A
free-running MCS clock inwroduces unnecessary delays in starting some MCS operations, because
the instruction specifying the operation’s commencement cannot be applied until the MCS clock and
the PE clock are in-phase. The two clocks are in-phase only once every MCS clock cycle.

It would be interesting to extend the timing model to include asynchronous implementations
of components. In principle, an asynchronous system need never operate at lower than the inher-
ent maximum rate, subject to flow-dependencies. The impact of asynchrony would be particularly
profound where operation step durations for a given subsystem vary widely.

7.2 How Important is SIMD Instruction Cache, Really?

For real problems and for realistic assumptions regarding the electrical properties of a high-PE-count
SIMD computer, I-cache yields speedups of 30% to more than 700% over generic SIMD computation.
From the high-level language programmer’s point of view, the effect of I-cache is similar to that of
increasing chip clock rates by many times, with concomitant speedups up to limits imposed by the
requirements for inter-chip communication inherent in a given program.

As VLSI implementation technique continues to improve, the time to drive a lumped capacitance
from the gate of a minimum inverter across a chip increases. It becomes less reasonable to view
a chip as a single fast circuit domain and more reasonable to view a chip itself as a collection of
fast circuit domains among which communication is slow or expensive. At some point in this scaling
path, the time required to distribute instructions locally within the ever-larger PE chip itself becomes
throughput-limiting. At that point, a single local controller in the PE chip can no longer provide
instructions to the PEs at the maximum rate of PE operation. To counter this limitation, it will
eventually become advantageous to re-apply I-caching within the PE chip itself, replicating enough
local control within the chip to keep the PEs supplied with instructions at the maximum attainable
operation rate.

7.3. FINAL COMMENTS 147

The speedups possible from I-cache are limited to constant factors of perhaps 2 to 7 or so, far less
than the asymptotic improvements available for some problems using parallelism. At first glance, I-
cache appears to facilitate flexible encodings that increase the amount of control information provided
to the PEs through an inherently slow channel. Another way to think of I-cache is as a means to
exploit the throughput benefits of using large numbers of parts in parallel, while retaining the
operation-rate advantages inherent in keeping the parts themselves small.

The sample problems were chosen for their expected dissimilarity. For example, sorting and
tree-reduction are commonly thought to be inter-PE communication-bound, and thus might not be
expected to yield much I-cache speedup, unlike matrix multiply, which is known to be calculation-
intensive. For all of the sample problems, the benefits of I-cache more than compensate for the
chip-area cost of enhancement. The consistency of the results across the range of problems points
strongly to the conclusion that throughput is significantly higher in I-cached SIMD computers than
in their generic counterparts, even for problems commonly thought to be subsystem-bound. The
I-cache speedups for complete, practical applications could possibly be greater or less than those
characterized here, depending on specific communication and calculation requirements relative to
the FU and MCS characteristics ¢f the underlying SIMD computer. Aside from characteristically
simple loop structures, the sample programs are not extraordinary in their operation mixes.

The measured results reflect the assumption in the simulation model that there is no local
control in the PE chip for the FU, although there is local control in the PE chip for the MCSs. A
PE chip might contain local control for the FU, thus shortening instruction sequences and lessening
the apparent I-cache speedup. Alternatively, a PE chip might contain no local control for MCSs,
thus lengthening instruction sequences and increasing the payoff from I-cache. In any case, the
measurements presented for SIMD-D, whose PEs perform 32-bit multiply in one clock cycle, are not
affected by the lengthening of FU instruction sequences arising from the assumptions regarding local
control.

Clearly, the coverage of this work is not exhaustive, and there exist many further avenues of
research that follow from it. The results presented here have consequences for the analysis of
problems solved by SIMD computers, and for languages and compilers used in describing those
solutions. The measurement method provides a means for studying in detail with respect to specific
problems the interactions among system controller, PE, MCS, and I-cache designs. These research
avenues become compelling in light of the high stakes for providing instructions to PEs at the highest
rates.

7.3 Final Comments

The analysis has been performed for VLSI-based computers. However, the reader may see that these
results should apply with equal validity given any computer implementation technology wherein
information is represented as energy that is spatially distributed in three dimensions. The simple
underlying principle exploited in I-cached SIMD computer architecture is, “the more energy to be
re-distributed per computation step, the larger the radius over which it is re-distributed, the slower
or more expensive the computation.” I-cache makes it possible to control large numbers of PEs that
are packed as densely as possible within chips without having to re-broadcast repeated sequences of
instructions through a relatively slow channel.

I-cache speedup is bounded above by p1,. pp, may not be much higher than 8 in a practical computer.
This number is far less than the largest number of useful PEs in a multiprocessor. Therefore, the
possible gain from adding I-cache to SIMD computers is not nearly so compelling as the possible
gain from parallelism itself This point is underscored by the observation that I-cached SIMD
computers are generally useful only for data-parallel problems, a subset of the set of problems for
which parallelism is advantageous.

148 CHAPTER 7. CONCLUSION

In a generic SIMD PE chip, K times more chip area is allocated to FU, context manager, and
data registers than in its same-technology MIMD counterpart. And yet, a generic SIMD computer’s
PEs operate at a rate py, times lower than that of the corresponding MIMD computer. For a scalable
data-parallel computation, the following relationship obtains, given a limited implementation budget
with respect to total chip area:

generic SIMD computer throughput < % +* MIMD computer throughput (7.1)

The “jury has been out” with respect to the relative merits of SIMD computers, and in fact it
has recently been trickling in with a negative verdict. The reason might be that when K = py,
generic SIMD computer throughput is roughly equivalent to that of the MIMD counterpart, and
SIMD computers are inherently more difficult to program. The main reason that SIMD computers
have been attractive to some manufacturers would be that it is possible to produce a given-PE-count
SIMD computer using much lower total chip area than for a MIMD counterpart.

I-cache overcomes the instruction delivery limitation that contributes the factor-of-pp, denominator
in Equation 7.1. Ifthe PE chip is allowed to expand slightly to accommodate I-cache sufficiently large
to obtain a speedup of nearly gy, for a given computation, then the following relationship obtains:

I-cached SIMD computer throughput < K * MIMD computer throughput (7.2)

This comparison on the basis of throughput and chip area notably neglects factors such as market
size that impact monetary cost of chip design and fabrication. Even if I-cached SIMD computers
exhibit the highest throughput-to-area ratios, they are not necessarily preferable, even for scalable
data-parallel problems. The SIMD PE chip is a low-volume part, whereas MIMD computers are often
made using PEs that are microprocessors fabricated in medium-to-high volumes. Economies of scale
lead to a unit cost for the SIMD PE chip which is a factor of L times higher than that of the MIMD
PE chip. Under the simple assumption that computer cost scales linearly with L, the throughput per
cost ratio of the SIMD computer is no more than % that of the MIMD computer. If L is as large as
or larger than K, then SIMD computer architecture can be justified only for applications for which
making the best use of total chip area is paramount. It is for these area-critical applications that
I-cached SIMD computer architecture is a compelling choice.

Appendix A

The Basis Computer

Rather than having been evaluated for a single specific SIMD computer, I-cache variants have been
evaluated for a range of SIMD computers. A parameterized SIMD computer was designed and used
as a basis for the evaluations. This appendix describes the machine code programming of the basis
computer and highlights the “machine-dependent” aspects of its design that affect I-cache evaluation.

Given the large number and variety of SIMD computers that have been published since the
Solomon computer was described in 1962 [74], such generality would seem intractable. Fortunately,
the task is simplified by the observation that only a relatively small number of VLSI-based SIMD
computers have been reported to date, including Vastor [87], CAAPP [81, 82], SLAP [26), Blitzen [37],
and MP-1 [33, 8]. In a VLSI-based SIMD computer, the PE is an integrated circuit capable of
performing calculations within the confines of a PE chip. This definition of a VLSI-based SIMD
computer requires that the PE’s FU component be packaged in a chip along with some amount of
register memory. This restriction rules out candidates such as CM-2, whose bit-serial PEs require 3
off-chip memory references to perform a single full adder step [18].

The simulated computer’s generality causes some of the details to be more intricate than would
be required in an actual design. The generalization is less than perfect, and the design reflects some
assumptions about specific subsystems. While the details of actual and foreseeable SIMD computers
vary over a large space, the design of the basis computer provides a general understanding of the
mechanisms that are involved in I-cache.

Al PE

The PE contains an FU, register memory, a context manager, and interfaces to the MCSs. The
PE components are inter-connected by busses. An actual PE might depart from this basic design,
for example by having multiple specialized function units or by having point-to-point internal inter-
connections rather than busses. The machine-code language programmer’s view of the PE is sketched
in Figure A.1, showing the busses inter-connecting the register file, the FU, and the MCS interface
registers.

An important characteristic of the generic computer used in the experiments is that local control
is not provided in the PE chip for the FU, whereas local control is provided for the MCSs. This aspect
of the design of an ostensibly generic computer is justified by the observation that the local control of
an MCS is potentially simple, whereas the local control of the FU is potentially complex. For example,
compare the local external memory subsystem local control illustrated in Figure A.2 against one that
generates the sequence of control signals for multiplying 32-bit floating-point numbers on a 4-bit
PE. This assertion regarding PE chip local control appears liberal from the point of view of the
goals of the experiment, because it causes FU calculations to appear instruction delivery-rate bound.
However, recall that the SIMD idea is to remove as much redundant local control from the PE chip

149

150 APPENDIX A. THE BASIS COMPUTER

PE
busses
- S S
HE P P : Broadcast
. iLocal P iinter~ : ilopuv . P ilieral :
Register |__[Comtext |, | Eqomal | NPE | Ouput Response ! LS
File Manager FU Memory %m su:system Eswsyslemé ale

Figure A.1: PE Architectural Components. Dotted lines indicate MCSs to which the PE is connected
through interface registers.

as practicable. In the sense that redundant local control is provided in the PE chip so that the MCSs
tend not to be instruction delivery-rate limited, this assertion is actually conservative.

A.2 Local External Memory Subsystem

The PEs within a PE chip share a single access port tolocal external memory. While this assumption
is reasonable for wide-word PEs and for PEs that provide their own addresses to memory, it does not
accurately model local external memory access in SIMD computers whose PEs cannot provide their
own addresses to memory. (Use of a single memory address for all PEs, as in CM-2 [22], reduces
the PE chip pin cost of local external memory.) The assumption that the PEs generate local external
memory addresses restricts the applicability of the resulting measurements to systems whose PEs
have that capability.

Figure A.2 shows how the local external memory subsystem is organized. The small control
circuit inside the PE chip illustrates the potential simplicity of MCS control.

A.3 System Controller

The primary components of the system controller are a microcoded sequencer and a mechanism for
evaluating loop-index-dependent expressions. The system controller is intended to provide the basic
required control functions required using a small set of single-cycle operations. An actual system
controller may be optimized for specific computations being performed, as for example is the case in
SLAP [28]. The potentially crucial topic of SIMD system controller design is beyond the scope of the
thesis.

The system controller is shown in Figure A.3. The system controller is partitioned into subsystems
that perform the functions enumerated in the following list:

1. Generate the system clock (system clock generator),
2. Store the program controlling the computation (instruction memory),

3. Sequence the control program (sequencer),

151

A.3. SYSTEM CONTROLLER

0 -
WIOTWA
A.....Z..—Z.
1]
i
i
1o
ANDTRI ORI
P R | 1
vivais vivaas
—tm
Y PR l&l
AVHHY
AMOvan
vmiaLxa
W01
? th!f]
oy S— wa ana
b _
Hsogy N OOV W
|
[]
o oy oy
vy wo [] 0 [L]
yoy oy . -
(-33dw (130w 034w UAR0 Ao

NILSASHNS AVONIN TYNYILXI IO
20 ININOINOD dIHO 3d

NORN ITIPRON UKL 970) Wi

Figure A.2: Local External Memory Subsystem

152 APPENDIX A. THE BASIS COMPUTER

Stager

: lmm
To Global instruction Broadcast Network

Figure A.3: System Controller

4. Evaluate loop-index-dependent expressions and inject the calculated values into PE chip ma-
chine code instructions as required (indexer),

5. Gather components from successive machine code instructions to form a broadcast instruction
that controls a single cycle of PE activity (stager).

A.4 Machine Code Programming Language

A machine code program for the basis computer is a table of instructions. Each row of the table has an
index (increasing from 0) and contains a machine code instruction. Figure C.4 contains an example
of a machine code program. The machine code instruction fields are shown in Figure A.4. Each field
of a2 machine code instruction takes a numeric value, or equivalently the mnemonic representation
of a numeric value. A field whose value is not specified takes a standard “null” value. As indicated
in Figure A.4, each machine code instruction has two parts: a system controller part and a PE part.

System Controller Instruction (proto-) PE Instruction
SC_Operation | fl [f2| f3 || C | Dest | Operation | SrcA [SrcB [Literal Base_Value

Figure A.4: machine code Instruction Word Components

A.4. MACHINE CODE PROGRAMMING LANGUAGE 153

A.4.1 System Controller Instructions

There are two classes of system controller instruction, as selected by the SC_Operation field: sequencer
instructions and indexer instructions. These two types of instructions differ as follows:

¢ Sequencer instructions resemble those of a typical microprogram controller (such as, for exam-
ple, the 49C410 [45]). Sequencer instructions may specify conditional branches or subroutine
calls and returns. The standard “null” sequencer instruction specifies that the next instruction
is the one following the present instruction in linear sequence in the program. An indexer
instruction implies the standard “null” sequencer instruction.

¢ Indexer instructions provide for initializing, copying, and incrementing members of a set of
index registers. A value produced by an indexer instruction is added to the PE instruction’s
Literal_Base_Vaiue to form a literal for broadcast to the PEs. The standard “null” indexer in-
struction does not alter any index registers and produces the value 0. A sequencer instruction
implies the standard “null” indexer instruction.

The system controller part of the stored machine code instruction specifies an operation of either
the sequencer or the indexer. These operations are horizontally microcoded. The encodings of the
four fields of the system controller part of the stored instruction are shown in Figure A.5. When the
SC_Operation field specifies an indexer operation, the implied sequencer operation is CONT; when
the SC_Operation field specifies a sequencer operation, no indexer operation is performed.

| { SC_Operation | 1 | 2 | f3]
Sequencer CJSR Condition Select | Branch Target | Initial Iteration Count
Operation LTST Condition Select | Branch Target
CBR Condition Select | Branch Target
CONT
HALT
Indexer LDX Write Address Index Literal
Operation SPX Write Address Index Literal
CPX Write Address | Read Address

Figure A.5: System Controller Instruction Word Components

There are a small number of sequencer operations, any one of which can be specified in the
SC_Operation field of the system controller instruction word shown in Figure A.5. The mnemonics for
the sequencer operations are given as follows, along with a description of how each operation affects
program control flow:

1. CJSR (Conditional Jump to SubRoutine). If the condition selected in field f1 is true, then push
(PC)+ 1 onto the PC stack, write the branch target address from field 12 into PC, push (1C) onto
the IC stack, and write the initial iteration count value from field 3 into IC. If the condition
selected in field #1 is false, then write (PC)+ 1 into PC.

2. LTST (Loop TeST). If the condition selected in field 11 is true, then write the top of the PC stack
into PC, pop the PC stack, write the top of the IC stack into IC, and pop the IC stack. If the
condition selected in field f1 is false, then decrement IC and write the branch target from field
f2 into PC.

3. CBR (Conditional BRanch). If the condition selected in field f1 is true, store the branch target
from field 12 into PC. If the condition selected in field {1 is false, store (PC)+ 1 into PC.

154 APPENDIX A. THE BASIS COMPUTER

4. CONT (CONTinue). Store (PC)+ 1 into PC.
5. HALT. Terminate the computation.

If the system controller operation specified in the SC_Operation field is not among those listed
above, the sequencer operation is taken implicitly to be CONT.

For sequencer operations, system controller instruction word field t1 controls the condition selector
ccmux. The mnemonic values for this field are as follows, along with their interpretations:

o RSPO. Select input 0, the RESPONSE ==0 condition.
o FORC. Select input 1, always true.
¢ ICTO. Select input 2, the IC ==0 condition.

Of the four fields in the system controller instruction word shown in Figure A.5, only the first
three control indexer operations. There are only three system controller index register subsystem
operations that can be selected in the SC_Operation field. The mnemonics for these operations are
given as follows, along with descriptions of how they work:

1. LDX (LoaD indeX register). Write the value contained in field f2 into the index register
addressed in field 1.

2. SPX (SteP indeX register). Increment the index register addressed in field 1 by the value in
field f2.

3. CPX (CoPy indeX register). Copy the contents of the index register addressed in field 2 into
the index register addressed in field f1.

Any other value of the SC_Operation field leaves all index register file locations unaltered.

A.4.2 PE Machine Code Instruction

The PE has a register-to-register instruction set with explicit operations used to access off-PE-chip
data via the MCSs. Each PE instruction specifies an operation, the register addresses of two sources
and of a result destination, a context operation, and a literal base value. The standard “null”
operation is NO.OP, the standard “null” register address is NO.LOC, and the standard “null” context
operation is NO.CO. In other words, a machine code instruction in which every field has the standard
“null” value is a null instruction that leaves the PE state unchanged.

The PE machine code instruction has the following general form:

Dest = Operation (SxrcA, SrcB)

The sources and destination of a PE machine code instruction are PE registers, so the machine
code instruction specifies a register-to-register operation. The PE machine code instruction includes
the fields specified in Figure A.6.

The set of PE operations is large, including the ordinary two-operand arithmetic and logical
operations as well as operations using the MCSs. Following standard uniprocessor design prac-
tice, instruction execution is pipelined. The PE executes instructions in the three-stage pipeline
illustrated in Figure A.7.

In a pipelined PE, some instructions begun on successive PE clock cycles exhibit pipeline haz-
ards. A pipeline hazard arises, for example, when a second instruction is flow-dependent on the
immediately preceding instruction. (Such a pipeline hazard is called a destination-source pipeline

A.4. MACHINE CODE PROGRAMMING LANGUAGE 155

C | Dest Operation SrcA | SrcB | Literal Base_Value
Op_Code | Op_Cycle | new_op

Figure A.6: PE Machine Code Instruction Word Components

B0 ceve—

instruction
| READ OPERATE { WRITE
1 READ OPERATE | WRITE
2 READ OPERATE | WRITE
W3 READ OPERATE | WRITE

Figure A.7: PE Execution Pipeline

conflict [34]). Some pipeline hazards necessitate the second instruction being delayed, so as to allow
time for its operand to be produced by the first instruction. Failure to do so yields an incorrect result.
In the basis computer, the PE contains no pipeline interlocks, so machine code programs containing
pipeline hazards are not allowed.

An MCS operation which requires more than one subsystem clock cycle to be performed may be
phase-split: An initiating instruction starts the operation, and a terminating instruction completes
the operation. The initiating instruction specifies the operands and the operation itself, while the
terminating instruction specifies the destination into which to write the result.

Phase-splitting in machine code programs expresses the overlap of high-latency MCS operation
with operations on other MCSs or on the FU. For machine code programs describing generic SIMD
computations, the number of instructions intervening between the pair specifying a phase-split MCS
operation is exactly 2 less than the number of clock cycles required for the operation. Instructions
intervening between the pair may specify FU operations or operations on MCSs other than the one
in use by the pair An operation specified in one of these intervening instructions overlaps with
the outstanding operation. Where overlap cannot occur, for example because no flow-independent
instruction is available, the time between the initiating and terminating instructions is spent waiting
for the long-duration MCS operation to complete.

Some MCS operations return no value to the PE. These operations include local external memory
store, system data memory store, and response. These operations are phase-split using only a single
initiating instruction. Although no instructions after the initiating instruction are needed to perform
the operation, no subsequent instruction may specify another operation on the busy MCS until the
current operation completes.

The only operation using the instruction broadcast subsystem itself is the LITERAL operation that
delivers an indexer-calculated value to the PEs. This operation takes no source operands. Because
literals are delivered via the global instruction broadcast network, they are always instruction
delivery-rate limited. Therefore even if its latency is high, a LITERAL operation cannot be phase-split.

The fields of the PE instruction shown in Figure A.6 are interpreted as follows:

¢ C (Context). This field specifies a context operation from the following set (creation of a new
context uses an operation specified in the Operation field):

-~ NO_CO No context operation.

156 APPENDIX A. THE BASIS COMPUTER

-~ FRC Force modification of this instruction’s Dest irrespective of the current context.
- POP Revert to the previous context.

-~ INV Invert the sense of the current context.

- CLR Reset context to its power-up state.

¢ Dest (Destination). This field specifies the PE location to be written with the result of the
instruction’s operation via busC, if permitted by the current context. Possible destinations are
among the following:

- NO_LOC. Nowhere.

- REG.:. Location i in the register file.

- PTR (Pointer). The register file’s POINTER register.

-~ IND (Indirect). The register whose address is contained in POINTER.

¢ SrcA and SrcB (Source). These fields specify the locations providing operands via busA and
busB, respectively. Possible sources are as follows:

- NO_LOC. No operand is required on this bus for this instruction.
- REG.:. The operand is read from location : in the register file.

- PTR (Pointer). The operand is read directly from POINTER, the index register available
for addressing the register file.

- IND (Indirect). The operand is read from the register whose address is contained in
POINTER.

- LIT (Short literal). The operand is supplied as a literal contained in this instruction field.
(For implementation economy, only SrcA can be used for short literals.)

- FU_OUT The operand is supplied from the FU output register.

~ LIT_OUT The operand is supplied from the LIT_OUT register, containing the most recently
received broadcast literal value.

- LEM_OUT The operand is supplied from the local external memory circuit output register.

-~ COM.OUT The operand is supplied from the inter-PE communication circuit output reg-
ister.

- I0_OUT The operand is supplied from the system data memory circuit output register.

o Lit_Value. This field carries a constant to be stored or operated upon within the PE.

o Operation. This field specifies activity in the FU or in one of the MCSs. This field designates
a unit to perform an operation and controls the latching of that unit’s input registers. There
are three sub-fields of the Operation field:

- Op_Code This sub-field names the operation to be performed, and by implication the unit
(FU or MCS) that performs it. When an operation completes, the result remains in the
unit’s output register until a subsequent operation is performed on that unit.

A list of possible operation codes follows, grouped according to the unit that performs the
operation:

» FU: PASS, NOT, AND, OR, NAND, NOR, XOR, ADD, SUB, MULT, DIV, MOD, LSHIFT, and RSHIFT.

A.5. PE CHIP LOCAL CONTROLLER 157

+ FU and context manager: LC_PUSH.LT, LC_PUSHLE, LC_PUSH_EQ, LC_PUSHNE, LC_PUSH.GE, and
LC PUSHGT. The FU subtracts the two operands, and the context manager generates a
new context on the basis of the condition codes set by the subtraction.

+ Local external memory subsystem: LOAD, LOAD.TX, LOAD_ARX, and STORE.
* Inter-PE communication subsystem:
- Linear array: LDNO, LDNO.TX, LDNORX, LUPO, LUPO.TX, and LUPO.RX,

- Square mesh: SDNO, SDNO.TX, SDNO_RX, SUPO, SUP0_TX, SUPO_RX, SON1, SDN1_TX, SDN1_RX, SUP1,
SUP1_TX, and SUP1_RX,

- Cubic mesh: CDNO, CDNO.TX, CDNO_RX, CUPO, CUPO.TX, CUPO_RX, CDN1, CDN1.TX, CDN1.RX, CUP1,
CUP1.TX, CUP1.RX, CDN2, CDN2.TX, CON2.RX, CUP2, CUP2.TX, and CUP2 RX,
- Router-based network: ROUTE, ROUTE.TX, and ROUTE RX
» System data memory subsystem: O.LD, J0_LD_TX, IO.LDRX, I0.ST
» Response subsystem: RESPOND
+ Literal: UTERAL
- Op_Cycle This field tracks the step index in a multi-step FU operation. Given a value $ -1
on the first step of an S-step sequence, this field is decremented by one on each successive

instruction. The steps intervening between the first and the last are place holders for the
specific operations that would be performed on an actual PE.

- new_op This one-bit field indicates whether the input registers of the unit designated by
the Op_Code should latch the operands. This field is un-asserted for all but the first step of
a multi-cycle FU operation sequence.

A.5 PE Chip Local Controller

Adding I-cache to a SIMD computer really means changing the local controller design. The local
controller in the PE chip of a generic SIMD computer, shown in Figure A.8, is very simple.

From Global Instruction Broadcast Network

SYS_CLK

PE_CLK

Standardizer

: pe_kontrol

0, i¢

vV Vv mlo olvlo (zi2 Elrklolole leie
gz BRI)2 ggg_gi g8
£° £P zEils

HUE

To Local Instruction Broadcast Network
Figure A.8: Local Controller for Generic SIMD Computer

The local controller of a generic SIMD computer standardizes the system clock and latches broad-
cast instructions for use within the PE chip.

Adding I-cache to the PE chip involves a multi-clock generator and a cache controller. The multi-
clock generator provides all clocks needed in the PE chip, including the PE clock. The PE clock rate
exceeds the system clock rate, so there are multiple cycles of the PE clock per cycle of the system
clock. In addition to controlling cache memory, the cache controller provides a new instruction for

158 APPENDIX A. THE BASIS COMPUTER

From Giobal Instruction Broadcast Network

Stmbio $VB_CL) ;SYs_cLx
Instructi .
ion
Cache Generator
Latch Memary — :
latest_broadcast_instruction : P
atest_| _i Amay ¢ 9,
v v : i : :
Cache P
Cont PE_CLK LEM_CLK COM_CLK IO_CLK RSP_CLK
rey) R
\TA
imux »
pe_kontrol
mlo oo gl FE
.;';;5?,5 s B r: x; ! }
= ..g- 5 lem_kontrol com_kontrol lo_kontrol rsp_kontrol
e o -4 seed] ool
Locally Broadcast to intra-module PE Components l l ‘ l
ToLocalEnemal To inter-PE To System Data To Response
: Momotysmsyslm Comm St.bsyslem Memofysmsystem Subsysiem
LEMCLKO coucu<¢ lo_cu<¢ nspcu<¢

Figure A.9: Local Controller with I-Cache

local broadcast within the PE chip on each cycle of the PE clock. A local controller with I-cache is
shown in Figure A.9.

A consequence of the variety of time bases within the PE chip is that correspondingly clocked
control words need to be provided to each of the separately clocked subsystems. Figure A.9 shows a
separate control latch (_kontrol) for each subsystem. Note however that providing the PEs and each
of the MCSs a unique clock is a change only in the routing of clock signals to those subsystems, rather
than a change in the logic of the clocked elements themselves.

The model allows that each MCS may have its own clock rate. It is possible, however, that subsets
of the MCS clocks are unified. For example, where the I/O subsystem and the response subsystem
both operate at the global instruction broadcast rate, both those MCSs are regulated by the system
clock, just as they are in the generic SIMD computer. Another possibility is that local external
memory and inter-PE communication operate at the same rate as the PE’s intra-chip components,
in which case these MCSs are regulated by the PE clock. The presentation here assumes the most
general case, where each subsystem’s clock rate is unique.

The PE clock, PE_CLK, is the fastest clock in the PE chip and in the computer. PE_CLK regulates the
components that are integrated entirely within the PE chip, including the local controller, the local
instruction broadcast network, and the PEs. This assertion about PE_CLK reflects an assumption
that the PE chip is an equipotential region (as defined in [69]) within which signaling delays are
negligible.

There are 5 clocks other than PE_CLK in the computer:

¢ SYS_CLK, the clock regulating the global instruction broadcast network and, for simplicity, the
system controller. PE_CLK runs py, times faster than SYS_CLK.

¢ LEM CLK, the clock regulating the local external memory subsystem. PE_CLK runs p; times
faster than LEM CLK.

A.6. CHANGED GLOBALLY BROADCAST INSTRUCTION FORMAT 159

¢ COM.CLK, the clock regulating the inter-PE communication subsystem. ¥.:_CLK runs p. times
faster than COM_CLK.

¢ IO.CLK, the clock regulating the system data memory subsystem. PE.CLK runs p; times faster
than T0_CLK.

e RSP_CLK, the clock regulating the response subsystem. PE.CLK runs p, times faster than
RSP_CLK.

One way to generate high-rate PE clocks is to use phase-locked loop (PLL) techniques, such as
those described in (88]. PLLs for generating high-rate on-chip clocks are increasingly frequently
used in microprocessors due to the increasing disparity between typical intra-chip and inter-chip
signaling rates [5, 88].

The multi-clock generator used in the basis computer outputs a set of clocks that are free-running
and in-phase with SYS_CLK. The p value associated with each subsystem expresses the factor by
which PE_CLK is faster than that subsystem’s clock. Section 3.9 introduces a p-set that characterizes
a SIMD computer’s relative rates of MCS operation. The design of the multi-clock generator imposes
the following constraints on the p-sets that characterize the SIMD computers for which I-cache is
evaluated:

1. Each p-set value is a positive integer > 1, and
2. pp is an integer multiple of every p-set value.

These constraints mean that each MCS clock rate is an integer sub-multiple of the PE clock rate
and that each MCS clock rate is an integer multiple of the system clock rate. While simplifying
the systematic variation of the p-sets in evaluating I-cache variants, these constraints unfortunately
also quantize the space of possible p-sets. An example of this quantization is that if the PE clock
rate is A times higher than the top operation rate of the inter-PE communication subsystem (p.=A),
while the PE clock rate is B times higher than the top operation rate of the system data memory I'O
subsystem (p;=B), and A and B happen to be mutually prime, then the PE clock rate must be some
multiple of A + B times faster than global instruction broadcast (pp=nAB for some n). In other words,
the p values should be independent variables, but they are made inter-dependent by the multi-clock
generator design.

A.6 Changed Globally Broadcast Instruction Format

The multi-clock generator provides a time base inside the PE chip that is higher than the time base of
the global instruction broadcast subsystem that ultimately controls the PE chip. So that the globally
broadcast instructions may specify activity within the PE chip at the higher temporal resolution, a
new field is added to the broadcast instruction. This field, called delayed_instruction_delay_count (or
dide for short), specifies a number. didc is the number of PE clock cycles for which the local controller is
to wait before applying the destination write-control information conveyed in a broadcast instruction.
The didc field is necessary because it is possible, depending on operation stepcounts and the p-set,
for an MCS operation to conclude on an arbitrary cycle of the fast PE chip clock. The didc field
essentially provides the index of this cycle, such that a result returned by an MCS operation is stored
in the PE’s register memory on the cycle it becomes available. Note that the addition of the didc field
to the global broadcast instruction word does not affect the instruction broadcast locally within the
PE chip, nor does it affect the PE itself

Note that the dide field is needed because PE.CLK is faster than SYS_CLK, not because of I-cache
itself. However, the cache controller, which sequences instructions to the PEs, also interprets the
new didc field appropriately.

160 APPENDIX A. THE BASIS COMPUTER

A.7 Two I-Cache Variants: Fy and F;

The F-family of single-port caches is introduced in Section 4.2. An Fy I-cache is the simplest family
member, able to store only a single cache block at a time, and able to execute only single iterations of
the stored cache block. F is a slightly more powerful I-cache variant, still able to store only a single
cache block at a time, but able to execute multiple iterations of the block without assistance from
globally broadcast instructions.

The Foy and F; cache-control protocols are almost identical, each including the following four
cache-control instructions:

e CCNOOP. No cache control operation.

e CCBSTO (Begin STOring). The globally broadcast instruction following this one is the h.st in a
cache block about to be stored. That next broadcast instruction will be ; .aced at ad”ress 0 in
cache memory, with subsequent broadcast instructions stored to subsequent locations in cache
memory.

e CCESTO(End STOring). The present globz_ly broadcast instruction is the last in the cache block
currently being stored. The instruction specifying CC_ESTO serves as a sentinel delimiting the
end of a cache block, and is itself placed in the cache.

o CC.FORK. Activate the previously stored cache block.

An Fs I-cache is identical to an Fy I-cache, except that an Fy I-cache’s CC_FORK instruction also
specifies the number of times that the routine is to be iterated. The cache-control instruction
associated with any globally broadcast instruction not in the above list is interpreted as CC.NOOP.

The cache controller generates the control signals necessary for accessing the cache memo. , and
selects locally broadcast instructions through imux. On each PE_CIK cycle, the cache controller is in
one of six states. The intended meanings of these cache control states are described below:

¢ LOCK No cache block is active, and globally broadcast instructions are being executed. The
cache controller supplies pp, — 1 “null” instructions after every globally broadcast instruction
received while in the LOCK state. In this state, instructions are delivered to the PEs at the
same rate as in a generic SIMD computer, although the presence of fast subsystem clocks allows
some subsystems to run faster than in the generic SIMD computer.

¢ BSTO The next broadcast instruction will be the first of the cache block to be stored in cache
memory.

¢ STOR Globally broadcast instructions are being stored in consecutive cache memory locations.
The cache controller supplies pp, “null” instructions on every PE clock cycle while in the STOR
state. No useful instructions are executed by the PEs in this state.

¢ ESTO The sentinel CC_ESTOinstruction has been received, indicating that the entire cache block
has been stored in cache memory.

¢ EXEC A cache block is active. The cache controller supplies an instruction from cache memory
on every cycle of PE_CLK in this state. Up to p}, instructions are executed by the PEs during
every cycle of SYS_CLK while in the EXEC state.

o JOIN Execution of a cache block has completed, but the subsequent global broadcast instruction
has not yet arrived at the PE chip. The cache controller supplies “null” instructions while in
the JOIN state. Cycles spent in the JOIN state are those wasted due to quantization; at most
pp — 1 cycles are spent in the JOIN state per cache block activation.

A.7. TWO I-CACHE VARIANTS: F; AND F,

i de ¥
%= geiest)
Op == CC_ = P
index !=0 ggex !S g—NOO !

Op == CC_BSTO index == /\

&& index—=="1 \

index == 0 && ;
index != 0 Op == CC_BSTO /
|n=0&& o ==CC O
Op I=CE.BSTO &4 ndex= 0
Op == CC_BSTO
&& index =£ 0

Op == O C_NOOP

&& index =0
DONE &%
Op == C C_BSTO
&& infex ==

DONE && index =0
JOIN
IDONE ||
g) Ecsé& FORK
Op == CC_FORK&Z index == 3€ index == 0)

index 1= 0

161

Figure A.10: Fo State Transition Diagram. F; state transitions are slightly more complicated,
because the iteration counter value is used in determining completion of a cache block’s execution.

The power-up state is LOCK.
The diagram in Figure A.10 shows the allowed state transitions of the Fy cache controller.
The labels on the arcs in Figure A.10 refer to the following values:

¢ Opis the cache operation contained in the current instruction’s Operation field Op_Code subfield.

o index is the current phase of PE.CLK with respect to SYS_CLK, which is the value in the

PE.CLK Index register.

o DONE is a Boolean value indicating completion of the execution of a cached instruction sequence.

Figure A.10 shows that cache controller state changes usually occur when index ==

Timing delays are represented as sequences of “null” instructions. These sequences can be
expensive both in terms of time to place them in cache as well as in terms of the space they occupy
in cache. Sequences of “null” instructions are compactly encoded using a single instruction that
causes the cache controller’s program counter CPC to stall for a number of cycles equal to the
number of encoded “null” instructions. In principle, these sequences representing timing delays are

unrecessary, although some equivalent means of representing delays is needed in any case.

si0isibel jonuoy” 0f

APPENDIX A. THE BASIS COMPUTER

L 7\
g Bo
onpd | yA
94607 21607
{vawsedo) tvag) ISVHJ Kejep
0pp peolp
o a1 yorey o yoney
o) uogoNAsu) uononAsul
MO [08u0) 21607 -9 peAeiep elepeww)
poeyo wend , Tivis -0, T)
3INOod oy 101384%0
uonBWwIoju!
230 0w [0AUCI-B}IM
TS 030 avol
Awjep uopionsisuj pefsiep) T |
o pedem)
91607
d0
ond] | uod
E)
aboq
Py~ odd LEL {vommdo}
ool low
280 avo
-E11
‘Rioweny Z)
Ut
24 404 poY
L | auws e
xeN
(ucymiedo)

162

UOlIoNAISUI 1589PR0IGISE18|

YA UONINIISY) 1SRIPROIG W) §

Figure A.11: Fy and Fy Cache Controllers

A.7. TWO I-CACHE VARIANTS: F, AND F, 163

Figure A.11 shows the Fgy and F; cache controllers. It is interesting to note the simplicity of the
cache controllers, and the very slight change needed to convert an F, I-cache variant into an F,
I-cache variant.

164

APPENDIX A. THE BASIS COMPUTER

Appendix B

Assembly Language Programming and
Translation

As indicated in Figure 5.1 illustrating the method used to evaluate I-cache, the computations solving
the sample problems were described using assembly language programs. The assembly language is
closely related to the machine code described in Appendix A. The following important abstractions
achieved in the assembly language facilitated the programming of the sample problem solutions:

1. The assembly language programming model is sequential, abstracting details of pipelined
instruction execution.

2. The assembly language programming model abstracts the details of instruction timing. An
assembly language program specifies a sequence of operations, without regard to the latencies
of individual operations.

3. Assembly language programs define parameters which are used in expressions that provide
compile-time literal values.

4. Assembly language programs define labels which are used as symbolic branch target addresses
in system controller sequencer instructions.

These abstractions provide convenience in describing SIMD computations. For example, assembly
language program parameters allow a single program to describe a set of operationally structured
SIMD computations. Typical parameters are functions of problem size (¥), the number of PEs in the
system (P), or the number of PEs per PE module (K).

This appendix motivates the choice of assembly language programming, describes the language
itself, explains details relating to re-programming for I-cache, and presents some of the interesting
details of the language implementation.

B.1 Assembly Language v. High-level Languages

High-level languages used to describe data-parallel algorithms typically suppress such details as the
target system’s inter-PE communication network topology or the number of PE registers [39, 41, 84].
However, the details do affect the operational structure of a computation. For example, the inter-PE
communication network topology determines the set of available inter-PE communication subsystem
operations. As another example, maintaining a high-level language program variable in local ex-
ternal memory requires local external memory access operations that would not be needed were the
variable maintained in a register. It is the properties of the operational structure of a computation

165

166 APPENDIX B. ASSEMBLY LANGUAGE PROGRAMMING AND TRANSLATION

that determine I-cache speedup. In describing a sequence of FU and MCS operations performed
by the PE, an assembly language program makes the details of computation’s operational structure
explicit. This characteristic distinguishes assembly language from the high-level languages.

The assembly language is not notable for the conciseness of algorithmic expression that it en-
genders. The emphasis is on explicitness of operation sequences corresponding to physical activity
in a SIMD computation. There are no virtual processors and no virtual memory; there are only
representations of real PEs, real networks, and real memory required for detailed I-cache speedup
measurements.

Of course, it is possible to compile into assembly language from a high-level language. It seemed at
the outset of this work that the number of examples would be small enough, and the details important
enough, to merit writing assembly language programs by hand. In fact, coding efforts often began
with a representation of the PE operation sequence in a C-like pseudo-code, subsequently hand-
translated into assembly language. While assembly language facilitated producing the ultimate
machine code programs needed for the simulations, ©~ <mall number of simple abstractions were
easier to implement efficiently than the high-level p» *= mming abstractions that are themselves
the subject of many a dissertation would have been.

B.2 Assembly Language Syntax

This section provides an overview of the assembly language. Appendix C shows the derivation of
an example, and the assembly language program in Figure C.3 may be a helpful illustration of the
syntax described here.

The first line of an assembly language program declares the program’s parameter names. Each
remaining line specifies a label or one statement. Each statement associates a system controller
instruction with a PE instruction, although either part of a statement may be left blank. A “!”
character denotes the beginning of a comment that runs to the end of the current line.

Each system controller operations associated with register-to-register PE operations. The assem-
bly language syntax for baseline computations is simple: each line contains a statement or a label.
A statement has a system controller part and/or a PE part, separated by a semicolon, as follows:

system controller part ; PE part

B.2.1 System Controller Instruction

The system controller part of a line specifies a system controller instruction along with parameters
for that instruction. The format of the system controller instruction closely follows that of the
corresponding machine code instruction shown in Figure A.5, with the exception that conditions are
specified mnemonically, branch targets are labels instead of absolute addresses, and iteration counts
are specified as expressions contained within matched single-quote characters.

B.2.2 PE Instruction
The PE part of a statement specifies a PE instruction of the form:
[Context] Dest = Operation(Srch, SrcB)

The Context field specifies a context operation, Dest, SrcA, and SrcB specify register addresses,
and Operation names an FU or MCS operation. The operations are listed in Section A.4.2. Any
field omitted in the PE part of a line takes its standard “null” value.

B.3. ASSEMBLY LANGUAGE RE-PROGRAMMING FOR I-CACHE 167

B.3 Assembly Language Re-Programming for I-Cache

I-cache requires that a small number of cacke-control instructions be added to the set of globally
broadcastable machine code instructions. Cache-control instructions direct the storing of cache
blocks and their subsequent retrieval from cache.

I-cache uses two additions to the assembly language. One addition is the inclusion of cache-
control instructions among the set specified in the PE part of an assembly language statement. The
three cache-control instructions for Fy and F3 I-cache variants are CC_BSTO and CC.ESTO, delimiting
cache block preambles, and CC_FORK, activating a previously stored cache block.

Another addition to the assembly language is a special instruction form called a “FORK construct”.
The FORK construct allows the programmer to associate a CC_FORK operation with the cache preamble
that will have been executed prior to the CCFORK itself This construct frees the programmer from
having to determine the duration of cache block execution. The assembler/scheduler transforms each
FORK construct into a CC_FORK operation in the resulting machine code program and causes the system
controller to execute a wait loop for the duration of the cache block’s execution.

Figure C.5 shows the program from Figure C.3 adapted to use an F, I-cache variant. Figure C.6
shows the program adapted to use an Fy I-cache variant. The difference between the two programs
is that the F; program associates an iteration count with the FORK construct, which is used in the
CC_FORK instruction activating the F; cache block.

B.4 Scheduler
B.4.1 Basic Block Definition

To simplify its implementation, the scheduler performs code-motion optimizations only within basic
blocks. In ordinary programming languages, basic blocks are defined as sequences of necessarily
sequentially executed instructions, or “straight-line” code; only the first statement in a basic block
can be a branch target in the program’s execution, while only the last statement of the basic block
can result in a branch being taken [29].

Compiler optimizations that overlap operations along multiple independent pathways are easiest
to perform within basic blocks [49]. Flow graph analysis complexity increases exponentially with the
number of possible outstanding branch operations one is willing to consider simultaneously. While
it is certainly possible to optimize across basic blocks in some cases [29], general solutions can be
prohibitively difficult.

The scheduler’s definition of a basic block is augmented from the conventional definition: Not
only do labels and conditional branches delimit basic block boundaries, but PE context management
instructions delimit basic block boundaries as well.

B.4.2 Pipeline Optimization

A PE instruction is at risk of a pipeline hazard if either of its operands is a PE register. A pipeline
hazard arises when one of an instruction’s source registers is written by a dynamically preceding
instruction. In pipelined execution, the preceding instruction will not have written the register by
the time it is read for this instruction. A straightforward transcription of the assembly language
program would thus yield incorrect computation results.

A conservative solution to a pipeline hazard is to delay the second instruction, stalling the pipeline
by inserting a NOOP into the machine code program. This delay ensures that the second instruction
obtains the correct register value. However, in some cases pipeline hazards can be repaired so that
no cycles are wasted on pipeline stalls.

168 APPENDIX B. ASSEMBLY LANGUAGE PROGRAMMING AND TRANSLATION

The scheduler detects pipeline hazards by examining each instruction’s sources and comparing
them against each potentially preceding instruction’s destination. If either of this instruction’s
source registers is the same as any of the preceding instructions’ destination registers, a pipeline
hazard exists. If all preceding instructions’ PE operations write the same register and all of those
operations use the FU or the same MCS, then a pipeline stall is avoided by replacing this instruction’s
source reference with a reference to the output register of the subsystem used by those preceding
instructions. Otherwise, a pipeline stall needs to be inserted so that this instruction can execute
correctly.

B.4.3 Phase-Splitting

Phase-splitting is a widely used technique for overlapping PE operations along high-latency PE-
external pathways with PE-internal operations. The basic idea of phase-splitting is to re-cast the
high-latency operation as a pair of low-latency operations, one initiating and one terminating activity
on the high-latency pathway. The initiating and terminating operations must be separated by a fixed
number of instructions in the program executed by the PE. Phase-splitting makes it possible for
operations on other data pathways to overlap with the high-latency operation. Where such overlap
cannot occur, for example due to flow-dependencies in a program, time is spent idle waiting for the
result from the high-latency operation.

A detailed discussion of this concept in the context of multiprocessor PE memory reads through
high-latency networks is found in [54]: Where possible, reads are initiated well in advance of the
instruction requiring the referenced value.

The introduction of I-cache and its concomitant fast PE clock into the PE chip means that some
MCS operations which have single-cycle latency in generic SIMD computers (such as neighbor com-
munications in SLAP [27] and in MPP [4]), become high-latency operations in I-cached SIMD com-
puters. High-latency MCS operations should be overlapped where possible with each other and with
FU calculation. For example, a regular neighbor communication instruction is phase-split into an
initiating instruction transmitting a register value through the inter-PE communication subsystem
and a terminating instruction storing into a register a corresponding value received from that sub-
system. In SLAP, local external memory references always have latency greater than 1 and thus are
phase-split [39].

PE FU instructions for the basis computer cannot be phase-split because they are require control
information on every cycle. In machine code programs, this assumption is reflected by the presence
of place holder instructions for all but the first and last instructions of a sequence; the initiating and
terminating operations of a sequence carry meaningful source and destination information, while
the intervening instructions carry out the steps of the FU operation.

Phase-split MCS instructions are not allowed in assembly language programs. The scheduler
phase-splits high-latency MCS instructions, and it subsequently reorganizes basic blocks to overlap
those high-latency instructions with other instructions where possible. An example of phase-splitting
is shown in the left-hand side of Figure B.1.

When an assembly language statement’s PE instruction is phase-split and the statement also
specifies a system controller sequencer instruction, the sequencer instruction is associated with
the terminating node of the phase-split instruction. If the statement specifies a system controller
indexer instruction, the indexer instruction is associated with the initiating node of the phase-split
instruction.

B.4.4 Code Reorganizer

The reorganizer attempts to overlap phase-split MCS instructions with each other and with FU
instructions. The reorganizer operates on the flow graph within basic blocks, performing conservative

B.4. SCHEDULER 169

a basic block

4
E

Figure B.1: Phase-Splitting and Operation Overlap

greedy local re-ordering.

An example of the result of the reorganizer result is shown on the right-hand side of Figure B.1.
In the example, the LIT and ADD instructions overlap with the first LOAD instruction, while no overlap
is possible for the second LOAD instruction.

Note that if the reorganizer were excluded, the scheduled code would be correct but possibly
inefficient. The flow graph input to the reorganizer represents as phase-split all high-latency MCS
instructions. The reorganizer’s goal is to move the first phase of a phase-split operation up in the
flow graph (and thus earlier in the schedule) and to move the second phase of a phase-split operation
down in the flow graph (and thus later in the schedule). The instructions associated with the flow
graph nodes that intervene the two nodes of the phase-split instruction overlap with that phase-split
operation.

A constraint on the reordering of flow graph nodes is that results from MCS instructions must be
retrieved from the PE’s MCS interface registers on the cycle in which they become available. In other
words, the executions of the initiating instruction and the terminating instruction of a phase-split
pair must be separated by a fixed amount of time. This constraint is met by the flow graph input to
the reorganizer, because no nodes intervene the two nodes of a phase-split instruction. The scheduler
inserts explicit delays required when the instruction slots between the two phases of a phase-split
instruction are not used for other instructions.

The initiating phase of a phase-split instruction has the same name as the original instruction
with the suffix “.TX”, while the terminating phase has the suffix “RX”. The reorganizer traverses a
basic block until it finds a .TXinstruction. When such an operation is found, the _.TX phase instruction
is swapped up as far as possible, and then the associated _AX phase instruction is swapped down as
far as possible.

It is possible to swap the .TX phase statement (called T) with its preceding statement in the flow
graph (called C) when the following conditions obtain (where T°s _RX statement counterpart is called
R):

1. Cs PE instruction uses a different MCS fron: that used by T°s PE instruction, or C’s PE
instruction uses the FU;

170 APPENDIX B. ASSEMBLY LANGUAGE PROGRAMMING AND TRANSLATION

2. Neither source of T°s PE instruction is the destination of C’s PE instruction;

3. T and C do not specify system controller indexer instructions that exhibit index register flow
dependencies;

4. There are enough time available between T and R to accommodate the duration of C’s PE
instruction;

5. IfCis an .RXnode, there is enough time available between C and its predecessor to accommodate
the duration of the phase-split instruction represented by T and R.

It is possible to swap the _RX phase statement (R) with its succeeding statement in the flow graph
(C) when the following conditions obtain (where R’s _TX statement counterpart is T):

1. C’s PE instruction uses a different MCS from that used by R’s PE instruction, or C’s PE
instruction uses the FU;

2. Neither source of C’s PE instruction is the destination of R’s PE instruction;

3. R and C do not specify system controller indexer instructions that exhibit index register flow
dependencies;

4. There is enough time available between T and R to accommodate the duration of C’s PE
instruction;

5. If C is a .-TX node that has an _RX node associated with it, there is an instruction slot available
between C and its successor to accommodate R.

B.4.5 Calculating I-cache Speedups

The determination of whether to use a cachable instruction sequence as a cache block rests on the
balance between the extra time taken to store the cache block and the time saved by executing the
instruction sequence from cache. If the former exceeds the latter, then the sequence should not be
cached. If the latter exceeds the former, then the sequence might be cached, so long as so doing does
not disadvantage other, more profitably cached sequences.

Cachable instruction sequences whose executions alternate during the computation compete for
cache space. In single-block I-cache variants, including Fy and Fy, caching both of a pair of such
sequences necessitates re-storing them as they are needed. Therefore the determination in general
of which instruction sequences to store can be arbitrarily complicated, depending as it does on
the degree of conflict among candidate sequences. Such conflicts arise also for multi-block I-cache
variants due to the limited capacity of cache memory.

In the basis computcr, each MCS has its own local control within the PE chip. Instructions are
needed only to initiate MCS operations and to terminate them by directing the storing of returned
results in PE registers. The FU is different from the MCSs, in that it requires a new instruction on
every clock cycle of its operation; the operation of the FU is instruction delivery rate-bound. Some
actual SIMD computers diverge from this model. An example of such divergence is found in the
SLAP local controller, which manages the steps of a multiplication autonomously after receiving an
initiating instruction. Another example of divergence from the model is found in the CM-1 inter-PE
communication subsystem, which requires broadcast control on each clock cycle of its operation [42].

The following are some general observations regarding cache speedups for the basis computer.
These observations are used heuristically in the scheduling algorithm:

B.4. SCHEDULER 171

1. A cachable sequence of FU instructions that does not overlap with any MCS operation always
executes pp, times faster from cache. The calculation-intensiveness of the problem, the circuit
complexity of the PE relative to the widths of problem data words (in bits), and to a limited
extent the number of PE registers determine the lengths of such sequences.

2. A cachable sequence of instructions using a single MCS, where no other instruction is available
to overlap with those ir the sequence, may or may not execute faster from cache.

The I-cache speedup is subject to quantization and so depends on whether the durations of the
instructions in the sequence happen to be multiples of p,,. When an instruction’s latency is not
a multiple of gy, then in the generic SIMD computation there is some slack time between the
completion of the instruction and the arrival of the next broadcast instruction. Delivering such
an instruction sequence from cache allows instructions to be provided at the MCS’ operation
rate. The greater temporal resolution of MCS control within the PE chip gained by I-cache
saves that otherwise wasted slack time.

This time savings is significant in some instances. For example, consider a sequence of N inter-
PE communication instructions on a linear array, such as might arise in the inner loop of an
image motion-compensation program. Assume that the linear array communication instruction
takes a single clock cycle. The sequence requires N globally broadcast instructions, and N
system clock cycles, to complete in the generic SIMD computer. If shifting on a linear array
could occur at twice the rate of global instruction broadcast, then the sequence can be executed
from I-cache in just [§] system clock cycles, resulting in I-cache speedup of approximately 2.

In general, a sequence of single-cycle instructions on MCS X executes faster from I-cache by a
factor of % A sequence of S-cycle operations on MCS X executes faster from I-cache by the
following factor:
25X
Pb
SepX

Pb
From this equation, it is clear that where S * px is a multiple of py, there is no I-cache speedup.
The maximum I-cache speedupis1 + g%

3. A cachable sequence of overlappable instructions using disparate MCSs may or may not execute
faster from cache.

The I-cache speedup depends on the instruction latencies, as well as on the order in which they
are executed. As a simplest example of this phenomenon, consider the execution of a pair of
overlappable instructions, and &, that use different MCSs. If one instruction’s latency is
significantly greater than the other’s, then the longer instruction determines the time taken
to execute the pair. A good compiler would schedule the longer operation first, so there would
be no I-cache speedup. However, if Q and ® are of roughly similar duration, say within one
broadcast instruction interval of one another, then there may be some I-cache speedup. Assume,
for example, that both Q and é have latency equal to one broadcast instruction interval. Then
the generic SIMD computer uses exactly two broadcast instructions to execute Q followed by
®. When executed from cache, the instruction starting ¢ can be issued as early as possible
following the one starting (2, and the time between those instructions may be less than that
between globally broadcast instructions. Quantization causes a one-iteration pass through a
sequence containing only these two instructions to be no faster from I-cache than from the
broadcast network. However, an iterated loop containing just those two instructions may
execute faster from I-cache, as might a single pass through a longer sequence containing these
two instructions as a subsequence.

172 APPENDIX B. ASSEMBLY LANGUAGE PROGRAMMING AND TRANSLATION

Appendix C

Illustrated Example of Speedup
Measurement

I-cache speedup is obtained by comparing throughput of computations on SIMD computer variants.
A generic SIMD computation is simulated and its output data examined to verify the correctness of
the result. A computation with I-cache is then also simulated and verified. The ratios of system clock
cycle counts yield the I-cache speedup. Another interesting statistic produced by the simulations is
the cache size required to attain the reported speedup. Measurements are taken for varying problems,
varying underlying PE chip designs, and varying system network characteristics, to yield a picture of
the tradeoff stakes in portions of the large design space. This appendix presents a detailed example
of how the basis computer is used to describe a computation and measure its I-cache speedup.

C.1 Operationally Structured Computation

This subsection discusses aspects of creating the assembly language program describing the generic
SIMD computation that is the starting point for I-cache evaluations.

High-Level Algorithm

The derivation of a generic SIMD computation begins with a high-level algorithm solving a scalable
data-parallel problem. A data-parallel problem is be defined as a set of roughly independent sub-
problems such that the sub-problems can be solved concurrently. A high-level algorithm solving a
data-parallel problem defines a sequence of operations to be performed by each PE that yields the
answer to each sub-problem.

As an example, consider the following high-level algorithm for multiplying two square matrices
of dimension P:

P-1
Vrow=0...P —1 (v°°1=o ...P-1 (cm,wF 3" Arowacol * Bml,wl)) (C.1)

acol=0

The solution of each independent sub-problem represented by each element of the result matrix
C is given by an accumulated sum of products. The algorithm in Equation C.1 specifies the sequence
mathematical operations required to solve the sub-problem represented by each element of the result
matrix.

173

174 APPENDIX C. ILLUSTRATED EXAMPLE OF SPEEDUP MEASUREMENT
0 1 e oo Py

[+]
1
. . 1 column of
. . . each mal‘r;x
* oach PE

P-1

'IIE, coe (]

Figure C.1: Square Matrix Layout on a P-Element Linear Array

Topology-Specific Algorithm

The next step in the derivation of the generic SIMD computation transforms the high-level algorithm
into a slightly less high-level description of its implementation on a computer having a specific inter-
PE communication topology. This step involves identifying an inter-PE communication network
topology and assigning the sub-problems to the PEs. Together, the high-level algorithm, the inter-PE
communication topology, and the mapping of sub-problems to PEs define the set of mathematical
operations performed within each PE as well as the inter-PE communication necessary for the PE to
obtain operands.

The ideal mapping for a given high-level algorithm on a given inter-PE communication topology is
not easy to ascertain in general. Automatic means for doing so is the subject of current research {84].
For the purposes of experimentation, it suffices to have reasonable mappings for the problem/topology
combinations of subject computations. Experimentally adding I-cache to realistic computations does
not require a general automatic solution to the mapping problem.

As an example of this mapping step, consider the square matrix multiplication on a linear array. A
P-element linear array might use the mapping depicted in Figure C.1. This simple mapping assigns
each PE a column of each matrix, A, B, and C, such that PE index 7 contains the sets of matrix
elements {A[:,7]|i=0...P -1}, {Blj,x]1|j=0...P-1},and {C[i,x]|i=0...P - 1}.

The high-level algorithm in Equation C.1 and the mapping sketched in Figure C.1 together imply
that each PE index = solves the set of sub-problems described in Equation C.2. The required inter-PE
communication is evident in Equation C.2 in the references to Ayow,acoi® for acol £r, PE index r needs
to access Arow acol, Which is mapped to PE index acol.

P-1
Yrow=0...P -1 (cmw,,,= D" Arow,acol * Bw,l,,,) (C.2)
acol=0
The communication-explicit algorithm at this stage of the derivation is represented as a sequential
program, for example that shown in Figure C.2. Explicit at this stage of the derivation are the set of
variables resident in each PE, the set of operations applied within each PE to its resident variables,
and the inter-PE communication required for operand access.

C.2. SUMMARY OF GENERIC SIMD COMPUTER PARAMETERS 175

linear array square matrix multiply(A, B, C, P)
int P;
element A[P]} [P]l, B[P)[P], CIP})IP);
{
int i, k;
PE index r;

foxr (i = 0 upto P)
{
forall (r € {0 upto P}) in parallel
{
Cli,m)} = Ali,r]=*Blr,x});
for (k =1 upto P)
Cli,x] += A[i,7r+k% (mod P)] = B{r+k (modP),r]:

Figure C.2: Linear Array Matrix Multiply

Assembly Language Program

Given the preceding algorithm with explicit inter-PE communication, the following is a list of some
of the transformations applied to yield the assembly language program describing an operationally
structured generic SIMD computation:

o Conditional control structures are transformed into PE context management operations.
¢ Loops are transformed into subroutine calls with explicit iteration counts.

¢ Loop-index-dependent expressions from the high-level language description are partitioned into
two sets: some loop-index-dependent expressions are evaluated by the system controller and
broadcast to the PEs, while the rest are evaluated in the PEs. Although evaluation of these
expressions in the PEs is redundant (since a loop-index-dependent expression has the same
value in all PEs), it is sometimes more efficient to evaluate these expressions on PEs than it is
on the system controller.

¢ Variables are assigned locations in PE registers and local external memory, and variable refer-
ences are converted into calculations of addresses followed by local external memory accesses.

As an example, Figure C.3 contains an assembly language program for a generic SIMD computa-

tion for square matrix multiplication on a linear array. The parameters A pi, &B.pi, &C.pi are
the addresses of matrix column buffers in local external memory.

C.2 Summary of Generic SIMD Computer Parameters

The following parameters are used in deriving physical descriptions of SIMD computation from
operationally structured descriptions:

176 APPENDIX C. ILLUSTRATED EXAMPLE OF SPEEDUP MEASUREMENT

program lsmm ass (A pi, &Bpi, &C.pi, P):

INPUT:

OUTPUT:

IDX IR0 ‘0’ ; R2 = LITERAL(‘&Api - 1')
DX IR2 ‘-1’ ;

CJSR FORC INPUT ‘P-1’ ;

IDX IR0 ‘0’ ; R2 = LITERAL(‘6Bpi - 1’)
ILDX IR2 ‘P-1’ ;

CJSR FORC INPUT ‘P-1’ ;

LDX IR0 ‘0’ ; Rl = LITERAL(‘&Api’)
ILDX IR0 ‘0’ ; R7 = LITERAL(‘&Bpi’)
IDX IR0 ‘0’ ; R8 = LITERAL(‘&Bpi + P')
IDX IR0 ‘0’ ; R3 = LITERAL(‘&Cpi’)

CJSR FORC OUTER ‘P-1’ ;

IDX IR0 ‘0’ ; R2 = LITERAL(‘&Cpi - 1')
IDX IR2 2 * P - 1’ ;

CJSR FORC OUTPUT ‘P-1' ;

HALT ;

SPX IR2 ‘1’ ; R1 = IOLD('0’)
; R2 = ADD(‘'1’,R2)
LTST ICTO INPUT : STORE(R1l, R2)

2

8
wwuwnu

LOAD (R1)

ADD('1’, R1)

ADD (R7, RO)

;: RS LOAD (R2)

; R2 ADD (‘1 ,R2)

; LC_PUSHEQ(R2,RS8)

; R2 = PASS(R7)

CJISR FORC INNER ‘P-2’ ; [POP] R6 = MULT(R4, RS)
; STORE(R6, R3)

LTST ICTO OUTER ; R3 = ADD(‘1l’, R3)

2

; R4 = LDNO(R4)

; RS = LOAD (R2)

; R2 = ADD(‘1’,R2)

; LC_PUSHEQ(R2, RB)

; R2 = PASS(R7)

; [POP] RY9 = MULT (R4, RS)

LTST ICTO INNER ; R6 = ADD(R6, R9)

; R2 ADD(‘1’,R2)

; Rl LOAD (R2)

SPX IR2 ‘1’ ; IO.ST(R1, ‘0’)
LTST ICTO OUTPUT ;

Figure C.3: Assembly Language Program for Lirear Array Square Matrix Multiply

C.3. PHYSICALLY STRUCTURED GENERIC SIMD COMPUTATION 177

1. Number of PEs in the computer { P}
. Number of PE building blocks in the computer {M}
. Number of PEs per PE chip {K} (=£)

2
3
4. Per-PE local external memory size { LEMSize}
5. PE register file size {PERFSize}

6

. The set of possible inter-PE communication operations. This set is determined by the topology
of the computer’s inter-PE communication network.

7. FU and MCS operation stepcounts, determined by such factors as

o PE datapath width (in bits) relative to problem data word-width,

¢ FU circuit complexity (For example, multipliers and barrel shifters require more complex
circuits than do adders and distance-1 shifters.), and

o PE chip pin time-sharing for MCSs.

C.3 Physically Structured Generic SIMD Computation

At this final stage of the derivation, the latencies of all FU and MCS operations are explicit, and
high-latency operations are explicitly overlapped where possible with other operations that are flow-
independent.

Figure C.4 shows a program produced from the program in Figure C.3 that provides a 1024-PE
SIMD-D throughput baseline.

C.4 Derivation of Multi-Clock Computation

Multi-clock SIMD computation is I-cached SIMD computation without the I-cache itself The local
controller of a multi-clock SIMD computer contains the multi-clock generator that supplies the MCSs
with clocks, each at its highest rate. The throughput on a multi-clock SIMD computer is compared
with the throughput baseline to indicate how much speedup is attained from multi-clocking alone.

The assembly language program describing an operationally structured generic SIMD compu-
tation also describes an operationally structured multi-clock SIMD computation. The difference
between the corresponding physically structured computations is that the p-set describing the rela-
tive MCS clock rates is an additional set of parameters in the translation to the physically structured
multi-clock computation.

C.5 Derivation of I-Cached Computations

An operationally structured I-cached computation is obtained by changing the assembly language
program for the generic SIMD computation. The changes involve re-ordering some of the instructions
and adding cache-control instructions as required to store and subsequently activate routines in
cache.

The physically structured I-cached computation is obtained by assembling and scheduling the
program using operation stepcounts, a p-set, and cache size as parameters.

178 APPENDIX C. ILLUSTRATED EXAMPLE OF SPEEDUP MEASUREMENT

System Controller Instruction || " PE Module Instruction
¢« [scon | o | 2 | 8 [| C | Dest | Operation | SreA | SxB | LBVal
0 LDX 0 | o T REG2 | LITERALO 1
1 LDX 2 1
2 CJSR | FORC | 23 | 1028
3 LDX 0 0 REG2 LITERAL.0 1023
4 LDX 2 1023
3 CJSR | FORC | 23 | 1023
6 LDX 0 0 REGL1 LITERAL.0 0
7 LDX [) REG.7 LITERAL.O 1024
8 LDX) 0 REGS LITERAL.0 2048
9 LDX) 0 REG.3 LITERAL.0 2048
10 CJSR | FORC | 27 | 1028
1 LDX 0 0 REG2 LITERAL.0 2047
12 LDX 2 2047
13 CJSR | FORC | 48 | 1023
14
15
16
17
18
19
20
2
22 || HALT
23 SPX 2 1 REG] 10.1D.0]
24 REG2 ADD.0 1 REG2
25 STORE.0 REG1 FUOUT
26 LTST | ICT0 | 23
n LOAD.IX.0 REG1
28 REG4 | LOADRXO
29 REG1 ADD.0 1 REG1
30 REG2 ADD.0 REG.7 REG.0
31 LOAD.TX.0 FU.OUT
32 REGS | LOADRXO
33 REG2 ADD.0 1 REGZ
34 LCPUSHEQO | FUOUT REGS
35 REG2 PASSO REG.7
36 || CJSR | FORC | 40 | 1022 || POP | REG6 MULT0 REGA REGS5
37
38 ~ STORE.O REG.6 REG.3
39 LTST | ICT0 | 27 REG3 ADD.0 1 REG.S
0 REGA LDNO.0 REGA
a1 LOAD.TX.0 REG2
42 REGS | LOADXRX.0
43 REG.2 ADD.0 1 REGZ
a4 LCPUSHEQO | FU.OUT REGS
45 REG2 PASS.0 REG.7
6 POP | REG9 MULTO REG.A REGS
47 LTST | ICTO | 40 REG.6 ADD.0 REG.6 FU.OUT
45 REG2 ADD.O 1 REG2
49 LOAD.TX.0 FU.OUT
50 REG1 LOADRX.0
51 SPX 2 1 10_ST.0 LEM.OUT 0
52 LTST ICTO | 48

Figure C.4: Machine-code Program for Baseline Linear Array Square Matrix Multiply

C.6. MEASURED THROUGHPUT AND SPEEDUP 179

Operationally Structured F, Computation

Figure C.5 shows a program for the matrix multiplication computation using an Fy cache.

Operationally Structured F, Computation
Figure C.6 shows a program for the matrix multiplication computation using an F; cache.

C.6 Measured Throughput and Speedup

The assembly language programs are recompiled, simulated, and verified. Measurements shown in
the following figures for each of the four SIMD computer variants SIMD-A, SIMD-B, SIMD-C, and
SIMD-D. Measurements are taken for p;, ranging from 1 to 16 using the p-sets {N,N,N,N, N} and
{N,1,1,1,1}. The cache sizes used to obtain the the measured I-cache speedups in the four SIMD
computer variants were 1196...1204, 307...312, 48...62, and 10...22, respectively.

180 APPENDIX C. ILLUSTRATED EXAMPLE OF SPEEDUP MEASUREMENT

program lsmm lce. ass(&Api, &Bpi, &Cpi, P):
IDX IR0 ‘0’ ; R2 = LITERAL(‘&Api - 1')
IDX IR2 ‘-1’ ;
CJIJSR FORC INPUT ‘P-1’ ;
IDX IR0 ‘0’ ; R2 = LITERAL(‘&Bpi - 1)
ILDX IR2 ‘P-1/ ;
CJSR FORC INPUT ‘P-1' ;

CACHEL:

CC_BSTO

R4 = LDNO (R4)

R5 = LOAD (R2)

R2 = ADD(‘1’,R2)

LC_PUSHEQ(R2, RS8)

R2 = PASS(R7)

[POP] R9 = MULT (R4, RS)

R6 = ADD(R6, R9Y)

CC.ESTO

DX IR0 ‘0’

~

AT TR PR T S R TR T

Rl = LITERAL(‘&Api’)
IDX IR0 ‘0’ ; R7 = LITERAL(‘&Bpi’)
IDX IR0 ‘0’ ; R8 = LITERAL(‘&Bpi + P')
LDX IR0 ‘0’ ; R3 = LITERAL(‘&Cpi’)
CJISR FORC OUTER ‘P-1’ ;

ILDX IR0 ‘0’ ; R2 = LITERAL(‘&Cpi - 1')
IDX IR2 ‘2 *x P - 1’/ ;

CJSR FORC OUTPUT ‘P-1’ ;

HALT ;

e v
I 00

INPUT:
SPX IR2 ‘1’ ; Rl = I01ID(‘0’)
; R2 = ADD(‘1',R2)
LTST ICT0 INPUT ; STORE(R1l, R2)
OUTER:
LOAD (R1)
ADD(‘1l’, R1)
ADD (R7, RO)
LOAD (R2)
ADD(‘1’,R2)
LC_PUSH EQ (R2, R8)
; R2 = PASS(R7)
CJISR FORC INNER ‘P-2’ ; [POP] R6 = MULT (R4, RS)
; STORE (R6,R3)
LTST ICTO OUTER ; R3 = ADD(‘1l’, R3)

B
Hownuau

e we 0w

FORK CACHEl ;
LTST ICTO INNER ;
OUTPUT:
; R = ADD(‘'1’,R2)
; Rl = LOAD(R2)
SPX IR2 ‘1’ ; IOST(R1l,0’)
LTST ICTO0 OUTPUT ;

Figure C.5: assembly Language Program for Fy Linear Array Square Matrix Multiply

C.6. MEASURED THROUGHPUT AND SPEEDUP

program lsmm 2ce_ass (¢6Api, &Bpi, &Cpi, P):

CACHE1:

OUTPUT:

IDX IR0 ‘0’ ; R2 = LITERAL(‘&Api - 1’)
ILDX IR2 ‘-1’ ;

CJSR FORC INPUT ‘P-1' ;

IDX IR0 ‘0’ ; R2 = LITERAL(‘&Bpi - 1)
ILDX IR2 ‘P-1’ ;

CJSR FORC INPUT ‘P-1’ ;

; CC.BSTO

; R4 = LDNO (R4)

; R5 = LOAD(R2)

;: R2 = ADD(‘1’,R2)

; LCPUSH.EQ(R2, R8)

; R2 = PASS (R7)

; [POP] R9 = MULT(R4, RS)

: R6 = ADD(R6, R9)

; CCESTO

IDX IR0 ‘0’ ; Rl = LITERAL(‘&ApPi’)
LDX IR0 ‘0’ ; R7 = LITERAL(‘&Bpi’)
IDX IR0 ‘0’ ; R8 = LITERAL(‘&B.pi + P’)
IDX IR0 ‘0’ ; R3 = LITERAL(‘&C.pi’)

CJSR FORC OUTER ‘P-1’ ;

IDX IR0 ‘0’ ; R2 = LITERAL(‘&Cpi - 1')
IDX IR2 ‘2 * P - 1/ ;

CJSR FORC OUTPUT ‘P-1’ ;

HALT ;

SPX IR2 ‘1’ ; Rl = IOLD(‘0’')
; R2 = ADD(‘1’ ,R2)

LTST ICTO INPUT ; STORE(R1l, R2)
; R4 = LOAD(R1)

; Rl = ADD('1’, R1)

; R2 = ADD(R7, RO)

; R5 = LOAD (R2)

; R2 = ADD(‘1’,R2)

; LC_PUSREQ(R2,R8)

; R2 = PASS(R7)

; [POP] R6 = MULT (R4, R5)

FORK CACHEl ‘P-2' ;

; STORE (R6,R3)

LTST ICTO OUTER ; R3 = ADD(‘1l’, R3)

; R2 = ADD('1’,R2)
; Rl = LOAD (R2)
SPX IR2 ‘1’ ; IOST(R1,0’)

LTST ICTO0 OUTPUT ;

Figure C.6: assembly Language Program for F2 Linear Array Square Matrix Multiply

181

APPENDIX C. ILLUSTRATED EXAMPLE OF SPEEDUP MEASUREMENT

182

1.40+09

N
ratio [N
i;j .
NNN

F2 I-cache at RHO-set ratio
F2 lcache at RHO-set ratio

FO I-cache at RHO-set ratio

multi-clock at RHO-set ratio
muhti-clock at RHO-set ratio {

FOQ |-cache at RHO-set

1.26+09

P § 1

(s3)0A9 %001 WalsAS o Jaquiny) aun}

2e+08 P

12 14 16

10

(a) Computation Time

RHO_b

T T T 81—
o] »
u ! ! . -
w o »
- ~ a *
™ o *
- b4 [] ® -
MAXD+ e
x a »
1M1.m1vm
wZrFvz
- —ZUZoZ " . »
2252
c2%2%2
£e8s8s x o .
- M WMMM x a * A
I I
[iele o o'
A AT e o= *
oo W
- m .m WM » o * -
1818
=
& ES
2R E LY] *
- - s -
H '] 1 L L ') DR] L L 1 1 A h‘.l.
© N ¥ O N - O O ® N~ © D W MmN e
- v = o e e -

seindwion gWIS oeuen o) enlejey dnpeeds

12 14 16

10

(b) Speedup

RHO_b
Figure C.7: Results for 1K Square Matrix Multiply on SIMD-A

183

12 14 16

10

(b) Speedup
Results for 1K Square Matrix Multiply on SIMD-B

RHO_b

C.6. MEASURED THROUGHPUT AND SPEEDUP

T T Y T H—m— 2 Wy T T | | Y 1 — 7 T
] b x X L]
_‘AXD.'Q
erseeTs ® x 43 - X o
Frzm=nz
H.UmMN a x » X ®
2ZZzz3
m.m.mm.mm. [] x 4N - » X o
)]
mewww " = " x o
EQEZZY °
Lk LR b= s = 42 - " x «
w b .
m mm & exase
IMII.M] »n m_m A nx «
(N 2: . wZhZTZ
FHWMmm m 0w 4 o m - M.MN&N nx @
2 25252
. & 838585 - e
5 B B0
a8 » 40 O o M M w L3 L]
Cl TExEx
S’
s [} Y, Y 4 o
» mamaaa L
. - [« 1 mmmmm ..
piolZ
" x LpipEg e
a2 x -4~ 3 »
L L i I 1 L L A 1 1 1 i H L 1 1 L i Il L
o © M T O N T OO ®N~N O BT O N

I T

bt - Jseindwod GNIS dleuss o) saeley dnpeeds
(s01949 >o010 weisAS |0 Jequink) ew| L

Figure C.8

34

APPENDIX C. ILLUSTRATED EXAMPLE OF SPEEDUP MEASUREMENT

5.5¢+07 Y T v T Y ™ T
5e+07£ 4
G
450407 | M|
8 4ev07} .
s
(5)
'§ 3.5e+07 | baseling —— s
] F2 I-cache at RHO-set ratio 111,1 »
p F2 i-cache at RHO-set ratio (NN.N.NN} &
& Je+07 2 FO I-cache at RHO-set ratio 111,1 x e
[FO I-cache at RHO-set ratio {N.1,1,1,1} D
) x multi-clock at RHO-set ratio {N.1,1,1,1} +
5 2.5e+07 - = mutlti-clock at RHO-set ratio (NN.N.N.N} o L
3 g
E 20407 | -
Z x 2
° b b
E 1.50+07 | g 4
- = 2 g
x 2 2 9 g 9
1e+07 | = x 2 2
» X
- x X
Se+06 | * = : x x x x x
= - - - -
o 'l 1 L L L L R
2 4 6 8 10 12 14 16
RHO_b
(a) Computation Time
16 i L] LS I N L] L) Ll
s} }
14 | F2 l-cache at RHO-set ratio (N,1,1,1,1} = x E
F2 lcache at RHO-set ratio (NN.N,N.N} &
. 13F FO i-cache at RHO-set ratio {N,1,1,1,1} x b 4
& FO i-cache at RHO-set ratio (N.N.N.N.N} ©
a 12+ muki-clock at RHO-set ratio {(N,1,1,1,1} + = 4
E mufti-clock at RHO-set ratio NNN.N.N.N} o -]
8 1t k
(o)
= 10 + * 4
@ »
g 9} x x x x .
e »
8
§ x X x 1
e 2L]
.2 bl x x
§ 6 - x p
x 'Y 'y ¥ 3
.g' Sr = a a Ao o] Q ¢
§_ 4 » x A A a a e @ o b
x 3 a 5]
@ st A -
X
5 8 4
2r
1T . 'S . . . 3 . . * ¢ . * * - <+
1 L | i 1 1 L.
2 4 6 8 10 12 14 16
RHO_b
(b) Speedup

Figure C.9: Results for 1K Square Matrix Multiply on SIMD-C

C.6. MEASURED THROUGHPUT AND SPEEDUP

Time (Number of System Clock Cycles)

1.40+07 [—- - S T Y Y -

\ baseline —
F2 l-cache at RHO-set ratio {N,1,1,1,1} =
12e+07 F2 |-cache at RHO-set ratio (NN.N.N.N} & 4
FO |-cache at RHO-setratio (N1,1,1,1} x
FO I-cache at RHO-set ratio {N,1,1,1,1} 0
multi-ciock al RHO-set ratio N1111 +
multi-clock at RHO-set ratio (NN MNNj o
1e+07 B J
Gt~ < < e - --— >— prormremmlpers el -9
80406 | P
'y] = + + + + + + + + + +* + [
x a & 2] [a] D Q o s] =] a o o] o Q
60406 |- 3
n x a a a s a - a a a a a 4
40406 | x <
=
1
20406 » :.(x x x x X x x x x ¥
|
x -
] »* | x - - 1
o L 1 1 1 ' 1 i
2 4 6 8 10 12 14 16
RHO_b
(a) Computation Time
16 LI ¥ L3 L T T T
15 ¢ J
14} F2 |cacho at RHO-set o (N.1.1.1.1) » -J
F2 l-cache at RHO-s€t ratio {N.N.N.N.N} &
13 FO)-cache at RHO-set ratio N1111 x .
$ FO l-cache at RHO-sef ratio (NN.N.N.N} © i
32 12+ multi-clock at RHO-set ratio N1 111} + h
E multi-clock a2 RHO-set ratio {N.N.N.N.N} o x
8 nt} . 4
o]
= 10} L J
(7]
2 of) .
2 »
g 8t = 1
2
° 7+ » -
T 6} * .
& L x
g 5 x r
©°
§ 4 [-] x x x x x x x x -«
(7] 3k 3 .
2 i x a a Iy A a a r 3 a a a -)
13 i &8 ¢ § § § 8 8 8 § § 3§ § &8
e 1 L J— . 1)
2 4 6 8 10 12 14 16
RHO b
(b) Speedup

Figure C.10: Results for 1K Square Matrix Multiply on SIMD-D

185

APPENDIX C. ILLUSTRATED EXAMPLE OF SPEEDUP MEASUREMENT

Appendix D

The Sample Programs

This appendix shows the assembly language programs used in the I-cache evaluations.

187

188

APPENDIX D. THE SAMPLE PROGRAMS

program tree_sum.l(logP):
! tree summation. logP is log(P), where P is the number of PEs.

loop index is in RS.

lLoad the datum A[i] from system data memory into Rl:

ILDX IR0 ‘0’ ; Rl = IOLD('0’)

.
.

R5 = PASS(‘'-1’)

CJSR FORC SUMUP ‘logP - 1’ ; R3 = PASS(RO)
! wake all the PEs up again

.
’

[CIR]

! PE 0 provides the answer, mask all other PE’s answers

SUMUP :

.
2

LC_PUSH.NE('0’,R0)

; R1 = PASS('0’)

! Store the result from Rl into system data memory:
IDX IR0 ‘0’ ; IOST(R1, ‘1’)

HALT ;

’

; R2 = PASS(R1)

R6 = AND('l’,R3)
LC_PUSE_EQ(‘0’ ,R6)

R4 = ADD(‘1’,R3)

[INV] R4 = ADD(‘-1’,R3)
[POP] RS = ADD(‘l’,RS5)
R4 = LSHIFT (R4,R5)
LC_PUSH.EQ(‘0’,R6)

R2 = ROUTE (R2, R4)
[INV] R4 = PASS(‘-1')
[INV] R1 = ADD(R1,R2)
R6 = PASS(‘1’)

LTST ICTO SUMUP ; R3 = RSHIFT(R3, R6)

Figure D.1: Assembly Language Program for tree

program excl_plus_scan(logP):
! exclusive plus scan.
! The argument logP is log(P), where P is the number of PEs.
! The local buffer of "L" values starts at LEM[0], while
! The local buffer of indexes starts at LEM[logP]
! No messing around, so index register system only used if necessary
]
! Load the datum A[pi] from system data memory into Rl:
IDX IRO 'O’ ; R1 = IOID('0')

R2 = PASS (RO)
R8 = PASS(‘-1')
R3 = PASS('0')
RS = PASS(0’)
R4 = PASS('1’)
CISR FORC SWEEPUP ‘logP - 1’ ;
Rl = PASS('0’)
R8 = ADD(*1’,R8)
[FRC] R9 = PASS(‘0’)

CJSR FORC SWEEPDN ‘logP - 1’ ;
! Store the result from Rl into system data memory;

IDX IRO ‘0’ ; IOST(R1, ‘1l’)

HALT ;
SWEEPUP:

N N %a Ny v

s N S

R10 = AND(‘1l’,R2)
R8 = ADD(‘1’,R8)

1C_PUSH EQ(‘0’ ,R10)

R7 = ADD(‘'1’,R2)

R7 = LSHIFT (R7,R8)

R7 = OR(R7,RS)

[INV] R7 = PASS(‘-1’)

RS = LSHIFT (R5,R4)

RS = OR(‘'1’,RS)

(PO}

LC_PUSH KE (*0’ ,R10)

R6 = ROUTE (R1,R7)

[INV] R7 = PASS(‘-1’)

(INV] Rl = ADD(R1,RE)

STORE (R6, R3)

R3 = ADD(‘1’,R3)

ST ICTO SWEEPUP ; R2 = RSHIFT (R2,Rd4)

WO Mg N %s Ve Np % N6 Ne N4 %e Ne Ne S Ne N,

2

SWEEPDN :
RS = RSHIFT (RS,R4)

R7 = LSHIFT (R2,R8)

R8 = ADD(‘'-~1’,RS)

R7 = OR(R7,RS)

R2 = LSHIFT (R2,R4)

R2 = OR(R2,R4)

R9 = PASS(‘'1’)

[POP]

1C_PUSH.EQ('0’,R9)

Rl = ROUTE(R1,R7)

[INV] R3 = ADD('-1’,R3)
R6 = LOAD (R3)

Rl = ADD(R6,R1)

LTST ICTO SWEEPDN ; ([POP]

%o Ns Np Ne Ne NI N wg Ng Ss %e Ny wg

Figure D.2: Assembly Language Program for scan

189

190 APPENDIX D. THE SAMPLE PROGRAMS

program bubble.sort (P):
! Sorting P values on a P-elemeant linear array
! Pexrform local swaps until no body detects any out of order values.
L]
IDX IRO ‘0’ ; R1 = IOLD('0’)
; R3 = PASS('0’)
; LCPUSHEQ('0’,RO0)
; R3 = PASS(‘1’)
LDX IRO ‘0’ ; [POP] R7 = LITERAL('P-1’)
LC_PUSH EQ (R7, RO)
R3 = PASS('1’)
[POP] RS = AND('1l’,RO)
LC_PUSHEQ('0’ ,RS)
R4 = PASS(‘1’)
; [INV] R4 = PASS(‘0’)
! jump to the sorting step inner loop -~
! 2019 is the measured number of STEP iterations for a 4K-element
! problem-instance; providing this number in the CJSR lets the compiler
! figure out how long the computation runs.
CJSR FORC STEP ‘2018’ ; [POP]
IDX IR0 ‘0’ ; IOST(R1, ‘0’)
HALT ;

Se Ne Ne e v

STEP:
; R6 = PASS('0’)
! even phase:
LCPUSH.EQ('1l’,R4)
R2 = LDNO(R1)
(INV] R2 = LUPO(R1)
[POP] IC.PUSHEQ(‘'l’,R4)
LCPUSHLIT(R2,R1)
> Rl = PASS(R2)
; R6 = PASS(‘1’)
; [poP]
; [INV] LC.PUSHLT (R1,R2)

Ne %o S ne N

R1 = PASS(R2)
; [pop]
! odd phase:
; [POP] LCPUSH.EQ(‘0’,R4)
; R2 = LDNO(R1l)
; [INV] R2 = LUPO(R1)
; [POP] LCPUSH.EQ('0’,R3)
; LCPUSHEQ('l’,R4)
; LC_PUSHLT(R1,R2)
; Rl = PASS (R2)
R6 = PASS(‘1’)
[POP]
[INV] IC_PUSH LT (R2,R1)
Rl = PASS(R2)
[POP]
; [POP]
; [POP]
LTST RSPO STEP ; RESPOND (R6)

N Ne e Se e

Figure D.3: Assembly Language Program for bubble

191

program rc_sort (sqrtP,logP):
! Sorting P values on a P-element square mesh using Leighton’s
! alternating row and column bubble sort.
!
! Input the array to be sorted:
1DX IR0 ‘0’ ; Rl = IOLD(‘0')
! Set up the sorting loops
; R4 = PASS('0’)
LDX IR0 ‘0’ ; R8 = LITERAL(‘sqrtP’)
: R9 = MOD (RO,R8)
; LC_PUSH.LT (RO, R8)
; R4 = PASS('~-1')
DX IR0 ‘0’ ; [POP] R10 = LITERAL(‘sqrtP * (sqrtP - 1)’)
LC_PUSH GE (RO, R10)
R4 = PASS(*-~-1')
[POP] R3 = PASS(‘0')
LCPUSREQ(‘0’,R9)
R3 = PASS(‘-1')
[POP] R10 = ADD(‘-1’,RS8)
LC PUSH_EQ(RS,R10)
R3 = PASS(‘-1')
[pOP] R11l = DIV(RO,R8)
R11 = AND(‘1l’,R11)
R14 = AND('1’,R9)
LCPUSHEQ(0’,R11)
R5 = PASS('-1’)
LC.PUSH.EQ('0’,R14)
R6 = PASS(‘'-1')
[INV] R6 = PASS(‘0’)
[poP]
; [INV] R5 = PASS('0')
; LCPUSH.EQ(‘0’,R14)

Ne %a Ne Ne Ne Ny N Ne S

LY PR Y)

Ne weo W

~e

R6 = PASS(}0')
[INV] R6 = PASS(‘-1’)
; [POP]
! Do the sort:
CJSR FORC SORT_STEP ‘logP - 1’ ; [POP]
! Set up the reversal for odd-indexed rows (works for sqrtP > 2):
; LCPUSHEQ(‘'0’,R5)
; R12 = ADD(‘-1',R8)
;: R12 = SUB(R12,R9)
R13 = ADD(‘1’,R9)
LC_PUSH.GE (R13,R8)
R13 = SUB(R13,R8)
; [POP] R2 = SDNO (R1)
; LC_PUSH.EQ(R13,R12)
CJSR FORC REVERSE.STEP ‘sqrtP / 2 - 2’; Rl = PASS(R2)
; [POP]
; [POP]

Ne Ne N

Figure D.4: (continued next page)

192 APPENDIX D. THE SAMPLE PROGRAMS

! Output the sorted array:
LDX IR0 ‘0’ ; IOST(R1, ‘0’)
HALT ;
SORT_STEP:
! Simulation measures 217 iterations for 4K data set
! But gets counted logP=12 times ~= 18 iters (18.1)
CJSR FORC SORT ROW ‘17';
! Simulation measures 58 iterations for 4K data set
! But gets counted logP=12 times "= 5 iters (4.9)
CJSR FORC SORT COL ‘4‘;
LTST ICTO SORT.STEP ;
SORT _ROW:
; R7 = PASS(0')
! even phase:
LC_PUSH_EQ (R5, R6)
R2 = SDNO(R1)
[INV] R2 = SUPO(R1)
[POP] LC PUSHNE(‘0’,R6)
LC_PUSH.LT (R2,R1)
; Rl = PASS(R2)
R7 = PASS(‘-1')
[POP]
[INV] LC.PUSHGT(R2,R1)
R1 = PASS (R2)
: [pPOP]
! odd phase:
; [POP] LC_PUSH.NE (R5,R6)
R2 = SDNO(R1)
[INV] R2 = SUPO(R1)
{POP] IC.PUSHEQ(‘0’,R3)
LCPUSHEQ(“0’ ,R6)
LCPUSHLT(R2,R1)
R1 = PASS(R2)
R7 = PASS(‘-1')
[POP]
[INV] LC_PUSHGT(R2,R1l)
Rl = PASS(R2)
[poOP])
[pOP]
[pOP]
LTST RSP0 SORT_ROW ; RESPOND (R7)

w.

Ne %o we N

. we

s W

AT VI YR Y]

Ne Ne %y e

~.

Se se v

Figure D.4: (continued next page)

SORT.COL:

; R7 = PASS('0’)

! even phase:
; LC_PUSHNE(‘0’,R5)

LT PR PO TR TR PR TR T

R2 = SDN1(R1)

[INV] R2 = SUP1(R1)
{INV] LC_PUSH.LT(R2,R1)
Rl = PASS (R2)

R7 = PASS(‘-1')

(poP]

(INV] LC.PUSH.GT(R2,R1)
Rl = PASS (R2)

; (pOP]
! odd phase:
; [POP] LCPUSHEQ(‘'0’,RS)

DR T TR TI T PR Y T TR TR DI T I 1)

R2 = SDN1(R1)

[INV] R2 = SUP1(Rl)
[POP] LC_PUSHEQ(‘'0’,R4)
LCPUSHREQ(‘0’,RS5)
LC_PUSH.LT (R2,R1)

Rl = PASS (R2)

R?7 = PASS(‘~-1')

[POP]

[INV] LC_PUSH.GT(R2,R1l)
Rl = PASS(R2)

(POP}

[pPOP]

[POP]

LTST RSP0 SORT.COL ; RESPOND (R7)
REVERSE_STEP:

.
’

[POP] R2 = SDNO (R2)
R13 = ADD(‘2’,R13)
LC_PUSH GE (R13,R8)
R13 = SUB(R13,R8)
[POP] R2 = SDNO (R2)

; LC_PUSHEQ(R13,R12)
L

TST ICT0 REVERSE STEP ; Rl = PASS (R2)

Figure D.4: Assembly Language Program for rowcol

193

194

program bitonic sort (logP):

! Bitonic sort on P elements.
[}

APPENDIX D. THE SAMPLE PROGRAMS

! Load the datum A[i] from system data memory bank address 0 into R6:

ILDX IR0 ‘0’ ; R6 = I01ID(‘0’)
IDX IR0 ‘0’ ; Rll = LITERAL(‘logP’)
ILDX IR0 ‘0’ ; R12 = LITERAL(‘l’)

; Rl = LSHIFT(‘1’,R11)

; R2 = PASS(R1)

IDX IRl ‘-1’ ;

CJSR FORC OUTER ‘logP - 1’ ;
the result from R6 back into
IDX IR0 ‘0’ ; IOST(R6,0’)
HALT ;

! Store

OUTER:
; R2
; R4
; RS
; R3
SPX IRl

RSRIFT (R2,R12)
PASS(}0')
PASS (R2)
PASS (R1)
\1' H

system data memory bank address 0;

! When the iteration count specified in the CJSR instruction is less
! than 0, the system controller indexer subsystem provides the loop

! iteration count:
CJSR FORC INNER ‘~1‘ ;
LTST ICTO OUTER :

Figure D.5: (continued next page)

INNER:

; R3 = RSHIPT(R3,R12)
evaluate first condition
; R13 = SUB(R1,RS5)
LC PUSH_LT (RO, R13)
R15 = PASS(‘1’)
[INV] R15 = PASS(*0’)
[POP] R14 = AND (RO, R2)
LC_PUSH EQ(R14,R4)
R15 = AND(‘1’,R15)
[INV] R15 = PASS(‘'0’)
then’ leg
; [POP] LC_PUSEEQ(‘l',R15)
; R9 = PASS(‘1’)
; R10 = PASS(‘0’)
; R8 = ADD(RO,RS5)
evaluate second condition
; [INV] R13 = SUB(RO,R5)
; LCPUSH1E(‘0’,R13)
; R15 = PASS(‘1’)
; [INV] R15 = PASS(‘'0’)

LER T PO T TR T Y

£irst

[POP] R14 = AND(R13,R2)
; LC_PUSHEQ(R14,R4)
R15 = AND(‘1’,R15)
[INV] R15 = PASS(‘0’)
second ’‘then’ leg
; [POP] LC_PUSHEQ(‘l’,R15)
: RS9 = PASS(°0’)
; R10 = PASS(‘1’)
; R8 = SUB(RO,RS)
last leg of conditional
; [INV] R9 = PASS(‘0’)
; R10 = PASS('0’)
; RB = PASS(‘~-1’)
; [POP]
pass, compare, conditionally swap
; [POP] R7 = ROUTE(R6,R8)
; LC_PUSH.LT (R7,R6)
; LCPUSHEQ(‘l’,R9)
; R6 = PASS(R7)
; [POP]
; [POP] LC_PUSHGT (R7,R6)
; LC.PUSHEQ(‘l’,R10)
; R6 = PASS (R7)
; [POP]
; [POP] RS = SUB(R3,R2)
LTST ICTO INNER ; R4 = PASS(R2)

Figure D.5: Assembly Language Program for bitonic

196

APPENDIX D. THE SAMPLE PROGRAMS

program lsmmass(&Api, &Bpi, &Cpi, P):

INPUT:

OUTER:

INNER:

OUTPUT:

LDX IR0
LDX IR2

‘0’ ; R2 = LITERAL(‘6éApi - 1')

_1’ :

CJSR FORC INPUT ‘P-1’ ;

ILDX IR0 ‘0’ ; R2 = LITERAL(‘¢Bpi - 1')
LDX IR2 ‘P-1’ ;

CJSR FORC INPUT ‘P-1' ;

IDX IR0 ‘0’ ; Rl = LITERAL(‘&Api’)
ILDX IR0 ‘0’ ; R7 = LITERAL(‘&Bpi’)
DX IR0 ‘0’ ; R8 = LITERAL(‘&Bpi + P')
LDX IR0 ‘0’ ; R3 = LITERAL(‘&Cpi’)
CJSR FORC OUTER ‘P-1' ;

DX IR0 ‘0’ ; R2 = LITERAL(‘&Cpi - 1')
IDX IR2 ‘2 * P - 1’ ;

CJSR FORC OUTPUT ‘P-1' ;
HALT

SPX IR2 ‘1’ ; Rl = IOLD(‘0')
R2 = ADD(‘1l’,R2)

.
’

LTST ICTO0 INPUT ; STORE(R1, R2)
; R4 = LOAD(R1)

; R1 = ADD(*1’, R1l)

; R2 = ADD(R7, RO)

; R5 = LOAD (R2)

; R2 = ADD(‘'1’,R2)

; LC_PUSHEQ(R2,RS8)

’

.
’

R2 = PASS(R7)
CJSR FORC INNER ‘P-2’ ; [POP] R6 = MULT (R4, RS)
STORE (R6, R3)

LTST

LY YR T

.
’

’

.
’

R4
RS
R2

ICTO OUTER ; R3 = ADD('1l’, R3)

LDNO (R4)
LOAD (R2)
ADD (1’ ,R2)

LC_PUSH EQ(R2, R8)

R2 = PASS (R7)

{POP] R9 = MULT (R4, R5)

LTST ICTO INNER ; R6 = ADD(R6, R9)

R2 = ADD(‘1’,R2)

Rl = LOAD(R2)

SPX IR2 ‘1’ ; TIOST(R1l,‘0’)
LTST ICTO OUTPUT ;

Figure D.6: Assembly Language Program for matmual

progran mesh_sobel (sqrtP):
! Load the input pixel:
DX IR0 ‘0’ ; Rl = IOLD('0’)
! Flag the edge pixels:
IDX IR0 ‘0’ ; R8 = LITERAL(‘sqrtP’)
; R7 = MOD(RO,R8)
ILDX IR0 ‘0’ ; R2 = LITERAL(‘sqrtP * (sqrtP - 1)')
; R3 = ADD(‘-1’,R8)
LC_PUSHLT (RO, R8)
R9 = PASS(‘-1’)
(INV] RS9 = PASS('0')
(POP] LC_PUSHGE (RO,R2)
R12 = PASS(‘'-1’)
[(INV] R12 = PASS(‘0’)
[POP] LC_PUSHEQ(‘0’,R7)
R10 = PASS(‘-1')
[INV] R10 = PASS('0’)
[POP] LC_PUSHEQ(R3,R7)
R11 = PASS(‘~1’)
; [INV] R11 = PASS(‘0’)
! Calculate the x and y gradients:
; [POP] R2 = SDNO(R1)
LCPUSHEQ('-1',R11)
R2 = PASS(R1)
[POP] R3 = SUPO(R1)
LCPUSHEQ('-1’,R10)
R3 = PASS(R1l)
[POP] R13 = PASS(‘1l’)

Me Ny e e %s N W Se S Ne e
.

R4 = LSEIFT(R1,R13) ! pix * 2
R4 = ADD (R3,R4)

R4 = ADD (R4,R2)

R6 = SDN1 (R4)

LC_PUSHEQ('-1’,R12)
R6 = PASS(R4)

{POP] RS = SUP1(R4)
LCPUSH.EQ(‘-1’,R9)

R5 = PASS(R4)

[POP] R8 = SUB(R5,R6)
R6 = SDN1(R4)
LC_PUSHEQ('-1’,R12)
R6 = PASS (R4)

{POP] R5 = SUP1(R4)
LC_PUSHEQ(‘-1',R9)

R5 = PASS (R4)

(POP] R7 = LSHIFT(R4,R13) ! R4 * 2
R7 = ADD (R5,R7)

R7 = ADD (R7,R6)

We Ms Na Ng Ny We Ne Ny Ne Ng %e Ny s Se Mg Ny Ne Ng W5 Ne W %o Ne %o %y W ™

Figure D.7: (continued next page)

197

98

APPENDIX D. THE SAMPLE PROGRAMS

! Iterat:.vely calculate the root square gradient value:

! Write

SQRT:

; R8
; R2
: R3

R4
CJSR

MULT (R7,R7)
MULT (R8, R8)
ADD (R7, R8)
RSHIFT(R2,R13)
MULT (R3, R3)

FORC SQRT ‘12’ ; R4 = SUB(R4,R2)

the gradient magnitude result
DX IR0 ‘0’ ; IOST(R3,‘1')

HALT

; LCPUSHEQ('0’,R4)
: R9 = PASS('0’)
[(INV] RS = LSEIFT(R3,KR13)

;: RS

= DIV(R4,RS)

; LCPUSHEQ('0’,RS5)

: R10

= PASS(‘-1’)

;: LC_PUSH.LT(‘0’,R4)

; RS =

PASS(*1’)

; [INV] RS = PASS(‘'-1’)

; [POP]

[INV] R10 = PASS(‘0’)
(POP] R6 = SUB(R3,RS)
R7 = MULT(R6€,R6)

SUB (R7,R2)

; LCPUSREQ(‘'-1’,R10)
; LCPUSHGT('0’,R4)

; Rd =

;
;
;
; Rl =
H
;
’

SUB('0’ ,R4)

; [POP] IC PUSHGT('0’,R7)

; R =

SUB(‘0’,R7)

; [POP]
; LC_PUSHLT(R7,R4)

; R3

= PASS (R6)

; [POP] R9 = PASS('0’)

; R4 =

PASS(0’)

; [INV] R3 = PASS(R6)

; R4 =
; R9 =

PASS (R7)
PASS(‘'-17)

; [pPOP]
; [POP]
LTST RSP0 SORT ; RESPOND (R9)

Figure D.7: Assembly Language Program for sobel

program madian(&buf,P):

ébuf is address in local external memory of 9-elemant buffer that
is used to hold each of the latest 3 sorted local rows.

P is the number of PEs and the number of pixels per scanline and
the number of scanlines.

!
!
!
!
!
'
'

IR1 holds the input line number, IR2 holds the ocutput line number.

-
.
’

.
’

px IR1 ‘-2’ ;

SPX IR1 ‘2’ ; R10 = IO ID('0’)

DX IR2 ‘-1’ ;

ILDX IR0 ‘0’ ; Rl14 = LITERAL(‘'512’)
IDX IRO ‘0’ ; R1S = LITERAL('‘P - 1')
IDX IRO ‘0O’ ; RS = LITERAL(‘'‘&buf’)
IDX IRO ‘0’ ; R3 = LITERAL(‘sbuf + 3’)
IDX IRO ‘0’ ;: Rl = LITERAL(‘gbuf + 6')

R6 = DASS (RS)

; R4 = PASS(R3)

R2 = PASS(R1)

! Grab the first line, sort the local 3 pixels

.
’

R7 = PASS(R10)

SPX IR1 ‘2’ ; R10 = IOLD('0’)

-
’
’
.

.
.
I3

’

R8 = LOUPO (R7)

; LCPUSHEQ('0’,R0)
; R8 = PASS (R7)

[POP] R9 = LDNO (R7)

; LCPUSHEQ(R15,R0)
; RS = PASS(R7)

CJISR FORC SORT.3 ‘0’ ; [POP]
! Store the locally sorted first row twice

-
’

’

~e

® W4 s Ny Ny we Ny

’
-
’
-
.

STORE (R7, R6)

; R6 = ADD('1’ ,R6)

STORE (R8, R6)

RE = ADD('1’,R6)
STORE (R9, R6)

R6 = PASS (RS5)
STORE (R7, R¢)

Re = ADD(‘1’,R4)
STORE (RS, R4)

R4 = ADD('1’,R4)
STORE (R9, R¢)

R4 = PASS (R3)

! Grab the second row, sort the local 3 pixels

.
’

R7 = PASS (R10)

SPX IRl ‘2’ ; R10 = JOLD('0’)

e v W

.
’
.
.
I3

R8 = LUPO (R7)
LC_PUSE EQ('0’,R0)
R8 = PASS (R7)

[POP] R9 = LDNO(R7)
LC_PUSH EQ (R15, R0)
R9 = PASS (R7)

CJSR FORC SORT.3 ‘0’ ; [POP]

Figure D.8: (continued next page)

199

! Store the locally sorted row to mamory,

; STORRE (R7,R2)

; R2 = ADD(*1’,R2)

; STORE (R8,R2)

; R2 = ADD('1’,R2)

; STORE (R9,R2)

; R2 = ADD('~1’,R2)

; R8 = LOAD (R4)

; R4 = ADD('1’,R4)
R9 = LOAD (R€)

APPENDIX D. THE SAMPLE PROGRAMS

set up local madian calc:

! Skip over the four least of the 9 pixels in the 3 sorted buffers:

CISR FORC SKIP_LEAST ‘3’ ; R6 = ADD('l’,R6)

! Pick the least remaining element, put it into Rll

CJSR FORC PICK.LEAST ‘0’ ;
! rotate the buffer pointer base addressas,

; R12 = PASS(RS)
; RS = PASS(R3)
; R3 = PASS (R1)
; Rl = PASS(R12)
; R6 = PASS (RS)
; R4 = PASS (R3)

! Iterate the steady-state loop P-3 times

! Store

CJSR FORC MF.LOOP ‘P-4’ ; R2 = PASS(R1)
; R7 = PASS (R10)

SPX IR2 ‘2’ ; IOST(R11, *0’)

; R8 = LUPO (R7)

; LC_PUSH.EQ('0’,RO)

; R8 = PASS(R7)

; [POP] R9 = LDNO (R7)

; LC_PUSH_EQ(R1S,RO)

; R9 = PASS (R7)

CJISR FORC SORT.3 ‘0’ ; [POP]

re-initialize buffer pointers

the locally sorted row to memory, set up local msdian calc:

; STORE (R7,R2)

; R2 = ADD('1’,R2)
; STORE (R8,R2)

; R2 = ADD(‘1',R2)
; STORE (RS, R2)

; R2 = ADD(‘'~1’,R2)
; R8 = LOAD (R4)

; R4 = ADD('1’,R4)
; R9 = LOAD (R6)

! Skip over the four least of the 9 pixels in the 3 sorted buffers:
CJSR FORC SKIP_IEAST ‘3’ ; R6 = ADD(‘'l’,R6)
! Pick the least remaining element, put it into Rll

CJSR FORC PICK.LEAST ‘0’

Figure D.8: (continued next page)

! rotate the buffer pointer base addresses, re-initialige buffer pointers
SPX IR2 ‘2’ ; TIOST(R1l, ‘0')
R12 = PASS (RS5)
RS = PASS(R3)
R3 = PASS (R1)
Rl = PASS(R12)
R6 = PASS (RS)
! Copy lback into curr and set up median calculation for final row
R4 = ADD (2’ ,R3)
R9 = LORD (R4)
R4 = ADD(‘-1’,R4)
R2 = ADD('2’,R1)
STORE (R9, R2)
R2 = ADD(*~1’,R2) ! curr points to second element of row
R8 = LOAD (R4)
R4 = ADD(‘-1’,R4)
STORE (R8, R2)
R7 = LOAD (R4)
R4 = ADD('1’,R4) ! lback points to second element of row
RS = PASS (R7)
R9 = LOAD (R6)
CJISR FORC SKIP LEAST ‘'3’ ; R6 = ADD('1l’,R6) ! 2back points to 2nd elt
! Pick the least remaining eleament, put it into Rll
CJSR FORC PICK.LEAST ‘0’ ;
SPX IR2 ‘2’ ; IOST(R1l1, ‘0’)
HALT ;

Ne %o Ny ve w,

Ve e Ne %e Na % e N Se Se Ne e W

SORT_3:

ILC PUSH LT (R8,R7)

R12 = PASS(R7)

R7 = PASS (R8)

R8 = PASS (R12)

[POP] LC. PUSH.LT (R9,R7)
R12 = PASS (R7)

R7 = PASS (R9)

R9 = PASS (R12)

[POP] LC.PUSH.LT (R9,R8)
R12 = PASS(RS8)

R8 = PASS (R9)

; R9 = PASS(R12)

LTST ICTO SORT.3 ; [POP]

Se Ss Ny N

Ne %e Na %o Ss Se N

Figure D.8: (continued next page)

201

202 APPENDIX D. THE SAMPLE PROGRAMS

SKIP.LEAST:
; LC_PUSHLT (R7,R8)
; LCPUSH.LT (R7,R9)
; R13 = ADD('3’,R1)
; LCPUSHEQ(R2,R13)
; R7 = PASS(R14) ! make pix0 bigger than any pixel
; [INV] R7 = LOAD(R2)
: R2 = ADD('1’,R2)
(poR]
[INV] R13 = ADD(‘3’,RS)
LC PUSH EQ(R6,R13)
R9 = PASS(R14) ! make pix2 bigger than any pixel
[INV] R9 = LOAD (R6)
R6 = ADD('1’,R6)
[poP]
[PoP]
; [INV] LC_PUSH LT (R8S,R9)
; R13 = ADD(‘'3’,R3)
; LC_PUSH EQ(R4,R13)
; R8 = PASS(R14) ! make pixl bigger than any pixel
; [INV] R8 = LOAD(R4)
; R4 = ADD('1’,R4)
; [POP]
; [INV] R13 = ADD(‘3’,R5)
; LC_PUSHEQ(R6,R13)
; RO = PASS(R14) ! make pix2 bigger than any pixel
; [INV] R9 = LOAD (R6)
; R6 = ADD(‘1’,R6)
; [POP]
; [POP]
LTST ICTO SKIP_LEAST ; [POP]
PICK.LEAST:
; LC_PUSHLT (R7,R8)
; LC_PUSH.LT (R7,R9)
; R11 = PASS(R7)
; [INV] R11 = PASS (R9)
(roP]
[INV] LC.PUSH.LT (R8,R9)
R1l = PASS(R8)
[INV] R11 = PASS(R9)
; [POPR}
LTST ICTO PICK.LEAST ; [POP]
MF_LOOP :
! Internalize next row of pixels
; R7 = PASS (R10)

Ne Mo Se Ne Ne Se Se N

Se v Se v

SPX IR2 ‘2’ ; I0.ST(R11, ‘0’) ! on SLAP, these two I/O

SPX IR1 ‘2’ ; R10 = IOLD('0’) ! operations overlap fully.
; R8 = LUPO(R7)

; LC_PUSHEQ('0’,RO0O)

; R8 = PASS (R7)

Figure D.8: (continued next page)

203

; [POP] R9 = LDNO(R7)
; LC_PUSH EQ(R15,R0)
: R9 = PASS(R7)
! Sort the 3 pixels in the neighborhood
CJSR FORC SORT.3 ‘0’ ; [POP]
! Store the sorted 3 elemants to memory, set up local median calculation:
STORE (R7, R2)
R2 = ADD(‘1’ ,R2)
STORE (R8, R2)
R2 = ADD(‘1l’,R2)
STORE (R9, R2)
R2 = ADD(‘'-1’,R2)
R8 = LOAD(R4)
R4 = ADD('1’,R4)
R9 = LOAD (R6)
! Skip over the four least of the 9 pixels in the 3 sorted buffers:
CJISR FORC SKIP_IEAST ‘3’ ; R6 = ADD('1’',R6)
! Pick the least remaining element, put it into Ril
CJSR FORC PICK IEAST ‘0’
! rotate the buffer pointers
; R12 = PASS (R5)
RS = PASS (R3)
R3 = PASS (R1)
Rl = PASS(R12)
R6 = PASS (R5)
R4 = PASS (R3)
LTST ICTO MF.LOOP ; R2 = PASS(R1)

Ne %a W4 Na Ne we Np we W

~e Ne N

ve wo v

Figure D.8: Assembly Language Program for median

204 APPENDIXD. THE SAMPLE PROGRAMS

Appendix E

Measured F; and F, Speedup Bounds

Two simplest single-port I-caches, Fy and F3, were designed. Each of these I-caches is capable of
storing only a single cache block at a time. The difference between them is that F, contains an
iteration counter and is able to sequence through multiple iterations of a cache block from a single
activation, whereas Fy executes only single iterations of cache blocks.

These I-cache variants were evaluated for the sample programs through detailed simulation on
each of four SIMD computer variants, SIMD-A, B, C, and D. These computers differ, for example, in
PE datapath widths and in numbers of PEs per PE chip. In the simulations, operation stepcount
parameters were used to express the number of clock cycles required to perform each operation
on problem data. The following table summarizes the characteristics of the four SIMD computer
variants, including typical stepcounts for 32-bit problem data:

T - [SIMD-A [SIMD-B [SIMD-C | SIMD-D
PEs perchip [128 32 4 2
[FU bit-width 1 4 16 | 32
[T NOR stepcount 32 8 2 | 1
ADD stepcount 32 8 2 1
MULT stepcount | 1056 263 34 1
LC_PUSH_EQ stepcount 32 8 2 1
LOAD stepcount | 128 32 4 2
LDNO stepcount 32 8 2 1

Maximum subsystem clock rates depend on wire geometries and electrical propagation character-
istics of the implementation technology. In the simulations, p-set parameters were used to express
relative multi-chip subsystem (MCS) clock rates. The PE clock rate is px times higher than the clock
rate for MCS X. Highest I-cache speedups are obtained where all MCSs other than global instruc-
tion broadcast operate at the highest possible clock rates. The limitation arising from relatively
slow instruction broadcast is most severe in this case. Lowest I-cache speedups are obtained where
all MCSs operate at the low rate of global instruction broadcast. Subsystem-boundedness is most
severe in this case, and I-cache is least advantageous because a greatest proportion of computation
time is spent waiting for MCS operations to complete, as opposed to waiting for globally broadcast
instructions to arrive at the PE chips.

I-cache speedup bounds were obtained by simulating I-cached computations at the p-sets charac-
terizing the limiting extremes of relative MCS clock rates. This appendix presents the complete set
of measured I-cache speedups, for each sample problem on each SIMD computer variant. In each
case, the speedup bounds are plotted against values of p;, ranging from 1 to 16.

205

206 APPENDIXE. MEASURED F, AND F, SPEEDUP BOUNDS

Superimposed on each set of measured speedup bounds is a curve of the form

A+C)py
pp+ C

This speedup formula, derived in Section 5.10, is an approximation of the speedup of program simple,
consisting of one loop. C represents the product of the fraction of instructions in simple that lie
within the loop times the number of loop iterations. The closeness of fit of this approximation to the
I-cache speedups for the sample programs is remarkable, in view of their varying and sometimes
complex loop structures. The one significant departure from a good fit occurs for Fs for the sample
problem rowcol, due to poor cache management used in that case. For F; speedup bounds on
rowcol, the measured values are fit to a curve of the form

(1+C’)pb_ 9Pb
m+C m+C

where the parameter g expresses the fraction of instructions in simple that lie within the loop. The
second term in this formula represents an I-cache penalty.

The graphs on the following pages are plotted to scales indicated at the bottom of each left-hand
(even-numbered) page.

207

208

APPENDIX E. MEASURED F, AND F, SPEEDUP BOUNDS

median on SIMD-A

F. @ UpperBound Ce=d¢
2 A LowsrBound C=0S
O UpperBound C=4

F° A LowerBound C=05

o}
S o
°©
®
3]
S
w
bk -
1 'l 1 1 L | L
2 4 6 8 10 12 14 16
median on SIMD-B
F, @ UmperBound Ce39
2 A LowwBound Ce=05 ;
F O UpperBound C=37
0 A LowsrBound C=05
g
2 Fo
D
Q.
w
L o] L 1 1 1
2 4 6 8 10 12 14 16
(E1A-E.1B)
; ‘ bitonic bubble matmul
‘ ' “tree scan rowcol

209

median on SIMD-C

F, @ UmerBound Co26
2 4 LowerBound Ce=09

F. O UpperBound C=21
O A LowsrBound C«08

Q
=
[
1]
& Fo
L £ L —te L i 1
2 4 8 10 12 14 16
S
median on SIMD-D
® UpperBound C=27
4 F’ A LowerBound Ce=1.1
F, © UsperBound Ce=2
0 A LowerBound C=09
Q
S
©
]
3 A

1 L L L 1 1 1

2 4 6 8 10 12 14 16

Po

Figure E.1: F;- and F,-Speedup Bounds for the program median on SIMD-A, B, C, & D.

The I-cache speedups are low because of the program’s complex loop structure. To
get good speedup for this program, an I-cache variant needs to be able to store
multiple cache blocks at once. Fy and F, are capable of storing only a single cache
block at a time, so the cache blocks tend to thrash these simple I-cache variants.

median

210 APPENDIX E. MEASURED F, AND F, SPEEDUP BOUNDS

sobel on SIMD-A

Speedup

Ce54
C=52

C=53
Ce51

14 16

5
sobel on SIMD-B
4
3
o
=
©
]
@
a.
w
2k
F, @ UspwrBound C=53
2 A LowerBound C=5.1
! F © UpperBound C=4.¢
O A LowerBound C=47
L] 1 1 A L 1
2 4 6 8 10 12 14 16
(E.2A -E.2B)
16
T BEE bitonic bubble matrmul
5~ scan rowceo! :
median ;

sobel on SIMD-C

Speedup

1
Fo A
LowerBound C=34

sobel on SIMD-D

Speedup

Fo A LowerBound C=1.3

-

L 2
8

Po

Figure E.2: F,- and F,-Speedup Bounds for the program sobel on SIMD-A, B, C, & D.

The loop body of this program is a square-root approximation-refinement step
whose iteration is globally data-dependent. The small differences between upper
and lower speedup bounds confirm that the repeated instruction sequence is
extremely calculation-intensive. The modest I-cache speedups for this program are

due primarily to a small total iteration count of the loop body.

211

sobel

212

APPENDIX E. MEASURED F, AND F, SPEEDUP BOUNDS

tree on SIMD-A
@ Upper Bound
A Lower Bound

O Upper Bound
& Lower Bound

F:

Fo

Cei4t
C=39

C=133
C=38

1 L L L. S X L 't
2 4 6 8 10 12 14 16
10
g} tree on SIMD-B
F, ©® UpperBound C=14: Y
8r 2 A LowerBound Cw21

Speedup

© Upper Bound

Fo A Lower Bound

1 L L 1] L L
2 4 6 8 10 12 14 16
(E.3A-E.3B)
bitonic bubble matmut
‘i scan rowcol
! medan sabel

213

10

sl tree onsIMD-C

F @ UpperBound C=14.1
8 F 2 A LowwrBound C=08

F. © UpperBound Ce=89
O A LowsrBound C=07

b

o
b
b
3

10
oL tree onsSiMD-D

F ® UpperBound C=138
2 A LowerBound C=0.4 1

F © UpperBound C=77
0 A LowerBound

Speedup

Figure E.3: F,- and F,-Speedup Bounds for the program tree on SIMD-A, B, C, & D.

This program consists of a short prolog followed by single iterated loop. The
speedup upper bounds are lower for Fy than for F, because of quantization.

tree

214

APPENDIX E. MEASURED F, AND F; SPEEDUP BOUNDS

o} SCan onSIMD-A

® UpperBound C =188

8 ? & LowsrBound C=13
F O UpperBound C=17§
7 9 A LowsrBound C=12

Q
5 Fo
5]
(3
Q
w
i i
12 14 16
10
s+ s$can on SIMD-B 9
F. ® UpperBound C =182 p
8 r 2 A LowsrBound Ce=11
O U Bound Ce=151
7 Fo - C=11
6
Q
3
8 5 Fo
Q
W
4
3
2 \ -
3
L L 5 d L L
2 4 6 8 10 12 14 16
(E4A -E.4B)
bitonic bubble matrnul

~scan

10

9} SCan onSIMD-C |

F ® UpperBound C =165
8F 2 A LowerBound Ce07

F O UpperBound C =105
O A LowerBound Ce=07

Q ;
a ;
.D H
d 5 |
& |
n R jFo
|
{
a !
|
2 i
1
1 L 1 i K B
2 4 6 8 10 12 14 16
19
9} Scan onSIMD-D !
F, @ UpperBound C=169
8 2 A LowerBound C=04
F. O UpperBound Ca95
r O A LowerBound Cw0.4
-
6
=%
=)
® s
@
&
4 F
3
2
-
:
1 1 1 L]l 1 ¥ I
2 4 6 8 P 10 12 14 1%

Figure E.4: F5- and F,-Speedup Bounds for the program s$can on SIMD-A, B, C, & D.

This program consists of two loops that execute successively. The loop bodies do
not conflict in cache, so the speedup curves look like those for a program consisting
of a single loop.

scan

216

APPENDIX E. MEASURED F, AND F: SPEEDUP BOUNDS

10

Speedup

rowcol on SIMD-A

F. @ UpperBound Ce28 g= 103
2 A LowerBound C=3 g=258

E O UpperBound Cege
% A LowerBound Ce2

10

rowcol on SIMD-B

9}
F, @ UmpsrBound Ce20 ge132
8+ 2 & LowerBound C=3 ge26
F O UpperBound Ce=53
7r % A LowerBound Ca1g
RS
Q
=]
? s
1)
Q
1)
F
(E.5A -E.5B)
16~
,]
0=
! bitonic bubble matmul
s- } tree scan
L median sobel

10

o[rowcol onsiMD-C

F, ® UmeBond C=10 g=e7
8 A LowsrBound C=3 g=27

F. © UpperBound Co=23
F © A LowsrBound C=09

Speedup

o L rowcol onSIMD-D

F @® UpperBound C=7 g=47
2 A LowwrBound C=3 g=27

F, © UpperBound Cw=1.4
7r 0 A LowsrBound C=05

Speedup

Figure E.5: F,- and F,-Speedup Bounds for the program rowcol on SIMD-A, B, C, & D.

The row and column sorts that are the inner loops of this program execute for
data-dependent numbers of iterations. The low F, speedups show that the
management used, effectively unrolling the loops by 4, is disadvantageous. This poor
result illustrates the hazards of poor cache management. The F, results are so poor
that the error term (g) must be included in the simple-equivalent speedup function in
order to achieve a good fit.

217

rowcol

218

APPENDIXE. MEASURED F, AND F, SPEEDUP BOUNDS

16

"

12 ¥

bitonic on SIMD-A

F. @® UpperBourd C=649
2 4 LowsrBound C=159

O UpperBound C=649

Fo A LowerBound C=159 F
]
10
o}
=)
°© b
D 8
)
Q
7]
6
4
2
2 8 10 12 14 16
16
bitonic on SIMD-B
14 |
F. ® UpperBound C=476
2 4 LowsrBound C=81
F O UpperBound C=476
0 A LowerBound C=81
g "
©
[}
%}
o
wn
(E.6A - E.6B)
16~
!
|
1=
I bubble matmut
s—r tree scan rowcol
. median sobet

219

16

bitonic on SIMD-C
14 }F
F. ® UppwrBound C=29
2 A LowwrBound C=29
12}F

F O UpperBound C=2%
O A LowerBound C=29

16

bitonic on SIMD-D
14}
F, ©® UsperBound C=207
2 4 LowsrBound C=17

2 E O UpperBound C=207
o

A LowerBound C=1.7

Figure E.6: Fy- and F,-Speedup Bounds for the program bitonic on SIMD-A, B, C, & D.

The number of iterations of the inner loop varies on each iteration of the outer loop
as a function of the outer loop index and the input data set size. The basis computer’s
system controller lacks the ability to activate F, cache blocks for varying numbers of
iterations. The resulting management of F, I-cache is to iterate cache blocks singly.
Therefore, results obtained with F, are identical to those obtained with F,

bitonic

220

APPENDIX E. MEASURED Fo

AND F, SPEEDUP BOUNDS

16

bubblie on SiMD-A
F, ® UpoerBound Cw=5872
2 & LowerBound Ces

F O Upper Bound Cw525
% 4 LowsrBound Ce3g

10

Speedup
-]

16

16

14 }

12

10

Speedup

bubble on siIMD-B

F ® Upper Bound C=2282
2 & LowerBound =41

F. © UpperBound Cw138
9 A LowstBound Cm29

(E7A-E.7B)

10

16

median

L.d

| sobel

matmul

16

bubble on SIMD-C

©® UpperBound C=815

F A LowsrBound C=4.3

F O UpperBound C=38
® A LowerBound C=16

Speedup

16
bubble on SIMD-D

F. @ UpperBound Ce=518
2 A LowsrBound Ce=4s

F O UpperBound C=19
O A LowsrBound Ce1

14

12

16

Figure E.7: Fy- and F,-Speedup Bounds for the program bubble on SIMD-A, B, C, & D.

The difference between the speedup upper bounds is less on SIMD-A than on
SIMD-D. The loop body on SIMD-A contains a large number of instructions, as are
needed to control the simple FU. Each iteration of the loop body is made nearly p,
times faster with Fy on SIMD-A. On SIMD-D, whose PEs have a more powerful FU,
the speedup is not so great for single iterations, and quantization causes the F,
speedup upper bound to be much lower than the F, upper bound.

221

bubble

222

APPENDIX E. MEASURED F, AND F; SPEEDUP BOUNDS

16

16
matmul on SIMD-A
14
F @ UpperBound C=8599
2 A LowerBound C=87
2 F. O UpperBound C=401.
0 A LowerBound C=86
10
a
=]
B
O 8|
@
o
(77]
6 |
4}
2 -
L L (1 'l 'l L L
2 4 6 8 10 12 14
16
matmul on SIMD-B
14 b
F, © UpperBound C=635.
2 A LowerBound C=84
12 F
C=1452

F © Upper Bound
O A LowerBound

10

Speedup

C=8.1

6 8

Po

10

(E.8A -E.8B)

12

14

16

F

F

 sobef

: ‘bubbie

223

16
matmul onSIMD-C

F. @® UpperBound C=2014
2 A LowsrBound Ce=59

F O UpperBound C=26.2
O A LowsrBound Ce=49

16

matmul on SIMD-D
14}
® UpperBound C =408

F. A LowerBound C=07 °

F, O UpperBound Ce=47
0 A LowsrBound C=04

Speedup

Figure E.8: F,- and F,-Speedup Bounds for the program matmul on SIMD-A, B, C, & D.

The poor fits of the simple-equivalent speedup curve to the F, upper bound on
SIMD-C and on SIMD-D are due to quantization. However, the fit to the F, upper
bound on SIMD-D is also somewhat poor, arising from a slowdown at p, = 1. This
poor fit suggests that it is not so appropriate to discard the simple-equivalent speedup
formula error term in this case as it is for most of the other cases.

matmul

224 APPENDIX E. MEASURED F, AND F, SPEEDUP BOUNDS

Appendix F

Summary of Fy Speedup Bounds

To facilitate comparison of the range of I-cache bounds, a complete set of “simple-equivalent” F,
speedup lower bounds measured on each SIMD computer variant is plotted on one graph, and a

complete set of “simple-equivalent” Fy speedup upper bounds measured on each SIMD computer
variant is also plotted on one graph.

225

226 APPENDIX F. SUMMARY OF F, SPEEDUP BOUNDS

10
F, Lower Bounds — SIMD-A
S C 9
— bitonic 159
L
— matmul 86
Q []
2
=l
5]
8. — sobel 5.1
n
—— tree 38
™~ bubble 3s
— rowcol 20
— scan 13
— median 05
L . L _— ' L L
2 4 6 8 10 12 14 16
10 F
Fy Lower Bounds — SIMD-B
9}
8 |
7 F
bitonic [R]
o < matmul 8.1
2
©
[+3)
7]
(% — sobel 47
— bubble 29
— e 20
— rowcol 16
— scan 1.4
— median 0S
1 - L 1 L 1 cvamhn. '
2 4 6 8 10 12 14 16
Upper (F.2A -F.2B)

227

10 F

Fo Lower Bounds — SIMD-C

Speedup

ot
Fo Lower Bounds — SIMD-D

Speedup

Figure F.2: A summary of Fo Lower Bounds on the subject programs in SIMD-A, B, C,&D.

Curve spreads decrease as the hardware variant becomes more powerful.

Fo Lower Bounds

228

Speedup

Speedup

APPENDIX F. SUMMARY OF F, SPEEDUP BOUNDS

16 | c |
Fo Upper Bounds — SIMD-A — matmul 4011 |
14 :
— bitonic 649 ‘
—- bubble 525 .
12
!]
10
|
— scan 175,
°r — ree 133
6 b / — rowcol 86
— sobel 53
4l —— median 4.0
2|
1 A 1 Nl L) - 1
2 4 [10 12 14 16
16 |
Fo Upper Bounds — SIMD-B c o
— matmul 1452
14
12 — bitonic 476
10
8 — scan 15.1
T~ bubble 138
— tree "s
6
—r | 53
o F < Sbel s
— median 3.7
2 F
1 1 1 1 2 L 1 4
2 4 6 8 10 12 14 16
16— f
10~
(F1A-F1B)

Lower
Bounds

229

16 [

Fy Upper Bounds — SIMD-C

14 |

C
— bitonic 299
T~ matmul 262

— scan 105
— tree 89
é bubble 2186
sobel 35
—roweo! 23
N median 24
L 1] L 1 L 4
2 4 6 8 10 12 14 16

Fo Upper Bounds SIMD-D

R
12 |

10 -
~— bitonic 207

Speedup

— scan
— lree

— matmul

median
< bubbie

N

Figure F.1: A Summary of F, Upper Bounds on the subject programs in SIMD-A, B, C, & D,
Quantization for matmul reorders the speedups on SIMD-D.

 *\ﬁ

Fo Upper Bounds

230

APPENDIX F. SUMMARY OF Fo SPEEDUP BOUNDS

il

Appendix G

Summary of I, Speedup Bounds

To facilitate comparison of the range of I-cache bounds, a complete set of “simple-equivalent” F,
speedup lower bounds measured on each SIMD computer variant is plotted on one graph, and a

complete set of “simple-equivalent” Fy speedup upper bounds measured on each SIMD computer
variant is also plotted on one graph.

231

232 APPENDIX G, SUMMARY oF F, SPEEDyP BOUNDS

e b

- matmy}

~—— sobe|

bubble
tee

Speedup

F, Lower Bounds —. SIMD-B

T Mmatmul

~—— Sobe!
~— bubble

Speedup

~— tree

— &can

~—— median
~—— rowcol

(G.2A-G.2B)

233

10
F, Lower Bounds — SIMD-C
[- 3 5
s
7
6}
g c g
§ S] — matul 59
wn — sobel 48
4F — - bubble 43
— bitonic 29
3f
2F _~ median 09
=~ tree 08
™\ scan 07
1/ N rowcol 30| 27
X "l 1 1 1 L i
2 4 6 8 pb 10 12 14 16
10
F, Lower Bounds — SIMD-D
9}
a-
71
6
Q
S
g 5 C
2 Ll9
7)) -— bubble 43
4 ¢
—— sobel 33
3
—- bitonic 1.7
2F —— median 1.1
sm oy
X scan 04
1/ "\ rowcol 30| 27
'] Il 1] 1 L 1
2 4 6 8 10 12 14 16

Figure G.2: A summary of F, Lower Bounds on the subject programs in SIMD-A, B, C, & D.

SIMD-C and D I-cache speedups are very similar.

F, Lower Bounds

234 APPENDIX G. SUMMARY OF F, SPEEDUP BOUNDS

6 1— matmul eses
F, Upper Bounds — SIMD-A #71"\ bubbie se72
14
— bitonic 645
12 F
10
[« X J—
= scan 188 J
©
O 8| — tree 149
<33
Q.
w
s
— sobel 54
4} =— median 40
A N\ rowcol 280 | 183
2
L) S 1 [l L 1 1
4 6 8 10 12 14 16
C 9
e F — matmul 6351
F; Upper Bounds — SIMD-B — bubble 2282
14 |
12 L - bitonic 4716
10
g’ — scan 182
©
O 8 — tree 141
4]
o
(7]
of
— sobel 53
4} — median 39
— rowcol 200 [132
2 -
1 L 1 1 L L 1

S (G.1A-G.1B)
Lower -
laoun'ds :

16

14

16

14

12

10

Speedup

235

C
F, Upper Bounds — SIMD-C — matmul m—u‘f—"‘
—— bubbie 15 /
— bitonic 299
— scan 165
— tree 14.1
” — sobel 47
— median 24
——rowcol 100 g7
/’-__-T-—')3 -1 i 1 'l
4 6 8 10 12 14 16
F; UpperBounds — SIMD-D
~— bubble 51
— matmul 404
~— bitonic 207
~— scan
— tree
e — soz: 33
—_ 27
B — rowenl
/
L . 1 L 1 L
4 8 10 12 14 16

F, Upper Bounds

236

APPENDIX G. SUMMARY OF F, SPEEDUP BOUNDS

Bibliography

1] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. VLSI Systems Series.
Addison-Wesley Publishing Company, Reading, MA, 1990.

(2] Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice-Hall, New Jersey, 1982.

[3] George H. Barnes, Richard M. Brown, Maso Kato, David J. Kuck, Daniel L. Slotnick, and
Richard A. Stokes. The ILLIAC IV computer. IEEE Transactions on Computers, pages 746-757,
1968.

{4] Kenneth E. Batcher. Design of a massively parallel processor. IEEE Transactions on Computers,
pages 836-840, September 1980.

[5] Mel Bazes and Roni Ashuri. A novel CMOS digital clock and data decoder. IEEE Journal of
Solid-State Circuits, 27(12):1934-1940, December 1992.

[6] J. Beetem, M. Denneau, and D. Weingarten. The GF11 supercomputer. In The 12th Annual
International Symposium on Computer Architecture, pages 108-115. IEEE Computer Society,
June 1985.

[7] Gordon Bell. Ultracomputers: A Teraflop before its time. CACM, 35(8):26-47, August 1992.

[8] Tom Blank. The MasPar MP-1 architecture. In Proceedings of IEEE Compcon Spring 1990.
IEEE, February 1990.

[9] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers,
38(11):1526-1538, November 1989.

[10] Timothy Bridges. The GPA machine: A generally partitionable MSIMD architecture. In The
Third Sympoisum on the Frontiers of Massively Parallel Computation. IEEE, October 1990.

[11] Peter Calingaert. Operating System Elements. Prentice-Hall, Englewood Cliffs, N.J., 1982,

[12] Dao-Long Chen. Designing on-chip clock generators. IEEE Circuits and Devices Magazine,
pages 3236, July 1992.

[13] Vernon L. Chi. Salphasic distribution of clock signals. Technical Report 90-026, University of
North Carolina at Chapel Hill, Department of Computer Science, June 1990.

(14] F. Chow and J. Hennessy. Register allocation by priority-based coloring. In Proceedings of the
SIGPLAN °84 Symposium on Compiler Construction, pages 222-232. ACM SIGPLAN, 1984.

[15] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. P. Papworth, and P. K. Rodman. A VLIW architecture
for a Trace Scheduling compiler. IEEE Transactions on Computers, pages 967-879, 1988.

237

238 BIBLIOGRAPHY

(16] Jon Wade (Thinking Machines Corporation). Easy questions about cm-2 chips. Electronic mail
message, July 1993. A response to a query through Skef Wholey.

17] SkefWholey (Thinking Machines Corporation). Cm-200 specs. Electronic mail message, March
1993.

[18) Thinking Machines Corporation. Connection machine model CM-2 technical summary. Techni-
cal Report HA87-4, Thinking Machines Corporation, Boston, MA., April 1987.

[19] William J. Dally. A VLSI Architecture for Concurrent Data Structures. PhD thesis, California
Institute of Technology, 1986.

(20] Peter J. Denning and Walter F. Tichy. Highly parallel computation. Science, 250(4985):1217-
1222, November 1990.

[21] Dan Dobberpuhl, Richard Witek, et al. A 200MHz 64b dual-issue CMOS microprocessor. IEEE
Journal of Solid-State Circuits, 27(11):1555~-1567, November 1992.

[22] David C. Douglas, Brewster A. Kahle, and Alex Vasilevsky. The architecture of the CM-2 data
processor. Technical Report HA88-1, Thinking Machines Corporation, February 1988.

{23] Frederico Faggin. How VLSI impacts computer architecture. IEEE Spectrum, pages 28-31,
May 1978.

(24] Allan L. Fisher. Implementation Issues for Algorithmic VLSI Processor Arrays. PhD thesis,
Carnegie Mellon University, November 1984.

[(25] Allan L. Fisher and Peter T. Highnam. Real-time image processing on scan line array processors.
In IEEE Computer Society Workshop on Computer Architectures for Pattern Analysis and Image
Database Management. IEEE, November 1985.

[26] Allan L. Fisher, Peter T. Highnam, and Todd E. Rockoff. Architecture of a VLSI SIMD processing
element. In Proceedings of the IEEE International Conference on Computer Design: VLSI in
Computers & Processors, pages 324-327. IEEE, May 1987.

[27] Allan L. Fisher, Peter T. Highnam, and Todd E. Rockoff A four-processor building block for
SIMD processor arrays. IEEE Journal of Solid State Circuits, 25(2):369-375, April 1990.

(28] Allan L. Fisher and John A. Zsarnay. System support for a VLSI SIMD image computer. In
Robert W. Brodersen and Howard S. Moscovitz, editors, VLSI Signal Processing, 111, chapter 14,
pages 141-147. IEEE Press, 1988.

[29] J. A. Fisher. Trace Scheduling: A technique for global microcode compactio::. {ZEE Transactions
on Computing, pages 478-490, 1981.

(30] P. M. Flanders, D. J. Hunt, S. F. Reddaway, and D. Parkinson. Efficient high speed computing
with the distributed array processor. In High Speed Computer and Algorithm Organization,
pages 113-128. Academic Press, Inc., New York, 1977.

[31] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, C-21(9):948-960, September 1972.

(32] Terry J. Fountain, K. N. Matthews, and Michael J. B. Duff The CLIP7A image processor. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(3):310-319, May 1988.

BIBLIOGRAPHY 239

(33] Robert Grondalski. A VLSI chip set for a massively parallel architecture. In 1987 IEEE
International Solid-State Circuits Conference Digest of Technical Papers, pages 198-199. IEEE,
February 1987.

[34] T. R. Gross. Code Optimization of Pipeline Constraints. PhD thesis, Stanford University, 1983.

[35]) Hiroyuki Hara et al. 0.5-um 3.3-v BICMOS standard cells with 32-kilobyte cache and ten-port
register file. IEEE Journal of Solid-State Circuits, 27(11):1579-1584, November 1992.

[36] R. Heaton, D. Blevins, and E. Davis. A bit-serial VLSI array processing chip for image processing.
IEEE Journal of Solid State Circuits, 25(2).:364—368, April 1990.

{37] R. A. Heaton and D. W. Blevins. BLITZEN: A VLSI array processing chip. In Proceedings of the
IEEE 1989 Custom Integrated Circuits Conference. IEEE, May 1989.

[38] John L. Hennessy. VLSI processor architecture. IEEE Transactions on Computers, 33(12):1221 ~
1246, December 1984.

[39] Peter T. Highnam. Systems and Programming Issues in the Design and Use of a SIMD Linear
Array for Image Processing. PhD thesis, Carnegie Mellon University, April 1991.

[40] Danny Hillis. CM-5 connection machine. Internet post to comp.arch, November 1991.

[41] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. CACM, pages 1170-1183, December
1986.

[42] W. Daniel Hillis. The Connection Machine. The MIT Press, Cambridge, MA, 1985.

[43) B. Hoeneisen and C. A. Mead. Fundamental limitations in micro-electronics —I. MOS technology.
Solid-State Electronics, 15:819-829, 1972.

[44] Y. Hsu and H. Li. Programmable variable-cycle clock circuit for skew-tolerant array processor
architecture. U.S. Patent 4,851,995, July 1989.

[45] Integrated Device Technology, Inc., Santa Clara, CA. High Performance CMOS Data Book,1988.
IDT49C410 16-bit CMOS Microprogram Sequencer.

[46] Mark G. Johnson and Edwin L. Hudson. A variable delay line PLL for CPU-coprocessor syn-
chronization. IEEE Journal of Solid-State Circuits, 23(5):1218-1223, October 1988.

[47] N. Jouppi et al. A 300MHz 115W 32b ECL Microprocessor. In Proceedings of the 40th ISSCC.
IEEE, February 1993.

[48] Robert W. Keyes. The Physics of VLSI Systems. Addison-Wesley Publishing Company, Reading,
MA, 1987.

[49] G. A. Kildall. A unified approach to global program optimization. In Proceedings of the 1973
Symposium on Principles of Programming Languages, pages 194-206, 1973.

[50] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele Jr. Data optimization: Allocation of arrays
to reduce communication on SIMD machines. Journal of Parallel and Distributed Computing,
8, 1990.

[51] Kathleen Knobe and Natarajan Venkataraman. Data optimization: Minimizing residual in-
terprocessor data motion on SIMD machines. In Proceedings of the Third Symposium on the
Frontiers of Massively Parallel Computation, page 1, October 1990.

240 BIBLIOGRAPHY

(52] Donald E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, Reading, MA, 1973.

(53] Toshio Kondo et al. Pseudo MIMD array processor — AAP2. In Proceedings of the 13th Annual
International Symposium on Computer Architecture, pages 330-337, June 1986.

(54] Lizyamma Kurian, Paul T. Hulina, and Lee D. Coraor. Memory latency effects in decoupled
architectures with a single data memory module. In Proceedings, 19th Annual Symposium on
Computer Architecture, pages 236-245, May 1992.

(55] Tom Leighton, Charles E. Leiserson, and Dina Kravets. Theory of Parallel and VLSI Computa-
tion: Lecture Notes for 18.435/6.848. Massachusetts Institute of Technology, Cambridge, MA,
1990.

[56] MasPar Computer Corporation. Delivering on the promise of massively parallel computing.
Marketing Brochure, 1990.

[57] Scott McFarling. Program optimization for instruction caches. In ASPLOS-III Proceedings,
pages 183-191. ACM, 1983.

(58] Carver A. Mead and Lynn A. Conway. Introduction to VLSI Systems. Addison-Wesley Publishing
Company, Reading, MA, 1980.

(59] Motorola. ECLinPS Data,1 edition, 1991.

[60] Eric Nee. Interview with John Rollwagen (CEO, Cray Research Inc). Upside, V(1):18-32,
January 1993.

(61] M. Nemes. Driving large capacitances in MOS LSI systems. IEEE Journal of Solid-State
Circuits, pages 159-161, 1984. fix this up.

[62] John R. Nickolls. The design of the MasPar MP-1: A cost effective massively parallel computer.
In Proceedings of IEEE Compcon Spring 1990. IEEE, February 1990.

(63] O. Nishii et al. A 1,000MIPS BiCMOS microprocessor with superscalar architecture. In Pro-
ceedings of the 39th ISSCC, pages 114-115. IEEE, February 1992.

(64] A.Nowatzyk. A Communication Architecture for Multiprocessor Networks. PhD thesis, Carnegie
Mellon University, 1989.

(65] David A. Patterson and Carlo H. Séquin. A VLSI RISC. /IEEE Computer, pages 8-21, September
1982.

(66] Tekla S. Perry. Modeling the world’s climate. IEEE Spectrum, 30(7):33-42, July 1993.

[(67] Ulrich Schmidt, Knut Caesar, and Thomas Himmel. Data-driven array processor for video
signal processing. IEEE Transactions on Consumer Electronics, 36(3):327-333, August 1990.

(68]) Lorenz A. Schmitt and Stephen S. Wilson. The AIS-5000 parallel processor. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 10(3):320-330, May 1988.

[69] Charles L. Seitz. System timing. In Introduction to VLSI Systems, chapter 7, pages 218-262.
Addison-Wesley Publishing Company, Reading, MA, 1980.

[70] Charles L. Seitz. Concurrent VLSI architectures. IEEE Transactions on Computers,
33(12):1247-1265, December 1984.

BIBLIOGRAPHY 241

[71] Charles L. Seitz. Mosaic C: An experimental fine-grain multicomputer. Invited Address at 25th
Anniversary of INRIA, December 1992. This paper should appear in the conference proceedings,
but I only have a preprint.

[(72] Alan C. Shaw. The Logical Design of Operating Systems. Prentice-Hall, Englewood Cliffs, N.J.,
1974.

(73] David Shu, Lap-Wai Chow, and J. G. Nash. A content addressable, bit-serial associative pro-
cessor. In Robert W. Brodersen and Howard S. Moscovitz, editors, VLSI Signal Processing, 111,
chapter 12, pages 120-128. IEEE Press, 1988.

(74] Daniel L. Slotnick, W. Carl Bork, and Robert C. McReynolds. The Solomon computer. In
Proceedings of the Fall Joint Computer Conference, volume 22, pages 97-107. AFIPS, 1962.

[75] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3).473-530, September 1982.

[76] Ivan E. Sutherland and Carver A. Mead. Microelectronics and computer science. Scientific
American, 237(3):210-228, September 1977.

[{77] Ivan E. Sutherland and Robert F. Sproull. Logical effort: Designing for speed on the back of
an envelope. In C.H.Sequin, editor, Proceedings of the Advanced Research in VLSI Corference.
MIT Press, 1991.

[78] Garold S. Tjaden and Michael J. Flynn. Detection and parallel execution of independent in-
structions. IEEE Transactions on Computers, C-19(10):889-895, October 1970.

[79] Jeffrey D. Ullman. Computational Aspects of VLSI. Principles of Computer Science. Computer
Science Press, Rockville, MD, 1984.

(80] D. M. H. Walker. Critical area analysis. In V. K. Jain and P. W. Wyatt, editors, Proceedings,
International Conference on Wafer Scale Integration, pages 281-290, Los Alamitos, CA, January
1992. IEEE Computer Society Press.

[81] C. Weems, S. Levitan, and C. Foster. Titanic: A VLSI based content addressable parallel array
processor. In Proceedings of the 1982 International Conference on Circuits and Computers. IEEE,
September 1982.

[82] Charles C. Weems Jr. The content addressable array parallel processor: Architectural evaluation
and enhancement. In Proceedings of the International Conference on Computer Design: VLSI
in Computers, pages 500-503. IEEE, October 1985.

[83] Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. VLSI Systems Series.
Addison-Wesley, USA, 1985.

[84] SkefWholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD thesis,
Carnegie Mellon University, May 1991.

[85] M. V. Wilkes. Slave memories and dynamic storage allocation. IEEE Transactions on Electronic
Computers, EC-14(2):270-271, April 1965.

[86] T. E. Williams, M. Horowitz, R. L. Alverson, and T. S. Yang. A self-timed chip for division. In
Advanced Research into VLSI: The 1987 Stanford Conference, pages 75-95, 1987.

[87] T H. Yeap, W. M. Loucks, W. M. Snelgrove, and S. G. Zaky. Implementing the VASTOR archi-
tecture using a VLSI array of 1-bit processors. In Proceedings of the International Conference
on Computer Design: VLSI in Computers, pages 494—499. IEEE, October 1985.

242 BIBLIOGRAPHY

[88] lan Young, Jeffrey Greason, and Keng Wong. A PLL clock generator with 5 to 110 MHz of lock
range for microprocessors. IEEE Journal of Solid-State Circuits, 27(11):1599-1607, November
1992.

(89] Jiren Yuan and Christer Svensson. High-speed CMOS circuit technique. IEEE Journal of
Solid-State Circuits, 24(1):62-70, February 1989.

[90] Jiren Yuan and Christer Svensson. Pushing the limits of standard CMOS. IEEE Spectrum,
28(2):52-53, February 1991.

