
,Foiter'§"nce inc

Compiler Techniques for Managing Data Motion

John S. Pieper

December 1993
CMU-CS-93-217

~A

DTIC q'OAurr IVP~D

94-07790
1111 HIllta lull IaInegieEI

WMellon

1V4 3 9 046

Best
Availlable

COPY

Compiler Techniques for Managing Data Motion

John S. Pieper

December 1993
CMU-CS-93-217

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
H.T. Kung, Co-Chair

Thomas Gross, Co-Chair
Jaspal Subhlok

Hudson Ribas, AT&T Bell Laboratories

Copyright © 1993 John S. Pieper

This research was sponsored by the Advanced Research Projects Agency, Information Science and
Technology Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by
DARPA/CMO under Contract MDA-90-C-0035. J. Pieper was supported in part by the Fannie and John
Hertz Foundation.

The views and conclusions contained in this document arc those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the Fannie and John Hertz
Foundation, ARPA, or the U.S. Government.

Keywords: compilers, data storage representations, discrete mathematics, memory

structures

C.arnegie School of Computer Science1ellon

DOCTORAL THESIS
in the field of

Computer Science

COMPILER TECHNIQUES FOR MANAGING DATA MOTION

JOHN PIEPER

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

- ~ THESis(C miTTEE CHAIR DATE

CHAIR DATE

DEPARTMENT HEAD DATE

For

01
APPROVED: 1 0

DEAN DATE

ty Godes

!Dist Riecial

Abstract

Software caching, automatic algorithm blocking, and data overlays are different names
for the same problem: compiler management of data movement throughout the memory
hierarchy. Modern high-performance architectures often omit hardware support for moving
data between levels of the memory hierarchy: iWarp does not include a data cache, and
Cray supercomputers do not have virtual memory. These systems have effectively traded a
more complicated programming model for performance by replacing a hardware-controlled
memory hierarchy with a simple fast memory. The simpler memories have less logic in the
critical path, so the cycle time of the memories is improved.

For programs which fit in the resulting memory, the extra performance is great. Un-
fortunately, the driving force behind supercomputing today is a class of very large scientific
problems, both in terms of computation time and in terms of the amount of data used.
Many of these programs do not fit in the memory of the machines available. When ar-
chitects trade hardware support for data migration to gain performance, control of the
memory hierarchy is left to the programmer. Either the program size must be cut down to
fit into the machine, or every loop which accesses more data than will fit into memory must
be restructured by hand. This thesis describes how a compiler can relieve the programmer
of this burden, and automate data motion throughout the memory hierarchy without direct
hardware support.

This work develops a model of how data is accessed wihin a nested loop by typical
scientific programs. It describes techniques which can be used by compilers faced with the
task of managing data motion. The concentration is on nested loops which process large
data arrays using linear array subscripts. Because the array subscripts are linear functions
of tLe loop indices and the loop indices form an integer lattice, linear algebra can be applied
to solve many compilation problems.

The approach is to tile the iteration space of the loop nest. Tiling allows the compiler
to improve locality of reference. The tiling basis matrix is chosen from a set of candidate
vectors which neatly divide the data set. The execution order of the tiles is selected to
maximize locality between tiles. Finally, the tile sizes are chosen to minimize execution
time.

The approach has been applied to several common scientific loop nests: matrix-matrix
multiplication, Q R-decomposition, and LU-decomposition. In addition, art illustrative ex-
ample from the Livermore Loop benchmark set is examined. Although more compiler time
can be required in some cases, this technique produces better clode at no cost for most
programs.

Acknowledgements

Many people helped greatly with this thesis. I was privileged to have a very high-quality

thesis committee. My advisor, H. T. Kung, forces all of his students to do scientific research;

his guidance contributed greatly to the quality of the work. Thomas Gross has inspired and

guided me throughout my graduate career, and he acted as my advisor after H.T. left for

Harvard. Thomas repeatedly read the thesis, and has an amazing ability to point out the

weak points in a document. Jaspal Subhlok listened whenever I asked him to, and made

helpful suggestions at several points. Hudson Ribas brought a keen understanding of the

material and a careful reading of the thesis together to make an outstanding contribution

to this document and to the ideas which are its underpinning.

I must acknowledge the support of the Computer Science Department of Carnegie-

Mellon University, which has become the School of Computer Science of Carnegie (no

dash) Mellon University, both for financial support and for maintaining a culture which is

unique in its outstanding support of research. I also must acknowledge the support of the

Fannie and John Hertz Foundation, who supported much of my graduate career with both

tuition support and a very generous stipend.

I would like to explicitly thank the members of the iWarp team, both at CMU and

at Intel, for exposing me to the entire design cycle of a complex parallel machine. The

CMU compiler group pushed the development of the iWarp component from the top, Intel

engineers pushed it from the bottom. After the system was built, the CMU team has worked

on a Fortran-90 compiler; the protype work of this thesis was (lone in that compiler. The

various members of that group listened to my ideas over and over.

Finally, I must thank Scott Hugh Robinson, inventor of SHRUNIX. Scott taught me to

stalk, and to track, and came with me when I needed to get out of the city. He went through

the ordeal of thesis-writing first, which gave me invaluable insight into the process. He has

continued to give me support and advice on technical, academic, and personal matters since

he left to begin his own career.

This thesis is dedicated to Dawna Ellen Rooks for her support, for putting tip with

my friends, for putting up with my weekly trips to the woods, for putting up with me, and

for waiting seven years for this document.

ii

CONTENTS

Contents

1 Introduction 1

1.1 The data motion problem I

1.1.1 Software memory management 1

1.1.2 Parallelism 2

1.1.3 Tiling 3

1.2 Problem 4

1.2.1 Input Code 4

1.2.2 Machine models 5

1.3 Data model 6

1.3.1 Iteration spaces 7

1.3.2 Streams 8

1.3.3 Reference vectors 9

1.3.4 Dependences 12

1.3.5 Perpendicular vectors 17

1.3.6 Cones l1

1.4 Introduction to tiling 18

1.4.1 Hyperplane tiling 18

1.4.2 Dependence constraints 21

1.5 Approach 22

1.6 Outline of the thesis 23

2 Related work 25

2.1 Compiler theory 25

2.1.1 Dependence analysis 25

iv CONTENTS

2.1.2 Code generation 26

2.1.3 Parallelization 26

2.2 Other approaches 27

2.2.1 Array maviagement 28

2.2.2 Cache work 29

2.3 Tiling 30

2.3.1 General tiling work :30

2.3.2 Tiling for cache locality 31

2.3.3 Tiling for minimal communication 32

2.3.4 Tiling for locality given a data distribution 33

2.4 Contributions of this work 34

3 Cost model fundamentals 35

3.1 Overview :35

3.1.1 Candidate tiling vectors :36

3.1.2 An example 37

3.2 Execution model :37

3.3 Cost criteria 38

3.4 Cost model 40

4 Buffering schemes 41

4.1 Transformation theory 1

4.2 Buffering theory 12

4.3 Two buffering methods 44

4.4 Rectangular buffering 45

4.4.1 Selection of basis vectors 18

4.4.2 Space allocation 48

4.5 Skewed rectangular buffering 50

4.5.1 Skewed rectangles 50

4.5.2 What S must be 53

4.5.3 Transforming a parallelepiped to a cube 55

4.5.4 Allocation and space requirements 56

CONTENTS v

4.6 Conclusions . 61

5 Scheduling the tiles 63

5.1 Scheduling issues 64

5.1.1 Intertile locality 64

5.1.2 Scheduling versus computing tile sizes 67

5.2 Scheduling 68

5.2.1 Scheduling examples 68

5.2.2 Calculating the number of refreshes 70

5.2.3 Evaluating nested summations 71

5.2.4 Scheduling with parallelism 72

5.3 Approaches to parallelism and locality 73

5.3.1 Tiling twice: Wolf's method 74

5.3.2 Scheduling for intertile parallelism 74

5.3.3 Scheduling for intratile parallelism 76

5.3.4 Comparison of approaches 77

6 Cost model evaluation 79

6.1 Code generation so

6.1.1 Transforming original loop bounds to auxiliary space 10

6.1.2 Transforming auxiliary space loop bounds to target space Sl

6.1.3 Improvements to Fourier-Motzkin pairwise elimination 2

6.1.4 Computing the number of refreshes 87

6.2 Evaluating the cost model SS

6.2.1 An example "

6.2.2 The general problem9

6.2.3 Numerical techniques 90

6.3 ,k complete example 92

6.3.1 Finding pt..... 94

6.3.2 Finding /i. 95

6.3.3 The cost model 96

6.3.4 Code generation 97

vi CONTENTS

6.4 Conclusion 99

7 Evaluation 101

7.1 Common scientific kernels 101

7.1.1 M atrix multiply 102

7.1.2 Where the improvement comes from 110

7.1.3 QR decomposition 113

7.1.4 LU decomposition 118

7.2 Comparison to Wolf's work 121

7.2.1 Reuse spaces 124

7.2.2 The problem with localized vector spaces 124

7.2.3 Loop jamming: a hack for choosing .1 125

7.2.4 Blocking 127

7.2.5 Abstracting the reuse space 128

7.3 Conclusions 1:i1

8 Conclusions and future work 133

8.1 Contributions of this work 133

8.1.1 Mathematical tools 133

8.1.2 Algorithmic costs 1:35

8.1.3 Code quality 136

8.1.4 Limitations of the approach 137

8.1.5 Conclusions 13:

8.2 Future work 138

8.2.1 Software prefetch 1i9

8.2.2 Distance locality 1:39

8.2.3 M,*2 streaming 1:19

8.2.4 Non-perfect loop nests 1.10

8.2.5 Integrating tiling for parallelism and locality -110

8.2.6 Compiling for split-memory machines 1.11

LIST OF FIGURES vii

List of Figures

1.1 Input code in normalized form 5

1.2 Uniprocessor machine model 5

1.3 Parallel machine model 6

1.4 The iteration space of a loop nest 7

1.5 Example streams 1,

1.6 Reference vectors relate data spaces to the iteration space 10

1.7 How constant offsets affect array layout in the iteration space 11

1.8 Dependences which point out only I reuse 14

1.9 Dependences marking a number of reuses proportional to the loop bounds . 14

1.10 Rays of a cone in 2-D and 3-D 19

1.11 Using vectors to define cutting hyperplanes 20

1.12 Unbounded divisions may not pose problems 20

1.13 Dependence vectors parallel to partitioning hyperplanes 22

3.1 M atrix-m atrix multiply :37

3.2 Tiled matrix-matrix multiply 38

4.1 A two-dimensional loop nest13

4.2 The same loop nest skewed 14

4.3 The example loop nest skewed and then tiled 14

4.4 Overallocation of data required for rectangular buffering -....16

4.5 Overfetch of data using convex hull method 17

4.6 Overfetch varies inversely with the closeness of dividing vectors to reference

vectors18

4.7 Nonlinearity in the tile size expression19

viii LIST OF FIGURES

4.8 Example of unit paralelepiped borders 51

4.9 Tiles are unit parallelepipeds 52

4.10 A cube and its projection into 2-space 55

4.11 How data relates to the transformed iteration space 57

4.12 Pseudo-code for performing allocation 59

4.13 Examples of allocations 59

5.1 Example of stream perpendicularity 65

5.2 Graphic representation of stream perpendicularity 65

5.3 The previous example skewed 66

5.4 Example of stream perpendicularity 66

5.5 The order of compiler phases 67

5.6 A simple scheduling example 69

5.7 A complex scheduling example 69

5.8 Parallelism can exist in the preferred locality direction 73

6.1 QR-decomposition 85

6.2 Livermore loop kernel six 93

6.3 Livermore loop kernel six with k loop reversed 93

7.1 Matrix-matrix multiply 102

7.2 Tiled matrix-matrix multiply 102

7.3 Tiled matrix-matrix multiply with buffering code 103

7.4 M2 operations of optimal versus squ .. tiles for MM 106

7.5 Relative I/O costs for MM 106

7.6 Execution times for MM 107

7.7 Relative execution times for MM (XR/XS X 100%) 107

7.8 Relative improvement in execution time for MM (c = 8) 109

7.9 Relative improvement in execution time for MM (c = 12) 109

7.10 The = (/3,/3,/3) tiling 110

7.11 The =()3,3,,1) tiling .. 111

7.12 R/S as n grows very large 112

7.13 Source code for QR decomposition 113

LIST OF FIGURES ix

7.14 M2 operations of optimal and square tiles for QR 116

7.15 M2 operations of optimal versus square tiles for QR 116

7.16 Execution time of optimal versus square tiles for QR (XR/XS X 100%) ... 117

7.17 Execution time of optimal and square tiles for QR (c = 8) 17

7.18 Source code for LU decomposition 118

7.19 Tiled code for LU decomposition 119

7.20 M2 operations of optimal and square tiles for LU decomposition 122

7.21 M2 operations of optimal versus square tiles for LU decomposition 122

7.22 Execution time of optimal versus square tiles for LU decomposition123

7.23 Execution time of optimal versus square tiles for LU decomposition 123

7.24 An example loop 128

7.25 The example loop after tiling 129

7.26 Iteration space diagram of tiled code using abstracted reuse space130

7.27 The example loop transformed for locality 130

7.28 The tiled transformed loop 130

7.29 Iteration space diagram of tiled code using abstracted reuse space130

8.1 Examples of constant-offset reuse 140

8.2 The traditional view of a systolic array 142

8.3 Systolic cells combine to form a "superprocessor"... 142

LIST OF TABLES xi

List of Tables

1.1 Dependence types 13

6.1 Summary of scheduling possibilities 94

6.2 Summary of streams 96

7.1 Data motion costs of different schedules 126

xii LIST OF TABLES

Chapter 1

Introduction

1.1 The data motion problem

1.1.1 Software memory management

Design of the memory hierarchy for a high-performance computer system is a difficult task.

Conventional computers usually include caches and virtual memory hardware. Several high-

performance architectures., however, do away with one or more of these levels. The Cray

line of supercomputers has yet to include virtual memory hardware. The Intel/Carnegie

Mellon iWarp system does not include a data cache, opting instead for a small static RAM

with single-clock access time. These systems have effectively traded a more constrained

programming model for performance, replacing a hardware-controlled memory hierarchy

with a simple fast memory.

The simpler memories have less logic in the critical path. and so the cycle time of the

memories is improved. For programs that fit in the resulting memory, the extra performance

is great. Unfortunately, the driving force behind supercomputing today is a class of very

large scientific problems, both in terms of computation time and in terms of the amount

of data used. Many of these programs do not fit in the memory of the machines available

to researchers. Sometimes the programs can be shrunk with some loss of accuracy, but

often researchers must wait for the next generation of larger. faster machines. This thesis

addresses this problem by allowing the compiler to hide the memory hierarchy from the

programmer. The programmer writes his code as if there were a single large memory, and

the compiler will move data into and out of the fast buffer memory to optimize performance.

2 CHAPTER 1. INTRODUCTION

Compilers have traditionally been limited in their control of the memory hierarchy.

Most compilers control only the allocation of machine registers. Before the popularization

of virtual memory, programmers used overlays to run programs that did not fit into main

memory. Techniques for compiler generation of overlays for code were invented a little

too late to become popular before virtual memory did. Code overlays may suffice for

conventional programs whose data is small relative to the amount of code used. Large

scientific codes use orders of magnitude more data than code. To implement data overlays

for these programs, each loop that accesses more data than will fit in main memory must

be restructured.

In this thesis we investigate the use of modern compiler technology to manage the

memory hierarchy without hardware support (like caching or virtual memory hardware).

The compiler will cut the data of a program into chunks that fit into memory. It will

modify the loop structure of the program, inserting block copies of the data to move it into

faster levels of the memory hierarchy as required, and to move the data back again when

it is no longer needed. The compiler can effectively relieve the programmer of the burden

of managing the memory hierarchy even when the hardware does not help in the process.

This allows even very large programs to be run on machines whose architects opted for

memory performance at the cost of hardware support for the memory hierarchy.

1.1.2 Parallelism

To meet the computational demand of scientific computing, more and more architects are

turning to parallel computing. Scalable parallel architectures require the use of distributed

memory, with each processor having a small local memory and communicating with other

processors to get data stored in their memories. This communication can be handled by

the hardware, for example by using a directory-based hierarchical caching scheme. In this

case, the compiler needs only to ensure that the program has good cache locality. "The other

possibility is for that communication to be left to the programmer. In this case. the program

must explicitly communicate with other processors when data must be exchanged. Machines

with explicit communication are easier to build since no cache-snooping hardware is required

and no cache control logic is required in the communication network. Unfortunately, the

burden of the programmer is enormously increased.

1.1. THE DATA MOTION PROBLEM 3

Compilers need to be able to automatically parallelize programs for private memory

machines; it is just too difficult to write parallel programs for distributed memory com-

puters. To produce good code for parallel machines, it is not enough for the compiler

to understand parallelism. The compiler must also understand the costs of data motion

between processors and through the local memory hierarchy.

The goal of a parallelizing compiler is to map a program expressed in a machine-

independent language into a parallel program for a distributed memory machine with a

memory hierarchy, such as the one in Figure 1.3 on page 6. The compiler must manage a

single global name space that is mapped into the private memories of the system. Each

data item is assigned a "home" memory location in the M!2 memory of some processor.

The M, memories are used in much the same way the register file is used by uniprocessor

compilers: data items are moved from the home location in A12 into M, of the processor

that needs that item. If data is re-used from . 1 I before it is returned to M2 , memory

bandwidth (and possibly communication bandwidth) is saved.

1.1.3 Tiling

To obtain the greatest benefit from the M1 memories, loops in the program must be re-

structured to optimize locality. Each loop nest defines a space of iterations to be performed.

The bounds of the space are determined by the loop bounds in the program. The compiler

cannot generally limit the amount of data accessed in any , irticular direction in this space

because the loop bounds are specified by the programmer. By cutting the iteration space

into tiles, the compiler can limit the amount of data accessed in a tile by choosing the tile

size in each dimension. The compiler chooses the size of the tiles so that all of the data

required to execute a tile fits into M, at the same time. The compiler will generate code

which loads the data required for a tile, executes the tile, and stores back the result. All

of the data accesses during the execution of a tile are M1 1 accesses, so the computation call

be performed very quickly.

In this thesis, the goal of tiling is to reduce the overhead of software memory manage-

ment as well as to improve locality. Tiling allows the compiler to block memory references.

This reduces the total memory access latency for memories which support block-access.

Additionally, tiling usually increases the ratio of computation to I/O of the program. For

4 CHAPTER 1. INTRODUCTION

each M 2 memory access (which can be considered an I/O operation), the number of com-

putations that can be performed on average is increased. Since tiling does not change the

computation itself, the higher computation-to-I/O ratio is achieved by lowering the number

of M 2 accesses required by the loop nest.

This work investigates tiling for locality and parallelism simultaneously, by scheduling

the tiles to get optimal intertile locality, which has not yet been addressed. Intertile locality

refers to data that is used within one tile of iterations that can be kept in fast memory

because it will also be used in the next tile of iterations. In cache-based uniprocessor

systems, intertile locality is a second-order effect; tiling itself is the principal performance

enhancer. Scheduling the tiles for intertile locality, however, further reduces the secondary

memory traffic generated by a program.

1.2 Problem

In this section we discuss the limits of the problem to be solved. First, we discuss the

class of programs that will be dealt with. In the following section, we discuss the kinds of

machine architectures addressed in this work.

1.2.1 Input Code

Scientific programs are typified by large data sets, accessed in linear patterns. These linear

patterns are exploited in this work by using linear algebra techniques to model the memory

access patterns. This work is directly applicable to programs with linear array accesses

and linear loop bounds. Source code in normalized form (we use Ribas's definition of

"normalized" [471) must be a set of perfectly nested loops, as shown in Figure 1.1.' The fe's

and gi's in that figure are affine functions.

We make the following assumptions about the nested loops that are input to the com-

piler:

* We have a nest of n loops in normalized form (positive unit loop steps).

'Source code in this thesis is written in an ALGOL-like pseudo language. All code can 6e trivially
translated into C, FORTRAN, or an equivalent language.

1.2. PROBLEM 5

for io = fo() to goo
for il = fl(io) to gl(io) do
for i2 = f 2(io,il) to g2(ioil) do

for i- 1- = fA-0(io,' .,i.-2) to g9,-(io,.-.,i,- 2) do
begin

... body...
and

Figure 1.1: Input code in normalized form

e Array subscript expressions are linear combinations of loop index vectors, plus possi-

bly a constant.

1.2.2 Machine models

A simple uniprocessor with a two-level memory hierarchy, is shown in Figure 1.2. The

small memory (MI) has cycle time t and can hold M items, while the big memory (Ml2)

has access time Kt, K > 1, and can hold an infinite number of items. In the figure, the

slow memory is backing store only. Data stored there cannot be operated on, only moved

into fast memory: there is no direct path from M 2 to the CPU. We can relax this constraint

later. If we put the CPU-M 2 path into the machine model of Figure 1.2, then the compiler

should fetch any data that cannot be reused directly from M 2 and store it back directly

to M 2, saving space in M1 for data that can be reused. The development will be clearer

without the added complexity of the extra data path, so without loss of generality we will

assume no direct CPU-M 2 path. In Chapter 8 we will revisit this subject and sketch the

changes needed to incorporate the extra data path.

CPU M12

Figure 1.2: Uniprocessor machine model

Because tiling increases the computation-to-I/O ratio of a program, more efficent tiling

methods are most important for small M,1 memories like register files and on-chip buiffer

6 CHAPTER 1. INTRODUCTION

memories. For larger memories, like off-chip caches, tiles become computation-bounded and

the extra efficiency of saving a few M2 operations is relatively unimportant; straightforward

tiling techniques are sufficient. The reader should keep in mind the relatively small size of

the target M, memories. Chapter 7 will make clearer how small Ml must be for the extra

efficiency to be important.

Figure 1.3 shows the result of using a group of these simple uniprocessors to construct

a parallel machine. The important feature in this figure is that it is not possible to access

data in the memories of other processors. Instead, communication primitives must be used

to move the data across the network into the processor that will use the data. We will

return to the parallel processor model in detail when scheduling for parallel machines is

discussed in Chapter 5.

V iM 2
AlMA 2

Al 2
Al 2

Al 2
AlM 2

Al 2

CPU CPU CPU CPU CPU CPU CPU

Communication Network

Figure 1.3: Parallel machine model

1.3 Data model

The compiler must have a model of how the program accesses data. This section describes

the model used in this work. The loop nest itself is modeled as an iteration space. The

data accesses are modeled using streams. Reference vectors describe the relation between

the data space of an array and the iteration space of a loop nest: this allows the compiler

to model the relationship between the data space and the iteration space that results after

loop transformations. Ordering constraints on the iterations are modeled using generalized

dependence vectors. These dependences also point out reuse of data in the iteration space.

1.3. DATA MODEL

1.3.1 Iteration spaces

In the abstract input code of Figure 1.1, the index variables of the loops are i1 , I2.

The vector r = (i 1, i 2,... ,in) is called the index vector of a nested loop. It is the vector of

index variables of each loop. As the loop nest is executed, i takes on a set of values corre-

sponding to the iterations of the loop nest. Because the loop bounds are linear functions

of outer loop bounds, the set of iterations forms a polytope in n-space. This polytope is

called the iteration space . of the loop nest. I necessarily has dimensionality n.

Elementary vectors are unit-length vectors along each axis. In n-space, there are n

distinct elementary vectors. The ith elementary vector, 'i, is zero everywhere except in the

ith position, where it has the entry 1. This vector points in the direction in which the ith

loop executes, so it is also known as the loop direction vector for the ith loop.

k k

1" O O • 8

8-0 8-
7- go . O• 7-
6 0 O 00 • 6"

2 @ OO@ @Ogo 2
3 • • o 0 3-

2- 0 • O O 0 O O O 2-

1~~ *eeo1'1ee1

for i 1 to 12 do
for k = 0 to i-1 do

w[i] = w[i] + bli,k]*v[i+k];

Figure 1.4: The iteration space of a loop nest

The set of values that i'can take on are all integer vectors, and the iteration space is

a set of integer-valued points in n-space, as shown in Figure 1.4. The code which induces

the iteration space is shown on the left; the iteration space itself is in the center diagram.

In this case, the iteration polytope has the shape of a triangle. It is often more convenient

to think about sets of points in the iteration space as shapes rather than as sets of discrete

points, as in the diagram on the right. When shapes are used. it is sometimes unclear which

edges of the shapes are included in the set under consideration. Dot-diagrams will he used

when it is important to be clear exactly which iterations are to be included: shape-diagrams

will be used when the overall shape is important hut the exact bounds are incidental.

8 CHAPTER 1. INTRODUCTION

1.3.2 Streams

Each reference to a variable in the loop body generates (or induces) a stream of accesses to

memory as the loop nest is executed. For example, consider the first reference to A ni]. on

the left-hand side of the assignment statement in Figure 1.5. This single reference generates

the stream <A[1] , A[2], A[3), ... , A(N]>. The second reference to A generates the

same stream. If two references to a variable have the same subscript expressions (like the

first two references to A), we consider the two a single reference (since they access the same

data in the same order and at the same time).

for i - 1 to N do
A[i] :- A[i] + BSi]/AEi-1];

Figure 1.5: Example streams

The last reference to A[i-1] generates <ACO] , A[1i , A[2], ... , A[N-1)>. If two ref-

erences to the same variable are uniformly generated, that is, they have the same loop index

coefficients but possibly different constant offsets, the induced streams contain accesses in

the same order, but skewed relative to one another. All references to A in the figure are

uniformly generated. Uniformly generated references use the same data in the same order.

just slightly earlier or later in time. We can use this observation to coalesce two or more

uniformly generated references into a single stream-inducing reference (accesses made by

this reference retrieve multiple items). When references are coalesced in this fashion, we

call the resulting reference a uniformly generated reference. Note that since all references

to the same variable need not be uniformly generated. there can be multiple uniformly

generated references associated with a single variable. When data is buffered in fast mem-

ory, different uniformly generated references must use different parts of fast memory to

store the associated data, but a single uniformly generated stream can store the data just

once, keeping around a slightly larger window of the stream to satisfy the constant-offsel

references. Keeping around a few extra data items is more efficient than buffering the same

data in several places if the constant offsets are small, which they usually are.

To summarize:

o An access is a particular memory request (read or write), represented by the memory

address.

1.3. DATA MODEL 9

"* A reference is an occurrence in a loop nest of an array variable.

"* A stream is a sequence of accesses, induced by a subscripted array reference occurring

inside a loop nest.

1.3.3 Reference vectors

It is assumed that array subscript expressions are linear combinations of loop index vectors.

plus a constant. That is, the kth reference to a 6-dimensional array v

ao0*ie + ao0 itI + "" + ao,-,n-1 + CO

v.k a.oio + al, il + . + aj.n-li,-i + c1

a 6 -1,oio + a6-. 1 1i1 + + •6-1.n- IIn-I + c- I

can be written as

V.k(Rv~k -'+ c

by letting Rv.k be the matrix with entries a,., and F be the vector with entries ci. Since

dim(v) = 6, Rv.k E Z 6 xn and F E Z'. The rows of Rv.k are called referr ncf t'ectors for tile

stream associated with the kth use of v. They are vectors in the iteration space that point

in the direction of increasing array subscripts for each dimension of v. for a particular use

of V.

We will write vectors using different notations depending on what we wanut to emphasize.

The ith row of a reference matrix is written R,.. If the index vector is T= (i.j.k) and

the ith row is (1, -2.7). the reference vector R,. can be written (1. -2.7). to emphasize

its nature as an integer-valued vector, or i - 2j + 7k to emphasize the relationship to

the iteration space. The notation is somewhat more confusing when reference vectors are

elementary vectors: if Rj, = (1,0.0), the vector (1.0.0) may be written .us just i. It will

be clear from context when we use i as a vector and when it is used as a program variable.

Figure 1.6 shows examples of reference vectors relating data to the iteration space.

The array reference is shown near the bottom of each diagram. Each diagram represents a

different reference to a matrix F inside a two-deep nested loop for i... for j... (the exact

loop bounds are unimportant here-the point is to show how the reference vectors relate

10 CHAPTER 1. INTRODUCTION

the data space of the arrays to the iteration space).

F,0F[i ,i+j] F~i,i-j]

Mj

Reference RI.. R2..
code form matrix form code form vector code form vector

F[i,j] F[[I 0i (1.0) j (0,1)

Fii+j 0 i (1.0) i+j (1.0)

F1ii-j) F 1 [j F 0 i (1.0) i-j (1.-I)

Figure 1.6: Reference vectors relate data spaces to the iteration space

The white letter F in each figure represents how the array is oriented in the iteration

space. The letter is oriented so that the vertical line which forms the left side of the letter

is aligned with a column of the matrix, the horizontal "flag" parts are aligned wit 1h rows of

the matrix, the top of the F is near low-numbered rows. and the vertical line is near low-

numbered columns (the letter F was chosen because it is notably asymmetric both vertically

and horizontally; this is particularly important in the rightmost diagram where the matrix

is reflected upside-down).

The reference vectors in each diagram point in the directions of increasing array sub-

scripts in each dimension. This means that R1.., the row reference vector. points ,wro.•,s

rows, and R2,., the column reference vector, points across columns. When a variable ref-

erence has all its reference vectors perpendicular to one another, it is easy to think that

reference vectors point along rows or columns, but this is not the case.

The constant-offset vector F has the effect of shifting the data relative to the origin of

1.3. DATA MODEL 11

the iteration space. It does not affect the orientation of the data. Figure 1.7 shows an

example. In the figure, two streams are being referenced in a 2-dimensional loop nest, with

loops in variables i and j. The darker-shaded area corresponds to the layout of the stream

F[i,j], while the lighter-shaded area corresponds to the layout of the stream F[i-7,j-2].

The constant offset vector of the first stream is 6, the zero-vector. The constant offset

vector of the second stream is (-7,-2). This has the effect of shifting the elements used by

an iteration 7 units in the first dimension of the array and 2 units in the second dimension.

. •

Figure 1.7: How constant offsets affect array layout in the iteration space

The set of pairs [Rv.i,el for all F and i corresponds to the set of all streams for a

given variable v. The set of matrices {Rv.i} for all i corresponds to the set of uniformly

generated streams for v. Rv.. is the reference matrix for a particular stream v.i. associated

with a particular use (or set of uses, in the case of a uniformly generated stream) of a

variable. If two distinct variable references v.i and w.j ihave the same reference matrices,

they still represent different streams because they are accessing different arrays so the

reference matrices would be Rv.i and Rj.

The space spanned by the union of all reference vectors is also important. Since we

must divide the iteration space into chunks that reference a data set that fits into M1 , we

must be able to limit how much of each stream must be stored to execute a chunk. This

implies that we must be able to cut the space spanned by the uni n of all reference vectors

into finite-sized pieces. We denote the space spanned by the union of all reference vectors

V. The iteration space I necessarily has dimensionality n. Let A be the dimensionality of

D. Note that we have I < A < n.

12 CHAPTER 1. INTRODUCTION

1.3.4 Dependences

Reference matrices allow us to describe the relationship between array elements and the

iteration space. Dependences are relations between iterations that access the same array

elements. Dependences precisely capture reuse in the iteration space, and they are the

primary tool of a compiler seeking to manage data motion efficiently. Dependences also

describe the limitations on what reorderings the compiler can perform without changing

the semantics of the program.

Traditionally, dependences are relations between memory accesses. A dependence exists

between two memory accesses m, and m2 if they both refer to the same memory location

and m, occurs before m2 in the ordering specified by the source code. We will write this

dependence between memory accesses m1 - M 2.

In this thesis we assume that the sets of memory locations used by different arrays are

completely disjoint, so that dependences exist between two iterations if and only if the

iterations access the same element of the same array. 2 The dependence relation can be

written with the name of the array to emphasize this fact. If m1 M Mn2 because both

accesses refer to an array variable v, the dependence is written mi - Mi2 .

A compiler which deals with iteration spaces needs a generalization of this kind of

dependence. A dependence exists between two distinct iterations 4' and F2 if there is a

memory reference m, to v which occurs in i'l and a memory reference M 2 to v which occurs
V -in i2, and M1 M i 2 . This dependence is written -z, z2.

This definition introduces a slight complication. The dependence relation on memory

accesses is transitive, because if there is a dependence m, - M 2 and a dependence M 2 -i

M3 , there is necessarily a dependence m, - m3 because all of the accesses reference the

same array. This is not true of iteration dependences, because given three iterations T4, F2, .3,

it is possible that mi -I- M2 , and M3 nM4 , but vi 7 v2. Trhe dependence relation

relation on iterations is therefore defined as follows: a dependence exists between iteration

F, and iteration i*2, written r - i2, if and only if there is some chain of dependences

V 1_ v-F. vL .. v--

2 Many programming languages allow arrays to be accessed with different names. This "feature" forces
the compiler to consider the possibility that two different names might refer to the same memory location.

This is commonly called the aliasing problem. The solution of this problem is beyond the scope of this work.

1.3. DATA MODEL 13

Kinds of dependences

A single memory reference can be a read or a write. Dependences can be classified according

to the type of references, as shown in Table 1.1. These labels apply directly to dependences

between memory accesses; the labels will be generalized to iteration dependences later.

Of the four kinds, input dependences are often omitted from standard works on depen-

dence analysis, because reordering two reads cannot change the semantics of the program.

Input dependences do not restrict the reorderings that can be applied; the other three types

do. All four kinds signal reuse, however.

m 1 m 2 kind
read read input dependence
read write anti dependence
write read flow dependence
write write output dependence

Table 1.1: Dependence types

Types of dependences

All dependences point out reuse in the iteration space, but some dependences point out

more reuse than others. Many dependences point out a single reuse, while others point out

a number of reuses proportional to the size of the iteration space.

Consider the program of Figure 1.8. The iteration space diagram shows a number of

dependences drawn as arrows between iterations that depend on one another. Although the

number of dependences is proportional to the size of the iteration space. each dependence

is a marker for a single reuse. Consider the element A[3,3". It is written by iteration

r= (3,3) and read by iteration (4,.5), and otherwise is not accessed.

Figure 1.9 shows a program where dependences point out a number of reuses propor-

tional to the size of the itei .tion space. Consider the iteration (1.2). This iteration accesses

B[2]. So do the iterations (2,2), (3,2), (4.2), (5,2), and (6,2). So there are five dependences

with their tails at (1,2), of length (1,0), (2,0), (3,0), (4,0) and (5,0). Such dependence

relations are usually abstracted to just their signs, and written (+,0); this notation will

be more fully explained in the discussion of dependence representation on page 16. In this

case, because of the transitivity of the dependence relation, the compiler can represent the

14 CHAPTER 1. INTRODUCTION

j

3-

for i I to 6
for j =1 to 6

AEi,j] AEi-1. j-2]; I • • I • A 1

Figure 1.8: Dependences which point out only 1 reuse

full set of dependences with only the vector (1,0). This vector also applies at every point in

the iteration space, but since it is an abstraction of the set of dependences (c,0), it marks

reuse proportional to the size of the iteration space.

4-

for i = 1 to 6 2
for j = I to 6 _ __1

A[i,j = Ai,j] + B[j];

Figure 1.9: Dependences marking a number of reuses proportional to the loop bounds

Dependences as vectors

An iteration dependence irj - C2 can be represented by a vector with its tail at 7, and its

head at ir2. Compilers often assume that if such a dependence exists anywhere in the iter-

ation space, a vector of the same length, pointing in the same direction. exists everywhere

in the iteration space. This is justified for two reasons: first, the dependences often are

replicated everywhere in this fashion; and second, the kinds of transformations the compiler

considers are either prevented or not by a single dependence, so if the dependence exists

between one pair of iterations, it may as well exist between all pairs with similar relative

geometry.

Replicating the vectors everywhere allows the compiler to simplify its representation.

by retaining only the vectors themselves and assuming they apply at every iteration point.

A vector exists between two iterations whenever the subscript functions are equal for two

1.3. DATA MODEL 15

array accesses.

Given the array references v[Ai+ 61] and v[A 2i.+ 62], the compiler must find values for

it and r2 which satisfy

Ali, + F' = A2i 2 + -2

or, equivalently,
Atir, - A2i'2 = 6'2-6•1

The vector from iteration i' to i2 is given by d= i*2 - i'. Substituting r2 - dfor i, this

equation becomes

AI(2- d) - A2r2 = 62 - F1

and solving for d,
Aid= (A, - A2)r2 + F - -2

From this equation, it is easy to see that if A, = A2, the value of d does not depend on

where in the iteration space the vector is. The r2 term drops out. resulting in the simplified

equation

Aid= (Fi -

Now it can be seen that if rank(Al) = n, Al is invertible and d = A-11('l - F2). This

situation (A, = A2 and rank(Al) = n) results in dependences which mark a single reuse.

If A, = A2 and rank(A1) < n, dtakes on a set of the values of the form d = 17+ F.

where F. is the preii:.:-ge of (Ft - e2) relative to .41, and J7 is any vector in the null space

of A,. In this case, tV"2re is reuse proportional to the size of the null space. The size of the

null space is determined by the loop bounds, so the vectors represent much more reuse.

If A 1 0 A2, d takes on a set of values which depend on FT2; that is, the dependences are

different depending on which iteration they point to (it is easy to show that the dependences

differ depending on which iteration they point from by substituting for i2 instead of i,). In

this case, if the space spanned by the rows of A, is different from the space spanned by the

rows of A2 , there is reuse proportional to the size of the iteration space. If A, and A2 span

the same space, there is only a single reuse.

16 CHAPTER 1. INTRODUCTION

Dependence representation

The compiler must choose some method for representing dependence vectors. In this thesis,

we use Wolf's generalized dependence vector representation ([571, page 17):

... Each component di of a dependence vector d is a possibly infinite range of

integers, represented by [d'in, din"'], where

dn E Z U {-oo},dmax E Z U {}oo and din3 <d•"•.

The dependence vector dis also a distance vector if each of its components is

a degenerate range containing a singleton value, meaning d' n = d"-r. We use

the notation '+' as sl~orthand for [1,]oo, '-' as shorthand for [c,-1], and -±'

as shorthand for [-oo, o]. They correspond to Wolfe's directions "<'.'>% and

'Y' respectively...

The dependence vector matrix is denoted D; each column D.,j of D is a dependence

vector. Other dependence models, specifically dependence cones[29], could be used; the

critical property of the dependence model is that it permits testing for legal execution

directions (see section 1.4.2).

Ordering vectors

The statement "F is an ordering vector" for any integer-valued vector _F means that given

two iterations ;F and Y, i precedes Y (written F -< fl) if F. (Y - I) > 0. A vector F is a

legal ordering vector if DT S> 0, that is, if no dependences are violated. For example, in

matrix-matrix multiply (Figure 3.1), there is a single dependence carried by the k-loop.

We will write this as either D = [k] or D = (0,0, 1)"r. The first representation is used to

show how the vectors relate to the loops, and the second notation is used to emphasize the

relationship to the space of iterations induced by the loop nest.

There are some legal orderings of the iteration space that cannot he modeled by a single

ordering vector (specifically, when dependence vectors have integer divisors other than one,

limited re-ordering is often possible, but is not allowed under our model). llowever. ordering

vectors define schedulings that lend themselves to automatic manipulation. Gaining a few

1.3. DATA MODEL 17

extra operations that could be re-ordered is not as important as observing the general trend

of data access patterns, which are captured by ordering vectors.

1.3.5 Perpendicular vectors

When input dependences are included, dependence vectors capture all reuse available in a

loop nest. Unfortunately, dependence vectors are sometimes difficult to compute, and they

are not necessarily constant integer vectors. For these reasons, it is sometimes useful to

generate vectors representing locality which are known to be constant integer vectors.

One method to do this is to choose linearly independent subsets of n- I reference vectors,

and solve for a vector perpendicular to all these. The solution vector is perpendicular to

n - 1 reference vectors, and so represents a direction of locality for any streams whose

reference vectors are a subset of the n - 1 vectors chosen.

Since the set of solutions is a line, there are two rays which are perpendicular to the n - 1

vectors, one along the line in each direction from the origin. The compiler includes the ray

that is positive with respect to the dependence set, if there is one (if both rays are positive,

only one is included, and the choice is made arbitrarily). 3 The ray is scaled to be as small as

possible while still having all integer entries. Note that given n linearly independent vectors,

the compiler can find n perpendicular vectors simultaneously by putting the vectors in a

matrix Q and solving for Q-1. The ith vector of Q` is perpendicular to all but the ith

vector of Q (the inner product of the ith vector of Q with the i vector of Q` is one; the

inner product with any other vector is zero). The vectors forming the inverse matrix are

then scaled to make them integral.

The vectors constructed with this method form the set of perpendicular vectors for each

stream, V'. Because they span the null space of the reference matrix, I/1 spans the space

of dependences which point out a number of reuses proportional to the size of the iteration

space. These vectors are constructed to be used as normal vectors to tiling hyperplanes

(tiling is discussed in Section 1.4), however, and not as constraints on the ordering of the

iterations. The vectors of V' are always integer-valued, while dependences are not.

'A vector iuis positive with respect to the dependence set if and only if every element of tiD is nonnegative.

18 CHAPTER 1. INTRODUCTION

1.3.6 Cones

For any matrix M, the set of vectors C(M) = (Z E R" IMTi > 0} is called the cone of M.

This set is the intersection of the half-spaces defined by hyperplanes passing through the

origin and oriented perpendicular to each (column) vector of M. In the case of dependence

vectors, C(D) is exactly the set of possible legal ordering vectors. For a vector i to be a

legal ordering vector, DTi > 0 must hold, and C(D) is the set of vectors satisfying this

requirement.

The union of a cone and its boundary is called the closure of the cone. The closure of

C(M) is C*(M) = {i E R•IM T
S > 0}. The difference between C(D) and C*(D) is explained

in Section 1.4.2.

For a matrix M of full rank, a ray of a cone is a vector 1ý E Zn that is on the boundary

of the cone and is the intersection of at least k - I of the hyperplanes M.,, •11. = 0. The

set of rays of the cone of a matrix M is denoted by rays(M). Figure 1.10 graphically

shows two cones. The left side of the figure shows a two-dimensional cone. Each vector is

perpendicular to a hyperplane; the side of this hyperplane away from the vector is not in

the cone (points not in the cone are shown shaded in the figure). In three dimensions, a

cone can have an infinite number of rays. In the right side of Figure 1.10, eight hyperplanes

are shown, each perpendicular to one of eight lines. In this case the set of points in the

cone are the set of points inside what looks like an ice cream cone.

When M is not of full rank, there is a non-trivial null space AP. In this case, we follow

the method of Schreiber and Dongarra[481, who define the set of rays to be a basis for the

null space of M, plus the set of rays for the space spanned by M. The particular set of

vectors in the basis for the null space is determined using QR factorization. The details are

unimportant to the development here.

1.4 Introduction to tiling

1.4.1 Hyperplane tiling

All of the data referenced by a program is too large to fit into Ml at once (otherwise

there would be nothing for the compiler to do), The compiler must find a way to chop

the iteration space of the program into pieces that do fit into M1 . A variant of hyperplane

1.4. INTRODUCTION TO TILING 19

Figure 1.10: Rays of a cone in 2-D and 3-D.

tiling[29] is used.

A vector iT in the iteration space I can be used to split the computation by dividing

the computation along hyperplanes perpendicular to 6, as in Figure 1.11. In this figure.

hyperplanes perpendicular to each of the two vectors (4.1) and (2,6) are spaced evenly by

the length of the vectors. The hyperplanes can be spaced by the length of the defining

vector, or we can use the vector for direction only and give a separate spacing distance

along each vector. This would be the case, for example, if we used the vector (1.3) instead

of (2,6); we would then have to specify that the planes are to be spaced with distance V116

measured along the normal vector (22 + 62 = -10). We will find it more convenient to scale

the dividing vectors to have unit length and use explicit scaling factors.

We will not necessarily tile the full iteration space. We use the term dividing to mean

tiling a subspace of the iteration space. A dividing (of the iteration space) is generated by a

set of A linearly independent unit-length vectors B, B\,., and a set of spacing factors

along those vectors, /13,-..,13\. The vectors form the rows of a dividing basis, denoted by

the matrix B. B is called a dividing basis because B must form a ibsis for the tiled space.

The compiler's goal is to tile the space P. This guarantees that the compiler can limit

the data required by a tile to a compiler-selected amount. Linear independence guarantees

that A < n, the dimensionality of the iteration space I. The iteration subspaces that result

from a dividing are called divisions of the iteration space. In the case A = n. the vectors

20 CHAPTER 1. INTRODUCTION

22"
21-

19-

17-

15-

1+"

9-
8'
7,

5.

3-
2-

ib ~ ~ ~ ~ ' 1'1 b1 51

Figure 1.11: Using vectors to define cutting hyperplanes

form a basis for the iteration space, and the resulting dividing is a tiling of the iteration

space.

In general, however, it is not necessary to have a tiling of 71 if we are only interested

in data motion; a dividing will suffice, so long as we have a tiling of D. This is because

a division of the iteration space with unlimited length in some dimension is acceptable

so long as the data requirements for localized streams of the division are limited to some

controllable amount. In Figure 1.12, a one-dimensional stream A[j] is referenced in a

two-dimensional iteration space, consisting of an i-loop and a j-loop. Tiling the j loop is

sufficient to limit the data required for each tile, at least for this stream. Tiling the i loop

does not help at all.

reference j dividing direction
vector

A[4 interplanar spacing

A[3. t divisions are unlimited in the i loop
: dividing hyperplanes

A[2 but the stream AU] is limited

[1[with a single dividing vector

Figure 1.12: Unbounded divisions may not pose problems

1.4. INTRODUCTION TO TILING 21

The amount of data referenced by the iterations of a division must be limited to a finite

(compiler-controllable) size. This will be the case if no reference vector is perpendicular to

all dividing vectors, that is, if Vi 3jRi,. B3,. $ 0 (the reference matrix Rv.k is abbreviated

R here for notational purposes).

To tile a subspace of 1, the compiler must first transform the loop nest so that P is

spanned by A loops, and n-A loops have their direction vectors orthogonal to D. If possible,

the orthogonal loops should be moved innermost, increasing the amount of computation

performed in each tile. Because this is not always possible, and because it is notationally

more convenient, in the rest of this thesis the entire iteration space is tiled. From now on,

B is a n x n matrix.

1.4.2 Dependence constraints

A division of the iteration space is completely executed before another division is worked on;

so for this (sequential) case we have an atomicity constraint on the divisions: each division

must be such that once all its inputs are ready, it can be executed start-to-finish without

interruption. We can ensure this by requiring that dividing basis vectors B,. satisfy the

filtering equation: 4

Vj: Bi.. D., Ž0 (1.1)

We can re-write this as BD > 0. We are choosing B from the set of legal sequential

ordering vectors. This ensures that we could safely execute along each basis vector Bi,.,

because every entry of every dependence vector will be positive in the new basis (the

transformed dependences are given by BD). The loops of the new basis are therefore fully

permutable (and thus tilable). Thus we want to choose dividing vectors from the set C*(D).

C*(D) differs from C(D) in that while we cannot choose legal sequential ordering vectors

from C*(D)- C(D), we can choose partitioning directions from that set. If tile partitioning

direction is in C*(D) and not in C(D). there will be a dependence along the border of a

partition as in Figure 1.13. The partitioning direction is (1,-1), which meauts the tile bound-

aries lie along (1,l). There are dependence vectors also along (1,1). These dependences

do not cross the partition boundaries, but run along it. This does not preclude a linear

'The condition given is sufficient to prevent dependence violations but is not strictly necessary; there

are some dividings that are valid and yet do not meet this constraint [29].

22 CHAPTER 1. INTRODUCTION

scheduling of either the iterations within a partition or of the partitions themselves.

j

Figure 1.13: Dependence vectors parallel to partitioning hyperplanes

1.5 Approach

The goal of the compiler is to transform a loop nest written for an infinitely large memory

into a new loop nest that uses the memory hierarchy to greatest advantage, by copying

data from one level to another when needed, but using locality to reduce the total number

of copies required.

The basic tool used in this thesis is tiling. Substantial effort is spent to find the tiling

that minimizes execution time. First, a set of candidate tiling basis vectors is formed. For

every possible basis that can be formed from this set, the best schedule is selected, the

best tile shape is computed (i.e., the hyperplane spacing factors are selected to minimize

execution time), and the execution time is estimated. The tiling with the smallest cost is

selected from all possibilities given the candidate set.

A prototype compiler was implemented, which automates most of the work involved.

Specifically, the prototype generates the candidate set, selects each possible basis, finds a

schedule for the basis, and builds the cost model from which the tile size factors are chosen.

Building the cost model requires then compiler to transforms the loop nest. finding new

loop bounds in the new basis.

Due to time constraints, the cost model solver was not implenmented, nor was the final

mechanical step of strip-mining the loop bounds given the tile size factors (which are the

blocking factors for the loops). In later chapters, we discuss the numerical stability of the

cost model, showing that if the compiler has complete information, an optimal solution

1.6. OUTLINE OF THE THESIS 23

is easily obtained. If the compiler cannot determine t'ie loop bounds at compile time,

the cost model can be solved using approximations of the loop bounds without significant

degradation of solution quality.

Care is taken in several areas to ensure that execution time is minimized. The buffering

schemes for moving the data back and forth between M, and M2 are chosen to be as

efficient as possible in terms of storage required. The order in which the tiles are executed

is chosen to maximize the amount of data that can stay resident in 111, thereby minimizing

the slow memory bandwidth required. Finally, the relative fraction of M, used for buffering

each stream is not fixed, but is decided by the compiler to provide the maximal amount of

computation per slow memory access.

1.6 Outline of the thesis

This chapter described the problem to be solved, and laid a foundation for its solution. The

reader should have a fundamental grasp of iteration spaces, reference matrices, dependence

vectors, and tiling. This theory is more or less common to all works in data motion

management using tiling.

Chapter 2 discusses earlier work at solving similar problems. Some general work in

compiler theory is discussed first. Approaches to managing data motion not based on tiling

are discussed, and finally earlier work using tiling is described.

Chapter 3 develops the basic cost model used throughout the thesis. The cost of moving

data is simply the amount of data to be moved for each tile times the number of times that

amount of data must be moved. Both of these parameters are expressed in terms of the

vector of tile sizes.

Chapter 4 develops the first part of the cost model: how much data must be moved for

a tile. This includes developing the address translation from the memory space of the full

data set in AM2 to the buffer memory space in M1 .

Chapter 5 develops the other part of the cost mo(lel: how nmany times the data miust be

moved. It addresses scheduling the tiles to minimize data motion taking advantage of the

locality between tiles. Finally, it describes how to find a formula for the number of times

data will be moved in terms of the tile size vector.

Chapter 6 describes how the cost model is evaluated to find the optimal value for the

24 CHAPTER 1. INTRODUCTION

tile size vector. This requires detailing how the loop bounds are transformed from the

source space to the new basis space. Once the loop bounds are transformed. polynomial

arithmetic needed to evaluate the loop bounds is discussed. A complete example is given

showing how the cost model is developed from source code to finished transformed code.

and the chapter concludes with some discussion of the optimality of the techniques used.

Chapter 7 evaluates the techniques used by applying them to several well-known sci-

entific loop bounds. Specific comparisons between this work and previous work is given.

showing specifically what problems the new techniques address that the old techniques did

not.

Chapter 8 reiterates the contributions made by this work, and the conclusions that can

be drawn from it. It also points out several new areas of research that have been identified

as a result of the work of this thesis.

25

Chapter 2

Related work

The related work is divided into three parts. The first section describes general work in

compiler theory. The second part describes approaches to compiler management of data

other than tiling, -ind the last section describes the body of related tiling work.

2.1 Compiler theory

The first two parts of this section describe work in dependence analysis and code generation

techniques that are used later in the thesis. The last part describes several approaches to

parallelization that have been taken by different researchers, for contrast to the method of

parallelization by tiling used in this work.

This work is done in the context of optimizing compilers for imperative languages. The

reader who is not familiar with optimizing compilers should become familiar with them

before proceeding. Wolfe's book[58] is a good place to start. In particular, the reader

should be familiar with loop transformations such as unrolling, jamming, strip-mining, and

interchanging. The reader should also be familiar with standard data flow analysis (Aho,

Sethi, and Ullman's book[3] is good) and data dependence analysis (see below).

2.1.1 Dependence analysis

Tiling cannot be accomplished without effective dependence analysis. The standard refer-

ence for dependence analysis is the book by Bannerjee(7]. This standard baseline has been

improved in different ways by other researchers. Ribas[471 describes adding rrbounding

26 CHAPTER 2. RELATED WORK

facets to turn non-constant dependences into constant ones in some loops. Wolf and Lam

represent dependences as lexicographically positive vectors, which simplifies transformation

theory for non-constant vectors.

Pugh[40, 41] developed an algorithm called the Omega test for solving the integer linear

programming problem that is at the core of dependence analysis. This test serves as the

basis for the dependence analyzer of the Fx compiler, of which this work is a part.

2.1.2 Code generation

When a tiling basis is chosen, we need to transform the source iteration space into the new

iteration space, and then applying strip-mining to the resulting nest. Li and Pingali[35]

describe exactly the transformation required. In Section 6.1 we describe the results of this

paper in detail. Ancourt and Irigoin(41 describe techniques for scanning the integer points in

a polyhedra using DO loops, which could be used to perform the same task. For generating

loop bounds in the tiled code, Ancourt and Irigoin's method is inferior to Li and Pingali's,

because Li and Pingali scan exactly the points required, while Ancourt and Irigoin scan

the convex hull of the points required. When generating fetch and store loops, however,

copying the convex hull of the data may be be cheaper, because Li and Pingali's method

visits each iteration point once, while Ancourt and Irigoin's method visits each data point

once. When the same data is referenced several times by different iterations, fetching the

convex hull may be preferable.

Part of the loop transformation process is performing Fourier-Motzkin elimination[13].

We use a slightly modified version of Duffin's methods for eliminating extra inequalities[14].

2.1.3 Parallelization

Tseng(52] automates mapping of programs to distributed memory machines, by using pro-

grammer hints to the compiler in the form of distributed arrays called DARRAYs. lie also

uses programmer hints to simplify dependence analysis. but this could be automated as

well. The programming language shows a strong resemblance to Fortran D[23].

Ribas[47] demonstrated the feasibility of automatically generating code for systolic ar-

rays from nested loop algorithms. The mathematical approach to compilation in that work

was the inspiration for this work.

2.2. OTHER APPROACHES 27

Kung[32] describes nine different computational models for linear processor arrays.

Some of them, such as the pipeline model, are well-suited to intratile parallelism. Us-

ing such a model, the entire array is used as a single powerful processor. All the processors

work on the same tile simultaneously. Because systolic arrays can move data directly from

the communication hardware (the "systolic pathway") into the arithmetic units, systolic

parallelism can increase the net data bandwidth into the arithmetic units, turning a pro-

gram whose execution time is limited by memory bandwidth into one that is limited by

computation bandwidth. Removing the memory bottleneck in this way is a powerful tool.

One important criterion for the techniques developed in this thesis is that they do not

prohibit the use of systolic parallelism within a tile.

Moldovan and Fortes(16] discuss other methods of generating systolic algorithms from

nested loops. The transformation techniques they use are incorporated into, and surpassed

by, the code generation techniques of Li and Pingali discussed in Section 2.1.2.

Sussman[51] describes techniques that allow a compiler to choose among several exe-

cution models for mapping programs onto distributed memory machines. He shows that

a compiler can choose among data partitioning techniques and computation partitioning

techniques, including block and interleaved data partitioning, and loop body pipelining.

Since these techniques cannot be exactly modeled on a complex machine, he uses an upper

bound and a lower bound function for modeled execution time.

Pingali and Rogers[38] use programmer-supplied data decompositions to drive paral-

lelization. They try to compile the program so that computation is executed on the proces-

sor where the data is resident. Their compiler supports data distributions using wrapped

rows, wrapped columns, and square blocks. They use compile-time information when pos-

sible, and rely on run-time resolution when necessary.

2.2 Other approaches

This section describes approaches to compiler management of the memory hierarchy other

than tiling. First some general array-handling techniques are discussed. The next sec-

tion examines work on compiler cache management: first cache bypass and then software

prefetching techniques.

28 CHAPTER 2. RELATED WORK

2.2.1 Array management

CallUahan and Kennedy describe scalar replacement, a method that allows register allocators

that do not handle arrays to keep some array elements in registers. They also describe using

loop unroll-and-jam to improve the effectiveness of their method. They hint that tiling to

improve locality may surpass the performance of their method. Scalar replacement is only

necessary when the compiler's flow analysis is insufficient to perform register allocation of

subscripted variables. Maydan et aL[36] describe a method for improving standard data-

flow analysis that is more general.

Gupta and Kajiya(211 describe techniques for laying out data in memory so that exe-

cuting the code results in accessing sequential addresses in memory. They provide evidence

that the compiler can usually determine which axis of an array is scanned fastest. Organiz-

ing data to match the scanning order of loops increases spatial locality. This method does

not improve temporal locality for loops whose data does not fit into the lowest level of the

memory hierarchy, because the accesses themselves are not reordered, just the mapping of

addresses is changed.

Wholey investigates trade-offs between parallelism and locality in mapping data onto

parallel machines. Array axes that are aligned in the iteration space are bundled together

at compile time; at run time, a search is performed that computes the best distribution of

data elements to processors. A cost model that takes into account both parallelism and

communication costs is used. The techniques for finding tiles sizes presented in this thesis

are more exact since they do not rely on data sizes being powers of two. The cost model

used in this thesis also takes into account locality within each processor. Data mapping

is the primary goal addressed by Wholey's work. In our work, data mapping is (lone by

scheduling the tiles onto the processors, and by choosing tile sizes.

Balasundaram et a461 describe an interactive system for partitioning and distributing

data. This approach does not address data locality within a processor, but could be ex-

tended with tiling for locality. The general approach of interactively advising the user to

make changes in his program is a fine idea for tuning a program to a particular architecture,

but makes the code less portable. Fully automatic techniques are necessary for portability.

Jalby et al418, 17, 15] describe a method for computing the number of elements that

would have to be held in fast memory for re-use to occur. This could be used to compute

2.2. OTHER APPROACHES 29

the number of unrolls needed in Callahan and Kennedy's method. The term "uniformly

generated", used to describe array accesses with the same coefficients but possibly different

constant terms, originates in the work described by these papers.

2.2.2 Cache work

This section describes work on cache bypass and cache prefetching strategies for compilers.

Cache bypass keeps the cache from being flushed by large arrays. This forces accesses to

arrays to operate at slow memory speeds, but has the advantage of leaving in the cache those

data items that do exhibit locality. Software prefetching attempts to hide slow memory

latency by prefetching data items before they are needed. Prefetching does not reduce the

slow memory bandwidth requirement of a loop nest. If the slow memory is a bottleneck,

software prefetching will not be effective.

Chi and Dietz[1 1] describe the generation of cache-bypass information. Some processors

allow various control over cachability: pages can be marked uncachable, address spaces can

be marked uncachable, or individual references can be marked uncachable.1 A compiler can

scan through instruction traces generating cache/don't cache information for each reference.

Bypassing the cache for references that are known to be poor candidates for caching can

greatly improve performance. Bypassing avoids pollution of the cache. This keeps cachable

references present, and it increases the effective size of the cache since many references

never go into it.

Porterfield et a439, 9] discuss using predecessors of tiling (peel-and-jam and strip-mine.

skew and interchange) for reducing the number of cache misses, and software prefetching

for reducing the effective cost of cache misses that are not eliminated. The tiling part of

this work is improved on by that of Wolf and Lam (see below).

Gornish, Granston, and Veidenbaum[19J investigate prefetching in shared-memory pro-

cessors. In particular, they compute the earliest point at which a (lata item can be

prefetched. They also give simulation results to evaluate the effectiveness of their method.

1 No current processors are known to provide cachability on a per reference basis. but there is enough

instruction encoding space to implement it on Hewlett-Packard's Precision Architecture. version 1.1[22].

30 CHAPTER 2. RELATED WORK

2.3 Tiling

Tiling is a loop restructuring transformation. Usually it is aimed at increasing the locality

of a loop nest. Kung and Hong[24] show that the computation-to-I/O rate of a program

can be bounded. Kung later uses this theory to show that increasing the computation rate

of a processor array without increasing its I/0 rate requires more memory per processor to

maintain full utilization[31]. The bounds on the computation-to-I/O rate are a fundamental

limit on the effectiveness of tiling for locality. In particular, in evaluating the new tiing

techniques in Chapter 7, these bounds help to explain why the new techniques succeed

when they do. The bounds can also be used to explain why in some cases, only a constant

factor improvement is possible.

2.3.1 General tiling work

Tiling for locality has been extensively developed in optimizing compiiers. The origins are

found in Abu-Sufah's work to increase locality in paging systemsjlI. This work split and

fused loops to minimize the number of page frames required to execute a program with only

a few page faults. Strip-mining was applied to loops so that once a page was brought into

memory, as much computation as possible was done on that page before it was returned to

disk.

The next advance in tiling work was Irigoin and Triolet's use of hyperplanes to partition

the iteration space[29]. This changed a loop transformation problem into a geometric one:

choosing a basis for the iteration space such that all basis vectors are positive with respect

to each dependence vector. This lead to a concept called a dependence cone, which is the set

of all legal scheduling vectors. Wolfe[59] describes roughly equivalent functionality in terms

of loop transformations instead of the more theoretical approach of Irigoin and Triolet.

Carr and Kennedy[10] studied tiling (they call it blocking) loops for linear algebra

algorithms. The key insight of this work is that many linear algebra algorithms that use

pivoting have dependences that prevent adequate tiling. MIlocking these algorithms requires

more than simple loop transformations.

Schreiber and Dongarra[481 advanced tiling by suggesting a new method of choosing

the loop transformation: they pick a basis for the transformed iteration space from vectors

lying inside the dependence cone. More specifically, they start with a subset of the rays of

2.3. TILING 31

the dependence cone, and modify this basis to make it orthogonal. While their argument

for orthogonality is convincing, and it certainly holds for matrix multiply, orthogonality

of the tiling basis is not generally optimal; in the next chapter we will show that having

scheduling vectors perpendicular to the basis vectors is the right abstraction. We note,

however, that for many common linear algebra programs, the two ideas coincide.

Note that Schreiber and Dongarra's method of choosing the rays of the dependence

cone as a new basis for the iteration space requires dependences which are distance vectors;

the method cannot be directly applied to loops with direction vectors. They choose the

basis to maximize reuse based on a simple model of the program. In their model, the

amount of data accessed by a tile is proportional to the surface area of a tile. This is

certainly true of (n - 1)-dimensional arrays in n-dimensional loops, such as are found in

matrix multiply (their primary example), but it does not hold in general. They do choose

non-square tile shapes using a method similar to the one we present. They also discuss

locality between tiles. Their work is largely restricted to uniprocessors. although they do

discuss wavefronting tiles for parallelism.

2.3.2 Tiling for cache locality

Wolf and Lam have done considerable work on the problem of tiling nested loops for ma-

chines with caches[33, 54, 55, 56, 57]. The best reference is Wolf's thesis[571: although long,

it contains everything that the papers contain, plus more space is devoted to clarification

and examples. An important theoretical contribution of this work is an advance in de-

pendence representation. Dependences are represented as a combination of distance and

direction vectors, and are required to be lexicographically positive. They use unimodular

matrices to model loop transformations. Loop nests are transformed to get sequences of

fully permutable loops. Fully permutable loops can be freely interchanged because all de-

pendences are satisfied regardless of the nesting order of the loops (because the dependences

are positive in every loop, not just in the outermost loop).

They strip-mine fully permutable nests to form tiles. They choose the tile size so that

there is no cache interference within a tile. This typically results in using a small fraction

of the cache space. They always use square tiles. Square tiles are not generally the optimal

choice, but changing the loop nest from one that. usually misses in the cache to one that

32 CHAPTER 2. RELATED WORK

almost always hits is such a significant speedup that a suboptimal shape choice is not a

critical consideration: tiling for locality with square tiles can reduce execute time by orders

of magnitude; relative to square tiles, optimally-shaped tiles result in a slight performance

increase of a small constant factor.

Wolf and Lam execute tiles in parallel using DO-ACROSS parallelism(12]. They do not

consider scheduling tiles to optimize locality between tiles.

In contrast, in this work we target RAM memories instead of caches: local (private)

memories in a distributed memory machine, or on-chip RAMs in machines like the Trans-

puter. There is no cache interference possible. We therefore choose tile sizes as large as

possible subject to the size of local memory. We choose tile shapes to minimize the number

of non-local accesses.

Wolf and Lam suggest copying data into a linear buffer to reduce cache interference.

Skewed rectangular buffering, discussed in section 4.5, is closely related to this problem;

fetching a skewed buffer is essentially a gather operation, copying data into consecutive

locations in fast memory.

This work also addresses scheduling tiles for intertile locality, which Wolf and Lam do

not. Intertile locality is a secondary effect compared to intratile locality.

2.3.3 Tiling for minimal communication

Ramanujam and Sadayappan[42, 43, 44, 45, 46] tile to reduce communication in distributed

memory parallel computers. They target machines with high communication latency, as

opposed to systolic arrays, which have low communication costs. They choose a subset

of the rays of the dependence cone as tiling vectors (they call the rays extreme vectors).

which requires constant dependences. They use simple wavefronting for parallelism. They

offer a formula for determining the size of tiles in 2-dimensional iteration spaces. They

also develop a test for determining if there is a communication-free partition of data to

processors.

Since their objective is solely to minimize communication, they use a much more abstract

model of data motion: they measure communication by taking the (lot product of tile

dependence vectors and the tiling vectors. Because they assume constant dependences, this

is a good approximation. In our work, we do not attempt to choose tiling vectors directly

2.3. TILING 33

to reduce communication. Since we are targeting multiprocessor systems with memory

hierarchies, we find tiles small enough to fit in the fast memory of a single processor.

We reduce communication by scheduling these tiles onto the processors in the way that

maximizes locality. Since we make our final selection based on the total execution cost, our

method is always at least as good as theirs. Because we also include slow memory fetch

costs in our model, our results should surpass theirs in cases where memory locality within

a processor is more important than minimizing communication.

2.3.4 Tiling for locality given a data distribution

Li and Pingali[34] restructure loops for locality in Fortran D. The user describes how to

decompose data among processors. Rather than directly applying the "owner computes"

rule, the compiler restructures loops so that executing the outermost loop in parallel results

in maximal locality within each processor. The inner loops are tiled if necessary so that

non-local accesses are block accesses. The transformed iteration space is chosen directly

from the data access matrix, that is, from the set of filtered reference vectors.

In this thesis, we tile for data locality even for streams that are held entirely within a

single processor. Li and Pingali's work does not address this. pointing out instead Wolf

and Lam's work on data locality within a processor. Their emphasis is on problem decom-

position.

In this work, both inter-processor and intra-processor locality are addressed, simulta-

neously, using the tiling as the mechanism for achieving both. We therefore keep a more

detailed model of the reference stream: rather than simply generating the set of all refer-

ence vectors, we keep a reference matrix associated with each array reference. This allows

us to compute the number of nonlocal accesses required by a transformed loop nest exactly.

Li and Pingali describe a method for completing a tiling basis given a partial basis.

The work described in this thesis avoids this problem by tiling the data space rather than

the iteration space. We are guaranteed that thert, are enough reference vectors to span the

data space, so completion is not required.

34 CHAPTER 2. RELATED WORK

2.4 Contributions of this work

This thesis investigates compiler techniques for managing data motion through memory

hierarchies without support (or interference) from the hardware. This problem is more

difficult than simply tiling to improve locality, because the compiler must also perform all

the duties of a cache: it must decide what data to bring into fast memory, where to put it,

and when it should be returned to slow memory.

The problem is also more difficult than that of standard overlays, because it requires

loops in the program to be restructured. Furthermore, this restructuring should be done in

a way that maximizes locality of reference. Standard overlaying techniques do inot address

these issues.

The tradeoff between parallelism and locality is also investigated. In our work. both

parallelism and locality contribute to reduction of execution time. By using a cost model

that incorporates both, and by selecting a tiling basis to minimize this cost function, the

tradeoff between parallelism and locality can be neatly addressed.

This work also solves the problem of automatically choosing optimal tile sizes in each

dimension. This alleviates the problem of deciding which loops to tile, because all loops

can be tiled, and the tile dimensions will be set so that loops which need not have have

been tiled can be returned to their source from with a simple post-tiling optimization step.

To manage data motion, data accesses must be carefully modeled by the compiler writer.

The model of data streams generated by different array references in loops is simple and

powerful. Reference matrices are an effective way to capture exactly the locality information

needed by a compiler. The following chapters show how this powerful model of how data

spaces relate to the iteration space can be used in a methodology for managing data motion

in machines with software-controllable memory hierarchies.

35

Chapter 3

Cost model fundamentals

The goal of this thesis is to produce a set of compiler techniques for managing data motion

through the memory hierarchy. This chapter and the next three are devoted to the devel-

opment of the techniques. This chapter gives an overview of the approach. The first section

discusses the approach in general terms. The next section describes the execution model

describing where data resides, how it is moved, and how the computation is performed.

Based on this execution model, cost criteria are developed for comparing different tiled

loop nests. Finally, a specific cost model is developed.

3.1 Overview

The goal of an optimizing compiler is to generate the best code possible without spending an

unreasonable amount of time. Any tiling will result in intratile locality. A simple compiler

can choose any legal tiling basis, and choose the tile size to be the largest rectangular tile

that fits in MI. An optimizing compiler should expend a little extra effort to choose the

best tiling basis and then to choose the best tile size in each dimension.

The space of all possible legal tiling bases is infinite, so we cannot possibly search the

entire space. The criterion usc, to evaluate the basis choice, execution time, is not simple

enough to allow analytical choice of a basis from this infinite space. The compiler instead

constructs a set of candidate tiling vectors, and evaluates each possible combination of

those vectors.

36 CHAPTER 3. COST MODEL FUNDAMENTALS

3.1.1 Candidate tiling vectors

There are several obvious choices for candidate vectors. Loop index vectors are the simplest

possibility. Tiling on loop index vectors corresponds to strip-mining each loop in the original

nest, and interchanging the controlling loops outwards. The set of loop index vectors is

always the set of rows of the identity matrix, and so is written I.

Dependence vectors are another possible source of tiling basis vectors. For the purposes

of choosing candidate vectors, the compiler includes input dependences as well as flow-,

anti-, and output-dependences. The set of dependence vectors of the latter three types is

written D. When augmented with input dependences, the set is written D+. Dependences

point out reuse in the iteration space. Choosing dependences will allow the maximum

possible locality between different tiles, as will be shown in Chapter 5.

There are two problems with using dependences as candidate basis vectors. The first

problem is that the rank of the dependence set is often less than n, even when input depen-

dences are included. This does not prevent us from using dependences in the candidate set,

but the dependence vectors are not sufficient by themselves for tiling, even though they do

point out all the available reuse.

The second problem with using dependences as candidate vectors is that tiling basis

vectors must be integer-valued. When dependences are distance vectors (i.e., every entry

is a range consisting of a single integer), or can be represented using distance vectors, the

dependences can be used directly as candidate basis vectors. Non-constant dependences

(direction vectors) cannot be used as candidate vectors unless they can be converted into

integer-valued vectors.

Reference vectors are another good choice for candidate vectors. Since they point in the

direction of increasing subscripts for each dimension of an array, cutting with hyperplanes

perpendicular to them results in tiles that reference rectangular subarrays. The set of all

reference vectors is cailed V.

The class of extreme vectors, or rays of the dependence cone, are also guaranteed to be

legal. We denote this set of vectors E. Ramanujam and Sadayappan[42, 413, 44, 45, 46] use

these vectors for tiling, and Schreiber and Dongarra begin with a subset of these vectors,

modifying them to get an orthogonal basis. Including these vectors in the candidate set

allows the extremes of the space of legal orderings to be searched.

3.2. EXECUTION MODEL 37

The last class of vectors to consider as candidate vectors is V '. These are vectors

which are perpendicular to all the reference vectors of a stream. The vectors of V'- are

essentially (augmented) dependence vectors, but they are much easier to derive, and are

always constant integer vectors.

Unfortunately, of the above classes (I, D+, V, E, V'), only I and E are necessarily 1f gal

vectors; the vectors of D+, V, and V' must be filtered against the dependence set.

3.1.2 An example

Since the compiler will evaluate every linearly independent subset of the candidate vector

set, including so many different kinds of vectors may seem costly. Fortunately, in most real

programs several of the sets discussed above overlap considerably. Consider the example of

matrix-matrix multiply, shown in Figure 3.1.

for i a 1 to n do
for j = 1 to n do

for k = I to n do
cCij] - c[i,j] + a~ik] * b[kj];

Figure 3.1: Matrix-matrix multiply

The index vector set in any program is F. the identity matrix. For matrix multiply, I

consists of the three vectors i, j, k. The dependence vector set of matrix multiply contains

the single vector (0, 0, 1), a flow-dependence in the k-loop on c. The augmented dependence

set is {(1,0,0),(0, 1,0),(0,0, 1)), because there are input dependences in the i direction for

b[k,j], in the j directions for a[i,k], and in the k(direction for ci,j]. The reference

vector set consists of the three vectors i.j,k. Since tire dependence matrix is riot of full

rank, the rays of the dependence cone include a basis for the space spanned by D (in this

case, k), and a basis for the null space of D (in this case, i and j). The vectors of V' = I

because V = I. All of these are legal vectors: the union of all the sets is just 1. There is

only one tiling basis choice in this case. I.

3.2 Execution model

The final code must iterate over the all the iterations in the original iteration space. The

iterations are divided into groups called tiles usitig the methods described in the previous

38 CHAPTER 3. COST MODEL FUNDAMENTALS

chapter. A set of outer loops (called controlling loops) will iterate from tile to tile. The loop

body of these outer loops will first fetch from V2 into M, the data required to execute the

division (or a superset of the data required). Inner loops perform the computations of the

tile. Finally, the data that has changed is stored back. Data motiun that is loop-invariant

in the innermost controlling loop is moved outward to the first controlling loop in which it

is not invariant.

When there is more than one write-reference to a single variable, a coherency problem

becomes apparent. Since each stream is buffered separately, we must ensure that writes to a

particular array element are copied into each buffer that currently holds that element. The

dependence vectors give us precisely the information that we need. We must be certain that

any dependences from one stream to another stream are satisfied either by the ordering of

the computations, so that there is never any element in common between any two buffers

for the same variable, or else we must insert code to perform the necessary updates to

each stream when they do overlap. For the time being, we will ignore this problem, since

it seems easily solvable; instead we concentrate on the costs of execution that lead us to

choose our tiling basis.

Once the tiling basis is chosen, we can generate code in terms of symbolic interplane

spacing factors. The tiled code for matrix-multiply is shown in Figure 3.2.

for i = 1 to n by /i do
for j 1 1 to n by O3 do

for k = 1 to n by Ak do
for ii = i to min (n, ii+/3i-1) do

for jj a j to min (n, jj+÷/,-1) do
for kk = k to min (n, kk+ A-1) do

c[ii,jj] = c[ii,jj] + a[ii,kk] * b[kk,jj];

Figure 3.2: Tiled matrix-matrix multiply

3.3 Cost criteria

Execution time, or at least estimated execution time, is always the final arbiter in compiler

decisions. In tiling, however, the computation time remains the same, since the same

amount of computation will be performed by any tiled loop nest. Fi rthermore, since all

3.3. COST CRITERIA 39

the loops will be tiled regardless of basis choice, the overhead of each tiled loop nest is the

same. Different tiling bases can therefore be compared solely on the amount of time spent

doing slow memory accesses.

Furthermore, in the machine model of Figure 1.2, data cannot be operated on in M2,

so every data item accessed in a loop must be brought into M, at least once. This cost

will be the same for any tiled loop also. The difference between two different tiling bases is

then the sum of two terms: the number of times a data item is brought into fast memory

after the first time, and the number of times a data item is brought into M1 and not used

at all. The first kind of access is called a refetch. The latter is called an overfetch.

Refetching is often necessary for at least some data items. In matrix-matrix multiply,

for example, each row of the a matrix must eventually be co-resident with every column of

b, and every column of b must eventually be co-resident with every row of a. If M, is too

small to contain an entire matrix, some refetching must occur.

Overfetching results when the compiler for some reason fetches data that is not used.

Data might be overfetched by the hardware that requires accesses to have a minimum size

(like a cache line, or a disk sector), or it might be overfetched because of code generation

tradeoffs. Since the source code loops can. be very complex, using the same loop structure

as the computation loops to fetch or store data may be inefficient. We can instead construct

a new set of loops, which have exactly as many loops as the data has dimensions, to fetch

the data. In doing so, some information is of course lost. Following Irigoin's method [4],

we will fetch the convex hull of the data elements referenced. This can introduce overfetch.

If data is fetched that will never be used in the division for which it was fetched, that data

is said to have been overfetched. This can happen, for instance, if the convex hull of data

used in a division contains data items that are not used in that division (see Figure 4.5).

The compiler has the choice of fetching the convex hull of the data required using a simple

loop guaranteed to fetch each data item only once. or using the source loop. The source

loop will fetch exactly the data needed, but may fetch the same element several times. The

cost of the savings in not fetching the same data multiple times is that some data may be

fetched that are never used.

One last cost that must be incorporated is an indirect cost: the cost of overallocation.

When space is allocated in fast memory that is not used for data used in a tile, that space

is overallocated. The cost of overallocated space is the number of cycles of slow memory

40 CHAPTER 3. COST MODEL FUNDAMENTALS

access that must be performed that would not have to be performed given a more efficient

allocation.

3.4 Cost model

Since the cost of the computation is the same for any tiling, the relative cost of each

tiling can be compared by measuring the time spent accessing slow memory. Each stream

contributes its own portion to the total cost. The cost of a stream s is the number of times

a block of data must be fetched (or stored) for that stream, denoted p., times the amount

of time spent fetching the block. The fetch time per block is modeled as a fixed access time

per block, plus a linear cost per word. Letting Cb be the cost per block, c," the cost per

word, and p, the number of words allocated in M1 for s. the total cost is

Z ps*(cb+cw*I/ss) (3.1)

sEstreamns

The size of the tiles is dependent on the buffering mechanism used by the compiler, and

on the relative fraction of fast memory dedicated to each stream. The buffering mechanism

determines the efficiency with which data is packed into MI. The relative fraction of M1

spent on each tile determines the size of each block. The number of block fetches per stream

depends primarily on how the tiles are scheduled for execution.

Chapter 4 describes buffering techniques, and defines M, as a function of the tile size

vector /. Scheduling is discussed in Chapter 5; the schedule determines p,, also as a function

of 0. Chapter 6 describes how the cost model is evaluated once p., and p. are known in

terms of the tile sizes.

41

Chapter 4

Buffering schemes

In this chapter we describe the techniques used to store data in MI. This requires deciding,

for each tile in the iteration space, which data is used by that tile and must be fetched, and

where in M, that data will be stored. Two facets of the cost model are explained in this

chapter: the amount of data fetched for a tile and the amount of M, space dedicated to

each stream. Both are computed in terms of the symbolic tile size vector 1. The subscript

functions needed for code generation are also described. The compiler needs a subscript

function for the full-size arrays in M 2 , and another subscript function for the temporary

arrays in MI.

The first section of this chapter describes how the iteration space is transformed prior

to generate tiles. The second section introduces the machinery required to discuss buffering

techniques. In the third section, the mechanism for choosing among buffering methods is

discussed, and finally there is a section on each method.

4.1 Transformation theory

The compiler has to generate code to execute a tiled loop nest from the source loop nest.

Rather than trying to directly solve for the loop bounds given arbitrary normal veccors to

the cutting hyperplanes, the compiler transforms the iteration space so that tile normal

vectors are elementary vectors (they point along the axes). Each loop can then be strip-

mined, and the inner loops of each new pair are interchanged inwards to form tile loops.

The n-dimensional vector lij denotes a point in the source iteration space. A point jt

42 CHAPTER 4. BUFFERING SCHEMES

in the transformed space is related to the original iteration space by

ft = Bfl. (4.1)

which can be rewritten $ = B'Ilt. It is clearer for expository purposes if a new set of loop

index variables is used in the transformed loop, at least in the general case. The vector

of loop index variables in the source code is denoted P, in the transformed space the loop

index variable vector is F. Note that i= Bi'must hold for these vectors.

4.2 Buffering theory

Buffering techniques are applied independently to each stream. For each stream, a size

requirement in terms of 3 is computed. These size requirements are used together to

compute the relative fraction of M, to be dedicated to each stream after scheduling is

performed. The rest of this chapter deals with size functions and address generation for

a particular stream.' The stream is generated by the kth reference to v in the loop nest,

and is denoted v.k. The reference matrix associated with this stream is normally denoted

Rv.k, but since buffering deals with a single stream, Rv.k is abbreviated for the rest of the

chapter as R.

The matrix R is a 6 x n-dimensional matrix, where 6 is the number of dimensions of

v. R maps iterations in the source loop nest to points in the data space of the referenced

array. The element of v used by an iteration point Tji is ;, a 6-dimensional vector. The

relationship between A and ; is given by

.¢= R15 (4.2)

Combining 4.1 and 4.2 results in

g=RB-'At(.')

The matrix R maps source iterations to array elements. The iteration-to-array element

transformation in the transformed space is given by the matrix S = RB-', which is also a

'If the target M, memory is a register file which cannot be referenced via indexing, loop unrolling mustbe

applied since each register must be specifically named. Wolf[57] describes this process in detail.

4.2. BUFFERING THEORY 43

6 x n-dimensional matrix. In the transformed code, references to v.k[Rif+ cl are replaced

with v.k[Sf+ cl. The matrix S is called a subscript matrix. Rows of S are called subscript

vectors. Subscript matrices and subscript vectors are the transformed-space counterparts

of reference matrices and reference vectors.

While subscripting functions for the source arrays are easily given in terms of the it-

eration space vector l• (f = R/j) or the transformed iteration space vector jgt (9- Slit),

it is much more convenient to give the buffer-array subscripts in terms of the iteration

space vector within a tile, which is denoted f. Ar example will help to illustrate the point.

Figure 4.1 shows a two-dimensional loop nest. The grey area represents the extent of the

b matrix; the iteration space is limited to the lower triangle. The n-vector iis the source

iteration space vector; for the code in the figure, F=
k

k

7

4 i
for i = I to 12 dc,

for k f 0 to i-I do
w[i] f w[i] + b[i,k]*W[i+k]; 11

Figure 4.1: A two-dimensional loop nest

When transformed by B, i" becomes F which is also an n-vector. Imagine that the

compiler will skew the inner loop prior to tiling so that all references to the variable W are[10]
expressions involving only a single loop index variable. The new basis is B =

For this choice of B, = The transformed code is shown in Figure -1.2.
u -iik

The grey area represents the b matrix as before, now skewed along with the iteration space.

After transformation, the loop nest is strip-mined, and the controlling loops are in-

terchanged so that they are outermost. The inner n loop indices then form the tile-space

iteration vector f. The tiled code for the example program is shown in Figure 4.3. Each tile

can be considered to have its own coordinate system, with its origin in the lower left corner

of the tile (in n dimensions, in the corner of the tile closest to the origin in the transformed

44 CHAPTER 4. BUFFERING SCHEMES

for u - 1 to 12 do
for v Y 0 to 12-u do

w[uJ w*uU] + b~u,u-vl*v[vv;

Figure 4.2: The same loop nest skewed

space). In the tile code, iris the vector (uu, vv), and f is the vector (uu - u, vv - v). As

an example, the iteration fi = (9,5) in the original source loop is the iteration pit = (5,5)

in the transformed space. After tiling, this iteration lies in the tile that has its origin at

=t = (4,3). Within that tile, it has coordinates 16 , (1,2).

for u a I to 12 by /3u do
for v = 0 to 12-u by Ov do

for uu = u to min(12, u.Ou-1)
for vv = v to min(12-u, v+13,-1)

w[u] = wvu] + b~u,u-v]*vwv];

Figure 4.3: The example loop nest skewed and then tiled

4.3 Two buffering methods

Buffering is handled by cases. If rows of R are in B, the corresponding rows of S will be

elementary vectors, that is, rows of I. In this case, a method called rectangular buffering

is applied. If S = I, buffering is trivial. Each tile uses a rectangular submatrix of v. The

space requirement is the product of the tile dimensions. The data can be buffered in an

array in M1 that has the same dimensionality as the tile. The buffer subscript is f, and

the source array subscript is i•.

4.4. RECTANGULAR BUFFERING 45

If S has less. than full rank, but the rows of S are rows of I, the same basic method

applies. If the jth row of S is the kth row of I, the size requirement in dimension j of the

buffer array is 3k. The buffer array subscript function in the jth dimension is given by rk.

When S has a special form described in Section 4.5, the tile references a skewed n-

rectangle (a parallelepiped) of data. While rectangular buffering could be applied in this

situation, it is much more space-efficient to use a method called skewed rectangular buffer-

ing. In this method, a skewed n-rectangle of data is copied into M1. The data is unskewed

as it is copied in, so that a rectangular array is used as buffer space.

In fact, skewed rectangular buffering is a generalization of rectangular buffering. How-

ever, rectangular buffering is still useful for two reasons. First, it serves as a gentle intro-

duction to the kind of addressing mechanism required for the more general case. Second.

rectangular buffering is more or less forced on the compiler when the M2 memory is strongly

block-oriented. If the M2 memory intrinsically deals with 1Kbyte blocks, for example, the

compiler may be forced to deal with such blocks (because, for example. the memory may

not support modifying a partial block, but may require that the entire block be written

back if any portion is modified).

4.4 Rectangular buffering

To simplify code generation, the compiler could require the blocks allocated in. and possibly

moved into, M, to be rectangular subarrays of the data stored in M2. It was pointed out

earlier that when S = I, space requirements and subscripts functions are trivial. In this

section, rectangular buffering for general S is discussed. When S F I. overallocation

results, and overfetching becomes a possibility (recall that overallocation means space is

allocated in M, for data that is not required for a tile, and overfetching means data is

copied from M2 into M, that will not be used in a tile; space can he overallocated even if

no data is ever copied into that space). For this reason, the prototype compiler uses skewed

rectangular buffering when necessary. Rectangular buffering may be a reasonable choice for

other compilers (for example, if M2 access time significantly rewards rectangular blocks).

and so some general analysis is included here.

Since the range of data needed by a division can be other than rectangular, the smallest

rectangular superset of the data required by a division will be allocated in Ifi. The convex

46 CHAPTER 4. BUFFERING SCHEMES

hull [5, pageref?] of the data required will be fetched prior to execution of the division. This

can lead to overallocation and overfetching. In Figure 4.4, the iteration space is divided

by vectors lying at -45*, that is, B []. A data stream with reference matrix

R = I (i.e., a two-dimensional array oriented in the obvious way, with the first dimension

parallel to the i axis and the second parallel to the j axis) will require extra data to be

allocated per tile. Two tiles are highlighted in light grey, marked "A" and "B". The data

space allocated for these tiles include the tiles themselves and also the darker grey regions.

Note that not only is data allocated that is not used for a particular tile (like the lower left

corner of "A"), but data can be allocated that is not even referenced by the iteration set

(the upper left corner of the allocation for "A").

Figure 4.4: Overallocation of data required for rectangular buffering

Figure 4.5 shows how overfetching can occur. On the left side of the figure, a division

of a larger iteration space is shown. This division consists of four iterations of the k-loop.

The convex hull of the data used in the division include several points that need not be

fetched (open circles). On the right hand side of the figure, we can see that this problem

can be made arbitrarily bad; by increasing the coefficient of k in the loop bound expressions

for the i loop, the ratio of data fetched to data used can be made arbitrarily high. In real

programs, access patterns are often dense, but it is not uncommon for the iteration space

to be of higher dimensionality than the data space. In both examples in the figure, the

iteration space is three dimensional (the "k" dimension extends outward from the page).

while the data space is two-dimensional. Projecting a higher-dimensional iteration space

onto a lower-dimensional data space is often a cause of non-dense access patterns.

Reference vectors show directions of increasing subscripts for each dimension of an array.

If we use reference vectors as dividing vectors, we are dividing the iteration space into

partitions that reference rectangular sub-blocks of the data. This eliminates overallocation

4.4. RECTANGULAR BUFFERING 47

4- 4-
3- : : : . . . • 3-

1. 0 *- 1 V

for k = 0 to 3 do for k =0 to 3 do

for i a 3k+1 i;'o 3k+3 do for i = 4k+1 to 4k+2 do
for j - i-3k to i-3k+3 for j a 1 to 2 do

... A[i,j] A[i,j]...

Figure 4.5: Overfetch of data using convex hull method

for those streams that have all of their reference vectors in the dividing basis, assuming

dense data access. If there are exactly n distinct reference vectors (and they are linearly

independent), we can use the reference vectors as tiling basis vectors and the resulting tiles

will have no overallocation.2

Note that it is not necessary to choose exactly the reference vectors of a stream to lower

the memory requirements: if vector d is closer to a reference vector than vector b (the

relative angle between d and the reference vector is smaller than the angle between b and

the reference vector), then choosing i reduces the overallocation in comparison to choosing

b, as shown in Figure 4.6. In the figure, both tiles encompass the same area, so both have

the same number of computations and the same number of data elements (because of the

orthogonality of R 1, and R2..). However, the overallocated areas (shown by the dashed

regions) are much larger when the partitioning vector is moved farther from the reference

vector.

2 Recall that we made the assumption in Chapter I that the dimensionality of the data space equals
the dimensionality of the iteration space. If a dividing of the data space is being sought, rather than a
tiling of the entire iteration space, only A linearly indepeaadent reference vectors are required, where A is the
dimensionality of the data space.

48 CHAPTER 4. BUFFERING SCHEMES

R2,. R2,-

Figure 4.6: Overfetch varies inversely with the closeness of dividing vectors to reference
vectors

4.4.1 Selection of basis vectors

Rectangular buffering leads us to choose reference vectors (elements of V) as dividing

vectors, because this results in no overallocation for the streams whose reference vectors

are in the dividing basis. If there are many reference vectors to choose from, priority goes

to the vectors of high-dimensioned arrays, since much more fast memory space is wasted

when they are overallocated.

4.4.2 Space allocation

The memory requirement /vs for a stream v, can be found by taking the product of the

memory requirements for each of the dimensions of the associated variable. As an example. a

one-dimensional array will require enough memory to store every element from the smallest-

indexed element referenced to the largest. A two-dimensional array will require the product

of its x range and its y range. Let 3j'. be the smallest subscript value of data referenced

by a tile in dimension i. Similarly, let 9'-" be the largest referenced subscript value along

dimension i. The formula for memory required can be written:

6

1l1 fmnz - gn~ +I

We now need a formula for the number of points lying in a particular division of the

iteration space. Consider a generic tile. We can consider the corner that occurs first in the

sequential order to be the origin. In order for a point 1i in the original iteration space to

lie within the tile, it must be that Vj : B1- Bj,. > 0 and also Vj : •j B 1,. _ !j. That is. for

4.4. RECTANGULAR BUFFERING 49

Sto lie within the tile, we must have

0 S B)F :5~

This set of inequalities gives a bound on the points that can lie in a tile. This in turn

allows us to compute the parts of an array that can be referenced by that division. Each

dimension i of variable v has an associated subscript vector in the new basis space Si,..

The maximum and minimum referenced elements are given by i'iG = max(S,..- Jt) and

gn" = min(Si,. • .) over the division 0 _<)7 < 13. Thus, our earlier expression for the

amount of memory required by the stream per division becomes:

mx [(m A 1(min Si, -)
=v.k subject to 0 < subject to 0 <) +<] (44)

Note that every corner of a division has the form (07t1,A 2 , .- .. -,A) where either pfti = 0

or fti = 9 - I. We can find the maximum value by summing Si,J(13j - 1) if Sj, is positive,

and zero if it is not. Conversely, we can find the minimum by summing S,.j(•j - 1) if Si,.

is negative, and zero if it is not. This allows us to find the maximum and minimum values

in linear time in n. The memory requirements are expressed symbolically, as a polynomial

in the unknown 3i's. A more general discussion of finding bounds of a linear function in an

iteration space can be found in Chapter 4 of Banerjee's book on dependence analysis[7].

8-

7-
6-

S2-

Figure 4.7: Nonlinearity in the tile size expression

If the vectors of R are in B, and the vectors of B which aren't in R are perpendicular to

50 CHAPTER 4. BUFFERING SCHEMES

the vectors of R, then S is a permutation of 6 rows of the identity matrix. In this case, Pv.k

is a simple product of the tile size factors (i.e., Pv.k = 00jj30-)• This is not true in general,

however, as is shown in Figure 4.7. A tile with dimension j = (9,3) is shown as a solid box.

An array is referenced with subscript vectors Sj,. and S2,.. The dark grey area corresponds

to the size of data that must be allocated for the tile using rectangular buffering. When

the tile size is increased to j = (12,3), the increase in /3u causes an increase in the size

requirement for both dimensions of the array (the allocation requirement is shown as a

lighter grey area). Increasing the single tile dimension increases the data requirement for

the tile in both the R1,. and R 2, directions. The size requirement is proportional to the

square of Ou in this case.

4.5 Skewed rectangular buffering

When S has a particular form, the range of data accessed by a tile has the shape of a skewed

rectangle. Rather than allocating a buffer that corresponds to a rectangular part of the

source array, the compiler can allocate a buffer that corresponds to a skewed-rectangular

section of the source array. This results in little or no overallocation (overallocation is only

possible for partial tiles at the edges of the iteration space).

Skewed rectangular buffering is a linear transformation from a k-dimensional paral-

lelepiped (a skewed k-rectangle) to an orthogonal k-rectangle. Section 4.5.1 defines pre-

cisely what is meant by a parallelepiped. Section 4.5.2 describes the form the subscript

matrix S must have in order for the set of data referenced by the iterations of a tile to form

a parallelepiped in the data space. Section 4.5.3 derives the transformation itself, using the

idea of repeatable kernels. Finally, Section 4.5.4 describes the allocation used for skewed

rectangular buffering, and derives the M, size requirement in terms of the tile size vector

4.5.1 Skewed rectangles

Skewed rectangles can be used for two different purposes by the compiler. Tiles in the

iteration space can be represented as skewed rectangles, and sometimes the data accessed

by the iterations of a tile can be represented as a skewed rectangle. When the data accessed

does form a skewed rectangle, the compiler can use a linear transformation to unskew the

4.5. SKEWED RECTANGULAR BUFFERING .51

data, so that it can be stored with no waste. We now define precisely what is meant by a

skewed rectangle.

Definition 1 Given a integer basis K - (• 1i 2 ,i 3 . .) for k-space. the unit paral-

lelepiped P(K) is the set of vectors which are convex linear combinations of the basis

vectors. Specifically,

P(K) = {v-'6 E Rk and 6- vl= l + v2oF2 + ... + vik}

where 0 < vi < 1 for all i.

Geometrically, a unit parallelepiped is a region of real space (i.e., the k-dimensional

space of real numbers). There is a corresponding structure in the integers:

Definition 2 Given an integer basis K = (e',e 2. 3,-... ,k) for k-space, the integer paral-

lelepiped w(K) is the set of integer-valued vectors which are convex linear combinations of

the basis vectors. Specifically,

1r(K) = {vjEZk andi = ai•' + a2F2 +... + akk}

where 0 < ai < 1 for all i.

80
87 0 0 0 0 0 0 0 0 0.0

76 0 0 0 0 0 .0 0 0 0 0

6-4 0 000'0 0 ,0 9 00.- ,)e 0 0 0 0 0 0' 0 0

2-4 0 0 0 0 0 0 0 0 -0 0

S00 -0 0 0 0 00

Figure 4.8: Example of unit parallelepiped borders

An important difference in the definitions is that ir(A) does not contain all of its border.

The border hyperplanes which do not pass through the origin are excluded. In this way,

52 CHAPTER 4. BUFFERING SCHEMES

when k-space is tessellated with copies of an integer parallelepiped, the excluded borders

will be included in other parallelepipeds. Each point belongs to exactly one copy. As an

example, examine the parallelepipeds of Figure 4.8. The set of points belonging to the

parallelepiped at the origin are shown with solid dots. Iterations not belonging to that tile

are shown using open circles. As the set of iterations is copied to fill 2-space, each integer

point in 2-space will belong to exactly one copy.

The set of iterations executed by a tile can now be described as simply the set of

points belonging to some copy of an integer parallelepiped. The left side of Figure 4.9

shows two basis vectors in a 2-dimensional iteration space. There is a pair of hyperplanes

perpendicular to each basis vector; one defines the lower extent of the tile with respect to

the basis vector, and the other defines the upper extent of the tile with respect to the basis

vector. The result is a parallelepiped with one corner at the origin. The parallelepiped is

subtended by a set of vectors denoted ', as shown on the right side of the figure. The set

of iterations in the tile is then r(41).

I ii
4000 0000O0 0000

77- "•ý"/5 o 'o o o o o o o -eo

3 0 0 0*

2 0 * 0
1 0 0 0 ~~0 0 0 001 000 000

0I

1,1 ,

b 1

Figure 4.9: Tiles are unit parallelepipeds

Once the loops are transformed to the new basis space, they are simply strip-mined to

form tiles. In the transformed space, tiles are therefore, n-dimensional rectangles with edges

parallel to the axes (n-orthorectangles). The set of rays 'I form an rz-orthorectangle in the

transformed space. The rays which subtend this n-orthorectangle form the (diagonal matrix

'P= diag(•).3 In the original iteration space, the tiles form parallelepipeds subtended by

the vectors of B-''I. This is the matrix B"' with row i scaled by !3i.

3The diagonal array diag(I3) has zeroes everywhere except the diagonal; the it~h dliagonal element is RIt..

4.5. SKEWED RECTANGULAR BUFFERING 53

The subscript matrix S maps iterations in the transformed space into elements in the

data space of an array. When the image under S of the orthorectangle P(V) is P(A) for

some A, the data accessed by the iterations in 7r([) form a unit parallelepiped in the data

space of the referenced array. This parallelepiped is what the compiler must store efficiently

in Mi. Section 4.5.2 describes the conditions necessary for this to be the case.

4.5.2 What S must be

The following theorems describe the form S must have in order for S(P(%I)) to be P(A)

for some A, that is, in order for S to map an n-orthorectangle into a 6-parallelepiped. The

key insight is that the set of iterations in a tile is a convex combination of the vectors of *I.

Since S is a linear transformation, the image of a tile under S is the set of vectors which

are a convex combination of the images of each vector of * under S.

Theorem 1 The set Vc of vectors formed by convex linear combinations of a set VL of m

vectors in k-space, k < m, forms a parallelepiped with one corner at the origin if there is a

subset VB of VL which forms a basis for k-space, and all vectors in VL - VB are either zero

or a positive multiple of some vector in VB.

Proof: We must show that if VL can be partitioned into liB and VL - VB as described,

every k-vector which is a convex combination of the vectors of VL is a convex combination

of the elementary vectors of some basis A. P(A) is the parallelepiped formed.

Here is how to construct A: order the set VL so that the basis vectors (members of B)

are numbered V1, V2 ,..., Vk; the vectors not in the basis are numbered Vk+ 1, Vk-+ 2 . V,,-

Define

m(i,j) = =
0 otherwise

so that m(i,j) = 0 if Vs = 0 or if IV is not a positive multiple of V,. Note that it is

not possible that a < 0, because then there are points along the r4y Vi (and V,) on both

sides of the origin; the parallelepiped formed would have to include the origin. which wouild

preclude its being a corner. (The theorem can be extended to allow negative a's: we would

then want m(i,j) = jai or 0. See footnote 4 on page 55 for a sketch of the extension.)

The set of column vectors A (m(ij))Vi for i = 1,2,. k form a basis for

k-space. Any vector 6 which is a convex linear combination of the vectors of Vi is a convex

54 CHAPTER 4. BUFFERING SCHEMES

linear combination of the columns of A, and vice versa. Thus P(A) is a parallelepiped

which is exactly the set of vectors formed by a set of convex linear combinations of VL. N

Theorem 2 The set VC of vectors formed by convex linear combinations of a set VL of m

vectors in k-space, k <_ m, forms a parallelepiped with one corner at the origin only if there

is a subset VB of VL which forms a basis for k-space, and all vectors in VL - VB are either

zero or a positive multiple of some vector in VB.

Proof: If VL has rank less than k, the space spanned by VL is lower-dimensional than

k-space, so V can't be a k-parallelepiped; therefore, VL has rank k, and there is a set of k

vectors VIB C VL which forms a basis for k-space. All that is left is to show that the vectors

of VL - VB are either zero vectors, or positive multiples of some vector in VB.

Let basis which induces the k-parallelepiped be the set of vectors A. All the vectors in

VL must have elements in the range [0,1] when written in basis A, because each vector of

VL is trivially a convex combination of all the vectors in VL (so each vector in VL must lie in

the parallelepiped formed). From now on, consider all vectors in this new basis. There are k

corners of the parallelepiped which are elementary vectors A,. A, is a convex combination

of some of the vectors in VL, and since the VL are everywhere non-negative, A, can be

expressed as the sum of all the vectors in VL with non-zero entries in the ith position. But

since Aj is an elementary vector, it is zero everywhere else, which implies that the vectors

that were summed to form it are also zero everywhere else. Thus there are exactly k + 1

equivalence classes of vectors in VL: one class consists of the zero vectors, and the other k

classes consist of positive multiples of A,, for i = 1.2.. k. Each class must have at least

one entry. Any basis for k-space must necessarily contain at least one entry from each of

the classes other than the zero class. Any set of k vectors, one chosen from each class, can

form VB as required. U

Theorem 3 Given a basis II for n-space and a linear transformation .5 of rank h from n-

space to 6-space, 6 < n, S(P(%P)) is a unit parallelepiped P(.. I for some basis A of b-space

if and only if the columns of S can be separated into two set of vectors SB = {Sl,52. S,)

and SA = {S 6 +1 , S5+,$+2,...,SO}, where SB forms a basis for 6-space and the vectors of S 4

are either zero vectors or positive multiples of some vector in SB.

Proof: Follows immediately from the previous two theorems, by noting that since P(%P)

is formed by taking convex combinations of the vectors in B', S(P('I)) will also be formed

4.5. SKEWED RECTANGULAR BUFFERING 55

by taking convex combinations of a set of vectors (in this case, the images under S of the

vectors in *). U

Now we can state the form S must have in order for the data used by a tile to be a

skewed rectangle. The columns of S must be partitionable into two sets; one set of 6 vectors

forms a basis for the data space. The other columns must be zero, or positive multiples of

one of the basis columns. 4

If the tiling basis B is chosen from the set of reference vectors, the subscript matrix

S = RB" of any stream whose reference vectors are in B will be a permutation of vectors

from the identity matrix. Reference vectors therefore are good choices for candidate vectors.

To see that the projection of a parallelepiped onto a lower-dimensional space does not

always yield a parallelepiped, imagine a three-dimensional cube. as it is often depicted in

a two-dimensional medium (see the left side of Figure 4.10). The projection along the

viewer's central axis yields a six-sided figure (on the right side of the same figure).

Figure 4.10: A cube and its projection into 2-space

4.5.3 Transforming a parallelepiped to a cube

In the transformed iteration space, a tile is an n-orthorectangle. subtended by the rows of

the matrix *I = diag(iJ). The compiler can easily check whether S maps the iterations of a

tile into a k-parallelepiped; if it does, Theorem I shows how to compute A. the set of rays

which subtend the parallelepiped. The matrix A` maps the k-parallelepiped into a unit

orthorectangle in 6-space. In this section, we descrii.e how to modify A" into a unimodular

matrix, so that the number of integer vectors in the k-parallelepiped is the same as the

'The form given is for data spaces which are parallelepipeds with one corner at the origin. Negative
multiples of basis vectors can be allowed also; allowing negative multiples results in parallelepipeds which
can contain the origin. Note that any parallelepiped containing the origin can be decomposed into a set of
parallelepipeds, each of which having one corner at the origin: the ray vectors of these parallelepipeds must
be multiples of one another.

56 CHAPTER 4. BUFFERING SCHEMES

number of integer vectors in the k-cube it is mapped into.

If S is not unimodular, the accesses of the stream aren't dense: data items which lie in

the parallelepiped may not actually be accessed by any iteration in the tile. In particular, if

Si, Sj, Sk,... are multiples of one another, data is not densely accessed unless the multiples

are relatively prime (ignoring the possibility of multiple streams referencing the same arrays

resulting in a dense pattern overall). In this work, no effort is made to coalesce possible

non-dense accesses; the entire parallelepiped of data is stored, assuming every data element

in the parallelepiped is used.

4.5.4 Allocation and space requirements

In order to understand the linear transformation from a parallelepiped to a cube of the

same size, the reader must first understand how the hyperplanes which are used to index

into the data are spaced and numbered. The next section describes hyperplane spacing.

The section after that describes an allocation procedure for the data. The final section

describes the linear transformation that results.

Hyperplane spacing

This section describes how hyperplanes perpendicular to normal vectors are numbered, and

shows how to ensure that enough hyperplanes are used, but not too many.

An illustrative example will be helpful in the discussion. The left side of Figure 4.11

shows two normal vectors is a two-dimensional space. In the middle diagram, hyperplanes

normal to the first vector are shown. In the rightmost diagram, hyperplanes perpendicular

to the second normal vector are shown. The hyperplanes are regularly spaced so that every

integer lattice point intersects some hyperplane. It is possible that a few hyperplanes will

not intersect lattice points if the tile is very small, but every lattice point must lie on some

hyperplane.

Definition 3 Let 5i be a normal vector. The vector ii is the smallest multiple of fi with all

integer entries. The vector h is called a GCD- I vector, because the greatest common divisor

of the elements of h is 1, and ft has all integer entries.

The hyperplanes are numbered so that the plane through the origin is numbered 0, and

numbers increase in the direction of h. The number of the plane in which a point f7 lies is

4.5. SKEWED RECTANGULAR BUFFERING 57

t n 4 1 4 - 4 1

000 \3 3-

n2 n2

Figure 4.11: How data relates to the transformed iteration space

then given by h • 1. The set of solutions Y to h - F = k for integer k correspond to the set

of hyperplanes perpendicular to h with h . i = 0 being the hyperplane passing through the

origin. There is clearly a hyperplane that passes through any given integer-valued point #,

because h and fare integer-valued (so ft fl must be integer-valued). The following theorem

shows that there is always at least one integer-valued point in plane k:

Theorem 4 For any GCD-1 vector ft, h .f= k has at least one integer-valued solution fP0.

Proof: Let df be the vector of non-zero elements of ii. There is at least one non-zero

element. Consider the set of integers T that can expressed as the dot product of some

vector i with d, that is, T = {clc = Z. - }. Let T+ be the positive part of T, i.e..

T+ = {jcc = -dandc > 01. We know T+ is non-empty because (1.0.0 0).a E T

and also (-1,0,0, ... ,0). d E T. By the Well-Ordering Theorem of modern algebra[49], any

non-empty set of positive integers has a non-zero ieast element I. So 1 > 0 and 1 = X'. ii for

some i. Dividing each element ai of di by I. we have ai = lqi + ri (qj is the quotient and ri

the remainder), and 0 < ri < I for all i. Then

ri = ai - lqi

= ai-- qi(i' d)
k

= ai +- --qixjaj
j/=i

k

=a(1 - qjx,') + Z -qix'aj

Thus, ri can be written as the dot product of an integer vector with d. so ri E T+ for all

i. Since ri < 1 and 1 is the least element in T+, it follows that ri = 0 for all i, so I = d. I'

divides ai for all i. Since the greatest common divisor of the elements of d is 1. it follows

58 CHAPTER 4. BUFFERING SCHEMES

that I = I so d t.' = I. Obviously then i if = 1 has a solution where pi = 0 if the

corresponding element of 5 is zero. and an element of X' otherwise. If j7 is a solution to

fi. ii = I. then ifA = k17 is a solution to .ii = k. U

Theorem 4 states that there is at least one integer point in every plane when the normal

vectors are GCD-1 vectors. It has already been shown that every integer point lies on a

plane. Thus without a priori knowledge of the size of the parallelepiped. this spacing of

normal hyperplanes is both necessary and sufficient.

A set of k linearly independent normal vectors form a basis for k-space. Any integral

point 15 in k-space can be written in the new basis as p,,w = Nif where N is the basis

matrix formed from the normal vectors. The position of point iF in dimension i of the

new basis is simply ii • j. If fi is a GCD-1 vector, this position is also the number of the

hyperplane which passes through the point in the system of hyperplanes described earlier.

For our parallelepiped subtended by the columns of A. the normal vectors are given by

the rows of A'. The number of planes in direction i is given by A.., - GCD-1(WŽ T ,), where

GCD-I(ii) = ft is a function mapping any integer vector to its GCD-I multiple.

As parallelepipeds are used to tessellate n-space, each parailelepiped abutting the next.

each parallelepiped has an integer-valued point for each corner. It is easy to see that each

parallelepiped must therefore contain the same number of integer-valued points, and that

the number of points must equal the volume of the parallelepiped. The volume of the

parallelepiped subtended by the vectors of A is simply Idet Al.

A similar argument can be used to show that the number of integer points within a tile

lying on each hyperplane perpendicular to a given normal vector must be the same. and

that in fact. each hyperplane must have the same number of points on it. The number of

points in the parallelepiped which lie on any hyperplane perpendicular to the ith normal

vPctor is simply the number of points in the parallelepiped divided by the number of planes.
d(et Al

liOb observation is key to the allocation procedure. but it is not sufficient. Fhe same

inte_,ral point lies on a different plane in each dimension. but the intersection of diffterent

planes does not generally lie at an integer point (see Figure .1.13). Using (('D- I spacing in

,,ach direction overallocates space because it allocates an entry for every intersecting point

whether it is integral or riot. kn efficient allocation allocates only enough space for the

integral-valued points, as described below.

4.5. SKEWED RECTANGULAR BUFFERING 59

Allocation

We need to assigr to each dimension i of the parallelepiped a number alloci that evenly

divides the total number of points in the parallelepiped and the number of planes in direction

i. The product of the alloci's must be equal to the volume of the repeatable kernel. One

way to accomplish this is demonstrated by the pseudo-code of Figure 4.12.

v a IdetAl;
for i - 1 to 6 do
{

allocation~i] a GCD (A.,i•GCD-1(- T ,), v);
v a v/allocation(i];

}

Figure 4.12: Pseudo-code for performing allocation

Figure 4.13 shows an example of allocation. The parallelepiped is subtended by A, =

(12,3) and A 2 = (2,6). In this case, there are 33 planes in the Al direction and 22 planes

in the A 2 direction (taking the inverse matrix and performing the inner products). The

volume of the parallelepiped is 66 integral points. This can either be allocated using a

33x2 array, as shown on the right, or using a 22x3 array, as shown on the left (each line

represents a new row or column). The code above would generate the 33x2 solution.

i j=ooooooooo oooooooooo o
0000000000!!" 9 0000000 000000

8• 0 0 0 0 0 0 ";' 8 0 0 0 0 00

74., 0 0 0 0 741 0 0 0 0 0

0000000 0 00 0 O0 0 0 0 0000000O

3 0 0 14

Figure 4.13: Examples of allocations

In general, we need jli=, alloci equal to the volume of the parallelepiped, and we need

alloci to divide A.,,. GCD-1(AzT,) for all i.

60 CHAPTER 4. BUFFERING SCHEMES

Transforming array subscripts to buffer subscripts

The matrix A-' maps the parallelepiped of data referenced by a tile into a unit k-cube.

The allocation mechanism effectively changes this mapping into a k-cube of some speci-

fied dimension. Let T be the transformation from the parallelepiped to the desired rect-

angular allocation. The matrix T satisfies diag(alloc) = TA. This can be re-written

T = diag(alloc)A"1. In effect, the vectors of the inverse matrix are scaled by the allocation

in each dimension.

In the example of 4.13, the parallelepiped is subtended by the columns of

The inverse matrix is

A'-[6/66 -2/66]
-3/66 12/66

The GCD-1 vectors are (3,-1) and (-1,4). There are (12,3)-(3,-I) = 33 hyperplanes in

dimension 1 and (2,6).(-1,4) = 22 hyperplanes in dimension 2. Using the 33x2 allocation,

the transformation matrix T is given by

33 0 6/66 -2/66 3 -1]T=[2[

0 2 -3/66 12/66 -1/11 4/11

The transformation T has been developed for parallelepipeds at the origin. When

generating the loops to copy data into or out of buffers. the compiler can easily find the

transformed iteration vector (0 which is the origin of the tile (this is trivial in the generated

code; ro is just the index vector of the controlling loops). A reference v[Ri+ r1 in the

source code is v[S-+ ri in the transformed space. This can be re-written v[Sr0 + Sf + rl

to emphasize the origin of the tile in the data space.

In general, the compiler can generate loops to copy data into and out of the buffer space

by looping over each element of the buffer and copying in or out the appropriate element.

The loop for copying data from M2 into M, is of the form

for k = 6 to &
buff er[k + ri = source-array[Sf+ T"A + r

4.6. CONCLUSIONS 61

where d = (alloc1 - 1, alloc2 -1 ..). Recall that Fis the origin of the tile in the transformed

iteration space (at least outside of the innermost computation loop), so Siis the origin of

the parallelepiped of data referenced by the tile. If the array is modified (written), the

buffer must be copied back into M2 . The loop for this takes the form

for k - 6 to d
source-array[Sf+ T.ik + r = buff er[k + rl

In our running example, the following code would be generated to copy the data in the

parallelepiped (see Figure 4.13) into a buffer in M, memory:

Temporary Array buf [33,2] ;

for a = 0 to 33-1
for b - 0 to 2-1

buf[a,b] - source-array[4a/11+b,-a/11+3b];

The matrix T has determinant I but is not unimodular, because the entries are not

generally integer ("unimodular" is used to describe integer matrices with determinants of

+1 or -1). The entries of T can be directly used as subscript coefficients assuming that

integer division performs truncation.

In the execution loop itself, references to the source array are replaced with refer-

ences to the buffer array. Since an element v[Sr0 + f] in the source array corresponds

to an element v[Tr] in the buffer array, the final variable reference is v-buf[TSf + rF.

In our example, references to source-variablefi,j] would be replaced with references to

buf[3i-j ,-i/11+4j/11].

4.6 Conclusions

This chapter has developed the machinery necessary to implement buffering techniques

required for software management of the memory hierarchy. The easiest mechanism to use

is rectangular buffering. It can always be applied, but can result in overallocation (wasted

memory space) when the subscript matrix S is not a permutation of the vectors of the

identity matrix. If the basis transformation B is chosen from the vectors of the reference

vector set, S will be a permutation of the identity matrix for those streams whose reference

vectors are in B.

In cases where rectangular buffering leads to overallocation, the compiler can apply

skewed rectangular buffering. In either case, the M1 memory buffer size for each stream

62 CHAPTER 4. BUFFERING SCHEMES

is given by a formula in the tile size factors 3i. Using skewed rectangular buffering, the

formula is linear with respect to any one 3i value. With rectangular buffering, the space

requirement can be nonlinear in the 3, values.

It is important to note that using either buffering method, a rectangular buffer array

is referenced in the source code, using subscripts which are linear in the loop indices. This

kind of subscript is easily handled by optimizing compilers which use strength reduction

and similar optimizations to improve execution time.

63

Chapter 5

Scheduling the tiles

Chapter 4 showed that the number of array elements allocated in AlM per stream for each

tile is a simple function of the tile size vector 0. The next step is to find a formula (in terms

of ý) for the number of times the data in these buffers must be moved from one memory

to the other. The compiler can then find the total cost of data motion for a tiling in terms

of ý. This will allow the compiler to find the value of / that minimizes data motion.

A naive compiler would simply copy the data from M 2 into MI before each tile is

executed, and copy it back afterwards. The number of times a buffer is moved is then twice

the number of tiles in the iteration space. A simple optimization is to eliminate the copy

back into M2 for read-only data. This makes the number of times a buffer is copied either

the number of tiles (for read-only data) or twice that (for writable data).

A more complex optimization takes advantage of the fact that sometimes data resident

in an MI buffer for one tile may also need to be resident for the next consecutively executed

tile.' Shared data need not be moved, but can stay resident in MI until different data is

required. This can eliminate a substantial amount of data motion. To determine when

data may be shared between consecutively-executed tiles, the compiler must be able to

determine the execution order of the tiles. Furthermore, an optimizing compiler should

choose the execution order to maximize the amount of data being reused. Choosing the

execution order is called scheduling the tiles, and that is the subject of this chapter.

'It is possible for only some of the data used by a tile to be used in the next tile. The techniques used
in this thesis address only full sharing on a stream basis (that is, if all of a stream's data used in one tile

is used by the same stream in the next tile). Partial sharing, in which, for example, half of the data could
remain resident, requires more complex addressing techniques to be used for accessing the data in Mi.

64 CHAPTER 5. SCHEDULING THE TILES

In the next section, some basic theory and notation is introduced. Scheduling for

uniprocessors is then covered. For uniprocessors, locality between tiles is the only significant

scheduling goal. Section 5.3 discusses various approaches to integrating tiling for memory

management and parallelism using a simple form of parallelism.

5.1 Scheduling issues

In the first part of this section, intertile locality is described in detail. The second part of

this section addresses the question of whether the compiler should schedule before finding

a tile size vector or afterwards, since the two problems are closely interrelated.

5.1.1 Intertile locality

Recall that the input program is an n-deep nested loop. After tiling, there are 2n loops.

The outer n loops select a tile to execute, and the inner n loops execute the iterations

within that tile. The outer loops are called controlling loops, a term coined by Wolf and

Lam[33, 55, 56]. Recall the earlier example of matrix-matrix multiply. The source code is

a 3-deep nested loop (Figure 3.1). The tiled code is a 6-deep nested loop (Figure 3.2).

The tiling basis B defines the shape of the tiles. It also defines a possible execution order

of the tiles: the iteration space can be transformed to the new basis, tiled, and the tiles

executed in the resulting order. The innermost controlling loop would then be executing

along the direction of the last basis vector B,,.. It is possible, however, that reordering

the execution of the tiles would lead to additional locality, in the form of intertilc locality.

Intertile locality results when two tiles share data. and those tiles are executed directly

after one another on the same processor, so that the shared data need not be moved.

Intertile locality is independent of the execution order within a tile: the inner n loops

can be executed in any order allowed by dependences. The problem addressed in this

chapter is how to select the ordering of controlling loops to minimize data moti-'i.

A stream s, generated by array reference v.k and having subscript matrix S. is said

to be perpendicular to a loop direction b if S9 = 0. that is. if every subscript vector is

perpendicular to b (since basis vectors are used loop execution directions. S is perpendicuiar

to the basis vector Bi,. if and only if the ith column of S. S.,,, is zero). If s is perpendicular

to the innermost controlling loop, then the data brought into M, for s can be kept in Mt

5.1. SCHEDULING ISSUES 65

over the entire innermost loop. If s is perpendicular to the next loop as well, then it can

be held locally throughout both loops, and so on.

Figure 5.1 illustrates this point. The code on the left is the source loop. The code on

the right is the tiled code before buffer-copying loops have been inserted. The reference

to A has all its subscript vectors (the only one is (1,0)' corresponding to the subscript i)

perpendicular to the innermost controlling loop (the j loop in the code on the right; its

direction vector is (0,1)). As iterations of the j loop are executed, the same data stays

resident in M, for the A stream. Figure 5.2 depicts the iteration space geometrically. The

A matrix lies along the i-axis, so it is perpendicular to the j loop. The shaded region of

the A matrix must be copied in for the first tile in the second column, but it need not be

moved again until the entire column has been executed.

for i = 1 to n by I3, do

for i a 1 ton do for j -i to n by 3, do

for j a I to n do for ii = 1 to min(3d,n) do

A i]=A i]+W i,j]*B[j]; for jj a I to min(/ 3,,n) do
A[ii]-A[ii]+W[ii,jj]*B[jjJ;

Figure 5.1: Example of stream perpendicularity

The reference to B is not perpendicular to the j loop, because the B matrix lies parallel

to the j-axis. As the tiles are executed up columns, the B matrix must be copied into MI

over and over. One of the W-stream's subscript vectors is perpendicular to the j-axis, but

since both are not, there is no intertile locality available.

Figur 5.2 Grpiersn no stra pepniclrt

* '

--------. --- '----,

I I I

Figure 5.2: Graphic .representation of stream perpendicularity

As a further example, imagine that the compiler skewed the code in this example. The

result is shown in Figure 5.3. Now there is no locality available at all. The reference vector

66 CHAPTER 5. SCHEDULING THE TILES

for the A matrix is now (1, -1) (or i -j), which is clearly not perpendicular to the innermost

controlling loop.

for i a 1 to 2n do
for j = zax(1,i-n+1) to zin(i,n) do

A[i-j+l]=A(i-j+J +W[i-j+1,j] *B[j];

Figure 5.3: The previous example skewed

Figure 5.4 shows this graphically. Executing up the second column (the darker column)

requires fetching the shaded portion c the A matrix. Each tile in the column requires a

slightly different portion of the A matrix.2 New data must be fetched for every tile, so no

locality is available.

jL * I * I

- - - - -

I1I

I I

:..... I

Figure 5.4: Example of stream perpendicularity

These two examples also serve to illustrate (albeit in the negative) how the compiler

can control locality. By choosing the proper basis B. the compiler aligns the iteration

space so that, as much as possible, streams are perpendicular to the innermost controlling

loop. Using rectangular buffering, the compiler chooses the tiling basis so that streams are

aligned with the iteration axes, and then choces the best axis for the innermost controlling

loop. Skewed rectangular buffering (see Chapter 4 allows the compiler to choose the tiling

basis from directions which result in locality for the most streams directly. This will be

illustrated in later sections.

2This is an example where there is some re-use of a stream, but not full re-use. Half of the elements of
A used in one tile are also used in the next tile.

5.1. SCHEDULING ISSUES 67

5.1.2 Scheduling versus computing tile sizes

In finding a tiling that results in minimal execution time, the compiler can vary several

parameters: the slope of each face of the tile (determined by the basis B), the tile size in

each dimension (determined by the elements of 3), and the order in which the tiles are

executed (determined by the schedule). In this thesis, the compiler evaluates every possible

basis. For a given basis, the compiler finds a tile size vector and a schedule to minimize

execution time. This process is illustrated in Figure 5.5.

Find streams and
reference vectorsI

select
candidate vectorsI

choose a
basis

schedule
tilesI

compute buffer
sizes in terms of .1

construct
cost model

solve forI

tile sizes

save basis with
minimum Cost

Figure 5.5: The order of compiler phases

The compiler must not choose the tile size vector before scheduling. Before a schedule

exists streams with locality and streams without locality receive the same consideration in

distributing valuable Ml space. After locality is taketi into account, the number of .12 .M11

copies drops significantly for streams with intertile locality. This change in the cost model

allows the compiler to be much smarter in choosing the tile size vector. For this reason.

the compiler performs scheduling first, and chooses the tile size vector given the schedule.

68 CHAPTER 5. SCHEDULING THE TILES

5.2 Scheduling

When scheduling is performed first, the compiler has incomplete information about the

eventual tile sizes. This prevents it from making perfect decisions. The primary goal of

scheduling is to minimize execution time, but since tile sizes are not known at scheduling

time, the compiler cannot compute the actual execution time that would result from dif-

ferent schedules. The scheduler must substitute the goal of maximizing potential intertile

locality.

When tiles have the same size in each dimension (e.g., when / = (a, a,. a)), higher-

dimensional streams take up much more space in M1 than lower-dimensional streams. For

example, a typical two-dimensional stream would require an (a x a)-word buffer, while a

typical one-dimensional stream would only require a words. The number of words used

in M1 by each stream is the number of words that must be moved into M, prior to tile

execution (and the number of words that must be moved back after tile execution). Without

a priori knowledge of the final tile sizes, the compiler maximizes potential intertile locality

by keeping the higher-dimensional streams local in preference. to lower-dimensional streams.

Intertile locality can be increased by increasing the number of streams held locally,

or by increasing the dimensionality of the streams held locally. Because the compiler

cannot know tile sizes before a schedule is chosen, the compiler maximizes the number of

(n - 1)-dimensional streams held locally. (Note that an n-dimensional stream inside an n-

dimensional loop can never be held locally, because each iteration uses a different element.)

Among all schedules with the maximal number of (n - 1)-dimensional local streams, the

compiler selects the schedule that has the most (n - 2)-dimensional streams held locally,

and so on.

5.2.1 Scheduling examples

A few examples of how the scheduler works will help to illustrate the important points. In

Figure 5.6, two arrays are accessed in a two-dimensional loop nest. Since the B stream is

the same dimensionality as the iteration space, each iteration uses a different element of

the B matrix, and no locality is possible. There is locality available for the A matrix in the

j direction. The j direction would therefore be scheduled innermost.

In Figure 5.7, three matrices are referenced in a three-dimensional loop nest. There

5.2. SCHEDULING 69

for i f 1 to n do

for j = 1 to n do
B~ij] = B~i,j] *A~ i;

Figure 5.6: A simple scheduling example

are two two-dimensional streams, B and C. The stream B is left local when k is innermost,

and the stream C is left local when i is left local. Since B is read and written, twice as

many references are saved by keeping it local, so the i-direction is chosen innermost. The

C stream cannot be held locally once the i loop is chosen innermost. The A stream is left

local, however. The compiler must therefore chose whether k or j will be the next innermost

loop; choosing jleaves the A stream local, while choosing k does not. The final schedule is

k outermost, j in the middle, and i innermost.

for i = 1 to n do
for j = I to n do

for k = k to n do
B['k~jJ =f B[k,j] + C~i,j) * A~k];

Figure 5.7: A complex scheduling: example

70 CHAPTER 5. SCHEDULING THE TILES

5.2.2 Calculating the number of refreshes

The controlling loops define a schedule of the tiles. The number of refreshes for each stream

is computed once these outer loops are chosen. 3

For each stream, we scan outward from the innermost loop searching for the first loop

in which a stream is not local. Because the compiler has not yet determined the tile sizes,

it cannot determine the exact number of times a controlling loop will execute. The total

number of refreshes is approximated by summing over transformed loop bounds before

tiling, starting at the innermost non-local controlling loop e'a and moving outward:

1 U2

i1=1 J 2=12

where 1i and ui are the lower and upper transformed loop bounds, respectively, and A3 is

the spacing factor along Bk,.. Note that the formula above is for the number of times a

buffer is filled with data from M2 ; if the stream is written, that number must be doubled

to account for the write-back.

The formula assumes that each loop will be executed enough times that fragmentation

can be ignored. That is, if the loop bounds are i=1 to n, the formula yields n/,3i: but in

fact the number of refreshes required is [n//3il. Loops which execute only a single iteration

require a refresh even if Oi is greater than one. We implicitly assume that the compiler

can tell loops which may execute only a few iterations from loops which execute many

iterations. The rest of the thesis depends on the assumption that all loops in the loop nest

execute a large number of iterations. Section 8.2 will outline a technique for removing this

assumption.

As an example, recall the program of Figure 5.1 on page 65. The A matrix is local to

the innermost controlling loop, so the nihter of refreshes for Ihe A matrix is apl)roxiniated

by computing
1 • n

PA = +- I 1=I

3 A refresh occurs any time data is moved from M 2 into Aft as defined in Chapter 4: the term refresh
may seem to imply that the data have already been moved in onct., but this is not the intended meaning.

A refresh operation empties MA of modified data. and fills it with data for the next tile. The very first tile
requires a refresh operation prior to its execution, just as all the other tiles do.

5.2. SCHEDULING 71

The number of refreshes for the B stream is approximated by

1I I nI nPD3 = •'il•j= 3~

5.2.3 Evaluating nested summations

Finding the number of refreshes requires the compiler to evaluate sums of polynomial

expressions. Because the inner loop bounds may depend on outer loop bounds but not vice

versa, the summations can be evaluated using simple rules for the value of polynomials. In

evaluating a sum, the compiler works from the inside out. At each stage the summations

bounds are represented as polynomials in the outer summation variables. The first step

is to normalize the summation bounds to start at 0. Then sums are split using additive

associativity rules, so that each summation is a constant times the summation variable

raised to some exponent. Constants are moved outside the sums, and finally -the sums of

powers are replaced directly using power-coefficient rules. The following rules are used to

simplify the sums down to the form E4=0 vP:

h h 1-1

E X E=0 u-E0

h h h

Z(el + e2) = el + EZe2
v=O ,=O V=O

h

E c = c(h + 1)
V=O

h h

E rX = C E .r
v=O v=O

In these rules, x, el, and e 2 stand for arbitrary expressions, while c stands for an expression

not involving v, the summation variable.

The rules for evaluating Z-=o t'P are not finite, but only the first four rules have been

used in the prototype:
h

= h +

72 CHAPTER 5. SCHEDULING THE TILES

h h 2 hz = 2+ 2
v=O

h V2 h h2 h3

: _672 3

A h2(1 +h) 2

V=O

A general rule for generating coefficients can be found in [8]; in the prototype, this rule is

incorporated int' a recursive procedure for computing the coefficients.

The evaluation of a summation yields an expression in the loop bound variables. The

number of M2 memory accesses for a stream is therefore generally of the form

Cý30o 3 ... d.1-1 (5.2)

where C is either constant (for constant loop bounds), or some expression of the loop bound

variables.

5.2.4 Scheduling with parallelism

When tiles are executed in parallel, there is an additional complication. Dependences often

prevent the processor array from simultaneously starting on tiles. Instead, the second tile

cannot start until results of the first tile's execution are available, and so on. The tiles can

be executed along a wavefront using DO-ACROSS-style parallelism, but there is a latency

between the start-time of two tiles which is dependent of tile size.

The compiler cannot compute the latency of tile start-up because the tile sizes are not

known. This means the scheduler cannot compute the execution order which minimizes tile

total execution time, because the start-up latency contributes to execution time.

The compiler must settle for picking the execution order which maximizes potential

intertile locality. If the problem is large enough, the intertile start-up latency will 'e much

smaller than the total execution time (because intertile start-up latency is proportional to

the number of processors and the tile size, but is independent of problem size), while data

motion costs are often proportional to the problem size.

5.3. APPROACHES TO PARALLELISM AND LOCALITY 73

5.3 Approaches to parallelism and locality

For our purposes, the multitude of methods of parallelization across multiple processors (as

opposed to, say, instruction-level parallelism within a single processor) may be classified

into two basic types of parallelism: intertile parallelism, where the iteration space is tiled.

and tiles are doled out to single processors to be executed; and intratile parallelism, where

all the processors work on a single tile at the same time. 4

Tiling can be performed with the goal of increasing locality, or it can be performed

with the goal of creating parallelism between tiles. For parallelism, the compiler's goal is

to generate enough tiles to guarantee all processors can be kept busy without introducing

too much overhead. For locality, the compiler's goal is to generate tiles which fit into a

faster level of the memory hierarchy. The tiles should maximize the ratio of computation

to secondary memory bandwidth consumed. These goals can conflict, since the directions

in the iteration space in which there is reuse may also be the directions in which there

is parallelism. As an example, consider Figure 5.8. This two-dimensional loop references

four matrices. The matrices A, B, and C are read-only, while the matrix D is both read and

written. This results in dependences in the j-direction. The i-direction can be executed in

parallel, but the most data locality exists in the i-direction.

-44

for i = 1 to n do
for j = 1 to n do

__ D[i] = D[i] + A[j]+B[j]*i+C[j]*i*i;

Figure 5.8: Parallelism can exist, in t.l,h pr~eqrred locality direction.

There are several possible approaches to the problem: the compiler could tile twice.

tiling the Lop nest once to obtain parallelism, and then tiling the tiled loops a second

4 lntertile parallelism and intratile parallelism can be combined, resulting in a scheme where groups of
processors cooperate to execute single tiles, and multiple groups work in parallel. This thesis considers only
the two simpler cases.

74 CHAPTER 5. SCHEDUTLING THE TILES

time, scheduling the second set of tiles for intertile locality. The second approach is to

tile only once, and schedule the tiles to obtain both parallelism and intertile locality. The

third approach is to tile and schedule for intertile locality assuming that the tiles will be

parallelized for the entire processor set using intratile parallelism. This is the only way to

integrate tiling for data-motion management with parallelizing methods which introduce

complex communication patterns: bidirectional communication among tiles cannot be al-

lowed unless a new scheduling methodology is developed, but any method can be usedl to

execute the iterations within a tile (at least as far as the tile scheduler is concerned).

5.3.1 Tiling twice: Wolf's method

In his thesis[57], Wolf discusses combining parallelism and locality by first tiling the iteration

space to find coarse-grain parallelism and then tiling the coarse-grain tiles to obtain sub-tiles

which fit into the memory hierarchy level of interest. This technique has the advantage that

it allows up to n - 1 degrees of parallelism to be extracted from an n-deep nested loop. If

the iteration space is so large that the problem will not fit in the machine, however, a single

degree of parallelism may well be sufficient. Further, tiling for coarse-grain parallelism limits

intertile locality to that available within a coarse-grain tile as opposed to that available

within the iteration space.

5.3.2 Scheduling for intertile parallelism

This thesis investigates the possibility of tiling once, and scheduling the tiles to obtain

parallelism in some directions and intertile locality in other directions. In this approach, it is

assumed that there is enough parallelism in any one parallel direction in the iteration space

to keep all the processors busy. The concentration is not on producing all the parallelism

possible, but rather on producing enough parallelism to keep the processors busy: the rest

of the directions in the iteration space are' used to schedule for intertile locality.

Scuieduling for intertile locality and intertile parallelism requires the scheduler to sepa-

rate the loop nest into a set of loops to be executed in parallel, and a set to be (executed

sequentially. Iterations of a parallel loop may he executed on any processor, but all itera-

tions of a sequential loop are executed on the same processor.

The compiler first marks every loop as potentially parallel or necessarily sequential. If

5.3. APPROACHES TO PARALLELISM AND LOCALITY 75

there is only a single parallel loop, -•. is always placed outermost. Next, each loop is marked

with how many streams are left local if that loop is innermost. The loop that leaves the

most streams local is placed innermost. The next outermost loop is chosen by determining

how many streams are local to both the inner most loop and the next outermost, and so

on.

If there are multiple parallel loops, each one is a candidate for being outermost. In

this case, the loop with the most intertile locality is selected as the innermost loop. Tile

compiler proceeds as before, adding loops to the outside of the loop nest, except before a

loop is added, the compiler checks how many potential parallel loops are left unassigned.

When there is only one parallel loop, it is placed outermost.

In the matrix multiply example, the i and j loops are fully parallel, so they are both

candidates for the outermost position. The k loop is not considered parallel. since the

dependence analyzer does not take the associativity of addition into account. Each loop

leaves one stream local, but the k loop leaves the writable stream cli,j] local, which

represents twice as many memory transactions. The compiler puts the k loop innermost.

Since there are still two choices for a parallel outermost loop, the compiler tries to choose

another loop with intertile locality. At this point, there is no locality left. The compiler

can arbitrarily pick either the i or j loop to be outermost.

Finding a transformed loop with no parallelism is rare: there are no such loops in our

examples in Chapter 7. In the case that there is no parallel loop in tile loop nest. tile

controlling loops are first skewed until there is a parallel loop (an n-deep tilable loop nest

can be transformed to code containing at least n - 1 degrees of parallelism[29]). This

complicates the expression for the number of refetches. The expression in Equation 5.1 is

based on the fact that the number of tiles in loop direction x is simply the size of the loop

divided by the size of the tile. Skewing changes the number of iterations executed ill a

direction.

Note that when loops are executed in parallel, the refresh operations happen ill parallel

(because writable data is not shared, so everything can happen locally). The number of

refreshes computed by Equation 5.1 is therefore divided by the number of processors.

76 CHAPTER 5. SCHEDULING THE TILES

5.3.3 Scheduling for intratile parallelism

The compiler can tile for locality and intratile parallelism; the resulting tiles are to be

executed by the entire array working as a unit. After tiling, the tiled loops are passed on

to a parallelization phase. Arbitrary communication between processors is allowed during

the execution of a tile; the tiling software places a barrier synchronization before and after

the execution of each tile. This allows maximum flexibility in choosing tiles, since forms of

parallelism using communication can be used. The scheduler operates in almost the same

way for intratile parallelism as it does for a uniprocessor, so optimal intertile locality is

available.

Some cooperation between the tiler and the parallelization phase are required. however.

The scheduler must be able to obtain cost metrics for executing a parametric-sized tile

on the entire set of processors. The scheduler models the parallel machine as a single

processor with a single fast memory, but which may have nonlinear execution cost measures

for different tiles sizes or shapes.

Determining what fits in a distributed memory isn't quite tile same as determining what

fits in a single memory-it may be better to trade data replication for communication, and

this would decrease the effective memory size. The compiler can handle this in two different

ways: it can target a fraction of the available memory, assuming that tile resulting tile will

fit even after data replication; or it can complicate the expressions giving tile size.

When the cost model is evaluated, the compiler is attempting to minimize the number

of slow memory accesses, expressed in terms of the tile sizes, subject to a memory bound

constraint: the sum of the M, memory allocations can not exceed the physical size of M1 .

When intratile parallelism is applied, however, the real constraint is that the .M1 , memory

allocation in each processor must not exceed the MA, size of that proccssor. Data placement

for intratile parallelism is done by the intratile parallelizer. which may choose to replicate

some data across the memories of each processor, effeclively reducing the aggregate .1l1

size. This requires replacing our memory constraint with a new constraint smaller than

MI, based on how much data is replicated.

5.3. APPROACHES TO PARALLELISM AND LOCALITY 77

5.3.4 Comparison of approaches

Tiling for intertile parallelism can easily be combined with tiling for locality by tiling twice.

An alternative approach is to tile only once, and schedule the resulting tiles for parallelism

in one dimension while scheduling for intertile locality in other directions.

Tiling for intratile parallelism is somewhat more complex, in that the compiler must

target the full processor array. Data replication has the effect of shrinking the available

memory, but the compiler cannot determine the exact degree of replication until after it

has decided on the tile sizes.

78 CHAPTER 5. SCHEDULING THE TILES

79

Chapter 6

Cost model evaluation

In previous chapters, various pieces of the cost model were described in some detail. This

chapter explains the details of evaluating the cost model, solving for the value of the tile

size vector /, and computing the total cost of the tiling.

The development thus far has shown how to compute the size of the buffer used by

each stream in terms of 3, and roughly how to compute the number of times these buffers

are filled and emptied, also in terms of 3. To complete the cost model. the number of

refreshes required must be computed. This requires the loop bounds in the transformed

space. The next section describes the techniques used to generate the new loop bounds.

First, the techniques of Li and Pingali for generating the new loop bounds are reviewed.

Next, several improvements to standard Fourier-Motzkin elimination are discussed: this

is the process used to solve the transformed loop bounds into expressions acceptable in a

standard imperative language.

The two pieces of the cost model are then combined into a single optimization problem.

The solution to this optimization problem is the correct tile size vector J. TFile second sec-

tion of this chapter is devoted toexamining different approaches to solving this optimization

problem.

The last section of this chapter is devoted to a complete example loop, showing how

it is transformed at each stage, so that the reader can get a feel for how all the pieces of

theory fit together.

80 CHAPTER 6. COST MODEL EVALUATION

6.1 Code generation

The transformation required has already been discussed in general terms: the iteration

space is first transformed to have the new basis B, and then the loops are strip-mined to

produce tiles. The new basis B is chosen so that tiling is always legal. Chapter 4 described

the transformation applied to subscript expressions; transforming expressions using the old

loop indices to equivalent expressions in the new basis is straightforward. Generating new

loop bounds, however, is complex; that is the subject of this section.

The code generation algorithm is based on the work of Li and Pingali[35]. The problem

is to transform a source loop nest to a target loop nest that executes an equivalent set of

iterations in a new basis B. The index variable set in the source loop nest is given by i: in

the target space we will use j- Each index point in the source space is related a point in

the target space by the equation j= BR The compiler transforms subscript expressions by

replacing expressions in r'with an equivalent expression iii f A variable reference v [RF+ rF-

is replaced by v[RB-'Y+ r].

The loop bounds expressions cannot be as easily replaced, because while the inner loop

bounds are allowed to be functions of the outer loop indices, the reverse is not true. The

loop bounds are therefore transformed in two stages. First, the bounds are translated to an

auxiliary space and simplified. The second step translates the loop nest in auxiliary space

into a loop nest in the target space.

6.1.1 Transforming original loop bounds to auxiliary space

We re-write the loop nest bounds in the original space as matrices:

for F= LiF+I to IIF+,fi do {...}

This corresponds to the inequalities

Lr+ 1'< r< Mr+ rih

which can be re-written as

r integer

6.1. CODE GENERATION 81

Letting A = [and b = , we can write the system of inequalities as

Ar< <

r integer

Our job is to find the loop bounds in the space transformed by the new basis matrix B.

The new index vector will be f. Since B has full rank, it represents a one-to-one mapping

of points in the old iteration space into points in the new iteration space. We thus have

f = Br We can find a solution by letting B = 11" where U is unimodular. and H is

lower-triangular with positive diagonal elements. Let Ur = F'so that f = Hil. We can

re-write these as
r'= r"'k•

and

k H'j

Letting A' = AU', we can re-write our system of inequalities as

.4'k < b

k integer

Any solution k,, to the new system is a solution to the original system because U is

unimodular (and so is U"'). We can solve the system in T' by using Foilrier-Motzkin

pairwise elimination. We then need to translate the loop hounds for k into loop bounds for

6.1.2 Transforming auxiliary space loop bounds to target space

After Fourier-Motzkin elimination, the loop for variable km is of the form

for k, = max(p'k,pfk . P'xk) to min(G'k. (2 qyk-) do {...}
where k = (ki,k 2 , k,,.-.1), p , = (p . ,= (q•.q...qz- ') We can

find bounds for j.. by replacing k by its equivalent in terms of j.

Since H is non-singular and lower-triangular. IV. is also lower triangular. This allows

82 CHAPTER 6. COST MODEL EVALUATION

us to replace k with a linear combination of j and vice-versa. Since f = HI, it must be

that i = Hk and k = 11.j.

Now j,. = Hm,.mkm + E-- Hm.gki. Letting v = Hk = fl,,/H'j, where Hm is the mth

row of H, we have jm = v + Hmmk,,m. Here v remains constant; so we need to determine

how j, relates to k,. Since k, steps from max(pk,p/2 k,.....•k) to min(1 i, q2k •k),

Hm...mkm should step from H,,mmax(fick,p 2ik.....'zk) to H,.mmin(q'k,iq 2k k) by

steps of Hm,m. Once again, we replace kc with W'j; this is accomplished by multiplying 4-

and fi' by H' for all z.

The loop for variable jm is of the form

for jr- HmHf'j+ Hm max(f'H,'jl, r[p2 H"fJ. [.. H.j.)
to ,•H"m'j+ Hm.mrmin(lq'H"'jj. Lq2 1L'jJ.... ,4 ll'jj) step Hmm
do I...)

Note that f,,f/t is not zero. The (m - 1)-element vector in, is the mth row of H minus

its diagonal element.

6.1.3 Improvements to Fourier-Motzkin pairwise elimination

Fourier-Motzkin pairwise elimination is a general method of solving sy-tems of inequalities.

The basic idea is to eliminate variables one at a time until only a single variable is left.

Duffin's paper[14] is the best introduction to the subject. A more rigorous approach is

taken by Dantzig and Eaves[13].

Eliminating redundant inequalities

Pairwise elimination can cause the number of inequalities to grow exponentially. Duffin[-14]

described how to minimize the number of inequalities by applying sonei simple rules for

choosing which variable to eliminate and for eliminating redundant inequalities. Since

the outer loop bounds cannot be ,xpressed in a procedural language as a function of the

inner loop indices, the compiler must eliminate variables starting with the innermost loop

index and proceeding outwards. The compiler can apply Duftin s rules for elimination of

redundancy introduced by pairwise elimination.

In Duffin's work, each original inequality has its own parametric term Ai (his notation).

Inequalities are eliminated by adding positive multiples of inequalities together, so every

resulting inequality will have all positive parametric terms. Duffin's Rule (b) states that

6.1. CODE GENERATION 83

any inequality can be eliminated that has more than t + 2 positive parametric terms after

t variables have been "actively eliminated." The phrase "active elimination" refers to

eliminating a variable for which there is at least one inequality with a non-zero coefficient;

variables that have zero coefficients in all inequalities can be -passively eliminated" at any

time, preferably as soon as possible.

In generating loop bounds, the compiler is not dealing with parametric inequalities, but

Duffin's method can be easily adopted: before pairwise elimination is begun, the original

inequalities are numbered 1 to 2n (there are 2n inequalities, an upper and lower bound

for each loop). A 2n-element vector is kept for each inequality. Initially, these vectors are

zero everywhere except the ith position is set to I for the ith inequality. As inequalities

are multiplied and added, the extra vectors are multiplied and added the same way. These

vectors simulate the parametric terms in Duffin's method. After t variables have been

actively eliminated, the compiler can eliminate any inequalities with t + 2 non-zero entries

in its "parameter" vector. In the prototype compiler. this is made especially fast by the

observation that there are only two important states in the parameter vector: zero and

non-zero. Once a parameter is made non-zero, it will be non-zero in every inequality it is

added into. Since the maximum loop nest depth is always less than 16, there are always

less than 32 initial inequalities. The prototype therefore represents the parameter vectors

as bit vectors using a single word of storage per inequality.

Duffin's Rule(c) for eliminating dominance can also be easily applied using the hit-

vector representation. An inequality a dominates another inequality b unless there is at

least one i for which the ith element of a's parameter vector is set while b's ith element is

clear. Rule (c) states that any dominated inequality can be eliminated: in the prototype

this is implemented with bitwise arithmetic: the parameter vector of a is bit-wise and-ed

with the one's complement of b's parameter vector; a dominates b if and only if the result

is zero (in all bits). The symmetric operation is used to compute whether b dominates a.

Back-propagation

Classic Fourier-Motzkin elimination is a forward-only process; once the outer loop bounds

are determined, the process stops. Duffin's methods help eliminate redundancy introduced

by pairwise elimination, but it certainly does not eliminate all redundancy in the system

84 CHAPTER 6. COST MODEL EVALUATION

of inequalities. This can lead to unnecessarily complex expressions for inner loop bounds.

Since the compiler uses these loop bound expressions to compute the cost model, it is

worthwhile to simplify these expressions by propagating constraints on the outer loop in-

dices inward to eliminate redundant constraints on the inner loop bounds. This process of

using outer loop bounds to simplify inner loops bounds propagates information inwards,

whereas Fourier-Motzkin elimination propagates information outwards; for this reason the

process is referred to as back-propagating the constraints.

Back-propagating constraints is difficult in the general case. Fortunately, the practical

situations that cause the need for back-propagation are simple enough that a simple, fast

algorithm can handle the common cases easily. Rectangular loops never require back-

propagation. Triangular loops can cause the need for back propagation, as will be seen in

the QR decomposition example below. This covers nearly all the loops used in scientific

codes that have linear loop bounds.

In the prototype compiler, the loop bounds are scanned from outermost to innermost.

When a loop is found with multiple upper (or lower) bound inequalities, the compiler tries

to prove that all but one of the inequalities is redundant, given the outer loop bounds. The

coefficients in each loop bound expression are searched for a non-zero coefficient in all outer

loop index. A non-zero coefficient means that the outer loop bounds affect the inequality.

so propagating information inward may help.

Once an opportunity for back-propagation has been found, the compiler must find an

outer loop inequality to add in. Either the upper or lower loop bound inequality for the

non-zero coefficient will be added in. Which it will be is determined by the sign of tile

coefficient and by whether an upper or lower bound is being eliminated. When an upper

loop bound is being eliminated, the lower loop bound of the outer loop is added in if the

coefficient is negative, otherwise the upper loop bound of the outer loop is added in. When

eliminating a lower loop bound, the upper outer loop bound is added for a negative sign.

and the lower for a positive sign.

As an example, consider the QR-decomposition code of Figure 6.1. In this case, F" =

0 0 0 0 0 0
(kpti,), L = 1 0 0 ,l=(0, 0, 0), M = 0 0 0 ,and m•- 0ll,119,11.9). The

1 0 0 0 0 0

6.1. CODE GENERATION 85

for k = 0 to 119

for i a k to 119
for j = k to 119

if (i -- k) then

r~kj] = a[i,j];
else

if (j Q k) then
c - r[k,j]/SQRT(r[k,j]*r[kj]+a[i,j)*a[i,j]);
a a[ijJ/SQRT(r[k,jl*r[k,j]+a[i,j]*ari,j]);
r[k,j] - c*r[k,jl + s*a[i,j];

else
rt - rCkj];
r[kj] = s*a[i,j] + c*rt;

a[i,j] = c*a[i,j] - s*rt;
endif

endif

Figure 6.1: QR-decomposition

system of inequalities Ai< b is given by

-1 0 0 0

1 -1 0 0

1 0 -1 0

1 001 1.19

0 1 0 119

L0 0 1 jL119

The dependences in QR decomposition are (<,0.0) and (0. <.0). Suppose tile compiler

wishes to move the i-loop outermost, by interchanging the k loop inwards over the i loop.

For clarity, the transformed loop index variables will be called u. v. and w. The desired

0 1 0
transformation corresponds to choosing a new basis B 1 0 0 The transformed

0 1

86 CHAPTER 6. COST MODEL EVALUATION

inequality set is:

0 -1 0 0

-1 1 0 0
u

0 1 -1 0V <
0 1 0 119

1 0 0 119

0 0 1 119

To apply Fourier-Motzkin elimination, the first step is to solve for the innermost loop

bounds. This involves reading off the inequalities that have non-zero w-coefficients. The

result is v < v < 119. Once the bounds for w have been saved, v is eliminated from the

inequalities. All variables must be actively eliminated: passive elimination implies there are

no loop bound inequalities for an index variable. This cannot occur in practice. Actively

eliminating a variable means every equation with a positive coefficient for the variable to

be eliminated must be added to every inequality with a negative coefficient. At each step, if

the number of inequalities before elimination is N, after elimination there can be as many

as (N - 1)2 inequalities. This could theoretically lead to an exponential increase in the

number of inequalities; in practice this rarely occurs.

Eliminating w from the previous system of inequalities results in

0 -1 0

00

0 1 119

1 0 119

0 1 119

Note that the last row has the same coefficients as the third row; when two inequalities

have the same coefficients, the tighter bound is kept and tlie looser bound can be eliminated

(assuming the compiler can detect ,hich bound is tighter). In this case. they are equivalent,

so either inequality can be dropped. This is called equal-coefficient redundancy elimination,

Duffin does not discuss this form of redundancy elimination but it is straightforward and

easy to implement in a compiler.

After dropping the bottom inequality, there is one inequality with a negative coefficient

6.1. CODE GENERATION 87

for v; that is, there is one lower bound inequality. There are two upper bound inequalities.

Both upper bounds must hold, so the upper bound for v is the minimum of the two. The

next set of loop bounds is therefore 0 < v < min(u, 119). Eliminating v from the new set

of inequalities leaves

1 119

0 119

The third row has all zero coefficients; in a general Fourier-Motzkin elimination proce-

dure, such rows would be checked for non-negative right-hand sides; negative right-hand

sides indicate that the original system of inequalities has no solutions. This corresponds

to loop nests whose bodies are never executed, as in -f or i = 1 to 0 do body". The

right-hand side may be an expression that cannot be evaluated at compile-time; in this

case the check is skipped (the compiler has to assume the loop nest will be executed if it

cannot prove otherwise).

The outer loop bounds can be found by inspection: 0 < u < 119. Traditional Fourier-

Motzkin elimination ends at this point. By back-propagating constraints, however, the

compiler can show that the loop bounds for the v loop can be simplified to 0 < v < u.

6.1.4 Computing the number of refreshes

The output of code generation requires uis to sum outwards where the upper hound is the

minimum of several linear functions, and the lower bounds are maximums of several linear

functions. If we can determine where these minimums and maximums occur at compile

time, we can split the summations into piece-wise summations: in effect, we generate several

consecutive loops to execute the code, and each consecutive loop can he summed.

In general, however, the problem of computing the nuimner of iterations of a loop nest

is equivalent to finding the number of solutions to an integer linear programming problem.

This problem is very difficult; specifically, it is in a class of problems called P: ("P sharp").

This class is more difficult to solve than NP-class problems.

If a compiler encounters a program in which the transformed loop bounds are only

piecewise linear, and the loop bounds cannot he computed at compile time, that basis can

88 CHAPTER 6. COST MODEL EVALUATION

be dropped from consideration. In practice, loop bounds are nearly always purely linear,

because array subscripts are almost always simple loop indices, and the compiler chooses

transformations from the reference vector set.

6.2 Evaluating the cost model

In Chapter 4 the number of fetches per tile for each stream was computed as a function

of the tile size vector)3. In Chapter 5, the number of times that data will be fetched (or

stored) was computed, also in terms of 3. The total cost in terms of fetches and stores can

now be expressed in terms of 3. The compiler's task is to minimize this cost by choosing

values for 3 subject to the constraint that the resulting stream buffers must all fit together

in MI.

6.2.1 An example

As an example, take the matrix multiply example of Figure 3.1. The tiling basis chosen is

I, and the controlling loops are kept in the original order i, j. k. The amount of data that

must be fetched per tile for each stream is given by

Ac[ij] = /3i,4

/ia(i.kl = 3iilk

/1b[k.j] = 3011

T.,e number of times each stream will be refreshed is given by

nfl
2

Pc[i,j] = ",,/li/3
n3

Pa[i.kt -

n 3
Pb[kj] - 3

The total number of memory operations for matrix multiply using this basis is then

X = 2n 2IOil3j + n3 /AIA+k n3+k/313i,13j + /.~jil-- A rt,.ljl~k

6.2. EVALUATING THE COST MODEL 89

which simplifies to
2 n

3 n 32n 2 + -+ - (.1)

The compiler now needs to find the minimum of 6.1 subjtct to the memory constraint

13ihij + AAik + 130k1j < size(M1)

The tile sizes cannot be zero or negative, so the compiler implicitly has the constraints

1 < 4l,

S<

The problem is a nonlinear optimization problem. Fortunately, because of symmetry it

is clear the optimal solution has f/i = /3j. Since A3k does not appear in the cost formula. th--

optimal solution must have /3i and 13j as large as possible, and /3k = 1. Taking /3k = 1 and

,3i= =3j, from the memory constraint it is clear that /i3 = ;3j = V/size(,M1) + I - 1.

6.2.2 The general problem

In general the total cost of a tiling for a set of streams V is

X = E p,,(cb + c,,, I"',) (6.2)

rEV

where Cb is the overhead of a block move and c,, is the cost per word of a block move. The

general form of the memory constraint is

/it, < size(j/i) .3

vEV

that is, the sum of the buffer sizes must be less titan the available memory size. There are

n other constraints which force each element of J to be positive:

f < j (6.,4)

90 CHAPTER 6. COST MODEL EVALUATION

The number of refreshes p•, is an expression in ii of the form w where k is the

innermost nonlocal loop, and c here is a constant term reflecting the total number of

iterations in the loop nest.

When all the reference vectors are included in the tiling basis, a more specialized form of

the general problem results. Since this is the case whenever there is only a single candidate

basis (which is true for all the scientific loops described in Chapter 7). this case deserves

special consideration.

When all the reference vectors of a stream s are included in the basis, S will be a

permutation of the rows of the identity matrix, so the buffer size M,, is an expression of the

form uj, = /3A 3y... .0, Note that in particular, if y, contains 3.r, J8, etc., these vectors must

appear in pv, as well, because there cannot be locality in directions of increasing subscripts.

In this special case, the elements of /3 in the numerator cancel out the corresponding

elements in the denominator. All of the 3i's in the numerator cancel out, although some

may be left in the denominator. The stream's contribution to the cost formula is therefore

of the form
C

X - (6.5)
/j3xy ... 3:

that is, a constant (or an expression in program variables) divided by several of the elements

of 0. The partial derivatives of this special form are strictly non-positive whenever J > 1:

this guarantees that there are no local minima which are not global minima. so numerical

techniques can easily find the global minimum using a simple gradient search. modified to

search along the boundary of the feasible region.

6.2.3 Numerical techniques

If the loop bounds are known (or can be estimated) at compile-time. various numerical

techniques can be applied to find the optimal 3i. The geueral problem is to optimize (6.2)

subject to the constraints (6.3) and (6.4). This is an integer nonlinear programming problem

(INLP). It can be approximated by a real-valued nonlinear programming problem (NIP).

Techniques for solving NLP's are much more well-developed. The mathematics software

package MATLAB contains an off-the-shelf NLP solver. The next section describes it use.

The section after that discusses properties of the problem under consideration that may

affect the choice of a solution technique if an off-the-shelf solver is not available.

6.2. EVALUATING THE COST MODEL 91

Using MATLAB to solve constrained optimization problems

MATLAB is a program for doing mathematics. As part of its Optimizaion Toolbox[20],

MATLAB contains the function constr, which implements a constrained optimization

solver. This solver is based on a Sequential Quadratic Programming method. The interface

is straightforward. The caller must specify the function to be minimized (in this case. X),

the constraints (bounds are easier to specify explicitly as bounds than as constraints), and

an initial guess. The easiest initial guess to formulate is .1 = 1, but .1 = (b.b.....bl is

probably closer to the optimal value. The memory constraint can be solved for the value

of b (a single equation in one unknown).

The solver requires constraints to be of the form g(i) !S 0. so (6.3) is re-written

F(.,) - size{M.')< 0

The left side of this inequality is the constraint function 0(3).

Applying other techniques

A full description of techniques for solving NLP's is beyond the scope of this thesis: tile

book by Wismer and Chattergy[53] is a good reference for readers needing background

material. This section discusses particular facets of the problem to be solved which allow

selection of an appropriate technique.

Both the first and second derivatives of the cost function are, continuous in the feasible

region, so several types of gradient descent techniques can be applied, including "Newton"

techniques which use the second derivative to achieve faster convergence. Since there are

inequality constraints, a constrained optimization technique is required.

Intuitively, the compiler should use up all of the available .11, space. so the optimum

value of /J must lie on the memory constraint. That is. (6.3) holds as an e(quality (and the

remaining constraints are all just lower bounds). This reduces the solution space by one

dimension. There are two approaches to using this information. In the first approach. (6.3)

is solved for some i3k. The formula for 3k can then he substituted everywhere else and the

constraint can be dropped (but kept around to reconstruct the optimal 3&). This method

is excellent for solving problems by hand. but can be difficult to automate.

92 CHAPTER 6. COST MODEL EVALUATION

In the second approach. the equation is kept as a constraint and gradient projection is

used to find an optimal solution by walking along the (n - 1-dimensional) surface specified

by the equation. In essence, the chain rule is applied to find the gradient of the cost function

along the surface, and step are taken along the surface in the direction of steepest descent.

As an initial guess, the vector i = (b,b,.... ,b) can be used.

Penalty function methods could also be used, but must be applied with care. A penalty

function method turns the constrained optimization problem into an unconstrained opti-

mization problem by introducing new variables to satisfy the constraints, but adding severe

penal~ies to the cost whenever the constraints aren't satisfied. There are two basic kinds of

penalty methods, classified according to whether the optimal solution is approached from

within the feasible region, or from outside the feasible region. Methods which approach

the solution from inside the feasible region are called interior methods. Methods which

approach the solution from outside the feasible region are called exterior methods. For the

particular case of the cost model developed here, exterior methods are dangerous in that

there is the possibility of encountering a singularity if any 3i is zero. These singularities

do not exist inside the feasible region. It is possible that by choosing the correct starting

point, the path to a solution can be kept away from these singularity regions, this is left to

future work.

To ensure optimality, the loop bounds must be known at compile time. If some of the

loop bounds are not known at compile time, they can be approximated with some loss of

quality of the final result, so long as the assumption that every loop executes a large number

of iterations (large with respect to 3) holds. The loop bounds change the constant in each

term of the cost model: they do not change whether a particular .; is in the denominator

or not. The 3 values which appear in the denominator of some term mitust be made large

lest that term contribute too greatly to the cost. In effect. the solution space is biniodal:

elements of / which do not appear in the (denominator of the cost, formula are set. to 1.

while elements of 3J which do appear in the denominator must be made fairly large.

6.3 A complete example

A complete example will help the reader to understand how all of the theory fits together.

Livermore loop kernel six is the most complex example in the benchmark set examined.

6.3. A COMPLETE EXAMPLE 93

which includes the Livermore loops, the Perfect Club, and the FORTRAN SPECmark

codes. It neatly illustrates many of the features of the theory developed in this thesis.

The source code for Livermore loop kernel number six is shown in Figure 6.2. There is

a single loop-carried dependence vector, (+,,). This dependence prevents tiling, since no

transformation can make this dependence positive in the k-loop.

for i = 1 to n do
for k = 0 to i-1 do

wEi] = v[i] + bEik]*vEi-k-1]

Figure 6.2: Livermore loop kernel six

If the programmer can take advantage of the associativity of addition, he or she can

re-write the loop as shown in Figure 6.3; the only difference is that the k-loop has been

reversed. The new version has constant dependences, so it can be made tilable.

k

for i 1 to n do

for k = -i+1 to 0 do
w[i] = wEi] + b i,-k]*vEi+k-1]

Figure 6.3: Livermore loop kernel six with k loop reversed

Three streams are referenced in a two-dimensional loop nest. Two of t he streams (W [i]

and wEi+k-1]) are one-dimensional. ie third stream (b~i,-kI) is two-dimiensional. Since

only the wEi] stream is written, the dependences which rc 'trict the exec,'tion order are

induced by this stream. There is an output dependence in the k direction, and a flow

dependence in the i-k direction. These dependences are drawn in the iteration space of the

figure.

The set of possible candidate vectors is I U D+ U V U V-L U E {i.k} U {k. i - k} U

{i,k, i + k} U {i,k, i - k) U {i + k, i}. After filtering against the dependences, only Iwo

94 CHAPTER 6. COST MODEL EVALUATION

candidates remain: i and i + k. There is only a single possible basis, B = { i, i + k}. The

compiler first determines a schedule and computes pv for each stream; it then computes pi,

the space requirement for each stream. Finally, these are combined to compute the cost

model.

6.3.1 Finding p,,

Since the basis contains only two vectors, there are only two possible schedules to be

considered. No locality is possible for the b [i , -k] -stream, a two-dimensional stream in

a two-dimensional iteration space. In order for a stream to be left local, all its subscript

vectors must be perpendicular to the direction of loop execution. This is the case whenever

a column of the subscript matrix is zero. Table 6.1 summarizes the effects of choosing

various schedules. Since the w[i] stream is both read and written, it counts as more total

memory accesses, so the best schedule has i outermost.

B B" R'[jj SfiI Rvri+k-1l Swfi+k-tl Local streams
1 0 1 0 [' l[, 1 i

1 M -1 1 [1,01 [1,0] [1.1] [0,1] gii]

1 0 1 [1,0] [0. I1 [1, 1] [1.0) w Ci+k- 1]
1 0 1 -1

Table 6.1: Summary of scheduling possibilities

The next step is to transform the loop bounds so that the number of refreshes for

each stream can be computed. Rewriting the original loop bounds as matrices yields

for + f to]+ do
-10 0 0 0

This in turns yields the system of inequalities

-1 0 - l

-I -I -I

t (I n

0 1 0

The next step is to decompose B into a lower-triangular matrix and a unimodular

matrix. Since B is already unimodular, the required decomposition is simply It = /X = B.

6.3. A COMPLETE EXAMPLE 95

The transformed inequalities are found by multiplying the coefficients by B. yielding

-1 0 -1

0 -1 -1

1 0 n

-1 1 0

where jfis the new loop index vector, j= [u, VIT. Solving for v yields 1 < v < u. Eliminating

the inequalities with non-zero v coefficients yields

-1 0 -

1 0 n

So it is easily seen that the outermost loop bounds are I < u < n.

The compiler can now compute the number of refetches for each stream. The wvi]

stream is local to the innermost loop, but not the outer loop. The number of refetches is

therefore

u=1

Both the b[i, -k] and w[i+k-1) matrices are nonlocal. The number of refetches for each is

therefore

Pb[i.-k] = Pw(i+k-1] = 7 Z 1

'31 T2 =

n2 +n

6.3.1 Finding u,,

The first step is to compute the subscript matrices for each stream. The subscript matrices

are then used to find space requirements for each stream. Trite subscript matrices are found

using the formula S = RB-'.

The subscript matrices are summarized in Table 6.2. As an example of how the data in

96 CHAPTER 6. COST MODEL EVALUATION

Stream Reference matrix Subscript matrix S %p Buffer size

1()1 0 1 0 [Oil 31_____

b 'i,-k] 1 0 1 0ol ol x,320 1 -1 1 1 02

vCi+k- 1 1 1 0 1 32 '2

Table 6.2: Summary of streams

the table is computed, examine the w[i] stream. The reference matrix is read directly from

the source code. The subscript matrix is computed by multiplying the reference matrix by

the inverse basis matrix. To compute the size requirement, the compiler first checks if

skewed rectangular buffering can be applied. Skewed rectangular buffering can be applied

in this case because the first column of the subscript matrix is zero. Tile compiler must

then compute the A matrix. The columns of A subtend the parallelepiped in the data

space. The tile is a parallelepiped subtended by the columns of

0 ,32

The image of the tile in the data space is a one-dimensional arrayS' = [31 0]. Apply-

ing Theorem 1, the compiler constructs the matrix A1 which subtends the columns of the

parallelepiped in the data space. In this case, the parallelepiped is one-dinmensional, and

the theorem yields A = [LI1]. The space requirement is Idet Al, and a trivial application

of the allocation procedure of Chapter 4 yields a one-dimensional buffer of length .31. The

rest of Table 6.2 is computed in a similar manner. 'rlie total memory allocation is

uw+i] + /iwvi+k-1] + ub(i._k -k 'I + '2 + -t-.132

6.3.3 The cost model

Having computed p, and it, for each stream. the compiler is ready to construct the cost,

model. For simplicity, it is assumed that M2 does not reward block accesses, so each .11.2

access costs the same. The cost formula then simplifies to simply the number of M-2 accesses.

6.3. A COMPLETE EXAMPLE 97

The total number of M2 accesses is

X = 2 p1½i]P{(i] + Pv[i+k-1]Pw(i+k-1] + Ub(i.-k]Pb[i.-k]
3 ' n2 +n n2 +n

+, 1231132 201/32

n2 + n n 2 + n= 2n+ • +
2/3, 2

The compiler attempts to minimize X subject to the memory constraint

/1 +/32 +13132 <_ size(M 1)

The minimum occurs when 13, is as large as possible. Maximizing 31 means minimizing ;2;

since 132 appears in the memory constraint but not in the cost formula, the compiler sets

/32 = 1. The memory constraint becomes 2/3, = size(AIII) - 1, so 3 = size(M)- The

total number of M2 memory operations is then

X = pxpx + 2Iwpw + PAPA

-2+ n 2 + n n2 + 1

size(Mi) - 1 2

If there were any other possible bases that could be formed from the candidate set. they

would be evaluated in the same way. First the compiler computes a formula for the amount

of data fetched. Then the compiler chooses a schedule. The schedule is used to compute

the number of refresh operations each stream must undergo. The compiler then constructs

a cost model. The basis with the lowest cost is chosen for the final code transformation.

6.3.4 Code generation

The transformations to produce the final code are best shown as a series of steps. The

source code is first transformed into the new basis space. The transfoirmed loop b~ounds are

copied in, and subscript expressions are replaced by the S = RB"' subscript matrices:

for u = I to n
for v = 1. to u

w[u] = W(u] + b[u,v-u]*w[v-1]

Next, strip mining is applied to get a tiled loop nest:

98 CHAPTER 6. COST MODEL EVALUATION

013 - size(M) - 1
132 =1
for u a I to n by /31

for v = 1 to u by 132

for uu a u to min(n. u+•1-1)
for vv v v to min(uu, v÷,32-1)

v[uu] * wEuu] + b[uu,vv-uu]*w[vv-1]

Next, buffering code is added, following the methods of Chapter 4:

a3 a size(M1) - 1
/02 - 1
for u a 1 to n by 01

for v = I to u by 12

begin
for k • 0 to 0i-1

vi-buf[k] = w[u+k]
for k, = 0 to 131-1

for k,2 = 0 to 132-1

b-bufi/l,k 2] - b[u+k1,V-u+k 2-k1]
for k = 0 to 132-1

vikplusl-buf[k] = vwv+k-1]
for uu - u to min(n. u+0 1-1)

for vv = v to min(n, v+0 2 -I)
vi-buf [uu-u] a vwibuf [uu-u] +

b-buf [uu-u, vv-v] *vikplus Lbuf [vv-v]
for k • 0 to Oi-1

w[u+k] = vi-buf Ek]
end

Finally, a few simplifications are made:

for u = 1 to n by size(Mfl)-
for v = 1 to u

begin
for k • 0 to size(Ml)-2

ui-buf [k] = w [u+k]
for k, = 0 to size(Ml)-2

b-buf[k1 ,0] = b(u÷kj,v-u-kj]
wikplusLbuf [0] = g~v-1]
for uu = u to min(n, u+!31 -1)

wi-buf[uu-u] = wvibuf[uu-u] +
b-buf [uu-u, 0] *vikplus lbuf [0]

for k - 0 to size(M,)-2
v[u+k] = vi-buf (k]

end

6.4. CONCLUSION 99

6.4 Conclusion

This chapter completes the theoretical development of techniques for managing data motion

using a compiler. A discussion of Fourier-Motzkin elimination is used to determine the

transformed loop bounds so that the number of refresh operations can be determined.

Back propagation of constraints is added to the elimination process to simplify the loop

bounds.

Once the full cost model has been constructed, it is solved either analytically or numer-

ically. The cost model is in general a sum of several terms, where each term takes the form

of a multinomial in the elements of / divided by the the product of the elements of Zj. The

first and second partial derivatives therefore must exist, and are continuous over the region

of interest (i3i > 0 for all i). The existence of these derivatives in the region of feasible J's

allows the use of fast-converging modified Newton methods for gradient descent in finding

numerical solutions to the optimization problem.

Finally, a complete example was given illustrating how the techniques used fit together

to transform a loop nest. The compiler first finds a set of candidate basis vectors, from

which it forms a list of candidate bases. For each basis, the compiler finds a schedule,

computes the number of times each buffer must be refreshed, and how large each buffer is,

both in terms of the tile size vector 3. The compiler then solves for the value of j3 which

minimizes the total cost given the memory constraint and the constraints that each element

of the tile size vector must be at least 1. The value of J which minimizes the cost formula

is used to compute the total cost. The basis with the lowest total cost is chosen for the

final code transformation.

In the next chapter, the techniques of this thesis are applied to common scientific

program loops, and to other loops designed to contrast the approach taken in this work to

similar approaches taken by other researchers.

100 CHAPTER 6. COST MODEL EVALUATION

101

Chapter 7

Evaluation

Previous chapters have described a new set of techniques for managing data motion using

tiling. In this chapter, several examples of tiling illustrate the techniques and demonstrate

the advantage of these techniques over previous methods. In the next section, three exam-

ples are drawn from common scientific and signal processing programs. The second section

is devoted to examples contrasting this work with prior art.

The techniques described in this thesis were implemented in a prototype compiler based

on the Fx compiler[50]. Due to time constraints, a numerical solver was not implemented

(in the examples which follow, the cost models were solved using analytical rather than

numerical techniques). The prototype compiler analyzes the program (using the Omega

test[40, 411 for dependence analysis), generates candidate vectors, and evaluates candidate

bases. It performs scheduling and data allocation analysis, and emits a cost model for each

basis, to be evaluated by hand. Once a numerical solver is implemented. the remaining

code transformations are straightforward and easy to implement.

7.1 Common scientific kernels

The following three sections show examples of the techniques described in earl- r chapters

applied to three loop nests which are common in scientific programming: matrix-matrix

multiplication, QR-decomposition, and LU-decomposition.

102 CHAPTER 7. EVALUATION

7.1.1 Matrix multiply

Matrix-matrix multiply is a good example to start with, because the code is simple enough

to illustrate the basic principles without introducing any real complexity. Of course, because

the code is so simple, any locality-improving transformation should result in near-optimal

performance. This example does not motivate the techniques used (later examples will) but

rather serves to illustrate the basic principles involved. The input code for matrix multiply

is shown once again in Figure 7.1.

for i n 1 to n do

for J = 1 to n do
for k = 1 to n do

,ci,j] - cli,j] + a~i,k] * b[k,j];

Figure 7.1: Matrix-matrix multiply

The dependence vector set of matrix multiply is (0,0, 1), a flow-dependence in the k-

loop on c. The reference vector set is {i,j,k}. All of these are legal vectors; the union of

these vectors is just I. There is only one tiling basis choice in this case, I.

The code produced by tiling is shown in Figure 7.2. Each loop has been strip-mined,

and then the controlling loops were interchanged outwards. The outer n loops select a tile,

and the inner n loops select an iteration within that tile.

Once the loop has been tiled, buffer space in M, is assigned to each stream (in this

case, the buffer variables a.buf, b.buf, and c-buf are assigned to the a. b, and c streams.

respectively). Loops to copy blocks of data from M2 to MA and back are then inserted, and

references to the original arrays in the loop body are replaced by references to the buffers.

The result is the code in Figure 7.3.

for i 1to n by i do
for j = I to n by Oj do

for k = 1 to n by /3k do
for ii = i to min (n, ii+d3i-i) do

for jj = j to min (n, jj+'3j-l) do
for kk = k to min (n, kk+I.k-1) do

c[ii,jj] - c[iijjJ + a[ii,kk] * b[kk,jj];

Figure 7.2: Tiled matrix-matrix multiply

7.1. COMMON SCIENTIFIC KERNELS 103

for i a 1 to n by 3; do
for j - 1 to n by 3i do
begin

comment{fetch a block of the c matrix)
for ii a i to min (n, ii+3j-1) do

for jj - j to min (n. jj+13j-1) do
c-buf ii-i,jj-jJ x c[ii,jjJ;

for k a 1 to n by 13 k do
begin

comment{fetch a block of the a matrix}
for ii a i to min (a, ii+3i-l) do

for kk*= k to min (n, kk+/3k-1) do
a-buf[ii-i,kk-k] = a[iikk];

comment{fetch a block of the b matrix)
for kk - k to min (n. kk++3k-1) do

for jj = j to min (n, jj+/3j-1) do
b-buf[kk-k,jj-j] a b~kkjj];

comment{now we can do the computation)
for ii - i to min (a. ii+3i-1) do
for jj a j to min (n, jj+ij3-1) do

for kk = k to min (n, kk+i~k-1) do
c-buf[ii-i,jj-j] =

c.buf[ii-ijj-j] + a.buf[ii-i,kk-k] * b.buf[kk-k,jj-j];
comment{a and b are dropped since they are read-only)

end comment{end of k-loop}

comment{store back the c matrix block}
for ii = i to Bin (n, ii+hi-1) do

for jj j to min (n. jj+/ii-l) do
c[ii] = c.buf ii-i];

end comment{end of i-loop and j-loop}

Figure 7.3: Tiled matrix-mnatrix multiply with buffering code

104 CHAPTER 7. EVALUATION

The number of memory operations per refresh for each stream are given by:

IAc[i,j] = /3 ij

,ali,kl = 0A

/.b[k,j] = 00k1j3

The number of refreshes for each stream are as follows:

I n I n n2

Pcfij] = E E 0j1 -
i=1 j=1
a n 1n n 3

=1

1n 1n n n3

Si=1 j= ki=1

The full cost model is therefore given by

2n2/3/j + n3 ,3•/3k + nf3 /k,

(the 2 in the n2 term comes from the fact that c[i,j] is both read and written). This

simplifies to
2n2 n3 n13

2n + - + 3-,

This is the function that the compiler must minimize. siihject to the constraints

I13* > I

Jk >

/30,3j + AiIAk + /3 < size('I)

A bit of calculus shows that the minimum cost occurs when

V= 7 size(M,) + 1 - 1, /sizeM,) + 1 - 1, 1)

7.1. COMMON SCIENTIFIC KERNELS 105

The total cost in terms of M2 operations is then

2n3

R = 2n 2 + 2
V/s+ize(Mi) + 1- 1

This is the optimal cost. For purposes of comparison, previous researchers choose j, = ;3j =
3k, in this case =(/size(M 1),size(M)• size(AMI)). These cubic tiles correspond to

multiplying square submatrices. Using this choice results in a total cost of

S = 2n2 +
vrsize(Mt I

The effectiveness of the new techniques at reducing M2 bandwidth requirements can

be evaluated by comparing R and S, which are both functions of n and size(MI). The

general effectiveness can be evaluated by comparing the total execution time. X. under

both methods. X is a function of n. size(M 1), and also the .t 2 cycle time. c (in this

chapter, the M2 accesses are modeled as single accesses rather than block transfers for

simplicity). Execution time has two components: time for computation and time for 1/0.

The time for computation is written Xc; for matrix-multiply, there are n13 iterations. so

Xc = n3. Let XR be the execution time using the new techniques. and X.\, he the execution

time using the older, cubic tile method. Execution times are therefore given by

XR =XC+ CR=n3+ C 2n + 2nz(,3)+

Xs=Xc S n + cs = it 3 + c (2n(2 +

Figure 7.4 shows the total number of secondary memory operations for .1l1 sizes from

4 words to 32Kwords, for a problem size of 120 (i.e., multiplying 120x 120 matrices). For

this size problem, there are a total of.13.200 words used for array storage. R is shown using

a solid line, and S using a dashed line. Both methods require O(n: /N/size(A 1i)) accesses

Rectangular tiles require slightly fewer accesses. When .M1, is very small, both methods

must constantly fetch and store data, so the extra efficiency of rectangular tiles offers little

advantage. Similarly, as M1 grows larger, the problem begins to fit entirely in M1, so very

few M 2 accesses are required, and the extra efficiency is again little help.

For more direct comparison. Figure 7.5 shows the number of memory operations using

106 CHAPTER 7. EVALUATION

I o -

awe=. \S

R
A *

4 8 16 32 64 125 256 512 04 2049 46 8192 1638 32769
Ml memory size (problem size is 43200 words)

Figure 7.1: M2 operations of optimal versus square tiles for MM

S96.00.

90.00.

Sx 100'x

6s0.00

l•.O0

7W.O

4 8 1-6 32 64 128 256 512 102-4 248 4096 8192 16M36 21768
Ml memory size (problem size is 43200 words)

Figure 7.5: Relative I/O costs for MM

7. 1. COMMON SCIENTIFIC KERNELS 107

SODO M
X s

4 8 16 32 641225 512 10428949 192 169 32769
U1 mewnwy size (problem size is 432M words)

Figure 7.6: Execution times for MM

10L

4LO =86 3 419265212424 ~89 69 26

Ml mmorysize(prolem ize s 4300 wrds

Fiur 7.:Rltv&eeuinLmeDooM(R/Sx1OZ

108 CHAPTER 7. EVALUATION

the optimal scheme as a percentage of the number of operations using square submatrices

as a function of M, size (i.e., 1OORIS). In this example, the optimal method saves about

30% of the M2 accesses compared to the standard method for M, sizes between 1/1000th

and 1/10th of the total memory accessed (from size(Ml) = 43 to size(Ml) = 4320). When

M, is very small, both methods require the processors to refresh constantly, so no savings

are realized. Over most reasonable M1 sizes, a roughly constant improvement is achieved

by the more efficient use of MI space. As M, grows and the problem begins to fit in fast

memory, the efficiency of the optimal method becomes less important, because there are

fewer M2 memory operations required. This results in the bowl-shaped curve.

Figure 7.6 shows total execution time curves for 120 x 120 matrix multiply. The hori-

zontal axis is once again M, size in words. The dotted line at the bottom of tile figure is

the time spent doing computation. The solid line is the time spent waiting for .1'2 using

optimally-shaped tiles. The dashed line is the time spent waiting for M2 using cubic titles.

The graph is drawn using M2 cycle time c = 8 clocks.

Figure 7.7 shows the relative cost of optimal tiles as a percentage of the cubic-tile cost.

Each curve uses a different M2 cycle time: c=1 is the curve for I clock M2 cycle time, c=2

represents 2 clock cycle time, and so forth. All curves are for a problem size of 120 x 120.

The extra efficiency leads to only a small improvement in execution time until M2 cycle

times grows large. In a uniprocessor M2 cycle times are not likely to be very large, but in a

parallel machine where an M2 access may involve interprocessor communication, large M12

cycle times are not uncommon.

In Figure 7.5, as M, sizes grow large, the relative number of M2 operations decreases.

so the extra efficiency becomes less important. A second factor also comes into play when

comparing execution times. As M2 becomes large, the computation time itself begins

to dominate, so that optimal tiling becomes less important. This is why the curves in

Figure 7.7 are higher on the right side of the graph than one would be lead to expect from

Figure 7.5.

This effect can be seen more clearly in Figure 7.8 and Figure 7.9. These figures show

relative execution times (XR/XS) as a function of size(Mr) for varying problem sizes.

Figure 7.8 uses c = 8 while Figure 7.9 uses much slower M2 memories with c = 128. For

small memories, the extra efficiency leads to a significant improvement in execution time.

As the memories become larger, the/I = (13,/1....) tiling increases the computation-to-I/O

7.1. COMMON SCIENTIFIC KERNELS 109

Sam
M0 -e

7WO

-- 4- 14 t f fi 40 i;tl a5 2121M44 ufGa7a4Lwi7T-24if
Ml memmry #be

Figure 7.8: Relative improvement in execution time for MM (c = 8)

I&W-

4 16 64 256 1024 4M9 16384 6SS36 262144 1068=741"43M61777216

Figure 7.9: Relative improvement in execution time for MM (r = 129)

THIS

PAGE

IS

MISSING

IN

ORIGINAL

DOCUMENT

7.1. COMMON SCIENTIFIC KERNELS Ill

flat squares, as shown in Figure 7.11. This shifts the allocation of M, to favor the c i.j]

stream. Since the compiler knows that the tiles will be executed in the k direction, there

is no point in wasting M, memory space-bringing in a square of data from the ai ,k] or

b[k.jJ streams. Each data item will be used a number of times proportional to the width

or height of the tile (Oi or 0j), and independent of tile ik tle dimension.

Figure 7.11: The 3= (3.;3 1) tiling

Maximizing these other dimensions maximizes thle reuse of tile a and b streams while

simultaneously minimizing the number of times the data for these streams will be refetched.

This is shown graphically by noting that while the tile in Figure 7.10 requires the same

amount of data per tile as the one in Figure 7.11. the flat tile is wider, so it has more

iterations in the i and j directions. This means it reuses b(k,j) and ali,k] more times

in a given tile. Furtherm•iore. these streams are refetched a number of time equal to n

divided by the width of de tile in the respective directions, so widening the tiles reduces

the number of refetches as well.

Note that the formulas for the 1/0 costs I? and S are derived parametrically. The only

assumption that must hold is that n is much larger than size(All), so multiple tiles are

executed in each direction. R will always be smaller than S since the difference in the

formulas is essentially a factor of v/3. In fact, we would expect theoretically that RIS

would asymptotically approach l/v/3i as n grows large. or about 58%. Figure 7.12 shows

that this is indeed the case.

112 CHAPTER 7. EVALUATION

"i0

61.00

0 1000 2. 300 4000 5000 00 7500 UGO 9000 10000

N (Ml memory size is 1024 words)

Figure 7.12: RIS as n grows very large

Because tiling increases the computation-to-I/O ratio of a program, one might conclude

that very large programs would be computation bound, so that the improvements in 1/O

requirements outlined here would become less important. This is not usually the case. In

matrix-multiply, for example, there are n3 iterations. Before tiling, there are 0(n 3) I/O's:

after tiling, there are 0(n 3 /\-ize(Mf)) I/O's. As n grows, the number of I/O's grows

proportionally with execution time (fixing size(M1)).

Tiling improves the computation-to-I/O ratio of a program, but only up to the M1

memory size. Perhaps the best way to conceptualize this is to think of a simple cubic tiling

of matrix multiply. If the tile size is so large that the entire iteration space fits in a single

tile, only 3n 2 fetches and n2 stores are required for n3 iterations. If the tile size shrinks to

a single iteration, each computation requires 2 fetches, plus 1/n fetches and I/n stores for

the c matrix. For a fixed tile size, increasing the problem size makes the relative tile size

approach the single-iteration case.

It is possible to write programs which have loops in which all data is local. Increasing the

number of iterations in such a loop increases the computation-to-I/O ratio of the program.

In such a program, increasing the "problem size" increases the computation-to-I/O ratio

of the program, because it increases the number of computations without increasing the

amount of data accessed (or it increases the number of computations faster than it increases

7. 1. COMMON SCIENTIFIC KERNELS 113

the amount of data). In such a program, the relative impact of the increased efficiency

would drop as the computation-to-I/O ratio of the program increased, because more and

more time would be spent in the compute phase and the I/O time would become relatively

insignificant. Fortunately, nearly all loops in scientific programs access new data, and

increasing "problem size" does not usually change the computation-to-I/O ratio of the

program.

7.1.3 QR decomposition

The source code for QR decomposition is shown in Figure 7.13. There are two streams,
1 0

a[i]j, and r[k,j]. The dependence matrix for QR decomposition is 0 1]; that is.

0 0

there are dependences carried by the k and j loops.

for k = 0 to 119
for i - k to 119

for j = k to 119
if i == k) then

r~k,j] a[ij];
else

if (j k) then
c = r[k,j]/SQRT(r[k,j]*r[k,j]+a[i,j]*a[i,j]);
s = aEi,j]/SQRT(r[k,j]*r~k,j]÷+aij]*a[i,j]);
r[k,j] = c*r[k,j] + s*a[i,j];

else
rt = r[kj];
r[k,j] = s*a[i,j] + c*rt;
a[ij] = c*a~i,j] - s*rt;

endif
endif

Figure 7.13: Source code for QR(decornposition

The tiling candidate set is {k, i, j). In the last else clause there are read and write

accesses to both a[i,j] and r~k,j]. In the middle clause of the loop body, there is no

write of ali,j], so the compiler should choose to keep r'k,j] local, since it represents

slightly more memory operations. This is achieved by interchanging the i loop innermost.

114 CHAPTER 7. EVALUATION

The number of refreshes for each stream is then given by

Prk,.j] = n = n(n /+ 1)
k=l ~
n n n n(n+1)(2n+1)

Pa[i),j = _I 3l 0i 3jk
k=1 - ' k i=k

The buffer size for each stream is

Ar(k,j] = i30)3

1a[i~j] = 0i!3,

Which makes the total cost

n(n+ 1) n(n+ 1)(2n+ 1)
2 6 0k

To minimize this cost subject to the memory constraint

Oi/3j + Ok•/3j -< size(M1)

the compiler chooses/i = i = 1, and 13k = size(MI) - 1. The total cost is then

n(n+ 1) n(n+ 1)(2n + 1)R= •+
2 6(size(M 1) - 1)

Using square tiles, the compiler chooses / = (3.13, /3). The total cost is

S n(n + + n(n+ l)(2n+ 1)
2 6 V/size(AM)/2

The number of iterations for QR decomposition is given by

n n n 6 3 n 2n3
XC 6+ 13n+9n +2n3

k=O i=k j=k

Note that using optimally-shaped tiles, the computation-to-I/O ratio is O(size(M A)); that

is, for each M2 access, on the order of size(MMi) computations are performed. Using cubic

tiles, the computation-to-I/O ratio is only O(V/'siee(M)).

7.1. COMMON SCIENTIFIC KERNELS 115

QR decomposition more clearly shows the advantage of solving for each tile dimension

separately to minimize the total cost, as illustrated in Figure 7.14. This figure shows the

number of secondary memory operations for optimally shaped tiles and for square tiles

(3j = 3k = vlsize(MT)/2) in QR decomposition. The number of AM2 operations for square

tiles is shown using a dashed line, while the number of M 2 operations using optimally-

shaped tiles is shown with a solid line.

Figure 7.15 shows the number of M2 accesses made by the optimal solution expressed

as a percentage of the number of accesses taken by the square-tile solution. The curve is

like that for matrix-multiply, in that when M, is very small, both methods must fetch data

constantly, so less savings can be realized. As M, grows large enough to allow locality,

the optimal method's efficiency quickly out-paces the square-tile method. As MI continues

to grow, the problem comes closer to fitting in l.l, so the greater efficiency becomes less

important. Nevertheless, for M1 sizes between 1/1000th and 1/10th of the full problem

size, the optimal method requires less than 10% of the accesses required by the square-tile

method. The plots are for a problem size of 120 x 120.

Figure 7.16 shows the total execution time curves for QR decomposition of 120 x 120

matrices. In QR-decomposition, each iteration is assumed to take 4 clocks. When the cost

of an M2 access is very small, computation time dominates, but as the cost of each access

grows, the savings realized by the more efficient buffering becomes apparent. Even with

very large M2 access times, however, as M1 size becomes large enough to fit most of the

problem, the number of I/O's using either method drops to the point that execution time

begins to dominate. This is why the relative percentage of execution time taken by tile

optimal method increases for larger Mt sizes.

In Figure 7.17, the execution time of QR is shown for all 112 cycle time of 8 clocks. The

dotted line is execution time. the solid line is the time spent waiting on M.2 using optimally

shaped tiles, and the dashed line is the time spent waiting on M.2 using cubic tiles. In this

figure the difference between the two methods is clear. The optimal-tile method decreases

the comp'utation-to-I/O rate to O(size(M1)), while the cubic-tile method can only perform

O(V'size(Mt)) operations per I/O. The optimal method allows the program to become

computation-bounded much earlier than the cubic-tile method.

THIS

PAGE

IS

MISSING

IN

ORIGINAL

DOCUMENT

7. 1. COMMON SCIENTIFIC KERNELS 117

M2=3

5&000

1&0

ao4 16- 32 4 258 256 12 1024 2049 40ti 819S2 1-6394
Ml memory size (problem size is 2890 words)

Figure 7.17: Execution time of optimal andsu square tiles for QR (cRX X= 0%

118 CHAPTER 7. EVALUATION

7.1.4 LU decomposition

Note to the reader: LU decomposition is not significantly different from matrix multiply

from the point of view of this thesis; it is included for completeness of comparison to other

works. A reader uninterested in another example may skip to Section 7.2 on page 121.

LU decomposition is an algorithm for decomposing a matrix into two matrices: an upper-

triangular matrix U and a lower-triangular matrix L. It is closely related to Gaussian

elimination, since the lower triangular matrix generated can be use for solving a set of

equations using back-substitution. The code for LU decomposition is shown in Figure 7.18.

In this version, the original matrix is stored in the variable a. Upon return, the L matrix

is stored in the variable 1, and the U matrix is stored in the variable a. The variable x is

used only as a temporary variable.

for k = 1 to n
for i = k to n

for j = k to n
if (i - k) then

begin
if (Q > k)

x[k,j] = a[ij];
end

else
if (Q == k) then

l[i,k] = a[i,j] l x[k,j];
else

a~i,j] = a[i,j] - l[i,k] * x[k,j];
endif

endif

Figure 7.18: Source code for LU decomposition

There are three streams: a~i,j], l[i,k], and x[k,j]. All three are both read and

written. There are only three different reference vectors. i. j. and k. The tiling candidate

set is therefore just I. The best ordering of the controlling loops ha.s k innermost., leaving

a[i,j] local. The transformed code is shown in Figure 7.19.

The buffer sizes for each stream are given below:

11afi,j] = 0ii

7. 1. COMMON SCIENTIFIC KERNELS 119

for i a I to n by 0i3

for j a 1 to n by 0j.
begin
comment~fetch a block of stream a(i,jJ}
for ii - i to min(i+/3i-1,n)

for jj a j to min(j./33-l,n)
a-.buf Cii-i,jj-j) a~ii~jj3

for k = 1 to min(i,j) by A3
begin
comment{fetch a block of stream l[i~k)}
for ii z i to min(i+,3j-1,n)

for kk = k to min~ii,jj,k+L3k-l,n)
l..buf~ii-i,kk-k) - l~ii~kk];

comment~fetch a block of stream x~k,j)}
for jj a j to min(j+/3j-l.n)
for kk - k to min(ii,jj,k+/ik-1,fl)

x-.buf~kk-k,jj-j] a x~kk,jj);
comment{Main computation loop)
for ii - i to min(i+/3j-1,n)
for jj a j to min(j+i31-1,n)

for kk - k to min(ii,jj~k+O1k-1,n)
if (ii as kk) then
if (ii kk) x..buf (kk-k,jj-j] a-.buf Cii-i,jj-j);

else
if (i : kk) then

1-buf[ii-i,kk-k]
a-.buftii-i,jj-j) / x-.buf~kk-k,jj-j);

else
a..buf~ii-i,jj-j]

a-.buffii-i ,jj-j]_-l.bu~f ru-i ,kk-kj*x-buftkk-k,jj-jJ;
endif

endif
comment {write back stream 11i ,k] }
for ii =i to min(i+/3i-l,n)

for kk = k to min(ii,jj,k4IIk-l,n)
l[ii,kk) a l..buf[ii-i,kk-k];

commentivrite back stream x~k,j] }
for jj -j to inin(j4/3.l,-n)

for kk = k to min(ii,jj,k*-'Ik-l,n)
z(kk~jj] a x..bufrkk-k,jj-j];

end
commentivrite back of a~i,jJ stream deleted f or space reasonsi
end

Figure 7.19: Tiled code for LU decomiposition

120 CHAPTER 7. EVALUATION

k1l[i,k] = A,3k

.Uxfk.j] = 3L•,k,

The number of refreshes for each stream are as follows:

In I a n2
Pali,j] - 'E ' 1

'i j=1 3ij3j
NE min(i~j) '+n+n

n n 1 n+ 3n2 + 2n 3

1 n1a I ni~ij + 3n2 + 2n 3

Px(k,jl = Ti T1= I 6ij
-= k=l

The total cost is then given by

2(n+3n2 +2n 3 + n+3n2 +2nr 3

60j. 63~i

The minimal cost is achieved when Ak = 1, and 3i = j= Vsize(M1) + I - 1. This

leads to the completed 1/0 cost function

R = 2(n2 +2 n + 3n 2 + 2n3

6(f/size(M'1) + I -

Using the square-tile method, V = (/size(M,)/3, /size(At1)/3, /size(-,T)/3). The 1/O

cost function for this method is then

S =2(n
2 +2 n + 3n 2 + 2n 3

6(vsize(M1 J '3)

These are very close to the values for matrix multiply. Recall that in matrix-multiply the

computation-to-I/O ratio is order O/size(,f 1). The computation cost for LU decomposition

is

X = 1 6+ 13n+9n
2 +2n 3

k=O i=k j=k

which is 0(n 3), resulting in a computation-to-1/O ratio of O(V'size(M)). The "alue of

Sfor the two programs are permutations of one another, because the cost models are so

7.2. COMPARISON TO WOLF'S WORK 121

similar. This is reflected in the graphs for LU-decomposition, which look just like those for

matrix-multiply.

Figure 7.20 shows the number of secondary memory operations for optimally shaped

tiles and for cubic tiles in LU decomposition. The total number of M2 operations for cubic

tiles is shown with a dashed line, while the number of M2 operations for optimally-shaped

tiles is shown with a solid line. As expected, R and S are very similar.

The next plot, in Figure 7.21 is the number of Mi2 accesses made by the optimal solution

as a percentage of the number of accesses made by the traditional square-tile solution. Note

that for M, sizes from 1/1000th to 1/10th of the problem size. the new methods achieve a

30-35% decrease in M2 memory bandwidth.

Figure 7.22 shows the execution time taken by the optimal solution as a percentage

of the execution time taken by the traditional square-tile solution, with the V2 cycle time

(labelled "c") varying from I clock to 128 clocks. Each iteration is assumed to take 2 clocks.

Figure 7.23 shows the total execution time for optimally shaped tiles and for cubic tiles

in LU decomposition. The plot shows the total execution time spent in computation (dotted

line), the time spent waiting for M12 with cubic tiles (dashed line) and for optimally-shaped

tiles (solid line), assuming the A12 cycle time is 8 clocks.

7.2 Comparison to Wolf's work

In this section, several examples demonstrate the contributions of this thesis. by comparing

it to the work of Wolf[57], the most thorough work on tiling for locality to date. Blecause

he concentrated on tiling for machines with caches, Wolf made some assumptions which do

not hold for compiler-controlled memories (like HAMs). Furthermore. Wolf's techniques

for choosing /3 may be appropriate for cache-ba.sed systems. but it is less than ideal for

software-controlled memories. Wolf also does not address compilation for machines with

block-oriented memories; the framework provided in this thesis does handle this problem.

Finally, Wolf abstracts the reuse space of a program to the set of loops carrying reuse.

which is unnecessary given our techniques for choosing B.

122 CHAPTER 7. EVALUATION

01

75oo~. 00

I\

7-

5.O0

S60.001

650.00

o 5.00 i I i i

4 8 16 32 64 128 256 512 1024 204 409 812 16384 226
U1 memory size (problem size is 43200 words)

Figure 7.21: M2 operations of optimal versus square tiles for LU decomposition

7.2. COMPARISON TO WOLF'S WORK 123

=16

80-00 J=32

moo0 =64

60.00.•]

U1 memory size (problem size is 43200 words)

Figure 7.22: Execution time of optimal versus square tiles for LU decomposition

7W9W

SWOO

0• X c "**** " --
4 8 16 32 4 128 256 512 1024 208 40 8 •2 163 3276

M1 memory size (problem size is 43200 words)

Figure 7.23: Execution time of optimal versus square tiles for LU decomposition

124 CHAPTER 7. EVALUATION

7.2.1 Reuse spaces

Wolf's description of reuse spaces in terms of self-temporal, self-spatial, group-temporal,

and group-spatial (RST, Rss, RGT, RGS), is concise, yet captures all the necessary infor-

mation. In this work, we do not attempt to cdpture spatial locality directly. Spatial locality

is included indirectly in the cost model by using a block-oriented cost system for memory

accesses.

This work also takes a different approach to dealing with dependence limitations. Wolf

formulates the expected reuse contributed by tiling each loop, and then selects the tilable

subset of loops which maximizes locality. In this work, the tiling basis is chosen to tile all

the loops given the dependence set. Extreme vectors of the dependence set are included in

the candidate set to ensure that every loop nest can be tiled. In the worst case, the loops

are skewed to the point that they are serialized. This approach requires that the compiler

be able to predict the number of iterations in each loop, at least in terms of loop-constant

program variables.

7.2.2 The problem with localized vector spaces

Wolf uses localized vector spaces to model when reuse of data actually results in locality.

The localized vector space is the set of iterations in the inner tile of a tiled loop nest.

counting from the innermost loop outwards to the first loop the first loop with a large

number of iterations (i.e., the first loop whose loop bounds are not compiler-selected).

This model is almost correct for cache-based systems. While it is true that a loop with

a large number of iterations can access a lot of data. and thus flush previously used data

from the cache, it is not necessarily true that it does so. Some loops perform repeated

computation with the same data and do not change the data held in a cache.

For compiler-controlled memories, including bypassable caches and RAMs. localized

vector spaces do not capture locality correctly. In mnaciines where the compiler controls

Ml, there is effectively a separate cache for each stream: accessing large amounts of data

for one stream does not flush data held for other streams. There can be significant locality

outside of the innermost tile. This locality is called intertile locality and was addressed in

detail in Chapter 5.

Taking advantage of this locality requires a computer architecture which allows the

7.2. COMPARISON TO WOLF'S WORK 125

compiler to exercise control over the memory hierarchy. The compiler can exercise full

control over RAM buffers used in place of caches. Even bypassable caches or caches which

allow lines to be "locked in" allow the compiler some amount of control. Another possibility

is to include multiple separately addressed data caches, so that the compiler can assign a

separate stream to each cache.

Wolf's localized iteration spaces force him to tile loops with large iteration counts which

do not access new data, that is, loops which are in the iterations space I but not in the data

space D. If this loop is part of a tilable nest, it can be interchanged to be the innermost

loop, and need not be tiled at all. The techniques of this thesis can address this problem

in one of two ways: the compiler can recognize such loops and interchange them innermost

prior to tiling, or it can add these loops to the set to be tiled. The scheduler will note that

these loops allow locality, and will make them the innermost controlling loop; since no data

is accessed, no value will be assigned to the ,3-value for this loop by the tile size optimizer.

The compiler can choose the tile size vector to be oo in any loop which isn't assigned a

value by the tile size optimizer. A simple post-tiling optimizer can remove controlling loops

with a tile size of oo.

7.2.3 Loop jamming: a hack for choosing 3

The previous examples have demonstrated that choosing 3 = (,3.34._ I) is not generally

optimal. In fairness, Wolf handles the examples given so far with a neat trick: lie coalesces

the outermost tiled loop with the innermost controlling loop (this is the -jam" part of

"unroll and jam"). This has the same effect as choosing 3 = (G3,i34._..1,). Of course this

is not as general as solving for the tile sizes directly. The following is an example where

Wolf's method is insufficient (this example is derived from the QR-decomposition code by

adding the v-stream; the computation performed in the loop body was simplified since it

is irrelevant to the locality tiler):

for k = I to n
for j = I to n

for i = 1 to n
a[i,j] = a~ij] + rfk,j) * wvk];

The reuse space is the full iteration space. Wolf will tile the entire space. and then jam

the i-loop back together to produce code like this:

126 CHAPTER 7. EVALUATION

for kk 1 to a by B
for jj S 1 to n by B

for i - 1 to n
for j - jj to min (n, jj+B-1)

for k a kk to min (n. kk+B-1)
a[i,j] - a[i,j] + r[k,j] * w[k];

which results in 1 fetch per element of v, one fetch per element of r, and O(N 3 /vrMi)

fetches per element of a.

Using the techniques of this thesis, every loop is tiled because the data space spans the

iteration space. This results in the code

for kk - 1 to n by Ak
for jj a 1 to n by Ij

for ii a 1 to n by 3i

for k a kk to min (n, kk+/3k-1)
for j - jj to min (n,jj+/3j-1)

for i a ii to min (n.ii+e3 i -1)

a[i,j] - a[i,j] + r[k,j] * wlk]

The scheduler selects the loop ordering which minimizes data motion. Table 7.1 rep-

resents the scheduler's knowledge. Remember that the scheduler decides on a loop nest

ordering before the tile size vector is chosen, so it uses the original loop nest, and not the

tiled loop nest, to estimate the number of M2 operations required by each ordering of the

controlling loops.

Loop order References for each stream Total
a~i,j] r(k,j] w[k]

k,j,i 2nr n" n 2n 3 + n2 + n
k,i,j 2n 3 n3 n 3n 3 + n
j,k,i 2n 3 n2 n2 2n 3 + 2n 2

j,i,k 2n 2 n3 n3 2n 3 + 2n2

i,k,j 2n 3 n3 n2 3n 3 + n2

i,j,k 2n 2 n3 n3 2n 3 + 2n 2

Table 7.1: Data motion costs of different schedules

The fewest M 2 references is achieved by the ordering k,j,i, so the scheduler selects that

order for the controlling loops. The cost model is then given by

M 2 operations = 2n3 + n2 + n (7.1)

7.2. COMPARISON TO WOLF'S WORK 127

subject to the memory constraint

size(M,) Ž_ Oij + 3j13k + Ok

The minimum of Equation 7.1 occurs when 3i = /j = I and 3k = (size(M,) - 1)/2. After

removing the tiled loops with tile size 1, the code looks like this:

for kk a 1 to n by 3k
for j = I to n

for i = 1 to n
for k = kk to min (n, kk+/k3-1)

a[i.j] - a[i,j] + r[k,j] * w[k];

which results in 1 fetch per element for v and r, but requires only O(n 3/size(Ml1))

operations for a. In essence, we have jammed the j-loop as well as the i-loop; Wolf cannot

do this because of the way he models the localized vector space.

7.2.4 Blocking

Wolf does not address blockl•,g memory accesses when no locality is involved. In this thesis,

we model block-oriented memories explicitly. By tiling all loops, and choosing the blocking

size 3 to be 1 in some loops, the compiler is, in effect, choosing to tile exactly the loops

which minimize execution time. This effect comes for free: the compiler does not need to

consider separately whether it should block a given loop or not.

Consider the following code:

for i = 1 to n
for j = 1 to n

for k = 1 to n
ati] = f(a[i], j, k);

(here f(a[i] , j, k) denotes some function which reads a[i]; for locality purposes. the

exact computation is irrelevant). There are n2 iterations performed between accesses to a.

Using the techniques of this thesis, the loop nest would be tiled resulting in the code:

128 CHAPTER 7. EVALUATION

for ii a1 to n by ti
begin
for i = ii to min (n, ii+Oi-1)

abuf[ii-i+l] - ai]J;
for i - ii to min (n, ii+/3i-1)

for j a 1 to n
for k a 1 to n

abuf[ii-i+1J = f(a~ii-i+1], j, k);
for i - ii to min (n, ii+I3i-1)

a[i] a abuf [ii-i+1];
and

Accesses to a are now blocked; by default, the compiler will choose 3i = size(M1). The

techniques used in this thesis could easily be modified to choose tile size vectors so that the

block sizes match the block sizes supported by hardware if necessary.

7.2.5 Abstracting the reuse space

Using reference vectors to guide the transformation process allows a more powerful set

of transformations to be applied. The example of this section illustrates a case where

this added power is needed. This example was deliberately constructed for its illustrative

purposes; programs that can use the added power of the techniques suggested in this thesis

are rare, because programmers almost always use simple loop indices as subscripts rather

than complex linear combinations of loop indices. The techniques suggested in this thesis

are inexpensive enough to use in the general case, however; a compiler using them will have

the extra power when it is needed.

The techniques suggested by Wolf and Lam view the transformation as a way of creating

locality in a loop nest, without specific regard for the exact direction of locality. This leads

them to abstract from the directions of locality for a given stream to a set of loops carrying

that locality. The code in Figure 7.24 shows an example where this leads to less than

optimal performance.

for i = 1 to n
for j 1 I to i

A[i-j] - A~i-j] + f(i,j);

Figure 7.24: An example loop

In this case, there is locality for the A stream in direction i -j. Wolf would abstract this

7.2. COMPARISON TO WOLF'S WORK 129

locality and consider it to be carried by both the i and j loops. Since this is the only locality

available, and the locality-carrying loops are already interchangeable, no transformations

are necessary before tiling. Both loops are tiled, resulting in the code of Figure 7.25.

for i a 1 to n by di
for j a I to i by j3j

for ii a i to min(n,i+Oi-1)
for jj = j to zin(i,j+dj-1)

A[ii-jj] - A[ii-jj] + f(ii,jj);

Figure 7.25: The example loop after tiling

Note however, that while this does result in intratile locality, there is no intertile locality

because the reference vector (1, - 1) is not perpendicular to either loop direction vector (1.0)

or (0, 1). The number of refreshes is therefore given by

PA[i-j] = E t = --

The buffer space required by a/3i x 1j tile is 3i + .3j. The tots! cost in M,2 transfers is then

2n2 /i + 'j =0 (nMW)
213j3j size(/1)

(the number of transfers is twice the number of refreshes since each refresh operation is a

read and a write).

Figure 7.26 shows the tiling that results from this abstraction of the locality space.

By modeling the locality explicitly for each variable, better performance can be achieved.

In this case, the candidate tiling basis set is {i.j. i - j}. Using basis {i.j}. the total cost is

the same as above. Using the basis {ii - J}. however, the iteration space is first skewed,

resulting in the code shown in Figure 7.27 Tiling will now leave intertile locality in the 1

loop. In fact, since all data is local to the 1 loop. it can be interchanged outermost, and

only the k loop need be tiled. The tiled code is shown in Figure 7.28.

In the transformed code, one M2 read and one A1 2 write occur per element of A. so the

total number of memory operations is 2n. which is an order of magnitude smaller than i2.

Figure 7.29 shows the iteration space for the transformed code. Note that only a one-

dimensional tiling is required.

130 CHAPTER 7. EVALUATION

jI

Figure 7.26: Iteration space diagram of tiled code using abstracted reuse space

for k = 1 to n
for 1 = 1 to n-k+1

A[k] = f (k+1, 1);

Figure 7.27: The example loop transformed for locality

for 1 - 1 to n

for k = 1 to n-1+1 by !k
begin

for kk = k to min(k÷/k, n-1+1)
Abutf [kk-kJ = A [kk];

for kk = k to min(k+÷3k, n-1+1)
Abuf[kk-k] = f (kk+1,1);

for kk = k to min(k+/3k, n-1+i)
A[kk] = Abuf [kk-k];

end

Figure 7.28: The tiled transformed loop

Figure 7.29: Iteration space diagram of tiled code using abstracted reuse space

7.3. CONCL USIONS 131

7.3 Conclusions

In this chapter, several example programs were given. Each one has been tiled for locality.

In each case, the techniques suggested in this thesis equal or exceed older techniques in

terms of the number of M 2 operations required by the resulting code. The gain is due to

increased efficiency in M1 usage for most programs. This increased efficiency is important

for small MI memories, but is less important for larger MI memories because tiling results

in computation-bounded programs which do relatively little 1/O. There are some cases

where the number of M2 operations can be reduced by a factor which increases with M1

size. For nearly all programs in the benchmark set, the tiling basis candidate vector set is

just I, so few decisions need to be made on the average.

We have demonstrated that the new techniques address the shortcomings of Wolf and

Lam's methods of tiling for locality in machines with software-controlled memory hierar-

chies. For such machines, a new definition of locality is required, to take into account the

fact that different streams cannot interfere with one another as they do in cache-based

memory systems. Intertile locality as defined in Chapter 5 allows the compiler to schedule

tiles to achieve all the locality possible.

Intertile locality combined with the new technique of solving for the optimal tile sizes

allows the compiler forgo making a decision about which loops to tile: the entire loop nest

is tiled, and the tile size is set to be 1 or oo in loops which need not have been tiled. Loops

with a tile size of 1 are placed outside the innermost tile; effectively, they have a controlling

loop but no tiled loop. Loops with a tile size of -, are placed inside the innermost tile:

they have a tiled loop but no controlling loop.

132 CHAPTER i. EVALUATION

133

Chapter 8

Conclusions and future work

The illustrations in Chapter 7 showed that the new techniques presented in this thesis

reduce the execution time of programs compared to standard tiling methods. The new

techniques perform at least as well as previous methods, often better, and are no more

expensive in terms of compilation time in the case where each dimension of each array

subscript is a function of only a single loop index variable.

The next section reiterates the contributions of this thesis, and the conclusions that can

be drawn. The last section describes the limitations of the approach taken in this work.

and describes important steps that could be taken to follow up this work.

8.1 Contributions of this work

The tiling techniques investigated in this thesis are an advance in the state of the art in

tiling. New techniques are used for modeling the relationship of data to the iteration space.

New algorithms are used for tiling, which are no more expensive than prior methods when

applied to the simple loops that predominate scientific programs. The new techniques

yield faster code in most cases, significantly faster code in a few cases. and never worsen

performance in any case.

8.1.1 Mathematical tools

The mathematical foundation of this work makes it easy to integrate parallelism and locality

as goals for the tiling software. This thesis has I horoughly investigated tiling for locality

134 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

on uniprocessors. For multiprocessors, there are two cases. In the first case, all processors

operate in parallel to execute a tile, but only a single tile is being executed at a time.

This is called intratile parallelism. Intratile parallelism is easily captured by the methods

used, because the scheduler does not consider parallelism within a tile. The second parallel

case is intertile parallelism, in which tiles are executed in parallel on different processors.

In this work, a simple form of intertile parallelism is combined with locality goals: more

complex forms of parallelization using wavefronting will fit into the same framework, with

an appropriate adjustment in the cost models.

Reference matrices are a powerful tool for modeling array accesses within a program.

They directly relate every array element to the iterations using that element, and vice

versa. Using a reference matrix for each stream allows the compiler to evaluate directions

of locality and directions of parallelism using linear algebra techniques.

Rectangular buffering and skewed rectangular buffering are important techniques for

use in block-oriented systems. These addressing techniques precisely map array elements

in the global program data space into buffered array elements in M1 . Rectangular buffering

describes this mapping when rectangular blocks of data are involved: skewed rectangular

buffering generalizes this mapping to allow skewed rectangles of the global data to be

buffered in rectangular arrays in MI. This allows additional flexibility without increasing

the address generation cost in the innermost loops of a tile.

The cost modelb developed in this thesis are another important tool. When tiling -n

iteration space, the number of iterations does not change. To calculate the relative benefits

of one tiling as compared to another, it is sufficient to count the number of times a data

item must be moved from Ml2 to M1 and back. Since each item has to be moved at least

once, the first time data is moved into AlM need not be coiinted either. The concentration is

then on the number of times data is rrfetched. Refetches are a direct cost. adding directly

to the execution time of a loop nest. Overallocation is an indirect cost. Standard square

tiling techniques typically overallocate one or more streams. providing too much spac in

Ml. More efficient use of MI reduces the overall execution time by reducing the number of

times data is refetched. In this work, the buffer space required for each stream is calculated

to minimizes the number of refetches given a particular basis choice B.

Different memory systems can be easily integrated into the cost model as well. Memories

that support block transfers can be modeled easily since all AtI-M' transfers are block

8.1. CONTRIBUTIONS OF THIS WORK 135

transfers. Memory systems in which data can be moved directly from slower levels of the

memory hierarchy into the processor can be handled by streaming non-local data directly

into the CPU. Lastly, the buffering techniques of Chapter 4 can handle simple rectangular

blocks or more complex skewed rectangular blocks of data, maximizing the space-efficiency

in MI.

Finally, these cost models can be applied regardless of what technique is used to to find

the tiling basis. Once a tiling (and a schedule) is chosen, the number of data items required

for each stream in a tile is easy to determine. The number of times that data is fetched

given an ordering of the controlling loops is also easy to determine. Thus. the technique of

solving for tile sizes used in this thesis can be applied to any tiling mechanism.

8.1.2 Algorithmic costs

Compared to the best previous work, presented by Wolf and Lani[54]. the tiling techniques

investigated in this thesis are expensive in the general theoretical case, but not in practical

cases. Wolf and Lam present an algorithm that transforms a loop nest to a tilable loop

nest (if possible); their algorithm is O(n 3d) where n is the number of loops and d is the

number of dependences. They do not schedule tiles for intertile locality, they do not choose

optimal tile sizes, and they do not generate buffering code (their work is for cache-based

systems so buffering code is not required).

This work concentrates on quality of the code rather than the compiler effort required

to achieve it. Wolf and Lam avoid an exponential search of the tratisformed space. hiut at

the cost of losing efficiency. Since the search is exponential in loop nest depth, and the nest

depth is almost always small, the "exponential" search can actually be carried out very

quickly.

In this work, a candidate set of basis vectors is -enerated. and every linearly independent

suhet of this candidate set is evaluated. In the -eneral case this approach is exponential

in the number ol loops and also in the size of I lie candidate set. Fortunately. for most

programs, the candidate set is just 1. and there is only one candidate basis to be evaluaied.

Evaluating a basis requires computiag the .A, memory requirement of each stream, and

computing the number of refresh operations given a schedule of the controlling loops. These

can be computed in time linear in the number of loops. Once they are computed. the

136 CHAPTER 8. CONCL USIONS AND FUTURE WORK

resulting nonlinear optimization problem must be solved either symbolically or numerically.

Although the algorithm presented is theoretically exponential in complexity, in practice it

is linear in the loop nest depth, except for the code that solves the nonlinear optimization

problem. Standard nonlinear solvers can be used for this step.

8.1.3 Code quality

Code quality is improved if possible using the new techniques relative to older techniques for

performing the same kinds of transformations. The new techniques for choosing a basis are

at least as good as previous methods; in many cases the new methods perform better, be-

cause the new techniques a based on a definition of locality developed for software-controlled

memories. The new techniques for finding optimal buffer sizes are an improvement over

the old methods, which were designed for caches and not buffers.

Wolf and Lam[33, 54, 55, 56, 57] are the most thorough previous work on tiling. Rather

than choosing a tiling basis, they find a set of permute, skew, and reverse transformations

that result in a tilable loop nest. This is equivalent to finding a unimodular tiling basis.

Rather than attempting to find a particular tiling basis that fits naturally to the data.

they simply take any basis that gives locality for a subset of the streams. In this work.

every tiling basis that can be constructed from a candidate set is examined; the scheduler

extracts as much locality as possible for that basis, and then the basis that results in lowest

execution time is chosen. Including reference vectors in the candidate set ensures that bases

resulting in efficient M, usage are chosen if possible. Including the rays of the dependence

cone in the candidate set ensures that the compiler can search the breadth of the available

space for a legal transformation if necessary.

Given a particular basis choice, Wolf and Lam choose the tiles sizes to be small enough

to avoid self-interference in the cache. The buffer-optimizing work in this thesis is a new

contribution. It improves the efficiency of M, usage for buffers. The matrix-multiply.

Q R-decomposition, and LU-decomposition examples in Chapter 7 showed the advantage of

these techniques. The compiler solves for the buffer sizes that minimize compilation time.

Since the buffer size vector chosen will minimize the execution time, performance can only

be enhanced by applying this technique. The enhancement in execution time is greatest

for relative small M, memories, of sizes typically available on-chip (either as large register

8.1. CONTRIBUTIONS OF THIS WORK 137

files or as on-chip buffer memories). Larger M, memories allow more straightforward tiling

techniques to yield computation-bounded programs, so reducing I/O further does not yield

significant performance improvement.

As a result of the extra time spent searching for a tiling basis that matches the reference

vectors, candidate-set tiling can produce better code than heuristics based on which loops

carry locality in the source program. Reference vectors capture locality information on a

per-stream basis; this information allows the candidate set to capture all the information

of other methods, but does not artificially reduce the information carried. Wolf and Lam

abstract the locality space of a stream to the set of loops that carry the locality; Section 7.2.5

shows an example where this causes their method to perform significantly worse that the

techniques developed in this thesis.

The candidate set method therefore will always perform at least as well as other forms

of tiling for locality. In some cases, either where square tiles are not optimal, or where

the locality in the source code is not accurately modeled by noting which loops carry the

locality, the new method performs better.

8.1.4 Limitations of the approach

Several assumptions are critical to the application of this thesis. Most of the assumptions

are fairly obvious and were stated in Chapter 1. A few assumptions are more esoteric in

nature and were presented in the context of later chapters. A few of these assumptions are

reiterated here to ensure that the casual reader has not missed these important points.

First, it is assumed that all loops execute enough iterations that the fragmentation of

7- can be ignored. For most scientific loops this is not an issue, but one special case is

worth considering. Loops with loop bounds which are parameters (subroutine or procedure

parameters) may be deliberately written with the intent that the parameter may be usefully

set to 1. If the compiler cannot determine the loops bounds at. compile time (or at least

determine that they are sufficiently large), the cost model may not be optimal. In this case.

the compiler could test the size of the parameter, and execute different versions of the code

depending on whether the parameter is large or small.

A second assumption is that the constant offset vectors are small, so only a minor

tweaking of the ý factors is needed. It is possible that the offset may be the length of an

138 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

entire row or column; in this case it should be buffered separately, rather than extending

the buffer size dedicated to the uniformly generated set of streams.

8.1.5 Conclusions

The compiler can manage the memory hierarchy in both parallel and sequential machines

for programs that access large arrays with regular access patterns. In parallel machines,

interprocessor communication is part of the memory hierarchy.

The techniques outlined in this work allow the compiler to manage data motion through-

out the memory hierarchy without hardware support for this motion. These techniques can

be applied to support larger memory spaces on machine like Crays, which do not have

virtual memory support. The techniques can be used on machines like iWarp, a systolic

array processor with a programmer-controlled memory hierarchy, to increase performance

by allowing most array accesses to use data in the faster memory. Some modern shared

memory multiprocessors are being built without hardware for cache coherence, like IBM's

POWER/4. The techniques for modeling data motion and for selecting tiling bases can be

used to support software cache coherence in these machines in a high-performance optimiz-

ing compiler.

8.2 Future work

There are several important ways this work could be extended. Integrating software prefetch

would allow the compiler to take advantage of more complex memory systems that allow

pipelined requests. The effects of distance locality on tiling should be more closely investi-

gated. Machines that allow data to move from the slower levels of the memory hierarchy

can be supported with some minor additional work. In this work the compiler assumes that

all loops nests are perfect; additional work could be performed to allow the compiler to pick

better schedules for non-perfect loop nests. Finally, a major avenue of research that has

been opened by this research is developing other ways to integrate scheduling for locality

and parallelism.

8.2. FUTURE WORK 139

8.2.1 Software prefetch

This thesis has shown that the compiler can manage the memory hierarchy for linear ac-

cesses to array data. The next logical step is to integrate software prefetching to support

compiler memory management of all accesses. This problem is an extension of the register

allocation problem; the biggest unknown is how to partition MI between scalar and array

data. In this thesis, scalar data is assumed to be small enough that it will fit in the register

file and need never be present in Mi. For the tight loops typical of scientific programs,

this is often the case, but this will probably not hold true for C language programs, for

example.

8.2.2 Distance locality

The techniques used in this thesis ignore distance locality: for example, the locality that

would occur between the references c[i] and c['i-3]. In this thesis, the two accesses are

considered a single stream. To correctly implement the accesses, the length of the offset

would be added to MI memory requirement expression (for multidimensional arrays, the

offset distance is added into the expression in each dimension before multiplying the di-

mensions together). In the examples encountered, this has not presented a serious problem,

but a more complete cost model could take these distance-accesses into account as well.

8.2.3 M 2 streaming

Another important way this work could be extenhlend is to allow direct access from V12

memory to the CPU without an intermediate stop in M;. The current cost model does

support this type of access correctly. Recall the tiled matrix multiply code of Figure 3.2.

Note that the tiled code is optimal for the target machine model, which does not allow

data to be moved directly from M2 into MI. If data can be brought from M2 into A11,

additional savings are possible. In this case, the elements of b[k,j] brought into MI are

used /3i times, but only one element at a time is used. If data can be streamed dirertly

from M2 into the processor, only one element of the b[kj] stream should be fetched at a

tin--; it can be stored in a register. The extra space in Ml would then be divided between

the other two streams.

M2 streaming can be incorporated fairly easily into the framework provided by this

140 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

thesis. After scheduling and computing buffer requirements, the compiler constructs the

cost model, leaving out any streams which do not exhibit significant reuse within a tile.

Streams dropped from the cost model are fetched directly from M2 when needed.

Streams with no reuse within a tile can always be dropped. Streams which exhibit reuse

due to constant offsets are dropped if the reuse can be accommodated in the register file by

allocating extra space. For example, in Figure 8.1, two streams are each reused once due to

constant-offset accesses. The a stream's reuse can easily be accommodated if the j loop is

innermost, by simply allocating two registers, one for a[i,j] and one for aei,j-1J. The

b stream's reuse is in the i+j direction; accommodating its reuse requires either allocating

a number of registers proportional to the tile size, or transforming the loop so that the

innermost loop executes in the i+j direction.

for i = I to n
for j I to n

... a[i,j3+ati,j-1]...bEi,j]+bti-1,j-1]...

Figure 8.1: Examples of constant-offset reuse

8.2.4 Non-perfect loop nests

The techniques as outlined in previous chapters do not take into account branching in the

body of the loop. In the LU decomposition program of Figure 7.18. for example, the last

assignment statement (which writes ali,j]) will execute much more frequently than the

other two. The compiler should take this into account when selecting the loop ordering for

intertile locality. Additional work would be required to integrate this into the prototype

compiler.

8.2.5 Integrating tiling for parallelism and locality

This thews develops a framework for considering the trade-off between parallelism and

locality. Specifically, locality was thoroughly investigated for uniprocessors, and it was

shown that compiling for intratile parallelism requires little more from the locality-optimizer

than compiling for a uniprocessor. Intertile parallelism has only begun to be addressed.

however. In this thesis, it was argued that many loops in scientific programs have at least

one fully parallel loop; the compiler can therefore find enough parallelism to keep all the

8.2. FUTURE WORK 141

processors busy, and locality can be addressed using the other loops in the loop nest.

An important class of loops has no single inherently parallel direction, but can be

executed in parallel along a wavefront. This is equivalent to skewing the loop nest, and

then parallelizing the resultant loop. If the loop bounds are large enough, there will be

enough tiles to keep all the processors busy in the steady state. The compiler does need to

consider the start-up and tear-down costs of the wavefront (which is effectively a pipeline).

These costs are dependent on the tile size vector .3.

The hardest open question is how to schedule the tiles, since the optimal schedule may

depend on the start-up costs, and the start-up costs depend on j. which has not been chosen

at scheduling time. Optimality can be ensured by examining every possible schedule. This

may be another example of a theoretically exponential search which in practice can be

carried out very quickly.

8.2.6 Compiling for split-memory machines

The techniques of this thesis enable compiler-writers to take new approaches to compiling

programs for parallel machines. One example of this is that a programmable systolic

array can be viewed in a new way. Traditionally, systolic arrays are treated as an array of

individual processors, as shown in Figure 8.2. Each "cell" or processor consists of a processor

(CPU), a local memory (LM), and a network interface (systolic pathway segment).

A small systolic array (or a segment of a larger array) can be treated as a single VLIW

"superprocessor" with many processing elements (Figure 8.3). The extended processor has

a segmented memory system; data stored in memory segment one can only he accessed

through memory port 1. However, since systolic arrays can communicate data between

processors at (typically) one word per processor per clock. data can be shifted quickly to

the correct functional unit for processing.

The primary benefit of this approach is that the size of local memory considered to be

"owned" by a processor is much larger. since the local memories of several processors are

treated as a single processor. This is especially important in machines where there are large

secondary memories attached to only a few processors. Groups of "superprocessors" can

be formed around the secondary memories, and scheduled (using VLIW techniques) as a

single processing unit.

142 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

LM LM LM LM

CPU CPUJ CPU CPU

pathway Patlhway Pathway Pathway __

Figure 8.2: The traditional view of a systolic array

! I

, ~segmented memory

-• •-• ~~~data paths - - -.

, functio~a units '

processor 0 processor I processor 2 processor 3

Figure 8.3: Systolic cells combine to form a "superprocessor"

The principle challenge in this approach will be handling exceptions. Since MIMD sys-

tolic arrays have separate program counters for each cell. an exception in one processor is

not directly communicated to other processors working on the same VLIW "superinstruc-

tion" (the concatenation of instructions issued over several processors). Nevertheless, the

high communication bandwidth of the systolic communication pathway may be sufficient

to allow the necessary synchronization.

BIBLIOGRAPHY 143

Bibliography

[1] Walid Abu-Sufah, David Kuck, and Duncan Lawrie. On the performance enhancement

of paging systems through program analysis and transformations. IEEE Transactions

on Computers, C-30(5):341-356, May 1981.

[2] Fifth International Conference on Architectural Support for Programming Languages

and Operating Systems. The Association for Computing Machinery, June 1992. Also

available as ACM SIGPLAN Notices, Volume 27, Number 9, September 1992.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley series in Computer Science. Addison-Wesley Publishing

Company, 1986.

[4] Corinne Ancourt and Frangois Irigoin. Scanning polyhedra with do loops. In

Third ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming

(PPOPP), pages 39-50. The Association for Computing Machinery. April 1991.

[5] Tom M. Apostol. Calculus. John Wiley and Sons, Inc. second edition, 1969. Vol-

ume II, Multi-Variable Calculus and Linear .\legbra, with Applications to Differential

Equations and Probability.

[6] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. An inter-

active environment for data partitioning and distribution. In The Fifth Distributed

Memory Computing Conference [25], pages 1160-1170.

[7] Utpal Banerjee. Dependence Analysis for Superoomputing. The Kluwer International

Series in Engineering and Computer Science: Parallel Processing and Fifth Generation

Computing. Kluwer Academic Publishers, 1988.

144 BIBLIOGRAPHY

[8] Wiliam H. Beyer. CRC Standard Mathematical Tables. CRC Press, Incorporated, 2000

N.W. 24th Street, Boca Raton, FL 33431, twenty-sixth edition, 1981.

[9] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching. In Fourth

International Conference on Architectural Support for Programming Languages and

Operating Systems [27], pages 40-.52.

[101 Steve Carr and Ken Kennedy. Blocking linear algebra codes for memory hierarchies.

In Proceeding of the Fourth SIAM Conference on Parallel Processing for Scientific

Computing, pages 400-405. Society for Industrial and Applied Mathematics, December

1989.

[11] Chi-Hung Chi and Henry Dietz. Improving cache performance by selective cache by-

pass. In Lee W. Hoevel and Veljko Milutinovic. editors, Proceedings of the Twenty-

Second Annual Hawaii International Conference on System Sciences, pages 277-285.

IEEE Computer Society Press, 1989.

[12] Ron Cytron. Doacross: Beyond vectorization for multiprcoessors (extended abstract).

In 1986 International Conference on Parallel Processing, pages 836-844. IEEE Com-

puter Society Press, 1986.

[13] George B. Dantzig and Curtis B. Eaves. Fourier-motzkin elimination and its dual.

Journal of Combinatorial Theory, A(14):288-297, 1973.

[14] R. J. Duffin. On Fourier's analysis of linear inequality systems. Mathematical Pro-

gramming Study, 1:71-95, 1974.

[151 Christine Eisenbeis, William Jalby, Daniel Windheiser. and Franqois Bodin. A strategy

for array management in local memory. In 3rd Workshop on Programming Languages

and Compilers for Parallel Computing [37' uages 23:1-253. From preliminary proceed-

ings, issued as a technica' report by University of California. Irvine.

[16] J. A. B. Fortes and D. I. Moldovan. Parallelism detection and transformation tech-

niques useful for VLSI algorithms. Journal of Parallel and Distributed Computing,

2:277-301, 1985.

BIBLIOGRAPHY 145

[17] Kyle Gallivan, William Jalby, and Dennis Gannon. On the problem of optimizing

data transfers for complex memory systems. In 1988 International Conference on

Supercomputing, pages 238-253. The Association for Computing Machinery, July 1988.

[18] Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for cache and local mem-

ory management by global program transformation. Journal of Parallel and Distributed

Computing, 5:587-616, 1988.

[19] Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum. Compiler-

directed data prefetching in multiprocessors with memory hierarchies. In 1990 Interna-

tional Conference on Supercomputing, pages 354-368. The Association for Computing

Machinery, June 1990.

[20] Andrew Grace. Optimization Toolbox For Use with MATLAB. The MathWorks,

Inc., 24 Prime Park Way, Natick, MA 01760, August 1992. Internet e-mail:

infoOmathworks.com.

[21] Rajiv Gupta and Jim Kajiya. Compiler optimization of array data storage. Technical

Report Caltech-CS-TR-90-07, California Institute of Technology, April 1990.

[221 Hewlett-Packard Company. PA-RISC 1.1 Architecture and Instruction Set Reference

Manual, 1990. Manual Part Number: 09740- 90039.

[23] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler optimizations for FORTRAN

D on MIMD distributed-memory machines. In Supercompuling '91 [281, pages 86- 100.

[24] Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Prorced-

ings, Thirteenth Annual ACM Symposium ,,n Thcory of ('omputing. pages 326--333.

The Association for Computing Machinery. 1981.

[25] The Fifth Distributed Memory C'omputing (onferv'ncr. IEEE Computer Society Press.

April 1990.

[26] 1990 International Conference on Parallel Processing. IEEE Computer Society Press,

1990.

[27] Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems. IEEE Computer Society Press. April 1991.

146 BIBLIOGRAPHY

[28] Supercomputing '91. IEEE Computer Society Press, 1991.

[29] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the Fifteenth An-

nual ACM SICACT-SIGPLAN Symposium on Principles of Programming Languages,

pages 319-329. The Association for Computing Machinery, January 1988.

[30] Supercomputing '89: Proceedings of the Fourth International Conference on Supercom-

puting. International Supercomputing Institute, November 1989. Santa Clara, CA.

[311 H. T. Kung. Memory requirements for balanced computer arcitectures. Journal of

Complexity, 1:147-157, 1985.

[32] H. T. Kung. Computational models for parallel computers. Technical Report CMU-

CS-88-164, Carnegie Mellon University, August 1988. Prepared for the Royal Society

Discussion Meeting on "Solving Scientfic Problems on Multiprocessors".

[33] Monica Lam, Edward Rothiberg, and Michael Wolf. The cache performance and opti-

mizations of blocked algorithms. In Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems [27], pages 63-74.

(341 Wei Li and Keshav Pingali. Access normalization: Loop restructuring for NUMA

compilers. In Fifth International Conference on A rchitectural Support for Program-

ming Languages and Operating Systems [2], pages 285-295. Also available as ACM

SIGPLAN Notices, Volume 27, Number 9, September 1992.

[35] Wei Li and Keshav Pingali. A singular loop transformation framework based on non-

singular matrices. In 5th Workshop on Languages and Compilers for Parallel Comput.

ing, pages 249-259. Yale University, August 1992.

[36] Cror E. Maydan, Saman P. Amarasighe, and Monica S. Lam. Array data-flow analysis

and its use in array privatization. In Conference Record of thc T"u'ntieth Annual AC1M

SICACT-SIGPLA N Symposium on Principles of Programming Languages, pages 2-15.

The Association for Computing Machinery, January 1993.

[37] 3rd Workshop on Programming Languages and Compilers for Parallel Computing. Pit-

man / MIT-Press, August 1990. From preliminary proceedings. issued as a technical

report by University of California, Irvine.

BIBLIOGRAPHY 147

[38] Keshav Pingali and Anne Rogers. Compiling for locality. In 1990 International Con-

ference on Parallel Processing [261, pages 11:142-146.

[39] Allan K. Porterfield. Software Methods for Improvement of Cache Performance on

Supercomputer Applications. PhD thesis, Rice Univeristy, May 1989.

[40] William Pugh. The Omega test: A fast and practical integer programming algorithm

for dependence analysis. In Supercomputing '91 [28]. To appear in Communications

of the ACM.

[41] William Pugh and David Wonacott. Eliminating false data dependences using the

Omega test. In Fifth International Conference on Architectural Support for Program-

ming Languag.Es and Operating Systems [2]. pages 140-151. Also available as ACM

SIGPLAN Notices, Volume 27, Number 9, September 1992.

[42] J. Ramanujam and P. Sadayappan. A methodology for parallelizing. programs for mul-

ticomputers and complex memory multiprocessors. In Supercomputing "89: Proceedings

of the Fourth International Conference on Supercomputing [30]. pages 637-646. Santa

Clara, CA.

[43] J. Ramanujam and P. Sadayappan. Nested loop tiling for distributed memory ma-

chines. In The Fifth Distributed Memory Computing Conference [25]. pages 1088-1096.

[44] J. Ramanujam and P. Sadayappan. Tiling of iteration spaces for niulticomputers. In

1990 International Conference on Parallel Processin. [26]. pages [1: 179-186.

[45] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution in

distributed memory machines. IEEE Transactions on Paralli and Dislributrd Systems.

2(4):472-482, October 1991.

[46] .J. Ramanujam and P. Sadayappan. Tiling multidimenlsional iteration spaces for muil-

ticomputers. Journal of Parallel and Distributed Computing, 16:108 120. 1992.

[47] Hudson Ribas. Automatic Gcneration of Systolic Programs From NVc'tcd Loops. PhD

thesis, Carnegie Mellon University, June 1990.

[481 Robert Schreiber and Jack J. Dongarra. Automatic blocking of nested loops. Technical

Report 90.38, Research Institute for Advanced Computer Science. August 1990.

148 aIBLIOGRAPHY

[491 Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience

Series in Discrete Mathematics and Optimization. Wiley, 1986.

[50] J. Sabhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Programming task and data

parallelism on a multicomputer. In Proc. of the ACM Symposium on Principles and

Practice of Parallel Programming (PPoPP), pages 13-22, May 1993.

[511 Alan Sussman. Model-Driven Mapping of Computation onto Distributed Memory Par-

allel Computers. PhD thesis, Cainegie Mellon University, September 1991.

[52] Ping-Sheng Tseng. A Parallelizing Compiler for Distributed Memory Parallel Com-

puters. PhD thesis, Carnegie Mellon University, May 1989.

[53] David. A. Wismer and R. Chattergy. Introduction to Nonlinear Optimization: A

Problem Solving Approach. North-Holland Series in System Science and Engineering.

North-Holland, 1978.

[54] Michael Wolf and Monica Lam. A data locality optimizing algorithm. In Proceed-

ings of the ACM SIGPLAN '91 Conference on Programming Language Design and

Implementation, pages 30-44. The Association for Computing Machinery. June 1991.

[55] Michael E. Wolf and Monica S. Lam. Maximizing paralleliLn via loop transformations.

In 3rd Workshop on Programming Languages and Compilers for Parallel Computing

[37]. From preliminary proceedings, issued as a technical report by University of

California, Irvine.

[56] Michael E. Wolf and Monica S. Lam. A loop transformation theory and an algorithm

to maximize parallelism. IEEE Transactions on Parallel and Distributed Systems,

2(4):452-471, October 1991.

[57] Michael Edward Wolf. Improving Locality and ParalW lism in N.ested Loops. PhID thesis,

Stanford University, August 1992.

[58] Michael Wolfe. Optimizing Supercompilers for Supm rcomputers. University of Illinois

at Urbana-Champaign, 1982.

BIBLIOGRAPHY 149

[59] Michael Wolfe. More iteration space tiling. In Supercomputing '89: Proceedings of the

Fourth International Conference on Supercomputing [30], pages 655-664. Santa Clara,

CA.

