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Abstract

The factorization method, first developed by Tomasi and Kanade, recovers both the shape of an object
and its motion from a sequence of images, using many images and tracking many feature points to
obtain highly redundant feature position information. The method robustly processes the feature trajec-
tory information using singular value decomposition (SVD), taking advantage of the linear algebraic
properties of orthographic projection. However, an orthographic formulation limits the range of motions
the method can accommodate. Paraperspective projection, first introduced by Ohta, is a projection
model that closely approximates perspective projection by modelling several effects not modelled under
orthographic projection, while retaining linear algebraic properties. Our paraperspective factorization
method can be applied to a much wider range of motion scenarios, such as image sequences containing
significant translational motion toward the camera or across the image. The method also can accommo-
date missing or uncertain tracking data, which occurs when feature points are occluded or leave the field
of view. We present the results of several experiments which illustrate the method’s performance in a
wide range of situations, including an aerial image sequence of terrain taken from a low-altitude air-
plane.
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1. Introduction

Recovering the geometry of a scene and the motion of the camera from a stream of images is
an important task in a variety of applications, including navigation, robotic manipulation,
and aerial cartography. While this is possible in principle, traditional methods have failed to
produce reliable results in many situations [2].

Tomasi and Kanade [10](11] developed a robust and efficient method for accurately recov-
ering the shape and motion of an object from a sequence of images, called the factorization
method. It achieves its accuracy and robustness by applying a well-understood numerical
computation, the singular value decomposition (SVD), to a large number of images and fea-
ture points, and by directly computing shape without computing the depth as an intermedi-
ate step. The method was tested on a variety of real and synthetic images, and was shown to
perform well even for distant objects.

The Tomasi-Kanade factorization method, however, assumed an orthographic projection
model, since it can be described by linear equations. The applicability of the method is
therefore limited to image sequences created from certain types of camera motions. The
orthographic model contains no notion of the distance from the camera to the object. As a
result, shape reconstruction from image sequences containing large translations toward or
away from the camera often produces deformed object shapes, as the method tries to explain
the size differences in the images by creating size differences in the object. The method also
supplies no estimation of translation along the camera’s optical axis, which limits its useful-
ness for certain tasks.

There exist several perspective approximations which capture more of the effects of per-
spective projection while remaining linear. Scaled orthographic projection, sometimes
referred to as “weak perspective” [4], accounts for the scaling effect of an object as it moves
towards and away from the camera. Paraperspective projection, first introduced by Ohta [5]
and named by Aloimonos [1], models the position effect (an object is viewed from different
angles as it translates across the field of view) as well as the scaling effect.

In this paper, we present a factorization method based on the paraperspective projection
model. The paraperspective factorization method is still fast, and robust with respect to
noise. It can be applied to a wider realm of situations than the original factorization method,
such as sequences containing significant depth translation or containing objects close to the
camera, and can be used in applications where it is important to recover the distance to the
object in each image, such as navigation.

We begin by describing our camera and world reference frames and introduce the mathe-
matical notation that we use. We review the original factorization method as defined in [11],
presenting it in a slightly different manner in order to make its relation to the paraperspec-
tive method more apparent. We then present our paraperspective factorization method, fol- -
lowed by an extension which accommodates occlusions. We conclude with the results of
several experiments which demonstrate the practicality of our system.
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2. Problem Description

In a shape-from-motion problem, we are given a sequence of F images taken from a camera
that is moving relative to an object. Assume for the time being that we locate P prominent
feature points in the first image, and track these points from each image to the next, record-
ing the coordinates (u,.v,) of each point p in each image f. Each feature point p that we
track corresponds to a single world point, located at position s, in some fixed world coordi-
nate system. Each image f was taken at some camera orientation, which we describe by the
orthonormal unit vectors i, j,, and k., where i, and j, correspond to the x and y axes of the
camera’s image plane, and k, points along the camera’s line of sight. We describe the posi-
tion of the camera in each frame f by the vector t, indicating the camera’s focal point. This
formulation is illustrated in Figure 1.

Image

Plam/

. ~ Yp Vip
I
imagingray

focal
length [

Figure 1. Coordinate system

Camera |\

world
origin

The result of the feature tracker is a set of P feature point coordinates (ug,v,) for each of
the F frames of the image sequence. From this information, our goal is to estimate the shape
of the object as $, for each object point, and the motion of the camera as iy, j;, k; and , for
each frame in the sequence.

In Section 6 we will relax the requirement that every feature point be visible in every frame,
allowing the inclusion of feature points that are observed and tracked through only a portion
of the sequence.
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3. The Orthographic Factorization Method

This section presents a summary of the orthographic factorization method developed by
Tomasi and Kanade. A more detailed description of the method can be found in [11].

3.1. Orthographic Projection

The orthographic projection model assumes that rays are projected from an object point
along the direction parallel to the camera’s optical axis, so that they strike the image plane
orthogonally, as illustrated in Figure 2. A point p whose location is s, will be observed in

Image
Plane

“p ——1

Figure 2.
Orthographic projection in two dimensions
Dotted lines indicate true perspective projection

frame f at image coordinates (ug,vy,) , where
up =l (S=t) vy =dp (5,78 M

These equations can be rewritten as

Upp = Mg-Sp+Xp Vip = My Sp+ )y @

where
X, = -(tf-if) ¥p = —(tf~jf) 3)
mp=i,  m=J )

3.2. Decomposition

All of the feature point coordinates (u v ) are entered ina 2F x P measurement matrix w.
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w = |4F FP )
Vir - Yip
LVF1 -+ VFp

Each column of the measurement matrix contains the observations for a single point, while
each row contains the observed u-coordinates or v-coordinates for a single frame. Equation
(2) for all points and frames can now be combined into the single matrix equation

W=MS+T1 .1, (6)

where M is the 2F x3 motion matrix whose rows are the m, and n, vectors, § isthe 3xPpP
shape matrix whose columns are the s, vectors, and 7 is the 2F x 1 translation vector whose
elements are the x; and Y-

Up to this point, Tomasi and Kanade placed no restrictions on the location of the world ori-
gin, except that it be stationary with respect to the object. Without loss of generality, they
position the world origin at the center of mass of the object, denoted by ¢, so that

1

P
c = Zsp=0. N
p=1

ol

Because the sum of any row of S is zero, the sum of any row i of W is PT;. This enables
them to compute the i element of the translation vector T directly from w, simply by aver-
aging the i’* row of the measurement matrix. The translation is the subtracted from w, leav-
ing a “‘registered” measurement matrix W = W—T[] |:| .Because W’ is the product of a
2F x3 motion matrix M and a 3 x P shape matrix §, its rank is at most 3. When noise is
present in the input, the w" will not be exactly of rank 3, so the Tomasi-Kanade factoriza-
tion method uses the SVD to find the best rank 3 approximation to W’ , factoring it into the
product

w = MS. (8)
3.3. Normalization

The decomposition of equation (8) is only determined up to a linear transformation. Any
non-singular 3 x3 matrix A and its inverse could be inserted between A7 and §, and their
product would still equal W™ . Thus the actual motion and shape are given by

M=MA s=4"'5, ©®)

with the appropriate 3 x3 invertible matrix A selected. The correct A can be determined
using the fact that the rows of the motion matrix M (which are the m, and n, vectors) repre-
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sent the camera axes, and therefore they must be of a certain form. Since i, and j; are unit
vectors, we see from equation (4) that

|mj{2 =1 I";iz =1, (10)

and because they are orthogonal,
m. n, = 0. (1)

Equations (10) and (11) give us 3F equations which we call the metric constraints. Using
these constraints, we solve for the 3x3 matrix A which, when multiplied by M, produces
the motion matrix M that best satisfies these constraints. Once the matrix A has been found,
the shape and motion are computed from equation (9).
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4. The Paraperspective Factorization Method

The Tomasi-Kanade factorization method was shown to be computationally inexpensive
and highly accurate, but its use of an orthographic projection assumption limited the meth-
od’s applicability. For example, the method does not produce accurate results when there is
significant translation along the camera’s optical axis, because orthography does not account
for the fact that an object appears larger when it is closer to the camera. We must model this
and other perspective effects in order to successfully recover shape and motion in a wider
range of situations. We choose an approximation to perspective projection known as parap-
erspective projection, which was introduced by Ohta [5] in order to solve a shape from tex-
ture problem. Although the paraperspective projection equations are more complex than
those for orthography, their basic form is the same, enabling us develop a method analogous
to that developed by Tomasi and Kanade.

4.1. Paraperspective Projection

Paraperspective projection closely approximates perspective projection by modelling both
the scaling effect (closer objects appear larger than distant ones) and the position effect
(objects in the periphery of the image are viewed from a different angle than those near the
center of projection [1]), while retaining the linear properties of orthographic projection.
The paraperspective projection of an object onto an image, illustrated in Figure 3, involves
two steps.

1. An object point is projected along the direction of the line connecting the focal point
of the camera to the object’s center of mass, onto a hypothetical image plane parallel to
the real image plane and passing through the object’s center of mass.

2. The point is then projected onto the real image plane using perspective projection.
Because the hypothetical plane is parallel to the real image plane, this is equivalent to
simply scaling the point coordinates by the ratio of the camera focal length and the dis-
tance between the two planes.]

In general, the projection of a point p along direction r, onto the plane defined by its normal
n and distance from the origin 4, is given by the equation

p-n-d
r-n

P =p- r. (12)
In frame £, each object point s, is projected along the direction ¢ -t (which is the direction
from the camera’s focal point to the object’s center of mass) onto the plane defined by nor-
mal k. and distance from the origin ¢ - k,. The result s' of this projection is

1. The scaled orthographic projection model (also known as “weak perspective™) is similar to paraperspective projection.
except that the direction of the initial projection in step 1 is parallel to the camera’s optical axis rather than parallel to the
line connecting the object’s center of mass to the camera’s focal point. This model captures the scaling effect of perspective
projection. but not the position effect. (See Appendix )
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Figure 3.
Paraperspective projection in two dimensions
Dotted lines indicate true perspective projection
_y indicate parallel lines.

, (Sp'kf) - (C'kf)
St %7 (c=t) Kk, (c=tp) (13

The perspective projection of this point onto the image plane is given by subtracting t, from
s, to give the position of the point in the camera’s coordinate system, and then scaling the
result by the ratio of the camera’s focal length / to the depth to the object’s center of mass <.
This yields the coordinates of the projection in the image plane,

lij ) ij ,
Up = zf(sff’_tf) Vip = _Z—f(sfp—tf) ? where g = (c_tf) .kf (14)

Substituting (13) into (14) and simplifying gives the general paraperspective equations for
ufp and pr

_ if~ (c—tf)
5

jf’ (c—tf)
f

ka . (sp—c) + (c—tf) ‘i/}
(15)
{ .
Vf,,:'z‘{[jf kf:|‘ (s,,_c)+(c_tf) '.lf}
f
For simplicity, we assume unit focal length, { = 1.

Without loss of generality we can simplify our equations by placing the world origin at the
object’s center of mass so that by definition

lP
c=7’2|sﬂ=0' (16)
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This reduces (15) to
A }
(R A B A
R .
‘fp';_{[-'f+ : kf]'sn_“f"'f)}
f ~f
These equations can be rewritten as
Upp = My S, + Xy Vip = My SptYy
where
y=Yk
t-i t,j
ij_].'f )}:—L‘,_[
f “f
i—x -y
mj=f’lkf 0 =¥ Xy

v i

mn

g

(19)

Q0

@n

Notice that equation (18) has a form identical to its counterpart for orthographic projection,
equation (2), although the corresponding definitions of x,, y My, and n, differ. This enables
us to perform the basic decomposition of the matrix in the same manner that Tomasi and

Kanade did for the orthographic case.

4.2. Paraperspective Decomposition

We can combine equation (18), for all points p from 1 to P, and all frames f from 1 to F,

into the single matrix equation

or in short

w=Ms+T[i 1] .

“.FI “rp| _ |"F [5‘ s;_\"' j: [‘ ‘] )

(22)

(23)

where W is the 2F x P measurement matrix, M is the 2F x3 motion matrix, S is the 3 x P

shape matrix, and 7 is the 2F x 1 translation vector.
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Using equations (16) and (18) we can write

xf) sp + Pxf = Pxf

£ 5
Z o 3

NS, +yp =My 2 s, Pyp=Pyy

" E
z

Therefore we can compute X and ¥pr which are the elements of the translation vector 7,
immediately from the image data as

‘UI

P | P
2 Y= 3 Y Vip - (25)
p= p=1

Once we know the translation vector T, we subtract it from W, giving the registered mea-
surement matrix

w o= w-r[| 1] = MS . (26)

Since W is the product of two matrices each of rank at most 3, W' has rank at most 3, just
as it did in the orthographic projection case. When noise is present, the rank of W™ will not
be exactly 3, but by computing the SVD of " and only retaining the largest 3 singular val-
ues, we can factor it into

W= M3, @n
where M is a 2F x3 matrix and § is a 3 x P matrix. Using the SVD to perform this factor-
ization guarantees that the product A3 is the best possible rank 3 approximation to W', in

the sense that it minimizes the sum of squares difference between corresponding elements of
w" and #3.

4.3. Paraperspective Normalization

Just as in the orthographic case, the decomposition of W’ into the product of 47 and § by
equation (27) is only determined up to a linear transformation matrix A. Again, we deter-
mine this matrix A by observing that the rows of the motion matrix M (the m, and n, vec-
tors) must be of a certain form. Taking advantage of the fact that i, j;, and k, are unit
vectors, from equation (21) we observe that

2

l+xf I+)f

|m/{ nj{ (28)

g g
We know the values of x, and y, from our initial registration step, but we do not know the
value of the depth g Thus we cannot impose individual constraints on the magnitudes of m,
and n, as was done in the orthographic factorization method. Instead we adopt the following
constraint on the magnitudes of m, and n,
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y

mg* Iy’ ( =_|;) |

29)

1+ 42 - 2 2
o Ty i

In the case of orthographic projection, one constraint on m, and n. was that they each have
unit magnitude, as required by equation (10). In the above paraperspective case, we simply
require that their magnitudes be in a certain ratio.

There is also a constraint on the angle relationship of m, and n,. From equation (21), and the
knowledge that i.. j,. and k, are orthogonal unit vectors,

m,-nf— L Mt v G4 (30)

The problem with this constraint is that, again, z; is unknown. We could use either of the
two values given in equation (29) for 1/7 , but in the presence of noisy input data the two
will not be exactly equal, so we use the average of the two quantities. We choose the arith-
metic mean over the geometric mean or some other measure in order to keep the solution of
these constraints linear. Thus our second constraint becomes

m
m-ne = Xyps (( 'A n}{ ) (31
1 +xf l + }f
This is the paraperspective version of the orthographic constraint given by equation (11),
which required that the dot product of m, and n, be zero.

Equations (29) and (31) are homogeneous constraints, which could be trivially satisfied by
the solution Vf m,=n,=0,0r M =0. To avoid this solution, we impose the additional
constraint

jmy| = 1. 32)
This does not effect the final solution except by a scaling factor.

Equations (29), (31). and (32) gives us 2F + 1 equations, which are the paraperspective ver-

sion of the metric constraints. We compute the 3 x 3 matrix A such that M = MA best satis-
fies these metric constraints in the least sum-of-squares error sense. This is a simple problem

because the constraints are linear in the 6 unique elements of the symmetric 3 x3 matrix
Q = A’A . We use the metric constraints to compute Q, compute its Jacobi Transformation
Q = LALT \yhere A is the diagonal eigervalue matrix, and as long as Q is positive definite,
A (LA ‘)

4.4. Paraperspective Motion Recovery

Once the matrix A has been determined, we compute the shape matrix s = A™'§ and the
motion matrix M = MA . For each frame f, we now need to recover the camera orientation
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vectors iy, j;, and k; from the vectors m; and n,, which are the rows of the matrix M. From
equation (21) we see that

i = zmorxke = ks (33)

From this and the knowledge that i, j;, and k; must be orthonormal, we determine that

iijf= (zgmg+ Xjf(f) X (z/nf+)‘/f‘f) = f(f

lif = |zpm -+ xk{ =1 (34)
lid = |z + 5k =1
Again, we do not know a value for z,, but using the relations specified in equation (29) and
the additional knowledge that |k =1, equation (34) can be reduced to
Gy = Hy. 35)
where
(l'ilfx ;lf) 1
Gr=| my He= |~ (36)
n, =
- [ m - ——n
mf= ]+X}2»ﬁ l'lf= 1+}}ﬁ (37)
We compute k simply as
: -1
kf = G H, (38)
and then compute
if = l-le i(f jf = i(f)( l;‘lf . (39)

There is no guarantee that the i; and j, given by this equation will be orthonormal, because
m, and n, may not have exactly satisfied the metric constraints. Therefore we actually use
the orthonormals which are closest to the i, and j; vectors given by equation (39). Due to the
arbitrary world coordinate orientation, to obtain a unique solution we then rotate the com-
puted shape and motion to align the world axes with the first frame’s camera axes, so that

hi=[fod adii=[o1q" -

All that remain to be computed are the translations for each frame. We calculate the depth ¢,
from equation (29). Since we know x;, ., z, if, §;, and ky, we can calculate i using equa-
tions (19) and (20).
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4.5. Solution Ambiguity Removal

In order to solve for the shape and motion at the end of Section 4.3., we computed the matrix
0 = ATA that best satisfied the metric constraints, and then computed A from Q. There is
10 0
a sign ambiguity in this process, since any matrix of the form A| 9 +| ¢ | produces the
0 0 %
same matrix Q when multiplied by its transpose. Thus there are actually several equally
plausible motion and shape matrices, since changing the sign of a column of M and the cor-
responding row of S still produces a solution that satisfies the metric constraints equally
well. This sign ambiguity in the first two columns of M was removed when we aligned the
world coordinate axes with the first frame’s camera axes, at the end of Section 4.4. How-
ever, the ambiguity in the third column of M and the third row of S is a genuine ambiguity.
There are two equally valid solutions, whose shapes differ only by a reflection about the z-
axis.

Geometrically, this ambiguity arises because paraperspective projection does not account
for any different perspective deformation within the object itself. It is not possible to distin-
guish the “front” of the object from the “back”™ of the object, as can be seen from Figure
4(a). However, in real scenarios there will be additional queues due to occlusion information
as in Figure 4(b) and (c), or due to perspective distortion of the object, as in Figure 4(d), if
the object is not too distant from the camera. Simple methods based on either of these phe-
nomena should be sufficient to determine which of the two solutions given by the paraper-
spective factorization method is consistent with the image data.

4.6. Paraperspective Projection as an Approximation to Perspective
Projection

In Section 4.1., we defined paraperspective projection geometrically. We can derive the
same equations mathematically as a first-order approximation to the perspective projection
equations. The perspective projection of point p onto the image plane in frame f is given by

(“jp' pr) , where
i, (s —-t)
“f =1 f p
4 zf
o (40)
.lf (s,, - tj)
Vp = I
Yp
Yp = K (5,- 1) @n
For simplicity we assume unit focal length, / = 1.
We define the term
=t k/ (42)
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Frame 1

Frame 2

Frame 3

Frame 4

@ (b) (©) (d)
Figure 4 Ambiguity of Solution

(a) Sequence of images with two valid motion and shape interpretations.
(b), (c) Ambiguity removed due to occlusion information in the image sequence.
(d) Ambiguity removed due to perspective distortion of the object in the images

and then compute the Taylor series expansion of the above equations about the point

pr=Zj (43)
yielding
i-(s -t) i, (s —-t) 1 (s t)
_S ¥ 7 Vp 1% k
Upy = T (=2 + 3 T—5— (=20 +.
f Zf Zf a4)
jf (Sp—tf) jf (Sp—tf) ]Jf (Sp f)
Vp = T T (3= 3) + 5 T (2~ 7).
f Zf Zf

We combine equations (41) and (42) to determine that 2,2 = kpos), and substitute this
into equation (44) to produce

i (s —t) i.-(s —t) 11, (s —t)
_f P _f e . 17 Vp
Ug, = . 2 (kf sp)+2———3 (k s) +.
f z z
. o7 4 (45)
Gt d (-t 13 (5=
Vip = z - 2 y Sp) + 5 23 (fs) +
s % %

Ignoring all but the first term of the Taylor series yields the equations for scaled orthogra-
phic projection (See Appendix 1.) However, instead of arbitrarily stopping at the first term,
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we eliminate higher order terms based on the approximation that |s |2/z} = 0, which will be
accurate when the size of the object is smaller than the distance of the object from the cam-
era. Eliminating these terms reduces the equation (45) to

sty i (;tf) k-5,)

“fp

. . (46)
I (s,=t)  jo (=t)
b= L2 L WL (ks
Factoring out the 1/z, and expanding the dot-products i - (s,~t) and j - (s,~t) gives
1. i‘tf .
“p=7 (‘f‘sp" z (ks — Gy tf))
! 7 (@7)
1, ] .
vfn—z_f(-'f'sﬂ+ 7 (ky-sp) = (s~ tp)

These equations are equivalent to the paraperspective projection equations given by equa-
tion (17).

The approximation that |s, |2/z =0 preserves the portion of the second term of the Taylor
senes expansmn of order (|s||t{)/z while ignoring the portion of the second term of order
Ispl” /zf and all higher order terms. élearly if the translation that the object undergoes is also
small then there is little justification for preserving this portion of the second term and not
the other. In such cases, the entire second term can be safely ignored, leaving only the equa-
tions for scaled orthographic projection.

Note that we did not explicitly set the world origin at the object’s center of mass, as we did
in Section 4.1. However, the assumption that |sp|2/zf2 = 0 will be most accurate when the
magnitudes of the s_are smallest. Since the s_ vectors represent the vectors from the world
origin to the object points, their magnitudes will be smaller when the world origin is located
near the object’s center of mass.




page 17
5. Comparison of Methods using Synthetic Data

In this section we compare the performance of our new paraperspective factorization
method with the previous orthographic factorization method. The comparison also includes
a factorization method based on scaled orthographic projection (also known as “weak per-
spective”), which models the scaling effect of perspective projection but not the position
effect, in order to demonstrate the importance of modelling the position effect for objects at
close range. (See Appendix I.) Our results show that the paraperspective factorization
method is a vast improvement over the orthographic method, and underscore the importance
of modelling both the scaling and position effects.

5.1. Data Generation

The synthetic feature point sequences used for comparison were created by moving a known
“object” - a set of 3D points - through a known motion sequence. We tested three different
object shapes, each containing approximately 60 points. Each test run consisted of 60 image
frames of an object rotating through a total of 30 degrees each of roll, pitch, and yaw. The
“object depth” - the distance from the camera’s focal point to the front of the object - in the
first frame was varied from 3 to 60 times the object size. In each sequence, the object trans-
lated across the field of view by a distance of one object size horizontally and vertically, and
translated away from the camera by half its initial distance from the camera. For example,
when the object’s depth in the first frame was 3.0, its depth in the last frame was 4.5. Each
“image” was created by perspectively projecting the 3D points onto the image plane, for
each sequence choosing the largest focal length that would keep the object in the field of
view throughout the sequence. The coordinates in the image plane were perturbed by adding
gaussian noise, to model tracking imprecision. The standard deviation of the noise was 2
pixels (assuming a 512x512 pixel image), which we consider to be a rather high noise level
from our experience processing real image sequences. For each combination of object,
depth, and noise, we performed three tests, using different random noise each time.

5.2. Error Measurement

We ran each of the three factorization methods on each synthetic sequence and measured the
rotation error, shape error, X-Y offset error, and Z offset (depth) error. The rotation error is
the root-mean-square (RMS) of the size in radians of the angle by which the computed cam-
era coordinate frame must be rotated about some axis to produce the known camera orienta-
tion. The shape error is the RMS error between the known and computed 3D point
coordinates. Since the shape and translations are only determined up to scaling factor, we
first scaled the computed shape by the factor which minimizes this RMS error. The term
“offset” refers to the translational component of the mo‘ion as measured in the camera’s
coordinate frame rather than in world coordinates; the X offset is t;- if, the Y offset is t- fif,
and the Z offset is ;- k;. The X-Y offset error and Z offset error are the RMS error between
the known and computed offset; like the shape error, we first scaled the computed offset by
the scale factor that minimized the RMS error. Note that the orthographic factorization
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method supplies no estimation of translation along the camera’s optical axis, so the Z offset
error cannot be computed for that method.

5.3. Discussion of Results
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Figure 5. Methods compared for a typical case
noise standard deviation = 2 pixels
Figure 5 shows the average errors in the solutions computed by the various methods, as a v
functions of object depth in the first frame. We see that the paraperspective method performs
significantly better than the orthographic factorization method regardless of depth, because .
orthography cannot model the scaling effect, which occurs due to the motion along the cam-
era’s optical axis. The figure also shows that the paraperspective method performs substan-
tially better than scaled orthographic method at close range, while the errors from the two
methods are nearly the same when the object is distant. This confirms the importance of
modelling the position effect when objects are near the camera.
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In other experiments in which the object was centered in the image and there was no transla-
tion across the field of view, the paraperspective method and the scaled orthographic method
performed equally well, as we would expect since such image sequences contain no position
effects. Similarly, we found that when the object remained centered in the image and there
was no depth translation, the orthographic factorization method performed very well, and
the paraperspective factorization method provided no significant improvement since such
sequences contain neither scaling effects nor position effects.

To examine the impact cf those effects of perspective projection which are not modelled by
paraperspective projection, we implemented an iterative method which refines the results of
the paraperspective method using a perspective projection model. (See Appendix II.) Com-
puting this refined solution required more than ten times as long as computing the initial
paraperspective results. We tested the method on the same sequences that were tested to pro-
duce Figure 5, and found the resulting shape and motion errors to be nearly invariant to
depth. The perspective refinement method only minimally improved the motion results over
the paraperspective solution. However, the shape results were significantly improved for
those cases in which the depth was less than 30. This implies that unmodelled perspective
distortion in the images effects primarily the shape portion of the paraperspective factoriza-
tion method’s solution, and that the effects are significant only when the object is within a
certain distance of the camera.

5.4. Analysis of Paraperspective Method using Synthetic Data

Now that we have shown the advantages of the paraperspective factorization method over
the previous method, we further analyze the performance of the paraperspective method to
determine its behavior at various depths and its robustness with respect to noise. The syn-
thetic sequences used in these experiments were created in the same manner as in the previ-
ous section, except that the standard deviation of the noise was varied from O to 4.0 pixels.

In Figure 6, we see that at high depth values, the error in the solution is roughly proportional
to the level of noise in the input, while at low depths the error is inversely related to the
depth. This occurs because at low depths, perspective distortion of the object’s shape is the
primary source of error in the computed results. At higher depths, perspective distortion of
the object’s shape is negligible, and noise becomes the dominant cause of error in the
results. For example, at a noise level of 1 pixel, the rotation and XY-offset errors are nearly
invariant to the depth once the object is farther from the camera than 10 times the object
size. The shape results, however, appear sensitive to perspective distortion even at depths of
30 or 60 times the object size.
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6. Accommodating Occlusion and
Uncertain Tracking Data

So far, we have assumed that all of the entries of the measurement matrix are known and are
equally reliable. In real image sequences, this is not the case. Some feature points are not
tracked throughout the entire sequence because they leave the field of view, become
occluded, or change their appearance significantly enough that the feature tracker can no
longer track them. As the object moves, new feature points can be detected on parts of the
object which were not visible in the initial image. Thus the measurement matrix W is not
entirely filled; there are some pairs (f,p) for which (ug,vg,) Was not observed.

Not all observed position measurements are known with the same confidence. Some feature
windows contain sharp, trackable features, enabling exact localization, while others may
have significantly less texture information. Some matchings are very exact, while others are
less exact due to unmodelled change in the appearance of a feature. Previously, using some
arbitrary criteria, each measurement was either accepted or rejected as too unreliable, and
then all accepted observations were treated equally throughout the method.

We address both of these issues by assigning a confidence value to each measurement, and
modifying our method to weight each measurement by its corresponding confidence value.
If a feature is not observed in some frames, the confidence values corresponding to those
measurements are set to zero.

6.1. Confidence-Weighted Formulation and Solution Method

We can view the decomposition step of Section 4.2. as a way, given the measurement matrix
W, to compute an M, §, and T that satisfy the equation

W=#3+T1 ... 1) (48)

There, our first step was to compute T directly from w. We then used the SVD to factor the
matrix W' = W-T[1 ... 1] into the product of 47 and $. In fact, using the SVD to perform
this factorization produced an # and 3 that, given W and the T just computed from W, min-
imized the error

2F P 2
& = Z Z (W,,," (Mrlslp+'€’r2§2p+ﬂr3§3p+T,)) 49)
r=1ip=1
In our new confidence-weighted formulation, we associate each element of the measure-
ment matrix W_ with a confidence value y,_ . We incorporate these confidences into the
factorization method by reformulating the decomposition step as a weighted least squares
problem, in which we seek the 41, §, and 7 which minimize the error
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2F P
o a A .~ 2
e= Y 2f,p(w,p-(M,,S.,,+M,zsz,,+M,3s3,,+T,)) (50)
r=lp=1l

Once we have solved this minimization problem for M, §, and T, we can proceed with the
normalization step and the rest of the shape and motion recovery process precisely as
before.

There is sufficient mathematical constraint to compute #7, §, and 7, provided the number of
known elements of W exceeds the total number of variables ( 8F + 3P ). The minimization of
equation (50) is a nonlinear least squares problem because each term contains products of
the variables #,; and §;,. However, it is separable; the set of variables can be partitioned
into two subsets, the motion variables and the shape variables, so that the problem becomes
a simple linear least squares problem with respect to one subset when the other is known.
We use a variant of an algorithm suggested by Ruhe and Wedin {8] for solving such prob-
lems - one that is equivalent to alternately refining the two sets of variables. In other words,
we hold § fixed at some value and solve for the #f and T which minimize €. Then holding
M and T fixed, we solve for the § which minimizes ¢. Each step of the iteration is simple
and fast since, as we will show shortly, it is a series of linear least squares problems. We
repeat the process until a step of the iteration produces no significant reduction in the error
€.

To compute # and T for a given §, we first rewrite the minimization of equation (50) as

2F P
e= Y €, where e, = 3 ¥,(W,- (M,,S.,,+M,2$2,,+A‘4,3§3,,+T,))z . (51
r=1 p=1

For a fixed 3, the total error ¢ can be minimized by independently minimizing each error ¢ ,
since no variable appears in more than one ¢_equation. Each ¢ describes a weighted linear
least squares problem in the variables ., M,,, M,3, and T,. For every row r, the four
variables are computed by finding the least squares solution to the overconstrained linear
system of 4 variables and P equations

- . . M,
S“le SZ]yrl S3|le Y ' W,|'Y'_|

r2| = . (52)

X

SipY,p S2pY,p S3P7,p V,p T’3 Woptrp
g

Similarly, for a fixed # and 7, each p™ column of § can be computed independently of the
other columns, by finding the least squares solution to the linear system of 3 variables and
2F equations
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As in any iterative method, an initial value is needed to begin the process. Our initial exper-
iments showed, however, that when the confidence matrix contained few zero values, the
method consistently converged to the correct solution in a small number of iterations, even
beginning with a random initial value. For example, in the special case of Y, =10 (which
corresponds to the case in which all features are tracked throughout the entire sequence and
are known with equal confidence), the method always converged in S or fewer iterations,
requiring even less time than computing the singular value decomposition of W; when the
Y,, were randomly given values ranging from 1 to 10, the method generally converged in 10
or fewer iterations; and with a y whose fill fraction (fraction of non-zero entries) was 0.8,
the method converged in 20 or fewer iterations. However, when the fill fraction decreased to
0.6, the method sometimes failed to converge even after 100 iterations.

In order to apply the method to sequences with lower fill fractions, it is critical that we
obtain a reasonable initial value before proceeding with the iteration. We developed an
approach analogous to the propagation method described in [11]. We first find a subset of
rows and columns of w for which all of the confidences are non-zero, and solve for the cor-
responding rows of & and T and columns of § by running the iterative method starting with
a random initial value. As indicated above, this converges quickly, producing estimated val-
ues for this subset of M, §, and 7. We can solve for one additional row of # and T by solv-
ing the linear least squares problem of equation (52) using only the known columns of §.
We can solve for one additional column of § by solving the linear least squares problem of
equation (53) using only the known rows of @ and T. We continue solving for additional
rows of M and T or columns of § until #, §, and T are completely known. Using this as the
initial value allows the iterative method to converge in far fewer iterations.

6.2. Analysis of Weighted Factorization using Synthetic Data

We tested the confidence-weighted paraperspective factorization method with artificially
generated measurement matrices and confidence matrices whose fill fraction (fraction of
non-zero entries) was varied from 1.0 down to 0.2!. Figure 7 shows how the performance
degrades as the noise level increases and fill fraction decreases. The synthetic sequences
were of a single object consisting of 99 points, initially located 60 times the object size from
the camera. Each data point represents the average solution error over 5 runs, using a differ-
ent seed for the random noise. The motion, method of generating the sequences, and error
measures are as described in Section 5.

Errors in the recovered motion only increase slightly as the fill fraction decreases from 1.0

1. Creating a confidence matrix that has a given fill fraction and a fairly realistic fill pattern (the arrangement of zero and
non-zero entries in the matrix) is a non-trivial task. We first create the synthetic feature tracks resuiting from the given
object ana motion. by detecting when points become occluded by some surface of the object. These feature tracks are then
extended or shortened until the desired fill fraction is achieved.
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to 0.5. At a very low noise level, such as 0.1 pixels, this behavior continues down to a fill
fraction of 0.3. When the fill fraction is decreased below this range, however, the error in the
recovered motion increases very sharply. The shape results appear more sensitive to
decreased fill fractions; as the fill fraction drops to 0.8 or lower, the shape error increases
sharply, and then increases dramatically when the fill fraction reaches 0.6 or 0.5. While the
system of equations defined by equation (50) is still overconstrained at these lower fill frac-
tions, apparently there is insufficient redundancy to overcome the effects of the noise in the

data.
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7. Shape and Motion Recovery from
Real Image Sequences

We tested the paraperspective factorization method on two real image sequences - a labora-
tory experiment in which a small model building was imaged, and an aerial sequence taken
from a low-altitude plane using a hand-held video camera. Both sequences contain signifi-
cant perspective effects, due to translations along the optical axis and across the field of
view. We implemented a system to automatically identify and track features, based on
[11] and [3]. This tracker computes the position of a square feature window by minimizing
the sum of the squares of the intensity difference over the feature window from one image to
the next.

7.1. Hotel Model Sequence

A hotel "nodel was imaged by a camera mounted on a computer-controlled movable plat-
form. The camera motion included substantial translation away from the camera and across
the field of view (sec Figure 8). The feature tracker automatically identified and tracked 197
points throughout the sequence of 181 images.

Frame 151
Figure 8. Hotel Model Image Sequence

Frame 121

Both the paraperspective factorization method and the orthographic factorization method
were tested with this sequence. The shape recovered by the orthographic factorization
method was rather deformed (see Figure 9) and the recovered motion incorrect, because the
method could not account for the scaling and position effects which are prominent in the
sequence. The paraperspective factorization method, however, models these effects of per-
spective projection, and therefore produced an accurate shape and accurate motion.

Several features in the sequence were poorly tracked, and as a result their recovered 3D
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Figure 9. Comparison of Orthographic and
Paraperspective Shape Results

positions were incorrect. While they did not disrupt the overall solution greatly, we found
that we could achieve improved results by automatically removing these features in the fol-
lowing manner. Using the recovered shape and motion, we computed the reconstructed mea-
surement matrix W°°" | and then eliminated from w those features for which the average
error between the elements of W and W"™“°" was more than twice the average such error.
We then ran the shape and motion recovery again, using only the remaining 179 features.
Eliminating the poorly tracked features decreased errors in the recovered rotation about the
camera’s x-axis in each frame by an average of 0.5 degrees, while the errors in the other
rotation parameters were also slightly improved. The final rotation values are shown in Fig-
ure 10, along with the values we measured using the camera platform. The computed rota-
tion about the camera x-axis, y-axis, and z-axis was always within 0.29 degrees, 1.78
degrees, and 0.45 degrees of the measured rotation, respectively.

7.2. Aerial Image Sequence

An aerial image sequence was taken from a small airplane overflying a suburban Pittsburgh
residential area adjacent to a steep, snowy valley, using a small hand-held video camera.
The plane altered its altitude during the sequence and also varied its roll, pitch, and yaw
slightly. Several images from the sequence are shown in Figure 11.

Due to the bumpy motion of the plane and the instability of the hand-held camera, features
often moved by as much as 30 pixels from one image to the next. The original feature
tracker could not track motions of more than approximately 3 pixels, so we implemented a
coarse-to-fine tracker. The tracker first estimated the translation using low resolution
images, and then refined that value using the same methods as the initial tracker.

The sequence covered a long sweep of terrain, so none of the features were visible through-
out the entire sequence. As some features left the field of view, new features were automati-
cally detected and added to the set of features being tracked. A vertical bar in the fill pattern
(shown in Figure 11) indicates the range of frames through which a feature was successfully
tracked. Each observed data measurement was assigned a confidence value based on the
gradient of the feature and the tracking residue. A total of 1026 points were tracked in the
108 image sequence, with each point being visible for an average of 30 frames of the
sequence.
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The confidence-weighted paraperspective factorization method was used to recover the
shape of the terrain and the motion of the airplane. Two views of the reconstructed terrain
map are shown in Figure 12. While no ground-truth was available for the shape or the

Two views of reconstructed terrain

Figure 12. Reconstructed Terrain

motion, we observed that the terrain was qualitatively correct, capturing the flat residential
area and the steep hillside as well, and that the recovered positions of features on buildings
were elevated from the surrounding terrain.
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Figure 11. Aerial Image Sequence
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8. Conclusions

The principle that the measurement matrix has rank 3, as put forth by Tomasi and Kanade in
[10], was dependent on the use of an orthographic projection model. We have shown in this
paper that this important result also holds for the case of paraperspective projection, which
closely approximates perspective projection. We have devised a paraperspective factoriza-
tion method based on this model, which uses different metric constraints and motion recov-
ery techniques, but retains many of the features of the original factorization method.

In image sequences in which the object being viewed translates significantly toward or away
from the camera or across the camera’s field of view, the paraperspective factorization
method performs significantly better than the orthographic method. The paraperspective fac-
torization method also computes the distance from the camera to the object in each image
and can accommodate missing or uncertain tracking data, which enables its use in a variety
of applications.

The C implementation of the paraperspective factorization method required about 20-24
seconds to solve a system of 60 frames and 60 points on a Sun 4/65, with most of this time
spent computing the singular value decomposition of the measurement matrix. Running
times for the confidence-weighted method were comparable, but varied depending on the
number of iterations required for the method to converge. While this is not sufficient for
real-time use, we hope to develop a faster implementation.

The confidence-weighted factorization method performs well when the fill fraction of the
confidence matrix is high or when the noise level is very low. In future work we hope to
determine more precisely in what circumstances this method can be expected to perform
well, and to investigate ways to extend its range so that the method can be applied to longer
sequences in which the fill fraction is much lower.
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Appendix 1. The Scaled Orthographic
Factorization Method

Scaled orthographic projection, also known as “weak perspective” {4], is a closer approxi-
mation to perspective projection than orthographic projection, yet not as accurate as parap-
erspective projection. It models the scaling effect of perspective projection, but not the
position effect. The scaled orthographic factorization method can be used when the object
remains centered in the image, or when the distance to the object is large relative to the size
of the object.

I.1. Scaled Orthographic Projection

Under scaled orthographic projection, object points are orthographically projected onto a
hypothetical image plane parallel to the actual image plane but passing through the object’s
center of mass c¢. This image is then projected onto the image plane using perspective pro-
jection (see Figure 13).

Hypothetical
Image Image
Plane Plane

—*

world
origin

Figure 13
Scaled Orthographic Projection in two dimensions

Dotted lines indicate true perspective projection
_y indicate parallel lines.

Because the perspectively projected points all lie on a plane parallel to the image plane, they
all lie at the same depth

= (e- tf) . kf. (54)

Thus the scaled orthographic projection equations are very similar to the orthographic pro-
jection equations, except that the image plane coordinates are scaled by the ratio of the focal
length to the depth z..
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{ .
Upp = 2}('f' (s,=t9)
1 . (55)
pr— Z,(Jf' (Sp—tf))

To simplify the equations we assume unit focal length, / = 1. The world origin is arbitrary,
so we fix it at the object’s center of mass, so that ¢ = 0, and rewrite the above equations as

Ug, = m/-sp-o-xf Vip = nf-sp+yf (56)
where
7=tk (57)
t i t,j
xf___f f y!=_f f (58)
iy v
i )
m=L -7 (59)
y Y
L.2. Decomposition

Because equation (56) is identical to equation (2), the measurement matrix W can still be
written as W = MS+ T just as in orthographic and paraperspective cases. We still compute X
and y s immediately from the image data using equatlon (25), and use singular value decom-
position to factor the registered measurement matrix W into the product of # and 3.

1.3. Normalization

Again, the decomposition is not unique and we must determine the 3 x3 matrix A which
produces the actual motion matrix M = #A and the shape matrix S = A~'$. From equation
(59,

lmf{2 = -13 [nAZ = (60)
]

NQN‘ -

We do not know the value of the depth z;, S0 we cannot impose individual constraints on m,
and n, as we did in the orthographic case. Instead, we combine the two equations as we did
in the paraperspective case, to impose the constraint
imy? = |ng. 61
Because m, and n, are just scalar multiples of i and j,, we can still use the constraint that
m; n, =0 (62)

As in the paraperspective case, equations (61) and (62) are homogeneous constraints, which
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could be trivially satisfied by the solution M = 0, so to avoid this solution we add the con-
straint that

jm,| = 1. (63)

Equations (61), (62), and (63) are the scaled orthographic version of the metric constraints.
We can compute the 3 x3 matrix A which best satisfies them very easily, because the con-
straints are linear in the 6 unique elements of the symmetric 3 x 3 matrix Q = A’a.

1.4. Shape and Motion Recovery

Once the matrix A has been found, the shape is computed as s = A~'5. We compute the
motion parameters as

m n
: _ f 5 - f
k= |mj{ ¥ I“ﬁ (64)

Unlike the orthographic case, we can now compute z;, the component of translation along
the camera’s optical axis, from equation (60).
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Appendix II. Perspective Method

This section presents an iterative method used to recover the shape and motion using a per-
spective projection model. Although our algorithm was developed independently and han-
dles the full three dimensional case, this method is quite similar to a two dimensional
algorithm developed by Taylor, Kriegman, and Anandan as reported in [9].

I1.1. Perspective Projection

In the perspective projection model, sometimes referred to as the pinhole camera model,
object points are projected directly towards the focal point of the camera. An object point’s
image coordinates are determined by the position at which the line connecting the object
point with the camera’s focal point intersects the image plane, as illustrated in Figure 14.

1
Plane.

world
origin

Figure 14
Perspective Projection in two dimensions

Simple geometry using similar triangles produces the perspective projection equations

u =1———if. (SP_tf)
P k. (s -t
.f p (65)
I (Sp—tf)
V, = -
o k- (s,-tp)
We assume unit focal length, and rewrite the equations in the form
_ if- Sp+ X
“fr= ks +c
f °r f (66)

i sptyy
oS ks +
1 Sp T

where
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=l yy=cety =Kty (67
I1.2. Iterative Minimization Method

The above equations are non-linear in the shape and motion variables. There is no apparent
way to combine the equations for all points and frames into a single matrix equation, to sep-
arate the shape from the motion, or to compute the translational components directly from
the image measurements, as we did in the orthographic and paraperspective cases. Instead
we formulate the problem as an overconstrained non-linear least squares problem in the
motion and shape variables, in which we seek to minimize the error

Fr is +x.32 oS, +ye’
f7p 7f f "p S
e= Y Z{(uﬂ,-——)af(v -_—~)}. (68)
fe1pe kf-sp+zf Ir ke-s,+2z;

In the above formulation, there appear to be 12 motion variables tor each frame, since each
image frame is defined by three orientation vectors and a translation vector. In reality, since
i i and k, must be orthonormal vectors, they can be written as functions of only three
independent rotational parameters O ] » and ¥

cosotfcosﬁf (cosafsinﬁfsinyf- sinafcosyf) (cosafsinﬂfcosyf+ sinafsinyf)
[ifjf kB = sinafcost (sinajsinBjsinyf+ cosafcosyf) (sinafsiancosyf— cosafsin'yf) (69)
—sian costsinyf cosp cosy,

Therefore we have six motion parameters, X Yo 2pp O B., and ¥y,, for each frame, and three
shape parameters, s, = [ifl Sp2 5p3] for each point. Equation (66) defines an overconstrained
set of 2FP equations in these 6F + 3P variables, and we carry out the minimization of equa-
tion (68) with i, ip and k, defined by equation (69) as functions of o, B » and i/

We could in theory apply any one of a number of non-linear equation solution techniques to
this problem. Such methods begin with a set of initial variable values, and iteratively refine
those values to reduce the error. We know the mathematical form of the equations, so we can
use derivative information to guide our numerical search. However, general non-linear least
square techniques would not take full advantage of the structure of our equations. The Lev-
enberg-Marquardt technique [7] would require the creation and inversion of a
(6F+3P) x (6F + 3P) matrix at each step of the iteration. This is unacceptably slow, since
we often use hundreds of points and frames.

Our method takes advantage of the particular structure of the equations by separately refin-
ing the shape and motion parameters. We hold the shape constant and solve for the motion
parameters which minimize the error. We then hold the motion constant, and solve for the
shape parameters which minimize the error. We repeat this process until an iteration pro-
duces no significant reduction in the total error «.

While holding the shape constant, the minimization with respect to the motion variables can
be performed independently for each frame. This minimization requires solving an overcon-
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strained system of 6 variables in P equations. Likewise while holding the motion constant,
we can solve for the shape separately for each point by solving a system of 2F equations in
3 variables. This not only reduces the problem to manageable complexity, but as pointed out
in [9], it lends itself well to parallel implementation.

We perform the individual minimizations, fitting 6 motion variables to P equations or fitting
3 shape variables to 2F equations, using the Levenberg-Marquardt method [7], a method
which uses steepest descent when far from the minimum and varies continuously towards
the inverse-Hessian method as the minimum is approached. Each step of the iteration
requires P inversions of 6 x 6 matrices and 2F inversions of 3 x 3 matrices.

We do not actually need to vary all 6F +3P variables, since the solution is only determined
up to a scaling factor, the world origin is arbitrary, and the world coordinate orientation is
arbitrary. We could choose to arbitrarily fix each of the first frame’s rotation variables at zero
degrees, and similarly fix some shape or translation parameters. However, experimentally
we found that the algorithm converges significantly faster when the shape and motion
parameters are all allowed to vary. Once the algorithm has converged to a solution, we
adjust the final shape and translation to place the origin at the object’s center of mass, scale
the solution so that the depth in the first frame is 1.0, and rotate the solution so that
i=[10 (i]T and j, = [0 1 (i)T, or equivalently, so that «, = 8, =T, = 0.

One problem with any iterative method is that the final result can be highly dependent on the
initial values. Taylor, Kriegman, and Anandan [9] require some basic odometry measure-
ments as might be produced by a navigation system to use as initial values for their motion
parameters, and use the 2D shape of the object in the first image frame, assuming constant
depth, as their initial shape. To avoid the requirement for odometry measurements, which
will not be available in many situations, we use the paraperspective factorization method to
supply initial values to the perspective iteration method.




