	T DOCUMENTATIO	TAGE	Form Approved OMB No. 0704-0188
sources, gathering and maintaining the other aspect of this collection of inform	he data needed, and completing and revi- mationnotuding suggessions for reducin ton Cavis Highway, Suite 1204, Arlington	ewing the collection of information. Send (g this burden, to Washington Headquarter	for reviewing instructions, searching existing data comments regurding to burden estimate or any s Services, Directorate for information hagement and Budget, Paperwork Reduction
1. AGENCY USE ONLY (Leave blan	2. REPORT DATE	3. REPORT TYPE AND DATES C	
	02/15/94	Quarterly Progress R&D Status Repor	Report t 10/01/93 - 12/31/93
TITLE AND SUBTITLE			5. FUNDING NUMBERS
R&D Status Repo RF Vacuum Micr	ort: Quarterly Progress Report #9 oelectronics		MDA972-91-C-0030
D. K. Arch			
PERFORMING ORGANIZATION N	NAME S AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Honeywell Techno 10701 Lyndale Av Bloomington, Mir	venue South	\	-py 94-07444
	ENCY NAME(S) AND ADDRESS(ES)		
Advanced Research 3701 N. Fairfax Arlington, Virginia	Projects Agency ARPA/DSO	1	
1. SUPPLEMENTARY NOTES			
a. DISTRIBUTION/AVAILABILITY S			12b. DISTRIBUTION CODE
	ic release; distribution is unlimite	d	
We summarize our modulation. The sec	progress towards developing a ond fabrication run of vacuum b	thin film edge emitter vacuum ransistors was carried out and is a	transistor capable of 1 GHz approximately 90% complete.
We summarize our modulation. The sec Fabrication is anticip	progress towards developing a ond fabrication run of vacuum to pated to be completed in early Jar 512	thin film edge emitter vacuum ransistors was carried out and is a	approximately 90% complete.
ABSTRACT (Maximum 200 words We summarize our modulation. The sect Fabrication is anticip AD-A276	progress towards developing a ond fabrication run of vacuum to pated to be completed in early Jar 512	thin film edge emitter vacuum ransistors was carried out and is a nuary 1994. DTI ELECT	approximately 90% complete.
ABSTRACT (Maximum 200 words We summarize our modulation. The sect Fabrication is anticip AD-A276	progress towards developing a ond fabrication run of vacuum to bated to be completed in early Jan 512	thin film edge emitter vacuum ransistors was carried out and is a nuary 1994. DTI ELEC MAR 0. 2.1 B	11
ABSTRACT (Maximum 200 words We summarize our modulation. The sect Fabrication is anticip AD-A276	progress towards developing a ond fabrication run of vacuum to bated to be completed in early Jan 512	thin film edge emitter vacuum ransistors was carried out and is a nuary 1994. DTI ELEC MAR 0. 2.1 B	15. NUMBER OF PAGES 11. 16. PRICE CODE
ABSTRACT (Maximum 200 words We summarize our modulation. The sect Fabrication is anticip AD-A276	progress towards developing a ond fabrication run of vacuum to bated to be completed in early Jan 512	thin film edge emitter vacuum ransistors was carried out and is a nuary 1994. DTI ELEC MAR 0. 2.1 B	11
ABSTRACT (Maximum 200 words We summarize our modulation. The sect Fabrication is anticip AD-A276	progress towards developing a ond fabrication run of vacuum to bated to be completed in early Jan 512	thin film edge emitter vacuum ransistors was carried out and is a nuary 1994. DTI SELECT MAR 0. 7.1 B mology,	15. NUMBER OF PAGES 11. 16. PRICE CODE
ABSTRACT (Maximum 200 words We summarize our modulation. The sect Fabrication is anticip AD-A276 SUBJECT TERMS Vacuum microelectron high frequency device SECURITY CLASSIFICATION OF REPORT	progress towards developing a ond fabrication run of vacuum to pated to be completed in early Jan 512 	thin film edge emitter vacuum ransistors was carried out and is a nuary 1994. DTI ELEC MAR 0. 7.1 B mology, 19. SECURITY CLASSIFICATION OF ABSTRACT	15. NUMBER OF PAGES 11. 16. PRICE CODE 20. LIMITATION OF ABSTRACT

1⁴

Best Available Copy

R&D Status Report RF Vacuum Microelectronics Quarterly Progress Report #9 (10/1/93 - 12/31/93)

Sponsored by:

Dr. Bertram Hui ARPA/DSO 3701 N. Fairfax Drive Arlington, Virginia 22203 Tel: 703/696-2239

Contractor: Honeywell Technology Center 10701 Lyndale Avenue South Bloomington, MN 55420

Effective Date of Contract: September 30, 1991		
Contract Expiration Date:	May 31, 1993 (Baseline)	
Option Expiration Date:	February 15, 1994 (Revised)	
Contract Amount: Baseline	\$1,315,650	
Option:	\$ 465,000	

.

Principal Investigator:	Tayo Akinwande	612/956-4481
Program Manager:	David K. Arch	612/956-4404

Title of Work:

RF Vacuum Microelectronics

I. Executive Summary

Technical Approach: Our technical approach is to utilize thin film technology and surface micromachining techniques to demonstrate an edge emitter based vacuum triode. An array of vacuum transistors are connected in parallel to achieve microwave performance. The edge emitter triode approach offers several potential advantages to achieving high frequency device operation (compared to cone emitters or wedge emitters):

- Thin film processes for the films used in the triode process are well controlled and reproducible. Control of film thicknesses to within 5% for the emitter film thickness is easily attainable resulting in a well-controlled edge emitter.
- Device capacitance for the edge emitter is less than that achievable for cones or wedges resulting in potentially higher frequency operation.
- The fabrication process is a planar process, compatible with most silicon IC manufacturing.

Program Objective: Demonstrate an edge emitter based microwave vacuum transistor with gain at 1 GHz continuously for 1 hour.

Key Achievements: (this reporting period)

• Fabrication of the second run of microwave transistors was carried out this quarter. Device fabrication is 90% complete with completion anticipated in early January.

Acces	sion For	
DTIC		
	ounced fication_	
By		
Distr	ibution/	
Avai.	iability (Rebes
D15t A 1	Avail and Special	/or

II. Milestone Status

.

٦

in milestone Status		
	<u>Completion Date</u>	
	Planned Actual	Comments
Task 1. Field Emitter Development		
Test Structure Design Complete	12/91 01/91	complete
Determine Workable Emitter Structure	03/92 12/92	complete
Demonstrate Emission Current of 10 µA/µm	11/92 11/92	complete
Deliver 10 Field Emitting Diodes	12/92 10/92	delivered
		uchvereu
Task 2. Process Development		
High Resistivity Thin Film Resistor	04/92 09/92	complete
Complete Dielectric Studies	05/92 06/92	complete
Mechanical and Electrical FEM Analysis	05/92 08/92	
Meenanical and Electrical I Elvi Analysis	()3/92 ()6/92	complete
Task 3. Triode Development		
Triode Design Complete	04/92 05/92	complete
Demonstrate Reliable/Uniform Current Emission	07/92 10/92	complete
Demonstrate Modulated/Edge Emitter Triode	08/92 12/92	complete
Demonstrate 1 GHz Modulation of Triode	02/93 12/92	behind plan
Deliver 2 Triodes	03/93 08/93	complete
	•	•
Task 4. Final Report (Baseline)	04/93 04/93	complete
Task 5. High Frequency Demo		
Design Microwave Vacuum Transistor	06/93 06/93	complete
Complete Process Development	06/93 06/93	complete
Complete High Frequency Probe Assembly	06/93 06/93	complete
Demonstrate Vacuum Transistor with High Curren		
Demonstrate 1 GHz Modulation with Gain		behind plan
	10/93 02/94	behind plan

III. Technical Progress

Microwave Vacuum Transistor Fabrication

We completed two fabrication runs during this reporting period. The first of the two fabrication runs did not yield devices because of the formation of metal wings during the definition of the edge. The definition of the edge was done by a combination of plasma etches for the nitride layers and ion mill for the 300 Å TiW emitter layer.

We corrected the problems in the next fabrication run by hard baking the resist layer before the etches. This solved the problem of formation of wings on the wafers after the edge definition step.

Figures 1 and 2 are photos of devices from the final fabrication run which are currently under testing, Figure 1 shows 12 fingers of emitter/gate (together) and 12 fingers of anode. The emitter segments are all connected in parallel. The same applies to the gate segments and the anode segments. The metal on the outer ring is the emitter/ground. The gate/input pad feeds into "green T", and it is connected to 12 gate segments each with a lower and upper gate electrode. The output/anode is the top inverted T (near the numbers), and it consists of 12 segments also. There are also 12 emitter segments. They are sandwiched between the upper and lower gates. The emitter "runners" run parallel to the gate electrodes. The output pad is opposite the input pad. The input and output pads are both surrounded by the ground/emitter pad. Each segment is 200 µm long leading to a total emitter width of 2400 µm. This device design is really sophisticated and has a lot of promise for low-cost assembly, test, and manufacturing. We have found in the course of this program simpler approaches that can be implemented in the future. One such technique is the use of high aspect ratio reactive ion etching. Such a tool will drastically reduce the complexity and cost of this particular device because the alignment of the two gates and emitter will no longer be critical.

Figures 3, 4, and 5 are SEM of the device structure taken after the final sacrificial layer etch. From the SEMs, it can be seen that the microstructure appears exactly as planned within the alignment tolerance of the photolithography system. The SEMs show some views taking at a tilt of 80°, and they show the emitter sandwiched between the upper and lower gate and the anode is 10 μ m from the emitter/gate stack.

Microwave Vacuum Device Evaluation

Our initial test results on two completed wafers show triode action with the gate voltage controlling the anode current. The anode current and the emitter currents are equal, while the gate current is usually below 5% of the anode current. However, the maximum current we have attained thus far is $35 \,\mu$ A. We believe the low current is an indication of dirty surfaces or an oxide on the emitter film and emission is only occurring where there is a break in the oxide. We believe the oxide is TiOx and we are exploring ways of removing it ex-situ and in-situ.

IV. Fiscal Status

Months After Baseline Program Start

	<u>Baseline Program</u>	Option Phase
Expenditures this quarter		\$127K
Total expenditures to date	\$1,395K	395K
Projected expenditures (baseline):		
10/93 - Program Completion	0	70K
Total Projected Cost for Program	\$1,315,650*	\$465K

*Total cost to ARPA. The remaining funding for the baseline program (~\$80K) is being costshared by Honeywell through a limitation of its overhead rates. In addition, as a result of the February 1, 1993 program review with ARPA, Honeywell agreed to an additional investment (internal development funds) of approximately \$71K to provide further testing, testing enhancements and process enhancements to the VME effort. Of this \$71K committed all has been spent.

Plans for Next Reporting Period

- Complete fabrication of run #2.
- Complete dc and ac characterization of VME devices from run #2.
- Demonstrate 1 GHz modulation on a thin film edge emitter triode device.

V. Programmatics

3

• To ensure the greatest possibility of success of yielding high performance vacuum transistors, the fabrication process has been slowed down to allow for step-by-step inspection of the devices. This has necessarily resulted in an extension of the original schedule. A request to ARPA has been made to extend the technical period of performance to February 15, 1994.

Figure 2: Close-up photo of the Microwave Vacuum Transistor showing the anode gate and emitter of a segment.

Figure 3: SEM of the Vacuum transistor showing the anode gate and emitter of a segment.

Figure 4: SEM of a Microwave Vacuum Transistor.

Figure 5: SEM of a Microwave Vacuum Transistor.