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MULTIMODE ANALYSIS OF BRAGG REFLECTORS FOR

CYCLOTRON MASER APPLICATIONS

L INTRODUCTION

The cyclotron auto-resonance maser (CARM) is a promising source of high power

radiation in the 100 GHz to 500 GHz frequency range that may impact the requirements of

advanced systems for applications such as radar systems, communications systems and plasma

heating. The requirements for guide magnetic field strength and electron energy in a CARM are

advantageous when compared with competing devices. Compared with a gyrotron, the required

magnetic field strength requirement is reduced because of the Doppler shift of the radiation.

Because the CARM depends on a convective instability, CARM oscillator operation must

take place in a cavity that provides feedback of the radiation onto the electron beam. For typical

CARM operation, the resonator reflectors must provide high reflectivity for modes that are far

from cutoff. Mode selectivity is desirable, preferably with discrimination between modes differing

in either transverse or axial structure. Modes that are near cutoff must be suppressed in order to

minimize competition from the gyrotron interaction. Finally, the CARM cavity must allow

unrestricted passage of an electron beam parallel to the axis.

CARM resonator reflectors may be achieved by using a small periodic corrugation of the

waveguide surface. Each ripple provides a small reflection of wave amplitude. If the corrugation

period is such that the radiation reflected from each of the corrugations adds in phase, the

corrugated section can be highly reflective, and is known as a Bragg reflector1 . This paper treats

the reflection due to rippled wall sections as a mode conversion from a forward wave to a

backward wave, with an approach to the analysis that is similar to the analyses of other mode

converters2 . Mode conversion from the desired mode to parasitic modes in the corrugated

section is included in the analysis. A CARM oscillator with a Bragg resonator is illustrated in

figure 1.
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Previous work on Bragg reflectors has focused on a single mode approach to the reflection

calculations 1.3. Palmer4 examines the effects of multiple modes; however, his derivation requires

that the coupled differential equations for the mode amplitudes be solved numerically. This paper

presents a method of solving the coupled mode equations that only requires inversion of a single

4 by 4 complex matrix.

IL DERIVATION OF THE COUPLED-MODE EQUATIONS

The general case of waveguides with cross sections that change along the axis has been

treated by Solymar 2, who formulated the equations governing the waveguide modes as a set of

coupled differential equations for the wave amplitude, the "generalized telegraphist's"

equations. The set of equations consists of two equations for each waveguide mode: each

equation describes the amplitude of either the forward or the backward component of one

waveguide mode.

fkA (j+A ,P; la

S~p

where Ai is the amplitude of the ith waveguide mode, k is the wave number of the mode, K is the

wave impedance of the mode, and S is a wave-wave coupling coefficient. The designations + and

- signify forward and backward going components, while the sum p is over all waveguide modes.
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Equations la and b can be written in a slowly-varying-amplitude form by writing

A:(z) = b*(z)*",z.

"- 4'= 2a

AL+ 1S;.be'(-ik) + S;-bre( ' 2a
o ,+ ,-e0Fk) +• 5' ;., J-'"" 2b

The coefficient of the term due to the impedance variation is the z derivative of the

logarithm of the wave impedance.

da a l&
-InK .-n(tv/k) k -

3

where W is the angular frequency of the radiation.

If a sinusoidal-profile rippled wall reflector is chosen,

-Ra(z) = -tokB sin(kz- )

the wave impedance term K becomes

I k2a3 sm(k - ) 5



-k.sin(k.z{) X,2(Xi2 - in2) - i2X, M 2P)]

aqx -i2 _m 2 n_(x;2_x;2)

for TE-TE coupling,

-/O-mO , sin(kz) 7
SiFac kk,(xi2 -_M2)

for TE-TM coupling, and

= -kB,E(k~X, 2 - k Xi2 )sink~z 8

for TM-TM coupling.

Equations 2 can be simplified with the transformation

to arrive at the following expression for the mode amplitudes.

fl-; =i-&f-G-+ i~f

=-i f,- + G-f. -Yy_.,10b4
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Where G is the combination of the impedance term and the wall current term, and

Air =_ki +4 kB 11

A =2k -k .

For TE modes,

Xý4M2a2(o,2/•} +12

and

G=o9/c2 +k 13
2a k

for the TM modes1 . Hip is the cross mode coupling term, and is

H. 2 -m -, m k 14H• _ , 2(xf _ xP,2)4xf _ mW4xI2 _ M2 1

for a TE mode coupling to a TE mode,

H = t mksc 15a"- -F 12 _ 2

ip2aC4k k. 4X

for a TE mode coupling to a TM mode, and
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1-7 k~l.(kFx,2 kpX, 2) I5

H'P 2a4jý(X,'2 - 15b)

for a TM mode coupiing to a TM mode.

Since equations 10 form a first order system of linear ordinary differential equations, the

solution to equations 10 can be determined by assuming a solution of the form5

(z) = 16
ifl

where n is twice the number of modes, y is an eigenvalue of the linear system, 4 is the

eigenvector corresponding to y, and c is a complex number needed to match the boundary

conditions.

In most cases, only two modes need to be considered- the mode of interest and the next

nearest mode with the same azimuthal mode number. In the two mode case, the solution of the

differential equations reduces to finding the eigenvalues and eigenvectors of the corresponding

matrix.

-iA 1 -iH1  0 012 +

f iHn2 -iA2 -iG 4 4] 17

1-0 2 0 iG2  +A2

The four eigenvalues of this system are
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r~ ±~-A~ 2~+G,2+p; +2H2+ _(~-4G'+2 +H4G G)2 -( 1(A)Cn

72 ± -A 1 - 2 +G +G 22+2 h1i 2  2(~ A G [c) +4~ (GI+ c2)2 -(A 1 &2 )2]

and the corresponding general solution is

(()" ( -2 c + ,2(Xy' -i'A)+S2(-yl +iA2)
aý(z) [_( [ &2(A-2 _G 2 + y12)+ G2s1 .+..
,;(z) - js[ 2(r - il,)+ GA(Y,- i&2)] +

i(z)- s(Y, + A"XrY + '2)+ i(G 2 -s)

((A2&- ,2 + ryX-'-2,y'-i)+ S2(y, + &2)'
[G.(, 2 -2 _ + Y.2)+G2s] +

C2  S[G2(-r,-LA,)+cG(-r, -,A2)]

s[(-,, + A',X-r 1 + &2)+ i(GG2 - S2)]

([40Y2 +,,)(Y 2 + ilk) +i(GG 2 -S2A)]

sC3,4G(-y, -'&I) +G 1(-'Y2 - &2)] +
,c 2 (A&1

2 _-G2 + y22) + 1 S2]

_A I +G,2 - r22)(r2 + iA2) + S2(Y2 + i&,)

S[(-iy2 + '&)(- r2 + i&2) + i(GG 2 - S2)]

s[G2(+y2 - iA,) + G,(+r 2 - ,&2 )] ) _1

C~ 4 G2f(A 12 _2 + r2 )+G1 S2]
+ G12 - y22 X_'y2 +"i 2)+ S2(-r 2 +•,

The constants cl through C4 are determined by the boundary conditions and are, in

general, complex. For the case where mode 1 is incident on the reflector, the constants are

determined by the following relation:
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a;(L) I 019

ai(L)| 0 ,'

where L is the length of the rippled section. Due to the complexity of the solution of equation 19,

constants cj through c4 are determined numerically. The power reflectivity of the corrugated
a.. (O)2 a. d the2reflcionintothestraymodeis

section in the mode of 'interest isandirelconntthsrymdesIdl;O Z!;(o)I

m. EXAMPLES

As an example of the application of the methods in this paper, we have calculated the

reflection and mode conversion for a IT I I mode Bragg reflector at 85 GHz and a TE61 mode

Bragg reflector at 100 GHz. The TEII mode is of interest for applications where the electron

beam is centered on the axis of the waveguide, as in some cyclotron auto-resonance masers

(CARMs) and free-electron lasers (FEAs).

In the TEl Imode design, the ripple depth is 0.1 ram. The dominant competing mode in the

reflector section is the TMjI1 mode, because it is the mode with the same azimuthal index with

the closest cutoff frequency to that of the TEI I mode. The corrugated section is 15 cm long in

order to achieve 93% reflectivity. Table I contains the parameters for the TEII mode reflector.

Figure 2 illustrates the spatial dependence of the 85 GHz fields in the reflector. For the TEI I

and TMII mode both the forward and backward wave powers are shown. Since the mode

conversion in this reflector is weak, the TMII mode powers have been multiplied by ten. The

TEll mode, for which the Bragg resonance is satisfied, has a wave amplitude that decreases

exponentially with distance in the reflector. The spatial dependance of the TMI I mode is

oscillatory. Figure 3 shows the frequency dependence of the reflection and transmission of the

corrugated section. The peak in the TM1I reflected power occurs where the Bragg resonance is

satisfied for the TEi i to TMI I reflection. In this design the presence of the TM mode has little

8



effect on the reflection coefficient. Even so, the conversion of TEI I to TM11 provides a mode-mix

of 90% TE mode and 10% TM mode in the transmitted signal.

Reflector design mode TElI
Upstream reflector length 4cm
Corrugation period 1.7 mm
Corrugation amplitude 0.1 mm
Center frequency 85 GHz
Power reflectivity

TE61 933%%
TM61 0.5%

Output mode
TE61 5.6%
TM61 0.6%

Table 1. Design parameters of an 85 GHz TEl 1 Bragg Reflector

The second example is a TE61 mode Bragg reflector for cyclotron autoresonance maser

(CARM) applications. Cyclotron masers often use araular electron beams, primarily because

annular electron beams can be formed using magnetron-injection guns (MIGs). Consequently,

resonators designed for operation in whispering-gallery modes are of interest for CARMs. Table

2 presents the parameters of a TE61 mode reflector for a CARM oscillator resonator. Figure 4

shows the frequency dependance of the reflection and mode conversion in the reflector. In order

to keep mode conversion to a tolerable level, the amplitude of the corrugations, to was kept to

0.12 mm. Because the coupling in the TE61 mode is strong, the reflector is comprised of only 24

periods. Consequently the width of the resonance is wide enough to overlap with the TE61 to

TM6 1 Bragg resonance. If the mode conversion is ignored when the reflectivity is calculated, the

calculated reflectivity is 93%. The resulting mode conversion causes approximately one half of

the output power is expected to be in the TM61 mode.

9



Figure 3 displays a Bragg reflector with little mode conversion, while Figure 4 depicts a

reflector where the mode conversion is important. Mode conversion is more prevalent in the

whispering-gallery case than in the fundamental-mode case for two reasons. First, the coupling

coefficients are strongest for the whispering-gallery modes. Second, the frequency separation

between the TE-TE Bragg resonance and the nearest TE-TM Bragg resonance is somewhat

smaller for higher-order modes. When the resonance regions overlap, as they do in figure 4,

mode conversion can be large.

Reflector design mode TE6 1
Reflector length 4cm
Corrugation period 1.7 mm
Corrugation amplitude 0.12 mm
Center frequency 100 GHz
Power reflectivity

TE61 89.6%
TMu 20%

Output mode
TE61 4.0%
TM6 1 4.4%

Table 2. Design parameters of a TE61 Bragg Reflector

10



IV. CONCLUSIONS

A set of general equations for the coupled modes of rippled-wall resonators has been derived.

These equations, which can be readily solved using matrix-algebra techniques, demonstrate that

unless they are designed carefully, Bragg reflectors and resonators can suffer from mode

conversion that will reduce the cavity Q-factor for the desired mode, and possibly prevent

oscillation in that mode.
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