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"Proof of Concept for the
Rewrite Rule Machine:
Interensemble Studies"

Patrick Lincoln, Jose Meseguer, Babak Taheri, and Timothy Winkler

SRI International, Menlo Park, CA 94025

1 Introduction

Under the direction of Dr. Jose Meseguer, the Iewrite Rule Machine (RRM) team
began this project on 15 August 1990, and completed the work on 14 August 1991. In
addition to the project participants listed as authors, Prof. Joseph Goguen of Oxford
University served as a consultant.

The main goal was to learn through simulation about the functionality and per-
formance on realistic applications of an RRM system consisting of a collection of
RRM ensemble chips (each such chip being a SIMD processor) connected on a net-
work, and to design mechanisms to support the simultaneous parallel computation of
applications across many such ensemble chips.

To achieve these goals we first built a high-level interensemble simulator and ran
a collection of benchmarks on it under varying assumptions about several architec-
tural parameters to obtain a first estimate of the communication requirements for
the RRM and to determine the feasibility of those requirements in view of existing
network technology. Using a second, very detailed register-transfer level simulator of
a single ensemble and the performance results of a collection of applications run on
it, together with modeling above the ensemble level, we also estimated interensem-
ble performance; in this way we were able to obtain more detailed and accurate
interensemble performance estimates. Mechanisms supporting parallel computations
across many ensembles were also studied and designed. -J

Section 2 of this report gives an introductory overview of the RRM. Section 3
describes the new RRM architecture on which the detailed ensemble simulator and
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the modeling of higher levels were based. Section 4 describes the interensemble corn-
putation mechanisms. Section 5 discusses simulation and performance estimation:

interensenble siimulat ions are discussed in Section 5.1, communication requirements
in Section 5.2, and ensemble simulations and performance modeling of higher RRM
levels based on them in Section 5.3. The code of the interensemble simulator and of
several benchmarks run on it are given in Appendix A. A description of the ensemble
simulator is given in Appendix B; and its code and that of benchmarks run on it are
given in Appendix C.

2 Overview of the RRM

Following an overview of the Rewrite Rule Machine (RRM) architecture and model
of computation with special emphasis on the new ensemble design, we discuss per-
formance estimates based on simulation. The architecture is a multilevel hierarchy,
which is SIMD at the lower (chip) levels, and MIMD at the higher levels. This en-
ables the RRM to combine the advantages of the SIMD and MIMD approaches. The
RRM model of computation is concurrent graph rewriting, which supports extremely
fine-grain parallejisni, dynamic resource allocation, and, simple semantics.

Since performance estimation for a machine like the RRM is difficult, we must
carefully justify our approach. We discuss the problems and how we address them
later in this document. Our approach to performance estimation may be summarized
as follows: we chose a diversity of problems to stress the design in different ways,
including communication, memory, and computation; we chose problems representa-
tive of different application areas; and we built and used different simulators to get a
variety of performance estimates.

2.1 Multigrain Concurrency and Applications

Many important real-life applications involve a number of diverse, relatively indepen-
dent processes, many of which are computationally homogeneous. For example, a
large simulation problem may involve many independent, loosely coupled processes.

Let us call a computation homogeneous, if at each moment it consists of many
instances of the same instruction being applied to many data items in parallel; some-
times this is called data parallelism. While many familiar numerical algorithms have
this form, many complex computational tasks are locally homogeneous but globally
inhomogeneous.

Because of its very fine-grain SIMD parallelism at the chip level combined with
its flexible coarser-grain MIMD parallelism at the network level that allows different
chips to work on very different subtasks of the same problem at once, the RRM can
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Figure 1: Concurrent Rewriting of Fibonacci Expressions

exploit a problem's parallelism at several levels. We call this property multigrain
concurrency; it makes the RRM very well suited for solving not only homogeneous
problems, but also complex, locally homogeneous but globally inhomogeneous prob-
lems in many areas, including discrete event simulation, decision support systems,
rapid prototyping, vision, computational geometry, automated deduction, finite ele-
ment methods, neural nets, and hardware simulation.

2.2 Combining SIMD and MIMD

At present, the two main approaches to massive parallelism are SIMD machines and
MIMD multicomputers. Examples of the state of the art in each categary are the Con-
nection Machine, CM-2 (Thinking Machines Inc. [14, 4]), and the MP1216 (MasPar
Computer Corporation [23]), for SIMD computers; and Mosaic (Chuck Seitz, Caltech
[22]), the J-machine (William Dally, MIT [5]), Paragon (Intel Corporation), and the
CM-5 (Thinking Machines, which simulates SIMD by MIMD broadcast), for MIMD
computers. These two approaches are quite different. Each has unique advantages
not shared by the other approach. The strength of SIMD machines is their exploita-
tion of fine-grain data parallelism, which makes them a good choice for homogeneous
problems; their weakness is their centralized control, executing the same code ev-
erywhere, which makes them perform poorly on large nonhomogeneous applications.
MIMD machines are much more flexible because they allow different code to be run
in different processors simultaneously; however, their communication-typically asyn-
chronous interprocessor message passing over a network-is not well suited to data
parallelism.

A key goal of the RRM is to combine the best of these two approaches in a
single architectural design. It shares with SIMD machines the capability for fine-
grain data parallelism, which is carried to an even finer level in the RRM ensemble;
however, because of its decentralized MIMD control, the RRM can perform well on
both homogeneous and nonhomogeneous problems, whereas SIMD machines can excel
only on homogeneous problems. Compared with MIMD machines, the RRM enjoys
the same flexibility and generality, based on distributed control and asynchronous
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message passing, but because the RRM is SIMD at the chip level, it can exploit fine-
grain data parallelism locally, even for highly nonhomogeneous applications, whereas,
at present, purely MIMD machines can get large degrees of parallelism only at the
interprocessor level.

2.3 Programmability

The RRM is programmable in a wide variety of declarative ultra-high-level languages
that permit, massive exploitation of implicit parallelism and ease the creating and
porting of parallel programs. We believe that declarative languages are good choices
for programming such applications as vision, real-time plant control, simulations,
and expert systems, because they do not require explicit commitment to specific
forms of synchronization or scheduling. These convictions are supported by extensive
simulations, and by cornpilation techniques [12, 1, 201 making functional (e.g., OBJ
[8]), object-oriented (e.g., Maude [17], FOOPS [11]), and relational (e.g., Eqlog [10])
programming languages easy to compile into RRM code.

However, it is a fact of life that some parts of large applications programs have
already been written, and it may not be practical to rewrite them in a declarative
language. Because its flexible model of computation also supports imperative features,
a compiler for the RRM from a conventional language, even a sequential one, could
be written relatively straightforwardly.

2.4 The Concurrent Rewriting Model of Computation

The RRM's model of computation is concurrent rewriting. In this model, data
are terms constructed from a given set of constant and function symbols, and a
program is a set of equations that are interpreted as left to right rewrite rules. The
lefthand side (abbreviated LHS) and righthand side (RHS) of a rewrite rule may have
variables as well as function symbols. A variable can be instantiated with any term of
the appropriate sort, and a set of instantiations for variables is called a substitution.

A rewriting computation starts with a given term as its data and a given set
of rewrite rules as its program. Applying a rewrite rule has two phases, called
matching and replacement. The matching phase attempts to find a substitution
that yields a subterm of the input term when applied to the rewrite rule's lefthand
side. Then, in the replacement phase, the matched subterm, called the redex, is
replaced by the righthand side of the rule, instantiated with the same substitution.
Rules are applied until no more matches can be found; then the resulting term is
called reduced and considered to be the final result.

In the concurrent rewriting model of computation, more than one rule can be
applied at once, and each rule can be applied to many subterms of the given term
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Figure 2: Hierarchical Structure of the RRM

at once. Let us explain this by example. Here is a simple program to compute the
Fibonacci numbers:

(1) fibo(0) = 0
(2) fibo(1) = 1
(3) fibo(N) = fibo(N-2) + fibo(N-1)

if N > 1

If you give fibo(3) as data, the top node will match rule (3); thus the whole term
will be replaced by

fibo(1) + fibo(2)
In the next step, the first fibo node will match rule (2), and the second fibo will
match rule (3) again, and the simultaneous application of these rules yields

1 + (fibo(0) + fibo(i))
in just one step of concurrent rewriting. Figure 1 illustrates these two concurrent
rewriting steps, using tree representation for expressions.

We say that a concurrent rewriting computation is SIMD, when just one rewrite
rule is applied concurrently at each moment; in the RRM, this style of concurrent
rewriting is realized by an ensemble chip, as explained later. If several rules are
concurrently being applied, each to possibly many instances, we have MIMD con-
current rewriting; this general case is the correct model for the RRM as a whole. See
[9] for general background on the concurrent rewriting model, 161 for definitions of
SIMD and MIMD rewriting (called parallel and concurrent rewriting in that paper),
and [18, 19, 17] for a definition of concurrent rewriting as deduction in rewriting logic
and a systematic treatment of concurrent object-oriented computation by means of
concurrent rewriting.

Two additional topics treated in [9] deserve mention. The first is sharing, which
permits a common substructure of two or more given structures to be shared between
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them, rather than requiring that it be duplicated. This leads to directed acyclic
graphs rather than just trees. The second topic is evaluation strategies, which are
annotations that impose restrictions on concurrent execution in order to improve the

performance of parallel computations. A strategy for a function f of n arguments
consists of a set {II ... ,ik} C {1,...,n} indicating the argument places that should

be already reduced before a rewrite rule match for f is attempted. For example,
if .then-elseIi is typically computed with strategy {1}, and integer addition with
"bottom-up" strategy {1,21.

3 The RRM Architecture

The RRM architecture is hierarchical, with each unit consisting of a collection of
cooperating units at the next lower level. The most basic processing element is the

cell. with four cells making up a tile. An ensemble chip contains hundreds of cells
(576 is our current estimate). A cluster is a collection of ensemble chips connected
on a board, and the machine as a whole is a network. Figure 2 provides a pictorial
representation of the RRM hierarchy.

A single ensemble yields very fast, extremely fine-grain SIMD rewriting, but RRM
execution is coarse-grain MIMD at the cluster and network levels, since each ensemble
independently executes its own rewrites on its own data, communicating with other
ensembles when necessary.

3.1 Cell, Tile, and Ensemble Architecture

The most basic computational element in the RRM is the cell [16, 2], which stores

one data item with pointers to other cells, and also provides basic computational and
communication capabilities; thus cells mix storage, computation, and communication.
A cell consists of:

o Several registers (mostly 16-bit), including:

- token, which encodes the operation or constant symbol of a data node,

- left and right, which point to the descendant nodes',

- a 32-bit marks register, which holds volatile information (similar to condi-
tion codes),

- flags, which holds less volatile information, such as type and reduction
status,

'Unary operations only use left, and n-ary operations for n > 2 are decomposed into binary
ones.
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- Twelve general-purpose registers, including ntoken, nleft, nright and
nflags.

"* An ALU to operate on and test the contents of registers.

"* Interfaces to communication channels and the controller.

We divide the silicon area of the ensemble chip into a 12 x 12 mesh of tiles,
each with four cells. Adjacent tiles are directly connected by short wires, so that
placing logically linked nodes in cells located in adjacent tiles permits very efficient
communication. Placing several cells in one tile increases the probability of logically
related data being in adjacent cells.

Our new ensemble design is simpler and has substantially better overall perfor-
mance than previous designs [7, 21. Its simpler instructions allow a faster clock (100
MHz seems a reasonable estimate) and provide much better support for communica-
tion between cells.

An ensemble has a single SIMD controller that broadcasts its instructions to all
cells. The controller can obtain very fast feedback (one clock cycle) about the state
of the cells (such as type of data and operation symbols in cells, remote references,
success or failure of an instruction, and termination), and can use such feedback
to branch to different SIMD code segments. Obeying SIMD instructions, cells can

communicate with adjacent cells (each cell has 16 adjacent cells in its 4 adjacent
tiles) to find local patterns for rewriting; hundreds of such patterns may be found and
transformed simultaneously. Other SIMD instructions allow communication among

nonadjacent cells using special row and column buses, relocation of data, and input-
output. The short buses, called ports, allowing fast communication of each cell with
the 16 cells in the north, south, east, and west (N, S, E, and W) neighboring tiles, as
well as the row and column buses used for communication of nonadjacent cells under

SIMD control, are shown in the figure below.

.'L N

W I-L
* E
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SIMD concurrent rewriting takes place bY broadcasting instructions that i mph.-
ment matching and then replacement of the patterns found. Alt hough for very regular
computations it is possible to avoid remote-i.e., not physically adjacent-references
within a single ensemble, in general the dynamic nature of the computation will
require remote references, and then matching will require relocation of some data.
This is accomplished with specialized instructions and chip-level hardware support.,
including cell and tile features, and buses for communication between distant cells.

We use a reference counting scheme for storage management, both within ensem-
bles and in the RRM as a whole. We have fully simulated the details of this within
the ensemble for the examples discussed later in this report.

3.2 Cluster and Network Architecture

The cluster architectural level corresponds to board-level structure in the actual iII-
plementation. At this level, ensemble chips can be arranged in a two-dimensional
(2D) mesh with fast connections to each of four neighbors, giving 8 connections per
ensemble (4 in and 4 out). With current technology, these could be 16-bit-wide con-
nections running at 50 MHz, giving 800 Mbps per connection and 6.4 Gbps total
bandwidth per chip. Additional interconnection hardware at the board level beyond
the fast, local connections is also desirable, as in the iWARP [3] and DataWave [21]
designs. The performance we assume is not that much beyond that provided by these
designs; the iWARP has 8 ports, each 8 bits wide at 40 MHz, giving 320 Mbps per
port and 2.56 Gbps total (100 to 150 ns latency), and the DataWave has 8 ports,
each 12 bits, at 60 MHz, giving 5.76 Gbps total. We are estimating that a cluster
will have about 100 ensembles.

The network level interconnection for the RRM has not been fixed. We have
been considering ,he wormhole routing networks of Seitz [22] and Dally [5]. Actual
realizations of these designs have achieved high communication rates: 205 Mbps for
Ametek 2010, and 200 Mbps for the Intel Paragon. For a 2D mesh, average case
communication time for 10,000 nodes is estimated at 1885 ns, or 188 clock cycles.
For a 3D mesh, the average case communication cost for 10,000 nodes is estimated
at 976 ns, or 98 clock cycles.

In general, interchip communication in the RRM is asynchronous message passing
that imposes no critical timing requirements on the network or switching technol-
ogy. Thus, the RRM can exploit the best communication technology available, and
take advantage of any future improvements. However, the RRM can exploit local-
ity and use fast local interensemble connections at the cluster level to get very high
performance for certain problems.

8



Liksemhlt A Ensemble B Enwitble A :nsenibtk B

Figure 3: Before and After Creation of Ghost (of b)

4 Interensemble Computation

Sometimes active cells in one ensemble need information from descendants in an-
other ensemble. We call references from one ensemble to another ensemble distant
references, to distinguish them from the remote references that occur from cell to
nonneighbor cell within a single ensemble. Although distant references can be re-
duced by relocating data to ensembles that reference it most often, it is impossible
to completely eliminate distant data references, even using static memory allocation,
because, in general, structures will not fit in a single ensemble. To efficiently support
interensemble communication, we have developed two related mechanisms.

For symbolic computation, where data is laid out dynamically and computation
is asynchronous or delay-insensitive, we use an incremental symbolic cache approach.
When a distant reference is made, and it is determined that the distant node should
not be relocated to the local ensemble, then a ghost node is instead allocated in a cell
of the local ensemble, and data from the target of the distant reference is copied into
the ghost node. However, unlike true relocation, the ghost node is prevented from
being the root of a rewrite, i.e., is temporarily frozen. Also, a ghost node maintains a
ccpy of the original distant pointer, and thus acts as a passive incremental "symbolic
cache" of data that actually resides on another ensemble. After some time, under
SIMD control, ghost nodes flush their data and use the stored distant pointer to
refresh their contents. This flush-refresh of ghost information may be performed at
any time. In addition, at some times the parent of a ghost may copy the distant
pointer from its descendant ghost, and then cause deletion of the ghost.

For example, in Figure 3, in the before (left) picture, ensemble A contains a cell
labeled a that has a distant pointer to a cell labeled b in ensemble B. In the course
of pattern matching, cell a requires information from its descendant b. In the after
(right) picture, a ghost node for b has been created in ensemble A, and the distant
pointer from a to b has been replaced with a local pointer from a to the new ghost of
b. Thus the ghost of node b has distant pointers to the children of b, and also has a
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Figure 4: Systolli Interensemble Computation

copy of the original distant pointer (shown as a dashed arrow to node b in ensemble
B). Note that this process cannot continue indefinitely, since ghosts are not allowed
to initiate the matching process themselves. Thus even if the structure underneath
b is large, only that portion of the structure needed to verify a match rooted at a is
ever copied to ensemble A.

The mechanism used in the systolic case is similar in spirit to the symbolic case de-
scribed above, but can be implemented somewhat more efficiently, due to the locality
of reference that (in part) characterizes systolic computations. Because this locality
does not change during a computation, we should place elements that communicate
frequently on the same ensemble. As in the symbolic case, structures may be too
large to fit on a single ensemble, and then we must place portions of the problem
on neighboring ensembles, while keeping local copies of the border data current on
both ensembles. Since systolic computation is synchronous and delay-sensitive, we
must ensure that the border data is updated correctly when it is read by the local
ensemble. In general the systolic computation must wait every cycle for the block
transfer of data between ensembles.

In Figure 4, ensembles A and B each contain an area of active cells delineated
by the dashed box. Outside this box are border cells that do not necessarily perform
computations, but instead store copies of the near-edge cells of neighboring ensembles.
Figure 4 shows a block copy of information from active cells in ensemble B to (passive)
edge cells in ensemble A. After information from each neighboring ensemble is copied
into ensemble A, the next step of computation can proceed.

In many cases we can overlap communication with computation. This potential
overlap, or rudimentary pipelining of I/O and computation, is another consequence of
our architectural choice of multiple cells per tile. The current design of the ensemble
with four cells per tile allows simultaneous systolic computation of four distinct two-
dimensional layers at a time. In fact, one or two layers could perform I/O at the same
time that the other layers perform their systolic computations. In this way, we may
hide some of the potential 1/0 penalty of interensemble computations.
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4.1 Load Balancing

Allocation iII an ensemble nornially ensures that allocated cells are neighbors of the
allocating cell. Ilowever, when an ensemble becomes too full, allocations are made
on other ensembles. This process can be described as pushing out computational
subtasks. The SIMD controller can gather (perhaps imprecise) information about
the utilization level of an ensemble in order to determine when the ensemble is full.
For certain computations, it may be advisahle to push out subtasks at the outset.
Large symbolic computations usually require building and manipulating very large
term structures, which may be distributed over several ensembles when they are
initialized, may be distributed explicitly by a specially tuned SIMD broadcast, or
may migrate implicitly to neighboring ensembles during computation.

Allocation is important in architectures like the RRM, due to the sensitivity of
computation to locality. Thus, initial placement may have a large impact on per-
formance, especially for relatively short computations with large amounts of data.
After initial allocation, the compiled SIIMD code may explicitly push subcomputa-
tions out of an ensemble, perhaps forming a ghost node in its place. Thus the local
copy does not perform rewrites itself, although it would still participate passively in
other rewrites.

Finally, automatic migration can be performed by pushing subtasks out of an en-
semble based on the depth of the subterm from a root node of the ensemble, forcing
subcomputations to be pushed out more quickly. However, spreading computation
more quickly, and thus more evenly among ensembles, trades off against interensem-
ble communication overhead. The techniques for interensemble computation already
described above substantially alleviate this overhead, but it still exists.

5 Simulation and Performance Estimation

Estimating the performance of computer systems is a difficult art at best, and is
even more difficult for radically new machines that have not yet been built. The
performance limitations of simulators mean that large problems are very difficult to
run. Testing different aspects of a design on the largest possible problems may force
using multiple simulators to abstract different details for various choices of perfor-
mance measure and problem. But then it may be difficult to justify the abstractions,
and to ensure that the problems fit the assumptions behind their justifications. For
the RRM, these difficulties seem particularly acute, because of the high performance
figures that we seek to justify.

Given the serious performance limitations posed by trying to simulate our architec-
ture on the workstations available at the time our research was carried out (limitations
still applying today to a good extent) the approach to performance estimation that
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we adopted was a hybrid one:

" ltzterensemble simulations, in order to be computationally feasible, were per-
formed at a high level of modeling using a high-level interensemble simulator
(see Section 5.1) not detailed enough to yield precise quantitative information,
but useful for obtaining preliminary estimates of communication requirements
(see Section 5.2) and also for gaining experience with interensemble computa-
tions, and for getting some rough performance estimates.

" Ensemble simulations for our new RRM ensemble design were performed using
a very detailed register-transfer level ensemble simulator (see Section 5.3). By
running a widely varied collection of applications on this simulator, very precise
estimates were obtained at the ensemble level. Using modeling-based on archi-
tectural assumptions consistent with the interensemble simulation experiments
and feasible with current technology-for the higher levels of the RRM archi-
tecture, we were then able to obtain more detailed interensemble performance
estimates for the RRM as a whole.

5.1 Interensemble Simulations

We developed an interensemble simulator for the RRM and used it to develop and
test ideas about interensemble communication mechanisms and strategies; the code
of this simulator as well as that of the benchmarks run on it is given in Appendix
A. For this simulator, the RRM as a whole was modeled as a 2D array of clusters
which, themselves, were 2D arrays of cells. Clusters were assumed to be intercon-
nected in such a way that one could view the machine as a whole as a 2D array of
ensembles. We introduced the notion of clusters to model a difference in technol-
ogy between board-level interconnection and interconnection at a larger scale. The
overall 2D topology was chosen because it was a relatively modest interconnection
structure that should be realizable in practice. The simulator was instrumented to
keep track of communication at different levels so that we could get some estimates
of the communication requirements of the RRM as a whole and between clusters.

The simulator was a v'.-.. high level simulator, manipulating term structures by
applying rewrite rules, but - term was considered to be located in a particular en-
semble and ensembles had some limitations on the total size of the terms they could
contain. The ensembles apply rewrite rules independently, and then apply strategies
to determine if terms should be pushed out, making more room, or pulled in, mak-
ing ghosts. The basic high-level actions are those of pushing out a subcomputation
(somewhat similar to a remote procedure call) and copying results or partial results
back in (which returns a final result or provides a cached version of a partial result).
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Two primary strategies were used for deciding when to push subtermis out of all
ensemble. One strategy was based on a threshold value for the depth of a term below
a root in the ensemble. If this depth threshold was chosen to be fairly shallow, then
the term would be forced to rapidly spread out through the RRM. This would have
the benefit that a given ensemble would be unlikely to contain only an upper part
of the tree that was waiting on subcomputations to complete and so be idle. This
strategy would be applied regardless of how full the ensemble was: the size limitation
would mainly come about when an ensemble refused to accept a subcomnputation
being pushed out from elsewhere. Such a strategy is analogous to the treatment of
allocation within an ensemble.

The other strategy used a fullness threshold to decide when to push out a sub-
computation: if an ensemble becomes very full, a major subcomputation is pushed
out. The strategy for selecting the subterm to be pushed out is to select either whole
rooted terms if they are small or to select a top-most large subterm of a. very large
rooted term. (In practice, it is necessary to have a second fullness threshold that
determines when the ensemble will accept pushed out subcomputations from other
ensembles.)

Some of the problems simulated were: numeric Fibonacci number calculation,
Peano arithmetic Fibonacci, bubble sort, merge sort, and matrix multiply. These
examples were chosen because the patterns of computation are quite different in
these examples and seem to represent an interesting variety. The amount of time
required to do the simulations was a limiting factor on the size of problems run for
these examples.

Different versions of the simulator were used in simulations. Changes were in-
troduced in order to make the simulations more realistic; for example, limits on the
amount of communication between ensembles in a cluster or between clusters were
imposed in some versions, to test the impact of such limits.

Some of the parameters that we experimented with were: time penalties for both
intra- and intercluster communication, size of ensemble for allocation, intra- and
intercluster communication limits, relocation size threshold (an ensemble must be
below a given limit of occupancy before it can relocate structures inward), push-out
threshold (and an associated goal for the size of the ensemble when subcomputations
have been pushed out), and a value controlling when subcomputations are pushed out
based on the depth of a term below a root in an ensemble. Most of these parameters
were not critical in that small variations in their values had only small effects on the
performance of the simulated RRM. The robustness of the performance relative to
these variations is a very positive result. For the simulations performed to generate
estimates (discussed later), values were chosen that were as realistic as possible and
on the conservative side (i.e., values that would tend to produce the least favorable
result).
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The high level of abstraction of the simulation process means that the results
cannot be expected to be precise predictions of the behavior of the R1M. On the
other hand. we expect that the large-scale behavior should be roughly similar. \Ve
also now believe that the development of multiprocessor interconnection technology is
proceeding so rapidly that we can expect to have networks that are very well adapted
to the RRM architecture.

5.2 Communication Requirements and Networks

The following subsections give an indication of the current state of the art in high-
performance, low-latency interconnection networks and then present the specific esti-
mates of the communication requirements derived from the interensemble simulations.

5.2.1 Prospects for High-Performance Interconnects

Demand for very high performance interconnects is being driven both by tightly cou-
pled shared memory systems and by more experimental distributed memory systems.
Theoretical results have been abundant in this area, from theoretical studies done for
phone systems to a large literature on hypercubes and their V;ariants. However, careful
comparisons and evaluations of tradeoffs and actual practical engineering experience
are just being developed for the kind of large-scale interconnects that interest us. Just
constructing an interconnect for 500 processors is a major project, probably too large
for the academic context and hard to justify either commercially or in government
funded research without a clear use (i.e., an overall system architecture using the
interconnect).

The analysis of design tradeoffs in the thesis of Dally has led to a whole new
generation of wormhole routing interconnects used in machines such as the Ametek
2010, the Fujitsu AP1000, and the Intel iWARP [3). The iWARP processor is intended
for very high performance, very fine grain systolic computation. A new processor with
a similar goal is the ITT DataWave [21]. There are also next generation designs such
as Seitz's CalTech MOSAIC project and Dally's J-machine project at MIT. These
designs achieve impressive communication rates: 205 Mbps for Ametek 2010, 200
Mbps for Fujitsu AP1000, 160 Mbps per port and 2.56 Gbps aggregate for the iWARP
(8 ports, each 8 bits, at 40 Mhz and with 100 to 150 ns latency), and 6 Gbps tor the
DataWave (8 ports, each 12 bits, at 60 Mhz). Both the iWARP and DataWave
examples are interesting because systolic computation is even more demanding of
the interconnect than the RRM design is expected to be. Progress can be expected
to continue along these lines, and good designs will be developed and tested for
systems with large numbers of processors (500 to 1000 or more). For example, the
MOSAIC system is planned to have 16000 processors and will be based on a 3D mesh
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(32 x 32 x 16).
Another feature of the iWARP and DataWave designs is that they are single-chip

processor designs. This allows the 8 x 8 prototype for iWARP to fit on a single board.
With current technology, this gives a significant advantage as wiring densities can be

much denser on a board than off. The other machines (Ametek 2010, Fujitsu API000)
were based on processing nodes with from one to four processors per board. The goal
for the RRM is to have the complete ensemble consist of an ensemble chip (each
with 576 processing elements (PE's)) perhaps with one or two more chips for extra

memory and routing, thus also allowing many processors per board. We believe that
low latency and local high performance may be much more important than global
bandwidth.

In the future, it is likely that there will be very important solutions based on

mixtures of technologies. For example, CMOS to GaAs with silicon lasers and a
optica.l interconnect could provide multi-gigahertz rates over a single optical fiber. To

reduce the number of wires and maintain bandwidth, it is necessary to increase the
frequency or rate of operation, which suggests a change in basic technology. However,
it is likely that CMOS, or related technologies will continue to provide the highest

density available, which suggests that a mixed approach might be desirable. The
important point here is that there is much room for improvement of interconnection
technology and that the RRM -because of its asynchronous model of computation-

can easily take advantage of such improvements.

5.2.2 Communication Requirements

We have used the high-level interensemble simulator on a suite of characteristic ex-
amples to estimate upper bounds on the communication demands of an ensemble.

Our upper bounds seem to be in the range of the newer network and interconnection
technologies such as the wormhole routing networks of Seitz [221 and Daily [5].

As mentioned, interchip communication in the RRM is asynchronous message
passing communication and imposes no critical timing requirements on the network
or switch technology. This makes the RRM capable of exploiting the best commu-

nications technology available, and of taking advantage of any future improvements
in such technology. The following are important observations on the communication
requirements of an ensemble:

"* Estimated ensemble I/O rate: 160 Mbps to 520 Mbps (estimate based on spe-
cially instrumented interensemble simulations).

"* Pins are not a bottleneck: realistic current estimate is 4 Gbps (100 pins at 40
Mhz).
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"* Communication capacity seems to be in the range of newer network and inter-
connection designs (Seitz [22]. Dally [5], iWARP[3]. DataWave[21]).

"* Average communication performance is enough; the RRM design doesn't make
critical timing requirements on the communication network.

5.3 Ensemble Simulations and Interensemble Performance
Modeling

The new ensemble design and estimates of its performance have been validated by
running a variety of benchmarks on a new ensemble simulator written in C, which
models the ensemble computation in great detail at the register transfer level. A de-
tailed description of this simulator is given in Appendix B. The code of the simlator
as well as that of several applications run on it are given in Appendix C.

Our simulations at the ensemble level have a great level of detail and give quite ac-
curate performance estimates, but our overall performance estimates for the RRM are
still preliminary, and more studies and experiments are required to increase their ac-
curacy. The present estimates are based on detailed ensemble simulations, high-level
interensemble simulations, estimates of communication requirements, and analysis
using simple approximate models. More definitive performance estimates will require
more detailed simulations and analytic studies for a wider collection of examples and
applications.

The performance models are based on simple predictions of the computation times
for specific strategies for performing the computations. We discuss RRM performance
predictions for a variety of examples chosen because their patterns of computation
are representative of different kinds of computations; they represent basic examples
of general symbolic computations (numeric Fibonacci and the TAK function), highly
regular symbolic computations (sorting), and discrete event simulations of a systolic
nature (fluid flow and a simple hardware simulator).

When describing RRM performance at the cluster or network levels, we specify
efficiency as a percentage of the ideal performance. The ideal performance corresponds
to a linear extrapolation of a single ensemble's performance, i.e., a linear speedup.
We will also give "idealized Sun-relative speedup," which simply is the product of the
number of ensembles, the Sun-relative speedup, and the efficiency.

We assume a 100-MHz clock and a 12 x 12 array of tiles requiring approximately
6 million transistors. These figures seem achievable since speeds and sizes of this kind
have already been demonstrated. For example, the 1991 Hot Chips conference [15]
presented two chips with 100-MHz clocks (one of them with 4.1 million transistors),
and another chip with 14 million transistors.
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There are many different performance measures for machines, including machine
instruction execution rates, and actual elapsed time. The most intrins.ic ensemble
l)erformance estimate is the number of clock cycles needed for a given computation.
By assuming a specific clock rate, this measure can be translated into seconds. How-

ever, some relative comparison of performance between the ensemble and existing
sequential processors is also desirable. We use the Sun-relative speedup for this pur-
pose. To obtain this comparative measure we write one program in ensemble SIMD
code or with rewrite rules, and another in efficient C. By comparing the actual per-
formance of the C program on a Sun workstation with the performance of the SIMD
code on the ensemble simulator, we obtain for each problem a speedup measure called
"Sun-relative speedup." In our case, we take a Sun SPARCstation IPC as the basis
for comparison. This could also be used to assign a "MIPS" rating to the ensemble
by multiplying this speedup by the published MIPS ratings of the specific Sun work-
station. which is roughly 15 MIPS for the SPARCstation IPC. In most cases, the aim
is to compare a good algorithm for a problem on the RRM with a good sequential
algorithm on a Sun. In some cases, the optimized sequential Sun version involves
significant variations from the algorithm used on the RRM. When we discuss each
benchmark below, at the ensemble level and levels above, we mention the specific
assumptions made.

5.3.1 Performance Estimates for TAK

The TAK benchmark is a subtle modification of the function Ikuo Takeuchi origi-
nated specifically to test Lisp systems. The modification accidentally introduced by
Richard Gabriel and John McCarthy makes the function more difficult to optimize,
but preserves its simple, recursion-intensive structure. We have implemented TAK
for the RRM and in C for purposes of comparison. The Lisp and C code are shown
below:

(defun tak (x y z)
(if (not (< y x))

Z
(tak (tak (1- x) y z)

(tak (1- y) z x)
(tak (I- z) x y))))
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tak(x,y,z) register int x,y,z;
{ int rl, r2, r3;

while (1) {
if (x<=y) return z;

rl = tak(x-1,yz);
r2 = tak(y-l,z,x);
r3 = tak(z-1,x,y);
x = rl; y = r2; z = r3; }}

Because our most detailed simulations are limited to a single ensemble, we have
used the arguments 12,8,4 instead of the more traditional 18, 12,6. The RRM code
completes this benchmark in 22,428 cycles, while the C version finishes in .0015
second on a SPARCstation IPC. This leads to a Sun-relative speedup of 6.7 (=
.0015/.00022428). We currently don't have cluster or RRM estimates for this ex-
ample.

5.3.2 Performance Estimates for Numeric Fibonacci

A strategy for computing numeric Fibonacci-which yields a simple approximate
model for estimating performance-is to do the computation directly if it fits in one
ensemble, and otherwise apply the last of the following rewrite rules for fibo

fibo(0) = 0
fibo(i) = 1
fibo(N) = fibo(N-1) + fibo(N-2) if N>i

once, and then push out the subcomputation of fibo (N-2), to proceed in parallel
with that of fibo (N-1), which either may be done locally or may push out further
subcomputations. This strategy always keeps a significant subcomputation for the
current ensemble. Detailed ensemble simulations allow quite accurate estimates of
time required for n up to 10 (it is linear in n). By comparing with the time required
to run the same algorithm in C on a Sun workstation, we obtain a Sun-relative
speedup of 6.7. The cost for larger n is the time to set up the subcomputations, plus
the maximum of the cost to finish the local subcomputation and the cost to finish
the pushed out subcomputation, plus the cost to finish the computation. Assuming
that network I/O can be overlapped with SIMD broadcast, but that transferring a
simple expression like fibo(10) out of an ensemble or transferring a result such as
2584 takes just a small number of SIMD instructions, the complete time to compute
the numeric Fibonacci can be modeled by a recursive function allowing different
assumptions about the network communication delays. For very fast networks, the
network communication times and the computation times (for setup and finishing) are
roughly comparable, so that network I/O cannot dominate the overall computation
time (usually it will be overlapped with computation).
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The cost of numeric Fibonacci within an ensemble is approximated by

fibens(n) = 250 x n - 50

for n > 3. The approximate cost to compute the n-th Fibonacci, for n > 10, is then

fibgen(n) = simdcost+
max(fibgen(n - 1),

fibgen(n - 2) + pushcost)

where simdcost is the SIMD execution cost to set up the subcomputations, push
out, pull in, and finish the Fibonacci computation (approximately 300 clock cycles),
pushcost is the cost to do two 1/0 operations (estimated to be less than 200 clock
cycles for 10,000 ensembles, and fibgen(n) = fibens(n) for n < 10. With these
estimates the simdcost dominates, I/O is overlapped, and efficiency is very good. For
larger n, fibgen(n) = 300 x n - 455. For a 10,000-ensemble RRM, the predicted
worst-case efficiency for this example is 88%, which seems quite encouraging. The
idealized Sun-relative speedup is 59,000.

5.3.3 Performance Estimates for Sorting

A simple way to sort a sequence of numbers on an RRM ensemble is to use a 2D
exchange sort that uses both "bubblesort" exchanges of consecutive elements of the
sequence and "shortcut" exchanges between nonconsecutive elements. By appropri-
ate placement of the sequence within an ensemble, both types of exchanges can be
accomplished by simple, local transformations. For a 23 x 23 array of values we can
form a linear sequence of numbers in the array by going down the first tile column,
up the second column, and so forth. We can also establish horizontal shortcut links
between list elements that are adjacent elements of the same row. By folding the
2D array twice, it is possible to embed the array in an ensemble and fit a list with
23 x 23 (= 529) elements inside an ensemble in such a way that all links are direct
neighbor-to-neighbor connections. The 2D exchange sort algorithm alternates bubble
sort exchanges between consecutive elements in the sequence with shortcut exchanges
between nonconsecutive, but horizontally adjacent elements. For a list of length n
placed in this manner, the time to do a 2D sort within a single ensemble is propor-
tional to V/'n, and requires approximately 221 x r- 468 clock cycles. The average
number of instructions for either the bubblesort or the shortcut exchange phases is
42, giving a main loop size of 84. Comparing with the time taken by a simple quick-
sort algorithm written in C and running on a Sun workstation yields a Sun-relative
speedup of 127. Uniformly distributed random data was used for the tests.

At the interensemble level, one can use the same pattern, i.e., ensembles in a mesh
and interchanges in the long chain or rows, but interchanges will always exchange
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the maximal value from one ensemble with the minimal value from the next. For
this problem. the computation within an ensemble has a structure different from
the structure at the cluster level and higher. The simple, fixed connectivity is one
advantage of this approach; it should be possible to allocate ensembles so that all I/O
connections are local, best-case links. The data would be broken into chunks, which
start interchanging data internally and across ensemble boundaries, iII one of two
directions, at their endpoints. When data items are exchanged across a boundary.
an item is putIshedl out and another is pulled in, preserving the size of the chunk in
the ensemble. It, seems better not to have a lock-step process, in which data items
are always exchanged, but instead to exchange data only when there is a need, e.g.,
when a new value has been interchanged into an end position.

In order to get estimates at the cluster level, a special simulator was written
in C that simulates the two-level 2D sorting algorithm and calculates clock-count
estimates. Note that, because of reduction of the bandwidth through a cross section
of the machine, one expects that sorting at the cluster level should be at least 23
times slower than within an ensemble. Since there are 100 ensembles at the cluster
level, one might still see some further speedup; however, the algorithms are more
complex and less efficient. If very fast neighbor-to-neighbor connections can be used
at the cluster level (and this should also be possible at the level of the RRM as a
whole), then exchanging data with a neighbor should take only 5 to 10 clock cycles.
The phases consist of local plus global linear exchanges, with an additional smallest
to largest shortcut, and local plus global row exchanges. The additional cost, due
primarily to communication, of global operations is estimated at 20 to 30 instructions.
The estimated time to sort in a cluster was compared against the time to quicksort on
a Sun giving an estimated Sun-relative speedup, for a 100-ensemble cluster, of 114.

For a wormhole routing network, when data items are exchanged between two
ensembles, a round-trip message is required with estimated time, assuming a single
hop is required, of perhaps 20 clock cycles. The estimated idealized Sun-relative
speedup for the RRM would be very close to the cluster case. It is very possible that
the network latency could be overlapped with other computation, and the increase in
the total computation time compared with the cluster case should not be more than
20%.

5.3.4 Performance Estimates for Fluid Flow

Fluid dynamics can be studied using a 2D cellular automaton model [13]. This
computational model is nearly ideal for the RRM, due to its very regular structure
heavily using instructions that efficiently interchange bits among neighboring cells.
The same communication pattern could be used for many other 2D processing and
cellular automata problems. In fact, we have implemented Conway's game of Life
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using the., same techniques, and have achieved similar performance. Many other
problems, such as certain vision algorithms, stress analysis and particle diffusion in
solids, fit this pattern of computation.

We have implemented a version of the cellular automata approach based on a
regular 2D hexagonal lattice. Each cell is connected to its six neighbors by links that
may hold at most one particle traveling in each direction in each time step. We use
unit time steps, unit particle masses, and unit. velocity. Each particle is completely
described by the link on which it currently resides. and all particles have constant
kinetic energy and zero potential energy. At each time step. particles move along
their links, possibly interact with other particles at the center of a hexagonal cell,
and move to some other link.

We have implemented this model using one RRM cell to simulate each hexagonal
cell of the model. Each RRM cell contains six bits that encode the presence or absence
of outgoing particles on the links to its six neighbors. Communication is handled by
transferring the six bits from each cell to the appropriate neighbor. Computation is
handled by performing certain bitwise operations (such as and, or, equal) and a form
of table lookup.

We used 1000 iterations of 529 hexagonal cells as the benchmark. Assuming that
the ensemble chips will have a clock speed of 100 MHz, the whole benchmark should
run in 2.2 to 2.6 ms. There are multiple ways to implement this problem in C for
comparison. The fastest implementation we developed (using register declarations for
variables, changing the way table lookup was handled, moving conditional expressions
out of the main loop) ran in 1.4 seconds. This results in a Sun-relative speedup of
between 400 and 670 for a single ensemble.

The instruction count for the main loop for this problem is about 220 instructions.
We estimate that the communication overhead within a cluster, using neighbor-to-
neighbor connections, could be as low as 48 clock cycles (6 bits x 4 cells per tile x 2).
The transfers of marks between ensembles can take place in 12-bit parallel transfers
(one cell for each tile on the edge of the ensemble). This gives 268 clock cycles per
main loop or 2680 ns at 100 MHz. This gives a cluster-level performance that is 82%
of ideal (= 220/268).

5.3.5 Performance Estimates for a Hardware Simulator

It is possible to do a simple kind of hardware simulation on the RRM extremely
fast. The code to simulate two-input NAND and OR gates, where the output state
of a gate is represented by the status of a specific mark, has only 24 instructions.
This simple simulator cannot simulate arbitrary circuits, since there can be layout
problems; gates must be close to the gates that produce their input signals. For a
specific very simple circuit, comparison of the simulations with a highly optimized
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( program running oi a Sun workstation gives a Sun-relative speedup estimate for
an ensemble of 533, and for an optimized C program that is a more general circuit
simulator an estimated speedup of 1,500.

The cluster-level performance estimate is close to a linear scaleup of this. Only
a single mark per edge cell needs to be transferred across the ensemble boundaries.
It seems reasonable to assume that this could be done in 8 clock cycles. The clus-
ter performance would then be 75X, of i*deal (= 24/32). The idealized Sun-relative
speedup for i cluster would be 40.000 to 1 0,000.

5.3.6 Summary of Performance Estimates

For a 10,000-ensemble RRM, our present estimates are as follows:

9 Raw peak performance: 576 trillion operations per second.

* For general symbolic applications (the numeric Fibonacci problem is taken as
a typical example and the TAK function is a secondary example):

- Ensemble Sun-relative speedup is roughly 6.7.

- RRM performance with wormhole network at 88% efficiency gives an ide-
alized Sun-relative speedup of 59,000.

9 For highly regular symbolic applications (the sorting problem is taken as a
typical example):

- Ensemble performance is a Sun-relative speedup of 127.

- Cluster-level performance is a Sun-relative speedup of 114.

- RRM performance is estimated at over 80% efficiency (relative to the clus-
ter performance) yielding a Sun-relative speedup of over 91.

9 For systolic applications (a 2D fluid flow problem is taken as a typical example;
a secondary example is a hardware simulator):

- Ensemble performance is a Sun-relative speedup of 400 to 670.

- Cluster-level performance, which should be attainable in practice, is 82%
efficiency. This yields idealized Sun-relative speedups of 33,000 to 55,000.
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A Code of the Interensemble Simulator and of
Several Benchmarks Run on it



The abstract interensemble simulator presented below was instrumental
in our initial explorations of the network requirements for an RRM cluster.
The abstract interensemble simulator essentially consists of an an annotated
interpreter of rewrite-rules. This interpreter keeps track of which ensemble
a term is supposed to reside in. Given a strategy for spawning tasks, the
simulator then 'moves' terms from one ensemble to another (or causes newly
allocated cells to be created in some other ensemble) by annotating the terms
with the name (location) of a new ensemble.

Many experiments were run using this abstract simulator. For example,
very preliminary experiments were conducted considering simple alternative
cluster network configurations (2-D mesh, complete interconnect, and several
bus-like connection layouts). Experiments were conducted with alternate
strategies for spawning new tasks (allocating new cells in other ensembles
only once one ensemble is nearly full, pushing out whole subterms when an
ensemble becomes full, and static spawning routines). Network bandwidth
requirements were estimated based on the number of pointers detected be-
tween terms residing on various simulated ensembles. Some initial experi-
ments were also carried out regarding alternate formulations of the rewrite
rules.
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The New RISC Ensemble Simulator

Tim Winkler

Abstract: The purpose of these notes is to document the new RISC ensemble simulator.

1 Introduction

The outline of the rest of this report is this:

"* Overview of simulator.

"* Basic structures.

"* Basic simulation process: a simulation step.

"* Instruction set summary.

"* Annotated code for operations.

This discussion only includes the basic simulator.

2 Overview

The ensemble simulator is written in C and as a whole consists of

" risc. h - which contains the basic parameters, macro definitions, type definitions, and global variable
declarations.

" risc. c - This contains the main routine, siadlexecute called from the main routine (which executes
the simd code) and is defined in the user provided SIMD code, and the basic SIMD execution routines
(sird, sindl, ...). Supporting the SIMD execution are various routines in basic. c which are not
discussed here. These are all part of the software of the ensemble and do not affect the design of
the ensemble. Normally the user of the simulator will put data graph initialization and the routine
simd-execute in the file simd.c and link this with the rest of the simulator.

" basic. h, basic. c less basic routines (in fact, these can be viewed as providing SIMD routines) that
are not discussed here.

3 Basic Structures

The basic structures used in the simulation are variables that represent registers and wires/buses. The value
of a variable representing a bus indicates the currently asserted state of the bus. Normally the value asserted



should not persist beyond one whole clock cycle, and should only change once during a clock phase (roughly
speaking).

Here are some basic constants. From risc .h:

/* ensemble configuration */

*define COLNUM 12 - Number of columns of tiles.
#define ROVIUM 12 - Number of rows of tiles.
/* Are row and col numbers powers of two corresponding to ADDRSHIFTs? */
*define POW2 0 - See comment above.
#define TILENUN (COLNUUM ROVIUM) - Total number of tiles.
#define CELLSPERTILE 4 - Number of cells per tile.
#define CELLIUN (TILENUM * CELLSPEJLTILE) - Total number of cells.
#define PORTNUM (2*TILEIUM + COLNUM + ROViUN) - Number of ports.

#define PORTCUT 4 - Number of ports at cell.

Here are the central type defintions. Note: the ids are not used in the simulation process and were
included to make structures self-identifying.

/* type definitions */

/* only used to get at id (really) 4/

typedef struct genericstruct { - Any structure below looks like this.
int genid;
int genval; /* only because is a common case ./

} genericthing;

typedef struct portstruct { - Represents a port bus.
int portid;
int portaddr;
int portval;
int portloc;

} portbus;

typedef struct colstruct { - Represents a column bus.
int colid;
int colval;
int colowner; /* need not exist in actual hardware */

} colbus;
#define FAILFLAG (1<<30)

typedef struct rowstruct { - Represents a row bus.
int rowid;
int rowval;
int rowowner; /* need not exist in actual hardware */

} rowbus;

typedef struct cellstruct { - Represents a cell.
int self; /* own address */
int reg[REGCIT]; - Includes ACC.
int marks;
portbus *ports [PORTCNT];

2



colbus *col;
rowbus erow;
int portno; - Value 0.. 7; unique for each cell on port bus.
int retc; - Reference count.
int aux; - Used in SELCELL MAKEREQ FETCHDITA, etc.
int state; - The state flags (see below).

} cellstate;
/* some defines related to the above */
#def ine CELLTOK reg [TOKJ
#def ine CELLFLAGS reg [FLAGS]
#def ine CELLLEFT reg(LEFT]
*define CEITlRIGHT reg [RIGHT]
#define CELLITOK reg[ITOKJ

*define CELLIFLAGS reg[NFLAGS]
#def ine CELL•IEFT tog [NLEFT)
#define CELL•IIGHT reg[TRIGHT]
#define CELLACC reg[ACCJ

#define PORTE ports [EAST]
#define PORTN ports [NORTH]
#define PORTV ports [WEST]
#define PORTS ports[SOUTH]

#define STATE-VALID 1
/* VALID means allocated and allowed to become active */

#define STATE-ACTIVE (1<<I)
#define STATE-TRYING (1<<2)
#define STATE_.RE.OTELEFT (1<<5)
#define STATEREMOTEtRIGHT (1<<6)
#define STATE-COMMIT (1<<7)

typedef struct simndstruct { - SIMD broadcast bus.
int id;
int op; - Current operation/opcode.
int argl,arg2,arg3,arg4; - arguments to operation.
int ph; - Clock phase, 1 or 2.

} simdbus;

There are 32 marks in a cell, referred to by index (0-31). There may be some additional state bits:
WORKING, ZERO, MINUS, CARRY, OVERFLOW, and FAILURE. The aux register might be the ACC.

Here are the actual declarations of the key shared variables.

extern int clock; /* Note: not phase number */

extern int globalfeedback;

extern simdbus simdinstr;

extern portbus port [PORTNUM);

extern colbus col[COLNUN];
extern rowbus row[ROWNUN);

extern cellstate cell[CELLUM]);

3



int randonstate;

4 The Simulation Process

The user code calls the uiad, sindl, ... routines, and also uses the resetglob and testglob routines; these
routines give control the the ensemble. The user SIMD routines may also use whatever controller state is
desired (e.g. flags).

Execution of

simd2(TSTMARKPTR,1,LEFT); SHOW;

causes the opcode (TSTMARKPTR) and arguments (1,LEFT) to be put into the sindinstr structure that
represents the SIMD control broadcast bus, and then the execution of sindstep. There are many extranenous
details to simdastp (e.g., recording frequency of execution of instructions), but the key process is to

"* Increment the clock.

"* Reset port, row, and col buses (if needed).

"* Set the instruction phase to 1 (simdinstr.ph = 1).

"* Perform sindaction for every cell.

"* In the case of CELLARBPTR and ARBROW, perform some inter-clock phase- actions that cannot easily be
associated with cell actions.

"* Set the instruction phase to 1 (simdinstr.ph = 2).

"• Perform simdaction for every cell.

The sindaction routine takes a pointer to cell and uses a large switch statement to execute the code
associated with the SIMD op.

5 Basic definitions

The following are very basic bit operations:

/* general defines */
- The are bit testing operations based on bit indices.

#define TSTBITN(x,n) ((x)(1<<(n)))
#define ADDBITI(xn) ((x) (1<<(n)))
#define REMBITNUx,n) ((x) "(1<<(n)))
#define ASIBITN(x,n,y) ((y)?ADDBITI(x,n) :REMBITI(x,n))
#define MSKBITN(n) (1<<(n))
#define SETBITN(x,n) ((x) (1<<(n)))
#define CLRBITN(x,n) ((x) = -(1<<n)))

#define LOWERBITS(n) ((1<<(n))-1)

- The are bit testing operations based on bit masks.
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#define TSTBIT(x,n) ((x)&(n))
*define ADDBIT(xn) ((x)I(n))
#define REMBIT(x,n) ((x)&(-(n)))
*define ASUBIT(x.n,y) ((y)?ADDBIT(x,n):RUW IT(x,n))
#define SETBIT(x,n) ((x) I= (n))
#define CLRBIT(x,n) ((x) = (n))
/* lote: duplication of n in following: */
#define TSTALLBIT(x,n) ((n) == ((x)&(n)))
#define LOWESTBIT(n) ((n)&-(n))
*define ATMOSTOUEBIT(n) ((n)&-Cn))

#define UNDEF (Oxbadbadee)

The following are the basic definitions related to addresses, address mappings, port selection, and
PORTNO calculations.

/* basic defines */

/* Addresses: top left is 0,0 (is X,Y); I is row and Y is col */

/* Y=O 1 2 3 4 5 6 7 */
/* X=O 0 1 2 3 4 5 6 7 T /

1 8 9 10 11 12 13 1416 *1
2 16 17 18 .... */

#define ADDRSHIFT 4 - Bits to represent column or row.

#define ADDRTOPSHIFT 8
/* should be 2*ADDRSHIFT */

/* Changed cell nums by +1 in addrs */
- Compute address from row, cot, cell num.

#define ADDR(x,y,n) ((((n)+1) << ADDRTOPSHIFT) + ((x)<<ADDRSHIFT)+(y))
- Tile i. just row, col, no cell number.

#define TILE(x) ((x) & (1<<ADDRTOPSHIFT)-1))
- Decode addresses.

#define ROW(x) (((x)>>ADDRSHIFT) & ((1<<ADDRSHIFT)-I))
#define COL(x) ((x) & ((I<<ADDRSHIFT)-I))
#define NUMWx) C((x) >> ADDRTOPSHIFT)-I)
#define CELLNUMINCR (C<<ADDRTOPSHIFT)
#define TILEADDR(x,y) (((x)<<ADDRSHIFT)+(y))

- Translating addresses to indices.
#if POW2

#define CELLIND(x,y,n) (((n) << IDDRTOPSHIFT) + ((x)<<ADDRSHIFT)+(y))
/* convert address to cellO index */
#define ADDRTOIND(x) ((x)-CELLIUMIICR)
#define TILEIND(x,y) (((x)<<ADDRSHIFT)+(y))

#else

#define CELLIND(x,y,n) (((n)*ROWIUM + (x))*COLIUM + (y))
/* convert address to cellO index */
#define ADDRTOIND(x) ((NUM(x)*ROWUNM + ROW(x))*COLIUM + COL(x))
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#dofine TILEIND(x~y) (((x)*COLNUU)e(y))

#eudif

*define 101111CR (1«<ADDRSBIFT)
*define COLINCR 1

*define ADDRUPWx (Cx-ROWINCR) - Adjacent tiles.
*define ADDRDWN~x) ((x)+ROWISCR)
*define ADDRLFT~x) ((x-COLINCR)
*def ine ADDRRGT~x) ((x)+COLINCR)

#define CELLAT~a) call EADDRTOIID(a)J - Address to cell.
#define CELLREF(x,y,n) cell ECELLIJID(x,y~n)] r~c,n to cell.

- Indices for ports.
#define PORTNIID(x~y) (2*TILEIND~z,y))
*define PORTWIIrD(x,y) (2*TILEIID(x,y)+1)
*def ine ISPORTW(x) ((x)kl)

/* only when not on right or bottom edge *
*define PORTEIRD(z) (2*TILEtNM+(x))

/*along right side */
#define PORTSIND(y) (2*TILENUN+ROWNUN+(y))

1*along bottom */

/* access to all ports by allowing "the next index over"
#define PORTNIINDX(x,y) ((x)==ROWNUM ? PORTSIID~y) :PORTKIID(x,y))
#define*PORTWINDX(x,y) ((y)=COLNUM ? PORTEINDWx PORTWIUD(x,y))

/* not really correct: s
#i~f P0112
#def ine VALIDADDR(x) (CELLNUUINCR<=(x) kk

(x)<(CELLNUE+CELLNUKINCR))
#else
#define VALIDADDR~x) (ADDR(0,O,0)<=(x) kk

(x)<ADDR(ROWNUN-1 ,COLNUN-1,CELLSPERTILE-1) *
CCOL~x)<COLNUN) kk (ROW(x)<ROWIUK))

#endif

#def ins VALIDDIR~x) (0<=(x) A& (x)<= 3)

/*a pair of tileaddrs */
/* Try to treat addr as local when same tile? *
#define ISLOCAL(X,Y) (C(x)<=(y))? ((COLIICRC=(y)-(x)) Ut COL~y)!=0)\

11 ROWIICR==(Cy)-(x)) :\
(CCOLIICR==((x)-Cy)) kk COL(x)!=O) 11 ROWINCR==((x)-CyM))

-Compute direction of y from r (or undef).
#def ine WHICHDIR(x,y) \

((COLINCR==((y)-(x)))?((C0L~y)==O)? UNDEF :EAST):\
(ROWIICR==(Cy)-Cx)))?SOUTH: \
C-COLI1CR==C(y)-Cx)))?((COL(x)=O)? UNDEF :WEST):
C-ROWINCRC=(y)-Cx)))?1ORTH: UNDEF)
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/* addr -> portno */
*define PORTIO(a) ((l&((a)+((a)>>ADDRSHIFT)))?IUN(a)+4: IUK(a))
8define PORTNOSHIFT 8

84sefine PORTIOCIT 8
8define PORTNOCASE(a) ((a)<CELLSPERTILE)
#define PORTNOSELBIG(a,b) (((a)<CELLSPERTILE) ? ((b)>>PORTIOSHIFT)

((b)&LOVERBITS(PORTIOSHIFT)))
*define PORTIOSEL(a,b) ((a) ? ((b)>>CELLSPERTILE)

((b)&LOWERBITS (CELLSPERTILE)))
#define PORTNOREPLY(ab) (((a)<CELLSPERTILE) ? ((b)<<CEL-SPERTILE) (b))

/* ROW and COL work for PORTADDRs too */
8define PORTADDR(x,y,d) (((d) << ADDRTOPSHIFT) + ((x)<<ADDRSHIFT)+(y))
#define PORTDIR(x) (x) >> ADDRTOPSHIFT)

/* number of registers in one set */
sdefine REGIUK 4

These are some simple defines used to make the SIMD code a bit more readable.

/* registers */
#define TOK 0
84ef ine FLAGS 1

sdefine LEFT 2
8define RIGHT 3
#define ETOK 4
#define NFLAGS 5
#define NLEFT 6
#define IRIGHT 7
#define ACC 8
8define REGCNT 9

/* directions */
sdefine EAST 0

#define NORTH I
*define WEST 2
8define SOUTH 3

In fact, it is possible to use 16 registers by changing REGCNT to 16. One may also want to adjust REGEUM.

6 Instruction Set Summary

Specifiers for arguments to SIMD instructions:

"* val: 16 (actually 32 bit) value

"* mark: 0-31 bit position

"* reg, ptr, source-ptr, target-ptr, sreg, treg, source, target: 0-8 register selector
May be 0-15 instead.

"• dir: O=EAST, 1=NORTH, 2=WEST, 3=SOUTH

"* portno: 0-7 select active element on port
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Basic instructions

lOP - Do nothing.

INIT - Activate all allocated.
ERASE - Clear marks.

CONST val - val to ACC.

CLEAR reg - 0 to reg.

EQ reg reg - Various tests.
IEQ reg reg

GT reg reg
LE reg reg

LT reg reg
GE reg reg
TSTZERO reg

TSTIZERO reg

ROVE treg sreg - From source to target.
ADD treg sreg
SUB treg sreg
LOGIOT reg
LOGAID treg sreg
LOGIOR treg sreg
LOGXOR treg sreg

(For these next, probably want to use a state bit for bits shifted out)
ROTATEL treg sreg - 16-bit rotate left.
ROTATER treg sreg - 16-bit rotate right
SHIFTL treg sreg - Shift left..
SHIFTR treg sreg - Shift right.
SHIFTRA treg sreg - Shift right arithmetic (preserve sign).

SETRANDON treg - Put in 16 (32) bit psuedo-random value.

TSTMARK mark - Local mark operations.
TSTNOTMARK mark
SETNARK mark
CLRARK mark

TSTMARKPTR mark source-ptr - Adjacent tile mark operations.
TSTIOTMARKPTR mark source-ptr
SETMARKPTR mark target-ptr
CLRMARKPTR mark target-ptr

ICR val - Increment reference count of active cell.
val can be +1,-1

INCRPTR1 val target-ptr - RISC incrptr part I (cells 0,1).
INCRPTR2 val target-ptr - RISC incrptr part 2 (cells 2,3).

SETTRYIIG - Set state trying flag.
Performs global feedback on any active.

IIITTRYIIG - Equiv. to: lilT, test TRYING flag.
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Performs global feedback on any active.
CLRTRYIIG - Clear state trying flag.

ARBPORTPTR rag - Arbitrate for port based on pointer,
clear TRYING if succeed (deactivate if non-local).

ARBPORT dir - Arbitrated on given port clear TRYIIG if succeed.

MAKEREQ ptr - RISC fetch part 1; uses aux.
May want a version, KAKEREQDIR dir, that goes in a certain direction
(not defined yet).

FETCHDATA treg source-ptr areg - RISC fetch part 2.

STORE target-ptr treg ureg - RISC store (assumes arbitration).
[SHOULD BE SPLIT INTO MAKEREQ and STOREDATA.]

STOREPE portuo target-ptr treg xreg - Portno activation, no arb. needed.
FETCHPI portno treg source-ptr areg - Portno activation, no arb. needed.

CELLARBPTR target-ptr - After ARBPORTPTR, do cell arbitration (not used).

ALLOCREQ - RISC alloc part 1; uses aux.
AVAILI rag - RISC alloc part 2 (cells 0,1).
AVAIL2 rag - RISC alloc part 3 (cells 2,3).
ALLOCPTR target-ptr - RISC alloc part 4; allocate pointed-at cell.

SENDGLOBAL - Initiate global feedback.
resetglobo - CONTROLLER CODE: reset global feedback indicator.
testgloba() - CONTROLLER CODE: test global feedback indicator.

RLOW/ COL operations

ARBTILE - ROW/COL part 1; equiv. to ARBPORT NORTH, but doesn't affect TRYING.
A.BCOL - ROW/COL part 2.
SELROV target - ROW/COL part S.
ARBROW target - ROW/COL part 4.
SELCELL ptr - ROW/COL part 5.

FETCHGLBL target source-ptr rag - Global actiions.
STOREGLBL target-ptr rag source
TSTMARKGLBL source-ptr mark
TSTNOTMARKGLBL mark source-ptr
SETMARKGLBL mark target-ptr
CLRMAKRKGLBL mark target-ptr
INCRGLBL val target-ptr

Other instructions

SWAP - Switch TOK, ITOK, etc.
COMMIT - SWAP; set COMMIT flag.
COMMITMARK mark - If mark, then SWAP; always set COMMIT flag.
SETCOMMIT - Set COMMIT flag.

TSTSTATE flags - Operations on state flags (use masks not bit positions).
TSTNOTSTATE flags



SETSTATE flags
CLRSTATE flags

TSTLOCAL ptr - Test if local pointer.
TSTRENOTE ptr - Test if remote pointer.
TSTADDR ptr - Test if appears to be an address.
TSTIOTADDR ptr - Test if appears not to be an address.

TSTINUSE - Test is reference count is positive (4=l).
TSTUIUSED - Test if reference count is not positve (i=0).
TSTUNSHARED - Test if reference count is 1.

RELOCREQ ptr - If local, succeed, otherwise start relocation.
(Set REMOTE- flags.)

DELETE - Clear registers, marks, and state.

INITALL - Init all including unallocated.
TSTBLACK - Checkerboard activation.
TSTRED - Checkerboard activation.
TSTCLASS class -- One of 5 cases activation, class: 0-4.
TSTCELLNUM cellnum - activate based on cell numrer: 0-3.

7 Annotated Code

The following is the key simulator code with some annotations.

This is the initialization routine. The ids of objects are filled in (although these are not currently used).
The central function is to link up the cells with the port buses.

ensemble.init C)
{

register int i,j,n,a;
cellstate *cp;

simdinstr.id = 0;
simdinstr.op = lOP;
simdinstr.argl = UNDEF;
simdinstr.arg2 = UNDEF;

siudinstr.arg3 = UIDEF;
simdinstr.arg4 = UNDEF;

for (i=O; i<PORTNUM; i++) {
port[iJ.portid = NKID(PORT,i);
port[i).portloc = 0;

}
for (i=O; i<ROVNUM; i++) row[iJ.rowid = NKID(GOWS,i);
for (i=O; i<COLNUM; i++) col[±i.colid = MKID(COLS,i);

for (i=O; i<ROVIUM; i++)
for (j=0; j<COLNUM; j++) {

for (n=O; n<CEIL.SPERTILE; n++) {
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a =ADDR(i~j,n);
cp ACELLAT(a);
cp->self =RKID(CELL,a);
/* used when all cells on a port need to use a bit, etc. .

cp->portno = n + C((i(i+j)) ? CELLSPERTILE :0);
cp->row = row [iJ ; - Row and col are easyv.

cp->col = acoJltj);
- Forts are more complex.

cp->PORTI = tport[PORTUIIDX(i,j)J;
cp->PORTE->por-tloc =PGRTADDR~i,j ,NGRT5);
cp->PORTV = kport[PORTVZIND(i,j)J;
cp->PORTV->portloc = PORTADDR(i,j ,VEST);
cp->PORTE = &port (PORTVINDI~i, j+1)J;

it Cj+l = COLNUN) cp->PORTE->portloc =PORTADDR(i,jEAST);

cp->PORTS = &port[PORTIIhNDX(i+I,j)J;
it (i+i ROVNUK) cp->PORTS->portloc = PORTADDR(i,j,SOUTI);
cp->zarks = 0;
cp->refc = 0;
cp->state = 0;
/* { int a; for (auuO; u<REGCNT; a++) cp->regEx) = 0; 1 e

Here are the basic SIMI) broadcast routines. Simply copy arguments to sindinstr structure. (Would

have liked a somewhat different approach to variable numbers of arguments than provided in C.)

sind( op)
iut op;

sindinstr.op = op;
simdinstr.argl a UJIDEF;
siadin~str.arg2 z bIFDE?;
uindinstr.arg3 = UNFDEF;
sindinstr.argl = UIDE?;
siadstepo),

simdl(op~arg)
int op,a~rg;

simdinstr.op = op;
sindinstr.argl =arg;
siadinstr.arg2 = bIDE?;
simdinstr.arg3 = UNDEF;
siadinstr.arg4 =UNDEF;
siadstepo;

simnd2(op,argl ,arg2)
int op,argl,arg2;

simdinstr.op =op;
simdinstr.argl = argi;
simdinstr.arg2 = arg2;
simdinstr.arg3 = VTlDE?;



siodinstr.arg4 = UNDEF;
sindstepo;

simd3(op,argi ,arg2,arg3)
int op,argl,arg2,arg3;

sindinstr.op = op;
sindinstr.argi = argl;
sindinstr.arg2 =arg2;
sindinstr.arg3 = arg3;
sindinstr.arg4 = UIDEF;
simdstepo;

simd4(op, arg, ,arg2, arg3, arg4)
int op,argl ,arg2,arg3,arg4;

sindinstr.op = op;
simdinstr.argl =argl;
uiadinstr.arg2 = arg2;
sindinstr.arg3 = arg3;
uindinstr.arg4 = arg4;
sindatepO;

This is the core SIMD execution routine (the process of execution has already been briefly discussed).
The important state changes involve clock, s iadinst. ph, and the commnication buses.

sizmdatepC)

register iut i,op,p,flg,val;

clock++; - Update clock.

op = simdinstr.op; -Get op.
if (recordinstrfreq){

if (op != lIRT) instrfrsq~opJ++;

if (showinstrs) f
printf(%dA: ",clock);
printop(); printf("'\); Iflush(stdout); I

it (op != lOP) f
/* Actually there seem to be cases here *
/* a~rbcol, arbrow are actions over different entities *

/* Could improve on this */
if (op==ARBCOL) - Conditionally reset row/col buses.

for (i0O; i<COLNUM; i++) ( col~iJ .colval =0; colti) .colovuer =0;}
else
if (op=SELROV)

for Ci0O; i<COLNUM; i++) col~iJ.colval = UNDEF;
else
if (op==SELCELL)

for (i=0; i<CELLIUM; i++) cell~iJ.aux = 0;
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-Always reset port buses.
for (i=O; i<PORTNUK; i++) porttiJ.portval = 0.
for (isO; i<POITNUU; i++) port~iJ-portaddr = UNDEF;

/* it (verbose) printf("phase1\n"); s/

sindinstr.pb = 1; - Perform phase 1, all cells.
for (i0O; i<CELLIUK; i++)
siadaction(kceil~i));

/* if (verbose) printf("port\nl);
/* In the following could put checks to see if bus already non-UIDEF

which would indicate an error in use; this also ignores issues
of cell arb */

if (op == FETCH) {-Not currently uased.
for (i0O; i<PORTNUM; i+.)

if (port [i).portadcir != UNDEF)
port Ci).portval CELLLT(port Ci).portaddr) .reg~siudinstr.arg3);

I
else
if (op ==CELLARBPTh){

for (i0O; i<CELLNtJN; i++){
fig =0;
val = KSKBITI(cell~iJ.portno);
for (p=O; p<PORTCIT; p++) (
if CTSTBIT(cell Ci).porta EpJ->portval.lval)){
if (fig) CLUBIT(cell[i) .ports [pJ->portval,val);
fig = 1;

else
if (op == RBROW){

for (i=O; i<ROWNUK; i++) ( rowfiJ.rowval =UNDEF; row[iJ.rowowiier =0;}

f or (p=CGLIUK-1; 0<=p; p--) (
if (0 ! col~p).colowner) f

val =coi~pJ.colval;
if (val != UNDEF) f

i = row Eval . rowowner;
if (i != 0) SETBIT(col[COL(i)).colval,FAILFLAG);
row Eval) .rowowner = col Ep). colowner;

/* if (verbose) PrintfC'phass2\n"); *
siudinstr .ph = 2; - Perform phase 2, all cells.
for (i=O; i<CELLNUK; i++)

siadaction(kcell Ci));
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}I

This routine, siadaction, is the heart of it all. It gets a pointer to a cell and uses the clock phase and
the SIMD broadcast to perform the appropriate action on the cell and busses. Here is the prolog. The large
switch statement is discussed below. Note the "local"' macros that are introduced.

simdaction(cp)
register cellstate *cp;

register int op,ph,st,r,val;
int dir.tilemaska,flg;

/* Do some top-level case analysis depending on whether active, etc. */
st = cp->state;

#define DEACTIVATE CLRBIT(cp->state,STATEACTIVE)
#define ACTIVATE SETBIT(cp->state,STATEACTIVE)

op = simdinstr.op;
ph = simdinstr.ph;

#define IS-ACTIVE TSTBIT(st,STATEACTIVE)
#define IS-VALID TSTBIT(stSTATEVALID)

switch (op) {

- All the case are discussed below.

Some cases in the switch are omitted. The various operations are discussed below.

Here is a large group of relatively trivial operations that are not discussed in detail. These instructions
consist of simple local operations and tests.

case lOP: break;
case lilT:

if (ph==2 k& TSTBIT(st,STATEVALID)) ACTIVATE;
break;

case ERASE:
if (ph==2 U IS-ACTIVE) cp->marks = 0;
break;

case TSTNARK: /* mark S/
it (ph==2 U IS-ACTIVE U !TSTBITE(cp->marks,siudinstr.argl))

DEACTIVATE;
break;

case TSTNOTMARK: /* mark *I
if (ph==2 Uk IS-ACTIVE Uk TSTBITN(cp->marks,simdinstr.argl))

DEACTIVATE;
break;

case SETMARK: /* mark */
if (ph==2 ft IS-ACTIVE)

SETBITI (cp->uarks,s iodinstr .argi);

break;
case CLRMARK: /* mark ./

if (ph==2 U& IS-ACTIVE)
CLRBITN (cp->marks, s imdinstr .argi);

break;
case COIST: /* val */

if (ph==2 U IS-ACTIVE)
cp->CELLACC = simdinstr.argl;
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break;
case CLEAR: /* reg *
it (Pha=2 Lb IS-.ACTIVE)
cp->rog~sindinstr.argi) = 0;

break;
case EQ: /* reg reg *
it (Pha=2 Lb IS-ACTIVE Lb

!((cp->reg~simdinstr.argll))Ccp->reg[siadinstr.arg2J)))
DEACTIVATE;

break;
case IEQ: /* reg reg .
it (Pha=2 *A IS-.ACTIVE Lb

!((cp->reg~siadii~str. arglJ)! =(cp->reg Esindinstr .arg2j)))
DEACTIVATE;

break;
came GT: /* rag reg *
it (ph==2 Lb IS-.ACTIVE Lb

!((cp->reg~siadinstr.arglJ )>Ccp->reg[siadinstr.arg2J)))
DEACTIVATE;

break;
case LE: /* rag reg *
it (ph==2 Lb IS-.ACTIVE Lb

I ((cp->reg~uimdinastr argi) )<=Ccp->reg~simdinstr .arg2J)))
DEACTIVATE;

break;
case LT: /* rag reg *
it (ph=2 Lb IS-.ACTIVE Lb

I ((cp->ýreg siadinstr. argi ) < (cp->reg (uimdinstr. arg2J)))
DEACTIVATE;

break;
case GE: /* reg reg *
it (ph==2 Lb IS-.ACTIVE Lb

!((cp->reg~siudinstr argi) )>=(cp->reg~siadinstr .arg23))))
DEACTIVATE;

break;
case TSTZERiJ: /* reg *
if (ph==2 Lb IS-..ACTIVE Lb !((cp->reg~siudinstr.arglJ)=0O))
DEACTIVATE;

break;
case TSTNZERO: /* ring
it (ph=2 Lb IS-.ACTIVE Lb ((cp->reg[siudinstr.argiJ)==O))
DEACTIVATE;

break;
case KOVE:
it (ph==2 Lb IS-.ACTIVE)

cp->reg~simdinstr. argi) = cp->reg~siudinstr. arg2);
break;

case ADD: /* treg, sreg *
it (ph==2 Lb IS-ACTIVE)

cp->reg~siindinstr.argil += cp->reg~simdinstr.arg2J;
break;

case SUB: /* treg, sreg *
it (ph==2 Lb IS-ACTIVE)

cp->regEs indinstr argi) -= cp->reg Esimdinstr arg2J;
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break;
case LOGNOT: /* reg */

if (ph==2 U ISACTIVE)
cp->regEsindinstr.argl] = "cp->reg[siadinstr.argi];

break;
case LOGAIND: /* treg, ireg */

if (ph==2 kk IS-ACTIVE)
cp->reg [siudinstr. argi] A= cp->reg [simdinstr. arg2];

break;
case LOGIOR: /* treg, sreg 0/

if (ph==2 && IS-ACTIVE)
cp->reg[siudinstr.arglJ 1= cp->reg[simdinstr.arg2J;

break;
case LOGXOR: /* treg sreg */

if (ph==2 kk IS-ACTIVE)
cp->reg[simdinstr. argl] cp->reg[siadinstr.arg2J;

break;
case ROTATEL: /* treg sreg */

if (ph==2 R& IS-ACTIVE) {
/* This is specifically a 16 bit operation and doesn't use

a condition flag */
val = cp->rsg[sindinstr.arg2];
val = ((val << 1) & Orffff) + (val & Ox8000 ? I : 0);
cp->reg[simdinstr. arglJ = val;
}

break;
case ROTATER: /* treg sreg */

if (ph==2 && IS-ACTIVE) {
/* This is specifically a 16 bit operation and doesn't use

a condition flag */
val = cp->reg[simdinstr.arg2];
val = ((val >> 1) A Ox7fff) + (val & 1 ? Ox8000 : 0);

cp->reg[siadinstr.argl] = val;
}

break;
case SHIFTL: /* treg sreg */

if (ph==2 Uk IS-ACTIVE)
cp->reg[simdinstr.argl] = (cp->reg[siadinstr.arg2]) << 1;

break;
case SHIFTR: /* treg sreg */

if (ph==2 Uk IS-ACTIVE)
cp->reg[simdinstr. arg13 = ((unsigned int) (cp->rog[sindinstr.arg2))) >> 1;

break;

case SHIFTRA: /* treg sreg 0/

if (ph==2 && IS-ACTIVE)
/* This is probably not very portable, but produdces the

desired effect on a SPARC e/
cp->reg[sindinstr.argl) = (cp->reg[sixdinstr.arg2]) >> 1;

break;

The following operations make key use of the PORTNO assignment for cells which allocates a unique
wire to each cell on a port bus.

- If mark is set on pointed at cell, stay active.
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case TSTNAUKPTR: /* mark, source-ptr */
/* lots: the follouing is done by all cells *
it (ph-1) (

it (IS-.VALID kk TSTBITI(cp->marks,simdiastr.argl)) f
val = RSKBITI(cp->portno);
for (r=O; r<PORTCET; r++) SETBIT(cp->portsfrJ->portval,val);

else ( /* ph=2 e
it (IS-.ACTIVE){
if U(r cp->reg~siadinstr.arg2l,VALIDADDR(r)){
tile = TILEWr;
dir = WHICHDIR(TILE(cp->self),tile);
it (dir ==NDEF) (
it (simdinstr.arg2==LEFT) SETBIT(cp->state,STATE..IENOTE-.LEFr); else

it (siudinutr .arg2=ftIGIT) SETBIT(cp->state,STATE-.REKOTE-RIGHT);
DEACTIVATE;

}else f
val = PORTNOWr;
it C 'TSTBITI (cp->ports (dirJ ->portval ,val))

DEACTIVATE;

}else DEACTIVATE;

break;
- If mark is clear on pointed at cell, stay active.

case TSTIOTMARKPTR: /* mark, source-ptr *
/* Almost identical to the above */
/4. Note: the following is done by all cells *
if (ph=l) f

it (IS-VALID && TSTDITN(cp->uarks,simdinstr.argl)){
val = KSKDITI(cp->portuo);
for (r0O; r<PORTCIT; r++) SETBIT(cp->ports~rJ->portval,val);

else f /* ph=2 o
it (IS-ACTIVE){
it (r =cp->reg~siadinstr.arg2J ,VALIDADDR(r)){

tile = TILEWr;
dir = WHICEDIR(TILE(cp->selt) ,tile);
it (dir ==UNDEF) (
if (uimdinstr. arg2==LEFT) SETBIT(cp->state ,STATE...3ENOTE-.LEFr); else
it (simdiustr.arg2==RIGHT) SETBIT(cp->state,STATE-RENOTE-.RIGET);

DEACTIVATE;
I else f
val = PORTIOWr;
if (TSTEITN(cp->ports~dirJ->portva].,val)) -No!.

DEACTIVATE;

I else DEACTIVATE;

break;
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- Set mark on pointed at cell.
case SETMARKPTR: /* mark, target-ptr *
it (ph==) (
if (IS-.ACTIVE){
if (r =cp->reg~simdinstr.arg2),VALIDADDJI~r)){
dir = VHICHDIR(TILE(cp->self) .TILE(r));
if CUNDEF == dir) f
if Csimdinstr. arg2==LEFT) SETBIT~cp->state ,ST&TE_.3EKOTE..LEFT); else
if (simdinstr. arg2==RIGHT) SETDIT~cp->stateSTATE-R3ENOTE-.RIGHT);

DEACTIVATE;
I elso f
SETBIT~cp->ports (dir) ->portval,RSKBITNCPORTIO~r)));

a lse DEACTIVATE;

a lse f /* ph=2 5

if (IS-.VALID) f
val = NSKBITI(sindinstr.argl);
if ('TSTBIT(cp-'uarks,va..K)){
mask =val;
va1 = SKBITN~cp->portno);
f or Cr0O; r<PORTCIT; r++)
if (TSTBIT~cp->ports~r)->portval~val)){

SETBIT(cp->ma~rks ,mask),
break;

break;
- Clear mark on pointed at cell.

case CLRNARJCPTR: /4* mark, ta~rget-ptr *
/* Almost identical to the above *
if Cph==) (

if (IS-.ACTIVE){
if (r =cp->re5Esimdinstr.arg2) ,VALIDADDR(r)){

dir =WHICBDIR(TILE~cp->self) ,TILE(r));
if (lIDE? == dir) (
it (simdinstr arg2==LEFT) SETBIT(cp->state ,STATEJLEIIOTE_.LEFT); else

if Csimdinstr. arg2==RIGHT) SETIIT(cp->state ,STATE..RENOTE..RIGHT);
DEACTIVATE;

}else f
SETBIT(cp->ports (dir) -portval,XSKBITI(PORTIO(r)));

}else DEACTIVATE;

}else ( /* ph=2 5

if (ISVALID) (
val = MSKBITl~siindinstr.argl);
if (TSTBIT(cp->marks,val)) { -No !

mask val;
val = SKBITI (cp->portno);
for (r=0; r<PORTCIT; r++)

if (TSTBIT(cp->ports~r)->portval,val))C
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CLRBIT(cp->aarks,maBk); - Versus SETBIT.
break;

)
}
}

}

break;

The following group consists of port arbitration instructions, and fetch/store variants.

- Arbitrate on specified port.
case ARBPORT: /* dir */

if (IS-ACTIVE) (

dir = simdinstr.argl;
if (ph==1) j

if (!VALIDDIR(dir)) {
CLRBIT(cp->state,STATETRYING); /*newer*/
DEACTIVATE;

} else
/* This requires that the ports be cleared to start with */
SETBITE(cp->ports [dir) ->portval,cp->portno);

} else ( /* ph ==2 */
/* lower numbered bits have higher priority */
if ((cp->ports [dir)->portval) & LOWERBITS(cp->portno)) DEACTIVATE;
else

CLRBIT(cp->state,STATETRYIIG); /*enver*/
}

}

break;
- Arbitrate on port given byj pointer.

case ARBPORTPTR: /* reg */
if (IS-ACTIVE kk (r = cp->reg[simdinstr.argl],VALIDnDDR(r))) {

tile = TILEWr);
dir WHICHDIR(TILE(cp->self),tile);
if (ph==t) (

if (dir == UNDEF) {
if (simdinstr. arg1==LEFT) SETBIT(cp->state ,STATEREMOTELEFT); else
if (simdinstr.argl==RIGHT) SETBIT(cp->state,STATERENOTERIGHT);
CLRBIT(cp->state,STATETRYIIG); /*newer*/
DEACTIVATE;

} else
SETBITN(cp->ports [dir) ->portvalcp->portno);

} else { /* ph ==2 */
if ((cp->ports[dir)->portval) & LOWERBITS(cp->portno)) DEACTIVATE;
else

CLRBIT(cp->state,STATE_TRYING); /*never*/
}

break;
- Assumes arbitration.
-This should be split into two instructions.

case STORE: /* target-ptr, treg, sreg */

/* originally written using action between ph==l and ph==2 *
if (ph=l) {
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it (IS-.ACTIVE && (r = cp->reg~siadinstr.arglJ,VALIDADDI~r))){
tile =TILKEW;
dir = IHICHDIR(TILE(cp->self) ,tile);
if (dir == UNDEF) DEACTIVATE;
elue {

cp->ports[dirJ->portaddr =r;

cp->portu (dir) -)portval cp->reg Esiadinstr arg3);

a lue ( /* ph==2
/* Note: the following iu done by all VALID cells *
it (IS-VALID) (
Val. = cp->uelf;
/* Check only one? *
f or (r0O; r<PORTCIT; r++)
if (cp->ports~rJ->portaddr == Val))

cP->reg Cuijdinstr. arg2J = cp->ports Er]->portval;

break;
- Assumes arbitration.
- NAXEREQ FETCHDATA performs a fetcha.

case NAKEREQ: I. ptr *
it (ph==1) f
cp->aux = 0; /* Note: done by all *
it (IS-.ACTIVE 4& Cr =cp->reg[siamdinstr.argl],VALIDADDR~r))){
tile =TILEWr;
dir = VICHDIR(TILE(cp->self),tile);
if (dir == UNDEF) {
if (uindinstr. argl==LEFT) SETBIT(cp->utate ,STATE-.REROTE..LEFT); else
if (sindinstr. argl==RIGHT) SETBIT~cp->state ,STATE-.RENUT:-RIGHT);
DEACTIVATE;
a lse
cp->ports [dir) ->portaddr = r; /* Could xor *

}else { /* ph ==2
/* Note: the following is done by all cells *
Val = cp->uelf;
/* Check only one? *
for (r0O; r<PORTCIT; r++)
if (cp->ports Er)->portaddx == val)

SETBITI(cp->aux,r);

break;
case FETCHDATA: I. treg, source-ptr, ureg *
if (Ph=1) f
/* Note: the following is done by all cells *
if (IS-VALID){
Val = cp->aux;
if (Val != 0)

for (r=O; r<PORTCNT; r++)
if (TSThITN~val,r)) (
cp->ports Er)->portaddr =cp->u elf;
cp->ports (rJ->portval =cp->reg Euindinstr arg3J;
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}else { * ph =2 *
it (IS-ACTIVE kk Ur = cp->reg~sindinstr.arg2JVALIDADDR(r))){
tile TILEWr;
dir W HICBDIRCTILE~cp->solf) ,tile);
it (dir ==UNDEF) DEACTIVATE;
else
if (cp->ports~dirJ->portaddr ==r)

cp->reg Esimdinstr arg13) cp->port a[dir) ->portval;
else f
printid~cp);
printf(" fetchdata: bad data portaddrz';
printaddr(cp->ports [dir) ->portaddr);
printf(" portval. = %d\n",cp->ports [dir) -portval);

break;
- No arbitration needed, activatei byj PORTNO.

case STOREPI: /* portno, target-ptr, treg, sreg *
/* originally written using action between ph==l and ph=2 *
it (Ph==1) f

if (IS-ACTIVE kk
(sindinstr.argl -cp->portno) kk
(r = cp->reg[siudinstr.arg2) ,VALIDADDR(r))){

tile = TILEWr;
dir = VEICHDIRCTILE(cp->self),tile);
if (dir ==UNDEF) (

if (hiindinstr.arg2==LEFT) SETBIT~cp->state,STATE..REKOTE-.LEFT); else
if (simdinstr arg2==RIGffT) SETBIT( cp->state,STATE-.REROTE-.RIGHT);
DEACTIVATE;

}else f
cp->ports [dir] ->portaddr = r;
cp->ports[dirJ->portva1 = cp->reg[siimdinstr.arg4J;

}else { /* ph==2
/* Note: the following is done by all cells *
if (IS-VkLID) (
Val = cp->self;
/i* Check only one? *
f or (r0O; r<PORTCIT; r++)

if (cp->portstr3->portaddr == val)
cp->reg~simdinstr. arg3] = cp->ports (r)->portval;

break;
- No arbitration needed, acitivate by PORTNO.

case FETCHPI: /* portno, treg, source-ptr, sreg .
if (ph-1) f

if (IS-.VALID){
if (simdinstr.argl ==cp->portno){

val = cp->reg[sixdinstr.axg4);
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for (r0O; r<PORTCXT; r++) f
cp->ports Er)->portaddr =cp->self;
cp->ports~r)->portva~l =val;

}else f 1* ph==2
if (IS-ACTIVE kk (val = cp->reg~simdinstr.arg3J,VALIDADDR~val))){
for (r0O; r<PORTCIT; r++)

if (cp->ports Er)->portaddz == val) f
cp->reg (simdinstr arg2) = cp->ports ErJ->portval;
break;

break;

This initiates global feedback. If anything is active, then global feedback bit should eventually be set.

case SEIDGLOBAL:
it (IS-.ACTIVE kk ph==2){

globalfeedback*+;
I
break;

These are the row/col instructions with associated global actions. The normal sequence is ARBTILE
ARBCOL SELROW ARBROW SELCELL, and then perform global operations.

case ARBTILE:
if (IS-.ACTIVE){

if (ph==l) f
SETBITI (cp->ports EIORTE) ->portval ,cp->portno);
}else { /* ph ==2 */
/* lower numbered bits have higher priority *
if ((cp->ports[NORTHJ->portval) k LOWEEITS(cp->portno)) DEACTIVATE;

break;
case ARBCOL:

if (IS-ACTIVE){
if (ph==) {
SETBITI(cp->col->colval,ROW(cp->self));

}else f /* ph==2 */
if ((cp->col->colval) k LOWERBITS(ROW(cp->self))) DEACTIVATE;

else cp->col->colowner = cp->self;

break;
case SELROW: /* target 5

if (ph==2 *k IS-.ACTIVE){
if (r = cp->reg~sindinstr.arglj,VALIDADDR(r)){
it (cp->col->colomner == cp->self)
cp->col->colval = RDW(r);

else{
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printid~cp);
printf(*" seirow bad active cell\n");
DEACTIVATE;

a lse DEACTIVATE;

break;
case ARBROW: /* target *
it Cph==2 kk IS-.ACTIVE){
if Cr = cp->reg~siindinstr.argl],VALIDADDR(r)){
if (cp->col->colowner ==cp->self) f
if (TSTBIT(cp->col->colval ,FAILFLAG))
DEACTIVATE;

}else (
print id~cp);
printf C" arbrow bad active cell\n");
DEACTIVATE;

}else DEACTIVATE;

break;
case SELCELL: /* ptr C
if (IS-.ACTIVE U& ph=2){
if (r = cp->reg[sindinstr.arg1l]VALIDADDR(r)){
if (cp->col->colouner != cp->sel!' 11

ro,(ROW~r)J.rovovner != cp->self){
printid~cp);
printf C" selcell: not owner\n");
printcall~cp);
printaddr~cp->col->colowner); printfC"1\n");
printaddr (row [lwW(r)] .rowowner); printfC('An");
printcelladdr~ravwftOW(r)J rovowner);
}else {
CRELLAT~r).aux = cp->Belf;

}else DEACTIVATE;

break;
case FETCEGLBL: /* target source-ptr rag *
if (IS-ACTIVE kk Cr = cp->reg[simdinstr.arg2J,VALIDhDDR~r))){
if (cp->col->colowner != cp->self 11

row [ROW(r)J .rovowner != cp->self I
CELLAT~r).aux != cp->self){

if Cph==1) f
print id(cp);
printf C" fetchglbl: not owner\n");}

}else f
if Cph==2){
/* no cell arbitration is necessary *
/* only really use the number of the cell from the pointer *
cp->regEs imdinstr. arg1J = CELLAT(r).reg (sindinstr. arg3J;

23



break;
case STOREGLBL: /* target-ptr reg source

/* as usual very similar to the above e

it (IS-.ACTIVE Uk Cr = cp->reg[simdinstr.arglJ,VALIDADD1(r))){
it (cp->col->colowner != cp->self 11

ro.(ROW(r)J.rovwoner != cp->self I
CELLTAT(r).aux != cp->sel~f){

if (ph==1) (
printid~cp);
priatf(" storegibi: not ovner\n");}

a lse {
if (ph=2){
/* no cell arbitration is necessary *
/* if (verbose) f
printf("storeglbl:")
printaddr(r);
printf(" %d ",simdinstr.arg2);
printf(Q <- %d\n",cp->reg[,simdinstr.a~rg3J); }*

CELLAT(r) . rag siodiustr. arg2J = cp->regfsimdinstr.arg3);

break;
case TSTLRAIIGLBL: /* source-ptr mark (changed order) .
/* as usual very similar to the above */
it (IS-.ACTIVE kk Cr =cp->reg~simdinstr.arglJ,VALIDADDR(r))){

if Ccp->col->colowner != cp->self 11
row[ROW~r)].rowowner != cp->self I
CELL-AT~r).aux != cp->sel~f){

if (ph==) (
printid(cp);
printf(" tstmarkglbl: not ovner\n");}

a lse (
if (ph=2){

/*no cell arbitration is necessary *
if C 'TSTBITN(CELLAT~r) .marks~simdinstr.arg2))
DEACTIVATE;

break;
case TSTNOTHARKGLBL: /* source-ptr mark s
/* as usual very similar to the above *
if CIS-.ACTIVE kk Cr = cp->reg~simdinstr.arglJ,VALIDADDR~r))){

if Ccp->col->colowner != cp->self 11
row[ROW(r)].rowowner != cp->self I
CELLAT~r).aux != cp->self){

if (phl=) {
printid~cp);
printf C" tstnotuarkglbl: not owner\n");}

Ielse (
if (ph==2){

/*no cell arbitration is necessary *
if (TSTBITICCELLAT(r) .marks~simdinstr.arg2))
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DEACTIVATE;

break;
case SETHARKGLBL: /* target-ptr mark *

/*as usual very similar to the above *
it (IS-.ACTIVE &* Cr = cp->reg~siadinstr.arglJ.VALIDADDR~r)))
if Ccp->col->colowner != cp->self 11

rowEROW~r)].ravouner != cp->self I
CELLAT(r).aux != cp->uelf)

it (Ph==1) {
printid(cp);
printf(C" setmarkglbl: not owner )}

}else {
if Cph=2){
/* no cell arbitration is necessary e
SETBITN(CELLAT~r) .marks,siudinstr. axg2);

break;
caae CLRMARKGLBL: /* target-ptr mnark *

/4. as usual very similar to the above *
it (IS-.ACTIVE k* Cr = cp->reg[simdinstr.arglJ,VALIDhDDR(r))){
if (cp->col->colowner != cp->self 11

row (ROW(r)) .rovomner != cp->self I
CELLAT(r).aux != cp->self){

if (ph==1) (
print id~cp);
printf(C" clruarkglbl: not owner )}

}else (
if Cph=2){

/* no cell arbitration is necessary *
CLRBITN(CELLAT(r) .marks ,simdinstr.arg2);

break;
case INCRGLEL: /* val, target-ptr ''

if (IS-.ACTIVE kk Cr = cp->reg~siadinstr.arg2JVALIDADDR(r))){
if Ccp->col->colowner != cp->Palf 11

rov[ROW~r)J .rowowner != cp->self){
if Cph==1) f
print id(cp);
printf C" incrglbl: not ovner\n");}

}else (
if Cph==2){

/* no cell arbitration is necessary *
CELLAT~r).refc += simdinstr.argl;

break;
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This group allows general access to the bits of the state register, but is probably not how this state testing
should be implemented.

/* lote: the following work with bit masks */
case TSTSTATE: /* flags */

if (ph=2 Uk IS-ACTIVE Ut !TSTBIT(cp->statesiudinstr.argi))
DEACTIVATE;

break;
case TSTNOTSTATE: /* flags *I

if (ph==2 tt IS-ACTIVE ti TSTBIT(cp->state,simdinstr.argl))
DEACTIVATE;

break;
case SETSTATE: /* flags */

if (ph==2 kk IS-ACTIVE)
SETBIT (cp->statesimdinstr. argi);

break;
case CLRSTATE: /* flags *I

if (ph==2 Uk IS.ACTIVE)
CLRBIT(cp->state, simdinstr. argl);

break;

Here is another group of relatively simple instructions which are tests on addresses/pointers and the
reference count register.

case TSTLOCAL: /I ptr SI
if (ph==2 Uk IS-ACTIVE) {

if (!((r = cp->reg[siadinstr.argl],VALIDADDR(r)) Uk
UNDEF != WNICHDIR(TILE(cp->self),TILE(r))))

/* deactivate if not a valid address or not local SI
DEACTIVATE;

}

break;
case TSTREMOTE: /* ptr e/

if (ph=-2 Uk IS-ACTIVE) {
if (!((r = cp->reg[simdinstr.argl],VALIDADDR(r)) kt

UNDEF == WIICHDIR(TILE(cp->self) ,TILE(r))))
/* deactivate if not a valid address or local SI
DEACTIVATE,

}
break;

case TSTADDR: /* ptr */
if (ph==2 && IS-ACTIVE U* !VALIDADDR(cp->reg[simdinstr.arglJ))

/* deactivate if actually is a valid address */
DEACTIVATE;

break;
case TSTNOTADDR: /* ptr */

if (ph==2 Uk IS-ACTIVE X& VALIDADDR(cp->reg~simdinstr.argl]))
/* deactivate if actually is a valid address SI
DEACTIVATE;

break;
case TSTUNUSED:

if (ph==2 kk IS-ACTIVE U 0 != cp->refc)
DEACTIVATE;

break;
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case TSTURSNARED:
it (phz=2 S& IS-.ACTIVE && I != cp-->refc)

DEACTIVATE;
break;

case TSTINUSE:
it Cph=2 Ub IS-ACTIVE Uk cp->ref c <= 0)

DEACTIVATE;
break;

These were designed for use with explicit port arbitra~tion (ARBPORT, LRBPORTPTR), allowing a relatively
tight "repeat until all done" loop.

case SETTRYING:
if Cph=2) {
it (IS-.ACTIVE){
SETBIT(cp->state ,STATE-TRYIIG);
globalfeedback++;

I
else CLRBIT(cp->state,STATE-.TRYIIG); /* When clear? *

break;
case IIITTRYIIG:

if (ph==2) (
if (TSTALfLIT(st,STATE-.VALIDISTATE-.TRYING)){
ACTIVATE;
glabalfeedback+#;
a lse {
DEACTIVATE;

break;
case CLRTRYING:

if (ph==2 ft IS-.ACTIVE){
CLRBIT(cp->state ,STATE-.TRYIIG);

break;

These are reference count operations (there is also a global version).

case 11NCR: /* va]. */
if (IS-.ACTIVE kk ph=2) cp->refc += simndinstr.argl;
break;

case INCRPTR1: /* val,target-ptr *
case INCRPTR2:

if Cph==) (
if (IS-.ACTIVE k

(va). = NUN(cp->self), (op=IICRPTRI ? O(=val ML val<=1
2<=val Lb val<=3)) kk

Ur = cp->reg~simdinstr. arg2J ,VALIDADDR(r))){
dir = WEICEDIRCTILE(cp->self) ,TILE~r));
it (dir == UNDEF) {

if (simdinstr. arg1=LEFT) SETDIT(cp->state,STATE_.REKOTE_.LEFT); else
if Csimdinstr. arg1=aRIGET) SETBIT(cp->'state,STATE-.RENOTE-RIGET);
DEACTIVATE;
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a lso (
SETBIT~cp->portu EdirJ->portVal,

(Cwal==OI va1=2)? HSKBITI(PORTNO(r))
NSKBITN(PORTNO~r)+PORTUOSHIFT)));

}else f /* ph=2 *
I. IS-VALID ?? *
Val = NSKBITU(cp->portno) I RSKBITN~cp->portno+POJLTNosNiFT);
for Cr=O; r<PORTCIT; r++)

if (TSTBIT~cp->ports~r]->portval,val)){
if CTSTBIT~cp->ports Er)->portval,XSKBITI(cp->portno)))

cp->refc: += sindinstr.argl;
if (TSTBIT(cp->ports Er)->portval,KSKBITE(cp->portno+PORTIOSHIFT)))

cp->ref c += sindilnstr.argi;

break;

These are the allocation instructions. The normal idiom is ALLOCREQ AVAILl AVAIL2 ALLOCPTP.. This
idiom will leave a pointer to a free cell in the specified register (or 0, null pointer, if fails), but the cell is
still not allocated. ILLOCPTR is used to actually allocate the cell. Many of the details could be changed and
improved here.

case ALLOCREQ:
it (ph==1) f
cp->aux = 0;
it (IS-.ACTIVE){

val = MSKBITI(cp->portno);
f or (r0O; r<PORTCNT; r++)

SETBIT(cp->ports Er)->portval ,veal);

}else f /* ph=2 e
if (!TSThIT(cp->state,STATE-.VALID)){
Val 0;
mask =PORTIOCASE(cp->portno);
f or (r0O; r<PORTCIT; r++)
Val = (Val << CELLSPERTILE)I

PORTIOSEL (mask, cp->ports Er)->portval);
cp->aux = Val; /* Could use ACC instead *

break;
case AVAILI: /* reg *
case AVAIL2:
if Cph==){

if (cp->aux
(Val = IUX(cp->self),(op=AVAIL1 ? O<=val Uval<=1

2<=val && val<=3))){
mask =al
Val LOWESTBIT~cp->aux);
f or (r=PORTCNT-1; 0<=r; r--){
if (Val & LOWERBITSCCELLSPERTILE)){

val = Val. & LOUERBITS(CELLSPERTILE);
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Val = PORTNOREPLY(cp->portno~val);
cp->ports (r ->por~tval I =

((aask==O 11 aaskuz2) ? val :Val << PORTNOSHIFT);
break;

Val >>= CELI.SPERTILE;

cp->aux = 0,

}else f /* ph==2
if (IS-.ACTIVE){

if (op==AVAILI) cp->reg~siadinstr.arglJ 0; /?e
Val = NSKHITN(cp->portno) ( KSKBITE(cp->portno+PORTIOSHIFT);
if (!(op==AVAIL2 Ub cp->reg[simdizxstr.arg1)I:O)){

for (r=O; r'PORTCIT; r++)
if CTSTBIT(cp->ports~r)->portval,val)){

if (TSTDIT(cp->ports ErJ->portval,
KSKBITU Ccp->portao))){

if (op==AVAILl) a = 0; else a = 2;
}
else
if (TSTBIT( cp->ports ErJ->portval,

NSKBITI(cp->portzno+POIITNOSEIFT)))
if (op=AVAILl) a = 1; else a =3;

Val = cp-'s elf;
switch Ur) f
case EAST: Val = ADDR(ROW(val),COL(val)+1,a); break;
case NORTH: Val = ADDR(ROW(val)-1,COL(val),a); break;
case VEST: val = ADDR(ROW(val),COL(val)-1,a); break;
case SOUTH: Val = ADDR(ROV(val)+1,COL(val),a); break;

cp->reg (simdinstr axgl] = Val;
break;

if (op==AVAIL2 && cp->reg~siadiznatr.argl) = 0) DEACTIVATE;

break;
case ALLOCPTR: /* target-ptr *

if (ph==1) (
if (IS-.ACTIVE)

if ((r =cp->regtsiadinstr.argl),VALIDADDR~r))){

dir = VICHDIR(TILE(cp->self),TILE(r));
SETBIT(cp->ports EdirJ->portval ,KSKBITN(PORTNO(r)));

}else DEACTIVATE;
}else ( /* ph==2 */
/* Note: the following is done by all cells s
if (!TSTBIT(cp->state,STATE-3ALID)){

cp->refc = 0;
Val = KSKBITN(cp->portno);
for (r0O; r(PORTCNT; r++4)
if (TSTBIT(cp->ports [rJ ->portval ,val)){

29



SETBIT~cp->state.STATE-VALID);
cp->reic++; /* should really just do once 6

break;

These are the commit instructions.

case COMMIT:
/* failure flag? *
if (ph==2 U IS-.ACTIVE){

for (r0O; r<REGIIMN; r++){
val = cp->rsgI~rJ;
cp->reg~r) = cp->regtr+REGNUMJ; /*??*/
cp->reg Er+REGNUNJ = val;

/* This should result in eventual deletion of next stuff *
SETEIT (cp->state, STATB..COMMIT);

break;
case COMMITMAUK: /* mark e

if (ph==2 kk IS-.ACTIVE){
if (TSTBITN(cp->aarksusimdinstr.argl)){
for Cr0O; r<REGIU; r++){

vl= cp->reg CrJ;
cp->reg (rJ = cp->reg (r+REGINflI; /*??*/
cp->reg Er+REGITJNJa val;

SETBIT(cp->state,STATE-.CONMIT);

break;
case SWAP:

if (ph==2 kk IS..ACTIVE){
for (r=O; r<EGIIM; r++){

val = cp->reg~rj;
cp->reg~r) = cp->reg~r+ILEGIUMJ; /*??*/
cp->reg Er+REGIUN) = val;

break;
case SETCOMMIT:

if (ph==2 kk IS-.ACTIVE){
SETEIT (cp->state, STATE-.COMMIT);

break;

Miscellaneous other intructions:

- In real ensemble, expand to code sequence.
case DELETE:

if Cph==2 &A IS-.ACTIVE){
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cp->uaaks = 0;
cp->retc = 0;
cp->state = 0;
cp-)aux = 0;
for (r0O; r<REGCIT; r++) cp->reg[r) = 0;

break;
- Initiate relocation if non-local.

case RELOCREQ: /* ptr */
it (ph==2 Uk IS-.ACTIVE){
if ((sizdiznstr.argi = LEFT 11 sindinstr.argl ==RIGHT) U

Cr= cp->reg~uimdinstr.argl],VALIDADDR~r)) Uk
URDEF == WHICHDIRCTILE~cp->selt),TILE(r))) {

it Csimdinstr.axgl = LEFT) SETBIT(cp->state,STATE-.REKOTE-.LEFT); else
SETBIT(cp->state ,STATE-.RENOTE-R.IGHT);

DEACTIVATE;

break;
case SETRANDON: /* reg C
if (Pli== 2 U IS-ACTIVE){

cp->reg [simdinstr. argil = randoomO); - Own random function.

break;
- May not be usable because of some IS-.VALID tests.

case IIITALL:
if Cph=2) ACTIVATE;
break;

case TSTBLACK:
if (IS-.ACTIVE kk ph=2)
if CPORTIOCASE~cp->portao))

DEACTIVATE;
break;

case TSTRED:
if (IS-.ACTIVE Uk ph==2)
if C! PORTIOCASEC cp->portno))
DEACTIVATE;

break;
case TSTCLASS: /* class -- one of 6 cases *
if (IS..ACTIVE kk ph==2){

va). = cp->self;
if C!(siiudinstr.argi == ((COL(val)*3*R0V(val))%6)))
DEACTIVATE;

break;
case TSTCELLNUN: /* cellaw. *
if (IS-.ACTIVE &U ph=2){
val = cp->self;
if C!(simdinstr.argi == NUN~va1)))
DEACTIVATE;

break;
case CELLARBPTR: /* target-ptr *
if (IS-.ACTIVE){
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it (ph=-l) f
it Cr = cp->reg~siadinstr.argi),VALIDADDR(r)) {
dir = VaICHDIR(TILE~cp->self) .TILE(r));
SETDIT(cp->ports~dirJ->portvaJ.,NSKBITICPORTNO Cr)));

}else { I ph==2 S
if Cr cp->reg~siadinstr.a~rgl),VALIDADDR(r)){
dir =WHICHDIR(TILE~cp->seli) ,TILE(r));
it (!TSTBIT(cp->ports~dir3->portval ,KSKBITE(PORTNO(r))))
DEACTIVATE;

break;

The action for an illegal op code is:

defauilt:
printf("Il1.gal op code %d\n",op);
ftlush(stdout);

The following routines are used with the SIMD instruction SENDGLOBAL to simulate the global feedback
mechanism.

/* special siud operations *
resetglob()
f

globalfeedback = 0;

mnt
testglob()

return globalfeedback;
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C Code of the Ensemble Simulator and of Several
Benchmarks Run on it
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