
MOAppoved

IMENTATION PAGE I. L oNo. 0704-0188

AD-A276 503
1. REPORT DATE 3. REPOR" TYPE AND DATES COVERED

March 1994 Scientific Paper
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Scene Rendering for the Smart Weapons Operability
Enhancement Program

6. AUTHOR(S)

Luke A. Catania

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Topographic Engineering Center REPORT NUMBER

ATTN: CETEC-PAO
7701 Telegraph Road
Alexandria, VA 22310-3864 R-216

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

viDftTI °[* AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES & UP• 04

1ZA. DISTRIBUTION /AVAILABILITY STATEMENT lZb. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited.

13. ABSTRACT (Maximum 200 wOrds)

During FY89. the U.S. Army Topographic Engineering Center (TEC), previously the U.S. Army Engineer
Topographic Laboratones (USAETL). became a key participant in the Smart Weapons Operability Enhancement
(S;VOE) program. This program is a tr-service partnership, organized for and working to provide the smart
weapons/automatic target recognition (ATR) designers. developers, testers, and evaluators with the integrated
information. measurements. modeling and simulation tools necessary to consider and exploit the operational
battlefield environment. As part of the SWOE team. TEC is responsible for the rendering module of the "SWOE
PROCESS".

The preliminary SWOE PROCESS consisted of receiving output from the SWOE thermal and radiance models.
reformattng the output so that the TEC Computer Image Generation (CIG) system could render a simulated infrared
(IR) scene. This CIG system was originally developed by Boeing Aerospace. with the software residing on a Gould
32/67 computer under the Mapped Programming Executive (MPX) operating system. During FY91, TEC was
responsible for converting selected modules of the MPX-CIG software to Unix. as well as incorporating/rntegrating
the SWOE thermal. radiance. and rendering modules onto a common Unix platform. a Stardent Titan 3040 mini-
supercomputer.

14. SUBJECT TERMS IS. NUMBER OF PAGES

Smart Weapons, Computer Image Generation, infared rendering 10
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified unclassified
NSN 7540-01-280-S500 Standard Form 296 (Rev. 2-89)

PP'ce, bM Nh AI Std 139-16

Scene rendering for the

Smart Weapons Operability Enhancement Program

Luke A. Catania 94-07240
U.S. Army Topographic Engineering Center

Fort Belvoir, Virginia 22060-5546 Ill II, II UllI,., ll II Ii
ABSTRACT

During FY89. the U.S. Army Topographic Engineering Center (TEC), previouislthe U.S. Army Engineer
Topographic Laboratories (USAETL), became a key participant in the I ; Operability Enhancement
(SWOE) program. This program is a tri-service partnership, organized for and working to provide the smart
weapons/automatic target recognition (ATR) designers, developers, testers, and evaluators with the integrated
information, measurements, modeling and simulation tools necessary to consider and exploit the operational
battlefield environment. As part of the SWOE team, TEC is responsible for the rendering module of the "SWOE
PROCESS".

The preliminary SWOE PROCESS consisted of receiving output from the SWOE thermal and radiance models,
reformatting the output so that the TEC tu a(ClG) system could render a simulated

(IR) scene. This CIG system was origily deveiol ed by'Boeing Aerospace, with the software residing on a Gould
32/67 computer under the Mapped Programming Executive (MPX) operating system. During FY91, TEC was
responsible for converting selected modules of the MPX-CIG software to Unix, as well as incorporatingfintegrating
the SWOE thermal, radiance, and modules onto a common Unix platform. a Stardent Titan 3040 mini-
supercomputer.

The process for generating these IR scenes consists of combining 3-D gridded elevation data with a 2-D raster
radiance map which is a gray-scale representation of the various surface materials existing for the area. Such surface
materials may be medium vegetation and bare ground for example. This "colored" elevation surface is then textured
with empirical texture maps representing the various surface materials. Trees and targets are also placed in the
scenes. Geographic position information is specified in an image input file along with sensor location, field of view
(FOV), sun zenith and azimuth. The image input file is used as input to the image generation portion of the
rendering module to create perspective views from the gridded terrain and polygonized models using a Z-buffer
algorithm to eliminate hidden surfaces. This paper will detail the process of the rendering module of the SWOE
PROCESS.

1. HISTORY

The Computer Image Generation system initially used by TEC for the SWOE Process was developed under a
program sponsored by the Defense Advanced Research Projects Agency (DARPA). The system consisted of
software to generate static scenes and specialized hardware for real-time simulation. The software was developed
on a Gould 32/67 computer running the MPX operating system and was written in FORTRAN with assembly
language routines to provide fast input/output (IM0). The hardware system consists of three racks of special purpose
hardware which allows real-time fly-thrus of terrain data at the rate of 10000 triangles at 30 frames per second. The
process of building a database by combining several forms of input data and generating static scenes using the
software system will be discussed in this paper.

2. APPLICATION

The CIG system gives a user the ability to combine real elevation data, color feature maps, models, and texture
to create realistic terrain scenes. The application that TEC is currently using this system for is to generate IR images
for smart weapons sensor testing. The problem with smart weapons systems is that testing of the weapons cannot

he done for all environmental conditions for all times of the day. The SWOE program leverages technology base
studies by Army, Navy. Marine, Air Force and DARPA. The major thrust of the SWOE approach is the integration
of measurements•, information bases, physics-based models. and state of the art scene rendering techniques to generate
synthetic IR scenes. As part of the SWOE program. a primary task was to generate two scenes for a specified site.
Fort Hunter-Liggett. California. representing 20 September 1989 at 0600 and 15()0.

3. DATA INPUTS

TEC was given all the necessary data for input into the CIG system. This data consisted of elevation data, feature
data. radiances for each feature polygon, radiometric texture maps, an M60 tank, an M 113 Armored Personnel Carrier
(APC). and a tree. TEC was supplied with two sets of data with radiances calculated for 0600 and for 1500.

3.1. Elevation data

The elevation data was supplied in the CIG grid file format which consists of two files, a header file and a data
file. The header file specifies the number of elevation grid points in x and y. latitudinal and longitudinal grid spacing
specified in arcseconds. the southwest corner of the terrain region, and a brief description. The data file consists of
elevation data stored as floating point numbers in column major format from south to north and east to west. A top
down shaded relief image of the elevation data used is shown in Figure 1.

Accesion For

NTIS Cr.A&l
DTIC TA3 V
LI",d3c n-r'O'""n'
JLStI!C'H on

By

OUt,"o)lO I

Av3'ail.ty

Dtst S ;ecctal
D~st

Figure 1. Top down shaded rehef image
of Fort Hunter-Ligget. California. _

3.2. Feature data

The feature data was digitized from existing maps at 2 meter resolution to match the elevation data resolution.
This data was supplied in the CIG color fide format. This format consists a 512 byte header containing information
such as the number of rows and columns, the number of intensities and bits, and northwest and southeast corner.
The data contains three planes of two byte data values representing feature identification numbers (FID), surface
material categories (SMC), and a fidler plane, with the number of values in each plane being the number of rows
times the number of columns. An image representing the feature data used for the 0600 and 1500 scene is shown
in Figure 2.

i qour.- 2 1 p d,- n radianc mafý rprcscnlnn 1 22ehalurc rx1%Pýai allE nd I ;(I,

The r~ad ianc datai for cacti terrain feature poI g in wkia, calculaited hby us ing. data output f ront the Interin Thermal
Model l'VM) thait %k&a piped into the linproved Background Radiance Model (IBRM) The output of' the IBRMi
program c-Onsisted of one radiance per terrmuf feature polygon mieasured in watts/cmn. Eac:h of' these- vAluc. were
Xissociate~d with ain H D in the feature tile disc,,usseLd in the previous se-ction.

;.-I Te,\Itre- mniap'

Iveitirt wiapý itre mini~c, wsed toi cnt lce the (detail of ter-rain or mod(~els. In other wAords,, rather than having a
hinh rec ii uti' n dtbetexture can be used to make the terrain appear high resolution. The te xture map,, suppl~ed
kere c.alculated from empirical daita, that is., data used to generate the imaps are based oj obsýervation and not theory.

The temnre nmnp, \kere supplied in the CIG sector imnace format with a Ni/e of 2SON24;0 pixels and represented three
e. itfurc t he are so il. InIkIII ed Wi eeL;iCt i ii and forwest cam tp\ . The sector imnagoe formflat ý:ontain s the s une fields

III 1i\ hea~der as the color file lornimit discmj,,sed in section ;.2. Ilhe data 1(I owk Inv the 5,12 byte: header contains one
plane 01 011C lk pIXel Informait io sm si the datta are ion (n hrome. The texture ma~ps, were prodlu ced b\ a provgran
wkritten in turirt~ past al running o -,n an IBEM cont-Kitible personal computer. Thec program calculated texture matps for

-'IS(pteukIIlr 19,S" at WiX I indl I (X). The texture images, rupresenine! the three surf a~c twiterial camciormes, are

twvn ki aitpv amt ISWIN art iltitisr ald Irtin 1It~ Ii i nghm

3.5. Models

The models that were supplied consisted of an M60 tank. an M 113 APC. and a tree. The tree model that was
delivered had it's branch structure modeled after an actual tree measured in the field. There was no model for the
leaf structure, so a function to randomly place triangulated leaves on the branches was used. The number of leaves
place on the trees is based upon the season of the year. That is. winter would have no leaves and summer would
be full of leaves and spring and fall would have some variation between. The 1500 hour tree had a shadow pasted
to the bottom of it. That is, the shadow is physically part of the geometry data and does not interact with the terrain
at all. This noninteraction caused the trees to cut through the terrain or appear above the terrain in some cases. The
M60 and M113 geometryfs were obtained from the Ballistic Research Laboratory (BRL). The M60 tank at 1500
also came with a shadow as part of it's geometry and had the same problem as the tree model in it's non-interaction
with the terrain. All the models were supplied in the CIG Vertex and Polygon (VP) format The vertex file
contained x,y~z model vertices and radiance values for each vertex. The polygon file contained the number of sides
in the polygon followed by indices into the vertex file. This data would be repeated in the file for each polygon in
the model. The radiances are repeated three times in the file for compatibility with original VP files used in the CIG
system. This format is depicted in Table 1.

Vertex File Polygon File
Xo YO 4 k RO RO 3 (number of sides)
X1 Y, Z, R, R, R, index to vertex I
X, Y, Z RR2 RR index to vertex 2
Xý Y, 7, k R.Rk index to vertex 3

Table I. Vertex and polygon model file format.

The indexes for the vertices were defined according to the right-hand rule or in a counter-clockwise order. This is
necessary for calculating surface normals correctly for polygon coloring. If the vertices are not defined in this order,
the surface normals of the polygons will point into the model instead of out which will result in improper rendering.
The models described in this section are depicted in Figure 4.

Figure 4. A tree model, M113 APC. and M60 tank with radiances calculated for 1500 hours.

3.6. Radiance to grayscale mapping

Since the CIG could not process floating point radiance values contained in the feature radiance and model files,
these radiances had to be converted to gray scale colors in the 0 to 255 range. The conversion of the radiances to
gray scale was a simple linear mapping. A routine was written to read in the terrain feature radiances. tree radiances,
and target radiances and calculate the absolute minimum and absolute maximum radiances. The minimum radiance
was mapped to zero and the maximum was mapped to 255. A binning process was performed in which 256 radiance
bins were made to map the rest of the radiances. This bin size was calculated simply by dividing the difference of
the maximum and minimum by 256. The model output of this program is the vertex file with the radiances replaced
by grayscale values. The feature radiance file output is modified by adding an additional column containing

grayscale values for each feature polygon. The feature radiance file is then reformatted into a CIG color Look-Up

Table (LUT) for use in scene rendering.

4. Software integration

The initial Fort Hunter-Liggett IR scenes were generated using a nonintegrated process. Two scenes, representing
20 September 1989 at 06(0) and 1500, were generated for the Fort Hunter-Liggett site. For the initial Hunter-Liggett
scenes. the thermal calculations were run on a SUN workstation, the radiances were run on an Silicon Graphics
workstation, and the images were rendered on a Gould.

Over a year period, the CIG system was ported to a Unix platform, a Stardent Titan 3040 mini-supercomputer.
The thermal and radiance models were also ported to the Titan with little difficulty since they already existed on
Unix based machines. Only portions of the CIG system used to generate the initial IR scenes were ported to the
Unix platform. This task was expected to be somewhat difficult because of major differences in the two machines,
the Gould running MPX and the Titan running Unix.

The first step in porting the code was to physically bring over the necessary portions of the code to the Titan from
the Gould. This was done through a combination of ethernet connection and a 9-track tape drive. Several problems
that were encountered in porting the code were incompatibilities in the FORTRAN programming language due to
extensions, inline assembly language and assembly language calls, and systems calls. The code was compiled to
determine where all these problems would occur Some of the system calls that the Gould used were to get extended
memory, system date and time. There was no need to get extended memory on the Titan due to it's 256 megabytes
of base memory compared to the Gould's 16 megabytes. System date and time routines were replaced with Unix
system routines. The assembly language calls were mostly to provide fast 1/0. These calls were replaced with calls
to C language routines. The inline assembly language was also replaced by calls to C routines.

In order to properly test the code, it was ported in the order that it had to be executed for perspective scene
generation. That is, common routines that were used by all programs were ported first, followed by the programs:
shaded relief, terrain database creation, terrain coloring, terrain texturing, model creation, image input file creation,
and image generation. All these programs and their inputs are described in the next section and will step through
the process of creating, coloring, and texturing a database to the final process of how the image generator uses world
to screen transformations. polygonal tiling, and z-depth buffer calculations to create a final perspective image. The
perspective scenes that were generated for 20 September 1989 at 0600 and 1500 are depicted in Figure 5.

Figure 5. The syntheaic IR images represaet Fort Humer-Liggett California on 20 September 1989 at 0600 and M500.

5. DATABASE CREATION AND SCENE GENERATION

5.1. Shaded relief

As a quick look quality check, the shaded relief program creates a top down gray-shaded relief image of the
CIG's elevation grid data. The user inputs to this are grid file name, output image name, sun zenith, and sun
azimuth. The output image of the shaded relief program is the CIG sector image format which was described in
section 3.4. The sun zenith and azimuth determine how the elevation is shaded.

Since the image display routine on the Gould was hardware dependant. this routine could not be ported to view
the output image. In order to view the image, it was converted to a format that could be displayed. The Application
Visualization System (AVS). a software package available for the Titan, was used to view the resulting image. A
program was written to convert the sector image to an AVS image for viewing. Since then a Motif Graphical User
Interface (GUI) for the shaded relief program was developed. This interface allows the user to adjust all of the
inputs described above, generate the image, and display the image on a 24-bit display. The user may also select
points on the screen to obtain latitude and longitude information from the image. The GUI is written in C and
simply outputs the mentioned parameters to a file that the shaded relief program reads in. The GUI is a C program
shell that is written around the shaded relief FORTRAN program.

5.2. Terrain creation

The terriin creation program is the module that creates the CIG terrain database from the General Grid File
(GGF). This is the same GGF that was used to generate the shaded relief image. This program creates three files:
a region file, a node file, and an item file which are collectively known as the Common Database (COMDB). The
region file is mainly a header file and contains such information as a region description, paths to item, node and
texture file. number of texture maps used by region, which texture maps are used, center of the region in total
arcseconds. size of the region in latitude and longitude, number of levels of detail (LOD), number of tree levels, and
total number of nodes. A node is defined as a block of 5 x 5 grid data points. The node file defines the centroid.
size. LOD rangus. pointers to sibling and children, FID's/SMC's, grid spacing. and pointers to the nodes geometry,
color, and texture information for each node in the file. It also contains 64 one bit flags per node which describe
such information as child pointer, sibling pointer, LOD and texture existence, shading type (curved, face. self
-luminous). coloring type (vertex or polygon). These nodes are the building blocks of the database which is designed
around the quadtree structure. that is, a tree structure that contains four children per parent which is illustrated in
Figure 6.

Poot Node

LowI ReSo I Ln I on

LOD 3

SMe:I Iu RLn PAM I ut. I on

LOO 2

H fgtPaelutlon

LOD 1

Figure 6. Quadrtc structu for a daukba with duft LODM.

The item file contains the geometry information, color information, and texture information of the terrain. The
geometry data is stored as relative offiets from one another. The only point in the database that is the true latitude
and longitude position is the region centroid. The southwest comer is an offset from the region centroid and vertices
on the west edge are relative to vertices immediately south. The other data columns are relative offsets from the
vertices immediately west. The data are broken up into clusters or nodes of 5 x 5 grid posts. The database contains
3 levels of detail with the highest level of detail representing the highest resolution of the database. That is. all the
data points. The next level of detail would represent every other point and the last would be every third point. A
tree representing 3 LOD's is depicted on the previous page.

The color information in the database contains FID's which are indices into the CIG color LUT. A texture map
number is associated with each node as well as (e.f) pairs which are row and column indexes into the texture map
file. These pairs specify which texture element (texel) is assigned to the elevation vertices in the node.

Since the smallest element in the database is a node, the size of the GGF in longitude must be a multiple of the
node size in longitude and the size of the region in latitude must be a multiple of the node size in latitude.
Otherwise. this will result in an invalid quadtree. If the GGF is not the correct size, then when the COMDB is
created. the file will be clipped to a multiple of the node size. As a result, some data will be lost on the east and
north edges since the origin is the southwest corner. A file containing information such as northwest, southeast, and
center of the database as well as grid spacing is created by the terrain creation program. This file is used to fit the
color feature data to the terrain due to the data clipping.

5.3. Terrain coloring

The coloring routine uses the CIG color file, discussed in section 3.2, to color the terrain database. The parameter
file output from the terrain creation program mentioned in the previous section is used to cut the raster file to the
COMDB size. The fit program simply clips the north and east edges of the raster file based on the bounding
coordinates obtained from the parameter file. The color file contains the FID/SMC data that are added to the
COMDB. The FID's are used as indices into the CIG color LUT. The feature raster file is exactly the same size
as the terrain database which produces a one for one mapping of a feature pixel to an elevation post.

5.4 Terrain texturing

The texture image data generated by the texture generator, discussed in section 3.4. was converted into a CIG
texture file through a reformatter program that stored the texture images into a single file. The texture file contains
256x256 size maps plus 7 downsampled maps for varying LOD's (128x 128. 64x64. 32x32. 16x 16. 8x8. 4x4. 2x2).
A texture translation file contains information which maps texture to terrain polygon. This file is built by reading
the output fih from the radiance model which contains FID's and their corresponding SMC's. The program builds
the translation file and associates a texture map to each FID based on its surface material type (bare ground. medium
vegetation, and forest canopy). Each record in the translation file contains an FID start and end. a map number, and
an X and Y scale value. The X and Y scale value describes the amount of ground space that the texture map covers.
Each pixel represents a specified amount of ground space in meters. Meters are converted to arcseconds and
multiplied by 256 to obtain the amount of ground space the texture map covers. The terrain texturing program reads
in this translation file and traverses the terrain database assigning texture maps based on their stored FID's. During
image generation, the original color of the elevation vertex is modified by an additive method. Each texel value
applied to the triangles are subtracted by 128 to remove the mean and then added to the value of the vertex color.
With the subtraction of the mean, a texel value may become negative. If the value of the vertex is less then the
absolute value of the texel color the resulting pixel color may be negative. Also, it is possible for a texel value to
be added to a triangle color resulting in a value greater than 255. Either way the value will be clipped to a color
in the range of 0 to 255.

5.'q Models

Both trees and targets are models in the CIG system. Models are supplied in the vertex/lpolygon format as
described in section 3.5. These files are processed by a CIG program that converts them into the same format as
the terrain database. That is. each model has a region. item. and node file associated with it. The models built are
added to the scene through the image input file which specifies the moders positional informat'on: latitude,
longitude, altitude. yaw. pitch. and roll. The positions for the trees are obtained from a tree position fite, which
contain the positional information: latitude, longitude, and altitude at mean sea level. The targets positions are
obtained through a pxoint and click routine that allows the user to display a previously generated image without
models and point to the position to add the model. This routine currently outputs the positional information to a file.
The user then must input this information into the image input file through a standard editor. In the future. this
display routine will modify the image input file to include the targets position. If the user wants to add additional
trees, he may add them in this manner.

5.6 Image input file

The image input file drives the resulting output of the image generator. This file contains information that
specifies the terrain region that will be rendered, image size, sun azimuth and zenith, horizontal and vertical FOV.
ground, sky and haze color, and the sensor and model location information: latitude, longitude, altitude. yaw, pitch,
and roll. Currently. a sky model does not exist that works with the scene renderer, so the sky and haze color must
be specified by the user in RGB values. If there is any horizon in the rendered image it will contain the sky and
haze color. The user also has the ability to toggle various flags on or off. The two most useful flags used are
whether to output the depth file and whether to do texture processing. Even if the region has been textured, it does
not have to be processed by the scene renderer.

5.7 Image Generation

All the routines discussed up to this point in section 5 build a database for perspective scene rendering. The
rendering process consists of several steps that lead up to a final image. The steps involved consist of sending data
through ýwveral processing rontineQ which are the nrcc processor, item procesnr. pretiler. tiler, and Z-buffer
processor.

5.7. 1 Node processor

The node prcessor has one purpose and that is to traverse the database and perform an FOV test on each node
in the database. If the radius of the node is within the FOV then the node is processed further by bking passed to
the item processor, otherwise it is discarded.

5.7.2 Item Processor

The item processor performs several functions: triangle face normal calculations, polygon coloring/shading.
vertices to viewpoint space conversions, polygons clipping to hither and yon plane. The hither and yon planes define
a bounding volume and clip in 3-D space any triangles that are before (hither) or beyond (yon) this volume.

5.7.3 Pretiler

The pretiler receives data describing triangles in viewpoint space. The data for the triangles consist of vertex
coordinates and color. If texture has been applied each vertex also has EF texture indices associated with them.
These are indices into the texture map associated with the triangle. The pretiler transforms this data into screen space
coordinates through matrix multiplications, calculates color and depth gradient information of the triangle and clips
the triangle to the screen.

In order for screen clipping to take place. the pretiler calculates a bounding box for each triangle which is simply
the smallest rectangle into which the triangle will fit. At least one or as many as three of the triangle vertices will
lie in the corner of the box. The bounding box is calculated by sorting the I's and Ys of the triangle. The upper
left comer of the box is , and the lower right is (There are four conditions that may occur in the
clipping process. The first is the simplest. and that is if the area of the box does not intersect the area of the screen.
then the triangle is not within the screen and no further processing is necessary. The second is both the triangle and
the bounding box are completely within the screen boundaries which mean the triangle will be processed nurmally
by the pretiler. The third and forth case is that the bounding hox is partially on the screen, but the triangle may
or may not also in(ersect the screen. These last two cases require some "non-trivial" screen clipping. These
conditions arc depicted in Figure 7.

2k

Figure 7. There are four casei in whMdu
triangles may be clipped to the screen.

5.7.4 Tiler

The tiler receives inr Lt from the pretiler which consists of triangle vertices described in screen coordinates along
with the depth and color of each vertex. The tiler determines which pixels lie within the interior of the triangle and
calculates the depth and color of the interior pixels by interpolating using the vertex information. If texture is
present. it is calculated and applied to the pixels. The output of the tiler consisLs of the coordinates, depth. and color
for each of the interior pixels of the triangle processed. This information i,, paw.s.d to the final processing step. thi
z-buffer.

5.7.5 Z-Buffer algorithm

The i-buffer algorithm is the final process before the image rendering is complete. This algorithm is used to
determine whether one object obscures another. The z-buffer stores z values or depths for each pixel. The first step
is to initialize the depth buffer to the maximum z value and the image buffer to the background pixel value. The
background pixel value is determined in the image input file by the values set for ground. haze and sky color. As
the tiler determines the pixels within the triangle and the depth of each pixel, if the depth of the pixel currently being
processed is less than the value already stored in the z-buffer, then that polygon is closer to the viewpoint at that
pixel than the previous one recorded in the z-buffer. The depth and intensity of this pixel replaces the current value
stored in the z-buffer. If the depth of the pixel is farther away than the one stored in the z-buffer, then it is
discarded. When all the triangles in the FOV have been processed, the z-buffer will contain the smallest z values
for each pixel and the image buffer will contain the intensifies corresponding to those z values. The buffers are then
stored into two files: a sector image file and a depth file.

5.9 lmage display

The image rendered is stored in the sector image format and has a corresponding depth file which contains depth
valu , for each pixel in the image file. The depth stored is actually stored as the inverse depth or I/depth. The
imaje is displayed b, means of a program written using X-windows. Besides strictly displaying the image, the
program also allows the u,.r to get positional information from the screen through the use of a mouse. This
information is processed by converting screen pixel coordinates to world coordinates using the depth information and
sensor location. A new image displayer written using X-motif is currently being developed and will allow the u.sr
to display the IR image in pseudo color using a default color LUT or a user-defined color LUT. The user will al.so
be able to display the image as a range map with the closest pixels colored black and increasing in intensity to white
as pixels are further from the sensor viewpoint.

6. FUTURE WORK

6.1 Image sequencer

Future work will consist of an image sequence generator which could be stored to an optical disk- or VCR for
later previewing. Since the image generator works with color LUT and the terrain geometry does not change
depending on time of day. a user could run a weeks worth of data through the thermal and radiance models (that
is. 24 hours a day for 7 days) and come up with 168 color LUT's for the terrain. The image generator could be
modified to generate an image for each LUT. These images could be displayed in sequence to see how the terrain
radiances change over a weeks time period. There is. however, a problem with models. The trees and targets do
not work on LUT since the actual color is already stored in the item file. This would mean that models would have
to be generated for each of the 168 runs which could take up a lot of disk space. If done this way. the image input
file would have to reference 168 representations of the same model. This is a definite waste of space because all
the models have the same geometry. but different colors. A solution to this problem would be to separate the
geometry data and the color data into two separate files.

6.2 Graphical User Interface (GUI)

A GUI for the shaded relief is already available for the Titan. An image viewer is currently being developed for
the SG and Titan. A GUI to modify parameters in the image input file and to run the entire database creation and
scene rendering process is currently under development.

7. ACKNOWLEDGEMENTS

The author wishes to thank the following partucipants in the SWOE project: US Army Cold Regions Research
and Enginmrmng Latwratory. US Army Engineer Waterways Experiment Station. US Air Force Phillips
Laboratory/Geophysics Directorate, SPARTA. and Aerodyne Research Incorporaied.

