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OSCILLATIONS IN PISTON-DRIVEN SHEAR FLOW OF A
NON-NEWTONIAN FLUID

DAVID S. MALKUS

JOHN A. NOHEL

BRADLEY J. PLOHR

ABSTRACT. In recent experiments on piston-driven shear flow of a highly elastic and very
viscous non-Newtonian fluid. Lim and Schowalter observed nearly periodic oscillations in the
particle velocity at the channel wall for particular values of the constant volumetric flow rate.
Such periodicity has been characterized as a "'stick/slip" phenomenon caused by the failure
of the fluid to adhere to the wall. We suggest an alternative explanation for these oscillations
using a dynamic mathematical model based on the Johnson-Segalman-Oldroyd constitutive
relation. the key feature of which is a non-monotonic relationship between steady shear
stress and strain rate. The resulting three-dimensional equations of motion and stress are
reduced to one space dimension, consistent with experimental results. In the inertialess
approximation, the equations governing the flow can be viewed as a continuous family of
quadratic ordinary differential equations coupled by the non-local constraint that fixes the
volumetric flow rate. Varying the flow rate. the numerical simulation of solutions to this
system exhibits transitions to and from a regime with persistent oscillations that compare
favorably with the Lim-Schowalter observations. When the time-asymptotic behavior is
cyclic, large shear strain rates are observed in a thin but macroscopic layer near the wall.
The transitions are explained using spectral analysis of the linear (infinite dimensional)
operator resulting from linearization of the quadratic system about a discontinuous steady
state with a jump discontinuity in the stress components. The persistent oscillations arise
as a Hopf bifurcation to periodic orbits as the volumetric flow rate is increased beyond a
critical value.

1. INTRODUCTION

In their recent experiments on piston-driven flow at a fixed volumetric flow rate of a highly

elastic and very viscous non-Newtonian fluid, F. Lim and W. Schowalter (4, 5] observed

persistent, nearly periodic oscillations in the particle velocity near the channel wall. They

characterized the periodicity as a stick/slip phenomenon; oscillations are thought to reflect

periodic detachment and reattachment of the fluid, while the regular temporal variation of

normal stresses leads to spatially periodic distortion of the extrudate [1].
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In this paper, our focus is on mathematical modeling of the Lim-Schowalter experiment.
in which the volumetric flow rate is prescribed by driving the fluid with a piston moving
at fixed speed. Experimental data suggest that far away from the piston, the flow is essen-
tially one-dimensional. Highly elastic and verv viscous non-Newtonian materials are mod-
eled mathematically as incompressible viscoelastic fluids with fading memory and, for the
present, under isothermal conditions. The basis for our explanation of persistent oscillations
in piston-driven flow is the differential Johnson-Segalman-Oldroyd constitutive law, which is
consistent with experimental shear data; it exhibits a non-monotonic relation between steady
shear stress and strain rate. This constitutive model has already been used successfully by
us in Refs. [6, 7, 121 to provide an alternative explanation of "spurt" and related phenomena.
originally observed in experiments by G. Vinogradov et al. [14] in pressure-gradient driven
flows. (While the Johnson-Segalman-O.,droyd constitutive model performs well in repro-
ducing particular shear flows of highly elastic and viscous non-Newtonian fluids, we neither
claim nor expect that it will perform equally well in other flows (e.g., extcnsional flow).)

Piston-driven flow at a fixed volumetric flow rate is modeled as an instantaneous, globally
well-posed feedback-control problem in one space dimension, the control being the prescribed
volumetric flow rate and the feedback being the pressure gradient. A deeper analytical un-
derstanding of the governing equations is possible because the system contains a small pa-
rameter. the ratio of Reynolds number to Deborah number. In the inertialess approximation.
obtained by setting this parameter to zero, the equations governing the flow can be viewed
as a continuous family of quadratic ordinary differential equations coupled by the non-local
constraint that fixes the volumetric flow rate; all solutions of this system are bounded. even
for large. discontinuous initial dat.a. Numerical simulations demonstrate that beyond a crit-
ical flow rate, the time-asymptotic behavior is cyclic. Large shear strain rates are observed
in a thin, but macroscopic, layer near the wall; such a layer also appears in pressure-driven
spurt flow.

Further analysis of the inertialess system links the observed oscillations to the occurrence
of a Hopf bifurcation that spawns a periodic orbit beyond a critical flow rate. To understand
this behavior, we observe that the dynamic equations admit discontinuous steady states when
the volumetric flow rate is fixed (corresponding to the wall stress between the stpady local
shear stress maximum and minimum), and we linearize the system around a discontinuous
steady state with a single jump. Parametrizing such discontinuous steady states by wall
stress and flow rate. there are regions in parameter space in which the eigenvalues of the
discrete spectrum of the linearized operator change from having negative real parts to having
positive real parts, and there is a separating curve along which the real part of the eigenvalue
vanishes. This information is the basis for showing in Ref. [10] that a Hopf bifurcation to a
periodic orbit occurs when the flow rate is raised beyond a critical value. However, proving
that. the resulting periodic orbit is stable (i.e., that the bifurcation is supercritical) remains
a challenging open problem.

The outline of this paper is as follows. In Sec. 2, we summarize the development the
mathematical model for unsteady, isothermal. piston-driven planar channel flow of a highly
elastic and viscous non-Newtonian fluid, based on balance laws and the Johnson-Segalman-
Oldrovd differential constitutive law, with a single relaxation time, in three dimensions. The
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inertialess approximation for such a flow takes the form of a one-parameter quadratic svs-
tern of first-order functional differential equations in which the fixed volumetric flow rate is
imposed as the control and the pressure gradient is the feedback. In Sec. 3. a two-parameter
family of discontinuous steady state flows is determined. The two parameters can be chosen
to be the volumetric flow rate and the position of the stress discontinuity. In Sec. 4. we use a
numerical algorithm for the inertialess system to simulate piston-driven flows. We consider
the sudden start-up problem. in which the volumetric flow rate is instantaneously raised from
zero and then held fixed. Upon varying the fixed volumetric flow rate, the numerical simu-
lation of solutions exhibits transitions to and from a regime with persistent oscillations; this
phenomenon compares favorably with the Lim-Schowalter observations. In Sec. 5. spectral
properties of the inertialess system linearized about particular discontinuous steady states
are determined. The infinite dimensional linearized operator is bounded. and we determine
criteria for its essential and discrete spectra analytically. We use a numerical method to
compute the discrete spectrum of the linearized operator from the analytical criterion. The
discrete spectrum consists of a pair of simple. complex conjugate eigenvalues, and the sign
of the real parts of these eigenvalues changes from negative to positive along a curve within
the parameter plane for the discontinuous steady states. In Sec. 6. we relate the results on
the discrete spectrum obtained in Sec. .5 to results of numerical simulations in Sec. 4. and we
explain the experimentally observed persistent oscillations as a Hopf bifurcation occurring
when the control parameter is increased beyond a critical value. Finally, in Sec. 7, we use
the results of Secs. 5 and 6 to offer an alternative explanation of the mechanism underlying
the Lim-Schowalter experiment.

2. PISTO.N-DRIVEN SHEAR FLOW

To model the experiments of Lim and Schowalter, we consider the planar Poiseuille flow
a channel of a highly elastic and very viscous incompressible non-Newtonian fluid under
isothermal conditions, satisfying the Johnson-Segalman-Oldroyd constitutive relations for
the evolution of the extra stress tensor. We summarize the derivation of the system of
partial differential equations that governs such a one-dimensional shear flow, starting from
balance laws and constitutive equations in three dimensions; for more details, see Refs. [6, 7J.

The channel is aligned along the y-axis and extends between x = -h/2 and x = h/2.
The flow is assumed to be symmetric about the centerline x = 0 of the channel, and we
restrict attention to the interval x E [-h/2,0]. Since the fluid undergoes simple shearing,
the velocity and stress variables are independent of y. In particular, the velocity field is
v = (0. v(x. t)). so that the flow is incompressible and the conservation of mass equation is
automatically satisfied.

The total shear stress on the fluid is the sum of three contributions, an isotropic pressure,
a Newtonian stress, and an extra stress 7r. The conservation of momentum in the x-direction
implies that the pressure takes the form p = p0(x. t) - f(t) y, with f being the pressure
gradient. We adopt the Johnson-Segalman-Oldroyd differential constitutive law with a single
relaxation time [13. 2] to determine the extra stress. In shear flow, the extra stress is
expressible in terms of two variables, the shear stress o(x, t) :- r'y and the principal normal
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stress difference Z(x,t) :-- (1 - a2)(7ryy - 7r"); here a E (-1, 1) is the slip parameter
of the fluid. The fluid variables v, a. and Z are governed by the y-momentum equation
and constitutive differential equations. We introduce two dimensionless parameters that
characterize the flow: a, the ratio of Reynolds number to Deborah number; and e, the ratio
of Newtonian viscosity to shear viscosity. After suitable scaling, the governing equations
become

atUt -- O'X -" X +Yzq f

-(Z + 1)1- = -0 , (JSO)

Zt + Ur = -Z .

on the interval [-1/2, 0]. The boundary conditions are

v(-1/2. t) =0 and vt(0. t) = 0 . (BC)

At t = 0. we impose the initial conditions

v(x, 0) = v0o(x) , a(x. 0) = co(x) , and Z(x, 0) = Zo(x) . (IC)

For consistency of (IC) with (BC), we assume that vo(-1/2) = 0 and vq(0) = 0; to maintain
continuity at x = 0. we require that a0(0) = 0. This condition, together with the boundary
condition cx(0, t) = 0 and the second equation of system (JSO), implies that U(0. t) = 0 for
all t. Thus symmetry about the centerline in maintained.

In the case of highly elastic polymer systems, a is very small, 7 to 10 orders of magnitude
smaller than E, which itself is of the order of 10-3. Throughout this paper, therefore, we
make the inertialess approximation a = 0. This approximation has been used successfully
in Refs. [7, 12] to study pressuce-driven flow in which the pressure gradient f is prescribed.
If a = 0, the momentum equation in system (JSO), combined with the boundary condi-
tions (BC) and a(0, t) = 0, implies that

T-- (2.1)

where
T(x,t) := -f(t)x (2.2)

coincides with the total shear stress a + ev. Using Eq. (2.1), v. can be eliminated from
system (JSO).

In piston-driven flow, the volumetric flow rate Q is prescribed, Q being given by

Q 2 v(x. t) dx = -2 L xv(x, t) dx ;(2.3)Q(t) := 2 J(1/2 d f -2 1/2 "t x(

here an integration by parts was carried out in the second step. However, the pressure
gradient f is not known; instead, f adjusts to maintain the desired flow rate Q. We can

express f. or equivalently T, in terms of the given flow rate Q as follows. Substituting for

vz in Eq. (2.3) using Eq. (2.1) leads to the feedback equation

T(x, t) = -12EQ(t)x + 24x 1/2ya(y, t) dy . (FB)
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where we think of the prescribed Q as the control and f (or equivalently T) as the feedback.
This equation is written more simply as T = To + Pa, where To(x, t) := -12EQ(t)x and
where the operator P, defined by

[Pa] (x, t) := 24x j1/2 ya(y, t) dy (2.4)

is a projection, in the sense that P 2a := P[Pa] = Pa.
Thus the system governing inertialess piston-driven flow is the quadratic system of func-

tional differential equations

at = (Z- ( )

Zt= - ( T a).Z ,(QFDE)

T = To+Pa,

together with prescribed the initial conditions (IC) for a(x, 0), Z(x. 0).
Throughout the rest of this paper. we will assume that the prescribed flow rate Q(t) = Q

is a positive constant. It is shown in Ref. [91 that the initial value problem for (QFDE) is
globally well posed for all time and for initial data a0 , Zo that are either smooth or rough
(in the sense of being only bounded and measurable) and of arbitrary size: moreover, the
stress components a, Z remain bounded. (We remark that the global well-posedness of the
full governing system for piston-driven flow with a > 0 is also discussed in Ref. [93.) Beyond
technical considerations that need not concern us here, the key to proving global existence
and boundedness of solutions and understanding the dynamics is that solutions of system
(QFDE) satisfy the Lyapunov-type identity

d =-2[a2+(Z+1)2

Observe that Eq. (L) is independent of a, -, and T. It follows easily from Eq. (L) that
a(-, t) and Z(., t) remain bounded for as long as the solution a, Z of system (QFDE) exists.
This fact, together with standard results, implies that every locally defined solution can
be continued forward (uniquely) for all time; moreover, the solution remains bounded, the
bound depending only on the size of the initial data. However, although solutions to system
(QFDE) exist globally and remain bounded, it is difficult to determine their asymptotic
behavior of solutions as t - c0. Indeed, the extensive literature on quadratic differential and
functional differential equations does include any results on the global qualitative structure
of solutions of (QFDE). The rest of this paper is devoted to understanding some of the
interesting dynamics of the quadratic system (QFDE) by a combination of analytical and
numerical methods, and this leads to an explanation of the experimental observations of Lim
and Schowalter.

3. STEADY FLOWS.

Our goal is to study the linearized stability and instability of steady state solutions of
system (QFDE). It will be clear that steady states of (JSO) and of (QFDE) coincide.
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Fig. 1: The steady shear stress T = '(T•) Fig. 2: The velocity profile in steady flow
plotted vs. shear strain rate F,. for the path OA.CW shown in Fig. 1.

We shall indicate a steady state solution using an overbar. Taking Q(t) := Q > 0 to be a
constant and setting Ut = 0 and Zt = 0 in (QFDE) shows that system (QFDE) admits
steady states ', Z satisfying the following requirements:

•= -2

T"= + , T= v P,(3.1)1I+:F,2 ,I •

~1 + T~1- 1+ V2 +E , T= To,+Par, (3.2)

where we define T0(x) := -121Q-"x.
The steady strain rate 1Ea, is determined by solving the steady stress/strain-rate relation

w(v,) = T, (3.3)

where the function w is defined by

w(s) := s + • . (3.4)
+ S2

When c < 1/8, the function w is not monotone, as shown in Fig. 1. This leads to the
occurrence of piecewise smooth steady state solutions with simple jump discontinuities in
T,, implying a kink in the steady velocity T; such a solution is indicated in Figs. 1 and 2.
Formulae (3.1) imply that the steady stresses U" and 7 are piecewise smooth functions having
jump discontinuities whenever the strain rate 'fl, does.

While there are steady solutions with an arbitrary number of discontinuities, we focus
on those with a single discontinuity. There is a two-parameter family of such solutions. It
proves convenient to take as parameters the total stress T. := T(x.) at the kink and the
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thickness 6 := x. + 1/2 of the layer of high strain rate. The region of allowable values for
these parameters is rectangular: T. lies between T, and TM, the stresses at the minimum
and maximum of w; and 6 lies in the interval [0, 1/2).

For each choice of (T., 6), the strain rate V, is determined by solving

w(V.(x)) = T. X (3.5)
X.

for each x E [-1/2, 01; here x, := -1/2+6, and when there are multiple solutions of Eq. (3.5),
F,(x) is chosen on the high or low strain-rate branch of w according as x < x. or x > x..
The function V, determines 5r and Z through Eqs. (3.1), and the flow-rate Q for the solution
is calculated through Eq. (2.3).

A more convenient formula for Q can be obtained using a change of variables introduced
by Yao [151: in Eq. (2.3), change variables from x to s := r.(x) using the relation -fx = w(s)
to obtain

f s sw(s)w'(s)ds, (3.6)

where in the present application

7 T. 2T. (3-7)
x. 1-26

Here, the interval of integration is U := [0, s.] u [s-, s,], where sý := r ,n T(x) (the low
and high strain-rate solutions of w(s.) = T.) and s.. := t7(-½) (the high strain-rate solution
of w(s,,.) = T,), as in Fig. 1. The integral in Eq. (3.6) can be evaluated explicitly [15]:

" s 1 S 1 2
t 2(a- +) 5E S (3.8)

To make contact with experiment, however, it is preferable to use parameters different
from T. and 6, namely the total Airess T, := T./(1 - 26) at the channel wall and the flow
rate Q. (See Fig. 4a below.) The lines T. = T, T. = TM, and 6 - 0, which bound
the allowable region in the (T., 6)-plane. correspond respectively to the three curves labeled"bottom-jumping," "top-jumping," and "classical flow" in the (Tn,, Q)-plane.

4. NUMERICAL SIMULATION OF PISTON-DRIVEN FLOWS.

In order to motivate the analysis presented in subsequent sections, we first present re-
sults of numerically simulating the Lim-Schowalter experiment using system (QFDE). The
numerical algorithm (which was derived in Ref. [9]) is as follows. We predict v, at time level
n + 1 using the formula

-- - (4.1)

for the kth element in the mesh; here k runs from 1 to the number of elements. .\' and a'
is the value of the shear stress in the kth element at time level n. For the given flow rate Q,
the stress Tk is computed by evaluating Po in system (QFDE) using the midpoint rule:
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N-i

S(Xk+x+ 12 + 24 (x,+, - x,) (x, + x,+,)/2 (4.2)
2 n 2

We then difference and advance the stresses a and Z, using the latest available value of
(t'±).+ 1 , by the following "corrector" scheme:

{ an+ = (1 - At)Cn + At(Z. + 1)(v ,)n+1  1 (4.3)

Zn1 = (1 - At)Z, - .

The basic simulation that we perform using the above algorithm idealizes the instan-
taneous start-up of a flow. In other words. the test apparatus is filled with fluid at rest.
and then the flow rate is suddenly increased from zero to the prescribed value Q. Therefore
the initial conditions are i'O(x) = uo(x) = Zo(x) = 0. To compare our results with the

experimental results. we compute the pressure gradient f for each given flow rate Q. In the
simulations of (QFDE). we observe four distinct flow regimes, corresponding to different
values of the prescribed flow rate Q: the classical. spurt I, oscillatory, and spurt II regimes.
Typical plots of f(t) vs. t in the four regimes are shown in Figs. 3a-d.

In the classical regime, continuous steady solutions are achieved. Steady solutions are
also achieved in the spurt I and II regimes; they are. however, discontinuous and have the
appearance of the spurt solutions achieved in pressure-gradient driven flows [6, 7]. As Q is
increased and the transition to the oscillatory regime is approached, the time required for
the flow to settle to a steady state increases, and the settling is accompanied by damped
oscillations in f(t) and in the velocity near the wall. Finally, at a critical value of Q, the
oscillations appear to become undamped and fail to settle down; this is the oscillatory regime.
If Q is increased further, a second transition is observed, and steady. spurt-like solutions are
again achieved; this is the spurt II regime. (For technical reasons, Fig. 3d terminates before
the oscillations have died away to graphical accuracy; however, the simulation has been
carried out for much longer time, and there is no doubt that the oscillations die out.)

We wish to stress that because we rely on numerical simulation, and because it is difficult
to accurately distinguish slightly damped systems from undamped systems numerically, the
existence of a true oscillatory regime for the full system (QFDE) can only be conjectured

at this point.

We studied transitions between these regimes in detail, as a function of the imposed

volumetric flow rate i, for the polyisoprene sample PI-7 of Ref. [14] (i.e., c = 0.001417).

As Q is increased from zero, the transition from the classical regime to the spurt I regime

occurs at approximately Q = 0.1. The transition between the steady spurt I regime and

the oscillatory regime occurs at a critical Q of about 0.3, whereas the transition from the

oscillatory regime back to the steady spurt II regime occurs at a critical Q of about 1.4. We

emphasize that Lim [4] also observed four separate flow regimes in his experiments, the third

of which is oscillatory" and the fourth of which is a relatively steady regime at high shear

rate (inferred from Q). Thus our numerical simulation of (QFDE) conforms qualitatively

with experimental results.



OSCILLATIONS IN VISCOELASTIC SHEAR FLOW 9

0-60
0.10 1.60 ,

I.o

0.50 1.20

040 1.00

tP o .o I. o.so

0.60

0o -"o0

0c0 .0 €.OCC 00100'0: 20

oc: 
oco

L

Fig. 3a: f'(t) vs. t in the classical regime Fig. 3b: f'(t) vs. t in the spurt I regime
of system (QFDE). of system (QFDE).

200 __ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ 2-.-0 , , , ______________, ___,

2 00

1.50

f 1.0.00

O.O

GOo c t : :, • •ooo

0cc 2.00 4 00 6 00 1000 1200 1400 160o 000 2.00 4.00 600 000 1000 12Co io00 1•Co

L t

Fig. 3c: f(t) vs. t in the oscillatory regime Fig. 3d: f(t) vs. t in the spurt II regime
of system (QFDE). of system (QFDE).



10 MALKUS. NOHEL. AND PLOHR

5. LINEARIZED STABILITY ANALYSIS.

We consider a solution of system (QFDE) that is a small perturbation of a piecew~se
smooth steady state (5', Z); for simplicity, we assume that this steady state has a single jump
discontinuity at x., at which point T(x.) = T.. We write o, = 5 + & and Z = Z + 2. The
linearized equations for & and 2 are

(t L ) ( ) := J(-.7,T)(2)+(--)/•)P", (5.1)

where

j(-.ZT):= (7 -1-(+ I)/6 (T -')/) (5.2)( (2ar- T )16' -1(52

The operator L is a bounded linear operator acting on the Hilbert space of pairs of
functions (&.Z) E X := PS,. x PS.. where PS,. H'(-1/2.x.) x H'(x.,0) is the
space of piecewise smooth (i.e.. H1) functions on the interval [-1/2.0] with a single jump
discontinuity at x.. The linearized stability of the steady state is determined by the spectral
properties of L which we now summarize: the results stated below are proved in Ref. [10].

Since the linear operator L is bounded on X. L is the generator of an analytic semigroup.
and the time-asymptotic behavior of solutions of the linear system (5.1) is determined by
the discrete spectrum of L. To find it, we also need to determine the essential spectrum of L.
The first result states that the essential spectrum of L coincides with the set of eigenvalues
of the Jacobian matrix J for every x E [-1/2, 01.

Proposition 5.1: The essential spectrum of L is

ess(L) = U {A E C IA isan eigen' aue ofJ((x),Z(x).T(x)). (5.3)
IE[-1/2.O]

Furthermore, if T. : T, and T. # T. (i.e., the steady solution is neither bottom nor top
jumping), then there exists an 77 > 0 such that ReA < -1 for all A E O'ess(L).

The Jacobian matrix J is precisely the matrix analyzed in Ref. [7). According to Prop. 3.2
of Ref. [7], the eigenvalues of J('•(x), Z(x), T(x)) are real and negative for all x > x., whereas
for x < x. the eigenvalues can be non-real, but always have negative real parts.

Next, we characterize the discrete spectrum of L, i.e., its isolated eigenvalues of finite

multiplicity. An element A E adi,,(L) is such that there exists (a, Z) # (0, 0) satisfying

) T) + Pa. (5.4)

Row manipulations and use of the steady state relationships •' = (Z + 1)(T - -)/IE and

Z = -U(T - U)/E show that this condition is equivalent to

(A + 2)/" I)+ + (T = ( 7u 'Pa (55)
(A +2)U (A +2)7Z+ A-41)\ 0
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Since A % a..(L), one can solve Eq. (5.5) for (&, 2) in terms of P&. The solution is

2 (A,)) Pa (5.6)
Z ~Z(A ,x)

where

Ej (, x)[(A + 2)2 + A + 11(7 + 1)/c.
[(A + 2)7 + A + 1][A + 1 + (7Z+ 1)/c.]- (A + 2)Z'(.7 (5.7)

Z(Ax)-( + 2)( + 1)/
[(-A+ 2)Z7+ At + 1][,\ + 1 + (Z + 1)/ft] - (A + 2)2"

We emphasize that the denominator in these expressions vanishes for some x E [- 0, 0] if and
only if A E orss(L). The preceding calculations lead to the following characterization of the
discrete spectrum:

Lemma 5.2: A complex number A belongs to rdisC(L) if and only if A ý aess(L) and

24 x2E(A, x) dx = 1 . (5.8)

Moreover. ifA E adai,,(L), then A has multiplicity 1.
The integral in the eigenvalue condition (5.8) can be evaluated by changing variables

from x to s := Fz(x) using the relation -fx = u,(s) (cf Eq. (3.6)):

1-24 f1 x 2E(A, x) dx = f j (5.9)

where the interval of integration is U := [0, s+] U [s-, s,,,] and

A +1-s 2f,4,(A, s):=+ _S (5.10)
k.,% + 1) [1 + E(A + 1)] - [1 - - - E(A +1I)2] S2 + CS4 *"

We define 4(A, T., 6) to be c7f/24 times the right-hand side of Eq. (5.9), i.e.,

t(A,T.,6) : f s2 [(A+ l) 2 +s 2 It+C+ sS12[1 +C- (1 -2E)s 2 +sS4] ds (5.11)
fu (1 +s 2 )3 {(A+1) [1 + (A+ 1)]1- [1 -c- (A+1) 2]s 2±+ s 4}d

The functions D depends on the parameters T. and 6 through s-, s., and sw, which deter-
mine U. As an immediate consequence of Lemma 5.2, we have the following characterization
of the discrete spectrum of L.

Proposition 5.3: The discrete spectrum of L is

Udisc(L) = { A E C\a.s.(L) I D(AT.,6) =0} . (5.12)

While the integral in the definition of D can be evaluated explicitly, its exact form is
not illuminating for computing the discrete spectrum analytically, and we determine it nu-
merically as follows. A numerical scheme is used to solve the equation D(A, T., 6) = 0 for
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Fig. 4a: The regions of linearized stability

and instability for steady state solutions Fig. 4b: A closeup view of the portion of
with a single jump. The dots connected Fig. 6a where start-up simulations of sys-
by dashed lines represent data from start- tern (QFDE) leads to instability.

up simulations of system (QFDE).

A, given T. and 6. This is a system of two real equations, Re D(a + b i, T., 6) = 0 and
Im i(a + b i, T., 6) = 0, for the real and imaginary parts of A := a + bi. We accounted for the

possibility of having multiple roots by plotting the two level curves Re 4 = 0 and Im 4 = 0
in the (a, b)-plane using a contour plotter and looking for their intersections. For the range

of parameters T. and 6 we explored, there is always exactly one intersection, and hence a
single root.

We are interested in the possibility that this element A of the discrete spectrum have
Re A > 0, so that the corresponding steady state solution (7, Z) is linearly unstable. Re-
garding A now as a function of T. and 6, instability would occur in a certain region of the
(T., 6)-plane. The region in of instability is separated from the region of stability by the set
of (T., 6) such that Re A = 0. Thus we are led to find the curve of parameters (T., 6) for
which there exists a b E R such that 4)(b i, T., 6) = 0.

The results of solving this system of equations numerically is depicted in Fig. 4a. (The
viscosity ratio is taken to be e = 0.001417, which corresponds [3] to the polyisoprene sam-

ple PI-7 of Ref. [141.) Instead of plotting the Re A = 0 curve in the (T., 6)-plane, however,
we have used as coordinates the wall stress T, := T./(1 - 26) and the flow rate Q, as given

in Eq. (3.6).

6. RELATION OF ANALYSIS TO SIMULATION.

To compare the results from numerical simulation of (QFDE) in Sec. 4 with the linearized

stability analysis of Sec. 5. we observe that for each i > 0. the numerical solution of a start-

up problem for (QFDE) contains one parameter, 6• that approaches a constant value as
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time tends to infinity. Associated with this value of 6 and of Q, there is a unique steady
state (T(x), Z(x)) (with a single jump discontinuity) having layer thickness 6 and flow rate
Q: this steady state might not be stable. in which case the solution does not approach this
steady state, but rather seems to tend to a limit cycle (in the cr, Z phase plane) that in
some sense "encircles- the unstable steady state. This steady state, be it linearly stable or
unstable, can be computed by solving the equation

Q - Qsteady('T, 6) (6.1)

for T., where Qteady(T., 6) is the function defined by the right side of Yao's formula for the
flow rate, Eq. (3.6), in which the relevant parameters have been written in terms of T. and
6, using relations of Sec. 3.

We have simulated a sequence of start-up problems. with increasing values of i. and
computed T. for each value of 6 obtained. This gives a sequence of points in the (T.. 6)-
plane. The results for s = 0.001417 are plotted as the discrete points in Figs. 4a and 4b: the
equivalent coordinates (T,,.. Q) have been used. as described at the end of Sec. 5. Figure 4b
shows that the curve defined by this set of points crosses transversely into and out of the
unstable region as Q increases. The two crossing points correspond to the transition points
between the oscillatory regime and the spurt I and II regimes, respectively. Thus the nu-
merical results suggest that the region of linearly unstable steady states is explored by the
dynamical start-up experiments. We emphasize that although some steady state solutions
of (QFDE) are linearly unstable, all solutions of (QFDE) are bounded for all time (see,
Sec. 2).

A plausible explanation of the observed behavior, as well as of the correspondence between
the solutions of (QFDE) and the linearized stability analysis, is that for increasing values
of the flow rate Q, (QFDE) is undergoing Hopf bifurcation upon crossing into and out
of a regime of periodic orbits. We prove such a result in Ref. [101 by showing how the
infinite-dimensional flow problem generated by system (QFDE) on the Hilbert space X
is reduced (using the center manifold theorem) to one for a two-dimensional vector field
to which the classical Hopf bifurcation theorem can be applied (see [11], Theorem 1.13).
However, confirming that these periodic orbits are stable (hence observable in a physical
experiment), requires showing that the bifurcation to periodic orbits is supercritical, and
this remains an open problem for the present.

It is interesting to note that the frequency of these periodic orbits seems to have physical
significance: in Ref. [9], the frequency is observed to be proportional to 1/6; according to
the dimensional analysis leading to system (QFDE) and the assumptions made in fitting
model parameters to material data [3), this observation translates into a prediction that
the dimensional frequency of oscillation is independent of molecular weight in a sequence of
experiments varying molecular weight at the same fixed i. This seems to be the case with
Lira's experimental data [41 to a reasonable degree of accuracy.

7. CONCLUSION

We have presented a mathematical model aimed at explaining the experiments of Lim
and Schowalter. Our model of piston-driven channel shear flow of a highly elastic and very
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viscous non-Newtonian fluid uses a constitutive model characterized by a non-monotonic
relationship between steady shear stress and strain rate. We have described the reduction
of the three-dimensional equations of motion and stress to approximating, one-dimensional
systems that can be studied by a combination of numerical and analytic methods. The
inertialess approximation results in a quadratic system of functional differential equations
in which the prescribed volumetric flow rate is imposed by a feedback control. Numerical
solution of this system exhibits four distinct flow regimes, as do the experiments of Lim
and Schowalter. The third of these regimes exhibits persistent oscillations that compare
favorably to the Lim-Schowalter observations.

If the governing system (JSO) and its inertial approximation (QFDE) model the ob-
servations of Lim and Schowalter correctly, then the details of the flow are different from
what these experimentalists assumed. Rather than a stick-slip flow, the flow that we predict
in the oscillatory regime has a thin "apparent slip" layer that exists for all time. The layer
is unstable, in the sense that there are large and persistent time variations in the apparent
slip velocity: these are associated with persistent oscillations in the pressure gradient that is
controlled by fixing the flow rate Q. For a certain range of Q, we have provided convincing
evidence that these oscillations are a consequence of a Hopf bifurcation to periodic orbits by
a combination of analytical and computational methods. Moreover, the frequency of these
oscillations agrees with observations of Lim. Our earlier analysis of the "spurt phenomenon-
in Refs. [7, 12] explains why the control is the source of the instability: the flow would be-
come stead" if the control were removed by prescribing the pressure gradient (although, of
course, the desired flow rate would then almost surely not be achieved).
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