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of bounded univariate exponentials. Finally, the last method invokes the realization of
harmonic polynomials as the polynomial kernel of the laplacian, thereby exploiting some
basic relations between homogeneous ideals and their polynomial kernels.
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Strictly Positive Definite Functions on Spheres
Amos Ron & Xingping Sun

1. Introduction

Let Sm-i denote the unit sphere in the Euclidean space IR' (m > 2), and d,, the
geodesic distance on S", i.e.,

dmn(x, y) = Arccos(x- y), x, y ES-.

Here x. y denotes the usual inner product of x and y. Let g : [0, 7r] -+ IR be a continuous

function, and let e = {01,..., 0,} be a subset of Sm-1 . We study in this paper the possible
strict positive definiteness of the n x n matrix

(1.1) A Ae := Age

with ij-entry

(1.2) Aij = g(dm(Oi, Oj));

i.e., we look for conditions such that

n n

CTAc = ZEZ cicjg(dm(Oi,Oj)) > 0, Vc = (cl,...,Cn) E R'n\0.
i=1 j=l

The matrix A of (1.1) naturally arises in the study of approximations to scattered
data on spheres. Let 9 C Sm-' be a finite set, and let f be some function defined on G.
To approximate f by a function defined on the entire sphere, one may choose a univariate

function g : [0, 7r], and look for an interpolant gf in the linear space

Ge := span{g(d, (.,O)): 0 E E}.

The existence of a unique interpolant gf ( Ge for f then amounts to the invertibility of
the above matrix A. Of course, if A is also positive definite, then the finding of gf. i.e.,
the inversion of A, can then be approached by efficient and stable numerical (iterative or

direct) methods.

In view of the above, the following problem becomes self-suggestive:
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Problem 1.3. Determine conditions under which the interpolation matrix Ao of (1.1) is

(a) Positive degnite (for Smi-), for any E C Sm1 of cardinality n, for some fixed n.

(b) Positive definite (for S -), for any E C S-1.

(c,d) Same as (a,b), with "invertibility" replacing "positive definiteness".

Definition 1.4. Let g be a univariate continuous function defined on [0, 7r]. We say that g

is (strictly) positive definite of order n for Sm-1 if for each G C S'n- of cardinality

n the corresponding matrix Ae is (strictly) positive definite. A function g, that is (strictly)

positive definite of all orders, is (strictly) positive definite.

The analogous problem in Euclidean spaces, i.e., when E C IR', has been intensively

studied in the literature. In [Si], Schoenberg had characterized the positive definite func-

tions of all orders for IR', and in [MI]. Micchelli established the invertibility of certain

interpolation matrices arising from approximating scattered data in 11m. Nicchelli's re-

sults had led to a wealth of results (cf. e.g. [NW1,2], [QSWV], [SiWa]), in which estimates

for various norms and corresponding condition numbers of the interpolation matrix .4 were

established. We refer to the review article of Dyn [D] for more information on this subject.

Schoenberg also considered the problem on the sphere. In [S2] he proved the following

characterization for a function g to be positive definite of all orders. In this result. P(')

denotes the kth degree Gegenbauer ("ultraspherical") polynomial associated with A, [Sz,

p.81], [SW, p.1481.

Result 1.5 [S2]. A continuous function g :[0, 7r] is positive definite on S` if and only

if it has the form
O0

(1.6) g(t) = Z akPk(\)(cOst)'
k=O

in which A = (m - 2)/ 2 , ak Ž0 0, and akP(k\)(1) < 00.

Our interest in the problem was initiated by the paper [XC] of Xu and Cheney, in

which the following question is addressed: "find conditions on the coefficients (ak)kEN in

(1.6), under which g is strictly positive definite" (either of a specific order or of all orders).

Among various other results, it is shown in [XC] that, if all the coefficients ak in (1.6) are

positive, then the function g is strictly positive definite on Sm 1 . Further discussions of

this problem can be found in [LC] and [CX].

As this paper will show, a close relationship exists between the problem of determining

strict positive definiteness and that of multivariate polynomial interpolation. This connec-

tion is discussed in §2, and allows us to find an equivalent version to the original problem

in terms of polynomial interpolation on the unit sphere.
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We then present three different methods for analysing the equivalent polynomial in-
terpolation problem. The first exploits the de Boor-Ron "least solution for the polynomial
interpolation problem" (cf. [BR1-3]). This method yields that g is strictly positive definite
of order n if (but not only if) the corresponding coefficients ao, a, I .... , aLn/2j are positive

(cf. Theorem 3.2. The proof, as well as a complementary discussion, are provided in §4).
For the case m = 2, this result was already proved in [XC]. Another approach takes advan-
tage of the connection between spherical harmonics on the circle and analytic polynomials,
and allows us to characterize, for m = 2. the strict positive definiteness of g in terms of the
positive integer zeros of univariate exponentials with real coefficients. Our principal find-
ings that results from this approach are collected in Theorem 3.5. with proofs and further
discussion to be found in §5. Finally, in §6, we choose a different track which is suitable for
any spatial dimension, and makes use of the fact that the harmonic polynomials are the
polynomials in the kernel of the laplacian. That direction utilizes some of the polynomial
ideal basics. and its main results are collected in Theorems 3.6 and 3.7. These theorems
imply, in particular, that g is strictly positive definite if the set K := {k E 2Z+ : ak > 0}

(with (ak) as in 1.6) contains arbitrarily long sequences of consecutive even integers, as

well as arbitrarily long sequences of consecutive odd integers.

We use in the paper the following notations and conventions.

stands for the space of all polynomials in m variables (where the value of m should be
clear from the context). The subspace of 11 that consists of the k-degree homogeneous
polynomials is denoted by

no.

Also, given any K C a+, we set

kEK

If K = {0, 1, 2,..., k}. we often use 11k := rIK, i.e., Ik is the space of all polynomials of
degree < k. A pazallel set of notations is used for harmonic polynomials. Here, we set

for the space of all harmonic polynomials, and define

Fimally. an exponential in this paper is either a function of the form

(1.7) 0 :IRm-+(C: x-+° 0. EC7c,
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or any finite linear combination of such functions.

Additional definitions are used in the material presented in §6, and, to a lesser extent,
in the last part of §4. Most of these are given in §3 (prior to the statement of Theorem

3.6, which is taken from §6).

2. The connection to polynomial interpolation by harmonic polynomials

Since we are seeking conditions that characterize the strict positive definiteness of

g, and since Schoenberg's theorem already characterizes the positive definitenes. of g, we

may assume that g has the form (1.6). In turn, that allows us to write the matrix .4e as

the infinite sum

00

(2.1) Ae - ZakAk,
k=O

with

Ak := (Pk(') (0 • .))),a1o.

Since each sunmmand Ak is positive definite (by virtue of Schoenberg's result, but also in

view of (2.3) below), this immediately shows that the matrix A is more likely to be strictly
positive definite, with the increase of the non-zero coefficients (ak)k in the representation

(1.6) of g. Also, since the matrix Ak is positive definite, it can be written in the form

CkCk. Among such factorizations of Ak, we select below a particular one, which is based

basic properties of spherical harmonics, and which will allow us to draw the connection
between Problem 1.3 and polynomial interpolation on the sphere.

Recall that the restriction to S' of a homogeneous harmonic polynomial of degree k
is called a spherical harmonic of degree k. The following fact about spherical harmonics

can be found, for example, in Stein and Weiss [SW, Chapter IV].
Let {yI(k),. ,( y)} be an orthonormal basis of 'H° (here, hk := dim W/°). Then. there''''' h k

is a positive constant ck,), such that

h k

(2.2) p)( y L CkA, Z (k)(k)Y(~)y).
3=1

Here A• = (i - 2)/2, and, as before, PJX) is the appropriate Gegenbauer polynomial.

Using (2.2), we observe that Ak of (2.1) can be factored as follows:

(2.3) Ak = Ck,ABT Bk,
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with

(2.4) Bk:= Bk,e y=k, ,(0 )),=, ocne.

Therefore, for any vector c E IR9, CTAkc = []BkcII1, and hence

00

(2.5) eT Ac = allBkcl 2.

k=O

This proves one of the implications in Schoenberg's theorem, and implies that the problem
of whether g is strictly positive definite or not depends only on the set

(2.6) Km,:= {k E 2Z+: ak # 0}.

and not on the actual (positive) value of each ak, k e Km~g.

Proposition 2.7. Let g, and g2 be two positive definite functions on Sm-`. If K,n.g=
K,n,g2, then, for every 0 C Sm1-, the matrix Ag,,e is invertible if and only if the matrix

Ag.,,e is invertible.

Because of the above proposition, we modify our Problem 1.3 as follows:

Modified Problem 2.8. Study the following notion: Given a subset K C Z+, we say
that K induces strict positive definiteness (of order n) for Sn-` if every/some

positive definite g that satisfies Km,g = K is strictly positive definite (of order n).

Remark 2.9. Note that whenever g is strictly positive definite for S m'-, it is certainly
so for S-1, I < m. In view of Schoenberg's result, it can therefore be expressed as a

linear combination of Gegenbauer polynomials of smaller orders. In this regard, it is useful

to recall the following connection between Gegenbauer polynomials of different orders (cf.

[AFI): for every A > v > 0, and a non-negative k, there exist positive coefficients (aA.L,,k,n)n

such that
P(x) - a P(v)

k- A,v,kn k-2n"
0<2n<k

As stated before, we begin our study of Problem 2.8 by linking it to the problem of

interpolating by spherical harmonics on the sphere.

Theorem 2.10. Given K C 2+, and a positive definite g that satisfies Km,g = K. the

following conditions are equivalent, for any) C Sc -'.

(a) The matrix Ag,e is invertible.
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(b) The restriction of lWK to ) is of full dimension #e, i.e., every f : 0 can be interpolated

by a polynomial p e K!K.

Proof. By (2.5), A.,9 is singular if and only if Bkc = 0, for some c E IRe\0, and

for all k E K. This is equivalent to the saying that the linear functional 0 := •eEe Co60

(with 6o the evaluation at 0) vanishes on a basis for each W'°, k E K, hence vanishes on

WK. Finally, the existence of a non-zero linear functional that is supported on e and

annihilates W-tK is equivalent to the inequality dim(7WKIe) < #e.

3. Main Results

Lemma 3.1 is proved in §4. Theorem 3.5 follows from Theorem 5.1, Corollary 5.2,

Theorem 5.3, and Corollary 5.7 of §5. Theorems 3.6 and 3.7 are proved in §6. No formal

proof is required for the other results stated in this section.

The space lie mentioned in following statement is the least solution of the polynomial

interpolation problem, [BR1].

Lemma 3.1. For any e C S`-i of cardinality n, the following is true:

(a) There exists a space ie C WL,/2J such that interpolation from He to any f defined

on E) is always possible, i.e., the restriction of Ile to e is of dimension n = #1.

(b) If n is even, and E) does not lie on a circle, then He C 9 4n/2-1 = ?Ln/2J-1.

(c) If n :A 5 is odd and no (n - 1) points of e lie on a circle, then He C "(-3)/2=

"Ln/2j-l-

Combining Theorem 2.10 with (a) of Lemma 3.1, we arrive at the following result.

Theorem 3.2. Let K C 7Z+. Then, given any m > 2, K induces strict positive definite-

ness of order n for Sm` if {0, 1,..., Ln/2J} C K.

For m = 2, the above theorem is due to [XC]. Note that the theorem reproduces the

Xu-Cheney result which asserts that g is strictly definite positive whenever Km,g = 2Z+.

The statement of the theorem is sharp in the sense that the set K :={0, 1,..., Ln/2J - 1}

does not induce strict positive definiteness of order n. However, parts (b) and (c) in

Lemma 3.1 imply that, for m > 2, this latter K "almost" induces the required strict

positive definiteness.

Corollary 3.3. Let g be a positive definite function for Sm-, K := Km.g. Assume that

{0, 1,..., Ln/2J - 1} c K, and let e c Sm-1 be of cardinality n. Then the corresponding
matrix Ae of (1.1) is strictly positive definite if one of the following conditions holds:

(a) n is even, 9 does not lie on a circle.
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(b) n is odd, and no n - 1 points from E) lie on a circle.

Applying Remark 2.9 to Theorem 3.2, we arrive at the following corollary. A different

proof for that corollary, that follows from the results of §6, is sketched at the end of the

present section.

Corollary 3.4. If g is positive definite for S-, and if Kmg contains one even integer
kl, as well as one odd integer k2, then g is strictly positive definite of order n for S'-,

provided that I < n, and Ln/2J < min(k1 , k2 ).

Theorem 3.2 is useful if one wants to assert the strict positive definiteness of g of a
certain order n, since it allows g to be a polynomial of small degree. However, the theorem
proviles no real clue to the problem of strict positive definiteness (of all orders) of g, since

it only implies (the aforementioned result) that g is strictly positive definite whenever

K,,1g = 2Z+. Results concerning the induction of strict positive definiteness of all orders

are derived in §5 and §6.

Section 5 is devoted to the case in = 2. Some of its findings are collected in our next

theorem.

Theorem 3.5. Let K C 2Z+. Then,
(a) K induces strict positive definiteness for S1 if and only if there exists no non-zero

function of the frinr

cCrei-r, T C [0, 27r), #T < cc, c, E IR, Vr
r7ET

that vanishes on K.

(b) In order that K C 2+ induce strict positive definiteness for S1, it is necessary that
K has infinite intersection with any set of the form k2+, k E NC. The same applies to

sets of the form k/2 + kZZ+ (provided that k is even). However, K need not intersect

at all sets of the form a+k2+, if a 5O, k/2. In fact, for such a, K := 2Z+\(a+k2Z+)
induces strict positive definiteness for S'.

(c) In order that K C 2+ induce strict positive for S', it suffices that, for every finite
set J in D;\{1}, and any n E TN there exist a E 2+ and k E P;\(JIN), such that

{a,a + k,...,a + (n- 1)k} C K.

In §6, we investigate the case of general rn. There, we use the following additional

notations and terminology.
The first required notion is that of exponential spaces. These are defined in terms

of some set Ql C IRm, and a positive integer n as follows:

En(S :={E coeo : EcQ, #9 < n, co E C, V0}.
SEe
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(Note that co is a constant, but eo is a function.) Obviously, the above exponential spaces

are not linear spaces, in contrast with the larger space

E(Q•) := U.,>,E,•(Q).

Another set of notations concerns maps defined on the algebra A of all formal power

series in m-variables. Since A is the direct (infinite) sum Zk>O l'I2 of the homogeneous

polynomial spaces, there exists. for every k > 0, a well-defined projector

k : A-+ r°k,

that assigns to each power series f E A the k-degree homogeneous component in its power

expansion. Further, given a subset K C 2Z+, the sum

kE hK

defines an analogous projector. this time from A onto I-t-.

Finally, we reserve a special notation F for the polynomnial
mr ( ,. ) : =)X

n•

n=1

Thus, 1A is the (homogeneous principal) ideal generated by r. Note that the evaluation

L(D) of F at D is the laplacian operator.

The principal result of §6 is as follows:

Theorem 3.6. Let K C 2+, and let n be a positive integer. Then K does not induce

strict positive definiteness of order n for 5 -i, if and only if there exists f E E,,(Sm-l)

for which -K(f) E FA.

In fact, the proof of Theorem 3.6 is more informative than its statement: given E C

5 m-i, the proof shows that the matrix Ag,e is singular if and only if there exists an

exponential f E E(E) that satisfies Km,g(f) E FA.
The following sufficient condition is derived in §6 from the characterization in Theorem

3.6.

Theorem 3.7. Given 0 C 5m-1, define

ou(E) := min{#e' C E) : span(E\e') # IR m }.

Let j be the minimal integer that satisfies (j m- 2) > o(E). Let g be a positive defi-

nite function for Sm-. and assume that the set {k E Kg,9 : k > (#E)/2} contains j

consecutive even integers as iwell as j consecutive odd integers. Then Ag,e is invertible.

Since a(E) < n - ti + 1 for any E c MR. of cardinality n, we obtain the following

corollary:
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Corollary 3.8. Let K C 72+. and n a positive integer. Then K induces strict positive
definiteness of order n on S'-', if, with j the minimal integer that satisfies (J+m-2) >

n - m + 1, there are j consecutive even integers and j consecutive odd integers in the set
{k > n/2} n K.

In particular, if K contains arbitrarily long sequences of consecutive evens and of
consecutive odds, then K induces strict positive definiteness (of all orders) on S'-1., for
every m > 2.

Theorem 3.7 also provides another proof for Corollary 3.4: if E( lies on SI- 1 , I < m,
then, in particular, it lies on linear proper subspace of IR'. This implies that u(G) = 0,

and one can take in Theorem 3.7 j = 1.

4. The least solution of the polynomial interpolation problem

We prove here Lemma 3.1.

Given any polynomial of degree k, we denote by Pr the unique polynomial in 1`1 that
satisfies deg(J) - PI) < k, and refer to p, as the leading term of p. Also, given p E [I. we
use p(D) to denote the correspo)nding constant coefficient differential operator. Directional
derivatives are denoted by D.,, where x E 111" is the direction.

Given any finite E( C 111, the paper [BRI] introduces a polynomial space Ile that

satisfies all.the following properties:
(a) For any function f : 9, there exists a unique p E He that agrees with f on 9.

(b) He is D-invariant. i.e., for every x E iR'\O, Dzfle C le (equivalently, rIe is
t ranslation-invariant ).

(c) r1e is homogeneous. That is
00

lie = lIoj,
j=o

where Hej := lie n H°.

(d) If the polynomial p vanishes on 9, then its leading term PT annihilates lie in the sense
that pr (D)rIe = 0.

(e) Conversely, every homogeneous polynomial that annihilates He is the leading term of
some other polynomial that vanishes on E.
We refer to [BR1] and [BR3] for more details about Hle. The exact definition of Ile

will be given in the sequel, and will be used for the proof of (c) in Lemma 3.1. For the

time being, though, we need only the fact that a polynomial space that satisfies these five
properties exists.
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Lemma 4.1. Let k be the least integer that satisfies He C flk. If C S"-', then

dim rle~j ý! 2. j-l , 2,. .. , k-l1.

Claim (a) of Lemma 3.1 follows from Lemma 4.1. Indeed, since He is translation-
invariant, it must contain the constants. hence dim rIe,o = 1. Also. by the definition of k,

dim Oik > 1. Hence, assuming Lemma 4.1 has been proved, we obtain that

#0 = dim IIE 1 + 2(k - 1) + 1 = 2k,

with the right-most equality due to property (a) of iHe.

Proof of Lemma 2.2. We assume that the claim of the lemnnia is false. and will seek

a contradiction. Let 0 < j < k be the maximal integer that violates the lemnuia's claim. If

j = k - 1, then -I(-),j+1 = lIo..k $ 0, by the definition of k. Otherwise. by the maximality

of j, dimm lIc-)a+ > 2. Either way, Hoi,j+l contains a non-zero polynomial p. We consider

the map) Ip' R."' --+ [1" defined by

g,'(.r) = Dip.

Since Hr-) is D-invariant, ran ' C rI9, hence rani' C rI j. Since deg p > 0, v $ 0. On the

other hand, dim ran 0 < dim lIeo < 1. Therefore, dim ran 0 = 1, hence dim ker ' = in - 1.

Since i' is linear, its kernel, then, is a hyperplane, and p has to be a univariate polynomial

of the form

p(y) = c( - Y)3+l,

with ý perpendicular to the above hyperplane.

Let F(D) be the m-dimensional Laplacian. We note that, since j > 1, F(D)p =

c' --- 2(" y)j 1 5 0. On the other hand, the quadratic polynomial q F - 1 vanishes

on E, hence by property (d) of IIE, F(D) = qT (D) annihilates the entire I'e. In particular.,

F(D)p = 0, which contradicts the previous conclusion. 4

The proof of (b) in Lemma 3.1 is also quite simple. We present, however, a slightly

longer proof, which prepares also for the proof of (c). We assume that n is even, and

that lie t li,/2_ 1 , and will prove that E lies on a circle. First, by (a) of Lemma 3.1,

rio C -In/2 . Second, we have dimIie,o = 1, and, since we assume that dimL'I8,n/2 _> 1,

Lemma 4.1 implies that dimlIej _ 2, j = 1,2,...,n/2- 1. Taking into account the fact

that rLi is n-dimensional, we realize that none of these inequalities can be sharp, i.e., the

homogeneous dimensions of lie are

1,2,2,...,2, 1.
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Let q E ole,j\O, 1 < j • n/2, and let 1kq be the corresponding map that was introduced

in the proof of Lemma 4.1. The proof of that lemma shows that ran~q C 1`[6,j-1 Since

dim[Iej_p = 2, this implies that dimker wq > m-2, i.e.. th-t q is a bivariate polynomial.

Further, the argument in Lemma 4.1 makes clear that q cannot be univariate. Conse-

quently, rank ?Pq = 2, and ranVq = ne,j- 1. By selecting p to be any non-zero polynomial

in oIe,n/2, and choosing a E 2Z" such that II = n/2-j and q := Dkp 0 0, we obtain that

each fI ej-1, j = 2,. .. , n/2, is generated by derivatives of p. That same result is trivial

for j = n/2 + 1 (since [e,n/2 is 1-dimensional), and for j = 1. Thus,

le = {P(D)p: P E I},

i.e.. ne comprises of the derivatives of the single polynomial p, hence, in particular, [e

is annihilated by the (m - 2)-dimensional space {D, : x E kerr'p}. Selecting any basis

for that space. we invoke property (e) of Ile to conclude that there exist m - 2 linearly

independent linear polynomials, each of which vanishes on E), i.e.. that e lies on a 2-

dimensional linear manifold. Since e is assumed to lie also on S"-t, we conclude that,
indeed, it lies on a circle. This completes the proof of (b).

Before we prove (c), we mention that its statement is sharp in the following sense.

First, if 0 consists of ive points in S2 , then, regardless of its distribution, the 5-dimensional
ne cannot lie in the 4-dimensional -II(,,)/2 = [1, i.e., the statement in (c) fails to hol

for n = 5. Further, if all the points of 19 except one lie on a circle, then ne i 1-(,,_a)/2,

and, therefore, one cannot prove in (c) that E) must entirely lie on a circle.

In order to prove (c), we assume that n > 7 is odd, and that He 0 II(n-3)/2 (the

claim is trivial for n = 1, 3). We need to prove then that, save perhaps one point, E) lies

on a circle. Here, we need to recall from [BR1] that the definition of He is

(4.2) ie = span{ft : f E E(e)},

with E(E)) (as before) the span of the exponentials eo, 09 E E, and with fj the smallest

degree non-zero homogeneous term is the power expansion of f, (i.e., with k the minimal

non-negative intege -hat satisfies k(f) # 0, ft := k(f)). It is then easy to check that, if 0

contains four points which are not co-planar, then dimie,i > 3. Therefore, assuming E0

not to lie on a circle, we must have that dim e, 1 > 3. Repeating the same counting argu-

ments that we employed in the proof of (b), we conclude that the homogeneous dimensions

of He must be
1,3, 2, 2,...,2,1.

Selecting any p E rI e,(n-i)/2, and repeating the argument that was used in the proof of

(b), we conclude that p is bivariate and that the derivatives of p form a subspace in He of

dimension n - 1 (tile argument relies on the fact that dim rIe,(n-1)/2-1 = 2, hence requires
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n > 7). Let x E IRm be such that Dxp = 0. Let also f E E(E) be an exponential that
satisfies fh =p. Set g := Dxf, k (n - 1)/2. Since (f) = 0, for j < k. we have that
(j 3-1)(g) = 0. Also, since k(f) = p, we have (k - 1)(g) = (k - 1)(Dxf) = Dj(f) =
Dxp = 0. Therefore, deg(gi) _> k. Since g, is in rle, and Ile C Ilk, we must thus have
deg(gl) = k. hence that g, is a constant multiple of p (since dim-lek = 1). say, gJ = cp.
This implies that, with q the linear polynomial q(y) := x . y - c, j(q(D)f) = 0, 0 < j :_ k,
and thereby that, if q(D)f 4 0, then deg(q(D)f)1 > k, in contradiction with the fact that

H1 e C f'k. Thus, q(D)f = 0.
On the other hand. as any function in E(1), f can be written in the form f =

Z' oe coeo, hence 0 = q(D)f = Zo~e q(O)coeo. Since any finite set of exponentials are
linearly independent, we conclude that

co 54 0 q(O) = O.

Thus, the subset

0:[ E E: c$#O}

lies in the hyperplane q = 0. Ranging the directional derivative DX over an (rm - 2)-
dimensional space (which is possible since p is bivariate) we obtain. as in the proof of (b),
that 0' lies on a circle. It remains to show that #E' > n - 1. However, since f E E(O'),

and p = fl. p E [I-,, and therefore its space of derivatives D(p) lies in rio,, as well. Since
dini D(p) was shown to be n - 1, we conclude that #E' = dim rle, > dim D(p) = n - 1.

5. Strict positive definiteness of K for S': an analytic approach

In the case of interpolating on the circle, dim Tno = 2 for all k = 1, 2,..., and 7W is
spanned by the two functions cos kr and sin kr, where (r, r) are the polar coordinates in
IR 2 . These well-known facts can be nicely used in the course of study of Problem 2.8. We
will connect our problem to the distribution of zeros of bounded univariate exponentials,

and use the obtained characterization to derive separate necessary and sufficient conditions
for the induction of strict positive definiteness by K for S1.

Throughout the section, we will make an essential use of the following univariate
exponential space:

&,:={ • c,-ei : #T < nc,c E IR, V7}.
rETC[0,27r)

Also, ,' := U,> 19. Note that, importantly, we allow only real coefficients c,- in the

definition.

We first record and prove the basic observation that will be utilized throughout this

section.
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Theorem 5.1. Given K C 27+, the following conditions are equivalent.
(a) K induces strict positive definiteness for S' of order n.
(b) K is a uniqueness set for L', i.e., only the 0 function in E, vanishes identically on K.

Proof. Selecting the basis

S(k)(cos rsin) cos kT, y(k)(COS7, sin) sin k

for 7V, and writing a given finite E C S' in the form E = {(cos 7, sin r) -r E T C [0. 2r)},
a typical column of the matrix Bk of (2.4) then has the form

(cos kr, sin k-r)T.

Therefore, given c E IRT, we conclude that

IIBkc"' = (Z crcosk-r) + (Z c, sink7) 2 = k ceij 2 "
rET rE'F 'ET

Introducing the exponential

fx - ce

1rET

we conclude that IIBkcII• = If(k) 2 . Now. suppose that K induces strict positive definite-

ness of order n, and f is any exponential of above form in E. With (Bk)k the corresponding

matrices, we have, for some k E K, Bkc 5 0, and hence, at that k f(k) j4 0. The converse

implication is obtained by reversing the argument.

The last theorem leads to the following necessary condition for the induction of strict

positive definiteness by K C 2Z+.

Corollary 5.2. In order that K C 2Z+ induce strictly positive definite for S 1 , it is nec-

essary that K has infinite intersection with any set of the form kz7+, k E VN. The same

applies to sets of the form k/2 + k77+, provided that k is even.

Proof. In order to unify the proof, we assume that the relevant arithmetic progression

is of the form Z := a + kZ7+. a < k. We will further assume that K has only finite

intersection with Z, and will use that to construct a linear combination f* of exponentials

(e•-j1E[0,2,) that vanishes on K. The crux in the proof is that, if a = 0 or a = k/2, the

coefficients in the representation f* = cE cei, are real. Thus, for these cases, f* E C,
and the desired result is then implied by Theorem 5.1.

Set

T :={(27rl)/k: l =, 1,...,k-1},

13



and define the univariate exponential

f ei( -a).

rET

Then f(l) = 0, for 0 < I < k - 1, 1 # a, and since f is k-periodic, we conclude that f

actually vanishes on 2Z+\Z.

By our assumption, the set K n Z is finite. Let n denote its cardinality, and let
to, ti! t 2 , . . , t 2n be chosen in a way that (a) each set t, + T is a subset of [0, 2r). and

(b) the sets t, + T, I = 0, .... 2n are pairwise disjoint. The restriction to K n Z of the

2n + 1 exponentials {eitf12 f ,=o must be linearly dependent over the reals. since the set

K n Z contains no more than n points. Let f* be a non-trivial linear combination with

real coefficients of these functions that vanishes on K n Z. Furthermore, since f vanishes

on 7W+\Z. so (toes every eit1 f. and therefore f* vanishes on that set. as well. This implies

that f* vanishes on K. too. Finally, since the spectra of the exponentials {eit, f}1 are

pairwise disjoint. f* cannot be identically 0 (since any finitely many exponentials are

linearl'y independent).

It remains to show that f* E C, and this is the part where we need the assumption

0 = 0, k/2. Indeed, for such choice of a, we observe that, the numbers eiT(-a), r E T are

real, helnce, in these cases, in f E E, implying that eit, f E C, too. Since S is a linear space

over the reals, we conclude that f* lies in that space, too.

Consequently, we have found a non-trivial exponential f* E E, that vanishes on K. 4

Note that the exponential f* that was used in the proof of the above result lies in

(m+,,+l)k- This raises the following question: assuming K to contain exactly n numbers

from the set a + k2Z+, is it possible that K induces strict positive definiteness on S' of

orders smaller, still closer, to (2nt1)k (or, roughly speaking, is the construction of f* in the

last proof uses as few exponentials as possible)? Some answer to this question is provided,

for the set 1 + 22Z+, by the choice K := {0,..., 2n}. Here, by Theorem 3.2, K induces

strict positive definiteness of order 4n + 1, which, in view of Theorem 5.1, implies that no

non-zero exponential in C4.+ 1 can vanish on K. On the other hand, K contains n numbers

from the set 1 + 22Z+. Thus, for this K, we have used (2n + 1)2 = 4n + 2 frequencies to

construct f*, while the present argument shows that we could not use 4n + 1 frequencies.

In summary, at least for that example, the construction of f* was "economical".

Our next result is a stronger, more quantitative version, of statement (c) in Theorem

3.5.

Theorem 5.3. Let K be a subset of 2Z+ and let n be a positive integer. Assume that,

for every .1 E N\{1} of cardinality n - 1, there exist a E 2Z+ and k E N\(JN) such that

{a, a + k,..., a + (n - 1)k} C K. Then K induces strict positive definiteness of order n

on S'.

14



The following lemma is required for the proof of the theorem.

Lemma 5.4. Let T be any finite subset of (0, 27r). Then the set of integer zeros of the

function F := lITET(ei, - 1) is of the form J7Z, with J a subset of IN\1 of cardinality
< #T.

Proof. Let 7 E T. The condition ej, (k) = 1 is equivalent to k E 1712. Since Z > 1,
T 

'Tthe group 72 n 171 is a proper subgroup of 72. Thus, the zero set of F is the union of at

most #T proper subgroups of 77+. 4

Proof of Theorem 5.3. Assuming K to satisfy the assumptions made in the theo-

rem. we will also assume that there exists an exponential f E E, that vanishes on K. and
will show that the two assumptions contradict each other. Our claim would then follow

from Theorem 5.1.
Being in .6, the exponential f has the form

f = Z c,-ei-, T C [0,27r), c, E R\O,
TrET

with #T < n. Without loss, we may assume that 0 E T, and that co = 1 (otherwise, we
divide f by cr-oeir, with 70 the smallest number in T). By Lemma 5.4, the positive integer

zeros of the function

F:= 17 (eil-1)
TET\0

are of the form JIN, with J C IN\1 of cardinality < n. By our assumptions on K, there
exist a E 72+, and k E P;\(J'), such that {a, a + k,..., a + (n - 1)k} C K. For that k,

F(k) j 0, that is 1 V {ei,(k)}-ET\0.
Let p be a polynomial

p: t S_ ajtJ
i

whose zero set is {ej,(k) : -r E T\0}. Then, degp < n, and p(l) : 0. Let p(V) be the

induced difference operator

p(V) : g ajg(. + jk).

Then, p(V)ei, = eiTp(ei,(k)) = 0, for each r E T\0. Hence p(V)f = p(1) $ 0, i.e., p(V)f

is a non-zero constant. However, since we assume that f vanishes at each of the points
a + jk, j = 0, ... , n - 1, it follows that p(V)f must vanish at a. Thus, we have reached

the desired contradiction. 4

The value k = 1 is always admissible in Theorem 5.3. Hence:

15



Corollary 5.5. If K C 2+ contains n consecutive integers, then K induces strict positive
definiteness of order n on S'.

Another special case is the following:

Corollary 5.6. Assume that K = K2Z+. Then it induces strict positive definiteness on
S1, provided that it is not of the form J2Z+, #J < 0o.

Proof. We invoke Theorem 5.3. For that, we let n be any positive integer, and J be

any finite subset of IN\{1}. By our assumption, there exist k E K\(JD.N). The property
K = K2+ therefore implies that {k, 2k,.. ., nk} C K. By virtue of Theorem 5.3. K

induces strict positive definiteness of order n for S1. Since n was arbitrary, our claim is
proved. 4

Finally, we complement Corollary 5.2 by the following result (which completes the

proof of Theorem 3.5):

Corollary 5.7. The set K := 2Z+\(at + k7Z+) induces strict positive definiteness for S',
provided that a ý ý*71+.

Proof. Thanks to Theorem 5.1, it suffices to show that no exponential f E E vanishes
on K.

Let f = -- ET ce ei, be an exponential that vanishes on K. We will show that,
necessarily, one of the coefficients (c') is not a real number, implying thus that f J E.
Without loss (see the proof of Theorem 5.3) we can assume that 0 E T, and that co = 1.
Further, we can also assume without loss that To := {0,27r/k,...,2 2r(k - 1)/k} C T

(otherwise, we may add the missing exponentials with 0 coefficients). For r E To, and

t E T, the difference operator Vt : g '-+ g - eit(-k)g(. + k) annihilates eit, and satisfies

Vt(eir) = (1 - eit(-k))ei, (since ei,- is k-periodic). Therefore, applying V := HtET\TFt
to f, we obtain, with c := ItET\To(1 - eit(-k)) 0 0,

Vf = C E c-rei.
TETO

On the other hand, it is clear that Vf still vanishes on K, and in particular Vf vanishes
on {0, 1,..., k - 1}\a. But, the exponentials {ei,}TET are the characters of the group

{0,.. ., k - 1}. hence they are linearly independent over that set, and consequently, since
co = 1, cr = ei 7 .(-a), r E To. However, our assumption on a and k ensures that 2" r2,

or, equivalently, that C27r/k = e2ri/k(a) is not a real number.

16



6. Strict positive definiteness of K for Sin-: an algebraic approach

Here, we attack the problem from a completely different angle. While the core of the

argument used in the previous section was the connection between 2-dimensional harmonic

polynomials and their analytic completions, the course here is of algebraic nature. It is

based on the realization of harmonic polynomials as the kernel of the laplacian, thereby

exploits the connection between a homogeneous polynomial ideal (here, the principal one

generated by F) and its kernel in 11 (here, the harmonic polynomials). We will require here

the notations which were introduced before Theorem 3.6. Also, recall that a subspace H

of A or 1` is homogeneous if each of the maps k, k E Z+, maps H into itself.

Some of the results in this section can be developed in a more general (and in our

opinion more natural) setup.

Definition 6.1. Let Q be a subset of IR', H a homogeneous subspace of R. and it a

positive integer. 1i1 sa v that H is correct of order n on fQ if for any 9 C f0 of

cardinality i, and any finction F defined on 0 there exists a polynomial p E H that

interpolates F (on O).

To see the connection between the new definition and our original problem, one chooses

Q :-- S"', and H := R1,7 (defined as in the introduction). Then, as asserted in Theorem

2.10, the induction by K of strict positive definiteness of order n on Sm-l is equivalent to

the nth-order correctness of H on Sm- 1 .

Theorem 6.2. Let H, n and Q2 be as in the above definition. Then H is correct of order

n on Q if and only if for every exponential f E En(Q), there exists k E 2Z+ such that the

kth order homogeneous differential operator k(f)(D) does not annihilate H n IH°.

Proof. For 9 E JRm , let bo be the functional 60 : f '-4 f(0), and for a finite 0 C IRm ,

let 6 Ee be span{j60}e~e. H fails to be correct of order n on i if and only if for some E C Q2

of cardinality n, dim HIe < dim 6e = n. But in (and only in) such a case, there would be

A = ZE-e c6ob E 6e which is orthogonal to H, i.e.,

ECOP(0) =O0, V p EH.
OEe

Defining f := -OEe9 coeo, we obtain an exponential f E E,,(Q) such that p(D)f(0) = Ap =

0, for every p E H. For p E H n Hl, we have

0 = p(D)f(0) = p(D)(k(f))(0) = (/(f)(D))p(O) (k(f)(D))p.

Therefore, the condition p(D)f(O) = 0, all p E H, is equivalent to k(f)(D) annihilating

Hfn lkO for every k. 4

17



Proof of Theorem 3.6. By Theorem 2.10 (and in view of Definitions 2.8 and 6.1) the

required property of K is equivalent to 7/K being correct of order n for S"- 1 . Therefore,

in view of Theorem 6.2, we need to prove that the condition stated in the present theorem

is equivalent to the following: -There exists f E En(Sm-l) such that, for every k E K,

(k(f))(D) annihilates 7/K nl1° = R/.'' Since Wo is the kernel in no of the laplacian F(D),

the last condition is equivalent to the divisibility of k(f) by r. 4

In the rest of the section, we prove Theorem 3.7. We divide the proof into a sequence

of several lemmas, some of them might appear to be of independent interest. Note that
-j(J+r-2) = dimr 11

Lemma 6.3. The operator F(D) induces an isomorphism between £F+'Il and FI-I. i t

0,1.....

Proof. First, we recall that 1I is the direct sum of the spaces (F7krT)kE71 +. (A quick

proof of that would go as follows. Since R is the kernel in 1I of the homogeneous differential

operator F(D), [1 is the direct sum of 'R and the principal ideal 1F71:

II = W(DF M.

Multiplying the above equation by Fk, and using induction we obtain

k-I k

H (E ri-H) D = (E rvii) e rk+1n)
j=O j=O

Next, one checks directly that, for each k E 2Z+, there exists a constant Cn,k such that

the operator Cn,kFF(D) is the identity on 17F'+'7°. This implies that F(D) maps F7n+"1 I

1-1 onto 17n71.

Finally, the decomposition result asserted in the first paragraph of the proof allows us

to write
Fn+1rI = Ek>_ln+lFIck.

The desired result then follows from an application of F(D) to both sides of the last equal-

ity, and invoking the isomorphism assertion from the second paragraph of the proof.

4

Lemma 6.4. Assume that f E A and satisfies 1F(D)! = f. Assume further, that for somne

k,n E 2Z+,

(6.5) (k+2j)(f)E FI', j=0,...,n.
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Then,

(6.6) (k + 2n)(f) E rn+lr1.

Proof. By induction on n. If n = 0, the claim in (6.6) is assumed in equation (6.5).

Assume thus that the claim is valid for n - 1 > 0. Since r(D)f = f, F(D)((k + 2n)(f)) =

(k + 2n - 2)(f), hence by the induction hypothesis

F(D)((k + 2n)(f)) E p1j.

Invoking Lemma 6.3, we conclude that

(k + 2n)(f) E -Hi + rn+ I f.
/

The result then follows from the assumption that (k + 2n)(f) is divisible by F (and the

fact that no polynomial in 7h\0 is divisible by F). 4

Proof of Theorem 3.7. Let e C Sm-1 of cardinality n be given, and let f E E(e).

By Theorem 3.6 (more precisely, by the statement made in the paragraph that follows

Theorem 3.6), we need to show that K(f) is not divisible by F. Assume, to the contrary,

that K(f) is divisible by F. We first note that, for some k < n/2, say, ko, ko(f) : 0.

(Indeed, by the definition (4.2) of ole, if k(f) = 0 for all k < n/2, then 1 oe must contain a

polynomial of degree > n/2, in contradiction with Lemma 3.1). Since f, as any function in

E(Sm-l), satisfies r(D)f = f, one concludes from the fact that To(f) $ 0, that 1(f) j 0,

for every i E ko + 22+. Because ko <_ n/2, our assumptions on K imply that there exist

j integers k, k - 2, k - 4,..., k - 2j + 2 in K, that further satisfy k - 2j + 2 - ko E 2Z+.

Thus, the fact that t(f) #6 0 holds, in particular, for any integer i in this progression. On

the other hand, each of these integers lies in K, and since I(f) E FH, Lemma 6.4 implies

that

k(f) E r-7H.

As the rest of the proof will establish, this last conclusion contradicts the fact that f E

E(O).

Since f is a linear combination of {eo0}Ee, we have that

S=,

OET

with T C e, and with any" 0, 0' E T being linearly independent. Here,

(0_)k : X _ (9. X)k.
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Let T' be a non-spanning set in T of maximal cardinality. Since dim I°bi > or(e) >

#(T\T'), there exists a non-trivial homogeneous polynomial pi E 1°_- that vanishes on
T\T'. Writing pi in the form pi = ip with p ý FrI and i > 0, we conclude that p is a
homogeneous polynomial of degree r < j which vanishes on T\T'. An application of p(D)

to k(f) yields a linear combination of the form

q = ao(G.)kr.
OET'

Since T' does not span. the above polynomial is of < m variables.

On the other hand, k(f) = FsP, for some P E rI\(FfI), s > j. Therefore, for sonic

c $0,
p(D)(k(f)) = p(D)(rsP) = cpr,-"P + Fsr-+lP1.

Since cpP is non-zero and is not divisible by F, we conclude that p(D)(k(f)) is a non-zero
polynomial in FH, hence, iil particular. cannot be of less than m variables, and we thus

have reached the desired contradiction.
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