
AD-A276 470 M

CMS Technical Summary Report #94-7

FRAMES AND STABLE BASES FOR
SHIFT-INVARIANT SUBSPACES

OF L22 (IRd)

Amos Ron and Zuowei Shen

EDT IC
Center for the Mathematical Sciences .
University of Wisconsin-Madison 'I, " 11994University,,,AR 0]. 1994

1308 W. Dayton Street
Madison, Wisconsin 53715-1149

February 1994

94-06686
(February 7, 1994) I I1

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 1800 G Street
Research Triangle Park Washington, DC 20550
North Carolina 27709



UNIVERSITY OF WISCONSIN-MADISON

CENTER FOR THE MATHEMATICAL SCIENCES

Frames and Stable Bases

for Shift-Invariant Subspaces of L.,(]R') Accesi~n For.

NTIS CtA
DTIC UU[

Amos Ron Zuowei Shen UC a,.,
Justdijcu t•on

Computer Science Department Department of Mathenmatics
Universitv of Wisconsin-Madison National University of Sinapore By....................

0gpr DU1ribuio, 1
1210 West Dayton Street 10 Kent Ridge Crescent

Madison. Wisconsin 53706. USA Singapore 0511 Availabily C-e

amos~cs.,wisc.edu matzuowsQ1eonis.nus.sg Avail a]d lor
Dist Spccial

Technical Summnary Report # 94-7r A-
February 1994-

ABSTRACT

Let X be it countable fundamental set in a Hilbert space H. and let T be th. operator

T : f2(X) -+ H : c ý'- I: c(.c)x.
xEX

Whenever T is well-defined and bounded, X is said to be a Bessel sequence. If, in addition. ran T
is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a stable basis
(also known as a Riesz basis).

This paper considers the above three properties for subspaces H of L2(11d), and for sets X of
the form

X ={ ( a): E ID a E 2 },

with (D either a singleton. a finite set, or, more generally, a countable set. The analysis is performed
on the Fourier domain, where the two operators TT* and T*T are decomposed into a collection of

simpler "fiber" operators. The main theme of the entire analysis is the characterization of each of
the above three properties in terms of the analogous property of these simpler operators.
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Frames and Stable Bases

for Shift-Invariant Subspaces of L2 (lRd)

AMos RON AND ZUOWEI SHEN

1. Introduction

1.1. General

We study in this paper certain types of --bases" for shift-invariant subspaces of L 2(IRd). Our

primary objective is to connect among three important families of "basis" sets: shift-invariant

sets. Weyl-Heisenberg sets. and affine (wavelet) sets. The present paper is the first in a series of

three. arid is concerned with the basic theory of shift-invariant bases for shift-invariant spaces. The
two Other papers, [ and [RS2, will fcus on the applications of the theory developed here to

WevI-Heisenberg and affine sets.

Given X C L2 (IR'). we say that X is a shift-invariant (SI. for short) set if it is invariant
tinder all possible shifts. i.e.. invariant under all integer translations. A shift-invariant subspace

S of L.,(1R'f) is a closed subspace which is also a shift-invariant set. Such spaces play an important

role in the areas of Niultivariate Splines, XVaveiets. Radial Function Approximation and Sampling

Theory.

The following terminology is commonly used in the context of shift-invariant spaces. First. for

a given (D C L2 (JR'1), the space generated by ,1), denoted by

is the smallest (closed) shift-invariant space that contains ,). The set of shifts of 4D

(1.1.1) Et := {Eaq: 0 E (D, a E 2d},

with

(1.1.2) E f•-÷(. - a),

is then clearly fundamental in S(f), and is a natural candidate for the previously discussed X.

The space S is a principal shift-invariant (PSI) space in case S = S(4)) for a singleton oF, and,

more generally, is a finitely generated shift-invariant (FSI) space if oF above is finite. Many

articles are devoted, wholly or in part, to the study of Riesz (=unconditional=stable) bases for PSI

and FSI spaces (cf. e.g. [JM], [BDR1]). In particular, a complete characterization of such bases is
given in [BDR1], which, further, introduces and analyses the more general notion of quasi-stable

bases. These results form the starting point of the present paper.
We provide here a complete characterization of frames and tight frames in FSI spaces. and

draw interesting connections between these notions and the notions of quasi-stability and quasi-

orthogonality of [BDR1]. We further give a comprehensive analysis of infinitely generated SI spaces.

and employ in that course two complementary approaches termed here as "Gramian Analysis" and

"dual Gramian Analysis".



We provide here a complete characterization of frames and tight frames in FSI spaces, and

draw interesting connections between these notions and the notions of quasi-stability and quasi-
orthogonality of [BDR1]. We further give a comprehensive analysis of infinitely generated SI spaces,

and employ in that course two complementary approaches termed here as "Gramian Analysis" and

"dual Gramian Analysis".

1.2. Notations

The Fourier transform of a tempered distribution f is denoted here by f, and is defined, for

f E L 1({ad), by

where
t . t

The inverse Fourier transform of f is denoted by fV.

We frequently discuss in this paper functions that are defined on U", the d-dimensional torus.

Those functions can be viewed as 27r-periodic finctions. via the standard transformation IR D

tw - ei: (e"", ... , ei't) U •lF'. Though we mlay refer to such functions as being defined on 'rd

we always treat their argument as real. Thus, "multiplying a function defined on Id by a function

defined on R1V"" simply means "multiplying a 2•--periodic function by ... ". Following this slight

abuse of terminology, we write "12 C •("' and mean "f2 C - -rld,. The 27r-periodic extension,

Q? + 27r77', of Q2 is denoted by
Qo.

The inner product (norm) of any Hilbert space H discussed in this paper is denoted by (., )n

(11 , respectively). The default inner product and norm are these of L2 (IRd). We may also

suppress the subscripts in (., ")H and 1 • IiH if they are clear from the context.

Given a set X, the notation

e2 (X)

stands (as usual) for the space of square-summable sequences on X, with the standard inner
product. Also, if Y C X, we embed e2(Y) canonically in t2(X) (i.e., by defining each c E e2(Y) to

be zero on X\Y). The space

t0 (X)

is the space of all finitely supported sequences in e2 (X), and is considered as a subspace of the

latter (i.e., equipped with the same norm).

Vectors in ad are considered as either row vectors or column vectors, and the exact meaning

should be clear from the context.

For a countable (P C L2(IRad), we define the Hilbert space of L 2( U d)-valued 5-vectors as follows

GL(TUd); 117,ITQ2.(Irdi) < 001_
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The inner product here is

If T E L", then r(w) E [2((F), for almost all w E U".
The space 0 enters the discussion in this paper as the image under the Fourier transformx

of the sequence space e.( 2Z(d X D). Indeed. given c E t2(2Zd x ×D), we denote by co. E (D. the
restriction of c to 2Zx x (p). The Fourier series 60 of c is defined as

.a E 27

Accordingly. the Fourier transform of c E [,2(W' x (I)) is defined as the element

0: Ep)• E L2.

Note that this Fourier transfoirmation is an isometry between f.2(7" x () and Li'.
The following bracket product plays an important role in the analysis of shift-invariant

spaces: given f and y in L2 (II'). the bracket product is defined as

(1.2.1) [f.g := Z f( + a)g(. + (1).
(kE2-. W'

Then. [f. q] is a well-defined element of L (u'), and satisfies

(1.2.2) IIf, f]II.,(T.) = IIfIK(11)
Also. a stand(ard perio(lization argument yields that

(1.2.3) ((f.y(-a)) = O, V E 2Z"') = ([f.g] = 0, a.c.).

Finally, we find it convenient to define g/f as follows:
gf : x g(x)f(x), xc suppfnsuppg,

0, otherwise.

1.3. Preliminaries

In this section we briefly recall some elementary facts concerning fundamental sets in Hilbert
spaces. While most of the material here can be found in [C], [D1.2], [DS], [HW] and in several other
references, it makes the paper more self-contained, and allows us to introduce the basic terminology

in its natural setup. Only occasional proofs are given here.
Let H be a separable Hilbert space and X a countable subset of H. We attenipt to introduce

the operator

(1.3.1) T := Tx : t 2 (X) -- H : c • E c(x)x.
xEX

T is certainly well-defined on the finitely supported elements of t 2(X). X is said to be a Bessel
sequence/set if T is bomnuded on the subspace of finitely supported sequences. In such a case. it

is continuously extended to a bounded operator on f2(X).

Associated with T\- is the map T* :=7 : H defined by

T* h -4 {(h,x)j}j}Ex.
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Proposition 1.3.2. T" is a bonided map from H into f£2(X) if and only if X is a Bessel set. In

such a case T* is the adjoint ofT and 11T1h = 11T* 1.

Now. let T be any bounded operator from a Hilbert space H' into a HINbert space H. Then
the set

(1.3.3) CT := H' G kerT.

(i.e.. the orthogonal complement of kerT in H') is well-defined. T is injective on CT, ran T
ran(TKr ), and ran T* is dense in Cr. In this paper, we use the notation T- 1 to denote the inverse
mtap from ran T to CT and. similarly, denote by T* -I the inherse map from ran T* to H .-- ker T-.
These maps are usually referred to as partial (or pseudo) inverses. W\ith these convetitionIs. we
have the following result.

Proposition 1.3.4. Let X be a Bessel set. and T := Tx. T :-. as before. Then the ollouwinlg

conditions are equiiiillent:

(it) ran T is closed.

(b) T is bo6lNdeC(l bel"W on Cr.
(C) T* is Onto CT.

(d) T* is homuded bewlow on H - kcr T.
Uhwz one (h,,nce all) of these conditions hol ts. we have !PT- -'[ = [IT, I-.

Definition 1.3.5. Let 11 he a Hilbert space and XA a fhmdanmental Bessel sot in H. 11, say that
X is a franie for H if one (hence all) of the conditions of Proposition 1.3.4 holds. A frame AX is
called tight if IT[[I[TII-II = 1. Ile call a frame for H := L2 (IRal) a fundamental frame.

Thus, X is a frame if and only if there exist constants C1 . C2 such that the inequalities

C IIItI12 < 1 I(hy,x)>nj < C.2 11, 112

xE"

hold (for all h E H). The sharpest possible constants are C2 -= IT112 = J1T*112 and C1 -

1/IT-I-1112 = 1/I1T*,- 112 and are usually referred to as the frame bounds. A frame is tight
if and only if its frame bounds coincide.

A notion closely related to frames is that of a stable basis for H (also known as a Riesz or
unconditional basis) defined as follows:

Definition 1.3.6. A stable basis X for H is a frame for H whose corresponding Tx is injective.

Equivalently, it is a frame whose corresponding TZ, is onto e2(X).

Given a frame X for H, the map

TT* : H -- H: h ý-4 E (h, x)ir

xEX

is called the frame operator. TT' is continuously invertil)le. and we use

R := R4



for its inverse. Since the map R maps X 1-1 onto RX. we may identify canonically the spaces
e..(X) and 12(RX), as we dio hereafter, without further notice.

Since R is self-adjoint, T77R = Týx, and hence (i): Tý.,( is a right inverse of TX. and (ii): RX
is a frame (the latter since Týx is composed of two continuously invertible maps). The frame RX
is known as the dual frame of X. and some basic facts concerning dual frames are collected in
the following proposition. *

Proposition 1.3.7. Let RX be the dual frame of the t'ame X. Then:
(a) X is the dual frame of RX (i.e.. duality is reflexive).
(b) T\Tilx = TtxT*Y = Iu, with III the identity map on H.

(c) ker TX = k,!, T1.,V and CTx ,= Crib.\.

(d) The dual fi'ame RN is the onlY Bessel set R'X in H that satisfies TXT 1j*,\ = II and ker TX =

ker Tit, x.

Proof. Since RTy = TRy. we have TR.V Tý. = RTX T. R = R. hence the dual of the frame

Px is R -t 1 Y = X. which shows (a).
For (h). we already know that T TTIx,- = III. Taking adjoints (or. alternatively.

the roles of X and R.Y. which is possible thanks to (a)). we get that TnlVT: = Ill.
The relation T1 A" = RTy shows also that k-erT = kerTjlx, and hence C'F C'I,\.. which

proves (c).

Finally. assumne R' X --+ H satisfies the conditions in (d). Define (on X) a map R7 := R - R'.
Then KX is Bessel, and T.\-V-. = T\:(Tll\. - Ti*tcx) = 0, showing that ker Tx D C Fu\. Further,

since k-er Tit.\ = ker Tij.V k-er Tv (Y assumniption), we have k-er TKX' D ker T.V. Thus. k-er T,,V
coitains t Zs orthogonal complement CT,,.x This implies that TIx = 0, hence, KX = 0.

The above proposition allows us to represent the orthogonal projector onto H with the aid of

a frame and its dual:

Proposition 1.3.8. Let S be a closed subspace of a Hilbert space H. Suppose that X is a frame

of S with a dual frame RX. Then TXTý,y is the orthogonal projector Ps : H -+ S, i.e.,

P/sh = Z (h., R.)x.
xE X

Proof. The definition of TxT~x directly implies that its range lies in S, and hence, by
(b) of Proposition 1.3.7, it is, indeed, a projector. It is also orthogonal, since Tax, hence T Týx,
obviously vanish on the orthogonal complement of S in H. A

Part (d) of Proposition 1.3.7 provides a criterion for checking whether a certain Bessel set
RX is the dual frame of X, or not. However. that criterion might be hard to implement. since it
requires the identification of ker Tx and ker TRX. The following corollary provides us with partial
remedy to that difficulty.

* The synmbol .ý which is commonly used in the literature to denote the dual frame is used in

this paper for a totally different purpose. In any case, the use of i to denote the dual of x is an
ablse of mathematical notations, since it suppresses the dependence of Rx* oil X\x. The notation

' for the dual has many other drawbacks. To see one of them. try to rewrite the discussion here
on dual franies using it instead of R.
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Corollary 1.3.9. Let H be a Hilbert space, H' a closed subspace of H, X a friame for H', and

R a map from X to H'. Assume that R\ is a Bessel set which is fundamental in H'. Then the

following conditions are equivalent:

(a) RN is the dual frame of X.

(b) Th1\,Tx. T-TRp\', T\TýX, and TRXTý are orthogonal projectors.

(c) Tý.VT-, and TR.-T- are orthogonal projectors.

Proof. The equivalence of (b) and (c) follows from the fact that every orthogonal projector

is. in particular. self-adjoint. and hence, assuming (c), we get that Tý.,\-T\- TZ-T 1 -, and TxVT.\.

Tu_\T- verifying thereby (b).

Assume (a). The fact that TxT 1 \v is then an orthogonal projector is the statement of Propo-

sition 1.3.S. This implies that T.-TR." is a proJector. Since RX is a franie. Trty maps f-(X) onto

H', and since X is a franie. T.ý maps H' onto CT\.. Hence. T- T.v must l)e the indentitv on CT\.

The orthogonal comhplement of C1-\ is ker T\ = ker Tiýy (the equality bv (c) of Proposition 1.3.7).

and T*. Tlj\. certainhl vanish on ker TRty. Hence it is orthogonal.

Now, assume (b). By statement (d) of Proposition 1.3.7. in order to prove that RFX is the

(lual framie of ., we only need show that C'rl = Crux. For that. we first observe that. since both

X and l RY are f8iidai(enlital in H'. T(-Tlt.v maps CI- 1-I d(enisehV into CT",- Since that operator

certainil vanishes on ker Titý\ and is assumned to be orthogonal. we must have C7rx = . A

For a shift-invariant set X = EP (with KE as in (1.1.1)). we use the abbreviated notations

TIP := TE.., "T;,: T÷

For this case, the search for the dual frame is simpler due to the following proposition.

Proposition 1.3.10. The dual R(EI,) of a shift-invariant frame Ep is the shift-invariant frame

ER.F, generated by' Rv1. In particular, the dual of a principal (respectivelv, finite) shift-invariant

friame is also a principal (finite) shift-invariant frame.

Proof. We need to show that R commutes with shifts E' : f ý-+ f(- - a), a E ZZ'. For

that, it suffices to show that the map

T 1 Tf-; f Z(f ,-) x
xEE,

commutes with shifts E' (and use the fact that R is the inverse of that map). Indeed, for a E Wi.,

(T,pT7,)(E f) Z (E" f, x)x = (f.E-kx)x = x (f, x)E"z = E'TtT/•f,
.rE E. xE E, xE E.

with the fact that E"E÷ = Eq. being used in the penultimate equality. A
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1.4. The Grarnian matrices

The central notions in this paper are the pre-Gramian ,natn•v. the Gramian MNatrX. and the
dnal Gramnian matrix. In priniciple. the objective is to decompose the involved operators T7 and

'Tý into a collection of simpler operators (--fibers"), indexe(I by a- E U". Each one of the "fiber'"
operators acts from a sequence space to (the same or another) sequence space and its matrix
representation can be explicitly descr;bed in terms of the Fourier traiinorms of the generator< 'FD.
The main theme of the entire analysis is as follows: ecery propertqC of the set E+ (such as being a
Bessel set, a frame. a stable basis etc.) is eqicalent to the "fiber' operators satisfying an anIlogo!)Is
property in a iniformn wcay (here "'aniforwlity" refers to thc norms of the uoderlyiqt] ol)rztor0s).

The pre-Gramian operator .p is simply the Fourier transforin analog of the operator 'TV.

If c G (..(E+) is finitely supported. we see that

(1.4.1) (mr'} = Z %•.

O,IEI

Henlce. we imay introduce an operator .J. which is defined, at least. on the space

(1.-1.2) Lý: {: J: c : E+ -- C C is finitely suepported}.

bY the ru1le

(l.4.3) . : T •-+ Z r~
oE 71'

Since the Fourier transform is an isonietrv. the boundedness, invertibilitv. and other properties of
"t, can be equally studied via ,,.1,

The definition of .J extends naturally to spaces larger than L+': for instance, if ,D is finite. thlc
rule in (L-1.3) can lbe extended to the entire LT' (In such a case..Lprr need not be a L2(1 11')-fiuction.

but is alwa3 s defined a.e.).
More relevant to our purposes. the pre-Gramian can be "evaluated- on U"IF* in the following

way: we define the value J.,(tv) of .J+, at u- E as the (27,-7" x 'F)-niatrix

J(, (W) := (W(,, +

Since each J5 is well-defined only up to a null-set, so is the function a, -4 .1p,,(w). In a natural
way. the matrix .J+(w) can be viewed as a densely defined operator on f 2 (FD). In any case. (1.4.1)

together with (1.4.3) show that. for c G eo(EC).

(1.4.4) (('4cr(w + a))-E2d.; = JY(w).(w).

TIn summary, we have (teconiposed T+. on the Fourier douiaini, into a collecttion of operators
{ (.Iw( ) : , E U"'l }1. defined for ahiost every w'. each of which acts on a (teinse sulbslpa'e of f9 (4)) and
rel)resesnt s t he act ion of .4' on t he coset Ul + 2-7W'Z. Because of the' exl)hi(cit mat rix representat iou of

each .4(w), questions like its boundedness, invertibility etc., are by far more accessible than their
7t, counterparts. Thus, our goal is to study T' via the behaviour of the "fibers- .J÷(U), : E "ff"'.
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The spectrum of the sp~ace S( 4) generaw( by (D Is (lehuel I (,up to a null1-set ) azs

CaF: OS((P) I i {E ff"' Jq(tv) 5#O0.

An equivalent dlefinitionl of the speCtrUni is:

(1.4.5) Cl):= Ill E U : [(-:(. )31(W . for somie 4)j.

For at FSI sp~ace. it was p)roved iii [BD RI] t hat the sp~ectrii iii of S oiil.\ relies 1)11 th 1wqsace and( i

in(lependeilt of any pa;rticular setect ion of the genlerators of t he space. That proof cani he carriv I

onl to gnii eny-ierated SIspe.

Next. we wvant to deoipiethe operator 7 Since thle F Il iier tlraI toIfrli '1 .1n i1i tc.th

(foiiu ual. Sal\) relat ionl J.J = F.lei( is to thle relat ion

In " :cf. (2. 1.1; we show that.t, giveni D) x ) id L2- IR").~ the -equleuce 'Tf. t lmoligli needli Iwuth

iii I ( E,). is; alwa l thle Wiener algelhra ot E,:,. uiiore preciM'elv. (flhlsists., itf I],, Fouryier (cvhiciclll.,

o f thle L1 VW'')-fhuuuction )I o. This lea(ls to the (oiiclhli-oii t hat I,j,. thle BFoiiner transtoriii aiiloilogi

of Tý. has the torin

a111( allows lis to jiutrodiuce --p oit exvahuuatloll" withI resp~ect to .I,;,: W' (hehile .Jj i)to be thle

f( ihowiiig, operator acting, oi f. ( 2--W":

ckE 2,-7

(To cmpijare ( 1.4.6) and ( 1.4.7). choose c(a ) := f (w. + (1) ini the latter.)

As expec(te I. thle analysis ab ove reveals t hat t he miat cix repriesenitati ni of the opera lto r .
is thle adljoiuit of thle nilatrix representation of thle operator .. ( ).I.e., we-( had veriheic( that --vval-

tiat ion- couuuuinites wvith takinig ad~joilits. After uinakiiig that ob)servaltioni. and with only very fe

hiC('Msd'V XCeptiouis. wve w ill idlentify J+~ with its mnatrix u'epresuitat loll(k i))w

The following- leinma collects two uisefuil facts that were julst observed.

Lemma 1.4.8. Let (D C L2(lIRI) be a cotintable set. Then for anY c E (0 (E~p) and f E LdflV'R),

tlc ,ra.e. iv E .ffd,

(1.4.9) 7F4'C(W + ')j2,,jZd

an(l

(1.4.10) 7 f (w) = J; IV)(f~

Two svlf-adýjoiint operiktors cani be constricte(I fromi J.1,. The first is the Grarnian G : GI.

which is (lefuiled( by

G =.J,4

Previous considerations iniply that G+, is the Fouirier transformi representer of 7T 1,Tp. This fact

allows tis to dlraw\ the followiwr, iiiined(Niatt' conclusions.

8



Proposition 1.4.11. For the deiiselY definel linear opvrators, Tp and G:
(i) *Tp is homi~de(I ifard onlly if G .Jashhrt'f-1, as tin eruhi,niuphi--ni 4f0'. is 1ivell-dvilwtnel a11nd

boundod. A.Aso. flbJ flTj
(ii) A,,~iijniv'Tp (Iwnu. G) kilrliled. Theni. TI, Ill JartiallY invertibiv if and~ on1Y If G Is parthialiv

I .nvertible. Al/so. IF C, II = I 1fl'j-'
(iii) _Assn Th, is Lounded. Then. TI, is tinverrible if and oiilY if G; is invertible. -Also. 1G ',

We deftine the valtue G(tvi) of G at iv E IU" as

(L1..121 GC it) ov~)J,4 .' )

Ill general. fOr ite. E. e II. the Graiiiial it C 1, it deiiselv (lefilled scltf-adjl])iiit o)Pera'tor, onl

lito)Iweullv hino itsclf V Inl oriler to miake ;ill- "o()t iue of C,( U. 1)1W ile( Is to mlak~e <1 re th. ljia

ciýt)lL"', eviuuiatioii (to11iiiiiits With Thue ;ilpj~lu;lIrioi of G. i.c.. hl

liii. .Ul.I .tliriiiiet liv suinililat ion-bv-parts.\i~ st raig lit forwairdl jn1tificarioli Is oii'itted

he4re. I Itiiie:

stands, for thle o[)erator noriti of C) iv). aiid is assi liniel to be -)c whenveiv(r G( w) is not Nvell-ei lehued orI

is inibtotuned. Ill case G(t) is also l)oilidelo.(In\iivertibile. lit. deniote its hotirdlet Inverse by C) a) '.

Mid set

Also). we set

Ill case (1) is finlite. k (tv) amd I N(w are ('learlv thle largest andl smallest eigenivallues of lie Ii lute,-

on ler miatrix1 ( w).Acloser look uiiav reveal thait A-(it) is. inl stich at case. thle smallest njon-zero

eigetuvaltie of G(iv).

T ' pi-a I resu lts concerning the C raniian anial v~sis canil be found inl Theorem 2.2.7 (PSI spaces,).

Theoreml 2.2.1-1 (PSI spaces. several generators). Thieorenm 2.3.6 (FSI spaces). and Theorems, 3.2:3

and :3.4.1 (hifinitely gene~ratedl SI spaces).

The C rarmian approach is efficient for the study of t hose p~roper~ties of E.p which are 'visible"

via lhe operator 7 F . primuarily ort hogonality and stab ility properties. Ill 'ont rast . ot her properties,

sucih;i. Es F1 leiui a fmndamenltal frauuje or a fuitidaliteiltal tighit framne are better anakulsed with the

adil of lie adjoitit 7T- 1 .. . For tie aayi., ft atjoirit ol~enitor. we' introducie auzor her self-olj hut
op)eraito r which we call t li dual Graman G. It is i t aline bv Twill lt ltpl vill the peCatas butt

ill reverse ott ler. nialiuelv.

(1.4.14) G:
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Probll)lCis of well-i efi liedlics., are Iinoe sub1t le hecre thlani iii the c raivian caise. Foull lticaile I djiscls-
SIt Ills of t hat Ilon arit e~ givren ii ý3.3.. andt wei itiPultio lil ere only two facts: fit-St. If Eb i a BeSsel
set. thlen G is at well-dlefinet seif-adjoint houndl( ed ent oin orplusmn of L C l") . Second. if ED is not

at Bessel set. thet definlitionl (1.4.14) miax not miake senlse, and It is safer to view G as at quadratic
foril. iLe.. to tiefiuie it hy

Thte ix;tltiuititiil G(1 u of the I111 I C linu L, the (2.T x 2,-Z7'1)-iil:itrIx whvluse ýtt. n -eiitivY

xvi'will>11 III' iiii1 hc>i tibit. xvlii'ioivc r 1: Fur it l-lerl >Et , the entil l n 14. Iir n~iav ot2e hie \vlurl-

kIF ii 't 1Vi.() 2-,/ i1 ~ii 1(iii ;i.e. ir. lhiim . For ;I L3e-sel s rEt . ic ( ,' is, well-dlefiined Ian.. id

(,I- It~tI % a..~ ;1, hrilselY t ht'int't t ijer;itt tr 'ntill 21 2K' llpeiljtillxy into Itself) . Moroi'vt'l, we \viii

slhtm, thelthi lat ithe l);sit eitit

wXit hI f:, thle restrict ion of f to t' + 2,-, W) holds I.e,. A simillar relaitioni is drawl)i inl §3.:3 evenl inl

tlli. litii- Bessel case. ntiler Ore asslilinpt ion thlit the entries of G( tL) are well-d efinedI and~ withl the

iliterpr-tiltatiOn of G antI G(w) as quadurat ic formls.

Am ialogoi islx to th I i ;raiiiiaii case, we (lefille hiere t he following, functions

A)ir) IIG(tv)i!.-1

all(l attempllt to studyl properties of Ep inl terms of the behaviour of these functions. Our mnain

results in this regard are Theorem 3.3.5. and Theorem 3.4.1.

The Graniliari/dual Grainian analyses are also efficient for studying the connection between a

framiie andl its dual: given two sets (P, T C L2 (llR'), and somne bijection R : ( -+ TI. this is dlone via

the study of the mnatrices Jm,('), ().antid.,(W.R~(1) as discussed inl §4.

1.5. An example

Wet provid It'hre anl examp~~lle. which is, taken front [R Si]. (and( is at Specific typ~e of what wve calll

tlher' "sel f-adjoint Vi('xl-H eisellIberg sets*,) that illustrates the potential powver of the results to be

dex'eloped inl this paper.

10)



Let 0 E L2 (IRd). Let

-T : (e.0)flE27 ZZ'.

Indexing () by 2,r2Z"', the pre-Gramian J,(w) is found to be

Jp(w) = (o(u, + a + 3 ))Q..3E2nZ1.

Therefore, J4(w) = Jj(w), and hence

G÷p(w) = Gb(w).

Now. Theorenm 3.2.3 characterizes the stability property of Eb in terms of the Gramian fibers

G¢(i'). IL E U.d. Oil the other hand. the same criterion when applied to G,,(w), 'E U, is shown

to be equivalent to E+ being the fundamental frame (Theorem 3.3.5). This recovers the followingC)

well-known fact (cf. e.g. [D1,2]):

Corollary 1.5.1. With 4) as above. E+ is a stable basis if and only if it is a fundamental frame.

1.6. An application: estimating the frame bounds

The main results of this paper are concerned with the connections between the spectrmlil

of' the operators G and C and the spectra of the operators G(iv) and ,( v). i, E 'I'T. As we

1111 itionIeI betOre. inforination about the fiber operators G( t) and G,(tv) is more readily available

as colnparetI to simi liar information concerning G and C. Still. coniputing exactly. e.g.. the norm

of G( w) (considered ats a linear inap from (2.(4)) into itself) might appear as a ha rd task. However,

vstninaiig this norm (either front )elow or from above) in terms of tire Fourier transforms of the

functions in the generating set 4) is quite easy. This subsection is devoted to the discussion of such

escinmates.

To this end. we let I be a countable (or finite) index set, and let 31 be a complex-valued non-

negative Herinitian matrix with rows and columns indexed by I, and considered as an operator

fron. (2(I) into itself. We use the following estimates of IAIjII:

(1.6.1) sup(l: IM(i.j)I2 )} < IIMII < supZ: IM(i,j)I.
iEl jEI iEI jEI

Combining these estimates with T.' remn 3.2.3, we obtain our first estimate for IIT,[II:

Corollary 1.6.2. Let 4) be a countable (or finite) subset of L2 (IRd).

(a) If the function

Bm:Trd X4) _4 IF{:wý_'4Z S~ )(Y(V+a
O'E4' aE27r7T'

is essentially bounded, then E+ is a Bessel set, and (-I÷TI2 < IjBmIIL,([•(--x).
(b) If Eq, is a Bessel set, then the function

B2 : T"- x (D -- IR : (w, (p) -+ ( Z o ii+ 0 'i ,,.- ++
O'E+ OE2ltrZ"

is essentiallY bounded, and II1r7112 > i)3211 • ULTdx(÷).

On the other hand, combining (1.6.1) with Theorem 3.3.5, we obtain different estimates:

11



Corollary 1.6.3. Let (D be a countable (or finite) subset of L,(I").

(a) If the function

aE2r,7Z` OEDI

is essentially bounded, then ED is a Bessel set, and llTpll" < lBII1 IL,(,M)

(b) If Ep is a Bessel set, then the function

b-2, III" -4 IR: w ý-4 (E Q7 > (wv)O(w +a()j
ckE2- T7iT QE'IP

i .s boundted and JI'4 112 >- JIB3.,il•Lv)

For the estimation of the other framie ollild. we liveed a bound oil IJ-1• JJ. In what folluvs, we

evlp)lov the estilliate

jEl\,

which is valid for ayiv Hermitian diagonally doinlimilt -!I. Ani application of this estilluate to

Thieoreui 3.2.:3 viehls the f'allowimig:

Corollary 1.6.5. Let (P C L2,(IRW") he countable (or finite), and assume that E+ is a Bessel set.

Then EI, is a stable basis if the finct ion

Th x1 -~ff w.) *11. Yu + (1)12 - 7I> b-4 iYw ~'

nE27rZ'7" Y'E41\o ckE2-,r7 1,

is positive and essentially bounded. Furthermore, in this case

117-,-1112• < IIblIIL-(U'i,ý×),

Finally, an application of (1.6.4) to Theorem 3.3.5 yields the following:

Corollary 1.6.6. Let F C L 2(IR') be countable (or finite), and assume that E+ is a Bessel set.
Then Ep is a fundamental frame if the function

:4i:w -ý (EZI ýwn2 1>7 >7~w)(Pw+ a)
OoE2iT7Zd\O OE'I

is positive and essentiallY bounded. Furthermore,

The simplest example that follows from the above results (and can also be checked directly)
is the following.

12



Example 1.6.7. Suppose that, for every ; E (I, for every a E 2-rrTd, and for almost every w E IR

Q(w)P(w k+() = 0 (e.g.. each 0 is supported in some cube t, + [0..2-)d, t, E IRd). Then, the (square

root of the) function B, can be replaced by the function

g :iRd -+ IR : w -- (Z I2w)l2).

Similarly, the function bl can be replaced by 1/g. Consequently, we obtain Ep is a fundamental

frame if the two functions g and 1/g are essentially bounded. In fact, the results of this paper will

show that the converse of this last statement is valid as well.

2. Finitely generated SI spaces

2.1. General

While general SI spaces are best analysed with simultaneous use of the Granmian and dual

Gramian matrices, this is not the case for FSI spaces. The reason is easy to inspect: for a finitely

generaite(l SI space. the dual Graminan matrix is infinite. while the Granmian matrix is finite. This
explains to a large extent the prevalence of Gramian analysis in the study of FSI spaces. Moreover.

in the princip)al case. the Grammian matrix is reduced to a single function, providing thereby a further
signlificant simplification ill the course of study of such spaces. There~fore, we will first present (inl

the next su}bsectiom) a detailed analysis of bases for PSI spaces, and only then discuss the FSI

counterpart of that theory. The present subsection is devoted to sonic simple initial observations
and estinmates.

In the PSI case, the generating set 4 is a singleton (0), and the operator T7 :=T then takes

the particularly simple form
TO*: f -, f (f , E" p)}•aE Z•

From Parseval's identity, and the 2rr-periodicity of the exponentials e0 , a E 2Z", we obtain that

( 2• •) <fE°O e.=)2)• f, = (2)-r, e.) L .or,,()-

Therefore, T* f is the set of Fourier coefficients of the Ll (UId )-function [' ] that is

(2.1.2) =

In particular.
Proposition 2.1.3. Given 0a, f E L2 (IRd),

Prpsiin .,(1z,,) = (27r) -dGiv[f, 0L(L)-

Some coarse estimates can be derived directly from the above. By Schwartz inequality,

[f, (ý12 3< [f, f ,

13



Thus. for (D C Le(lRd),

iTlflt(E,,) < (21)1f1[ffI - .112lL clrd)-
CE4u

Since l1 = (2 )-ll[f. f] 11 we conclude that

1177 f 1 2 (E.) •5 11f 11111: [(i k L klI(Ud).

Denoting

we have proved the following result.

Proposition 2.1.4. Given (D C L.,(IR'l), ED is a Bessel set in case 4 E L (fIr"), and we then

have

WOe will show later that equalitv holds in the above in case (D is taken front some PSI substpace

of L_,(IR'). Further. we will show that for a fiJrite (I the boundedness of 4) is not only- sufficient for

E t to a Bessel sequence. but also n ecessairy. However. the bound provided )1Y L•(.r' is. III

genera . nor sharp.

2.2. Frames in PSI spaces

Throughout this sub)sectiou. S is a PSI subl)sl)ace of L2 (IR.f) generated by some (fixed) function.

M[otivated by tile search for an explicit representation for the orthogonual projection onto shft-

invariant sp)aces. [BDRI] introduces and studies the notions of quasi-stable and quasi-orthogonal

bases for FSI spaces. For PSI spaces, in the terminology used in the present paper, its definitions

are as follows:

Definition 2.2.5. ([BDR1]) Let 0 E L2 (1R'1), and let T• be the operator
To : C2 (2') -+ S() C `4 E E'• ¢ c(ac•).

Then 0 is called a quasi-stable generator if TO is a well-defined bounded map. and provides an

isomorphism between CT. := (kerTO)' and S(Ok). If, further, that isornorphism is an isometrY; ,

is termed a quasi-orthogonal generator.

In view of (b) of Proposition 1.3.4, and Definition 1.3.5 of frames and tight frames we obtain
the following Corollary.

Corollary 2.2.6. Let 6 E L2(IRd). Then E,, is a frame if and only if b is a quasi-stable generator

of S(5). Further, this frame is tight if and only if 0 is a scalar multiple of a quasi-orthogonal

generator of S(,.).

Thus, itnplicitly. [BDR1] contains an extensive discussion of frames in PSI spaces. Some of

these results are collected below. For this, recall the definition of the spectrum aS given in (1.4.5),
and recall the notation

1E24-7l'
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Theorem 2.2.7. ([BDR1]) Let 0 E L2(ARl) be given, and let S be the PSI space generated by p.

(a) The shifts Ep of ¢ form a Bessel sequence in S if and onlY if o is essentiallY bounded.

(b) The shifts E, of p form a frame for S if and onlY if o and 1/o are essentiallY bounded on aS.

Furthermore,
ITQII = IIoIIL,•,Cr,) = IlI1L•(s),

and
1ITo0 -111 = II1/0IIL•{S).

Therefore. for a frame E,. the inequalities

If II/II/011Lc(,S) < ( Z I(f, E1o.l), <_ I;IlL.•{srf11. f E S.
E &

are valid ;1nd sharp.

(c) E, is a right framne iftand only if o = colist (a.e.) oil its support.

(4) W1ith I.- := (o/o)v. the set E,. is a tiglhr tame for S(o) (;and hence every PSI space is generated

tY soic PSI tight frame).
(e) The frame (tight frame) E, is a stable (orthogonial) basis for S if ard only if orS = ".

Proof. By Corollary 2.2.6. the shifts of p form a fraine (tight frame) if and only if 0
is a quasi-stable (qilasi-orthogoinal) generator of S(.)). Therefore, the theorem follows from the

Correspondingg results in section 2 of [BDRIj. 4

WVe observe that the above (d) and (e) imply that S contains an orthonorinal basis E, if and
oily- if aS = -9'1. That case was termed regular in [BDRl]. Thus (e) above shows that the

notions of a stable basis and a frame coincide for a principal shift-invariant E.. provided that S(p)
is regular. It is worth mentioning that, in case 0 is compactly supported. S(9) is always regular.

The spaces ker T70 and CT. were described explicitly in [BDR1] as follows:

kerT-o := {c E -2(Z'Z) : supp 'C (U"d\oS)},

and hence

(2.2.8) C7T- := {c E f2 (2Zd) : supp EC uS}.

Next, we need the following characterization of the Fourier transforms of the elements of S(Q):

Result 2.2.9. ([BDR2]) Let Of E L2 (IRd). Then f E S(O) if and only if f = rq for some

2,'T-periodic function r.

Corollary 2.2.10. Let S := S(O) be a PSI space, and assume that EO forms a frame for S. Then,

given c E {2 ( ,t), there exists f E S such that

c(a) = (f, E'0), o E Zd

15



if and only if i is supported in the spectrum of S. The unique solution f has the form

(2.2.11) f = E EQ 9cf(1),

with the sequence cf E C0 T being the solution of the discrete convolution equation

[o. ;]V Cf = C.

Proof. By the definition of ',7. a solution f exists if and only if c lies in the range of 'T,
i.e.. if and only if r E CT-.. Therefore, in view of (2.2.S). we only need to prove the statements
concerning the nature of the solution f. Since EO is a frame for S, then. given any f E S. there
exists a unique c( E CTr that satisfies (2.2.11). Taking Fourier transforms, we obtain that f =
Invoking (2.1.2). we see that

(2.2.12) 3f = [f. oJ = ,0. oJ.

where. ill the last equality. the periodicity of (f Was lised. The (desired result then follows bY

inversioin. A

Given a fraiie E,. Propolsition 1.3.10 asserts that there exists a fuiition Ro G S(o). suih Thiat

El,, is the duial franie of E,,. Further. we can compute R, as follows: first, we seek c,., E C-,: slich

that "7,,,,, =. Applyiiig Fourier transforim. then miultiplying by o. and periodizing over 2r- 12Z". we
obtaini the equation ,;[o. o] [0, o]. Since c' is in Cr,., it is Supported oni supp[, o] = aS. and
so '0 is the characteristic function y of oS. Let c be the solution of ;0 ]v *? = co, and RQ := CO.
Then Ell, is the dual basis of EO 1b the fact To 6 c0 and by Corollary 2.2.10. Hence ; is defined
by

6; 1
[o, 6] [o. 61

and Ro is fiven by

(2.2.13) Ro = p/[p, 6].

This representation of Ro is detailed in [BDRII (using a different approach) and is well-known in
the special regular case mentioned above (in which a frame becomes a stable basis).

The redundancy offered by frames does not really exist for principal shift-invariant ones. Yet,
given a PSI space. one may use several functions from S to generate a shift-invariant frame for S.

The details of that cas'e are given in the next theorem.

Theorem 2.2.14. Let S be a PSI space, and D C S be a countable (or finite) set. Then
(a) E,, is a Bessel set if and onlY if the function

(2.2.15)k) )
OE41•

is essentially bounded. Furthermore, IIT÷II iI= 11L,(w).
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(b) E, is a frame for S if and only if (P and 1/4, are essentially bounded on the spectrum. aS. In

such a case, IlITb1`1 = II1/lL.(aS).
(c) E,• is a tight frame if and only if 4 is constant a.e. on its support.

Proof. By Proposition 2.1.3, given f C L2 (IRd),

*E 2

Let y, be a generator of S. For f E S and 0 E 4), Result 2.2.9 implies the existence of 27r-periodic

7p, r7 such that

Therefore, I[?,~ 17 1117,; =1 1 fl~t 2'.•l = I[S 1o l
IfII I rHwII =

Consequently.

lI llr•f I E ,) = (2 -II [If. f] 2.

Since tlfI12(l.) - (2)'•II~f, fulL1 (•r'), and since If. fl is necessarily supported on aS. the proof

of the theorem relies on the comparison of

and

Further, we note that Result 2.2.9 also implies that for any closed Q C aS, there exists f E S
for which [f, f] is the characteristic function of Q. The proof can be then completed by a routine

argument (cf. e.g., the proof of Theorem 2.16 in (BDR1]). 4

The final theorem of this subsection provides the details concerning the dual frame of the above

E÷ and a complete description of ker T, and CT.:

Theorem 2.2.16. Let 4) be a countable subset of a PSI space S, Ep its corresponding shift-

invariant set. If E4 is a frame then:

(a) Let V) be any generator of S (i.e., S = S(O)), and c = (cA)P E t 2 (E4,) (with co the restriction

of c to EO). Then c E Cr. if and only if

(,= ([, )0,

for some 27r-periodic function r, that is supported on US.
(b) The map R from the frame ED to its dual is given by

R: f -ý (f$1•)v.

(c) The orthogonal projector P : L2(lRd) -+ S can be written in the form

P )= ( (, (($/2)V))E .
OE$, aE7d
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Proof. Claim (c) is immediate from (b) and Proposition 1.3.8. To prove (b). we need to
show that the map R inverts TT;, and this will follow as soon as we show that (T+Tf)- = 2

on S. For that, note first that Result 2.2.9 implies that, for every f, g E S.

(2.2.17) [f =

Now, given f E S, we first recall that, by (2.1.2), for every 0 E (D.

(TOT0 f)-= [T ,o]1

This, together with (2.2.17) and the fact that TpT7 = b T 0T7* implies that

(7, ^Y= Z[w@= Z~g,@f=&

This proves (b) and thereby (c).

To prove (a), we compute C.,, using the identity

C., = ran T;.

For f E S, there exists, by Result 2.2.9. a function 7" supported on a-S. such that f - i,.% By

(2.1.2).

T; f = [f] = 7f

Since C7-.,. is the range of 7,,, this shows that the Fourier transform of each c = (cQ)OEb E CT, is
of the form 6" = r.[, ¢], VO E (D, for some 2-w-periodic r supported on aS, i.e., C7T. contains only

sequences of the required form.

Conversely, assume that c = (co) satisfies c6O = .((,, ]). We consider the nature of Tic
Z-•, T0 Applying Fourier transform, and invoking (2.2.17) once again, we obtain that

~~T Z=Z~=ZI-rý.

Since Tt, is bounded, 7ý2• C L 2,(]Rd). On the other hand, since E÷ is a frame, then, by Theorem
2.2.14, ý is bounded below on (aS)0 D supp 4, and therefore -r4 E L2 (IRd). Thus, f (i4)v is in
L 2(IRd), and hence, by Result 2.2.9, is also in S. Since the proof of the previous implication shows
that Tf = c, we obtain that c E ran T;, as needed. 4

From (a) of Theorem 2.2.16, it easily follows thac

ker Tt = (co) E f2(EV,) : o W"'€ =0}

with 4', some (any) generator of S.

2.3. Frames in FSI spaces

In order to lift the results of the previous section from PSI spaces to FSI spaces, we need first
the following FSI analog of Result 2.2.9 (cf. Theorem 1.7 in [BDR1]):
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Result 2.3.1. Let F be a finite subset of L2(IR"). A function f E L 2 (IR d) is in S := S('P) if and

only if there exists r := (7,)4E÷, with each ro a 27r-periodic function, such that

(2.3.2) 7=Z 0o0.

Several different approaches are available for the analysis of frames in FSI spaces. We have

chosen here the one which incorporates efficiently the results on PSI frames that were established

in the previous subsection. We do that by studying first the straightforward case when the finite

generating set (D of S induces an orthogonal decomposition of S into the sum •0E÷S(Q) of PSI

spaces. We then reduce the general setup to that simple case.

Recall that, by (1.2.3), the space S(0) is orthogonal to the space S('ý') if and only if [o. &] = 0.

a.e. Thus, the sum Z-OE+ S(M) is orthogonal if and only if the Grainian matrix G is diagonal.

Proposition 2.3.3. If the Grainian matrix G is diagonal. then:

(a) Ep is a Bessel set if and onlY if. for ,iach o E '4. o is bounded on (To = a(S(o)). Furrhlrniore.

I1i 11 = i ax jIT,, = nuL ljol11L.('tr,').Q 'p

(b) E.p is a fraine for S(4) if and only if, for each 0 E (D, 0 and 1/0 are bounded on ao. The

frame is tight if and only it' for every v, 0 = const on ao (with const independent of p).

Furthermore,

IITl-ll = maxllTjl-11 = maXlIII/0lILý(,,).

Proof. The orthogonal sum decomposition GOS(0) of S(f) implies that T; agrees with

on S(0p) (recall that we naturally embed the target space f2 (E,) of the latter into the target

space f2 (E+) of the former). Since C2 (Ep) is (always) the orthogonal sum Toe2 (Eo), we conclude

that, indeed,
I1tI11 = IITgll = max llTglI = max 11I-11,OE't OE÷P

and
117 ljj =!l77, 1lj = max JJ';-il = max j11-T 11.

The result then follows by an application of parts (a-c) of Theorem 2.2.7.

In accordance with the definitions of §1.4, we define here

A(w)

to be the largest eigenvalue of G(w),
A( w)

to be the smallest eigenvalue of G(w), and

A ' (w)
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to be the smallest non-zero eigenvalue of G(tU). Then. both A(w) and A+( t.) are non-negative arid
well-defined on orS. Further. Proposition 2.3.3 can be stated as follows:

If G is diagonal. then E÷ is a Bessel set if and on1Y if II.\IL•(,) < oc. ED is a frame for S(+D if

and only if

(2.3.4), A and 1/A+ are (essentially) bounded on the spectrum of S.

and. moreover, the frame bounds of E, are l-(L'(,,S) and II1/A'+IL_(,S).

As Theorem 2.3.6 below asserts. the above characterizations are valid tor general FSI spaces.

The proof of Theorem 2.3.6 is based on the following (technical) lemma:

Lemma 2.3.5. Given a finite order Hermiria ni matrix G. whose entris are, meas;' ral, hf tacri n>
(lehle[d (ml some1 dolmiaii Q. there exists a zuatrix U := Up '+ whose ,etries re1, masira l/ht tfi'rtlU,2s

(hihued ni .. suclh that ("CGU is a diagonIail matrix, and U (11) is umnitarv f(fl t' veryit G

Prlor to [lrovillg the liellnha.X w(, state our theoreni and show how it follows from that lemma.
Parl t (di Io tthe rthcoremm is due to [BDR 1] (a,1 iv was previously pr'oved. imuder certain decay conlit ions
om (1). in [.M.NI]). For the special cast' of quiasi-rvguular FSI spaces (a notion that will be deilietd ill
the next subsection), Thleoremn 2.3.6 in its entiretv was ale'emlv pt'oved ini [BDR1] (cf. Corollary

3.3(0 there. [ii a pasi-reg-mlar FSI space S. A+ = A on (-S. and hence the [BDR1]-analysis. wvhich
is based onk- onI the functions A and A. call still go through).

Theorem 2.3.6. Let ,P C L2,(IRf') be finite with corresponding Gramian matrix C. and corre-
sponding ei'genvaie functions A., A. and A+. Then

(a) E.1, is a Bessel set if and only if A is essentially bounded. Furthermore.

11T+112 = 1Ail L,(,SQ,))-

(b) A Bessel set EV is also a frame if and onlY if 1/A+ is bounded on the spectrum of S(FD). In

such a case,
lTI12= ii1A 4+i~(~)

(c) E÷ is a tight frame if and only if A = A+ = const on orS(f).

(d) The Bessel set E÷ is a stable basis for S((D) if and only if 1/A is essentiallY bounded.

Proof. Let U := ( be the unitary matrix from Lemma 2.3.5 (with respect to
G := Gp). Define

O'E 'I

Since U(ii!) is unitary for every iv E T"", it follows that U, considered as an endomorplism of Li',
is also unitarv. Froum that it easily follows that xF C L,,(IRl') (in fact. Z E-u. )jV 163112).

Thus. 4f C S(F) by Result 2.3.1. Similarly. since (, = '. ¢ C S('I'), and. ,onsequently. S(T)
S(4)). Further, Gp, = U*Gp hence GC, and GC have the same eigenvalue fumctions.
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To prove (a), we let J+ and J,, be defined as in (1.4.3). Then .1, = JU'. Since U is unitary.

J,V is bounded if and only if Jp is. and the two maps have the same norm. Therefore. EJ, is a

Bessel set of S(kP) = S(FI) if and only if E+ is so. Consequently. (a) follows from Proposition 2.3.3

and the fact that, for each LL,, {f(w)} E,, are the eigenvalues of the diagonal matrix Gp,(w).

The proofs of (b), (c) and (d) are similar.

Now, we turn to proof of the Lemma.

Proof of Lemma 2.3.5. Since, for each w E Q. the Hermitian matrix G(w) can certainly be

unitarilv diagonalized, the actual goal of the proof is to achieve the required measurability.

Let A, (w). w E G2, j = i, ... ,n := #<D denote the jth smallest eigenvalue of G(W). Our first

goal is to show that A\ is a measurable function. For that we need the following claim.

Claim 2.3.7. Let {Um}i-'- be a set of convergent sequtences (
0 mn : rN --+ IR. Let a. (0) denote the

limit of (a,1 (k)) 1• . For each non-nega tive integor k. let qk be the uliinlriate polynomial
71 - 1

qk(t) := t" + 3 ,,,(,)tm .
Yn=0

.A-sumne that each qk has only real roots, and let .Ak,, denotes the jth smallest root of qk. Then

"A.k j k-o) k+'j ., for each j = i t.

Proof of Claim 2.3.7. For each k > 0. let -Ak be tile vector (A k,j)a- It is clear that

(Akk)kENt' is bounded (in IRf'), hence it suffices to show that Ao is the only limit point of (-kk)k. In

this regard, we note that a limit point 1. of the sequence (,\k,j)k, is a zero of qo, since F", 0 at' is

a continuous function of ao,.... an, t.

To prove that the sequence (Ak)kEN has only one limit point, we let I := (1j)'=, be a limit

point of (Ak)k. Then, it is clear that (13)>= is non-decreasing, and, as observed above, all the n

entries of I are roots of q0. Since q0 has only n roots, 1 will be proved to equal A0 as soon as we

show the following: "if 0 occurs rn times in 1, then its multiplicity as a root of q0 is at least Tn".

Assume. therefore, that, ,+1 =Is+2= .. , ,n+m = 0, for some s and m. Let (ki)= 1 be

a set of increasing integers for which (Ak,)i converges to 1. By Rolle's theorem, for each fixed
0..., m - 1 the rth order derivative () of the polynomial qk, would have a zero Zk, in the

convex hull of {Aki,s+j1}_<j_<m. Since, as i -4 oc, that convex hull shrinks to 0 (since each (Ak,,s+j)i

converges to 1,+j = 0), zk, converges to 0. Thus, 0 is a limit point of roots of (q (r))j, r = 0,..., rn- 1,

hence 0 is a root of q0 of multiplicity > m, as claimed.
After establishing the claim, we can prove the measurability of the eigenfunctions Aj as follows.

We approximate the matrix G by Hermitian matrices Gk whose entries are simple measurable func-

tions that converge (say, pointwise) to the entries of G. Let qo(w, -) be the characteristic polynomial

of G(w), and qk(w, ") the characteristic polynomial of Gk(w), k = 1, 2..... Since the coefficients

of qk(w, .) are simple measurable functions, so is the jth smallest eigenvalue function Akj(w) of

Gk(w). On the other hand, the coefficients of q,(,(..) converge to the corresponding coefficients

of qo(w, .). Since G(w) and Gk(w), k E • are Hermitian, their characteristic polynomials have

only real roots. By the previous claim, this implies that, for every j = 1, .... n. and for every w.

the eigenvalue functions (AGj(w))k converge to A,(ir). Thus, each A, is the pointwise limit of

measurable functions, hence is measurable.
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Finally, we construct the columns of U inductively. Assume by induction that we already

found V = { 1 .... vL-L } vectors whose entries are measurable finction,. such that Gtc, = A.,c,, for

each i 1.j - 1, and such that {j1 (-), .... v3_ 1(t')} is an orthonormal set for every u, E P.
For each w. let k(uc) be the largest integer that satisfies A.(,) u\k( ,(r). For k =

0 ..... n - 1, set Kk. := {ft E Q ke(w) = k}. Then (Kk )k forms a measurable partition of Q. On

each set Kk, we augment the matrix A.jI - G by adding the row vectors L .... and obtain

in this way a matrix R with measurable entries, that satisfies rank R(•) < ri. for every u, E Kk.

Precisely. rank R(w) = n - ri(w) + k. where m(w) > k is the multiplicity of A. (tc). Applving the

proof of Lemma 2.4 of [JS], we obtain a measurable vector vj such that R'i = 0 on Kk.. and for

ewvry i' E K.. cv(wv) (considered as vector in DIRn) has norm 1. Since R(u')v' (i,) = 0. it E Ký..

Vr (a) is an eigenvector of G(te). and is orthogonal to {ca_\( w)... - ( ')}. It is also orthogonal

to i', (a'). i < j -/k as well. since c', (c) is an eigenvector that corresponds to the eigenvalue AVc)

which is (lifferctit from the eigenvalue A-(i') of 'rj(t'). Hence. r', is (pointwise) orthogonal to each

of its predlecessors. This comipletes the inductive step. thereby the prot of the lemmnmiia. 4%

i([idhntailly. the proof of Tlioremi 2.3.6 shows that every FSI space can be written as a ul-irte

orthgoinal su1i of PSI spaces. This fact had establisheed before in [BDRI] 'f. Theorem 3.5 there).

It leadls to the followimug interesting corollarv.

Corollary 2.3.8. Given ;amv FSI space S. there exists a finite siubset kp C S whose correspondinug

shift-inamri;mt set E, is a tight fraine for S.

Proof. We write S as a finite orthogonal sun of PSI spaces {S(h/)},EJI. By (d) of Theorem

2.2.7. each S( r) contains a function m' whose shifts E,,, form a tight frame for S(ij). say. with

frauie bound 1. The totality {c',O } ,I is the required 1. A

In g-veral. there are many ways to write S as an orthogonal suni, and. therefore, S contains

many tight frames. Though the norms of the individual generators 0, E ' depend in general on

the specific T' chosen. the sum V ,¢ kJII2' depends only on the space S, that is: it is the same

for all tight frames Eq, whose frame bound is 1, and whose corresponding S(4'), V, E F form an

orthogonal decomposition of S.

2.4. Frames in quasi-regular FSI spaces

We had proved in the last subsection that every FSI space contains a shift-invariant tight

frame. However, not every FSI space contains a shift-invariant stable basis. A partial solution to

that difficulty was offered in [BDR1] via the more general notion of quasi-stable generating sets.

That notion was defined in (3.16) of [BDR1], and is closely related to the notion of frames. In fact,

Definition 1.3.5 here allows us to rephrase Definition 3.16 of [BDR1] as follows:

Definition 2.4.1. Let 1P be a finite generating set for the FSI space S. Weý say- that (the shifts

Eb of) (D is (are) a quasi-stable generating set, if (i): ED is a frame for S; (ii):

CT. = {c = (COE,) E t 2(E,) : supp, C o'S, VO E
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Note that quasi-stability coincides with stability whenever TS = If". i.e., whenlever S5 is regullar
(indeedI. if S IS reg ular and~ 4) IS (1uiisi-Stabl(V. thten 0T, = f, ( E~ ). and hience ker 'TP = {0 1 ). E vejj
with this wveakettiti of the stability notion. [BDRI] shows that not every FSI space hia, at quasi-
stable basis (we have proved,. in Corollary 2.3.8. that every FSI Space has a shift-linvariant framne.

and~ even at tighit one. therefore, thle existence of a quasi-stalble basis really relies onl the structure

Of C7-T ). Spaces that dto have quasi-stable bases are tertnedl ili [BDP 1] ats quasi-regular. We
discuss here. several properties of frames inl quasi-regular FSl spaces. which mayv not be valid inl
more general FSI spaces. One of these is anl explicit representation for the orthogonial piojiero

Onto 5: [BDR 1] obtains such formulaths for qutasi-regili; ifSpaces byv a Craiier-ru le- like expressI()I

(SteC (1.9) there). Oi le thot her hand. we knowv from Pro1 osjt ion 1 .3_> that thle ort ha uolia;l pro~jetmc .

c-ait also be represetntedl bv using at frame for S andl its (duial framile. and this will leadI~ ls to) all

altýrmiat ive representattition of this projetor.

Before we state ou 1r first result, wev recall thle definit ion of a quasi- basis from) i [BDI3 1]: The
hitit (1)I~ s a quasi-l )isis for the FSI space 5 if det G, is uli-ei) .e. onl (7s. We uxient iii. [131D[31].

liat tilie existeltee of at l1 asi-bas.is for S is vquivalentl to the qu~;i.Si-rv-gul;iritv of .5. aind IThat every

(Ii bi-5t abl 1e 1 sis is also a qu1 asi-ba; sis but utot vice versa. The cardn iialit v of the quiisi-asisi is t he

lenmgth lemiS of S and Iis shown iii [BDR 1] to d ep~end~ oilvl onl S.

P roposit ion 2.4.2. Let (1) ~ he finite qiuxsi-i-hos15 for the (qumasi-' v .. tikr) I-SI sf);U .5.4 Aunct rhar

E+, IS ;I Bessel -wt. Then.

(2413) C.4  { = (c ).E E (.2(Ep) :suppr0' C -iS1.

Proof. Denoting the( right hand side of equation (2.4.3) byý Cv. we will Show that (i):

0r4 C C,t. attd (ii): ker T4 nl C, = 101}. Since C-7. is thle ortho';onal complllemnent of ker '4. (2.4.3)

w~ould then follow fromn (i) andl (ii) comxbinted.

The reqjuiredl (ii) was p~roved in [BDRI]: Corollary 3.11 there asserts that, sitnce 4) is a quasi-

basis. thle mlap

is 1-1 Onl C,P.
As for (i). given f E S. suppf lies in the 2-7r-periodic extension ((aS)0 of c-S. Thus, if, for Some

C = (cG)OE,t E (2 (Ep,) each suIpp ý, is dlisjoint of c-S. we have

E4c ~= 0.

This means that the space

%7,p := Ic E (2(E,p) :sui)ip)(W' nl (S is a mill-s-et, Vo E 4)j

lies itt ker 7T . Since C, is clearly t he orttlogOual compillemienit of K.1,. we obtaint (i) by applying

orthogonal complements to the inclusion 1%,p C ker T,.
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Th'leoremi 2.4.4. Let D~ be it finite -weain~.tt 101 the Fus-e~ua SI p1 eým, 3. Theni (D
(Jisi-~tibe t'lleratiiigm set f i' and oull If it is- it i mXii>ad i~)rs~ al1,~li>El, tolfu1 i

framei for S.

Proof. If E~ iS (jtii1i-s!tdh1(. then, bY deinitirion. it Is it fraiune. and It is also at quasi-i asi's

1w virtute of Proposit ion :3.18 of [BDR11].

C'oiiver-sely. If <D is ait plasi-biasis anid E+ is at fritine. t hen. for thle qualisI- -;ta1Ilit~v tof 4t. it

reuii tinsý to si iow that C'7-, hat, th lieqru ireti , tructrure. This tolli wv frtoim Proposiltioni 2.4.2 ain itthle

as"1ill1pt ioul that (D is ait s-bss A

WOe ml'ititui that. gi~v'iia ut~i e it F SI sýpitt .5. there exist shiift -izt wiriaxili trilxzo'> Ep1 !'or
.5whitch ant not tqjliisi-:Stitlet (hm litlo~ (14)t 114 o-it a (jlsii asisiitj). Foi- t'x~imiple t Ci' ligl t

"Imc 1> 1. ainll ht'iue ami q6ai-bsi orIt Is for~iied bv thle shifts, of singlec tilnetlonl :' - the ýain'Zl
tillit'. trun>for PSIpae that ctlisi't of tilt' >irstf* st''a'ral fIl~littiolis; 'xiý,t. uiul(. Ill fact. e

The It-ot ttl lt Itlttv:( m~ tf li cS. I m ('rIllu 311ti l3R1.4 s1qis-ti the;bv cmd Iocd(ie gti'ilt lug s('

hl(tfl'ttt1r ont a~ qiisirtgtilar I-, s[taee Sinc E+' iti4' is tOse. Theofc tnre 2..6ovenlpa 4t'itrtl -hwnt

N orII wlwt IAol tIlill( f'eit l'o' tallij) T ilct ll T luý,A-1 is, h'ivititv hI.v bound't' ;1h tex'

hAt 1,rtt bom irtit'r weov o )iit (TS t ay Crl'et'iity result[B 1. I 1t A 1 it a s ;1,1table css tciit'ii it' ýciittr.

Il Ihc I~' is, lthe tiilb', eto'esar\ wei it lsodl '•fh'lcitu o Nt etledual fiiiiI(I.(1ttofl N , tihe oreilt oi altt

Corollautryot i.t5 LetsE 1-reguarqaisal ai i h FSI spaccS jvieaitotshe f.ac dlt tht bt'l s;I map(il fraomi

(1) into S'( 4)). If E1j~p is at Bessel set. theni ER+I is the dual frame of E+ if (and onlY If) TR'I,'T; is
tlhe idoletitx' oil S. that is. if

(2.4-6) f - (f. E`Q) E(1Ru.. Vf E S.
0 E,'P.n E 7ZL'

1

Proof. After e'xtenidinig R from (D tto E by the rule RE 0 o :=E( Ro. we appeal to Propo -

sition1 1.3.7,. That protpositioni v'alidate's thel '-oiiy If* implicRat ion. alitI redlucoes thle p~roof of th l-t 'C
~il~liptiatitoll to p)rovinig that CT,, . CT Fiirtheri(-ore. Proposition 2.4.2 a~sserts that CT,, is the

saille for all quuusi-bas('s TF of S.
Sincet' ~Its alreadY kniowu to he at qIllisi-basis (bY 'ilrtiic of itsý quausi-stabilitvy. cf. The'oremi 2.4.4I).

it suficefts to showv that R~l is also aI qula~si-i asis. Tite pr'tof of t his st atemnent got's as-, foiltlows. Sit ite
R(1) C_ S. wt' have S(R 4)) C S. This. toge'thetr withi ( 2.4.6). slitows that E11+~ is fiundamneital ill

S. an lieic'it S( ~p4) = 5(D)) Sin(e (D isa quasi-basis for .5. its cardinality is the ata(lengthi.i'iS

of S. Tli('refore. # (R[)) < #(D = leInS. However, as, asserted bv Thieor'em 3.12 of [BDR 1]. eVery
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generating set of a quasi-regular FSI space S that contains no more than lenS elements must be a

quasi-basis. 4

Theorem 2.4.7. Assume that the shifts E., of the finite 4) form a quasi-stable basis for the FSI

space S. Then the Fourier transforms of the generators RW of the dual quasi-stable basis are given,

on aS, by

with G- 1 the (pointiwise) inverse of Gp.

Proof. Since R should invert TjT,. we compute first TbT;O. Here., we use (2.1.2) (and

the fact that TbT, = Z-OCE TT0 *) to conclude that

Q'E4

Since G,, is invertible on oS (and is zero elsewhere). the claim follows. A

By Proposition 1.3.8. Tt1 T(7 is the orthogonal projector Ps of L.(IR'l) on S. The last result
thus allows us to write

Ps= 5 [f, oy0 .,,'p,

0, O'E'

with (.q,,' ),o'E,' G+•. Instead, we could have solved the equation G+Rp' = by appllying

Cramer's rule. That attempt would have resulted in the form for PS that was discussed in [BDR 1].

3. Infinitely generated SI spaces

3.1. General

The study of FSI subspaces of L2 (IRld) is pertinent to Approximation Theory, where one
attempts to approximate from small, simple spaces of approximants. In other areas (such as

wavelets) the main goal is to find an attractive basis for the entire L 2(]Rd) or to a "big" subspace of

it. We therefore analyse in this section shift-invariant subspaces of L2 (I.d) generated by" a countable
set of generators.

Our results on FSI spaces were stated in terms of the matrix spectrum of each of the "fiber"

matrices G(w), w E U". We pause here momentarily in order to have a closer look at the potential
practical value of the obtained characterizations. Assuming we hold in hand the Gramian matrix,

the characterization of stability and of the Bessel property are of a more favorable nature than
those of frames and tight frames: in many cases, the estimation of the largest eigenvalue A(w) and
the smallest c;genvalue A(w) of G(w) can be done directly in terms of the entries of G(w) (as we

did in §1.6). However, estimating the smallest non-zero eigenvalue A+(w), would, almost certainly,
require the application of a costly iterative process. Consequently, the kind of characterization of

FSI frames that was obtained in Theorem 2.3.6 seems to be practically less useful than its stability
counterpart. This can also be viewed as follows: the invertibility of a certain operator is a more
accessil)le p)roperty than its partial invertibility.
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A partial solution to the above problemn is obtained with tile addition of the complementary

dual Grarnian analysis that will be developed. Indeed, as was already explained in the introduction.,

the Gramian analysis is engaged with the decomposition of the operator T;Tt, while in the dual

case the operator TpT; is the object. In two respects, there is a significant difference between

these two operators: the stability of a Bessel set E, is equivalent to the invertibility of TT÷,

but is not so nicely reflected by TpT, (this latter operator should be partially invertible and onto

e.2(E,,). two hard-to-verify properties). On the other hand, a fundamental frame for L.,(Id) is

characterized nicely through T÷T; (should be invertible), and is hard to be analysed via T;TP.

17 summar'7y, Gramian analysis is best suited for the study of stable bases. while dual Grant ian

an alysis is particularly good for fiitdarniental frames for L., (11(). hence, indeed, the two apl)roaches

complement each other.

In view of the above. one may wonder why we have not employed the dual Gramian analysis

for the study of frames in FSI spaces. The answer for that is as follows: since an FSI space is

always a proper subspace of L2(I'), a frauie for it is never fundamental in L (IRU). For the

analysis of frames which are not fundamental. both Gramnian analysis and dual Gramian analysis

require the (hard-to-verify) partial invertibility of their associated operator. hence tile switch from

the finite-or her Grainian G to infinite-order dual Granian G iprovides no gain.

Throughout the section, we use the notation EA for the spectrum of the operator -4: nainely.

given a l)olIhde(d linear enldomorphisn- A of a Hilbert space H. we denote

EA {\ E C : the inverse of \I - .4 is undefined or unbounded}.

To make it clear distinction between this notion and the spectrum oS(1) of S('I), we will always

refer to the former as the the operator spectrum.

3.2. Gramian Analysis: SI spaces as the limit of FSI spaces

Two different approaches for the study of SI spaces are employed here. The first, that we

(dscuss in the present subsection. attempts to extend the results from §2 on FSI spaces to general

SI spaces, by viewing the latter as a certain limit of the former. That approach leads to the desired

characterizations of the Bessel property and of the stability property, but is short of characterizing

frames. Therefore, we will develop, (in §3.4) an alternative method, where we inspect directly the

operator spectrum of each of the "fibers" G(w). This latter direction is more powerful, alas, much

more involved, whence our decision to present both approaches.

The "going-to-the-limit" argument is almost self-suggestive, and is based on an elementary

observation. Let X be a countable subset of the Hilbert space H. Given any subset Y C X, let

Hy be the closure in H of the finite span of Y (that is, Y is fundamental in Hy). As before, the

operator Ty is defined on f0 (Y), and, if bounded, is extended to the entire e2(Y) by continuity.

Further, f 2(Y) is isometrically embedded in (2(X) in the usual way.

For a set X C H, a chain

.... C X,,- 1 C X,, C Xn+t C ....

that satisfies UX,, = X is called a filtration of X.
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Theorem 3.2.1. Let X be a countable fundamental set of the Hilbert space H. Suppose that

{X,,}I, is a filtration of X, i.e., X-, C X,,+, for all n E IN, and U,.\,, = X. Denote T := TX,

T,, := TX., H,, := Hx,,. Then:

(a) X is a Bessel set if and onl.y if the following condition holds "each X,, is a Bessel set. and

sup,, IIT,,11 < oc". In such a case, 1IT1h = sup, IT,, 1 = lim,_n . hIT, 11.

(b) Assume X is a Bessel set. Then, X is a stable basis for H if and only if the following

condition holds "each X,, is a stable basis for H,. and sup, jjT,, 1-l < sO ". In such a case,

JIT-1T1 = sup,, IfT, -'jI li= n-oc 11T,,`1n.

(c) Assume X is a Bessel set. Then, X is a frame for H if the following condition holds -for

infinitelh many n, X,, is a frame for H,,. and lini inf, JIT,,l 11 < Dc". In such a case, [[TI-t[1 <
lir inf,, 1lT,,I - lI.

Proof. The boundedness and invertibilitv of T (TF,) is determined by its action on the

finitely supported sequences 0to(X) (((0(X,,)) in (2 ( Y) ((2(X,,)). Assertions (a) anrd (b) thus follow

froim the fact that, since {fX,,,, is a filter of X. fo(X) is the union of

(c): Without loss. we may assume that each X,, is a frame for H,,. and that (11T,-t =

I T,,'j- l),, converges (otherwise. we take a subsequence). Set A := limniIT,• -lII- Since T is

bolhldhl. A < -C. More Importantly. by our assumptions here .4 > 0. Now. let f E H. Given E > 0,

we can find. for all siufhciently large k. an element fk E Hk so that I1f - All ,,,-' , -

Then. IIT'fI hlTiT*fll - s > IITfkhI - e. Also, IIT~fkhj > lITkl-'jl'I-IfA II > 1Tý1-1 -I'llf II - r. In
summary, for every f E H and for all sufficiently large k.

IITVI 11 IJIT:1 1I- I-lfI 1 - 2c.

By taking k -4 so, we obtain that IIT'fI >11 Allf11 - 2E. Since E > 0 is arbitrary, the desired result

follows. A

Let S be a shift-invariant space generated by the countable set 4D. Let (4D,•) be a filtration

of FD by finite sets. Then, (E,, := E÷),, is a filtration of Ep that employs FSI sets. Let A,,. A,,

and A+ be the eigenvalue functions of E,, (cf. the paragraph after Proposition 2.3.3). Combining

Theorem 2.3.6 and Theorem 3.2.1, we obtain the following result.

Corollary 3.2.2. Wlith 4ý C L2 (lRd) a countable set. with (4)n) a filtration of (D that is made of

finite sets, and with A,, A,, and \+ as above, we have

(a) E÷ is a Bessel set if and only if the function set {A,, }, is bounded in L,-(,Ifd). Furthermore,

IITP112 = sup. IIAnL(u).
(b) Assume E, is a Bessel set. Then it is also a stable basis for S if and only if the function

set {1/A,,},, is bounded in L.('ffU). Furthermore. IT'I-ll = Sup,, II1/,, IIL,(1r,). (H,.re.

1/0 := Oc.)

(c) Assume Ev is a Bessel set. Then it is also a frame if the following holds: "for each n, the func-

tion 1/ .X is bounded on the spectrum a,, of the FSI space S((I,,). and lim inf,, II1/A+ 11 (,,,) <
OC.,,
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The anah-sis of E, for a finite D was done by a spectral-like decomposition of T, into the
simpler fiber operators. For a countable 4), we can still derive from (a) and (b) of the last corollary
similar decomposition results.

\We recall the functions A(w). ,\(w) and A+(w) that were defined in the introduction. Note
that for a finite (1 these definitions coincide with the definitions of A(w). A(w) and A+(w) as
eigenvalue functions. Given now a filtration , of (P. Corollary 3.2.2 implies that jIT÷112 =
lin • fl-, IL r . xMoreover. it is straightforward to show that, monotonically..A,, (w) -+ A(wa).
and i\,,(w) -4 A(w) a.e. on U". This implies that A and A are measurable, and, further, since the
convergence A,, -+ A and A, --+ A is monotone.

I I-\ l.i('f ) 1 ,1 i / IL _('i )-

ilii(l

Thus we obtaiin tile fotlowing extension of (a) and (b) of Theorem 2.3.6:

Theorem 3.2.3. Let 4 be a comiftale subset of L.,(IIa) with Grianian matrix G. Let A.(w) =

l(I(w)f! arid A\(,) :=G(,,' jr-'. Then:
(a) E+ is a Bo'sse'l set it and onlYv itf .\ is essentially hoiund(dl. Aoreover. we have lLT1v 12

(h) Sippose E+ is ;i aessel set. Then E+1, is d stable basis iWa'un onlY if 1/A is o'ssvntiaiJm- bmjn ld.

.\hneomer. wev have 11'4m~- 1 112 = Il/l,cr)

Theorem 3.2.3 provides characterizations of tile Bessel property and the stability property
that. tho loigh were derived with the aid of the FSI results. are stated explicitly in terms of the fiber

operators G(w), t, E UI"[. Such a characterization is valid for fr'ames, but. cannot be derivedI with
tile aid of the filtration argument. Therefore. we develop in §3.4 a direct approach that decompose
G without the use of a filter. Since the proofs there are lengthy and technical, we tostpone that
develol)ment until after tile dual Gramian analysis is presented.

3.3. Dual Gramian analysis

The starting point of the Gramian analysis is the fact that both G and its fibers (G(w)),,
can be viewed as densely defined operator on L"' and C2(f), respectively. Ani analogous statement
about the dual Gramnian is less obvious, and we need surmount here new obstacles.

The first (though, minor) difficulty, that one should note is the well-definedness of the entries
of the dual Gramian: while the Gramian entries [E, (/1], ), t' e g are in L, (U"i) hence well-defined
a.e. regardless of the choice of the set (D, the same cannot be said about the entries

+E (k(( 3ia E21

of the dual Gramnian 6. We start our discussion by settling that question.
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Assume that E, is a Bessel set. Then, since -oEITf 112 = IIT-fII 2 K c. and since the

Fourier transform is an isometry on L2 we conclude from (2.1.2) that

2  <oC. Vf E L 2 (,Rd).

Choosing now f as the inverse Fourier transform of the characteristic function of the cube a +
[-..•]uij, a E 2z•", we compute that [fg3 = ;(. - a),, and therefore,

Thus, we have proved that the sum

0E P+
OEIP

is L I (fl't )-convergent. hence is also convergent pointwise a.e. Since that sum is the (a. a)-entry of

the dual Grainian. we conclude tie following:

Proposition 3.3.1. Leýt (,) be ai counitable subset of L-) (IR"), and assuwm that E. is a Bssel set.

Then. for each o. ,3 E 27r-'Z.. the (a, 3)-vntrv

S;.+ .;.+ 3

of the dual Gramian matrix converges absolutely a.e. to an element of Li( 'rld).

Proof. For a = ), the assertion was proved in the paragraph preceding the proposition.

The extension to a general pair (a,,3) follows from Schwartz' inequality. 4

Since the Bessel property of the set E+ is the weakest property of that set of interest to us
here. we may assume hereafter that, for all a, ,3 e 27-2Z". the sum that defines the (a, 8)-entry

of the dual Gramian converges absolutely a.e.

Another, more substantial, difficulty occurs upon attempting to prove that dual Gramian

operator can be evaluated, i.e., that, under "reasonable assumptions"

(Gf)(w) = G(w)fl., for a.e. w E -rd.

Here. as before flw := fj,,+2,V. Recall that the dual Gramian operator G is defined as G := .1.J•.
i.e..
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If E, is a Bessel set, the above sum must converge in L2(]Rd), for every f E L2(I d). However,

interpreting the above sum in the non-Bessel case is a non-obvious task. On the other hand, the
connection between C and its evaluation G(w) is important even when Eb is not Bessel. since,
otherwise, we will not be able to use the fibers {G(w)}WE-jrd for the characterization of the Bessel

property. For this reason, we view, to this end, G as a quadratic form rather than as an operator.
i.e., make use of the connection

(C!,:) = Z II(7r;f 2 = 11 E I [f ýj12 LU-).
O•EI OE41

Assuming f is compactly supported, we may use the a.e. finiteness of F'0o•÷ Io(" + a)Q(. + 3)1 to
sum by parts as follows:

Z Il V".(wI)1 Z Z f(it,+,a)f(w + 3)o(w + i3)(w+ a)

= Z f(W + 1)f (1" +3) 6 0(w + 3)0t(w + C)

Therefore, we conclude that

Lemma 3.3.2. Let (D be a countable subset of L 2 (IR').

(a) If, for somne a, 3 E 2-" TZ", the sum YoE,• I(" + a),b(. + 03)J is infinite on a set of positive

measure, then Ep is not a Bessel set.
(b) If the above sum is finite a.e. for every Qa, f E 2r,2Zd, then, for every band-limited f,

IIf, 2;fI1 = (21)-" J (fi,)*G(w)fw dw.

The dual Gramian analysis can now be developed along lines parallel to the development of
the Gramian analysis. For that, we set, for a E 27r7-d, S" to be the subspace of L2 (IRd) consisting

of those functions whose Fourier transform is supported (up to a null-set) in a + [--r..-,r]d. S, is a
translation-invariant space. In fact, it is also a PSI space, and is generated by X"v, with X" the
support function of a + [--7r..rr]d (cf. Result 2.2.9). We consider the restriction T;,,, a E 2d of

T; to the space S,, and observe that, for w E '-[,d and f E So,, the quadratic form flj*G(w)f,
w E UI, is reduced to f(w + a)G 0,,,•(w)f(w + a) = Ga,,a(w)f'(w + a)1', and therefore

IIT-fl= _- (27r)dllG,,lf(. + a)I2IILI,('n,).

Since also IfllL 2(Rd) = (2-,)-dllf('+ a)12 11L,(Ir) (since f E Se), the norm bounds on the restricted
operator Tý,0 and its inverse are the same as those of the map

Thus, in complete analogy with Theorem 2.2.7 (cf. the argument used in the proof of Theorem

2.2.14) we have the following.
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Proposition 3.3.3. Let 1 C L2(IRd) be countable (or finite), and assume that the sum 1;E÷ 112
converges a.e. Then, for every a E 27rTd:

(a) The restricted operator T;,4 is bounded if and only if the function G,,, is essentially bounded.

Furthermore,

IIT•;,.112 = jIaj,•IILo('r,).

(b) Assume T7,, is bounded. Then it is also invertible if and only if the function I/G•,,, is

essentially bounded. Further,

11T'; ,•- 1112 = I a .l L < r .

(c) Assume T,;., is bounded. Then it is also partially invertible if and onlY if 1/G,, is essentiallh

bounded on its support a C U"'. Further,

The dual Granijan analogue of the FSI results (i.e.. Theorem 2.3.6) is obtained by restricting

"F to a larger space of band-liulited functions. Here. we take Z to be any finite subset of 29,-,7i.
and defline Qz := Z + [- XV..i"* X\e then consider the restriction 7 -,,.z of T, to the space

Sz := {f E L.,(IRV) : suppf C !Q}.

Given g defined on £2z, and w E U'", we denote by

g2 (W)

the vector (g(tc + z) : z E Z). Also,

stands for the finite-order matrix obtained from the dual Gramian G6 by deleting all rows and
columns not in Z. From Lemma 3.3.2,

117;f 112 = (2 -,T)-djIfjzfzdf!L(-rV), Vf E Sz.

Then. following the arguments in §2.3 (that is, establishing the analogous result of Proposition
2.3.3 and invoking then Lemma 2.3.5), we obtain the following analogue of Theorem 2.3.6:

Proposition 3.3.4. Let (D C L2 (IRd) be countable and assume that ZE'V 1ý12 is finite a.e. Let

Z be a finite subset of 27rTZd, and let T7,z be the restriction of T; to Sz. Let Az, Az and A+ be
the eigenvalue functions defined as A, A and A+ of §2.3, but with respect to the dual Gramian Gz.
Then:

(a) T;.z is bounded if and only if Az is essentially bounded oh UFd. Furthermore, IT,2,z12 =

(b) Assume T;,z is bounded. Then it is also invertible if and onlY if 11Az is essentiallY bounded

on U"l. Furthermore, IiT"-,z-l 112  Il= 1)z111 .,Z1 ).
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(c) Assume Tý, is bounded. Then it is also partialliy invertible if and oniy if A_ is essentially
bounded on a { Z w E d d: Gz(w) - 0}. Furthermore, IIT;,z2 -1 I - /112L

To extend Proposition 3.3.4 from spaces of the form Sz to the entire L2(IRd), we use some

filtration

ZoCZI CZ 2 c...

of 22Zd. It induces a corresponding filtration of ]Rd:

0 C Q 1 C Q2 C..

where Q• := Zj + [-7r..-]d. In this way we obtain the increasing space sequence

Szo C SZ1 C SZ, C ...

whose union S is dense in L(IR.'). Denoting by T, the restriction of T,; to S:,,. we conclude that
the boundedness and invertibility of T; are completely determined by its restriction to S (which is
the space of all band-limited functions). Therefore, we have the following analog of Theorem 3.2.3:

Theorem 3.3.5. Let (D be a countable subset of L2 (IlR' t ). Then:

(a) If the stun ZQ~' 1(PI 2] diverges on some positive measure set, E+ is not a Bessel set.

(b) Assumne that -• 12 I is finite a.e., and let G be the dual Gramnian of EP. Further, let A and

A be defined by

A(w) := JJG(w)jj, A(w) := 1/IJG(w)tvI- ,wE

Then:
(bl) Et. is Bessel set if and only if A is essentially bounded. Furthermore,

I117111' = lk ýU )

(b2) Assume that Ep is a Bessel set. Then Ep is a fundamental frame if and only if the following
condition holds: "for a.e. w, G(w) is boundedly invertible, and the hence-well-defined function

1/A is essentially bounded". Furthermore, II7- 1112 II1/All ( rd)-

Theorem 3.3.5 leads to an interesting conclusion concerning tight frames. Tight frames E,
are characterized by the equality I.T÷IIIITi-II = 1. The theorem shows that the latter condition
is equivalent to the equality

A(w) = A(w) = const, for a.e. w E Id*.

The equality A(w) = A(w) says that the operator spectrum of G(w) consists of a single point, which
can happen if and only if G(w) is a scalar operator. This leads to the following:

Corollary 3.3.6. Let 1' be a countable subset of L2(IRd). Then Ep is a fundamental tight frame
for L2 (llfd) if and only if there exists a constant const such that, for every a, a' E 27rZd, and for

almost every w E Ed

(3.3.7) q 5(w + a)ý(w + a') = const 5'.
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Proof. If the sum in (3.3.7) does not converge absolutely for some a. o' and onl a set of
positive measure. then, by Theorem 3.3.5. E, is not a Bessel set. Otherwise, the condition in

(3.3.7) implies. Theorem 3.3.5, that Ev is a Bessel set. Also. that condition implies that Ep is

fundamental: if riot, there exists f E L.(IRd) so that Tf = 0. hence GI = 0, implying thus that

G(tc)fj,, = 0. a.e.. in contradiction to tile assumed structure of G(w) in (3.3.7).
Therefore. when proving the required equivalence, we may assunme, without loss. that E'p is a

fundamental Bessel set. The claim then follows from the arguments preceding the present corollary.
4

If X is a tight frame, then, up to a scalar multiple, it forms its own dual. The above result is

thus a special case of a general relation between a shift-invariant fundamental fraine and its dual

(cf. Corollary 4.2).

3.4. Analysis of frames which are not fundamental in L2 llR'1)

Theorems 3.2.3 and 3.3.5 provide us with the desired characterizations of the Bessel property
(twice). the stability property, and the property of being a fundamental frame for L..(IR1 t). It
fails to provide similar characterizations for frames of a shift-invariant pl)rper subspace of L. (IRd)
(1iuess that framle happens to be a stable basis). The present subsection is aiined at settling this

remaining probleli. After a brief introduction, we state the main theorem that will be proved here.

The proof details then follow.

Let B be a boumned operator from a Hilbert space H into a Hilbert space H', and let .4 := B B.

Let E.A be the operator spectrum of A. We define

,\+(A) := inffp : A E E.4.\0}.

The operator .4 is partially invertible if and only if A+((A) > 0, and the norm of the partial inverse
is 1/A+(A) (the "only if' implication is quite clear. The argument for the "if' statement can be

found in the proof of the implication (b) > (a) of Theorem 3.4.1).

Given a Bessel set Ej, with Gramian G and dual Gramian d, our two objectives are to connect
(a): between the function

A+(w) := ,A+(a(w)), w E 'Ur,

and the number A+(G); (b): between the function

A+(w) := Adw),w E Ud

and the number A+(G). Since A+(G) = A+(G) = II7Jl-'j-' (with 00-1 := 0), we will obtain in
this way two characterizations of frames. In fact, we will prove the following:

Theorem 3.4.1. Let (D be a countable subset of L2 (IRd), and assume that Eb is a Bessel set. Let
a l) := supp G = supp G C "Ifd. Then the following conditions are equivalent:
(a) E.p is a frame, and the norm of the partial inverse of 7T is K < oc.

(b) The function A+ is bounded away from zero on acD, and II1/A+IIL (.,P) = K 2
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(6 The function A+ is bounded away from zero on c,(D. and IK1/A~it,•(, = A-

The equivalence of (b) and (c) is quite straightforward. (Since E,, is Bessel. then, by The-
orems 3.2.3 and 3.3.5, both G(w) and G(w) are bounded for a.e. w. Since G(w) is the product

., (w).4, (w). and G,(w) is the product of the same matrices in reversed order. !(G(w,)) and '(G_(u,)

can differ only by the single point {O}. Thus. A+ and A+ are equal pointwise.) We will prove here

the equivalence of (a) and (b). The proof of the implication (b)•(a) is based on the following

leiiilmia.

Lemma 3.4.2. Let Ep be a Bessel set, and let T E L'.ý G := Gp. Then.

(a) 7 E ker G if and only if r(tv) E ker G(t') for almost every W.

(1) r E Cc := (ker G)' if and only if 7(tw) E C,, := (ker G(w))-. for a.e. IL.

Proof. The first assertion is obvious. since (GT))(w) is G( w)7(ul)..As for (b). assume first
thalt 7-(w) E C,, for a.e. u'. Then, for an arbitrary r' E ker G.

(-r. 7') L: "I fl (7-(W). -( ')• ,,) = 0.

sin'e. bYV (a). -r'(i') G ker G(u) = C,,'. a.e. Therefore. 7 G (ker G) = C';.

Comlverselv, assulmlle that T- E C(;. If 7 E raiiG. then 7 = G7). for some To, hu'iie. foi a.e. 1,

(p)recisely. whenever G(w') is bomnlded. and 7-()0) E (-,(4)). r(t') = C(,()7o(ttv) E raniC((') C C'.

If 7- ranm ., it can still be approximated in L'I" by a sequence (7,,),, C ran G (since ran G is dlense

in C(;). Bv switching to a subsequence, if necessary, we may assumne that. for almost every W.

(7-,,(10)),, Converges in 6(f) to ri(w). Combining this with the argument in the beginning of the

paragrap)h, we conchlude that, for almost every w, (Tr(w))n is in C,. and converges in the C2(4F)-norm
to 7(t'). Since C,, is certainly closed, we obtained that r(w) E Ca,, a.e. A

Proof of the implication (b)==*(a) in Theorem 3.4.1.
We will I)rove that, assuming (b). ED is a frame, and fITPI-4 <_ 1_ l/A1l L,(,4,).

Assume that 1/A+ is essentially bounded on aF(. and let 7 E CG\O. By Lemma 3.4.2. 7(w) E
C,,, a.e. on `'11. We claim that. a.e.w. if G(w) # 0, it is partially invertible, i.e.. bounded below

on C,. Indeed, the restriction G(w)l of G(w) to C, is (always) injective. Furthermore, since
A+((w) > 0, the operator spectrum of G(iv) is disjoint from the non-empty interval (0, A'(w)).

Therefore, the operator spectrum of G(w)I is also disjoint from (0, A+(w)). Since G(w), is non-
negative and injective. 0 cannot be an isolated point of its spectrum, hence it must be invertible.

The argument also shows that IICG(w,)K-'I = I/A÷(w).
This means that, for a.e. w, if r-(w) 0 0, then

(3.4.3) C _>

For 7- E LT2
1I -I , 17-11 . 1 ( W ) II112 i

L, fu1 1f~~I.,2,00
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hence also

S= J G( w)r( w)J0P.)

hence (3.4.3) implies that

Therefore, G is partially invertible, and hence. Proposition 1.4.11, ED is a frame. Also.

7T'-I2-' = CJIG-11 _ I1/AX+IL•(•), with the inequality by the proof above, and the equality

by Proposition 1.4.11. 4

Proof of the implication (a)=>(b) in Theorem 3.4.1.

Since we will need, in the next section, a closely related result. we will prove herein the followingt

mnor'e g(leneral statenlent:

Theorem 3.4.4. Let G be a non-negative self-itjoinr bounded endomorphiisn of L0. Let (G(u)),,.

hw ;I collection of' non-negative self-aljoint bounded endoniorphisms of (2 (() . that satisfv. for everY

T E LT. and uir i.e. ,t, E U'1. (Gr)(?w) = G(a) T(it). Let A(w) := JIG( w)I, and assume that

. L,('Ir'"). Let A+(,r) := inf{it E E(G(t))\0}. Let Q be the set Q := {w E ''r" : G(,,) $ 01}.

IfG is partially invertible, then l/A+ is essentiallY bounded on Q, and

IIl/AIIL•.() < IICKG'I-.

The fact that Theorem 3.4.4 is a generalization of tie required implication (a) ==: (b) is clear.

To this end, we prove Theorem 3.4.4.

In the proof, we use the following lemma, whose proof is postponed until after the proof of

Theorem 3.4.4 is done.

Lemma 3.4.5. Under the conditions of Theorem 3.4.4, there exists a countable dense subset D of

(2(t), and a null-set Z C Q, such that, for every c E D, for every w' E Q\Z, and every E > 0, the

set
IK.w..:, {w E Q: Il(G(w) - G(tw'))cII1,z() < EIICIci!e0)}

has a positive measure.

Proof of Theorem 3.4.4. Let D and Z be the sets specified in the above lemma. Recall also

the notations CG := (kerG)-', C•, := (kerG(w))-L.

Choose any w' E Q\Z, and let pi > 0 be any point in the operator spectrum E(G(w')). We

will construct an element r E CG, for which

(3.4.6) IIG -rILs < (1 + 5)P1ll7llL.,

with 6 positive and arbitrarily close to 0. This would yield that IjG, -I1 1- 1/pL, implying thus that

A+(w') > 0, and that

lIG-'11 _ 1/A\+(w').
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Since Z is a null-set, we will then conclude that

which is the desired result.

The actual construction of 7 in (3.4.6) is as follows: we will find 0 Tr E L.. supported in

A x (D. where .4 C Q is some set of positive measure. such that (i): r(w) E C.. for every U, E "1]d.

and (ii): IIG( w)T(w)Jl.,(, < (1 (-IS)pjjr(w)I<,(t,. Condition (i) would imply (as in Lemma 3.4.2)

that r E CG, while condition (ii) is needed for the conclusion that IIGrflL, < (1 ÷)P!lTjL.. ((f.

the two displays after (3.4.3)).

In general. for the sake of (i) above, it might be hard to know whether a particular sequence

lies in C,,.. The most efficient way is. probably, to select elements in ran G(w) (and use the fai't

that ran G(iw) is dense in C,., by virtue of the self-adjointness of G(u')). Indeed. our element 7 will

be defined as
7 {1V) G(w)c. E A.

r(w) := { otherwise.

with v sonie fixed sequence in C.(F).

Here are the details: since it E E(G(w')). G( w') - ILI has no l)ouned inverse, and so we can

find an element c E C-2( ) . such that licu .,(+) = 1/1L. and

(3.4.7) IIG(t,')c - Itl112 (-•)

with • > 0 arbitrarily small. It follows then that

(3.4.8) IIG(w')clf2((c) _< 1 + S.

Since G(w') is bounded and D is dense in C2((D), we may assume that span c n D 5 0. Therefore,

by Lemma 3.4.5, there exists a subset A of Q with positive measure, such that

II(G(u') - G(w'))cII,(,p) < S//I, Vw E A.

We define r E L' by
= G(w)c, wE A,

r(w) := { otherwise.

Thus, condition (i) (i.e., that r(w) E C',, all w) is satisfied. Also, the uniform boundedness of the

operators {G(w)}1,,Erft easily implies that r E L0. Thus, to complete the proof, it remains to show

that, for almost all w E "d,

II•G(w)7(w)11. _ (1 + 6)pIT(W)ll•cs).

This last claim is trivial for w E U"'lt\A, so we may assume that w e A. We first choose w = w'.

For that specific choice, we get

(3.4.9) IIG(w')r(w')Ili,(,) = IIG(w')G(w,')clf.2(.) < iipG(w')clii(,) + JJG(w')(G(w')c - ,c)ll,(÷).
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Denoting

C := 1-IL.(1r., < .

we obtain from (3.4.9), (3.4.8), and (3.4.7) that

IIG(W')r(W')ji 2(÷.) < p( 1 + ) + CE.

Oil the other hand, by (3.4.7),

(3.4.10) 1 - I 'r(aw')lle,(4 = i, l -=IG(w')c! <_ .

Altogether. we obtained for that case the inequality

IIG("(w')ll, l+ E) + C
-1 1- - - ~')g2 .

By choosing sufficiently small (and adjusting .4 if necessary to that s7). wve obtain that
(3.4.11t) II~ t'r ,:)l_•••< 1+ 6)jtrj (1C")h, (+b).

To extend that to a general i. E .4. we show that both ,(u') - T(WC'), and G(w')T(," ) - G(lI)rt u)

(•'l be lnad(' arbitrarily siall (ill norm). ald tOhen invoke (3.4.11). First. since spani q D 0.

(3.4.12) IIT(IL') - T("IIJf) e ., -- (w) - G("'))cbl!(,p) < E/j,.

Therefore. I (I') !.) > J T(,,')JJ(,(, - 5/ > -z - :/p . t he s('o(d inequality by (3.4.10). This

01ri es t hat T(1u') - T(1w") is. ihld(ee1. small. an(i also weaiis that. on .4. T (ii') is being kept awvay froi i

zero. a consc(lqwucne that will be required shortly. Second. to est inate G( IL')7( ') - G(1L")r,(•V'), we

write

(3.4.13) G( ,,)2 - G( l',,')2 = G( iv)(G( WL.) - G( IL")) + (G( IL') - G( ,L') )G( IL).

Now. since II(G(w) - G(w'))cll,(,p() < •/p. we have that

JIG(w)(G(w) - G(w'))cj•(J2 (,) < CS//I.

Also. due to (3.4.7) and the fact that II(G(i,) - G(w,'))c.ll,(,P) < E/i',
II(c;(,L)-G(,w'))G(,,")cIt 2•(+ < II,(G(W,)-G(W'))cilf.(÷)+ll(G;(,)-G(w))(pc-G(w")c)flt•.() < s+2Cs.

So, we conclude from (3.4.13) that

IIG(W)'(,) - G(w')r(w')IIec(') = IIG(w) 2c - G(w') 2 clJf,:(c) < (C/p + 2C + 1)E.

Therefore, by (3.4.11) and (3.4.12),

IIC(w)r(w)flJ,(.,) <llG(w')r(w')lie 2 (e,) + (C/p + 2C + 1)E

<_(1 + 6)Illr(w')Ilt2(÷) + (C/p + 2C + 1)e

<(1 + J)I,(Jj7(w)lf 2 ,) + s/p/) + (C/p + 2C + 1)E

-(1 + 6)PIl(w)jle,(P+ + (C/p + 2C + 2 + 6)6.
Since we have already proved that II'r(w)ll•,(,) is kept away from zero, we can modify E (hence A)

to guarantee that, say.

IIG(w;)r(u,) Jle(÷) <_ (1 + 26)plJT(,,,)IIe, (f),

and the desired result then follows.

Finally we prove Lemma 3.4.5. For that we first recall the definition of measurable maps:
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Definition 3.4.14. Let M be a measure space. and B a topological space. A map f : M - B is
measurable provided that f-'(Q) is a measurable set in NI for every open set QŽ in B.

Clearly, if f : \1 -- B is measurable, then f- (U) is measurable for every Borel set U C B.

Proposition 3.4.15. Let NM be a positive measure space and B be a separable normed ,pace.
If the map f : NI -+ B is measurable, then. there exists a null-set Z C MI. such that, for everv
u" E NI\Z and for arbitrary t > 0. there is a positive-measure set .4 AL.. C MI. such that tor

arbitrary w E .4.

(jf(w) - f(I')l"3 <1B -.

Proof. All norlns in the proof below are B-norms.
Let X be a comntable dense subset of B. and let - < - be somen well-ordering of X. Given

a E I3,. let

0,.,, -- u E B : 11,, - .,li < l1/ }.

Then (O.,,n)E.E is an open covering of B. and. defining

Ux.,, := O.,\(u,,<~,,,,), X E X,

we obtain a partition of B into Borel sets. That partition induices a partition

(Ax, :- f -'(UX,,))1EX

of M into measurable sets. We then define a map s,, : M --+ B (as a matter of fact, ran s,, C X) as

follows:

Sn( OV) = x X,,. ()
zE X

Then. s, converges to f uniformly. Indeed, we have that jjf(w) - s.(w)j[ < I/n for all n E N,
w E M.

Let Z be a null-set that contains all those .4,,n (x E X, n E Nh) whose measure is zero. Let

w' C M\Z. For arbitrary E, pick n with 2/n < E. Since w' ý Z, w' is in some positive-measure
Ax,,• For w E Ax,,,

If(w') - f(w)(( M 1 f(w') - Sn(W')j1 + Is8(w') - Sn(w)W1 + II1S(w) - f(w)I <.

Proof of Lemma 3.4.5. Let D be a dense countable subset of e2(f). Given c E D, let B, be the
space of all (bounded) linear operators from span{c} into 2(4I).

Since we know that G(w), w E Q, is a bounded linear endomorphism of e2(f), then, certainly,
G(w)•san{c} is bounded for every w E Q2. This defines a.e. the map

f : QŽ -4 B, : W ý-4 G(W)Ispan{c.-

We need to prove that this map is measurable.
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Given L E B, and w Ei Q, one observes that

IIG(w) - LIB, = JIIG(w)c - LcIlf,(,p)
Ic11eit2 ($)

Further. since G is bounded, Gc E L", and in particular. its entries are measurable functions (for
the sake of applying G to c, c should be interpreted as the element r E L0 with constant entries

r, = c0 ). Also. since IIG(iv)c-LcIef2 (,b) is finite, the series that defines IJG(w,)c-LclI,(÷) converges
(unconditionally). Combining that with the previous observation, viz., that the entries of Ge - Lc
are measurable. we conclude that the map it, - I]G(w)c - Lcjj5 ,t) is measurable. hence so is our

f.
An application of Proposition 3.4.15 with respect to the map f. yields the existence of a null-set

Z, C Q. such that for every s > 0 and every i' E Q\Z,. the set

{w IIG(w) - G(tv') 113,} <

has a positive measure. Defining Z := U,.E1Z,. we obtain that (a): Z is a null-set. (b) tibe claim of
the lemma holds for this Z. A

4. Dual frames

Let (l) be a countable (or finite) subset of L2 (aRd), and assume that E,, is a frame. Let
R, : ,5 --* L2 (1Rd) be sonie map, and assume that ERPt is a Bessel set. Let J, and JR,, be the

pre-Grainian of (D and R(I respectively. Our objective in this brief section is to study the property
"ERP is the dual frame of Ep" via the fiber matrices .4(w) and JRq,(w).

Our initial tool is Corollary 1.3.9. Part (b) of that Corollary says that, if ER4÷ is the dual of
Ep. then T÷T.,, is an orthogonal projector. On the Fourier domain, this operator is represented
by .. •Jý, whose matrix representation is

0= (Z + a)RO(. + a'))Q,&'E2r z•"d

The sum above that defines the entries of JtlJt÷ can be shown to converge absolutely for ,very
a, a' E 2 7r2Zd and for almost every w E 'n1 d (Schwartz' inequality followed by an application of
Proposition 3.3.1). Corollary 1.3.9 also implies that the operator T7TRI, is an orthogonal projector.

Here. the Fourier transform analogue is ;.lRp. whose matrix representation is

The entries of this latter matrix are certainly well-defined (a.e.).
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Lemma 4.1. With (D and Rgo as above,

(a) T÷TýT is an orthogonal projector if and only if, tor almost every tv E U', J J(w)J,j(ul) is anl

orthogonal projector (on e2(2-, 1 )).

(b) 'T;'TRp is an orthogonal projector if and only if. for almost every w E Ufd. J;(WL)Jt(p(W) is an

orthogonal projector (on e2(g) = C2(RF)).

Proof. The arguments for proving (a) and (b) are essentially the same. hence we prove

only (b).

Since the Fourier transformation is an isometrv. we may replace in the proof the operator

TT'ltj by its Fourier transform analogue ,J•.R÷. Also. for the sake of notational simplicity, we set

G := .I.lj÷. though, of course, this G is the Graniian of neither (D nor RFD.

First. one checks that G is non-negative self-adjoint if and only if almost every G(W) is sO.

Assume that G(tv) is an orthogonal projector for a.e.iv. In particular. each G(tiv) is self-adjoint.

hence. by the above. G is self-adjoint, too. To show that G is an orthogonal projector. we need

to prove that Gr = 7 for evr'Vr 7 E (kerG)'. Let. therefore. r E (kerG) . By a proof identical

to that of Lemma 3.4.2. for a.e. ir G Itl. 7(11') E (kerG(w))±. Since G(tv) is assuniedl to be an

ort Ilogoiial projector (a.e.). we (o011('1hle that G(c)7r(tc) = r(1V) (a.e.). implying that GT = 7. This

proves that G is ain orthogonal projector, as needed.

Now assitiie that G is amn orthogonal projector. We want to invoke here Theorem 3.4.4. hence

need to verify its assumptions. The basic relation (GC))(ic) = G( U.)r(wr) is straightforward. The thct

that each G(-,') is non-negative self-adjoit follows from the fact that G is assunied to be so. Finallv.

analogously to the derivation of (a) in Theormn 3.2.3. one proves the relation JJGJJ = L• L(1'd),

with k(ic') := JIG(w)II. Since JIGII = 1 here, we conclude that, for a.e. w E 7T'1, E(G(w)) C [0. 11.

Now. we invoke Theorem 3.4.4. Since G is partially invertible (being an orthogonal projector),

and JIG,- ̀ 1 = 1. that theorem tells us that A+(wv) > 1, for almost all u' that satisfy G(t') - 0.

This implies that, a.e., E(G(Cv)) C {0} U [1. D). Combining that with the result of the previous

paragraph, we conclude that, a.e.. E(G(w)) C {0, 1}. Each such G(w) is also known to be self-

adjoint, hence must be an orthogonal projector. A

In case E. is fundamental in L2 (111i), J÷..IJ is the identity operator, and this immediately

implies that ahnost every operator J(w)J÷(w) is the identity. Thus, we get the following:

Corollary 4.2. Let Ev be a frame and let ERv be its dual. Then:

(a) For everY a, a' e 2-'2Zd, and for almost every w E "It,

>3 0(W + 0)Rcbw + a) = 1: k0_(w + o)b(w + a').
OE÷, 4OE

(b) If E÷ is fundamental in L 2 (Nd), then, for every a, a' E 27r2zd and for almost everY w E It,

E 0(W + +)R(c± ) =
OEIP

Proof. The first claim follows from the self-adjointness of the .1÷(ec).14÷(')-matrices. The

second claint follows from Lenmma 4.1 and also directly from the remarks preceding the present

corollary.
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Corollary 1.3.9 provides us also with a sufficient condition for ER$ to be the dual frame of

the frame E£4. In the shift-invariant case, that corollary, combined with Lemma 4.1, leads to the

following conclusion:

Corollary 4.3. Let H be a closed subspace of L.2(IRd). and let E., be a frame for H. Let ER4, be

a Bessel set which is fundamental in H. Then ER÷, is the dual of E, if and only if for almost every

w E Uf" each of the operators JýD(w)J(w). J,(')JR 41(w). JR,(W)J*(w), and J÷(,).I,(w) is

an orthogonal projector.

We have stated Corollary 4.3 primarily for proving our following final result. That result.

though might look very special. will play a crucial role in the development of the duality principle

of Il(yl-Heisenberg framnes in [RS1].

Corollary 4.4. Let E4 t be a frame for H C L.2 (IR"). with a dual Ell,. Let E , be a frame for

H' C L,(IR'). and let R' : T -+ L9,(II'). Assume that. for almost every W E U",

(4.5) J qb(W) = = p( V)

(That is. for some indexing F = ( ),.,E2.,,7' . anld P = (',)Ja"E2.•.'&." ,(w + 3) = •.3j(it + n). etc.)

Then Elý,q, is the dual frame of Ep.

Proof. Since Eli+ is a framne. the equality- .Jys,(ii') = ,,,(ir) easily implies (by Theorems

3.2.3. 3.3.5. and 3.4.1) that Elt,, is a frame, as well.
Since Eli+ is the dual frame of E.1, then, bty Corollary 4.3, for alnost every it E 3'ff each of the

operators "]1t (w).4, (i'), .J÷ ( i)Jt,4, (at), .JRp. (w)J,] (ev). and .JD (w).J., (w) is all orthogonal lroj(,'-

tor. By virtue of (4.5), we get that for almost every u' E U('1 each of the operators Jl,4 (w).,,(c),

J, (c).*R,, (i'), JR', 1(w) JJ, (w), and J, (iv) .J, , (w) is an orthogonal projector. Therefore, Corollary

4.3 would imply that Et,, is a frame dual to E, as soon as we show that EaR,, is a fundamental

set of H'.
Let H" be the closure of the algebraic span of ER',,. If H" 5 H', then, since E£, is fundamental

in H'. there exists, say. some f E L 2 (IRd) such that T•,f = 0, but Tt,4, f 5 0. (Otherwise, there

exists f such that Tf 5 0, but Tý, , f = 0. and the argument below can be adapted to this case,

as well). By Lemma 1.4.8, this implies that, while

Jý (w)fl. =0, a.e. w,

Jý,,p(w)fl. 0 0, on a set of positive measure.

On the other hand, since ER4, is the dual frame of E£. Proposition 1.3.7 implies that ker T , -

kerTR,. and hence that, for a.e. w, kerJ;,(w) = kerJV(w) = kerJRb(w) = kerJA, , (w), and we

have reached a contradiction. A
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