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ABSTRACT

Let X be a countable fundamental set in a Hilbert space H. and let T be the operator

T:6,(N)=>H:c— Z c(r)x.
FIAY

Whenever T is well-defined and bounded, X is said to be a Bessel sequence. If, in addition. ranT
is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a stable basis
(also known as a Riesz basis).

This paper considers the above three propertics for subspaces H of L,(IR?), and for sets X’ of
the form

X={¢(-—-a): ped. acZ,

with @ either a singleton. a finite set, or, more generally, a countable set. The analysis is performed
on the Fourier domain. where the two operators TT* and T*T are decomposed into a collection of
simpler “fiber” operators. The main theme of the entire analysis is the characterization of each of
the above three properties in terms of the analogous property of these simpler operators.
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Frames and Stable Bases
for Shift-Invariant Subspaces of L,(IR%)

AMOS RON AND ZUOWEI SHEN

1. Introduction

1.1. General

We study in this paper certain types of “bases” for shift-invariant subspaces of Ly(RY). Our
primary objective is to connect among three important families of “basis” sets: shift-invariant
sets. Weyl-Heisenberg sets. and affine (wavelet) sets. The present paper is the first in a series of
three. and is concerned with the basic theory of shift-invariant bases for shift-invariant spaces. The
two other papers, [RS1] and [RS2], will focus on the applications of the theory developed here to
Wevlk-Heisenberg and affine sets.

Given X C Lo(IR%). we say that X is a shift-invariant (SI. for short) set if it is invariant
under all possible shifts. i.c.. invariant under all integer translations. A shift-invariant subspace
S of Lo(IRY) is a closed subspace which is also a shift-invariant set. Such spaces play an important
role in the areas of Multivariate Splines, Waveiets, Radial Function Approximation and Sampling
Theory.

The following terminology is commonly used in the context of shift-invariant spaces. First. for
agiven ® C Lz(lR‘[), the space generated by ®, denoted by

5(®),

is the smallest (closed) shift-invariant space that contains ®. The set of shifts of ®

(1.1.1) Es:={E%¢: ¢ €0, a € Z},
with
(1.1.2) E°f 0 f(-—a),

is then clearly fundamental in S(®), and is a natural candidate for the previously discussed .X'.
The space S is a principal shift-invariant (PSI) space in case S = S(®) for a singleton @, and,
more generally, is a finitely generated shift-invariant (FSI) space if ¢ above is finite. Many
articles are devoted, wholly or in part, to the study of Riesz (=unconditional=stable) bases for PSI
and FSI spaces (cf. e.g. [JM], [BDR1]). In particular, a complete characterization of such bases is
given in [BDR1], which, further, introduces and analyses the more general notion of quas:-stable
bases. These results form the starting point of the present paper.

We provide here a complete characterization of frames and tight frames in FSI spaces. and
draw interesting connections between these notions and the notions of quasi-stability and quasi-
orthogonality of [BDR1]. We further give a comprehensive analysis of infinitely generated SI spaces.
and employ in that course two complementary approaches termed here as “Gramian Analysis™ and
“dual Gramian Analysis”.




We provide here a complete characterization of frames and tight frames in FSI spaces, and
draw interesting connections between these notions and the notions of quasi-stability and quasi-
orthogonality of [BDR1]. We further give a comprehensive analysis of infinitely generated SI spaces,
and employ in that course two complementary approaches termed here as “Gramian Analysis™ and
“dual Gramian Analysis”.

1.2. Notations

The Fourier transform of a tempered distribution f is denoted here by f, and is defined, for
f € Li(RY), by

fu) = [ rwe-u(oyae

where
€y it et
The inverse Fourier transform of f is denoted by fV.

We frequently discuss in this paper functions that are defined on T4, the d-dimensional torus.
Those functions can be viewed as 27-periodic functions. via the standard transformation R 3
w = et = (efvr . ete) € T Though we may refer to such functions as being defined on T,
we alwavs treat their argument as real. Thus, “multiplying a function defined on T by a function
defined on IRY” simply means “multiplying a 27-periodic function by ...".
abuse of terminology, we write “Q € " and mean “Q C [-r.. 7]®
Q + 27Z%, of Q is denoted by

Following this slight
. The 2m-periodic extension,

Q°.

The inner product (norm) of any Hilbert space H discussed in this paper is denoted by (-, )y
(Il - }z, respectively). The default inner product and norm are these of Ly(R%). We may also
suppress the subscripts in (-,-)y and || - ||z if they are clear from the context.
Given a set X, the notation
£(X)

stands (as usual) for the space of square-summable sequences on X, with the standard inner
product. Also, if Y C X, we embed ¢>(Y") canonically in £2(X) (i.e., by defining each ¢ € £,(Y") to
be zero on X\Y'). The space

£ (X)

is the space of all finitely supported sequences in €»(X), and is considered as a subspace of the
latter (i.e., equipped with the same norm).

Vectors in IR? are considered as either row vectors or column vectors, and the exact meaning
should be clear from the context.

For a countable ® C L,(IR%), we define the Hilbert space of L(Tl%)-valued ®-vectors as follows

LY = {(rs)oes : To € La(TT); Y lI7oll], ey < 00}
e




The inner product here is
(7. r')L;; = Z(T@T‘QL:('EJ).
pce
If r € LY, then t(w) € €(®), for almost all w € .
The space L} enters the discussion in this paper as the image under the Fourier transform
of the sequence space €4(Z% x ®). Indeed. given ¢ € £5(ZZ* x ®), we denote by c,. & € . the
restriction of ¢ to Z* x (¢). The Fourier series ¢, of ¢, is defined as

Cp 1= Z cola)e~q.

aezd

Accordingly. the Fourier transform of ¢ € £(Z% x ®) is defined as the element

-~

¢:=(6)oew € LY.
Note that this Fourier transformation is an isometry between £,(Z% x ®) and LI
The following bracket product plays an important role in the analvsis of shift-invariant
spaces: given f and ¢ in Lo(IRY). the bracket product is defined as
(1.2.1) [f.g9] = Z f-+a)g(- +a).
a€2x /2t

Then. [f. g] is a well-defined element of L (T, and satisfies

(1.2.2) “{fﬂ f]“l.;(TT“) = Hf”‘;),_‘(m:l)-
Also. a standard periodization argument vields that
(1.2.3) ({(foyl-—a)) =0, Va € ZY)Y = ([f.g]=0. ae.).

Finally, we find it convenient to define g/ f as follows:

: g(x)/f(z), =z € suppfsuppy,
9/f:a= {0, otherwise.

1.3. Preliminaries

In this section we briefly recall some elementary facts concerning fundamental sets in Hilbert
spaces. While most of the material here can be found in [C], [D1.2], [DS]. [HW] and in several other
references, it makes the paper more self-contained, and allows us to introduce the basic terminology
in its natural setup. Only occasional proofs are given here.

Let H be a separable Hilbert space and X' a countable subset of H. We attempt to introduce
the operator
(1.3.1) T:=Tx:0(X)>H:c— Y cz)r.

z€X
T is certainly well-defined on the finitely supported elements of £,(.Y). X is said to be a Bessel
sequence/set if T is bounded on the subspace of finitely supported sequences. In such a case. it
is continuously extended to a bounded operator on £5(.Y).

Associated with Ty is the map T := Ty : H defined by

T :h~— {(h,x)y}rex-




Proposition 1.3.2. T* is a bounded map from H into {,(X) if and onlv if X' is a Bessel set. In
such a case T* is the adjoint of T and ||T|| = |IT*}|.

Now. let T be any bounded operator from a Hilbert space H' into a Hilbert space H. Then
the set

(1.3.3) Cr:=H SkerT.

(i.e.. the orthogonal complement of ker T in H') is well-defined. T is injective on Cp. ranT =
run(Ti(_\r ), and ran T is dense in Cr. In this paper, we use the notation T“I to denote the inverse
map from ranT to Cr and. similarly. denote by T‘,“ the inverse map fromran 7T to H = ker T,
These maps are usually referred to as partial (or pseudo) inverses. Wirh rhese conventions. we
have the following result.
Proposition 1.3.4. Let X be a Bessel set. and T := Tx. T™ := Ty as before. Then the following
conditions are equivalent:
(a) ranT is closed.
(b) T is bounded below on Cr.
{¢) T* is onto Cr.
(d) T* is bounded below on H = ker T*.

When one (hence all) of these conditions holds, we have [T 7| = 1T~

Definition 1.3.5. Let H be a Hilbert space and X a fundamental Bessel set in H. We sav that
X ix a frame for H if one (henee all) of the conditions of Proposition 1.3.4 holds. A frame X Is
called tight if |T||| T, ™!l = 1. We call a frame for H := Ly(R?) a fundamental frame.

Thus, X is a frame if and only if there exist constants Cy, Cy such that the inequalities
Cullhll? < 3 [, 2yul* < Caflh]f?
T€X

hold (for all h € H). The sharpest possible constants are Cy = ||T||* = ||T*||? and C, =
1/)IT,7H* = 1/)IT* 7" and are usually referred to as the frame bounds. A frame is tight

if and only if its frame bounds coincide.

A notion closely related to frames is that of a stable basis for H (also known as a Riesz or

unconditional basis) defined as follows:

Definition 1.3.6. A stable basis X' for H is a frame for H whose corresponding Tx is injective.

Equivalently, it is a frame whose corresponding Ty is onto €3(.Y).

Given a frame X for H. the map

TT*:H - H:hw— Z(h,.r)y r
€ X

is called the frame operator. TT* is continuously invertible. and we use
R:=Ryx

4




for its inverse. Since the map R maps X 1-1 onto RX, we may identifv canonically the spaces
¢>(.X) and €2(R.Y), as we do hereafter, without further notice.

Since R is self-adjoint, T{R = Ty v, and hence (i): T is a right inverse of Ty, and (ii): RY
is a frame (the latter since T{ v is composed of two continuously invertible maps). The frame R
is known as the dual frame of X. and some basic facts concerning dual frames are collected in

the following proposition. *

Proposition 1.3.7. Let RYX be the dual frame of the trame X. Then:

(a) X is the dual frame of RX (ie.. duality is reflexive).

(b) TxTyy = TaxTy = Iy, with Iy the identity map on H.

(¢) ker Tx = ker Ty and CTx =Cryy-

(d) The dual frame RX is the onlyv Bessel set R'X in H that satisfies Ty Ty v =1 andker Ty =

ker TR/ A

Proof. Since RTx = Try. we have Tpy T v = RTyT¢R = R. hence the dual of the frame
RY is R7'RY = X. which shows (a).

For (b). we already know that Ty Ty = [y. Taking adjoints (or. alternatively. interchanging
the roles of X and R.Y. which is possible thanks to (a)). we get that Tpy T = 1.

The relation Ty = RTy shows also that ker Ty = ker Ty, and hence Cpy = Cp, . which
proves (c).

Finally. assume R’ : X - H satisfies the conditions in (d). Define (on X') a map K := R - R".
Then KX is Bessel, and T Ty = Tx(Tiy — T v ) = 0, showing that ker Ty D Cr,. . Further,
since ker Ty = ker Ty = ker Ty (by assumption), we have ker Ty D kerTy. Thus. ker Ty x
contains its orthogonal complement Cr,. . This implies that Ty x = 0, hence, KX = 0. '

The above proposition allows us to represent the orthogonal projector onto H with the aid of

a frame and its dual:

Proposition 1.3.8. Let S be a closed subspace of a Hilbert space H. Suppose that X is a frame
of S with a dual frame RX. Then Tx Ty v is the orthogonal projector Ps: H — S, i.e.,
Psh = Z (h,Rx)r.
reX
Proof. The definition of TxTg y directly implies that its range lies in S, and hence, by
(b) of Proposition 1.3.7, it is, indeed, a projector. It is also orthogonal, since Tj v, hence Tx Ty v,
obviously vanish on the orthogenal complement of S in H. 'S

Part (d) of Proposition 1.3.7 provides a criterion for checking whether a certain Bessel set
RX is the dual frame of X, or not. However. that criterion might be hard to implement. since it
requires the identification of ker Ty and ker Tr x. The following corollary provides us with partial
remnedy to that difficulty.

*  The symbol £ which is comumonly used in the literature to denote the dual frame is used in
this paper for a totally different purpose. In any case, the use of T to denote the dual of r is an
abuse of mathematical notations. since it suppresses the dependence of R v on X\r. The notation
x for the dual has many other drawbacks. To see one of them. try to rewrite the discussion here

on dual frames using it instead of R.

(2]




Corollary 1.3.9. Let H be a Hilbert space, H' a closed subspace of H. X a frame for H', and
R a map from X to H'. Assume that RN is a Bessel set which is fundamental in H'. Then the
following conditions are equivalent:

(a) RX is the dual frame of X.

(b) TaxTx. TyTrx. TxTg ., and Trx Ty are orthogonal projectors.

(¢c) TiyTx. and Tryx Ty are orthogonal projectors.

Proof. The equivalence of (b) and (c) follows from the fact that every orthogonal projector
is, in particular. self-adjoint. and hence, assuming (c), we get that T3 Ty = TyTox. and Tx T\ =
Trx Ty verifving thereby (b).

Assume (a). The fact that Ty T ¢ i5 then an orthogonal projector is the statement of Propo-
sition 1.3.3. This implies that T{Try is a projector. Since R\ is a frame. Tg y maps £,(.Y) onto
H', and since X is a frame. Ty maps H' onto C'ry. Hence, T Ty must be the indentity on Cr.
The orthogonal complement of Cry is ker Ty = ker Try (the equality by () of Proposition 1.3.7).
and Ty Ty certainly vanish on ker Try. Hence it is orthogonal.

Now, assume (b). By statement (d) of Propositierr 1.3.7. in order to prove that RYX is the
dual frame of X, we only need show that Cp, = Cp, . For that. we first observe that. since both
X and RYX are fundamental in H', Ty Try maps Cpy o 1-1 densely into Cp, . Since that operator
certainly vanishes on ker Try and is assumed to be orthogonal. we must have Cry = Cr - A

For a shift-invariant set X = Ep (with Ey as in (I.1.1)), we use the abbreviated notations
Tp = TE,‘,, T; = TZ:@.

For this case. the search for the dual frame is simnpler due to the following proposition.
P g Prog

Proposition 1.3.10. The dual R(Ey) of a shift-invariant frame Ey is the shift-invariant frame
Ere generated by R®. In particular, the dual of a principal (respectively, finite) shift-invariant
frame is also a principal (finite) shift-invariant frame.

Proof. We need to show that R commutes with shifts E* : f — f(- —a), a € Z*. For
that, it suffices to show that the map

ToTs:fm Y (fm)x

z€Es

commutes with shifts E® (and use the fact that R is the inverse of that map). Indeed, for a € /A

(TeTeNESf) = S (E°fixye= Y (fFE re= ) (fo)Ez=E"TeT3f.

r€eEs r€Fy r€Ly

with the fact that E“FEg = Eg being used in the penultimate equality. o
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1.4. The Gramian matrices

The central notions in this paper are the pre-Gramian matrir, the Graman matrir. and the
dual Gramian matriz. In principle. the objective is to decompose the involved operators Ty and
7o into a eollection of simpler operators (“fibers™), indexed by « € T Each one of the “fiber”
operators acts from a sequence space to (the same or another) sequence space and its matrix
representation can be explicitly described in rerms of the Fourier transforms of the generators .
The main theme of the entire analyvsis is as follows: every property of the set Eg (such as being a
Bessel set, a frame. a stable basis etc.) s equivalent to the “fiber™ operators satisfying an analogous
property in a uniform way (here “uniformity” refers to the norms of the underlyimyg operators).

The pre-Gramian operator .Jy is simply the Fourier transform analog of rhe operator Tp.
It ¢ € (,(Ey) is fnitely supported. we see that

(1.4.1) (Toci™ =" &Go.

OED
Hence. we mav introduce an operaror Jy. which is defined. at least. on the space
(1.4£.2) L(f’ = {c¢: ¢: Ep — Cis finitely supported}.
by the rule

(1.4.3) EEEDY T,
¢eb

Since the Fourier transform is an isometry, the boundedness, invertibility. and other properties of
Te can be equally studied via Jp.

The definition of Jp extends naturally to spaces larger than Lbb: for instance, if ¢ is finite, the
rule in (1.4.3) can be extended to the entire LT (In such a case. Jp7 need not be a L, (IR?)-function.
but is always defined a.e.).

More relevant to our purposes. the pre-Gramian can be “evaluated™ on T in the following
way: we define the value Jg(w) of Jp at u € T as the (272 x ®)-matrix

Jo(w) = ($(w + ))a.s-

Since each ¢ is well-defined only up to a null-set, so is the function w - Je(w). In a natural
way. the matrix Jg(w) can be viewed as a densely defined operator on £,(®). In any case. (1.4.1)
together with (1.4.3) show that, for ¢ € €4(Es).

(1.4.4) (Te) (w + a))ger=ze = Jo(w)c(w).

In summary, we have decomposed Tg. on the Fourier domain, into a collection of operators
{Jplw) : w e T}, defined for almost every w. each of which acts on a dense subspace of £,(®) and
represents the action of Jg on the coset w +227ZZ*. Because of the explicit matrix representation of
each Jp(w), questions like its boundedness, invertibility etc., are by far more accessible than their

Te counterparts. Thus, our goal is to study Te via the behaviour of the “fibers™ Jo (), w € .
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The spectrum of the space S{®) generared by @ is defined (up to a null-set) as
o= oS(®) = {w € T Jpiuw) #0}.
An equivalenr definition of the spectrum is:
(1.4.3) o= {weT: [«3.(;]((1') # 0. for some o € ¢},

For a FSI space. it was proved in [BDR1] rhar the spectrum of S only relies on the space and iz
independent of any particular selection of the generators of the space. That proof can be carried
on to infinitely generated SI spaces.

Next. we want to decompose the operator Ty Since the Fourier transforu is an isomerry, the

(formal. sav) relation Jp = To. leads to the relation

Te =J4.
[In 52 e (2000 weshow that. given o € dand f € Ly IR"). the sequence T2 fLothough need not be
in (20 EL). is alwavs in the Wiener algebra of £,. more precisely. consists of rthe Fourier cocthicienrs
of the LT -funetion (f.o]. This leads ro rhe conclusion that J5,. the Fourier rranstform analogne

of Ty has the form
(L. L6) Ji o f = (f oluen.

and allows us to introdoce “point evaluation™ with respect to Jg: we define Jg{w) ro be the

following operaror acting on (2272

(1L7) Jolw) e ( Z cl)olie + a))pe .
IYREY/A
(To compare (1.4.6) and (1.4.7). choose e¢(a) := f(ur + a) in the latter)

As expeeted. the analysis above reveals that the matrix representation of the operator Jg (w)
is the adjoint of the matrix representation of the operator Jp(w). Le., we had verified that “eval-
uation™ commutes with taking adjoints. After making that observation. and with only very few
necessary exceptions, we will identify Jp with its matrix representation (Jp (1)) . epa-

The following lemma collects two useful facts that were just observed.

Lemma 1.4.8. Let ® C L,(IRY) be a countable set. Then for any ¢ € (4(Eg) and f € Ly(IR?),

1
aid for a.e. w e MY,

(1.4.9) Toc(w + )jpnza = Jo(w)e(w),
and
(1.4.10) Taf(w) = Jaw)(F) ., ,.)-

Two self-adjoint operators can be constructed from Jg. The first is the Gramian G := Gg.
which is defined by
G = (;, .I‘p.
Previons considerations imply that Gy is the Fourier transform representer of T;Te. This fact

allows us to draw the following immediate conclusions.
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Proposition 1.4.11. For the denselv: defined linear operators Ty and G:
(i) Ty is bounded if and only if G oasidered as an endomorphism of LY. is well-detined and
bounded. Also. |Gl = || Te!?.
(it) Assume Tp (hence. G) is Lounded. Then. Ty is partially invertible if and only if G is partiallv
, “l = T =y
invertible. Also. |G, = [Ty 7 M-
(i) Assume Ty is Lounded. Then. Ty is invertible if and onlv if G is invertible. Also. 'G™Y =
-1y
17a]
We define the value Gu) of G at w € T as

(14121 Glw) = Jytw)pw) = Q;.«;’}(u'))g' SCb-

In general. tor ace. € T the Gramian Gl ix a densely detined self-adjoint operator on 151b;
(hopetullv inro irself?. In order to make anyv cood use of Glut. one needs to make sure thatr. at

h . . . . .
least on L) evalnation commutes with the application of G Le. thae

(Gritwl = Guuorqwel, for =€ LY aud for aee. e e I
This = acruadly obrained by sununation-by-parts. whose straightforward justificarion is omitted
here. Henee:

Lemma 10130 For everv e € 6y Eg). and for ace. w € ™,
((Ty Tae) G tioge = Gl
The notation
A =[Gl
stands for the operator norm of Gw). and is assumed to be ¢ whenever Gae) is not well-defined or
is unbounded. In case G} is also boundedly invertible. we denote its bounded inverse by Gy =1
and set
M) =[G )t

Also. we set

AT () o= G (e,
In case ¢ is finite. X(w) and M) are clearly the largest and smallest eigenvalues of the Hnite-
order matrix G(uw). A closer look may reveal that A7 (w) is. in such a case. the smallest non-zero
eigenvalue of G(w).

Typical vesults concerning the Gramian analysis can be found in Theorem 2.2.7 (PSI spaces).
Theorem 2.2.14 (I’SI spaces. several generators). Theorem 2.3.6 (FSI spaces). and Theorems 3.2.3
and 3.4.1 (infinitely generated SI spaces).

The Gramian approach is efficient for the study of those properties of Ep which are “visible”
via the operator Ty, primarily orthogonality and stability properties. In contrast. other properties
such as Eyp being a fundamental frame or a fundamental tight fraune are better analvsed with the
aid of the adjoint 7Ty For the analysis of this adjoint operator. we introduce another self-adjoint
operator which we eall rhe dual Gramian G. It is obtained by mltiplving the pre-Gramians, but
in reverse order. namely.

(1.4.14) G i=Gop:=JuJ}.




Problems of well-definedness are more subtle here than in the Gramian case. Fully detailed discus-
sions of that point are given in §3.3. and we mention here only two facts: first. if Eg is a Bessel
set. then G is a well-defined self-adjoint bounded endomorphism of L,(IRY). Second. if Es is not
a Bessel set. the definition (1.4.14) may not make sense. and it is safer to view G as a quadratic

toru. t.e.. to dehne it by

E; : f — ”']‘;)f“i; = Z “].:f“‘[:_,( i = :; Z g{f'(/;”z;”:i&’lr't\'

»ebd o€b

The evaluation Giud of the dual Granian is the 22720 x 22220 matrix whose fa.a -entry

has the form

(1L Dot —ajote = al),

064)

The argiument o mav be restricted 1o T For ageneral Ey. the entries of G mav not be well-
detived (i the <ense thar rthe simnin ther definition needs nor converge absolurely). Nevertheless.
we will show din 53230 thats whenever Egis o Bessel set. the sum in (11131 converges absolutely
for every a.a’ = 22727 and for ae. e, Thus, for a Bessel sor Eu. Gln s well-defined ae.. and
can viewed s densely detined operator trom (5122720 (hopetully into itselt). Moreover, we will
show then thar the basie relation

(Gfiw) = Gle) fia

(with f.. the restriction of f to w + 2x72") holds a.e. A similar relation is drawn in §3.3 even in
the non-Bessel case. under the assumption that the entries of G{w) are well-defined. and with the
interpretation of (¢ and G(uw) as quadratic forms.

Analogonzly to the Gramian case. we define here the following functions
Aewe) = |Glw).

:‘:(u') == ”é(ll')—lu_l,

X (w) =[G w), " ™!

and attempt to study properties of Eg in terms of the behaviour of these functions. QOur main
results in this regard are Theorem 3.3.5, and Theorem 3.4.1.

The Gramian/dual Gramian analyvses are also efficient for studying the connection between a
frame and its dual: given two sets ®, ¥ C L,(IR?), and some bijection R : & — . this is done via

the study of the matrices Jy(w)Jj e (w). and J§(w)Jre (w), as discussed in §4.

1.5. An example

We provide here an example. which is taken from [RS1]. (and is a specific type of what we call
there “self-adjoint Weyl-Heisenberg sets™) that illustrates the potential power of the results to be

developed in this paper.
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Let ¢ € Ly(IRY). Let
P := (eaP)acrrze-

Indexing ® by 2nZZ%, the pre-Gramian Jg(w) is found to be
Je(w) = (0(uw + o+ 3))q se2nze-
Therefore, Jg(w) = Jo(uw ), and hence
Ga(w) = Go(w).

Now. Theorem 3.2.3 characterizes the stability property of Fp in terms of the Gramian fibers
Go(w). w € T% On the other hand. the same criterion when applied to C~1"p(zu), w € T, is shown
to be equivalent to Eg being the fundamental frame (Theorem 3.3.5). This recovers the following
well-known fact {cf. e.g. [D1,2]):

Corollary 1.5.1. With ® as above. Eg is a stable basis if and only if it is a fundamental frame.

1.6. An application: estimating the frame bounds

The main results of this paper are concerned with the connections between the spectrum
of the operators G and G and the spectra of the operators G(w) and C:'(u;). w e T As we
mentioned before. information about the fiber operators G(w) and é(w) is more readily available
as compared to similar information concerning G and G. Still. computing exactly, e.g.. the norm
of G(w) (considered as a lincar map from ((®) into itself) might appear as a hard task. However,
estimating this norm (either from below or from above) in terms of the Fourier transforms of the
functions in the generating set @ is quite casy. This subsection is devoted to the discussion of such
escimates.

To this end. we let I be a countable (or finite) index set, and let M be a complex-valued non-
negative Hermitian matrix with rows and columns indexed by I, and considered as an operator
from £,(I) into itself. We use the following estimates of ||A]):

(1.6.1) sup(d_ 1M (i.5)1))F < M < sup}:m i)l
€l jer I'jer
Combining these estimates with T!  rem 3.2.3, we obtain our first estimate for ||7e/l:

Corollary 1.6.2. Let & be a countable (or finite) subset of Ly(IRY).
(a) If the function

B T!ixd->IR:( N3 Bw + ) (w + @)l
¢’'€ed ac2rZ?
is essentiallv bounded, then E¢ is a Bessel set, and [|Tell* < IBillL(mexe)-

(b) If Eg is a Bessel set, then the function

By : T4 x® - R: (w, o) Z | Z 5(11'+(1)(;>(11'+(1)12)
@' €EP a€2nH

o

is essentially bounded, and || Tell* 2 |Ball L, (réxe)-

On the other hand, combining (1.6.1) with Theorem 3.3.5, we obtain different estimates:
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Corollary 1.6.3. Let & be a counrable (or finite) subset of L,(IR%).
(a) If the function

BRI R:uw Z lZ&(zn‘)S(w-{-a)[

a€2rZt €D

is essentiallv bounded, then Eg is a Bessel set, and || Tp||? < Iléllle(,Rd).
(b) If Eg is a Bessel set, then the function
EQZIRd—)IR:u‘P—*( Z 'Z<P‘L u-f—a)l)%

a€2nZt o€d

is bounded and || Tp||* > “B'_’HLV(RJ).

For the estimation of the other frame bound. we need a bound on [JM 74|, In what follows we

cmploy the estimate
-1
(1.6.-H Ry <sup(] M) - Z [ M7y |> .
JEI\:

which is valid for anv Hermitian diagonally dominant M. An application of this estimate to

Theorem 3.2.3 vields the following:

Corollary 1.6.5. Lot & € Lo(IRY) be countable (or finite), and assume that Eg is a Bessel set.
Then Ey s a stable basis if the function

I |
b : T4 x &> R:(w.d) — < Z lo(w + a)]? - Z | Z ol + a)o' (w + (y)|>
a€2r M P’ EP\O agixZZ¢
is positive and essentiallv bounded. Furthermore, in this case
-12
7o 1" < Nbille . (mixa)-

Finally, an application of (1.6.4) to Theorem 3.3.5 vields the following:

Corollary 1.6.6. Let ® C Ly(IRY) be countable (or finite), and assume that Ee is a Bessel set.
Then E¢ is a fundamental frame if the function

-1
by RG-S R:we— (Z |¢(w)12 - Z | Z o(w)o(w + a)|>
oed a€2xZi\0 €D

is positive and essentiallv bounded. Furthermore,

175 ~H1F < bl o mey-

The simplest example that follows from the above results (and can also be checked directly)

is the following.
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Example 1.6.7. Suppose that, for every ¢ € ®, for every a € 27Z¢, and for almost every w € RY,
(p(zL)Q(u +a) =0 (e.g.. each b is supported in some cube ¢, +[0..27)¢, ¢, € IRY). Then, the (square
root of the) function Bl can be replaced by the function

g:RI'SR:w— Zlq)
oed

Similarly, the function b, can be replaced by 1/g. Consequently, we obtain Ey is a fundamental
frame if the two functions g and 1/g are essentially bounded. In fact, the results of this paper will
show that the converse of this last statement is valid as well.

2. Finitely generated SI spaces

2.1. General

While general SI spaces are best analysed with simultaneous use of the Gramian and dual
Gramian matrices. this is not the case for FSI spaces. The reason is easy to inspect: for a finitely
generated ST space. the dual Gramian matrix is infinire. while the Gramian matrix is finite. This
explains to a large extent the prevalence of Gramian analysis in the study of FSI spaces. Moreover,
in the principal case, the Gramian matrix is reduced to a single function, providing thereby a further
significant simplification in the course of study of such spaces. Therefore, we will first present (in
the next subsection) a detailed analysis of bases for PSI spaces, and only then discuss the FSI
counterpart of that theory. The present subsection is devoted to some simple initial observations

and estimates.
In the PSI case, the generating set ® is a singleton (¢), and the operator 75 := () then takes

the particularly simple form

To : f = {{f,E°0)}aezma-
From Parseval’s identity, and the 27-periodicity of the exponentials e,, a € 7ZZ%, we obtain that
(2.1.1) (f,E%9) = (27)U(f6, ea) = (27)7([f. @], ea) (.

Therefore, 75 f is the set of Fourier coefficients of the L, (Tr%)-function [ f , $], that is

com— -~

(2.1.2) 1 =[f.9).

In particular,

Proposition 2.1.3. Given ¢, f € L'z(]R,d),

-~

Ty Fllesczey = @m) 2N bl Loy
Some coarse estimates can be derived directly from the above. By Schwartz inequality,
IUf, ¢ll” < 1f. £l 8.
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Thus. for & C L,(RY),

T3 £1Z, 20y < @7V A D (00l L, (o)

oed

Since || f||* = (27")_d||[f-ﬂ”m(n‘d)- we conclude that

175 Fllescy S VAN S [0.80F _ ey
ped
Denoting _ -
®:=(D_[0.0)*,

bED
we have proved the following result.
Proposition 2.1.4. Given ® C L,(R%), Ey is a Bessel set in case d e Lo (TY). and we then
have
(Tl S MNPl L (o)

We will show later rhat equality holds in the above in case ® is taken from some PSI subspace
of L,(IRY). Further. we will show that for a finite & the boundedness of ® is not only sufficient for
E to be a Bessel sequence. but also necessary. However. the bound provided by [[%{]Lw(qr” is. in
general. nor sharp.

2.2. Frames in PSI spaces

Throughout this subsection. S is a PSI subspace of La(IRY) generated by some (fixed) function.

Motivated by the search for an explicit represceutation for the orthogonal projection onto shift-
invariant spaces. [BDRI1] introduces and studies the notions of quasi-stable and quasi-orthogonal
bases for FSI spaces. For PSI spaces, in the terminology used in the present paper, its definitions
are as follows:

Definition 2.2.5. ([BDR1]) Let ¢ € L,(IRY), and let T, be the operator
To: b(ZY) = S(@) e Y E*oc(a).
a€Z?
Then ¢ is called a quasi-stable generator if 74 is a well-defined bounded map. and provides an
isomorphism between Cr, := (ker Ts)t and S(¢). If, further, that isomorphism is an isometry, ¢
is termed a quasi-orthogonal generator.

In view of (b) of Proposition 1.3.4, and Definition 1.3.5 of frames and tight frames we obtain
the following Corollary.

Corollary 2.2.6. Let ¢ € Ly(IRY). Then E,, is a frame if and only if ¢ is a quasi-stable generator
of S(¢). Further, this frame is tight if and only if ¢ is a scalar multiple of a quasi-orthogonal
generator of S(¢).

Thus, implicitly, [BDR1] contains an extensive discussion of frames in PSI spaces. Some of
these results are collected below. For this, recall the definition of the spectrum ¢S given in (1.4.3),
and recall the notation

e=[p8)F=( D le-+3)P).

IPL YA
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Theorem 2.2.7. ([BDR1]) Let ¢ € L,(RY) be given. and let S be the PSI space generated by ¢.

(a) The shifts E, of ¢ form a Bessel sequence in S if and only if o is essentially: bounded.

(b} The shifts E, of ¢ form a frame for S if and onlv if o and 1 / o are essentiallv bounded on oS.
Furthermore,

IToll = N0l () = Il Lctos).
and
ITo ™! 1 = 11/0l 2 (o)
Therefore. for a frame E,. the inequalities

LA/ ol sy S O KFEN)? < Nl os)lIfll. f€S.

1\GZi

are valid and sharp.
(¢) E, is a tight frame if and ouly if & = const (a.c.) on its support.
() With o := ((;/(;)V. the ser E,. is a tight frame for S{o) (and hence every PSI space is generated
by some PSI tight frame).
(¢) The frame (tight frame) E, is a stable (orthogonal) basis for S if and only if ¢S = .
Proof. By Corollary 2.2.6. the shifts of ¢ form a frame (tight frame) if and only if o
Is a quasi-stable (quasi-orthogonal) generator of S(o). Therefore, the theorem follows from the
correspouding results in section 2 of [BDR1]. A
We observe that the above (d) and (e) imply that S contains an orthonormal basis Ey if and
only if 0§ = T’ That case was termed regular in [BDR1]). Thus (e) above shows that the
notions of a stable basis and a frame coincide for a principal shift-invariant E,. provided that 5(¢)
is regular. It is worth mentioning that, in case ¢ is compactly supported, §(¢) is always regular.

The spaces ker T, and Cz, were described explicitly in [BDR1] as follows:
ker T, := {c € (,(Z") : suppéC (TT\0S)},
and hence
(2.2.3) Cr, = {c € (2(Z%) : suppC C oS}.

Next. we need the following characterization of the Fourier transforms of the elements of S(¢):

Result 2.2.9. ([BDR2}]) Let ¢, f € Lo(IR?). Then f € S(¢) if and only iff = rq? for some

2w -periodic function T.

Corollary 2.2.10. Let S := S(¢) be a FSI space, and assume that E, forms a frame for S. Then,
given ¢ € (5(Z2). there exists f € S such that

c(a) = (f.E*¢), aeZ’
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if and only if € is supported in the spectrum of S. The unique solution f has the form

(2.2.11) f=> E°¢csa),

acZd

with the sequence c; € Cr, being the solution of the discrete convolution equation
[0.0]Y *c5 =c.

Proof. By the definition of 7. a solution f exists if and only if ¢ lies in the range of 7.
Le., if and only if ¢ € Cr_. Therefore, in view of (2.2.3). we only need to prove the starements
concerning the nature of the solution f. Since E, is a frame for S, then. given any f € S. there
exists a unique ¢y € Cz, that satisfies (2.2.11). Taking Fourier transforms. we obrain that f= z}:v
Invoking (2.1.2). we see that

(2.2.12) c=T:f =0 =Fo.al.

<

where, in the last equality. the periodiciry of ¢ was used. The desired result then follows by

inversion. '

Given a frame E,. Proposition 13,10 asseres that there exists a function Ro € S{o). such that
Ly, 15 the dual frame of E,. Further. we can compute Ro as follows: first. we seek ¢, € Cr, such
that T,e, = . Applying Fourier transform. then multiplving by o. and periodizing over 2772, we
obtain the equation (Tx,[r;. (3] = [(3 (3] Since ¢, is in Cp,, it is supported on supplo. (3] = a5, and
0 Cp 1s the characteristic function y of ¢S. Let ¢ be the solution of [(5 (AD]V*'.’ = ¢y, and I/{Tp = G
Then Eg, is the dual basis of Ey by the fact T3 é = ¢, and by Corollary 2.2.10. Hence ©'is defined

by
- Co 1
€= —=—— = ==,
[0.6] [o.9]
and Re is given by
(2.2.13) Ro = ¢/[0.4).

This representation of R¢ is detailed in [BDR1] (using a different approach) and is well-known in
the special regular case mentioned above (in which a frame becomes a stable basis).

The redundancy offered by frames does not really exist for principal shift-invariant ones. Yet,
given a PSI space, one may use several functions from S to generate a shift-invariant frame for S.
The details of that case are given in the next theorem.

Theorem 2.2.14. Let S be a PSI space, and @ C S be a countable (or finite) set. Then
(a) Eg is a Bessel set if and only if the function

(2.2.15) &= (Y [o.0)?

b
is essentially bounded. Furthermore, ||To|l = ||| Lo(TTY)-

16




(b) E is a frame for S if and only if ® and 1 / ® are essentiallv bounded on the spectrum 0S. In
such a case, ||To; ™! = |1/} 1 (0 5)-
(¢) Eg Is a tight frame if and only if ¢ is constant a.e. on its support.

Proof. By Proposition 2.1.3, given f € Ly(IR9),

178 FlZuceey = @m) 70 D 10F 1Pl Ly crey-
ocd
Let ¢ be a generator of S. For f € S and ¢ € ®, Result 2.2.9 implies the existence of 2n-periodic
Te, Tf such that
szfzr/}a ¢=T0d’a¢€¢-

Therefore,

IF, 01 = Il il &1 = I, fllo. 8.

Consequently.
173 flEy ey = (27) LS F10% M, ey

o~

Since Hfll'izm‘,) = (27r)"1||[f, fA]lllew), and since [f f1 is necessarily supported on ¢S. the proof
of the theorem relies on the comparison of

o~

iTE
”[f1 ]”[',;(05)
and R
I, 18213, o)
Further, we note that Result 2.2.9 also implies that for any closed Q2 C ¢S, there exists f € §

for which { f f] is the characteristic function of Q. The proof can be then completed by a routine
argument (cf. e.g., the proof of Theorem 2.16 in (BDRI1]). A

The final theorem of this subsection provides the details concerning the dual frame of the above
Es and a complete description of ker 7 and C7,:

Theorem 2.2.16. Let ® be a countable subset of a PSI space S, Eg its corresponding shift-

invariant set. If E¢ is a frame then:
(a) Let ) be any generator of S (i.e., S = S(¢)), and ¢ = (cy)ece € l2(Es) (with cy the restriction
of c to Ey). Then c € Ct, if and only if

(C:;)¢ = T([J;v $])d>7

for some 2m-periodic function T, that is supported on o§.
(b) The map R from the frame Eg to its dual is given by

R: fe (f/3%).
(c) The orthogonal projector P : Ly(RY) — S can be written in the form

Pf= S (£ E*((6/3)")) E%0.

¢€P, a€Z?
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Proof. Claim (c) is immediate from (b) and Proposition 1.3.8. To prove (b), we need to
show that the map R inverts T 7y, and this will follow as soon as we show that (73T, Sf) = ®if
on S. For that, note first that Result 2.2.9 implies that, for everv f,g € S,

(2.2.17) (f.915=1[g.9]f
Now, given f € 5, we first recall that, by (2.1.2), for every ¢ € &.

(TeT5 )™= [f. o]0
This. together with (2.2.17) and the fact that TeTg = 3 ;¢4 ToT2 . implies that

(TeTs £ =Y _[fdla =3 [0,6lf = °F.

oEd oed

This proves (b) and thereby (c).
To prove (a), we compute Cr, using the identity
Cr, =ranTy.

For f € 5, there exists, by Result 2.2.9. a function 75 supported on ¢S, such that f - Tf:‘. By

(2.1.2). ~
ToF =[-8 = 4lé. 0
Since Cr, Is the range of 7y, this shows that the Fourier transform of cach ¢ = (cy)see € Cr, 15
of the form ¢, = ’r[uA (3] Y¢ € ®, for some 27-periodic 7 supported on ¢S, i.e., Cr, contains only
sequences of the required form.
Conversely, assume that ¢ = (cp) satisfies ¢ = T([:E, (3]) We consider the nature of Tgpc =
> sco ToCs- Applying Fourier transform, and invoking (2.2.17) once again, we obtain that

Tec=) Go=) r(d.86= (3.0 = &%y

Ped e Y=L ]

Since 7 is bounded, T(f'zlz; € Ly (]Rd). On the other hand, since E is a frame, then, by Theorem
2.2.14, ® is bounded below on (¢S)° D supp &5, and therefore Tl: € Ly(IR?%). Thus, fi= (T‘(Z)V is in
Lg(IR“), and hence, by Result 2.2.9, is also in S. Since the proof of the previous implication shows
that Ty f = ¢, we obtain that ¢ € ran Ty, as needed. [ )

From (a) of Theorem 2.2.16, it easily follows thac

ker To = {(co)o € &2(Es) : D Colth, 8] =0},

IR

with ¢ some (any) generator of S.

2.3. Frames in FSI spaces

In order to lift the results of the previous section from PSI spaces to FSI spaces, we need first
the following FSI analog of Result 2.2.9 (cf. Theorem 1.7 in [BDR1]}):
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Result 2.3.1. Let ® be a finite subset of L,(IR%). A function f e Lg(IRd) isin S := S(®) if and
only If there exists 7 := (Ty)pep, With each T4 a 2m-periodic function, such that

(2.3.2) F=3 ro

o€EP

Several different approaches are available for the analysis of frames in FSI spaces. We have
chosen here the one which incorporates efficiently the results on PSI frames that were established
in the previous subsection. We do that by studying first the straightforward case when the finite
generating set ® of S induces an orthogonal decomposition of S into the sum SzeeS(0) of PSI
spaces. We then reduce the general setup to that simple case.

Recall that, by (1.2.3), the space S(¢) is orthogonal to the space S(y') if and only if [(3 Ij] = 0.
a.e. Thus, the sum Y~ . S(¢) is orthogonal if and only if the Gramian matrix G is diagonal.

Proposition 2.3.3. If the Gramian matrix G is diagonal. then:
(a) Ep is a Bessel set if and onlv if. for each o € ®. o is bounded on 0o = a(5(0)). Furthermore.

IToll = max [ Tall = maxlioll, .

(b) Eg is a frame for S(®) if and only if, for cach ¢ € @, é and 1 /(E are bounded on co. The
frame is tight if and only if, for every ¢, (E = const on oo (with const independent of ¢).
Furthermore,

1Ty~ = m‘;lxllnflﬂ = max 1170l L ()

Proof. The orthogonal sum decomposition ©45(¢) of S(®) implies that Ty agrees with
T, on S(#) (recall that we naturally embed the target space (2(E,) of the latter into the target
space £5(Eq) of the former). Since €3(Eg) is (always) the orthogonal sum ©4€2(Eg), we conclude
that. indeed,

172l = 17e 1l = max 771 = max |74,
and
7o) = 17170 = max 17571 = max 7oy ™.
The result then follows by an application of parts (a-c) of Theorem 2.2.7. '

In accordance with the definitions of §1.4, we define here

Alw)
to be the largest eigenvalue of G(w),

Aw)
to be the smallest eigenvalue of G(w), and

A (w)
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to be the smallest non-zero eigenvalue of G(w). Then. both \{«) and At («) are non-negative and
well-defined on ¢S. Further. Proposition 2.3.3 can be stated as follows:

If G is diagonal. then Ey is a Bessel set if and onlv if || \|| a5y < oc. Eg is a frame for S(®) if

= {

and onlyv if

(2.3.4) A and 1/\Y  are (essentially) bounded on the spectrum of S.

and. moreover. the frame bounds of Eg are [[\|[1 (os) and |1/AF]|L (0 3)-

As Theorem 2.3.6 below asserts, the above characterizations are valid for general FSI spaces.

The proof of Theorem 2.3.6 is based on the following (technical) lemma:

Lemma 2.3.5. Given a finite order Hermirian marrix G, whose entries are measurable functions
defined on some domain Q. there exists a matrix U = Up o whose entries are measurable funetions

detined on Q, such thar UCGU is a diagonal matrix, and U(w) Is unitary for every w € €.

Prior to proving rhe lemma. we state our theorem and show how it follows from that lemma.
Part () of the theorem ix due to [BDR1] {avd was previously proved, under certain decay conditions
on o in [IM]). For the special case of quasi-regular FSI spaces (a notion that will be defined in
the nexr subsection), Theorem 2.3.6 in its entivety was alveady proved in [BDR1] (¢f. Corollary
3.30 there. In a quasi-regular FSI space S0 A% = X on a8, and hence the [BDR1J-analysis, which

is based only on the functions A and \, can still go through).

R . { « . . . . .
Theorem 2.3.6. Let & ¢ Ly(IRY) be finite with corresponding Gramian matrix G. and corre-
sponding eigenvalue functions A, A, and A\*. Then

(a) Eg is a Bessel set if and only if \ is essentiallv bounded. Furthermore,
ITol1* = HAllL oo sce)-

(b) A Bessel set Eq is also a frame if and onlv if 1/A* is bounded on the spectrum of S(®). In
such a case,

”7:b|-1”2

l

11/AM L (osa))-

(¢c) E¢ is a tight frame if and onlyv if \ = A* = const on aS(P).
(d) The Bessel set Ey Is a stable basis for S(®) if and only if 1/ is essentiallv bounded.

Proof. Let U := (ug.0')¢.0'c4 be the unitary matrix from Lemma 2.3.5 (with respect to
G := Gg). Define

U= {¢y: zz; = (C'Ta)d, = Z u¢',d>$'= ¢ € ¢}
@' ed

Since U(w) is unitary for every w € T, it follows that U, considered as an endomorphism of LY,
Soare Fr 1 (i fac UXTI NTH
is also unitary. From that it casily follows that ¥ € La(R") (in fact, 3 oy 1¢1° = 2 ea l0l°)-
Thus. ¥ C S(®) by Result 2.3.1. Similarly. since & = UV, & ¢ S(¥), and. consequently. S(¥) =
S(®). Further, Gy = U"Gol, hence Gy and Gy have the same eigenvalue functions.
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To prove (a), we let Jp and Jy be defined as in (1.4.3). Then Jy = JoU . Since U is unirary.
Jy is bounded if and only if Jg is. and the two maps have the same norm. Therefore. Ey is a
Bessel set of S(¥) = S(®) if and only if £y is so. Consequently. (a) follows from Proposition 2.3.3
and the fact that, for each w, { J(w}}uew are the eigenvalues of the diagonal matrix Gy {w).

The proofs of (b), (¢) and (d) are similar. ’'y

Now, we turn to proof of the Lemma.

Proof of Lemma 2.3.5. Since, for each w &€ Q. the Hermitian matrix G(w) can certainly be
unitarily diagonalized, the actual goal of the proof is to achieve the required measurability.

Let \j(w). w €, j=1,..,n:= #& denote the jth smallest eigenvalue of G(«). Our first
goal is to show that .\, is a measurable function. For that we need the following claim.

Claim 2.3.7. Let {u,,,}::;:lo be a set of convergent sequences da,, : IN = IR. Let a,,(0) denote the
limir of («,, (KNS ,. For each non-negative integer k. let 4. be the univariate polvnomial
m k=1 g 5 { .

n-1

gi(t) = 1"+ (k)™

m=g
Assume that cach qp has only real roots, and let \; , denotes the jth smallest root of qr. Then

'\}"J—k:——o_og_)'\“d' for each _j = 1, ey 1L

Proof of Claim 2.3.7. For cach & > 0. let \; be the vector (‘\k.j);l:l- It is clear that
(A )rer is bounded (in IR™), hence it suffices to show that \\¢ is the only limit point of (A4)x. In
this regard, we note that a limit point {; of the sequence (g ;)i is a zero of go, since Y7 ja,t* is
a continuous function of ag,...,an,t.

To prove that the sequence (Ai)ren has only one limit point, we let [ := ({;)7_; be a limit
point of (Ag)k. Then, it is clear that (I, );‘=1 is non-decreasing, and, as observed above, all the n
eutries of { are roots of qy. Since ¢o has only n roots, { will be proved to equal Ag as soon as we
show the following: “if @ occurs m times in [, then its multiplicity as a root of qq is at least m”.

Assume. therefore, that, lo41 = li42 = ... = ls4m = 6, for some s and m. Let (k;)$2, be
a set of increasing integers for which (Ag,); converges to . By Rolle’s theorem, for each fixed
r =0,...,m — 1, the rth order derivative qi.rl) of the polynomial g, would have a zero zi, in the
convex hull of {Ag, s4;}1<j<m- Since, as i — oo, that convex hull shrinks to § (since each (Ag, 545):
converges to l,4; = 6), z, converges to §. Thus, § is a limit point of roots of (q,(c:))i, r=0,..,m—1,
hence 8 is a root of gg of multiplicity > m, as claimed.

After establishing the claim, we can prove the measurability of the eigenfunctions A; as follows.
We approximate the matrix G by Hermitian matrices G, whose entries are simple measurable func-
tions that converge (say, pointwise) to the entries of G. Let go(w, -) be the characteristic polynomial
of G(w), and qx(w,-) the characteristic polynomial of Gx(w), k = 1,2..... Since the coefficients
of qi(w,-) are simple measurable functions, so is the jth smallest eigenvalue function Ak j(w) of
Gi(w). On the other hand, the coefficients of gi(w.-) converge to the corresponding coefficients
of qo(w,-). Since G(w) and G(w), £ € IN are Hermitian, their characteristic polynomials have
only real roots. By the previous claim, this implies that, for every j = 1,...,n, and for every w.
the eigenvalue functions (A j(w))x converge to A;(w). Thus, each A, is the pointwise limit of

measurable functions, hence is measurable.
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Finally, we construct the columns of U inductively. Assume by induction that we already
found 1" = {vy....,v;-1} vectors whose entries are measurable functions. such that Ge, = \,¢,. for
each i = 1,...,j — 1, and such that {v;(w), ....v,- (@)} is an orthonormal set for every w € Q.

For each w. let k(w) be the largest integer that satisfies \;(w) = \,_g(,(w). For k =
0....n—=1,set Ky := {w € Q:k{w) =k}. Then (A;); forms a measurable partition of Q. On
each set K, we augment the matrix \;I — G by adding the row vectors v,_x.....v,~; and obtain

in this way a matrix R with measurable entries, thart satisfies rank R(w) < n. for everv w € K.
Precisely. rank R(w) = n — m(w) + k. where m(w) > k is the multiplicity of \,(«w). Applying the
yroof of Lemma 2.4 of [JS], we obtain a measurable vector v; such that R, = 0 on K. and for
J J &
everv w € K. v;(w) (considered as vector in IR™) has norm 1. Since R(uw)e,(w) = 0. w € K.
v, (1) is an eigenvector of G(w), and is orthogonal to {v;_x(w). ... v, (w)}. It is also orthogonal
to v, (u). i < =k as well. since v, (w) is an eigenvecror that corresponds to the eigenvalue \, (i)
which is different fromn the eigenvalue .\, (w) of v;(w). Hence, ¢ is (pointwise) orthogonal to each

of irs predecessors. Thix completes the inductive step. thereby the proot of the lemima. ®

Incidentally. the proof of Theorem 2.3.60 shows that every FSI space can be writren as a finire
orthozonal sum of PST spaces. This fact had established before in [BDR1] (¢f. Theorem 3.5 there).

[t leads to the following interesting corollary.

Corollary 2.3.8. Given anv FSI space S. there exists a finite subset W C S whose corresponding
. le]

shift-invariant set Ey is a tight frame for S.

Proof. We write S as a finite orthogonal sum of PSI spaces {S(n)},en. By (d) of Theorem
2.2.7. cach S(n) contains a function ¢, whose shifts E,, form a tight frame for S(n). say. with
frame bound 1. The totality {¢;}nen is the required . a

In general. there are many ways to write S as an orthogonal sum, and, therefore, § contains
many tight frames. Though the norms of the individual generators ¢ € ¥ depend in general on
» enecthe N INIV . . i S .
the specific ¥ chosen. the sum ) .oy [|¢7]|° depends only on the space S, that is: it is the same
for all tight frames Ey whose frame bound is 1, and whose corresponding S('), ¥ € ¥ form an

orthogonal decomposition of S.

2.4. Frames in quasi-regular FSI spaces

We had proved in the last subsection that every FSI space contains a shift-invariant tight
frame. However, not every FSI space contains a shift-invariant stable basis. A partial solution to
that difficulty was offered in [BDR1] via the more general notion of quasi-stable generating sets.
That notion was defined in (3.16) of [BDR1], and is closely related to the notion of frames. In fact,
Definition 1.3.5 here allows us to rephrase Definition 3.16 of [BDR1] as follows:

Definition 2.4.1. Let & be a finite generating set for the FSI space S. We say that (the shifts
Es of) ® is (are) a quasi-stable generating set, if (i}: E is a frame for S; (ii):
Cr, = {c = (co)oecd € €2(Eyp) : suppéy C oS, Vo € &}
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Note that quasi-stability coincides with stability whenever 7S = T, L.e.. whenever S is regular
(indeed. if S is regular and @ is quasi-stable. then Cr, = €,(Ep ). and hence ker Ty = {0}). Even
with this weakening of the stability notion. [BDR1] shows that not every FSI space has a quasi-
stable basis (we have proved. in Corollary 2.3.8. that every FSI space has a shift-invariant frame.
and even a tight one, therefore, the existence of a quasi-stable basis really relies on the structure
of C'r,). Spaces that do have quasi-stable bases are termed in [BDR1] as quasi-regular. We
discuss here several properties of frames in quasi-regular FSI spaces. which may not be valid in
more general FSI spaces. One of these is an explicit representation for the orthogonal projecror
onto S: [BDR1] obtains such formulas for quasi-regular spaces by a Cramer-rule-like expressiou
(see (1.9) there). On the other hand. we know from Proposition 1.3.8 that the orthogonal projector
can also be represented by using a frame for S and its dual frame. and this will lead us ro an
alternative representation of this projector.

Betore we srate our frst result. we recall the definition of a quasi-basis from [BDR1]: The
finite ¢ is a quasi-basis for the FSIspace § it det Gy is non-zero ace. on oS, We mention. [BDR1]J.
that the existence of a quasi-basis for S is equivalent ro the quasi-regularity of S, and rhar every
quasi-stable basis is also a quasi-basis but not vice versa. The cardinality of the quasi-basis is the

length lenS of S and is shown in [BDR1] to depend onlv on S.

Proposition 2.4.2. Let < be a finite quasi-basis for the (quasi-regular) FSIspace S. Assume that
Ey is a Bessel set. Then.
(2.13) Cr, = {c = (ca)oes € ((Es) : suppy C oS}

Proof. Denoting the right hand side of equation (2.4.3) by Cg, we will show that (i):
Cr, C Cy. and (ii): ker Tp N Cy = {0}. Since Cr, is the orthogonal complement of ker Tip. (2.4.3)
would then follow from (i) and (ii) combined.

The required (ii) was proved in [BDR1]: Corollary 3.11 there asserts that, since @ is a quasi-
basis. the map

6a(Ep) e Toc= Y Go
oEd
is 1-1 on Ce.
As for (i). given f € S. supp f lies in the 27-periodic extension (¢5)° of ¢S. Thus. if. for some

¢ = (cs)octw € £2(Ee). each supp &, is disjoint of ¢S. we have

Toc = z ép0 =0.
o€P

This means that the space
Ky :={c € €,(Eg) : suppc, NaS is a null-set, Vo € &}

lies in ker Typ. Since Cg is clearly the orthogonal complement of Ky, we obtain (1) by applyving

orthogonal complements to the inclusion K¢ C ker Te. '
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Theorem 2.4.4. Let @ be a finite gencrating ser for the quasi-regular FSI space S, Then & s 4
quasi-stable generating set if and onlyv if it is a quasi-basis and it~ corresponding shifrs Ey forn a
frame for S.

Proof. It Ep is quasi-stable. then. by definition. it is a frame. and it is also a quasi-busis
by virtie of Proposition 3.138 of [BDR1].

Conversely. it @ is a quasi-basis and Eg is a frame. then. for the gquasi-stability of &, it
reuiains to show that Cr, has the required structure. This follows from Proposirion 2.4.2 and the

assumprion thar € is a quasi-basis. '

We mention thar. given a quasi-regulir FSI space S, there exist shift-invariant frames Eg tor
S which are nor quasi-stable (hence do nor form a quasi-basis). For example the lengrh ot a PSI
space 1 Loand hience any guasi-basis for ic 1= tormed by the shifrs of single ftunction . At the sane
rite, frines for PSEspaces that conzsist of the shitts of several tanetions exist. and. in fuer, were
discus<ed in derail i 5201,

Le proot of the second ftaplication in the above theorem could also be done through eicenvaiue
fincetions. The argminenr is as tollows. Sinee Ey is a traane. Theorem 2236 implies that the
elgenvalne funerion X (A7 (e s essenrially bonnded above sawiay from zeror on 08, However.,
since GG is invertible e on a8 since B is o quasi-hasiso. it follows that M) = A7, e,
on oS where M) is the smallest eigenvalue function. Thus Ao is essentially bounded above and

At is bounded below ou oS, By Corollary 3.30 of (BDRILJ. & is a quasi-stable generating ser.

[u the vest of the subsection. we consider frame-dual {rame representations of the orthovonal
projecror onto a gquasi-regular FST space S0 The idea is to use the fact that! given a general frame
X for Hoand a dual frame RXL the map Ty Ty s always the identity on H. Before we develop
that direction further. we point out a relevant result. I X is a stable basis. then the condition
T xTy = [ s not only necessary but also sufficienr for R to be the dual of X, The result helow

shows that. in the shife-invariant setup. that suffciency assertion extends to quasi-stable sets:

Corollary 2.4.5. Let Ey be a quasi-stable basis for the FSI space S, and let R be some map from
© into S(P). If Egg is a Bessel set. then Egg is the dual frame of Eg if (and onlyv if) Tre Ty is
the identity on S, thar is. if

(2.4.6) f= > (fE"©)E°Ro. VfeS.
0EP.aeX

Proof. After extending R from @ to E¢ by the rule RE®0 := E“Ro. we appeal to Propo-
sition 1.3.7. That proposition validates the “only if” implication. and reduces the proof of the “if”
implicarion to proving that Cr,, = Cr,. Furthermore. Proposition 2.4.2 asserts that Cz, is the
same for all quasi-bases ¥ of S.

Since @ is already known to be a quasi-basis (by virtue of its quasi-stability, ¢f. Theorem 2.4.4).
it suffices to show that R$ is also a quasi-basis. The proof of this statement goes as follows. Since
RP < S, we have S(RP) € S, This. together with (2.4.6). shows that Erg is fundamental in
S. and henee S(RP) = S(P). Since ¢ is a quasi-basis for §. its cardinality is the length. lenS.
of S. Therefore, #(RP) < #® = lenS. However. as asserted by Theorem 3.12 of [BDR1]. every
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generating set of a quasi-regular FSI space S that contains no more than lenS elements must be a
quasi-basis. [ )

Theorem 2.4.7. Assume that the shifts Es of the finite ® form a quasi-stable basis for the FSI
space S. Then the Fourier transforms of the generators R® of the dual quasi-stable basis are given,
on oS, by

RO =G'G.
with G3' the (pointwise) inverse of Gg.

Proof. Since R should invert 7475 . we compute first To Ty ®. Here, we use (2.1.2) (and
the fact that TeTy = 3. e ToT,) to conclude that
(ToT3®)" = (D [0.0/]0)oct = Gab.
o'ed

Since Gy is invertible on 0§ (and is zero elsewhere). the claim follows. 'S

By Proposition 1.3.8. Tre Ty is the orthogonal projector Ps of Ly(RY) on S. The last result

thus allows us to write

Psf=Y [f 0lyond,
6.0'€D

with (g, )eoee = G3'. Instead, we could have solved the equation GeR® = @ by applying
Cramer's rule. That attempt would have resulted in the form for Pg that was discussed in [BDR1].

3. Infinitely generated SI spaces

3.1. General

The study of FSI subspaces of L,(RY) is pertinent to Approximation Theory, where one
attempts to approximate from small, simple spaces of approximants. In other areas (such as
wavelets) the main goal is to find an attractive basis for the entire Ly(IR?) or to a “big” subspace of
it. We therefore analyse in this section shift-invariant subspaces of L,(IR?) generated by a countable
set of generators.

Our results on FSI spaces were stated in terms of the matrix spectrum of each of the “fiber”
matrices G(w), w € . We pause here momentarily in order to have a closer look at the potential
practical value of the obtained characterizations. Assuming we hold in hand the Gramian matrix,
the characterization of stability and of the Bessel property are of a more favorable nature than
those of frames and tight frames: in many cases, the estimation of the largest eigenvalue A(w) and
the smallest cigenvalue A(w) of G(w) can be done directly in terms of the entries of G(w) (as we
did in §1.6). However, estimating the smallest non-zero eigenvalue A*(w), would, almost certainly,
require the application of a costly iterative process. Consequently, the kind of characterization of
FSI frames that was obtained in Theorem 2.3.6 seemns to be practically less useful than its stability
counterpart. This can also be viewed as follows: the invertibility of a certain operator is a more
accessible property than its partial invertibility.
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A partial solution to the above problem is obtained with the addition of the complementary
dual Gramian analysis that will be developed. Indeed, as was already explained in the introduction,
the Gramian analysis is engaged with the decomposition of the operator 7¢7g, while in the dual
case the operator 7Ty is the object. In two respects, there is a significant difference between
these two operators: the stability of a Bessel set Fg is equivalent to the invertibility of T3 Ts,
but is not so nicely reflected by Te Ty (this latter operator should be partially invertible and onto
¢,(Eg). two hard-to-verify properties). On the other hand, a fundamental frame for L,(RY) is
characterized nicely through TeTg (should be invertible), and is hard to be analysed via T3 Te.
In summary, Gramian analysis is best suited for the study of stable bases. while dual Gramian
analysis is particularly good for fundamental frames for L.(IR?). hence, indeed. the two approaches
complement each other.

In view of the above. one may wonder why we have not emploved the dual Gramian analvsis
for the study of frames in FSI spaces. The answer for that is as follows: since an FSI space is
alwavs a proper subspace of Ly(RY), a frame for it is never fundamental in L,(RY). For the
analysis of frames which are not fundamental. both Gramian analysis and dual Gramian analysis
require the (hard-to-verify) partial invertibiliry of their associated operator. hence the switch from

the finite-order Gramian G to infinite-order dual Gramian G provides no gain.

Throughout the seetion. we use the notation £A4 for the spectrum of the operator A: namely.

given a bounded linear endomorphism A of a Hilbert space H. we denote
TA:={A e C: theinverse of Al — 4 is undefined or unbounded}.

To make a clear distinction between this notion and the spectrum oS(®) of S(P), we will always
refer to the former as the the operator spectrum.

3.2. Gramian Analysis: SI spaces as the limit of FSI spaces

Two different approaches for the study of SI spaces are employed here. The first, that we
discuss in the present subsection. attempts to extend the results from §2 on FSI spaces to general
SI spaces, by viewing the latter as a certain limit of the former. That approach leads to the desired
characterizations of the Bessel property and of the stability property, but is short of characterizing
frames. Therefore, we will develop, (in §3.4) an alternative method, where we inspect directly the
operator spectrum of each of the “fibers” G(w). This latter direction is more powerful, alas, much
more involved, whence our decision to present both approaches.

The “going-to-the-limit” argument is almost self-suggestive, and is based on an elementary
observation. Let X be a countable subset of the Hilbert space H. Given any subset Y C X, let
Hy be the closure in H of the finite span of Y (that is, ¥ is fundamental in Hy). As before, the
operator Ty is defined on £4(Y"), and, if bounded, is extended to the entire ¢;(}") by continuity.
Further, £,(Y") is isometrically embedded in €;(.Y) in the usual way.

For a set X C H, a chain

o C X1 € X € Xt C oo

that satisfies U, X,, = X is called a filtration of X.
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Theorem 3.2.1. Let X' be a countable fundamental set of the Hilbert space H. Suppose that
{X,}. is a filtration of X, i.e., X, C X, 4 for all n € IN, and U, X,, = X. Denote T := Ty,
T, :=Tx,. H, == Hyx, . Then:

(a) X is a Bessel set if and onlyv if the following condition holds “each X,, is a Bessel set. and
sup, |T.|l < oc”. In such a case, ||T|| = sup, [|T, il = lim,—o || T2]l-

(b) Assume X is a Bessel set. Then, X is a stable basis for H if and onlyv if the following
condition holds “each X, is a stable basis for H,. and sup, ||T,,”'|| < o”. In such a case,
T = sup, |T "t = limp—oo |70 7

(c) Assume X is a Bessel set. Then, X is a frame for H if the following condition holds “for
infinitely many n, X, is a frame for H,. and limint, ||T,,,~'|| < oc™. In such a case. ||T,~!|| <
liminf, ||T,,; 7Y

Proof. The boundedness and invertibility of T (7,,) is determined by its action on the
finitelv supported sequences ¢3(-X) ((o( X)) in £(X) (£2(X3)). Assertions (a) and (b) thus follow
from the fact that, since {.\\',},, is a filter of X', {4 (X)) is the union of (£o(.\r))a.

(¢): Without loss. we may assume that each X, is a frame for H,. and that (HT;l‘l“ =
T~ '1Nn converges (otherwise. we take a subsequence). Set 4 := Hm [[T;l"H“. Since T is
bounded. A < 2. More importantly, by our assumptions here A > 0. Now. let f € H. Given = > 0,

we can find. for all sufficiently large &, an clement fi € Hy so that || f — fill £ ——or—=r=r7-
> max T T, = 1)

Then. [T fl} 2 1T fill = € 2 1T fill = €. Also, [T full 2 1T~ I LA 2 0T ~HIT IS = < In
summary, for every f € H and for all sufficiently large k.

N7 Il 2 10T AN = 2.

By taking k = oo, we obtain that ||T* f|| > A f|l — 2<. Since € > 0 is arbitrary, the desired result
follows. [ )

Let S be a shift-invariant space generated by the countable set ¢. Let (®,), be a filtration
of ® by finite sets. Then, (E, := Fs, ), is a filtration of E¢ that employs FSI sets. Let A,. A,
and A} be the eigenvalue functions of E, (cf. the paragraph after Proposition 2.3.3). Combining
Theorem 2.3.6 and Theorem 3.2.1, we obtain the following result.

Corollary 3.2.2. With® C Lz(IRd) a countable set. with (®,), a filtration of ® that is made of

finite sets, and with A,, A, and A} as above, we have

(a) Eg is a Bessel set if and only if the function set {\,}, is bounded in L(Tr%). Furthermore,
[ Tell? = supy, [[AnllL o (mre)-

(b) Assume Eg4 is a Bessel set. Then it is also a stable basis for S if and only if the function
set {1/A,}n is bounded in Lo (T%. Furthermore. |T~Y = sup, I1/2n s ¢mwey-  (Here.
1/0 := oc.)

(¢) Assume Eg is a Bessel set. Then it is also a frame if the following holds: “for each n, the func-
tion 1/X} is bounded on the spectrum o, of the FSIspace S(®,). and liminf, [[1/Af |2 (0,) <

”

oC.
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The analysis of Ep for a finite & was done by a spectral-like decomposition of Ty into the
simpler fiber operators. For a countable @, we can still derive from (a) and (b) of the last corollary
similar decomposition results.

We recall the functions A(w). A(w) and AT (w) that were defined in the introduction. Note
that for a finite ® these definitions coincide with the definitions of A{w). A(w) and A*(w) as
eigenvalue functions. Given now a filtration (®,), of ®. Corollary 3.2.2 implies that ||Te|]* =
limy, — o [ \all L (). Moreover. it is straightforward to show that, monotonically. A, (w) — A(w).
and A, (w) = Aw) a.e. on T This implies that A and A are measurable. and, furcher. since the

convergence .\, — .\ and A, — A is monotone.

IRV nlﬂlgc \ulle oy

and

WL/ ewny = lm [/ AL e
I —=2C
Thus we obrain the following extrension of (a) and (b) of Theorem 2.3.6:

Tho(n'(‘m 3.2.3. Let @ be a countable subser of Ly(RY) with Gramian matrix G. Let \(w) 1=
()] and M) = ||G(w)~ Y| ~'. Then:
(;1) Ey is a Bessel set if and onlyv if X s essentially bounded.  Morcover., we have [Tyl =

“‘\Hl, ey
(D) Suppose By s a Bessel set. Then By is a stable basis if and onlv 3 V)N Is esseatiallyv bounded.

Moreover, we have || T~ lH“ = /M o ey

Theorem 3.2.3 provides characterizations of the Bessel property and the stability property
thar. though were derived with the aid of the FSI results. are stated explicitly in tertns of the fiber
operators G(w), w € T Such a characterization is valid for frames, but. cannot be derived with
the aid of the filtration argument. Therefore. we develop in §3.4 a direct approach that decompose
G without the use of a filter. Since the proofs there are lengthy and technical, we postpone that

development until after the dual Gramian analysis is presented.

3.3. Dual Gramian analysis

The starting point of the Gramian analysis is the fact that both G and its fibers (G(w))w
can be viewed as densely defined operator on LY and €,(®), respectively. An analogous statement
about the dual Gramian is less obvious, and we need surmount here new obstacles.

The first (though, minor) difficulty that one should note is the well-definedness of the entries
of the dual Gramian: while the Gramian entries [(;, 1?] &, € ® are in Ll('II‘d) hence well-defined
a.e. regardless of the choice of the set @, the same cannot be said about the entries

S" 8¢ +alol- +8). a8 ez

o€d

of the dual Gramian G. We start our discussion by settling that question.
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Assume that Eg is a Bessel set. Then. since ) ., ||7'¢,‘f||'2 = |73 fII* < oc. and since the
Fourier transform is an isometry on Ly(IR¢), we conclude from (2.1.2) that

S N AN, pey <oe. VS € Ly(RY).

ped

Choosing now f as the inverse Fourier transform of the characteristic function of the cube a +

-

[—7.7)%, a € 2722%, we compute that [f,¢] = o(- — @), .. and therefore,

H[f,t?)]“i.lmd) = (10"l (ar0)-

Thus. we have proved that the sum

> ol +a)?

oed

is Ly (TY)-convergent. hence is also convergent pointwise a.c. Since that sum is the (a.a)-entry of

the dual Gramian. we conclude the following:

Proposition 3.3.1. Ler & be a countable subset of Lo(IRY). and assume that Ee is a Bessel set.
Then. for cach a.3 € 272", the (., 3)-entry

> o+ a)ol- + 3)
GED
of the dual Gramian matrix converges absolutely a.e. to an element of L,(T%),

Proof. For a = 3, the assertion was proved in the paragraph preceding the proposition.
The extension to a general pair («, 8) follows from Schwartz’ inequality. Y

Since the Bessel property of the set Eg is the weakest property of that set of interest to us
here, we may assume hereafter that, for all o, 3 € ZRZd, the sum that defines the (a, 8)-entry

‘,’Y
Va,l

of the dual Gramian converges absolutely a.e.
Another, more substantial, difficulty occurs upon attempting to prove that dual Gramian
operator can be evaluated, i.e., that, under “reasonable assumptions”

(C~r’f)(w) = 5(w)f|w, for a.e. we T4

Here. as before fly, := f},,42-7¢. Recall that the dual Gramian operator G is defined as G := JoJg.
L.e.
G:fr= [f.ole

PP
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If Ep is a Bessel set, the above sum must converge in L,(RY), for every f € Lo(IRY). However,
interpreting the above sum in the non-Bessel case is a non-obvious task. On the other hand, the
connection between G and its evaluation é(w) Is important even when Eg is not Bessel, since,
otherwise, we will not be able to use the fibers {é(w)}wen"d for the characterization of the Bessel
property. For this reason, we view, to this end. G as a quadratic form rather than as an operator.
i.e., make use of the connection

(GF. A=Y WTHW =1 S F 0)Phe, ey

ocd oed
Assuming f is compactly supported, we may use the a.e. finiteness of 3~ ., [o(- + a)o(- + 3)| to
sum by parts as follows:

SiFelwr=Y > Flw+ ) f(w + 3)olw + 3ol + a)

PpED d€Eb o, Je2r 24

=Z {(w+a)f w+JZ (w+ o w+a)
a.3 €D

~ o~

Thercfore, we conclude that

Lemma 3.3.2. Let ¢ be a countable subset of LZ(IR‘I)

(a) If, for some o, € 2nZZ", the sum 2o J(,b + a)r,b( + B)| is infinite on a set of positive
measure, then E¢ is not a Bessel set.

(b) If the above sum is finite a.e. for every a, 8 € 2x7Z%, then, for every band-limited f,

171 = @) [ (R Gl do.

The dual Gramian analysis can now be developed along lines parallel to the development of
the Gramian analysis. For that, we set, for a € 2772%, S, to be the subspace of L,(IR%) consisting
of those functions whose Fourier transform is supported (up to a null-set) in a + [~7..7]%. S, isa
translation-invariant space. In fact, it is also a PSI space, and is generated by x,", with x, the
support function of a + [—m..m]* (cf. Result 2.2.9). We consider the restriction 73 ,, o € ¢ of
Ts to the space S,, and observe that, for w € T¢ and f € S,, the quadratic form ﬂw‘é(w) ﬁw,

w € T, is reduced to f(w + a)éa,a(w)f(w +a)= éa,a(w)lf(w + a)|?, and therefore
173 £12 = 1)~ Ga.al £ + 0) Pl (rre)-

Since also ||| ,(re¢) = (27)‘d|||f(-+a)|2||Ll(~n~a) (since f € S,), the norm bounds on the restricted
operator Ty , and its inverse are the same as those of the map

L(TY 37— éa‘c,'r.

Thus, in complete analogy with Theorem 2.2.7 (cf. the argument used in the proof of Theorem
2.2.14) we have the following.
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Proposition 3.3.3. Let ® C Ly(IR%) be countable (or finite), and assume that the sum Yoco |5|2

converges a.e. Then, for every a € 2nZ2%:

(a) The restricted operator Ty , is bounded if and only if the function Goo is essentiallv bounded.
Furthermore,

I75.al? = 1GaallL,cme)-

(b) Assume Ty, is bounded. Then it is also invertible if and only if the function l/é
essentially bounded. Further,

a.a IS

156" 1% = 11/ Gaall Lo cm)-

(¢) Assume T , is bounded. Then it is also partially invertible if and only if 1/5,“, is essentially
bounded on its support o C T, Further,

II'T‘S.aleQ = Hl/Ga,a“Lm(;u)'

The dual Gramian analogue of the FSI results (i.e.. Theorem 2.3.6) is obtained by restricting

Ty to a larger space of band-limited functions. Here, we take Z to be any finite subset of 2722%.
and define Qz := Z + [—-r..7]%. We then consider the restriction 73 7 of T3 to the space

Sz :={f € L,(RY): suppr Qz}.
Given g defined on Qz, and w € T, we denote by

9z(w)

the vector (g(w +2): z € Z). Also,

Gz
stands for the finite-order matrix obtained from the dual Gramian G by deleting all rows and
columns not in Z. From Lemma 3.3.2,

75 FlI2 = @m) =2l f2CzfzllL mey Yf € Sz

Then. following the arguments in §2.3 (that is, establishing the analogous result of Proposition
2.3.3 and invoking then Lemma 2.3.5), we obtain the following analogue of Theorem 2.3.6:

Proposition 3.3.4. Let ® C Ly(IR?) be countable and assume that 2sca |<‘1';|2 is finite a.e. Let

Z be a finite subset of 2xZZ%, and let Tg z be the restriction of Ty to Sz. Let Kz, :(z and X}' be

the eigenvalue functions defined as A, A and A of §2.3, but with respect to the dual Gramian G=.

Then:

(a) Tg z is bounded if and only if Az is essentially bounded on T®. Furthermore, ||7f,:’3||2 =
Izl (- 5

(b) Assume Ty 5 is bounded. Then it is also invertible if and only if 1/Az is essentially bounded
on T". Furthermore, |5z~ W2 = 11/Xzll L (1re)-
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(c) Assume Ty - is bounded. Then it is also partiallv invertible if and onlyv if X; Is essentially
bounded on 6z := {w € T*: Gz(w) # 0}. Furthermore, | T3 ;= |I* = 1/A5], Ga)

To extend Proposition 3.3.4 from spaces of the form Sz to the entire L,(IR?). we use some
filtration
ZyC 2, C2C ...

of 2xZ*. Tt induces a corresponding filtration of IR%:
QCcQc ..,
where Q; := Z; + [-7..7]¢. In this way we obtain the increasing space sequence
Sz, C Sz, C Sz, C ...

whose union § is dense in L~_>(IR."). Denoting by 7.7 the restriction of Tg to Sz . we conclude that
the boundedness and invertibility of 7 are completely determined by its restriction to S (which is
the space of all band-limited functions). Therefore, we have the following analog of Theorem 3.2.3:
Theorem 3.3.5. Let & be a countable subset of L,(IRY). Then:

(a) If the sum 3 o |o|? diverges on some positive measure set, Eg is nor a Bessel sct.

(b) Assume that 3, |62 is finite a.c., and let G be the dual Gramian of Eg. Further, let \ and

A be defined by
A(w) = |G(w))), Aw) :=1/|G(w)”)), we

Then:
(bl) Ey is Bessel set if and only if Ais essentially bounded. Furthermore,

T ® = Al Lo, (re)-

(b2) Assume that E¢ is a Bessel set. Then Eg is a fundamental frame if and only if the following
condition holds: “for a.e. w, G(w) Is boundedly invertible, and the hence-well-defined function
1/X is essentially bounded”. Furthermore, |[T3~|? = [I1/AlL (we)-

Theorem 3.3.5 leads to an interesting conclusion concerning tight frames. Tight frames Eg

are characterized by the equality ||75]/}|7¢,7"]] = 1. The theorem shows that the latter condition
is equivalent to the equality

~

K(w) = Mw) = const, for a.e. we T
The equality A( w) = X(w) says that the operator spectrum of G (w) consists of a single point, which
can happen if and only if G(w) is a scalar operator. This leads to the following:

Corollary 3.3.6. Let ® be a countable subset of Ly(IR?). Then Eg is a fundamental tight frame
for LZ(IR") if and only if there exists a constant const such that, for everv a.a’ € 27 2%, and for

almost every w € T,

(3.3.7) >~ d(w + a)g(w + a') = const 8, -
PpeP
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Proof. If the sum in (3.3.7) does not converge absolutely for some a.a’ and on a set of
positive measure. then, by Theorem 3.3.5. Eg is not a Bessel set. Otherwise. the condition in
(3.3.7) implies, Theorem 3.3.5, that Es is a Bessel set. Also. that condition implies that Ey is
fundamental: if not, there exists f € Ly(IR") so that Ts f = 0. hence éfz 0. implying thus that
é(zr}f?w = 0, a.e.. in contradiction to the assumed structure of C:‘(w) in (3.3.7).

Therefore. when proving the required equivalence. we may assume, without loss. that Eg is a
fundamental Bessel set. The claim then follows from the argumeunts preceding the present corollary.

A

If X is a tight frame, then, up to a scalar multiple. it forins its own dual. The above result is
thus a special case of a general relation between a shift-invariant fundamental frame and its dual

(ct. Corollary 4.2).

3.4. Analysis of frames which are not fundamental in L,(RY

Theorems 3.2.3 and 3.3.5 provide us with the desired characterizations of the Bessel property
(twice). the stability property, and the property of being a fundamental frame for L,(RY). It
fails to provide similar characterizations for frames of a shift-invariant proper subspace of L,(IRY)
(unless that frame happens to be a stable basis). The present subsection is aimed at settling this
remaining problem. After a brief introduction. we state the main theorem that will be proved here.
The proof details then follow.

Let B be a bounded operator from a Hilbert space H into a Hilbert space H', and let 4 := B*B.

Let £4 be the operator spectrum of 4. We define
AT(A) ;== inf{u: pe TA\0}.

The operator A is partially invertible if and only if AT(4) > 0, and the norm of the partial inverse
is 1/A%(A) (the “only if” implication is quite clear. The argument for the “if” statement can be
found in the proof of the implication (b) == (a) of Theorem 3.4.1).
Given a Bessel set Eg with Gramian G and dual Gramian 6, our two objectives are to connect
(a): between the function
A (w) =AY (G(w)), we T,

and the number A*(G); (b): between the function

(w) =2 (Gw)), we T,

o~ ~

and the number A*(G). Since A*(G) = A*(G) = || Ty 7|7} (with co~™! := 0), we will obtain in
this way two characterizations of frames. In fact, we will prove the following:

Theorem 3.4.1. Let & be a countable subset of L,(IR?), and assume that Eg is a Bessel set. Let
o® :=suppG = suppé C T®. Then the following conditions are equivalent:

(a) Eg is a frame, and the norm of the partial inverse of Ty is k' < oc.

(b) The function A* is bounded away from zero on o®, and |1/A¥ || (,e) = K*.
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{¢c; The function A% is bounded away from zero on o®. and Hl/J\*HLl(mp-, =R"-.

The equivalence of (b) and (c) is quite straightforward. (Since E¢ is Bessel. then, by The-
orems 3.2.3 and 3.3.5, both G(w) and 5((0) are bounded for a.e. w. Since G(w) is the product
Jy(w)Jg(w). and CE(w) is the product of the same matrices in reversed order. (G (w)) and S((:'(_ w))
can differ only by the single point {0}. Thus. A* and AT are equal pointwise.) We will prove here
the equivalence of (a) and (b). The proof of the implication (b)==(a) is based on the following
lemma.

Lemma 3.4.2. Let Ep be a Bessel set, and let 7 € L:f’. G := Gy. Then.
(a) 7 € ker G if and onlv if r(w) € ker G(w) for almost every w.
(b) 7€ Cq:= (ker G)* if and onlv if 7(w) € Cy, := (ker G(w))*. for a.e. w.

Proof. The first assertion is obvious. since (G7)(w) is G(w)r(w). As for (bj. assume first
that 7(w) € C,, for a.c. w. Then, for an arbitrary 7/ € ker G.

= /11“(7(11‘). 7 (W) ey ()i = 0.

—~
~
=~

-~
~

4

since. by (a). 7{(w) € ker G(w) = C,. . ae. Therefore. 7 € (ker GV = Cy;.

Conversely, assume that 7 € Cq;. If 7 € vanG. then 7 = Gry. for some 7y, henee. for ace. w
(precisely, whenever Glae) is bounded. and 7y(w) € €2(D)). r(w) = Gw)rp(w) € ranG(uw) C C,.
If € ranG. it can still be approximated in LT by a sequence (1,,), C ranG (since ran G is dense
in C¢;). By switching to a subsequence, if necessary. we may assuine that, for almost every w.
(7, (), converges in £(P) to 7(w). Combining this with the argument in the beginning of the
paragraph, we conclude that, for almost every w, (1, (w)), is in C,. and converges in the €,(®)-norm
to 7(w). Since C,, is certainly closed, we obtained that r(w) € Cy, a.c. '

Proof of the implication (b)=>(a) in Theorem 3.4.1.
We will prove that, assuming (b). E is a frame, and [|To; 7 | < 11/A% (L L (08)-

Assume that 1/A% is essentially bounded on ¢®. and let 7 € Cg\0. By Lemma 3.4.2. 7(w) €
Cp. a.e. on T We claim that. a.eaw. if G(w) # 0, it is partially invertible. i.e.. bounded below
on Cy. Indeed, the restriction G(w)| of G(w) to Cy is (always) injective. Furthermore, since
A (w) > 0, the operator spectrum of G(w) is disjoint from the non-empty interval (0, A*(w)).
Therefore, the operator spectrum of G(w), is also disjoint from (0, A*(w)). Since G(w), is non-
negative and injective, 0 cannot be an isolated point of its spectrumn, hence it must be invertible.
The argument also shows that [|G(w), " | = 1/A*(w).

This means that, for a.e. w, if 7(w) # 0. then

oy N [tr(w)le, o) 17 (uw)lle, (@)
(343) O e TS AT N Tys e

For - € LY,
iy = [ Wl
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hence also

° e
hence (3.4.3) implies that

1G7lle > 1l e
s —_—
I VR TP

Therefore, G is partially invertible, and hence. Proposition 1.4.11, Eg is a frame. Also.
W Te) 7212 = NG~ < NI1/A*HlL o (o9), with the inequality by the proof above, and the equality
by Proposition 1.4.11. o

Proof of the implication (a)==(b) in Theorem 3.4.1.
Since we will need, in the next section, a closely related result. we will prove herein the following

more general statement:

Theorem 3.4.4. Let G be a non-negative self-adjoint bounded endomorphism ofo_!’. Let (G{w))
he a collection of non-negative self-adjoint bounded endomorphisms of {,(®). that satisfy. for every
T € LY. and for a.e. w € T4 (Gr)(w) = Glw)r(w). Let AMw) := [|G(w)|l, and assume that
N € Lo (T, Let M (w) := inf{u € S(G(w))\0}. Let Q be the set @ := {w € T Glw) # 0.
If G is partially invertible, then 1/AY is essentially: bounded on Q, and

1/ A iy S UG

The fact that Theorem 3.4.4 is a gencralization of the required implication (a) == (b) is clear.
To this end, we prove Theorem 3.4.4.

In the proof, we use the following lemma, whose proof is postponed until after the proof of
Theorem 3.4.4 is done.

Lemma 3.4.5. Under the conditions of Theorem 3.4.4, there exists a countable dense subset D of
€2(®), and a null-set Z C Q, such that, for every ¢ € D, for every w' € Q\Z, and every € > 0, the
set i

Ko :={weQ: (Gw) - G(w))clle,o) <ellcllen(ay}

has a positive measure.
Proof of Theorem 3.4.4. Let D and Z be the sets specified in the above lemma. Recall also
the notations Cg = (ker G)*, Cy, := (ker G(w))*.

Choose any w' € Q\Z, and let ¢ > 0 be any point in the operator spectrum T(G(w’)). We
will construct an element 7 € Cg, for which

(3.4.6) IG7llee < (1 +0)uli7llLe,

with § positive and arbitrarily close to 0. This would vield that ||G,~!|| > 1/, implying thus that
At {(uw’) > 0, and that
IG~H 2 1/237% ().
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Since Z is a null-set, we will then conclude that
NG M 2 /A o)

which is the desired result.

The actual construction of 7 in (3.4.6) is as follows: we will find 0 # 7 € L?. supported in
A x ®. where 4 C Q is some set of positive measure. such that (i): 7(w) € Cy.. for every w € T
and (ii): |G(w)T(w)lle, oy < (1 + Nullm(w)lle, (o). Condition (i) would imply (as in Lemma 3.4.2)
that 7 € Cg, while condition (ii) is needed for the coaclusion that ||G7|l, s < (1 + &)uliril, s (cf.
the two displays after (3.4.3)). ) )

In general, for the sake of (i) above, it might be hard to know whether a particular sequence
lies in C,.. The most efficient way is. probably. to select elements in ranG(w) {(and use the fact
that ran G(w) is dense in Cy,, by virtue of the self-adjointness of G(w)). Indeed. our element 7 will

be defined as
) {G(w)c. we A

0. otherwise.

with ¢ some fixed sequence in €3(P).
Here are the details: since 1 € S(G(w’)). G(w') = 1l has no bounded inverse. and so we can

tind an clement ¢ € £,(P). such that {[elle,(y = 1/p. and
(3.-L.7) NG (w")e = peellpy vy < &
with z > 0 arbitrarily small. It follows then that

(3.4.8) 1G (' )elleaqay 1+

Since G(«’) is bounded and D is dense in £2(®), we may assume that spancn D # 0. Therefore,
by Lemma 3.4.5, there exists a subset A4 of £ with positive measure, such that

I(G(w) = G(w"))e

(%) < E/u. Yu € A.

We define 7 € LY by
1 Gw)e, weAd,
m(w) = {0. otherwise.
Thus, condition (i) (i.c., that 7(w) € Cy, all w) is satisfied. Also, the uniform boundedness of the
operators {G(w)},, e easily implies that 7 € L?. Thus, to complete the proof, it remains to show
that, for almost all w € T,

|G (w)m(w)lle, @) < (1 + )l (w)lle, o)

This last claim is trivial for w € T%\4, so we may assume that w € A. We first choosc w = w'.

For that specific choice, we get

(3.4.9) IG(w) () leyey = G )G (" )elley (o) < WG (w')elle, @) + NG NG (w)e = po)lle,(o)-

36




Denoting
- ” \tle(Ui‘ < X,

we obtain from (3.4.9), {3.4.8), and (3.4.7) that
||G(w')r(w')|j¢-:(¢,) <u(l+:z)+C=.

On the other hand, by (3.4.7),

(3.4.10) 1= I7(u)ea ) = mllellesey = G )elleey < <
Altogether, we obrained for that case the inequality
pu(l+¢)+Cs
G ()7 (w)lley ey < —?‘—HT(U") s
By choosing = sufficiently small (and adjusting A if necessary to that =), we obtain rhat
(3.4.11) NG ()7 W,y <+ Dt (el 0

To extend that to a general w € A, we show that both () — 7(u’ ). and Glu)y7(u') — Glw)Tiw)
can be made arbitrarily small (in norm). and then invoke (3.4.11). First. since spanc 7 D #
(34.12) () = 7Y ey = (G l) = Gla el < 2/
Therefore. || 7(a) e,y 2 7w ) leyey — /50 2 1 =2 = =/p the second inequality by (3.4.10). This
verifies that 7(w) — 7(w’) is. indeed. small, and also means that. on AL 7(w) is being kept away from
zero. a consequence that will be required shortly. Second. to estimate G(w)7(w) — G(w')7(w’), we
write
(3.4.13) G(w)? = Gu')? = G(w)(G(w) = G(u")) + (G(w) — G(w))G(w').
Now. since [(G(w) — G(w'))clley(w) < €/p. we have that
IG(w)(G(w) = G(w))elley @) < Ce/p.
Also. due to (3.4.7) and the fact that |[(G(w) — G(w'))clle, @y < /1t
(G () =G (w" )G (" )elley vy < Ml G(w)=G(w"))elle 2y HI(G (w) =G (w)) (pe=G(w)e)ley(a) < £+2Cc.
So, we conclude from (3.4.13) that
IG(w)7(1w) = G(uw') (W' )llese) = 1G(w)?e = G(w')?elley(a) < (C/u +2C + 1)e.
Therefore, by (3.4.11) and (3.4.12),
1G(w)T(W)lle (@) SNG(W)T (W )ley0) + (C/p+2C + 1)e
<1+ O)pllm(w)ley @) + (C/u +2C + 1)e
<+ 8)u(llr(@)lley @) + /1) + (C/u +2C + 1)e
=(1 4+ 0)pllr(w)lle, o) + (C/p +2C + 2 + d)e.

Since we have already proved that ||7(w)||¢,(#) is kept away from zero, we can modify = (hence A)

to guarantee that. say.
NG (w)T(wlle, @y < (1 + 20)pfiT(w)lle, (2,

and the desired result then follows. 'S

Finally we prove Lemma 3.4.5. For that we first recall the definition of measurable maps:
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Definition 3.4.14. Let M be a measure space, and B a topological space. A map f : \l — B is
measurable provided that f~'(Q) is a measurable set in M for every open set ) in B.

Clearly, if f: M — B is measurable, then f~ (L) is measurable for every Borel ser I C B.
Proposition 3.4.15. Let M be a positive measure space and B be a separable normed space.
If the map f : M — B is measurable. then. there exists a null-set Z C N\ such that, for everv
w' € M\Z and for arbitrary = > 0. there is a positive-measure set 4 := 4, . C M. such that for

arbitrary w € A,

[1f(w) = flu')ls <=

Proof. All norms in the proof below are B-norms.
Let X be a countable dense subset of B. and let = < ™ be some well-ordering of \'. Given
n e N, let
O, i={ueB:jlu-rl] <1/n}

Then (O, ) ey is an open covering of B. and. defining
U= Or,n\(uy<x:()y,n)~ re X,
we obtain a partition of B into Borel sets. That partition induces a partition

(-'lz.n = f—l(UJ:,n.))teX

of M into measurable sets. We then define a map s, : M — B (as a matter of fact, rans,, C X) as

follows:
sp(w) = Z TX,, ().
reX

Then. s, converges to f uniformly. Indeed, we have that {[f(w) — s,(w)|l < 1/n for all n € I\,
w € M.

Let Z be a null-set that contains all those A, , (r € X, n € IN) whose measure is zero. Let
w’ € M\Z. For arbitrary ¢, pick n with 2/n < ¢. Since w' ¢ Z, w’ is in some positive-measure
Azn Forwe A4, ,,

1 (") = fwlll SHfw') = sn(wl + fsn(w') = sa(@)ll + llsn(w) = f(w)]] <e.
A

Proof of Lemma 3.4.5. Let D be a dense countable subset of £,(®). Given ¢ € D, let B, be the
space of all (bounded) linear operators from span{c} into £2(®).

Since we know that G(w), w € Q, is a bounded linear endomorphism of £, (®), then, certainly,
G(w);span{c) is bounded for every w € 2. This defines a.e. the map

Q2B rww G(w)lspan{c}'

We need to prove that this map is measurable.
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Given L € B, and w € €, one observes that

IG(w) - Lj5, = 1= Llee)

iellea (@)

Further. since G 1s bounded, Gc € Lg’ , and in particular. its entries are measurable functions (for
the sake of applying G to ¢, ¢ should be interpreted as the element 7 € LY with constant entries

To = Co). Also. since ||G(w)e— Lellg, (o) is finite. the series that defines ||G(w:)c — Lelji,(4) converges
(unconditionally). Combining that with the previous observation. viz.. that the entries of Ge — Le
are measurable. we couclude that the map w — [|G(w)c — Lef,(#) is measurable. hence so is our

An application of Proposition 3.4.15 with respect to the map f. vields the existence of a null-set
Z. C 2. such that for every £ > 0 and every «’ € Q\Z,. the set

fw: [Gw) - Ges,} < =

has a positive measure. Defining Z = U.epZ.. we obtain that (a): Z is a null-set. (b) the claim of
the lemma holds for this Z. »

4. Dual frames

Let @ be a countable (or finite) subset of Lg(]Rd), and assume that E¢ is a frame. Let
R:® — L,(IRY be some map, and assume that Egps is a Bessel set. Let Jp and Jre be the
pre-Gramian of @ and R® respectively. Our objective in this brief section is to study the property
“Ere is the dual frame of Eg” via the fiber matrices Jp(w) and Jre(w).

Our initial tool is Corollary 1.3.9. Part (b) of that Corollary says that, if Fre is the dual of
Ep. then To Ty, is an orthogonal projector. On the Fourier domain, this operator is represented

by JeJge whose matrix representation is

JoTie = (D #( + AR + "))g arecrnzi-
PED

The sum above that defines the entries of J¢.Jg4 can be shown to converge absolutely for cvery
a,a’ € 2rZZ%. and for almost every w € T¢ (Schwartz' inequality followed by an application of
Proposition 3.3.1). Corollary 1.3.9 also implies that the operator 75 Tre is an orthogonal projector.
Here. the Fourier transform analogue is J3 Jre. whose matrix representation is

J(I,-]R«p = ([f{(;'a 5])0.0’6‘1%

The entries of this latter matrix are certainly well-defined (a.c.).
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Lemma 4.1. With ® and R® as above,

(a) ToTxe is an orthogonal projector if and only if, for almost every w € ¥, Jo(w)Jge(w) is an
orthogonal projector (on €,(2=7Z%)).

(b) T Tre is an orthogonal projector if and only if, for almost every w € ¥, Jo(w)Jpe(w) is an
orthogonal projector (on €,(®) = £,(R®)).

Proof. The arguments for proving (a) and (b) are essentially the same. hence we prove
only (b).

Since the Fourier transformation is an isometry. we may replace in the proof the operator
Ty Tre by its Fourier transform analogue J§ . Jre. Also. for the sake of notational simplicity. we set
G := J3Jre. though, of course, this G is the Gramian of neither ¢ nor R®.

First. one checks that G is non-negative self-adjoint if and only if almost every G(w) is so.

Assume that G(w) is an orthogonal projector for a.e.w. In particular. each G(w) is self-adjoint.
henee, by the above, G is self-adjoint. too. To show rhat G is an orthogonal projector. we need
to prove that Gr = 7 for every 7 € (ker G)*. Let. therefore. 7 € (ker G)+. By a proof identical
to that of Lemma 3.4.2. for ae. w € T 7(w) € (ker G(w))+. Since G(w) is assumed to be an
orthogonal projector (a.e.). we conclude that Gw)r(w) = 7(w) (a.e.). implying that Gr = 7. This
proves that G is an ovthogonal projector. as needed.

Now asstme that G is an orthogonal projector. We want to invoke here Theorem 3.4.4. hence
need to verify its asswmptions. The basic relation (G7)(w) = G(w)7(w) is straightforward. The fact
that cach G () is non-negative self-adjoint follows from the fact that G is assumed to be so. Finally,
analogously to the derivation of (a) in Theorem 3.2.3. one proves the relation |Gl = [\l _ (e
with A(w) := ||G(w)]|. Since |G| = 1 here, we conclude that, for a.e. w € T, (G(w)) C [0.1].

Now. we invoke Theorem 3.4.4. Since G is partially invertible (being an orthogonal projector),
and ||G, 7| = 1, that theorem tells us that A*(w) > 1, for almost all u that satisfy G(u) # 0.
This implies that, a.c., S(G(w)) C {0} U[l.>). Combining that with the result of the previous
paragraph, we conclude that, a.e.. T(G(w)) C {0,1}. Each such G(w) is also known to be self-

adjoint, hence must be an orthogonal projector. 'Y

In case Ep is fundamental in Lo(IRY), JoJp e is the identity operator, and this immediately
implies that alinost every operator Jg(w)Jge(w) is the identity. Thus, we get the following:
Corollary 4.2. Let E4 be a frame and let Ere be its dual. Then:

(a) For every a,o' € 277Z%, and for almost every w € ™,

Z o(w + a)ﬁ:b(w +a) = Z ﬁ?,b(w +a)o(w + o).

oED ped
(b) If E¢ is fundamental in Ly(IRY), then, for every a.a' € 27Z¢ and for almost everv w € T,
z o(w + )R + ) = 8 0.
sed
Proof. The first claim follows from the self-adjointness of the Jo(w)Ji e (w)-matrices. The

second claim follows from Lemma 4.1 and also directly from the remarks preceding the present
corollary. )
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Corollary 1.3.9 provides us also with a sufficient condition for Ege to be the dual frame of
the frame Ey. In the shift-invariant case, that corollary. combined with Lemma 4.1, leads to the

following conclusion:

Corollary 4.3. Let H be a closed subspace of L,(IRY). and let Eg be a frame for H. Let Ege be
a Bessel set which is fundamental in H. Then Egg is the dual of Eg if and only if for almost everv
w € T each of the operators Jre(w)Je(w), Jg(w)Jre(w), Jre(w)Ji(w), and Jo(w)Jge(w) is
an orthogonal projector.

We have stated Corollary 4.3 primarily for proving our following final result. That result.
though might look very special. will play a crucial role in the development of the duality principle
of Wevl-Heisenberg frames in [RS1].

Corollary 4.4. Let Ep be a frame for H C L-_;(]R‘i). with a dual Epg. Let Ey be a frame for
H < Ly(RY. and let R : ¥ — Lg(IR‘l). Assume that. for almost everyv w € T,

(4.5) Jo(w) = Jy(w). Jre(w) = Jgy(w).

(That is. for some indexing ® = (0a)agorzt- Ad ¥ = (Uo)agrzzt Qaltt + 3) = ¢ 3w + ). etc.)
Then Egeg is the dual frame of Ey.

Proof. Since Epe is a frame. the equality Jpe (i) = Ji g () casily implies (by Theorems
3.2.3. 3.3.5. and 3.4.1) that Egry is a frame, as well.

Since Ewe is the dual frame of Eg, then, by Corollary 4.3, for almost every w € T each of the
operators S g (w) Jp (), Jp(w)Jpe(w), Jre(w)Jg(w). and Jo(w) Iy () is an orthogonal projec-
tor. By virtue of (4.5), we get that for almost every w € Tr* each of the operators Jhog (w)Jy (),
I () Jwew (), Jrew (w)J (w), and Jy (w)Jg. ¢ (w) is an orthogonal projector. Therefore, Corollary
4.3 would imply that Egy is a frame dual to Ey as soon as we show that Er-y is a fundamental
sct of H'.

Let H” be the closure of the algebraic span of Errg. If H” # H', then, since Ey is fundamental
in H'. there exists, say, some f € L,(IR%) such that Tef =0, but Tg.of # 0. (Otherwise, there
exists f such that T3 f #0, but Ty ¢ f = 0. and the argument below can be adapted to this case,
as well). By Lemma 1.4.8, this implies that, while

J\},(w)ﬁw =0, ae w,

Jl;_/\p('U))ﬁw # 0, on a set of positive measure.

On the other hand, since Ere is the dual frame of Es. Proposition 1.3.7 implies that ker 7¢ =
ker Tre. and hence that, for a.e. w, ker Jj () = ker Jp(w) = ker Jre(w) = ker Jg,y(w), and we
have reached a contradiction. A
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