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ABSTRACT

The interaction of a single Lamb vortex with a free surface is analyzed

numerically through the use of a finite-difference technique. The individual

effects of gravity, viscosity, and surface tension are investigated within the

range of the applicability of the phenomenon and the code used. The vortex

is allowed to build up to its full strength in a relatively small time and then

the evolution of the free surface, streamlines, and other details of the flow are

calculated. The results have shown that the smaller the proximity of the

vortex to the free surface, the larger the scar produced on its down-wash side.

The effect of the surface tension is to reduce the amplitude of the free surface

elevation. The viscous effects appear to be relatively small even though the

calculations are, out of necessity, confined to a limited range of the governing

parameters, as in all finite difference calculations.
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ITLST OF SYMBOLS

a NM lVkiexklrawxar 4A/,

Fr Froude number, r/(ho0.R;)

g Gravitational acceleration

ho Depth of vortex below free surface

Re Reynolds number, ho4ji/i,

ro Vortex core radius

t Tune, seconds

T Non-dimensional time, tg/7i

v Transverse component of velocity

V Total vortex induced velocity

VMAx Total vortex induced velocity at ro

w Vertical component of velocity

we weber number,

y Transverse coordinate

Yc Transverse position of center of vortex core

z Vertical coordinate

Zc Vertical position of center of vortex core

r Circulation of vortex

p Fluid density

o Surface tension

v Kinematic viscosity
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L INTRODUCTION

The study of the flow about a submerged foil, in general, and a foil in the

vicinity of a free surface, in particular, has a number of applications in

hydrodynamics. For example, the effect of the free surface on the

performance characteristics of partially submerged bodies, the stability of flow

about control surfaces, and the surface signature created by the wake of a foil

have emerged as important problems during the past decade. In these

applications, the effects of gravity, viscosity and surface tension are almost

equally important. The gravitational forces control the shape and the

amplitude of the surface disturbances, viscous forces control in a more subtle

manner the curvature of the surface and the rate of decay of the flow

structures, and the surface tension controls the magnitude of the gradients

and strains at the surface, and, thereby, the amplitude of the disturbances,

together with the gravitational forces. It is, therefore, of paramount

importance that all numerical calculations attempting to predict the behavior

of flow resulting from a submerg - or partially submerged foil account for all

three effects in a three dimensional flow and, if not yet possible, in a

relatively more manageable two-dimensional flow situation.

As far as the recent naval hydrodynamic applications are concerned, the

emergence of the remote control and observation technology, combined with

the emergence of surface signatures, precipitated by the motion of near-

surface submerged bodies, gave rise to the explorations of the non-acoustic

detection of submerged bodies. Even though the technology is rather new
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and the exploration of its potential requires the understanding of many

satellite technologies, the preliminary investigations have shown its

potential and forged many interesting studies in the past few years.

The first such investigation was undertaken by Sarpkaya and Henderson

(1984) who have shown that the interaction of an ascending vortex pair with

a free surface gives rise to scars and striations. The scars are relatively deep

and long depressions on the downwash side of each vortex and are comprised

of many vortices with axes normal to the free surface. These scars are bridged

by the so-called striations which give the appearance of the rungs of a ladder.

The character of these scars and striations are such that they give rise to

coherent structures whose scale and frequency band are in the range of those

of the Brag frequency. Thus, the alteration of the scale of the near-surface

coherent structures (e.g., vortices or whirls) by single or double trailing

vortices serves as a Brag-frequency discriminator and provides the connection

between the non-acoustic detection of submerged bodies and the study of

surface signatures.

The realization of the foregoing led to considerable work in recent years

on the interaction of vortices, wakes, and other types of flow with deformable

fluid interfaces, all characterizable by the more general phenomenon of the

interaction of vorticity with rigid and stratified deformable boundaries.

Experimental work has ranged from the study of the interaction of submerged

jets with a free surface, to the study of the interfacial turbulence in grid-stirred

tanks. Numerical investigations have ranged from the use of vortex

dynamics for inviscid flows to the use of finite-difference techniques for the
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solution of two-dimensional viscous and incompressible flows (with or

without linearization at the free surface).

The interaction of an ascending vortex pair with a free surface was

analyzed in detail by Ohring and Lugt (1991) through the use of the full

Navier-Stokes equations for an incompressible two-dimensional viscous

flow, including surface tension and surface-generated vorticity. Out of

necessity, their calculations were confined to relatively small Reynolds

numbers (suitably defined in terms of the velocity of the ascending vortices,

the initial vortex spacing and the fluid viscosity) in order to maintain stability

and convergence. The effects of the Froude number (representing gravity)

and those of the Weber number (representing surface tension) were properly

accounted for. It is of importance to note that the value of the Reynolds

number is not of particular concern for their investigation since their

objectives were not so much the simulation of the ocean-truth or of the

establishment of a practical predictive model, but rather the understanding of

the physics of the phenomenon as to the size and evolution of the scars and

the effect of the secondary vorticity on the motion of the primary vortices.

The inclusion of the effects of surface tension were to shed further light on

the anticipated effects of surface contamination which invariably exists in the

oceans.

Ohring and Lugt have shown that:

High and low Froude numbers represent the two extremes of free surface
yielding and stiffness, respectively. For an intermediate Froude number,
a special rebounding due to the presence of secondary vortices has been
observed: the path of the primary vortex centre portrays a complete loop
(Ohring and Lugt, 1991, p.47).
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They have also shown that for relatively high Froude numbers (i.e., larger

deformations) and for Reynolds numbers larger than about 50, the predictions

do not appear to be strongly dependent on the Reynolds number, within the

range of Reynolds numbers considered by them. In other words, the free-

surface deformation without the influence of the surface tension is

determined strongly by the gravitational effects or the Froude number.

When the surface tension effects are included, the larger the Weber number,

the larger the attenuation of the surface elevation, as shown by Ohring and

Lugt (1991). This, however, raises the important question that the delineation

of the effect of the Reynolds number on the results might depend not only on

the magnitude of the Froude number but also on the Weber number since

their increasing values produce opposing effects of the surface elevation.

Thus, if the large Froude numbers give rise to larger elevation and thereby

lessen the effect of the Reynolds number and the larger Weber numbers

reduce the surface elevation and tend to intensify the importance of Reynolds

number, it would be rather difficult to ascertain their respective roles when

both the viscous and surface tension effects are included. Nevertheless, the

choices for the numerical analysist dealing with the Navier-Stokes equations

are limited partly by the stability and convergence of the solutions and partly,

and perhaps more importantly, by the stability of the phenomenon itself.

As far as the effect of a single vortex on the free surface is concerned,

only Tyvand (1991) considered a vortex placed suddenly near a free surface

and attempted to calculate the resulting wave phenomena for an inviscid

case. His calculations, valid only for very short times, have shown that the

sudden introduction of the vortex does not give rise to waves. This fact has
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already been established by others. Tyvand (1991) did not show any longtime

calculations, streamlines, or surface deformations.

The present investigation is a detailed solution of the two-dimensional

Navier-Stokes equations for a viscous, incompressible fluid with a viscous

vortex placed below the free surface. The finite-difference code used in the

calculations will be described in the following sections.
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U. NUMERICAL RPR•SENTATION

A INTRODUCTION TO PROGRAM

The numerical analysis discussed herein was performed using the

RIPPLE computer program which was specifically designed to model

"transient, two-dimensional, incompressible fluid flows with surface tension

on free surfaces of general topology" (Kothe, Mjolsness, and Torrey, 1991).

The code was modified to the extent necessary to solve the vortex/free-surface

interaction problem and to produce the numerical and graphical results. All

of the subroutines required for performing the numerical solution were

organic to the program.

RIPPLE solves either the Euler or the Navier-Stokes equations for

incompressible fluids (with or without surface tension), using a two-step

projection finite difference scheme which is second-order accurate in space

and first-order accurate in time. It is capable of solving in either a Cartesian

or cylindrical two-dimensional coordinate system, using a uniform or varied

mesh, and, has the ability to model curved boundaries and internal obstacles

using various types of boundary conditions.

B. DESCRIPTION OF PROGRAM

The following brief description of the numerical method follows closely

that given by Kothe, Mjolsness, and Torrey (1991).

The governing equations are the continuity equation for an

incompressible fluid,
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VoV=O (1)

and the momentum equations,

(W)+=0 - -Vp+!V*e[+g+-Fb (2)

where t, is the viscous stress tensor for a Newtonian fluid, p the fluid density,

p the pressure, g the acceleration due to gravity and Fb the total body force.

The particular properties of the fluid are assigned positions within a given

computational cell as shown in Figure 1.

,I %+f
T- j+lht

F..F19
dz. 0

U i+/2

14- 4y oi

Figure. 1 Cell Definition in the Grid (Kothe, Mjolsness, and Torrey, 1991)

For the two-step projection method, Equation (2) is discritized with

respect to time as,
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Vn+1 -Vn n 1 ,,n+l- ,,,,n+gn+ I n (3)
8t - P np-n

The only implicit term in this equation is pressure-all others terms are

approximated according to their values at the previous time step. The first

step of the projection scheme solves for a velocity field based on incremental

changes in the explicit terms of Equation (3). The second combines this

intermediate velocity field and the pressure term of Equation (3) with

Equation (1) to calculate the velocity field at the next time step. This

combination forms a Poisson's equation which is solved using an incomplete

Cholesky conjugate gradient (ICCG) matrix solver. The momentum

advection term of Equation (3) is solved using the second-order upwind

method of van Leer.

When solving for the free surface, the program assumes that the surface

tension, a, is constant and that the viscous stresses at the free surface may be

neglected. This allows for the application of the continuum surface force

(CSF) which represents the surface tension as an equivalent volume force

rather than a pressure jump (Brackbill, Kothe, and Zemach, 1992). Thus, the

free surface discontinuity is replaced with a smooth transition, or "color,"

which varies across any computational mesh cell containing a free surface.

The volume force is non zero only within these cells and is solved as one

component of the body force term in Equation (3). A contact angle, 0, may be

defined at any boundary and used to approximate wall adhesion forces.

Because surface tension is solved explicitly, it is subjected to a linear stability

time step constraint.
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Numerous techniques have been developed to perform the non-trivial

task of modeling the free surface of a fluid. The method employed in RIPPLE

is the Volume-of-Fluid (VOF) method. VOF is a donor-acceptor differencing

technique which makes use of a scalar field function, F, to act as a marker of

the free surface. F describes the fraction of a cell which is occupied by the

fluid:

F(x,t) = 1 in the fluid;

F(x,t) = 0 in the void; and,

0 < F(xt) < 1 at the free surface.

The free surface, therefore, is not continuous, but rather, is represented by a

series of discontinuous line segments described by the value F in the surface

cells. Although, a reconstructed free surface is not required for surface

tension calculations (since this is handled by the CSF model), it is needed to

ensure that the fluid in the vicinity of the free surface is accurately advected

over the domain. Both the reconstruction and advection of the VOF function

is performed using a Hirt-Nichols (H-N) algorithm. Because the H-N

algorithm is explicit in time, the maximum time step is subject to the

Courant condition. Also, the fluid color, used in the CSF model is related to

the VOF function. The viscous stress term is solved explicitly in time using a

backward difference scheme, so it too is subjected to a linear stability time step

constraint.
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C. PROGRAM PARAMETERS

The first parameter which must be chosen is the size of the domain.

Because it is desirable to limit the problem run-time to some reasonable

length, excessively large domains are impractical. Therefore, the size of the

domain must be limited, while simultaneously minimizing the impact of the

resulting boundaries which must be in relatively close proximity to the

region of concern. Given an initial vortex depth below the free surface of ho,

it was found to be sufficient to place the side boundaries at ±4ho and the lower

boundary at 3hN, below the vortex center, for a Froude number Fr (=

D/hojii;) = 7.5. For Fr = 13.8, the side boundaries were placed at ±6ho and

the lower boundary at 5ho. The top boundary needed to be located high

enough above the free surface so as not to interfere with the largest vortex-

induced free-surface deformation. For this analysis, 1.7ho was deemed

sufficient.

Closely related to the size of the domain is the type of boundary

conditions imposed on its periphery. RIPPLE is capable of applying free-slip,

no-slip, periodic, applied pressure, continuative outflow or a specified

inflow/outflow condition to any of the four boundaries. The last three

conditions have no relation to this problem. The no-slip condition is not

appropriate because it enhances the influence the boundaries have upon the

domain. The periodic condition simply reflects the velocities, pressures and

free surface positions about the boundary and does not accurately represent

the images produced by a single vortex. The free-slip condition is ultimately

the best choice since it limits the effect of the boundaries and crudely models

the vortex images on the sides and bottom of the domain.
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The grid size can be either uniform or varied in either direction.

Because a varied grid is applied along the entire length of the domain (for

example, a variation in the grid in the y-direction must be applied from the

bottom to the top of the domain) the number of cells are increased along the

entire strip and not just in the region desired. It is as a consequence of the

decrease of the cell size in such regions that the demand for CPU time

increases. Thus, a choice must be made between the increase of the CPU time

and the increase of the accuracy of the computation over a "cross-shaped"

refined region. A uniform mesh was, therefore, used with its coarseness

limited by RIPPLE's ability to accurately solve for the free surface for the given

values of the Froude number (Fr = r/ho•b-;), the Weber number (We =

a/pgh2), and the Reynolds number (Re = ho4i /v). A 192x112 mesh grid

was capable of meeting the needs of this analysis within a reasonable run-

time using a SUN SPARCstation 1OTM (25 to 70 hours).

The program provides for a choice between a fixed time step and a

variable time step (adjusted automatically during the course of the

calculation). Regardless of which method is chosen, the code requires that an

initial time step and a maximum allowed time step be provided. For this

analysis, the variable time step was used because it reduced the run-time

while making sure that the linear stability requirements were met. It was also

determined that an initial time step approximately equal to 1/10-th of the

maximum time step of the three time constraints was sufficient. For initial

time steps larger than that, the code frequently exceeded one of the time

constraints, requiring it to recalculate the current time step.
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As was the case for the grid size, the tradeoff for defining the required

convergence criteria for the Poisson pressure solver was the solution-accuracy

versus problem run-time. Through limited trial-and-error, it was found that

a value of 0.001 was acceptable.

As described previously, the advection calculation is performed explicitly

with respect to time and must, therefore, meet the Courant criteria. Implicit

in the program is the assumption that all time steps have Courant numbers

less than 0.5 - any step not meeting this criteria must be recalculated. To

prevent an inordinate amount of recalculation, the Courant number was set

to 0.38. This ensured that the Courant number after the calculation was less

than 0.5 and that the advection solution remained stable. The program also

allows for choosing the type of momentum advection. Based on the

recommendation of the authors, van Leer's method was used.

D. ADDITIONAL PARAMETERS

A code such as RIPPLE allows the user to define numerous parameters

and variables, but it obviously cannot anticipate every particular situation to

be encountered. The interaction of the vortex with the free surface had to be

correctly implemented and incorporated into the code, together with the

selection of the appropriate boundary conditions and parameters which are

compatible with the demands of the flow field. Therefore, it was necessary to

include a routine which defined the desired vortex and the variables

necessary to vary the governing parameters associated with the simulation

(Fr, We, Re and a = ro/ho, the ratio of the core size to the depth of the vortex).
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A subroutine designed to specify the boundary conditions was modified

to characterize a single vortex. The swirling motion was prescribed over a

square region, surrounding the vortex core. The velocities were solved using

the velocity equation derived from the Lamb vortex model in Cartesian

coordinates,

=(,Zt r..-~..tm.. -xp{2- 4{; 1)1] (4)

where r is the vortex strength, ro the vortex core radius and y and z as shown

in Figure (2).

z

(ye) V(YAA

rno

Figure. 2 Definition of Vortex Characteristics

The v and w components of velocity are then given by,

v(y,z,t) = V(yz,t•".z 2 (5)
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and

w(y' Z't) = -( Zt)(6)

This required the ability to define F, ro and the location of the vortex center,

(yc, zc). The length of the sides of the square region in which these velocities

were defined was set equal to 3ro, with 1/3 (x:5 1/2.

It was recognized that to place the vortex instantly at full strength at time

T (= ho/4g-) = 0 would likely "shock" the system, thereby requiring long run-

times to allow an equilibrium condition to establish at the free surface. Thus,

the vortex was initialized at some fraction of its ultimate strength, and

allowed to build up linearly over a predetermined time period. Typically, the

vortex was initialized at 0.oir and allowed 7T to 10T normalized times, to

reach full strength. It was desired that the vortex/free-surface interaction be

examined in a "natural state," where not only was the free surface shaped by

the vortex, but the vortex distorted and moved by the free surface. It was,

therefore, necessary to cease providing the vortex with a source of circulation

so that both the vortex and the surrounding flow field could reach a non-

forced state of relaxation. Subsequently, the quasi-steady state of the

interaction was examined. To achieve this, one last parameter was added

which specified the time at which the velocities within the square region

surrounding the core would no longer be redefined. For all of this analysis,

this time occurred at 25T, as this was sufficient to allow the free surface to

reach a state of dynamic equilibrium, yet early enough to prevent the

14



boundaries from influencing the interaction. After reviewing the graphical

output from numerous runs, it was determined that the best time at which to

examine and compare the above interaction was 27T. Most of the runs were

continued far beyond the time 27T. An example of the evolution and demise

of a single vortex at larger times is presented in the discussion of results.
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I.L PRESENTATION AND DISCUSSION OF RESULTS

A. INTRODUCTION

Among the numerous calculations performed, only six representative

single-vortex/free-surface interactions will be discussed in some detail. The

six runs are classified according to the combination of the Froude, Reynolds,

and Weber numbers:

TABLE 1: THE RANGE OF THE GOVERNING PARAMETERS

Set #1 Fr = 7.50 Re = 40 We = 0.033

Set #2 Fr = 7.50 Re = 20 We = 0.033

Set #3 Fr = 7.50 Re = 40 We = 0.333

Set #4 Fr = 7.50 Re = 20 We = 0.333

Set #5 Fr = 13.80 Re = 40 We = 0.333

Set #6 Fr = 13.80 Re = 20 We = 0.333

Each set of calculations show the streamlines, velocity vector plots,

v/VmAx versus y/ho, w/VmAx versus y/ho, v/VmAx versus z/ho, and w/VMAx

versus z/ho.

B. ASSESSMENT OF THE EFFECTS OF VISCOSITY

As noted from the foregoing table, the first two sets of runs are designed

to evaluate the effect of the Reynolds number, however small the range of

the Reynolds number may be. The comparison of Figures 3 and 9, 4 and 10, 5
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and 11, and 6 and 12 show that aside from the secondary details in the vicinity

of the vortex core, the shape and magnitude of the free-surface deformation

are nearly identical. The secondary differences, attributable to the rate of

diffusion, show in the straining of the vortex, in the vorticity contours

around the primary vortex, and in the shape of the streamlines surrounding

the primary core. It is noted that for the case of the smaller Reynolds number

(Figure 9), the lower part of the main vortex is comprised of two cells of

streamlines whereas the one for Re = 40 (Figure 3) is less diffused and the

streamlines below extend over larger regions. In other words, there are subtle

differences between the two streamlines in spite of the relatively small

difference between the two Reynolds numbers. It will be shown later that the

said differences are further enhanced with increasing Froude number and

decreasing Weber number.

Figures 5 and 11 show the v-component of the normalized velocity on a

transverse line passing half-way between the original positions of the free

surface and the vortex center (z/ho = 0.50). The magnitude and direction of

this velocity along the y-axis depends on the particular position of the z =

constant plane. For a non-deformaing free surface, it can be demonstrated

through the use of a Kelvin oval that the velocity should be maximum

directly above the vortex and decrease symmetrically as the distance from the

vortex increases as shown in the insets of Figures 5 and 11. The reasons for

the change of direction as well as the difference in the magnitudes of the

negative values of the v-component are a consequence of the asymmetric

deformation of the free surface on either side of the z-axis. The rise in water

elevation and the drop in the v-velocity to negative values on the upwash
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side of the vortex are both larger for reasons which can be easily explained by

examiing the streamlines and the velocity vector plots.

The w/VMAX versus y/ho is shown in Figures 6 and 12 for the governing

parameters of the first two sets of calculations, shown in Table 1. In these

plots several facts are evident: (i) the velocity profile is not odd-symmetric

with respect to the z-axis, as it would have been had the free surface remained

undeformed; (ii) the magnitudes of the regions to the left and the right of the

z-axis are significantly different, again due to the asymmetric deformation of

the free surface; (iii) for the smaller Reynolds number case (Figure 12), the w

profile is relatively more symmetric, as would be expected; and (iv) in both

cases, w approaches zero from negative values on the left and from positive

values on the right.

The transverse component of the velocity, V/VMAX, versus z/ho is

shown in Figures 7 and 13 for the two calculations under consideration.

Aside from their magnitudes, the two profiles are virtually identical. It is

noted that the vortex center has shifted slightly downward in time due to the

mutual interaction. It is also noted that the velocity profile is not symmetric

with respect to the z = 0 line because of the proximity of the free-surface.

Furthermore, the ratio of the velocity extrema is larger than unit for the

larger Reynolds number case whereas it is smaller than unity for the lower Re

case.

Finally, the variation of w/VMAX with z/ho is shown in Figures 8 and 14.

Normally, this velocity should be zero for a non-deforming surface. Thus,

however small, the magnitude of w/VMAx is one of the most important

measures of the deformation of the free surface, i.e., the larger and more
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asymmetric the deformation is, the larger the deviation of the w-component

of velocity from zero. Figures 8 and 14 show that for a vortex rotating

clockwise below the free surface, w becomes plus below the vortex axis and

negative above the axis. In other words, there is mass flux into the vortex

core in the z-direction. It can be shown, however, that the net mass flux into

the core around a circumference is zero by virtue of the solenoidality of the

flow.

C. ASSESSMENT OF THE EFFECTS OF SURFACE TENSION

Now, the calculation sets of 3 and 4 (see Table 1) will be discussed. It

should be noted that these two sets differ from the first two only in terms of

the Weber number. Thus, the sets 1 and 3 and sets 2 and 4 have identical

Froude and Reynolds number and any differences in their characteristics will

be indicative of the increase in the surface tension or of the Weber number.

In assessing the role of the Weber number on the flow behavior, it should

also be noted that the surface tension has been increased by ten fold whereas

the Reynolds number was only doubled.

Figures 15 and 21 show the streamlines for cases 3 and 4. The first

striking difference between thi t1wo figures is the magnitude of the

deformation of the free surface: the smaller the Weber number, the larger is

the deformation. This is somewhat expected on the grounds that the

additional surface tension gives rise to surface tension gradients and surface

vorticity and these in turn absorb energy which would have been otherwise

stored in the fluid as potential energy in raising the free surface. A similar

conclusion can be drawn regarding the low Reynolds number case, as seen in
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Figures 9 and 21. A closer examination of the streamlines very near the

region where the free-surface slope changes (nearly above the vortex) show

that for small Reynolds numbers (Re = 20), the build-up of surface vorticity is

somewhat stronger than the higher Reynolds number cases. This is expected

on the grounds that the flatness of the surface and the diffusion of vorticity in

the lateral directions should lead to secondary circulations between the vortex

and the free surface.

The vector plots of the velocity are shown in Figures 4 (Fr = 7.50, Re = 40,

We =0.033) and 16 (Fr = 7.50, Re = 40, We = 0.333) and in Figures 10 (Fr = 7.50,

Re =20, We = 0.033) and 22 (Fr = 7.50, Re = 20, We = 0.333). These figures

show that even though such vector plots are valuable in pointing out the

direction and magnitude of the velocities, they do not allow one to develop

an integrated mental image to draw conclusions regarding the interaction

between the vortex and the free surface. These can only be achieved through

a careful perusal of the velocity distributions along selected lines and

directions.

The second most significant impact of the surface tension must surely be

associated with and be a consequence of the flattening of the free surface.

Namely, the velocities in the transverse direction are enhanced as the

streamlines are confined to narrower regions above the vortex (e.g., at z/ho =

0.5, as in the present case) and the v/VmAx values should be larger for the case

of We = 0.333 than for We = 0.033, as seen in Figures 17 and 5, respectively.

Figures 11 and 23 exhibit the same behavior, but less dramatically.

The vertical component of velocity along a transverse plane (z/ho = 0.50)

for the case of Fr = 7.50, Re = 40, and We = 0.333 (Figure 18) may now be
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compared with that for Fr = 7.50, Re = 40, and We = 0.033 (Figure 6).

Apparently, due to the elevation of the transverse plane the difference in w is

not as accentuated as the v-component. In fact, the solenoidality of the flow

for a given vortex position necessitates that the increased v-velocities (the

bunching of the streamlines) should be compensated for by a smaller

difference in the w component. For the case of the lower Reynolds number,

Figures 12 (Fr = 7.50, Re = 20, and We = 0.033) and 24 (Fr = 7.50, Re = 20, and

We = 0.333) support the same conclusion.

A comparison of Figures 18 through 20 for (Fr = 7.50, Re = 40, and We =

0.333) with Figures 24 through 26 for (Fr = 7.50, Re = 20, and We = 0.333)

shows that the dependence on the Reynolds number of the particular

velocities are not significant and certainly no more than that described earlier.

It suffices to note that the most important difference is in the v-component of

the velocity and the degree of the differences on all velocities, including v,

depend strongly on the proximity of the transverse plane to the deformed free

surface. Here, it is implied that the difference is only in the magnitude of the

velocities and not in the physics of the phenomenon. In other words, no new

physical events are expected to occur as one approaches the free surface. It is

also important to be reminded of the fact that these calculations deal only

with laminar flows. In turbulent flows, the interaction of vorticity with the

free surface gives rise to coherent flow structures which cannot be predicted

here through laminar flow solutions (Sarpkaya and Suthon, 1991).

Nevertheless, the overall behavior of the free surface, the generation of free-

surface vorticity, mean-flow characteristics, the regions of formation of the

primary and secondary vortices, the relative influence of various parameters
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and several other experiment-guiding results can be predicted through the

use of laminar flow calculations. It is on the basis of such results that

turbulent flow measurements can be made to delineate the character of

coherent structures and the transfer of vorticity from the vortex to the free

surface and the generation of new structures and their redistribution in the

transverse plane in the form of quasi-coherent quanta.

[1 ASSESSMENT OF THE EFFECTS GRAVITY

The next issue to be taken up is the effect of the Froude number on the

characteristics of the flow. The calculations are presented in sets 5 and 6 (see

Table 1). The role played by the Froude number (signifying the effects of

gravity) will be illustrated through the comparison of the results between the

sets 3 (Fr = 7.50, Re = 40, We = 0.333) and 5 (Fr = 13.80, Re = 40, We = 0.333),

and sets 4 (Fr = 7.50, Re = 20, We = 0.333) and 6 (Fr = 13.80, Re = 20, We=

0.333).

Figures 27 and 15 show that there are two fundamental differences

between them. First, the surface elevation is larger for the larger Froude

number. Second, the secondary vorticity is much more pronounced. Both of

these effects are somewhat intuitive and could have been predicted in gross

terms. However, the exact shape of the free surface, the deformation of the

vortex and the relatively larger excursion of the vortex center seen with the

larger Froude number could not have been anticipated. Figures 27 and 28

show that the vortex center, which was at (0, 0) at time zero, has gradually

shifted to the third quadrant of the coordinate axis, but near the origin.

Additional comments may be made regarding the streamlines and the
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vorticity distribution in the regions below the vortex. Even though they

further show the effects of the magnitude of the Froude number, here the

attention will be concentrated on the near surface structures.

Figures 29 and 17 show that differences between the two Froude

numbers is accentuated. Likewise, Figures 30 and 18 show that the overall

character of the variation of the w-component is quite similar for the two

Froude number cases, except for the fact the growth of the larger secondary

vorticity, particularly to the right of the scar, gives rise to a 'hump' in the w-

velocity as shown in Figure 30. This is expected to be further amplified in the

transverse planes closer to the free surface. Figures 31 and 19 show that the v-

component of the velocity is dramatically effected by the magnitude of

deformation of the free surface as exemplified by the strong asymmetry of the

top and bottom halves of the profile and by the absolute values of its

magnitude. Finally, the w-component of velocity along the z axis is

compared in Figures 32 and 20. As noted earlier, this velocity component is

rather small for obvious reasons. Thus, its distribution is strongly influenced

by any parameter, large or small. In this case, the migration of the center of

the vortex, induced by the proximity and the degree of deformation of the free

surface, could and has changed the distribution of the w-component. The

vortex center in Figure 32 is such that this velocity component is negative

through the entire z-axis, unlike the previous ones. The unidirectionality of

the w-component along a single z-axis does not change the fact the mass flux

through the vortex is maintained.

It is clear from the foregoing that the Reynolds number effects are subtle

and the degree of diffusion of vorticity exhibits itself in all velocity profiles.
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The effect of the Froude number is to amplify the magnitude of the

deformations, enhance the secondary vorticity generation indirectly through

the increase of the radius of curvature of the free surface, and through the

straining of the vortex. The effect of the Weber number, however, is opposite

to its magnitude in practically all aspects of the evolution of the flow. The

larger the Weber number, the smaller are the deformations. In that sense, the

surface tension and gravity effects act in opposite directions. Thus, one would

expect that the cases of relatively low Froude and Weber numbers (e.g.,

Figures 3-8) and the cases of relatively high Froude number and Weber

number (e.g., Figures 27-32) should be comparable. In fact Figures 3 and 27

show that the free surface deformations are comparable. They also show that

the near doubling of the Froude number has a greater influence on the

magnitude of the free surface deformation then the ten fold increase of the

Weber number.

E. GROWTH AND DECAY OF THE VORTEX

In the foregoing, the effects of viscosity, surface tension, and gravity on

the interaction of a vortex with a deformable free surface have been discussed

at a specific time without regard to the transient state. These have been

instructive in clarifying the combined as well as separate effects of the

fundamental physical parameters and in paving the path to the design of

physical experiments. Clearly, it would be equally important to know as to

how a particular state has been reached and how the vortex decays with time

if its circulation were no longer maintained constant. This section deals with

these issues.
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In view of the fact that it will be nearly impossible to discuss the

evolution of a fluid state for all possible combinations of the governing

parameters, only the most representative values of the Froude, Reynolds, and

Weber numbers were chosen, i.e., Fr = 7.50, Re = 40, We = 0.033 (case 1).

Figures 39 through 47 show, starting at T = 10, the evolution of the

streamlines. At time T = 10, the vortex has already reached its full strength.

The circulation is held constant between the times T = 7 to T = 25. For T > 25,

the vorticity of the vortex is allowed to diffuse without the infusion of new

vorticity into the core. Thus, the circulation in the original core is allowed to

decrease with time.

A cursory examination of the figures 39 through 43 (at T = 26) shows that

the free surface quickly reaches its steady state shortly after T = 10. However,

after T k 26 (Figure 43), the diffusion of the unreplenished vortex begins to

manifest its effects on the entire flow in the form of decreasing surface

elevation, uniformalizing of the streamlines (showing that the vorticity

gradients are becoming less steep), and the scar becoming more smooth. The

surprising aspect of the decay process is that a steady state which has been

essentially arrived at by T = 10 is largely maintained even at times as large as

T = 30, at least in the immediate vicinity of the vortex. This is an indication

of the longevity of the larger structures near the surface. The measurements

previously carried out at Naval Postgraduate School (see, e.g., Neubert 1992)

show that energy can cascade towards larger structures and thereby decay at a

slower rate. That decay is certainly a function of a number of factors. Aside

from the domain in which the vortex is born and subjected to decay, the

condition of the free surface at a particular instant, the viscous, gravitational,
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and the surface tension effects (surface contamination) will certainly

influence the duration of the life of the vortex. If one were to assess the half-

life of the vortex in terms of its decay to half the vortex strength, one might

conjecture that this would be a very large time, not assessed in the present

investigation due to CPU limitations.
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d II I

IV. CONCLUSIONS

The interaction of a single Lamb vortex with a free surface has been

modeled using a finite-difference scheme. The values of the Reynolds,

Weber and Froude numbers were varied and the results compared in an

effort to assertain the influence of viscosity, surface tension and gravity upon

this interaction.

Compared to that of surface tension and gravity, the influence of

viscosity on the evolution and steady-state of the surface deformation is

rather secondary. Its major contribution is that of controlling the rate of

diffusion and degree of vortex strain.

Within the range of Reynolds numbers examined, the effect of surface

tension is to moderate the effect of the remaining parameters upon the

interaction. In most cases, the result of an increase in the value of the surface

tension, or Weber number, is opposite to that of the Froude number.

The gravitational force has the most notable influence on the

vortex/free-surface interaction since it changes the curvature of the free

surface with increasing circulation or with decreasing proximity to the free

surface. Furthermore, the gravitational force indirectly controls the amount

of vorticity generated at the free surface.

All of the foregoing is influenced to varying degrees of intensity, as well

as complexity, by the non-symmetric nature of the free surface. This leads,

among other things, to the stretching and tilting of the vortex, the flow of

surface vorticity to the downwash side of the vortex, and, most importantly,
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to the distributions of the v and w-components of the velocity. The v-

component increases with the decrease of the vortex depth and with the

flattening of the free surface. The w-component may be both positive or

positive-negative depending on the elevation of the vertical line along which

the velocity is calculated, the time of the calculation, and on the magnitude of

the governing parameters.

The results have demonstrated that the deformation of the free surface

for two-dimensional laminar states can be calculated through the use of a

finite-difference code, capable of including all three effects: viscosity, surface

tension and gravity.

It remains to be seen as to what the effects of calculation domain size, the

character of the initially imbedded vortex (e.g., Lamb vortex versus a Rankine

or Rosenhead vortex), the individual or combined effects of integration time,

grid-size, and the boundary conditions be, among the most important

computational input parameters.
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