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ABSTRACT

The forces on a rotor due to asymmetric pressure distributions resulting from a

single gland non-circular labyrinth seal in a circular outer casing are analvzed for the

purpose of understanding the possible causes of synchronous vibration due to seal

intoterance. e sealing knife imperfections causing the non-circularity may he due to

nanufacturing defects or in service ware. A lumped parameter model is developed for flow

in the azimuthal direction inside the seul gland. The resulting continuity and momentum

equations are solved using a regular linear perturbation technique. Results from this model

indicate under what conditions scal imperfections can generate forces of the sume order of

magnitude as those arising trom residual rotor mass unbalance.
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L. INTRODUCTION

The United States Navy has extensive experience with gas turbine engines in

1%

aviation applications, but only relatively recently has this engine type been expanded to the
marine environment. Part of the appeal of this propulsion system is its quick reaction time,
reliability. maintainability, and power to weight ratio. To be successful on board a Nuaval
combatant the power output must be high, resulting in an increase in machine size and
weight compared to typical aviation applications. In marine applications gas turbine engines
are usually coupled in some way to a large set of reduction gears. that not only reduce the
high rotational speed of the turbine down to an applicable level for shatt/propeller type
propulsion, but they are also firmly fixed in position to reduce damage to the reduction gear
due to transmitted vibrations. Typically, these vibrations are constdered the result of mass
unbalance in the machine's rotating parts, however, the fluid dynamics of the air tlow
within the engine could produce forces of the same order of magnitude as those forces
caused by mass unbalance. As a result, the forced vibrations of these engines must be as
low as possible to reduce premature engine failure.

As the Navy expanded the use of these engines. problems developed concerning
restdual vibrations.  All engines delivered to the Navy met specifications tor vibration
levels. however, some engines were exceeding vibration levels when in operation. Gas
generator rotor unbalance was identified as the major cause of higher then normal vibration
and premature wear. As a result, the Trim Balancing Technique was developed based on
the Least Squares Influence Coefficient method to reduce residual unbalance. The great
appeal of this technique is that the whole procedure may be done in place at a fraction of the
cost of removal and replacement of the engine. This technique has worked very well and

saved the Navy millions of dollars 1n removal and replacement costs, but it is not 100




cttective nev 1s it permanent.. With increasing operational time some engines. previously
balanced. show an increase in residual vibration, while others prove incapable of being
balanced using this technique [Ret. 1].

The purpose of this Thesis is to examine forces contributing to these vibrations
other then simple mass unbalance. Age and increased operating time will induce ware
and/or shifting of parts resulting in mass fluctuations, however. it is possible tluid eftects
of non-unitform tlow through the engines rotating parts could produce forces approaching
those torces caused by mass unbalance. Some of these rotating parts that could cause non
uniform flow are rotating blades. blade tip shrouds, and labyrinth seals. Such forces may
even be correctable by current mass balancing techniques it the force and phase of the tluid
effects are compatible with the modal shapes selected tor balancing.

This thesis will develop a model that predicts the force resulting from the fluid
effects induced by a non-circular rotating labyrinth scal. Many of these seals exist in
current marine engines, and possess very tight scaling gaps. The mean radius of the seal is

usually very large compared to the allowed tolerance. As a result, even a small defect in

seal radius compared to the small size of the gap will generate a relatively large effect.
Given specific operating flow conditions, forces can be predicted that will rival those

allowed by acceptable residual mass unbalance. Given various geometry’s and operating

conditions it is also possible to predict seal flow regimes.
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II. BACKGROUND

One of the major concerns in rotating machinery design is the residual unbalance
due to the mass center of the rotating element not being co-rlaner with its axis of rotation.
Such a sitvation will result in synchronous lateral vibration on the rotor bearing elements.
Under certain situations the magnitude of the lateral displacements caused by this vibration
could result in prematurc tailure of the rotor due to tatigue or catastrophic tailure of the foad
bearing elements. Currently mass unbalance 15 thought to be the major cause of such
vibrations, however, bearing wear, non uniform thermal expansion, misalignment between
parts, and fluid flow within the machine are other possible causes of lateral vibration.
Much work, both analytical and experimental, has been done to detect and reduce these
unbalances. In the 1930's dynamically balancing of rotors was widely practiced on test
stands with moderate results. As the speed of the machines increased this method proved
less etfective. Loewy and Piarulli [Ref. 2] point this out and discuss the advantages of
modal balancing and self-balancing as effective means of reducing vibrations. Modal
balancing works well with the lower modes as long as the harmonic content distribution of
the imbalance force “~ not scattered in the higher modes. Self-balancing makes use of two
frecly swinging weights within an annular track. As the machine rotates the weights are
free to take equilibrium azimuthal positions. At speeds below critical this method tends to
add to the unbalance, however, ubove critical speed the weights reduce the lateral unbalance
to zero. Both these methods work for constant speed machines, vet they are not practical
for variable speed machines such as those used by the Navy.

For large rotating machinery it 1s imperative to understand the natural characteristics
of each unit, not only to predict critical speeds and safe operating ranges, but also be able to

diagnose danger signs in machinery tustory to avoid catastrophic failure. Muster and




Stadelbaur [Ref. 3] discuss the necessity of dynamically balancing a rotor in two or more
axial correction planes at one or more operating speeds. Den Hertog [Ref. 4] discuses the
technique of shop balancing and then field balancing at rated speed. Some machines at
higher critical speeds require multi-planer balancing which does not always result in a
balanced rotor. Loewy and Piarulli [Ref. 2] discuss the modal balancing theory that makes
use of the natural frequencies and mode shapes of the shaft, which are normally needed for
super critical operations. This method works well as long as higher harmonic mode
deflection shapes do not resemble the unbalance detlection shape.

With «he arrival of the GE LM-2500 Gas Turbine Engine, the United States Navy has
become acutely aware of the difficulties of rotor unbalance and the resulting decrease in
engine service life. In the late 1970's the SPRUANCE class destroyers and the OLIVER
HAZARD PERRY class frigates began fleet operations with a new propulsion plant
centered on the LM-2500. Originally this engine had a service life of 5000 hours. yet an
alarming rate of engines could not meet this requirement due to high in service residual
vibrations. All engines met required vibration levels before dclivery, therefore, something
was causing an increase in vibrations while these engines were in operation. As a result
Thompson, Badgley, and Raczkowski [Ref. 11 developed a trim balancing technique that
allows for the balancing of the engine in place at great cost savings. Thompson [Ref. 5]
points out that this technique can not always be used effectively. Some engines simply are
not capable of being balanced whether due to in service damage, bowed rotor, or some
other factor.

One such factor could be {1t 1 forces acting on the rotor due to asymmetries in the
rotor airfoils and labyrinth seals rather then simple mass unbalance. The tocus ot this
study will be the potential contribution to synchronous forces from non-circularity in the
labyrinth seals and what the magnitude of these forces could be given various design

criteria. With the tolerance for a seal radius being a few thousundths of an inch on a disk




with a radius of one to two feet and a nominal gap clearance on the order of thousandths of
an inch, tl 12 exists a possibihity for substantial gap variation. It is the mean gap clearance
along with the radius tolerance that produces the gap variation.

A labyrinth seal is not a seal at all. Given a proper rotor/stator contiguration, there
is no contact between the rotating labyrinth knives and the stationary casing. The propose
of the lubyrinth is to create a path for the tluid to travel that causes a substantial change in
Kinetic energy within the seal glund area. This change in kinetic energy. which dissipates
in successive chambers, creates areas of pressure variation upstream ot the gland compared
to the exit pressure of the gland, which seals the upstream from the downstream
conditions.

A perfect operating seal with no intolerance in the seal gaps has uniform pressure
and flow momentum changes within the scal gland area. There is no resultant radial force
on the shatt. If some non circular intolerance did exist on the seal knite, then the flow
through the scal would not be uniform, causing arcas of higher mass tlow. The ultimate
result is a non unitorm pressure distribution. It & non uniform pressure distribution exists
in the gland. it is a simple calculation to convert it to a radial force in magnitude and phase
relotive to the rotating reference system.

Gas turbine rotors are typically balanced to G2.5 limits as specified by 1SO 1940
[Ref. 6]. Given these constraints the goal is to maintain the residual mass unbalance force
to less than | N for every Kg of rotor mass at 10,000 RPM. This mass unbalance torce is
described as F =m r,w*, where m_r, is the equivalent unbalance (kg-m) and @ is the
shaft rotational speed (rad/sec). Once the tluid foree is known it 1s compared to that of the
mass unbalance force. A comparison gives some indication of the significance such fluid
forces could have on rotor unbalance and the possible necessity to consider them in the
design process. Under ~ertain conditions these torces may present no significant obstacle

to the modal balancing technigues currently used. If the force is of sigmticant magnitude or




phase to impact on specific mode shapes, correction by simple adjustment of the mass
distribution may not be possible, which is precisely the condition experienced in some LM-

2500's (Thompson [Ref. 5]).




ITI. MODEL FORMULATION

A.  FLOW EQUATIONS

The flow in a labyrinth seal is three dimensional, turbulent, highly unsteady, and
compressible. Since the effects of this complicated flow, not the details, are of direct
interest for this problem, a simplified lumped parameter fluid model, used by Kostyuk
[Ref. 7], Iwatsubo [Ref. 8], and Millsaps [Ref. 9], will be introduced. This model treats
the flow in the labyrinth chamber as a one-dimensional tlow in the azimuthal direction, but
allows for axial influx and efflux due to the pressure driven flow through the scal gaps.
This type of model contains the dominant physics that generate a non-uniform pressure
distribution in the azimuthal direction within the gland. The mechanism driving this
pressure distribution is non-uniform mass and azimuthui momentum exchange between the
upstream receiver and the seal gland. Along with the basic model simplifications, several

other simplifications are made

I. Ideal gas. Pv=RT
Adiabatic Process

[3°]

3. The axial flow is caiculated using a Bernoulli equation based on the local pressure
difference at a given time and angular location using the average density.

4. The frictional shear stress on the fluid in the azimuthal direction within the gland
can be calculated using the Darcy friction law for 1-D flow.

5. No duct acoustic resonance occur in the range of interest.

It is also assumed that the seal is fed by a uniform upstream plenum. This condition is not
strictly met, however, the perturbation flow will induce a flow redistribution in the
upstream volume, helping to simplify the analysis. Care must be exercised, however,

since under certain conditions the non uniformity in the upstream flow can have a strong




impact on the flow in the seal. In particular, a large force augmentation is possible as a
result of the upstream non-uniformity. An analysis of this phenomena for a whirling seal
with a finite upstream volume is given by Millsaps and Martinez [Ref. 10].
The one-dimensional continuity equation for the flow along the azimuth inside the
seal gland may be written as
J

—8—t[ Al +

R

R ae[pAV]+qz—ql=O )
s

where the first two terms are the normal 1-D continuity relation for a deformable duct. The
fluid density is p, V is the swirl velocity in the gland. and A the gland cross sectional area
normal to V. The remaining terms are due to the axial mass flux over the outlet and inlet
knives respectively.

The one-dimensional momentum equation, which includes the rotor and stator

frictional sheur stresses, T, and 7, | is similarly written as,

J I d 2 -
g[pAV +R—%[pAV }+q2V—qlVi+rsl— r,_(1+2h)+——-—_0 (2)
S

The inlet swirl is given by V, , und the last term is the induced pressure gradient force. The
total incoming mass flow is m=p A w where A_ is the effective circumferential gap area
and w is the jet axial velocity. The effective inlet area seen by the flow is the real tlow area
multiplied by a flow coefficient (1 ). The first knife coefficient will typically be g, = .65.

The resulting mass influx per unit circumferential length (¢ ,) is therefore,

q,=i,p 6V, 3




A similar equation applies for the mass eftlux per unit circumferential fength, however, the
flow coefficient may be somewhat higher due to the kinetic energy carry over etfect.
To calculate the intlow (g ,) Bernoulli's equation is used with the density being

averaged between the upstream and seul gland. This yields,

|
g, =—=—=(P;-P* ) (4)

The shear forces in the gland from both rotor and stator, which are responsible for
changing the average swirl of the fluid in the gland, are calculated by using the Darcy

friction coefficients law

T\=§-/l‘sgn(\/)lvl and t,=§/l,sgn(a)R‘—V)(ZIH—[)(V—(UR\): (6)

The friction coefficients, A, and A, , are calculated using Blausius’ formula with the
relevant local Reynolds number, based on the gland hydraulic diameter and the relative
tangential velocity between the solid surface in question and the mean swirl velocity within

the gland

A, =03164% Y (7)




These equations will be used to determine the circumferential flow inside a spinning seal

that does not have perfect circularity.

B. SEAL IMPERFECTION

A labyrinth seal is nominally circular unless there are small deviations, which could
be due to machining tolerances as well as in service degradation. A very small "waviness"”
in the height of the seal knives can introduce substantial relative variations in flow area,
especially at operating conditions where seal clearances are the tightest.

Letting the circumferentially averaged gap for the first knife be denoted by 8,'. and
the local gap be 8,(8), where 6 is the angular coordinate, the resulting difference (error) is

e,. The local gap for a stationary seul can be expressed as
5,(0)=35 +¢(0) (8)

The net radial force on the rotor due to a pressure distribution around the seal gland

is

F,=-nl [ P(§)"d0 9)

From orthogonality, only the first harmonic component of P(8) will contribute to the radial
force. Since the perturbation analysis to follow is purely linear, it is sufficient to retain the
first harmonic of the seal geometric imperfection to obtain the first harmonic in pressure

perturbation. The first harmonic of the axial flow area is given by
. 17
£=— [8(6)cos(6)d8 (10)
T -

10




For convenience, the extra flow area can be concentrated at a single location and
would appear as a notch. Mathematically this can be treated as a Dirac delta funciion.
Alternatively, this impertection is equivalent to a circular seal whose cen-er is displace a
distance e from the center of rotation and land centroid. Figure | shows a typical non-
uniform sealing gap for a single knife, along with the equivalent first harmonic and notch
representations. Figure 2 shows the 2-D geometry of a single gland seal with a notch
imperfection modeled as a single notch. Figure 3 shows both the first and second knives in
a 3-D representation, with the first knife imperfection being at a different location as the
second knife imperfection. When spinning, the first knife non-dimensional gap distribution

Is given by

0,(0,1) _
o/

L+ &e "™ (1

!

Where €, is the amplitude of the first harmonic deviation from circularity. Similarly, for the

second knife the impertection is represented by

51(9.1) SN A0 3

———— = N (12)

5 :

Finally, a representation tor the seal gland not having the same center as the casing is

made. The height of the gland is given by

£:l+éenli'{')ll (13)

1




Note that &, £, and £, are in general complex so that they contain phase information on
the location of the imperfections as well as the amplitude of the impertfection. A perfect
casing will be considered here. A first harmonic deviation in the land would produce a
steady force on the rotor in the absolute frame. Since the magnitude of this force would be
small compared to the weight of the rotor, it is probably of little importance and will not be
considered in this model.

The imperfection generating the forces does not have to be due to sealing gap ar .
variations. Flow coefficient asymmetries due to tip imperfections can also generate mass
flow perturbations and hence radial forces. For the purposes of this model, only forces

generated from seal gap non-circularity will be considered.

C. SOLUTION TECHNIQUE

An approximate solution for the azimuthal pressure in the seal will be found by a
linear perturbation analysis. The zeroth order solutions for the case of a pertect seal, which
are independent of time and angle, are found from Equations (1) and (2) by noting
A1/ dr=0 and J[]/ d8 =0 . All zeroth order solutions will be denoted with []". The
steady pressure, density and flow rate are extracted from the zeroth order solution to

Equation (1)

|
P'{“"‘S.‘{P:f 0 P } (14)
167 + 1y 0y
. P
= — (15
p RT
. .u|6| 2 o2 l\
=—— P -P - (16)
9 R”T( =P




Equation (2) is used to solve for the zeroth order swirl velocity ( V'), For fixed friction
factors the resulting equation is of a quadratic form in V'. Since the friction factors are
functions of V', in that they are a function of the local Reynolds number, the following
quadratic equation in V" must be solved by iteration. The inlet swirl velocity (V) is used
as an initial guess

A

: 1 -y LY .A, .
%[AJ—A,(HM);V '+l:q +"4'(1+211)(0R\ v —[q v o+ F

R ——

(1+ 2@ R =0 (17)

5

L.

With the flow conditions for the problem of the perfect rotor obtained, a
perturbation solution for the imperfect rotor will be <ought. Since it is assumed that the
pressure and velocity inside the gland cun be represented as the zeroth order vaiues plus

small perturbations, which are functions of (r.8). they may be represented as

P=P[1+3(6.1)]

(18)
V=V{l+n(6.1)
The first harmonics of these being functions of time and angle can be expressed as
=gt (19)
n=ne " (20)

When these expressions are substituted into Equation (1) and lincarized, the continuity

equation becomes




0 D i W 2 fL—m\ilé-«— Py ,_1\;7
P:-p? pPi_p Y R Jj R |
(21
={qg'}e +{-q'}e, +{p'h"| 0 —— i ¢,
t R )|
Similarly, the linearized momentum equation, Equation (2), becomes
[q‘[ 'i‘zv', + I,D-V'n}w(&).(/l\lv':—A,l’1+3h’)(a)R‘—V'):)+ PVIRIVE N, Pk ]1]&3
1 |P7-P P -PT | 8y \ } R
[ .. pV . e e v V)
+..{q Vi (A VT =2, 0+20 V" =R ))+p //zL —a)jz[n

={q'V,}& +{-¢'V'}¢, +{p'/lz'v'[( —-i‘—]l}éz (22)

Equations (21) and (22) are a set of linear complex algebraic equations, easily

g

solved to yield the complex amplitudes of the pressure and velocity perturbations. The
Sy and &j.

pressure amplitude is given in terms of the real and imaginary parts,

respectively as
§=Extid, (23
The amplitude of the pressure perturbations is
INE Vv“éfﬁ-;}: (24)
14




and the phase relative to the refcrence impertection is

e

V: =tan"£

I:

S
)
~———

AT
=

To calculate the force on a rotor due to the non-uniform pressure distribution,
which is now represented by the amplitude of the pressure perturbation, it 1s now a simple
task of converting this pressure to torce. This magnitude is ull that is sought in this
analysis, however. it should be noted that phase information can also be extracted, which

may prove important in modal vibration analysis and balancing.




VI. MODEL PREDICTION

A. SEAL FLOW CONDITIONS

The solutions to Equations (21) and (22) depend on the zeroth order parameters.
These conditions depend on nominal seal geometry, inlet flow conditions ( P and V), and
speed of the rotor. Figure 4. which shows solutions to Equation (17) based on a wide
variation in nominal seal geemetry, inlet flow conditions (£ and V). and speed of the
rotor, provides non dimensional interrelationships among these parameters for a fixed seal
geometry typical of modern gas turbines (namely the sealing height and pitch being equal).
Figure 415 a map that indicates what flow “regime™ occurs for a given set of conditions.
For example. if the axial tlow rate through the seal is small and the difterence between the
peripheral speed of the rotor ( @R ) and the inlet swirl velocity (V) is large. then the
fractional change in swirl will be large. On the other hand. if the flow rate is large. due to a
large pressure gradient or large sealing gaps, and the wheel speed is about the same as the
inlet swirl, there will be a relatively small tractional swirl change. It E is about 1.5, there is
little tendency for the swirl to change. as would be expected. since this is the "equilibrium”

swirl value that would be obtained in the absence of an axial through tlow.

B. RADIAL FORCE PREDICTIONS

Results for particular cases will now be presented to illustrate the use of this model
in the prediction of synchronous radial rotor forces. Table 1 shows the seal geometry used.
The seal's operating conditions and geometry are tvpical for an LV-2500 gas generator.

The dominant parameters controlling the forces are:




-

1. The pressure difference across the seal knives.

2. The inlet swirl velocity.

3. The swirl change through the scal.

4. The magnitude of the seal imperfection relative to the nominal gap.
5. The angle of the second seal imperfection relative to the first.

The general scaling behavior for the radial synchronous force is approximately proportional
to the inlet total to cxit static pressure difference (P - P ) as would be expected for
incompressible flow. Some nominal deviation from this scaling occurs at higher pressure
ratios due to compressibility cftects.  Due to the lincarity of the model. the predicted forces
will scale directly with the magnitude of the imperfection used for the seal. When the
magnitude of the seal non-circularity doubles for a given nominal scal gap. the force
doubles accordingly. Similarly, tor a fixed non-uniformity, the force scales inversely with
the nominal seal gap. With the force scalings proportional to the geometry, it will be
possible to non-dimensionalize and present the force as

F Fo,

F= = (26)
APIREe, APIRC,

1. Single Knife Imperfection
The magnitude of the radial force due to an impertection in the first scaling
knife 1s shown in Figure 5. The force coefficient is shown verses rotational frequency for
several values of inlet swirl velocities. As the inlet swirl increases, the frequency at which
the minimum force occurs also increases. To obtain a better understanding of the
phenomenon taking place, Figure 6 is shown with the exact conditions as those for Figure
5. except the eftects of friction are taken out of the model. With no friction there is no

mechanism for changing the swirl of the incoming tlow and as a result the minimum torce




occurs when the rotational speed of the rotor equals the swirl speed in the gland. This
suggests that the minimum force occurs when the rotor speed is equal to the swirl speed in
the gland. Returning to Figure 5, the effects of friction are not only impacting on the swirl
speed 1 the gland, but the momentum change of the {low absorbs some of the energy from
the force that could have been imparted to the rotor. At the minimum force condition the
gland swirl speed is the same as the rotor speed, meaning there is no relative motion
between them. The friction within the gland always changes the speed of the incoming
swirl depending on the relative velocity between the inlet swirl and the rotor speed. Figure
7 shows the phase or relative position where the force acts on the rotor. The phase shift
corresponds to that frequency where the force is a minimum. The r' ase is a function of

rotor specd.

2. Duel Knife Imperfection

In this case the same conditions exist as in Table 1, however, both the tront
knife and the rear knife are capable of having a non-circularity. These non circularities are
also capable of having a pharc angle between them, which may very from 0 to 180
degrees. Fizure 8 shows the effect of the phase angle of the back knife notch relative to the
front notch as a function of rotor speed. The size of each imperfection is the same, and the
inlet swirl is maintained at 150 m/s. Results are shown for the angle between the
unperfections varving from 0 to 180 degrees. The force tends to be less when the notches
are at the same location. This is due to a local increase in pressure at the tront seal
imperfection being partiallv negated by a local decrease in pressure at the rear seal
imperfection. It should also be noted that the maximum force occurs when the rotor speed
equals the speed of the glund swirl, which 1s not consistent with the trend of having a
minimum force at this point. This case can be described as a bowed rotor. Even though the

pressure effects tend to cancel they are still significant. When the impertections are not

[ 8




lincd up the forces are larger implying the pressure effects of the tront and back

imperfections are additive.

C. MULTIPLE SEALS

Up to this point, the forces from single gland labyrinth seuls have been considered.
The analysis that has been presented can be readily extended to the case where there are
multiple sealing knives within a single labyrinth seal. The results for multi-cavity seals
show similar trends to those of a single gland seal. For a single gland labyrinth seal it has
been shown that two complex algebraic equations will predict the fluid forces within the
gland. This analysis can be easily expanded for N number of chambers within a multi-
chamber labyrinth seal. The extension of this analysis will yield 2-N equations with 2-N
unknowns. This is not treated explicitly here.

Typically, a gas turbine possesses dozens of locations in the secondary flow path
where labyrinth seals are placed. In this case there are multiple seal glands which are not
coupled along the flow path. It is important for a designer to be able to incorporate the
radial forces arising from imperfect seals at different axial locations. The question that

arises is; How does one "add” the forces? Two special cases will now be discussed.

1. In Phase
If the imperfections of all the rotor seals have the same angular location then
the forces are added. This would be the case if the rotor were slightly bowed. or if the seals
were all machined together with a slight oft-set on the lathe. The result being that all the

forces would occur at the same location. This can be expressed as

.
Fr=Y F=NF (27)
i




Where F, is the total radial tforce, F, is the force from the ith seal and N is the number of
seals. Using the conditions of Table 1 and assuming 16 stages with a uniform non-
circularity of 1, the model predicts the resulting force will be 515 N. A non-circularity of
one is very high for a modern gas turbine, but given the tight tolerances it is not
impossible. A non-circularity of .1 is quite possible under normal operating conditions and

would yield a force of 51.5 N on the rotor.

2. Random Phase
If the imperfections are random, then there is no phase correlation between
the imperfection at one location and any other location. It may appear in this case that the
forces may totally cancel but, this is analogous to the case ot a random walk. It can be
shown that the most probable magnitude of such an addition of forces with random phases

would scale with the square root of the number of seals.

F,=FWN (28)

Given the same conditions as the "bowed rotor” case, the model predicts the torce on the
rotor for a non-circularity of 1.0 will be 128 N. Similarly, it the non-circularity were .1 the
force on the rotor would be 12.8 N. It is expected that the net radial force will be

somewhere between these limits of completely in phase and totally random.




D. FLUID FORCE COMPARED TO UNBALANCE FORCE

The fluid force must be of the same order of magnitude as the force due to the
residual mass unbalance if it is to be considered important in the dynamics of the rotor.
From ISO 1940 [Ref. 6] the acceptable radial force which corresponds to a G2.5 balancing
grade is roughly 0.1 Newtons per kilogram of rotor mass at 1000 RPM and about 1.0
Newtons per kilogram at 10,000 RPM.

Since the LM-2500 engine has been used to model the geometry used, it is
appropriate to use the mass of the rotor to make comparisons. The mass of the rotor is
about 500 kilograms. The normal operating speed or the rotor is about 10.000 RPM. With
these conditions the limiting mass unbalance is 1.0 Newtons per kilogram. In the cases
previously discussed the forces predicted convert to mass unbalance forces of 1.03 - .3
Newtons per kilogram for a non-circularity of I, and 0.1 - 0.03 Newtons per kilogram for
a non-circularity of 0.1. These predicted unbalance forces are on the same order of

magnitude as the limiting mass unbalance force.

TABLE 1. STANDARD CASE CONDITIONS

DIMENSIONS ATMOSPHERICS
Ri=5m Pi = 110000 Pa
L=0lm Po = 100000 Pa
h=.0Im T=295K

5, =.0001 m
6, =.0001 m

@ = 1000 rad/sec




V. CONCLUSIONS

A lumped parameter fluid model was presented that predicts the generation of
synchronous radial forces due to a rotating imperfect labyrinth seal. The predictions may
be based on knife imperfections for the front knife, the back knife, or both with any angle
between them. The model is capable of predicting the magnitude of the resulting force and
the angular location on the rotor. The flow characteristics produced by the model are
consistent with those expected, in that, the non-dimensional tlow regimes are consistent
with physical behavior.

The forces predicted by this model are of the same order of magnitude as those
recommended for some common balancing grades. The phase predicted could also have an
impact on the modal balancing techniques currently used, since the phase of these forces is
a function of rotor speed not rotor mass. This behavior must be incorporated into the trim
balancing technique if the balancing masses are to account for the residual fluid forces.

The model predicts that a minimum force condition is always consistent with a rotor
speed that matches the gland swirl speed. This implies a design criterion calling for an inlet
swirl speed that matches rotor speed. Such a condition will reduce residual fluid forces
imparted to the rotor. Currently swirl breaks are used in engine design to reduce inlet swirl
and help reduce rotor instability. It is possible that while swirl breaks help solve the rotor
instability problem, they may add to the synchronous, forced vibration problem. This
condition is not yet manifesting itself since rotor mass is still relatively high. With
increasing advances in materials and rotor bearing design, rotor mass will decrease while
machine power density increases. At some point the fluid forces produced by component
non circularity could become more significant than the mass unbalance forces. Under such

conditions it may not be possible to balance these forces with mass corrections, meaning

t9
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proper design and the ability to predict such fluid forces based on given tolerances will be

imperative to rotor balance.
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V. RECOMMENDATIONS

Many simplifying assumptions have been made in order to reduce this highly
complex flow pattern down to a model that could make some predictions consistent with
the dominant physics taking place within the gland. The results are promising, however,
they must be verified with experimental data. It is recommended that a test facility be
constructed so that the conditions described here may be reproduced on a test platform. It is
anticipated that discrepancies will arise, however, if scaling tactors can be applied to muke
the model accurate then 1t will be possible to predict what design tolerances will produce in
the way of fluid forces on the rotor.

The phase component of the force produced was briefly touched on in this study,
yet it may prove to have a profound effect on current balancing techniques, since the phase
of this force is a function of rotor speed not rotor mass. It is recommended that this be
studied further.

On the modern gas turbine engine. labyrinth scals are not the only source of fluid
induces synchronous forces. Each rotating blade tip is structured to act as a seal in order to
reduce leakage, hence increasing component efficiencies. Any non circularity in blade tip
radius will cause non uniform radial clearances resulting in non uniform radial forces.  As
this model has shown, blade to blade variation in radial forces could affect rotor balance.
These radial forces at the blade tips should be studied for possible contributions to

synchronous force vibrations and the balancing problem.
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APPENDIX

b)

)

Figure 1. Three equvalent sealing gap representations for a non-uniform
single labyrinth knife: a) Exaggerated non-uniformity,
b) Equivalent first harmonic, ¢) Equivalent notch
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Figure 2. Two dimensional view of notch reference frame for single knife
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Figure 3. Three dimensianal view of two knife labyrinth seal
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Figure 4. Plot for nondimensional interrelationship for seal through flow
(O), shaft spinning speed (E), and swirl change (D) in the
labyrinth gland.
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