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Abstract

Passive sensing of human hand and limb motion is important for a wide range of
applications from human-computer interaction to athletic performance measurerment.
High detgree of freedom articulated mechanisms like the human hand are difficult to
track because of their large state space and complex image appearance. This article
describes a model-based hand tracking system. called DigitEyes, that can recover thie
state of a 27 DOF hand model from gray scale images at speeds of iap to 10 lIz. We
employ kinematic and geometric hand models, along with a high temporal sampling
rate, to decompose global image patterns into incremental, local motions of simple
shapes. Hand pose and joint angles are estimated from line and point features ext racted
from images of unmarked. unadorned hands, taken from one or more viewpoints. We
present some preliminary results on a 31) nimose interface aed oa i ti• itl
sensor.
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1 Introduction

Sensing of human hand and limb motion is important in applications from Iliumtart-t 'omnpuitIr
Interaction (IICI) to athletic performance ititastirenient. (iirrent commetrcially availablle
solutions are invasive. and require the user to (ion gloves [191 or wear targets [l0]. This paper
describes a noninvasive visual hand tracking systtf). called DigyIL"r,.,. \Ve havodenieinstratetd
hand tracking at speeds of up to 10 lIz using line and point ft'at tires extracted from gray
scale images of unadorned, unmarked hands.

Most previous real-time visual 3D tracking work has addressed objects with 6 or 7 spat ial
degrees of freedom (DOF)[7. 9]. We present tracking res||lts for branched kinematic chains
with as many as 27 DOF (in the case of a human hand niodtel). We show that simple. usefuul
features can be extracted from nat ural images of Ithe hlunman hand. While diflicilt. problems
still remain in tracking through occlusions an(l across comnplicated backgrounds. t hlese results
demonstrate the poteutial of vision-based htnian motion sensing.

This paper has two parts. First. we describe the 31) visual tracking prohllm for objects
with kinematic chains. Second, we show experimental results of tracking a 27 DOF hand
model using two cameras, and describe a simple 3D inouse interface using a single caniera.

2 The Articulated Mechanism Tracking Problem

Visual tracking is a serIuential estimation problem: given an image se'queti'ce. recover I he
time-varying state of the world [7. 9. 18]. Thite sohltion has thriee basic comi1ponents: ,tate
model. feattire nmeasutretnent. and stilte (,stillatlion. Tlie State' 1to, h'l ,pcit'i4iti a ttaplititi
from a state space. which charactori/es all possible spat ial coi tigtiral ions of tI lte'nechanisi,|.
to a feattire space.. For tlie hand. tihe •tate -,pace ,ttcodlts t le posqe of lthe paltin ('v•,i' ,it at ,,,
for quaternion rotation and t ranslat ion) a 'tid Ihe joint. anigles of t lie ligettrs (f ltr si ales ip'r

finger. five for the thumb). and is iuapped to a set of image lintes aii poitits hy th,4' ,tate"
model. A state estimate is calculated for each image by inverting the ttode-l to obtain ilie
state vector that best fits the ineasirmed feat ires. Feat nires for tle ti niarke.d haimi conisist -)f
finger link and tip occluding edges, which are extracted by local iilagt, oh{erators.

Articulated mechanisms are more difficult to track thanit a single rigid tbI{.j't fot •wo
reasons: their state space is larger and their appearantce is ntiore coliplicated. First. tie %O{iae
space must represent additional kinenmatic l)()lVs riot iret'tit in lie si•tghe-u.tject case'. d•ld

the resulting estimation problem is niore expensi ye 'onttat htonaly. In addition. kmnemtat ic
singularities are introduced that are riot present in tlie six )OF cam% Singularitiies arise
when a small change in a given state has no effect on the imnage features. '[he•y are ciirreintly
dealt with by stabilizing the estimat ion algorit bin. Second, high )(OF meclia nist•is prodtlice

complex image patterns aus their l)OFs are exercised. This is ilhistrated iii Fig. I. whvrt,
changes in the pose of a model ha ndl are shown to 'j'vivd dratat ic hatliges iit its silh it t-tt..
People exploit this observation in making shapes from shadows cast by t heir hands.

To reduce the romplexity of t lie hand motion, wt- employ a high iniage act'iisitiot. ate
(10-15 tlIz depending oii the model) which limits the change in the hand state. aid t lrte'fur4,
imnage feature locatlion. b)t'tweoen fraines. As a resiit. state' e'stimatioii and fleaitre t t•,a-

suirenient. are lorl. rather than global. search probletmis. It thlt starte space. w4, v'xphoit this
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Figure 1: Changes in the hand state yield significant Changes in alpparance'. as these foulr
configurations of the model hand illustrate. Views (a) and (h) differ onlyl in the pose of the
hand. as do (c) and (d); while views (a) and (c) differ only in the valhe.t of the finger joint
angles. Finger links are modeled with cylinders, and finger tips with hemisphere..

locality by linearizing the nonlinear state utodel aromn.d the previous est imate. The result ilig
linear est imation problem produces state corrections which are inte,,rated over time to yield
an estimated state trajectory. In the image. thie projection of the previous e'st imate t hlirm, gh
the state model yields coordinate frames for featmire extraction. \\e currently assuime, that
tle closlst. available feature is the c'orrect mtatc•'. which limitits omir svst,•'ni to s,'II.es withoimi
occlusions or conmplicatel Ibackgroiinds.

Previotis work oil trackimig general art icilated obijcts ii'hidhes (Is. 12. I11. ill S1..
Yamamoto and Koshikawa describe it system for huniami bod y tracking tisiig kiuiemnat inda m,
ge)metri c models. lhey give an example 14 rac'king a singh, humutaim arini awld torso tisi mi,
optical flow features. Pentland aid Horowitz [121 give an examlme of tracking thlie mom ion
of a human figuret using optical flow aid an artici•mhatd deformiald niolel. hI [(i]. l)or''r
descrihes a system for interpreting A.merican Sign Lanjutiagte from iniage se'Iiet'i('ce' of a 1146.'
hand. Dorners system mirise the full ,et of thei hand's l)OFs. andi employs a glov, wit h colored
markers to simplify feat tire extraction. A mitch earlier system by O'Tlotrke and Badler [I I)
analyzed human body motion itsing constraint propagation. In other hand-nsp'citic work.
Kang anti Ikeuichi descrilw a range sensor-Ias•d• approach to hand pose t .st iniat ion [Si. i.sed
in their Assembly Plan front Observation system.

Two recent works [1.1. 11 have addressed ipos.• etituation of articulated objects frot a
single view. I)home et. al. recover thle piost' of all initlustrial robot arnm fromt a inghi" iiiim,"
and a 'AI) model [Ii. T'heyv use a kintemat"ic representation that d,'couipls rotatiol ,ind
translation to allow for more e'tlicien.t ghl)Ial search of tihe state' sp)ac'e. !1i I I]. Shakiinamaga
derives conrtraints onl joint angles from p)oint anid liii' niieasimreiniitts anti gives aui allorit limtl
for pose recovery.

It addition to this work ott articulated object tracking, several authors have applied gt't-
eral motion technliqlies t o lihitntan Iiot ion analysis. In cont rast to Dtplfyti'' .,. thIese' alproa.hs
analyze a subset of the total hand motion. such as a •et of gestire.s [21 or tli rigid mmt iom of

m I I I I2



the palm [1]. Da,'rell and Pentland describe a s•.stem for htarnitig anld reroKniziilg dynamic
hand gestures iT [2]. Their approach avoids flh, Ieroblems of hand nmodeling. but ,loe:;n't
address :ID tra, king. in [l]. Blake et. al. d.escribe a real-time contofr tracking system thai
can follow the silthotette of a rigid hand under an atfine motion no1,14l.

None of these earlier approachis have demonost rated t racking reslts for t he full •t ale of a
complicated mechanism like the human hand. using nattiral niage feat tires.. \lthotgh there
has been a significant anmoutnt of gest iire recogtnition work on uiniarked hiand titag.'s, th.'s,.
approachs don't produce 31) motion estimates. and it would he dillictiit to apply I thein to
problems like the 3D mouse interface described in Subsect. 6.1. See [116 for several other
examples of novel user interfaces based oin a whole-hand sensm)r.

In order to apply the DigilEyt system to specilic applications. stt'h as HL( '1. two pract ical
requirements nintst he met. First. the kineinat its and geotnet ry of iht, target lhad ilirst be'
known in advance, so that a state tnodel -an be (-onstructehd. St'('oild. before lot-al hand
tracking can begin, the initial configuration of I ie, hand ntiist be known. \We a-hieve t his in
practice by requiring the subject to place their hand in a certain x'se and l'-at 1ion to init iate
tracking. A 31D mouse interface based on visual hand tracking is presented in Stibs.ct. 6. 1.

In the sections that follow, we describe the ViyitEyr.'t articulated oblject ttracking systenh
in more detail, along with the specific modeling c'hoices reqlired for hand I racking.

3 State- Model for Articulated Mechanisms

The state model encodhes all possiblh i'eclhainisit 'onligutralots mid their ctrr4'spowlinq,
imiage feature patterh-it as a two-part inapp|iig betw'een't'tt stadi' s itia l an eat ire' spaces. I[lhi tirst

part is a kitmi|atic t"odIl which capttires all pio4sshle spatial linik Ipt)ui iots. while the, eco'nod
parl is a featuire mode'l which d.escrilbes th,' int-,g' .Ill):ti"t4 4' ln" 4 each link thalwe.

3.1 Kinematic Model: Application to the Human Hand

We niodel kinematic chain, !,,,!":" t he tiger. ,i-h the l),. u'i-f.l artenthbirg (l)11) repres,-vila-
tion. which is widely used in robotics [151. In this represtiation. ,ea(ch linger link has an
attached link coordinate frame. dnd the ,ratisforniations I•etweetn hthese fraimes 1odlel thOw
kinematics. Since featttre models reqtaire gt'oi11tritc informattion inot cap!t11re', itt Ow1, kili(-
matics. the D11 description of each link is atglmlent wit Ii an addit iotial I ratisf'oru! from 1lit.
link frame to a Ahupe fraine. A .,olid tioldel intf lit' shapet fratie ge•e'rates feat tire.s Ihro'igl
projection into the image.

We model the hand as a collertion of !6 rigid bolies:1 individual fingt'r litiks (called
phalanges) for each of the five digits, andt a paln. Froi ti a kint'tttaic viewpotil ttt. t hand
consists of nmulti-Ibranched kinem'ati" chains attaclh'd it) a six I )()F ast'. \\e riltake several
simplifying astlimpltio|s ill mf1odeling flit- hand kiniematics. First. we assiime that each of'
the four fingers of the hand are planar tnechanistits with four degrees of freedom ()DO").
The abduction DO| moves the plane of the lintiger relative ito he paliti. while fli- retmaini tig
3 ( DOF determine the finger's coonligitration within lthe platn'. Fig. 2 ilhtistratts fl1i' planar
linger model. Each linger has all urnt/tt'lr poutl. which is I lhe posit iol of it.s base JotIit' tentlr
in the frame' of thte palm. which is assittnm'd to b)e, rigid. TIhe' biast- jonint is I lit, ote far Ithest

S... . .. . --.- -- ,m lil im •--•mm lmmm m N ! • mm
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(kinematically) from the finger tip. We use a fonr parameter quaternion represent at ion ofI lie
palm pose. which eliminates rotational singularities at the cost of a reduindanit parameter.
The total hand pose is described by a '28 dimensional state vector.

TheFgrD shape of the hand is letermined by thre shape of its links and palm. These shapes

can be given by solid models, or a class of deforniable mode'ls as in [121. Shape model." are

described with respect to the shape frame. which is positioned relative to the link coordinate

frame. In general. the DII transform between two links is series of four trazsforins

T,' = Rot ., Trans ..g. Trans,,,. IR ..... . I I)

In our framework. the shape frame is located after the lirst I ransforni. and o t Ihe kineuiat 1,'

to shape frame transform is just. Hot .,.

The thumb is the most "Ilicult digit it) o, heI. due to its great dexterity and intritate

kinematics. We currently employ the t hntb riodel uised in Rlijpkeina and (;irardrl grasp

modeling system [I:13 (see Fig. 2). They were able to obtain realistic anifrtations of human

grasps using a five DOF model. The Di1 parameters for the first authlor s right hand. used

in the experiments. can he found in Table i.
Real fingers deviate from our modeling assumptions in three ways. First. mtost lingers

deviate slightly from planarity. This deviation could be modeled wit h additional kineimatiC

transforms. but we have found the planar approximation to bo adeqNuate in practice. Second.

the last two joints of the finger, counting from the palu outwards, are driven by the sain.
tendon and are not capable of independent actitation. It is simpler t o itudel th,, I I )( ) F
explicitly, however, than to model the comuplicated antgiular relationship ,ltw,,n tle two

joints. The third and most significantr modeling error is c'hange in 'he anchlor points dtrinlm

motion. We have modeled the palm as a rigid body. butt in reality it can flex. In grippintg
a baseball, for example, the palm will conform to its surface. causing the anchor pouints toI

deviate from their rest position by tens of millimeters. Fortuinaitely. for fret, mnot ••s of t 1.

hand in space. the deviation seems to be small eunimgh to he thlerated by our svstermi.
The modeling framework we employ is general. To track an arbitrarv articutlated stirc-

ture. one simply needs its DH parameters and a set of shape modhels hat dhesc'ribe' its visual



Frame (eO etry i (1 it (I shape I' 1i1 11111) N.eXt
o0 Pahnt 0.1) 0.0 .0) 0.1) x 56l.0. y S•h.). z 15.0) I S 15 22 2'9

I T/2 0.0 "3S.) -:1/2 2

=,0.0 -31.0 0.) :,//2 3
Sq- 0.0 01.0 I) /2 I
I Filiter I Link ) q, 0.0 15.0 lI.) IHad 10.0 _ _ _

5 Finger I Link I q.. 0.0 20.0 I). L) H4ad I 10.0) t_

6 Finger I Link 2 qlo 0.)0 21.0) 0.0 Had 9.1)

7 Finger I Tip) 0.0 0.0 0.0 0.0 rad 9.0

29.) -,r/2 13.) -:1.0 -- /2 .101 1
30 - Tr 38A~) 0).0) 0 .0l:

:if q-1:1 0.01 0.01 -/ 1i)

:-2 Thumb Link 0 q., 1 0.0 16. 0 --.'/2 Ha i Ii. :1:1
33 qzs 0. 0 ). 0 :/2 :11

T1 1Fhumb1 Link I q.. .4) :l.l1.0 l.o Had l1.1)! :1
:15 hTlmitl Link 2 q;, I.I) 25.0 1). (Had 10.) i,
36 "lh t Tip F). ).) . ))Had S.11

"Table 1: Kinematic" and shal. iparantilers for tihe first linger antI t litunh oft fli, tirlt ai hr',

right hand. which are ised l in lit- experiments. State varialles are ,henoted q,. whhere q,,-qt

cotttflitt hI liiatertion for pailt rot atlion and ql-q,, coi'idii palm rraislaili,., lI he "N,.\I"

field gives thew n mttber of flit, Inext (raitle i f lite kiienaltl, diall. Tilli ,iiher tit,, Ilil•a,"" .1i11

similar to fhlit first.

i tappearance. \Vithin the iibplrolvieni oii hiif l ibatkiiih. thi l o ,lws itN t) develth p a mil. .,I'
hland mlodlels who,.". I)()1: ifr. lilihor,,l III .pt-,.ili," .11,Idii- llm•l.

3.2 Feature Model: Description of Hand inages

Thei outpit of the hand state mtod.el is• t set of Ifeat iir's C(O(sisilng of linf all Iilui S,.Erit(.,l

by thie project'ion of tihe hatid itodel Inlo Ihe. imatiige pIlaie. [',h lingetr link. riielel kv ,,
Cylinder. ,enerates a pair of lilies inl lie ita- '' ',rres liin ithiuii , i f.j ,, iis ,,,i lu,,,il iri,.K .

T'he hise'ctor of I linse lines. which coiii.iiis f lit- jrioji'' fJt lit-' c, vlhhler ce'n r.il axis. is it:',I

a.-, tIhe, link featilre. TheI link feat uire vector lt Iij ilves I lie( iurairlelliu'rs .4" the liiii4. ,'ull ,,
fa.r + kyl - p = 1). I'sing th. fl it- ral axis linei as flit link fe'It vir-' .hiinI fliteI les Ii , ,l e to iitit,

I h vie, II'lhler radtIli is r ( lie II pe t td" 1h) . ptair o" tiII ,", rlial iv'. Io I lie, ce, tr a xi.. rv ihi.i III e'll

significant itear tIe litl.n"ger tills. \\ ie' i thi cut i ic I, ile I I,',iiii',' he li ,e'iialpivt ,*rie Ifilhe- h It

inea.stIre' in pract ice. Vig. :1 shows t wo linik l'Val 'i linets extirat'.d trmi I lit- Iii.. Iwo links ,,I

a linger.
Each linger lip. modehl'd by a lh'iiuisplhere. gu,•,nirates a l)iit i f+,.l 'mi Iw prfiuij,<i it " ,I lie-

cenuter into thle ittage. I'lie finger fill fevafuirv wt-tor 1.1-yj gie Ow i e' 1 Imh p ili,.i, II iii iiii.i,,

c(oordinates. axs iluistrati'd in Fig. :1. llh. tottal h1llil4 l d , p'Iaranule is ,h,'Msri,.il IY a I .1: -,- 2- I-
dimensional v'ct'or. llaiule tip h' l'ink aiimd l ip I'eattiries. wher' ,it ad,,I ,re' lvhi tiiier of

l I I .
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Figure 3: Features used in hand tracking are ill.istrated for finger links I and 2. and .lie tip.

Each infinite line feature is the projection of tilt- finger link central axis.

finger links and tips. respectively, in the modei.
Other feature choices for hand tracking are possil)le. but the occlusion contours are tht'

most powerful cue. Hand albedo tends to be uniform. making it difficult to use corrvlation
features. Shading is potentially valuable. but the complicated ilhiinance and self-shac luwing
of the hand make it difficult to use.

4 Feature Measurement: Detection of Finger Links
and Tips

Local image-l)asefl trackers are tised to ritastre hadl e? t'cd thires. lhe• , track-ers a:,t ulihv pro-
jctito s of tile Spatial hand 4e'oritt-Irv tinto Ilie' I uage, p tlane. and etrv s erxe' te lecallt,' '11td

si mtplify feature extraction.. A linger link Ira% ker. d{rawn .a-.a it "-"I hape . i..' delpijet ,l ,t ,.g
with its tneasired line' fealtire ril I gi,. I. rIle i it-m of t , . "'!'- is Ilt- proiie'tion ()f tIlie e lit le'r

center axis into I le' illage. I[l ' illlage' '.aniphii 1k rate' .iisle rc,' t hal I lihe It ln '. (Val llr oc h all tat

is near the projecte'd tracker.
Once the link tracker has belvn isit ioln'd. line feattires art, extracte'd lv samplim thlie'

image in slices perpendicular to lilte central axis. For each slice. t lie olerjvati, ye' lie II)
image profile is comnputed. Peaks in t lilt derivative witith nli correct sign corre.spio nd t thte

intersection of thet slive with t lilt linger silliohett'. Thtw extracted Itte'ansItv prolile' and peak
locations for a single slice are illlistrated in Fig. .5. Linte litting to each set 4)f Iwo or more'
detected intersections gives a mf'easetretti .tc of t lie- )roj'ctlefl link axis. If gily .lilt' silhole 't 14.
line is detected for a given link. the cvylinder radius e;tat lx used to extrap.late tIli' axis lint.

location. 'trrent lv. Ilie leh •gth I f tl..' lice's ('se'arch wiidlow) is lixed hev hau .aintd , r 1ip
ip.)itions are rteeasuired throitgh a ituuillar prceetire'.

U'sing local t racke'rs and 'aei plillt, along lul t e i i I eII t ag ,' rt.iht'e .l t lie' pixe ,l l e'•.'1.V-iOWtg

rf'ejllire-mlents of featilre ineasi l'lt'ltt . pe'lliln t itg l'ast I racking,-.

! I I I | t I I



5 State Estimation for Articulated Mechanisms

State est intat ionl proceet Is by ,it titking, iIncr('tilelt I It I -e I;, -- rrec4 Iit 4til I ,'l wevii It., imo-, I. )tt 1

cle oft lie estimiationtil gioritIl hin got- as olulim~ s: HL w citrr.'t %I e41%114' * 04. 1~i,i IIi'vi It I' i'lot .. I

featture locat ions in tilt-' next fraine and )4u-it lui (e'Vat iro rat kt-r% . Al4'r 1"II.10, .14 flilI-If '.I

aili feature' ext ract )ion. inie'aiire'1 atid4 jredlicte'ul f''an ire* vabielt are' -m114ilpair tooj11,11 .1

dtifferenlce b~etween't inveastirede and~e ;redit' !. -%.t 14s is mode4'4'le b4~.% -I ''.iitiai l \4-i to. and14 Ill..

state correctioni is ob~tainedI by txiiii ts IllaylitIII nIe' ,I Iit1dr4" 11 L\II I u I A ,iiidt - II,4 . 11 !L

rate allows us to linearize' the tionliie' iappinK fr~imi sltte' it) featirv lir witi .I4, i' .42 )perm.

ing point. which is rt'coinptitel litt each frlenle'. Ili oht(a -11 4I litl4'r le'ast p2itt,4 ore iplA ill II

algorithmi in detail.

5.1 Residual Model: Link and Tip Image Alignment

Thle tip residuial m~e'asulres Ilthe Enditlui-an Iijiý'Iijjc )I)ib' 111 ii j laiE' wo14 1 W4'4 'di tII44I1 14IC .4114

tnea.surel (to ) i p I )ost tioI Is. I hel r4'51411111 for t li' tilt fitII) 1 ,'I11'I .1 \4.4 t4i1 Ill I IllIII.- 4

plIant. ite-liiiel I )

where c, is t he' projeclt ion4 theI II tijI 44'lefrit the4 tilnl' i va41' .1 binluliff it I 40) bio' 1 .11

'l'he l~ink residtial Iits cale.Iar I hai l 4l~I l i' .I II' N11~'li14011 '01 th lj i:tlq i ct l I44 \ l 'lllfI

froin t ilt- meiastire"I f4'ali lin e i~ . It is 111i rall'4l Im- .i .'ii.l'll,0 4 'I h In t ink tin 1- 1,- 1 111

rs'si4IInaI alt a jilllt .1IlitzII Iihe ;IXIs '.44111.II'11. I".'1-pt-Ild4'1141i l,1 411'1 '4110 c4I) I hei 1'..11 l '1I I'l \k.

ieirtt-)rlmate' I hie' otit gI4traph~ic 41111141a i114441 til to114 I li- e' I4'ia I .I la 414.1 li.1 I4~~I 0\ -411 1It.!/lit

Mid14 writ inig

1,(q) = m'p,lq)- /I
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Tracker

Figure 4: Image trackers, detected features, and residuals for a link and a tip are shown
using the image from Fig. 3. Slashed lines denote the link residual error between the T-
shaped tracker and its extracted line measurement. Similarly, the tip tracker (carat shapeI
is connected to its point feature (cross) by a residual vector.

trigonometric terms in the forward kinematic model. The other source of nonlinearity.
inverse depth coefficients in the perspective camera model, is absent in our orthographic
formulation.

Let R(qc) be the residual vector for image J. The GN state update equation is given by

q., = q,- [J•JJ + Sl"'JRJ ,3)

where J, is the .Jacobian matrix for the residual RP, both of which are evaluated at q%. S
is a constant diagonal conditioning matrix used to stabilize the least squares solit ion. J,
is formed from the link and tip residual .lacobians. The sarie basic approach was used Ih
Lowe in his rigid body tracking system (91f.

Other tracking work has emplohved Kalman Filtering to incorporate lyIIa ic cnlistnralint,
into state estitiiation [l. 7. 17. 51. The 1ipdxlate ruld in (5) can be viewed as Ihe limit li, case
of this filter, in which t le estimate is a function of the measurements alone. T'he complicated
(lynamics of the hand and its ability to acceierate rapi(Uly weaken the effectiveness of dynamic
constraints (compared. for example. to satellite tracking problems). Time smoot hing may
be useful in some al)plications. but the kinematic hand niodel provides a much stronger
constraint oni feature locations and notential matchs.

In the remainder of this sectiot.. we derive the link and tip .Jacobians and discuss their
computation. "T'o calculate thle link .Jacobian we differentiate (3) with respect t t lie state('
vector, obtaining

01.(q) = m 1Op,(q)
Oq dq

'rle al)ovt: gradient vector for link i is one row o," the total .Jacobliaii rnal rx. (0;,mit rically.
it is formed by projecting t he I-kint mvltc .]cobhn o•'r points on the link. )p,(q)/dq. il lWe
direction of the feature eldg, normal. Similarly. I he tip .Jacol)ian is obtained as

Ov,(q) O)p,(q) i7)
o~q 0q
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Figure 5: A single link tracker is shown along with its detected boundary points. One slice
through the finger image of a finger is also depicted. Peaks in the derivative give the edge
locations.

The kinematic Jacobians in (6) and (7) are composed of terms of the form Op,/Oa, which
arise frequently in robot control. As a result, these Jacobian entries can be obtained directly
from the model kinematics by means of some standard formulas (see [15], Chapter 5). There
are three types of Jacobians. corresponding to joint rotation, spatial translation, and spatial
rotation DOFs. All points must be expressed in the frame of the camera producing the
measurements. For a revolute (rotational) DOF joint cb we have

09p, . = w. x (pi - d') (s)

where w, is the rotation axis for joint j expressed in the camera frame. and d& is the position
of the joint j frame in camera coords. There will be a similar calculation for rach camera
being used to produce measurements.

The Jacohian calculation for the paln DOFs must reflect the fact that palhn moW ion
takes place with respect to the world coordinate frame. but must e e>xpresse.d in lie caniera
frame. We obtain the translation component as

Op,S-- RW (u))

where v is the palm velocity with respect to the world frame and R, is the camera to world
rotation. Similarly, if cb is a component of the quaternion specifying palm rolation. we
obtain

S= [Rw'J,ulj x pi , (10)

where J., is a .Jacobian mapping quaternion velocity to angular velocity, and [.1, denotes the
j th column of a matrix.

The details of the derivation are cuontaihed in Appenidix A.

5.3 Tracking with Multiple Cameras

The tracking framework presented above generalizes easily to more than one camera. When
multiple cameras are used, the residual vectors from each camera are conicatenated to form

I)



a single global residual vector. This formulation can exploit partial observations. If a
finger link is visible in one view but not in the another due to occlusion, the single view
measurement is still incorporated into the iesidual, and therefore the estimate.

6 Experimental Results

To test the articulated tracking framework described above, we developed two hand tracking
systems based on reduced and full-state hand models, using one and two cameras. The
reduced hand model was used with a single camera to provide input to a 3D cursor interface.
The full hand model was tracked using two image sequences. In both cases we provide
recorded state trajectory estimates along with graphical output.

6.1 3D Graphical Mouse Using a Single Camera

For the first tracking experiment, we applied the DigitEyes system to a 3D mouse interface
problem. Figure 6 shows an example of a simple 3D graphical environment, consisting of
a ground plane, a 3D cursor (drawn as a pole, with the cursor at the top), and a spherical
object (for manipulation.) Shadows generate additional depth cues. The interface problem
is to provide the user with control of the cursor's three DOFs, and thereby the means to
manipulate objects in the environment. In the standard -mouse pole" solution, the 3D cursor
position is controlled by clever use of a standard 2D physical mouse. Normal mouse motion
controls the pole base position in the plane. while depressing one of the mouse buttons
switchs reference planes. causing mouse motion in one direction to control the pole (c'ursor)
height. By switching between planes. the user can place the cursor arbitrarily. ('ommanding
continuous motion with this interface is awkward. however. and( tracing an arbit rarv. siiiool h
space curve is nearly impossible.

In tile DigitEyes solution to the 3D niouise problem. the 3 input DOFs are derived fronm
a partial hand model, which consists of the first and fourth fingers of the hand. along with
the thumb. The palm is constrained to lie in the plane of the table tused in the interface, and
thus has 3 DOF. The first finger has 3 articulated DOFs. while the fourth finger ald thinmb

each have a single DOF allowing them to rotate in the plan of the table (abduct). The hand
model is illustrated in Fig. 7. A single camera oriented at approximately 45 degrees to thie
table top acquires tile images used in tracking. The palm position in the plane cont rols the
base position of the pole, while the height of the index linger above the table controls the
height of the cursor. This particular mapping lhas the important advantage of decoupling
the controled DOFs, while making it possible to operate lhem simultaneously. For example.
the user can change the pole height while leaving the base position constant. The fouurth
finger and thumb have abduction DOFs in the plane, and are utsed as "'buttons'.

Figures 8 - 10 give experimental results from a 500 frame motion sequence in which the
estimated hand state was used to drive the 3D mou|se interface (Implementation details are
given in Sec. 7.) Figures 8 and 9 show the estimated hand state for each frame in the image
sequence. Frames were acquired at 100 ms sampling intervals. The pole height and hase
position derived from the hand state by the 31) mouse interface are also depicled in Fig. ).
The motion sequence has four phases. In the first phase (frame 0 to 150). the user's linger

10



Figure 6: A sample graphical environment for a 3D mouse. The 3D cursor is at the tip of
the "mouse pole", which sits atop the ground plane (in the foreground. at the right). The
sphere is an example of an object to be manipulated. and the line drawn from the mouse to
the sphere indicates its selection for manipulation.

is raised and lowered twice, producing two peaks in the pole height. with a small variation
in the estimated pole position. Second, around frame 130 the finger is raised again and kept
elevated, while the thumb is actuated, as for a hbitton event". The actutation period is
from frame 150 to frame 200, and results in some change in the pole height. but negligible
change in pole position. Third. from 200 to :350. the pole height is held constant while t,•e
pole position is varied. Finally, from 350 to the end of the sequence all states are varied
simultaneously. Sample mouse pole positions throughout the sequence are ilhlstrated in
Fig. 10 (at the end of the report.) This is the same scent: as in Fig. 6. except that the mouse
pole height and •,osition change as a function of the estimated hand state. A\ hand image
from the middle of the sequence (frame 200) is shown in Fig. 7 along with the estimated
hand model statc.

These results demonstrate fairly good decoupling between the desired states and a useful
dynamic range of motion. The largest coupling error occurs around frame 150 when the pole
height drops as the thumb is actuated. This coupling could be compensated for by storing
a list of estimated pole heights and restoring the height to its previous value when the onst
of thumb actuation is detected. In this experiment. the mouse state is generated from the
hand state by a simple scaling and coordinate change. Aln unfortunate side-effect of scaling
is to amplify the noise in the estimator. More sophisticated schemes based on smoothing
the state prior to its use would likely improve the output quality.

This example illustrates an important advantage of hand tracking with kinematic models:
absolute 3D distances (such as finger height above a table) can be measured from a single
camera image. The ability to recover 3D spatial quantities from hand motion is one of the
advantages our system has over approachs basedi on gesture recognition.

|1
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Figure 7: The hand model used in the 3D mouse application is illustrated for frame 200 in
the motion sequence from Fig. 9. The vertical line shows the height of the tip above the
ground plane. The input hand image (frame 200) demonstrates the finger motion used in
extending the cursor height.

6.2 Whole Hand Tracking With Two Cameras

In the second tracking experiment, the DigilEyes system was used to track a full 27 DOF
hand model. using two camera image sequences. Because the hand motion must avoid
occlusions for successful tracking, the available range of travel is not large. It is sufficient.
however, to demonstrate recovery of articulated D1OFs in conjunction with palm niol ion.
Figure 11 shows sample images, trackers, and features from both cameras at three points
along a 200 frame sequence. The two cameras were set up about a fool. and a half apart
with optical centers verging near the middle of the tracking area. intersecting the table
surface at approximately 45 degrees. Fig. 12 shows the estimated model configurations
corresponding to the sample points. In the left column, the estimated model is rendered
from the viewpoint of the first camera. In the right column, it is shown from an arbitrary
viewpoint, demonstrating the 3D nature of our tracking result. A subset of the estimated
state trajectories for the motion sequence are given in Figs. 13 and 1.1.

Direct measurement of tracker accuracy is difficult due to the lack of ground truth data.
We plan to use a Polhemus sensor to measure the accuracy of the 6 DOF palm state estimate.
Obtaining ground truth measurements for joint angles is much more difficult. One possible
solution is to wear an invasive sensor, !ike the Data(love, to obtain a baseline measurement.
By fitting the DataGlove inside a larger unmarked glove, the effect of the external finger
sensors on the feature extraction can be mi-aimized.
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Fiue8: Palm rotation and finger joint angles for mouse pole hand model depicted in
Fig. 7. Joint angles for thumb and fourth finger, shown on right, are used as buttons. Note
the "button event" signal ,by the thumb motion around frame 175.
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Figure 9: Translation itates, for mnouse pole hand model are given oil tile left. The Y axis
motion is constrained to zero due to tabletop. On the right, are the mous'e pole slat(-.,
derived from the htand states throuigh scaling and a coordinate change. The s-eiience events
goes: 0- 150 finger raise/lower, 150-200 thumb actuation only, 200-:350 base translation only,
350-500 combined 31 DOF motion.
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I
7 Implementation Details

The DigitEyes system is built around a special board for real-time image processing, called
IC40. Each IC40 board contains a 680.10 C'PU'. 5 MB of dual-ported RAM. a digitizer. and
a video generator. The key feature of this board is its ability to deliver digitized flages to
processor memory at video rate with no computational overhead. This removes an important
bottleneck in most workstation-based tracking systems. Ordinary C code can be compiled
and down-loaded to the board for execution.

In the milticamera implementation. there is an W(40 hoard for each camera. The total
computation is divided into two parts: feature extraction and state estimation. Feature
extraction is done in parallel by each board, then tie extracted features are passed over the
VME bus to a Sun workstation. which combines them and solves the resulting least squares
problem to obtain a state estimate. Estimated states are passed over the Ethernet to a
Silicon Graphics Indigo 2 workstation for model rendering and display. The overall system
organization is shown in Fig. 15. Our experimental testbed for hand tracking is depicted in
Fig. 16.

The generality of our tracking framework is reflected in the software organization of the
DigitEyes system. Different trackers can be generated simply by changing the kinematic
description of the mechanism. Feature tracking code for the IC40 boards is generated au-
tomatically from the kinematic description. This makes it possible to experiment with a
variety of kinematic models, tailored to specific hand tracking applications.

8 Conclusion

We have presented a visual tracking framework for high DOF articulated inechanisins. and
its implementation in a tracking system called DigilEyts. We have demonstrated real-tiw(.
hand tracking of a 27 DOF hand model using two cameras. We will extend this i)aLic
work in two ways. First, we will modify our feature extraction process to handle occlusions
and complicated backgrounds. Second. we will analyze the observability requirements of
articulated object tracking and address the question of camera placement.
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9 Appendix A: Spatial Transform Jacobian

Given the camera and hand position in world coordinates, we outline the derivation of the
Jacobian for a point expressed in the camera frame under rotation and translation of the
palm. We start with the basic result

,= Rv + R'. , (11x

where vw give the velocity of the base frame in worhl coordinates. Eqn 9 follows immedi-
ately. Substituting the additional rela.ion

ia =- 1,4, (12)

where q is the quaternion parameterization of rotation and J, is a four by three .iacolhian
matrix, and differentiating with respect to qj yields Eqn 10.

To obtain Eqn 12. we start with the relation

iR(q) = S(,j)R(q).

and solve it for S(w), a skew symmetric matrix in the angular velocity. Tile other side is
then a matrix of linear equations in the 4,. Eqn 12 results from equating the individual
components of a with their linear representations in q.
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(a) (d)

F'igure 10: T1he mouse pole n irs)r at six posi~tions lthiring t he 010 ioti sequience of Fig. 8.
The pole is the vertical line wit~h a horizonital shadlow, and1 is the only thing moving ii the
swituence. Sample% were taken at frainfs 0, :30, 7.5, 260. :100. and :170 (chosenti .o illitst rate
the range of momion).

17



A ý 40" 'O

CamneraG0 View Camera I View

Figure 11: Three pairs of handl images from the contintimis motion ",t ijate plotted '111
Figs. 1:3 and 14. Each stereo pair wets obtained automatically (hiring tracking Lystoring
every fiftieth image set to disk. Trhe samples corresponid to frames .19. 99, and I1P9.
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Camera 0 View Bottom View

Figure 12: Estimated hand state for the image samples in Fig. II. rendered from the ('amera

0 viewpoint (left) and a viewpoint underneath the hand (right).
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Palm Rotation Palm Translation
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Figure 13: Estimated palm rotation and translation for motion seqence of entire hand.
Q,.-Q, are the quaternion components of rotation, while Tr-T: are the translation. The
sequence lasted 20 seconds.
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Figure 14: Estimated joint angles for the first finger and thumbi. The other three fingers are
similar to the first. Refer to Fig. 2 for variable definitions.
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Figure 1-5: The hardware architectitre for owr cturrent hand I mckiuug svyfem.

Figure 16: Experimental test bed for the DiyiIE~ye.- systein.


