
Best
Available

Copy

Si-K 276 413
1 .i, E i, jb1 I lii

Miodels and hit .t1rp et, tt oils: Acce.Jio•i For

Formalizing Multiple Seni antics T:,
[Extended Abstraci] U" ,: [TI

Michlae! Iarr and Steve Itozen \
-- Software Options, Inc. Ky

22 Hlilliard Street V_
Cambridge, Mass. 02138 ,,LdWty Codes

mikeýýsoi.coni
AvIdn or

December 1, 1989 Dii:t Special

Abstract " .. .

We often think of a program as having different nmeanings ill different context,,;.
When inferring types, for example, a compiler computes an upper bound on the possi-
ble types of each expression during execution. These upper bounds can be thought of
as an interpretation of the program. WVhen writing numerical software a programmer
sometimes reasons as if the program operated on mathematical real numbers but at
other times reasons about numbers with only finite precision, two rather different in-
terpretations. This paper defines formal notions of interpretation and model to provide
't counterpart to our intuitive understanding of the meanings of a p)rogram. Briefly.
aii interpretation is an assignment of labels to program terms, subject to constraints'
i l posed by a mod&. This formalization lets us reason rigorously about relationship)s
betwee(n didferenit rIwan ilgs and provides a conceptual framework for designing algo-
rithms for program analysis, transformation, and e:.ecution. We develop and(motivate
the details through the example of a model in which ail interpretation is a program%
(interprocedural) flow graph. We also briefly discuss several other models in which
interpretations are computed as part of the transformation and compilation machinery
of the E-L programming environment and language.

This work was supported in part with funds provided by the Defense Advanced Research Projects
Agency and the Naval Ocean Systems Center under contract N00014-85-C-0710 with the Office of
Naval Research.

S{ 94-06785

1 INTRODUCTION

I
1 Introduction

I How many meanings should a program have? We may be tempted to reply "one," but there
is a sense in which, as programmer and compiler work on a program, it takes on many
meanings. For example, when inferring types, the compiler is construing the program to
have a certain meaning, and when running the program under a symbolic debugger, the
programmer is working with another idea of the meaning of the program. Neither of these
meanings is the same as what we usually think of as "the" meaning of a program, the values
computed when a program is executed.

We would like to reason formally about these various meanings and about relationships
between meanings. For example, we would like to say that the "meaning" of an expression
in type analysis is an upper bound on the set of possible types of the expression during any
execution. We would also like a rigorous foundation for designing algorithms to compute the
various "meanings" we use when analyzing, transforming, and executing programs.

1.1 The Language

Our discussion requires us to apply the concepts of model and interpretation, to ai, example
language. For this we use a simplified form of Base E-L, the lambda-calculus-based interme-
diate language of the E-L System. Henceforth, "Base E-L" refers to this idealized Base E-L
and "program" and "term" refer to a Base E-L program.

Base E-L's terminals are formed from two sets, C and N, of constants and parameter
names (names for short). Examples of constants are "built-in" functions such as + and
values such as Boolean false. We write (tl t2) to denote an application of 11 to t2; t1 is
the operator and t2 is the argument in the application. A name, it, is introduced in an
abstraction, written An[t]; n may occur in any sub-term of t. We call t the body of the
abstraction. When an abstraction, An[t], is the operator at an application (tl t2), n has the

* value produced by t2.

2 Models and Interpretations

Our formalism depends on two constructs: (i) interpretations, which are, roughly speaking.
mappings from program terms to labels that represent "meaning", and (ii) models, which
give the set of labels and define relations that constrain interpretations. We want to formu-
late these constructs so that a model can embody any reasonable semantics. For example,Swe would like to be able to specify non-deterministic order of evaluation of operator and
argument at an application or normal order, instead of applicative order, semantics.

We develop the notions of model and interpretation in the context of a specific example,
an interprocedural flow-graph model; we also refer to a formal execution model that space
limitations prevent us from fully developing.

A flow graph is a representation of a program in which vertices contain computations (e.g.
instructions) and arcs represent the flow of control between computations. An interpretation
in a flow-graph model assigns a flow graph to a program. An interpretation in an executionI

2 MODELS AND INTERPRETATIONSI
model assigns sets of states to terms, and prescribes relations on pairs of sets. An execution
is then formalized as a chain of related states. Intuitively, a flow-graph interpretation is
correct with respect to an execution model if there is a path in the flow-graph interpretation
for every possible chain in the execution model.

U 2.1 Labelings

A labeling is a map from each sub-term in a term to elements which contain labels. For each
model, labels must capture the semantic contribution of a term. As a result, the definition
of the set of labels, L, varies from model to model. For flow-graph models, L is the set of all
vertices in all possible (finite) flow graphs. Thus a flow-graph labeling maps terms to pieces
of flow graphs.

We formally define a labeling as follows. Let T,, T,, Ta, and Tb be the sets of Base E-L
constant, name, application, and abstraction terms, respectively. Let

Z: T,--*LxCxL,

,, :T, --,Lx N x L,

_Ta Ta-, LxApx L, and

16 T 6 .--+LxAbxL.

Then the map I = 1, U Z, U l"a U 1 b is a labeling. If 1(t) = (1, x, l'), we call I the pre-label
and F' the post-label of t.

We define a set, Ap, of application surrogates, and a set, Ab, of abstraction surrogates
of a model. Their purpose is to distill information from the application or abstraction to
help constrain interpretations; like L, the sets Ap and Ab vary from model to model. For
example, in flow-graph models, Ap encodes the set of values that, in any possible execution,
may be the operator at the application. Flow-graph models use this information to compute
all possible flow paths when an application is performed, e.g. into any abstraction that may
act as the application's operator.

2.2 Model Relations

Some latitude in the specification of a model comes from the ability to define L, Ab, and Ap
to suit the model's particular requirements. In addition, the specification of a model relies
on the definition of certain relations on L, Ab, Ap, C, and N. We define an interpretation in
a model to be a labeling that satisfies the constraints imposed by the model's relations. In a

Sflow-graph model we want the relations to ensure that the vertices in an interpretation are
connected in a way (possibly via additional vertices not in the interpretation) that reflects
the flow of control implied by an execution model.

2.2.1 Interpretations of Constant, Name, and Abstraction Terms

A model uses the relation cnst CL x C x L to constrain the interpretation of constant
terms. Let t, be a constant term containing the constant c. For a labeling, 1, to be an
interpretation, we require that I(t,) = (1, c, I') E cnst.

U

2 MODELS AND INTERPRETATIONS 3I
For flow-graph models, cnst is defined to be the set of all triples (v, c, v') such that

* the contents of v is push c, and

e there is an arc from v to v', the out-degree of v is 1, and the in-degree of v' is 1. (When
these three conditions obtain we write v - v'.)

We can depict this as follows:I

I "° ..

Our definition of cnst constrains neither the in-degree of v, nor the out-degree and contents
of v'; in flow-graph models these attributes are constrained by relations for the enclosing
term.

The relation name C L x N x L works analogously for Base E-L name terms. Let 1" be
a name term containing the name n. For a labeling, IT, to be an interpretation, we require
that "(t,) = (1, n, I') E name. For flow-graph models, we define name to be the set of all
triples (v,n,v') such that

* the contents of v is push n, and

* V --- V'.

The following depicts the interpretation of t,.I

The relation abst C L x Ab x L constrains the interpretation of abstraction terms. Let,
t6 = An[t] be an abstraction term. For a labeling, 1, to be an interpretation we require that
1(tb) E abst. In the flow-graph model abst is defined to be the set of triples (v, b, t') such
that

"* the contents of v is push-abst Vtb, where vtb is the first vertex of the flow graph for tb,

and

"* V -4 V1.

The following depicts the flow-graph interpretation of tb.

... An[t]I
I

2 MODELS AND INTERPRETATIONS

Recall that b E Ab is an abstraction surrogate. Note that we use vt, in defining abst.
To make Vtb available to abst, in flow-graph models we define Ab to be L x N, where for
b = (vtb, n) E Ab, Vtb is the first vertex in the graph of the abstraction term tb, and n is the
parameter name of the abstraction; n is used below in defining the contents of vt1 .

We have now described how models constrain interpretations of constant, name, and
abstraction terms. We still need mechanisms to constrain interpretations of abstraction
bodies and of applications, i.e., intuitively, to specify what an abstraction body and what
an application mean.

2.2.2 Constraining Interpretations of Abstraction Bodies

The relations abst-entry g L x Ab and abst-exit C L x Ab constrain interpretations at the
left and the right sides, respectively, of abstraction bodies.

Let tb be an abstraction term. For a labeling, 1, to be an interpretation we require that
whenever 1(tb) = (1, b, 1'),

* 3(I", b) E abst-entry such that 1" is the pre-label on the body of tb, and

* 3(1"', b) E abst-exit such that 1"' is the post-label on the body of tb.

In flow-graph models, abst-entry is defined to be the set of pairs (v", (V7b, n)) such that

the contents of vtb is entry n, where n is the parameter name of t b, and

SVtb -- + V"
1

.

We call Vtb the entry vertex of t6.
In flow-graph models, abst-exit is defined to be the set of pairs (v"', (vtb, n)) such that

* v"' has contents exit.

We call v" the exit vertex of tb. The following diagram depicts the labels at the left and
right sides of an abstraction body.

I ... An[t]

2.2.3 Interpretations of Applications

In every model, the relation app-strt C L x Ap x L relates an application's pre-label to
the operator's pre-label and the relation app-fnsh C L x Ap x L relates the argument's
post-label to the application's post-label. Let ta be the application (t, t 2). For a labeling,
1, to be an interpretation, we require that whenever l(t,) = (l, a, '),

I * 3(1, a, 1i) E app-strt such that 11 is the pre-label of ti,

* the post-label of t1 is the pre-label of t2, and

1
2 MODELS AND INTERPRETATIONS 5I

* 3(1, a, l') E app-fnsh such that I is the post-label of t 2 .

3 The middle requirement is called the continuity constraint; it captures the idea that nothing
happens between terms.

Intuitively, control flows from the application's pre-label to the pre-label of the applica-
tion's operator. Therefore, for flow-graph models we define app-strt to be the set of triples
(v,a,v4) such that

I v v -+ vi, and

o v contains strt.

I The following depicts the contribution of app-strt to the interpretation of an application.

f t2).

I Finally, we must define app-fnsh to constrain the graph structure at the right-hand side
of an application. In an execution, this is the point at which the values of the operator and
argument are known, and control may flow to different sorts of vertices, depending on the
operator.

"" For primitives such as +, control flows from the argument's post-label directly to the
post-label of the application. Such primitives are called direct primitives.

"* For abstractions, control flows from the argument's post-label to the abstraction's entry
vertex and from the abstraction's exit vertex to the post-label of the application.

Recall that for flow-graph models the application surrogate, a E Ap, of an application, t.,
encodes the set of all operators that, in any execution, may be the operator at t,. With this
information we can define app-fnsh to be the set of all triples (v', a, v') such that

I whenever a contains a direct primitive there is an arc from v' to z",

o for every abstraction term, t b, that can act as the operator at t
a there is an arc from

4v to the entry vertex of tb and an arc from the exit vertex of tb to v', and

e v; has no other out-arcs.

The following depicts app-fnsh's contribution to the interpretation of an applir-tion. The
dashed arrow represents the arc required if the operator could be a direct primitive.

entry nj ... exit

I entry•n2 . exit

3 ns entry flk ... exit

(tl t2)

3 CONCLUSION 6I
3 Conclusion

U In addition to the flow-graph example presented here, the authors have implemented algo-
rithms computing interpretations in several other models as part of the E-L System. These3are

e a dynamic cross reference (DXRF) model, in which interpretations provide upper
bounds on the set of values that may be the operator and argument at an applica-
tion, as needed for the flow-graph model's application surrogates, and

* a mode model, in which interpretations perform a role similar to static type analysis.

The DXRF and flow-graph models translate programs to a form suitable for input to an
optimizing code generator based on execution statistics, and the mode model is used in the
translation from the surface language to Base E-L.

To summarize, we have presented formal notions of model and interpretation that allow
us to ascribe multiple semantics to programs. A model captures the intuitive concept of
meaning by defining a set of labels, L, and a map, called an interpretation, from terms to
labels. An interpretation must satisfy the model relations.

The formalization we developed helps us state and prove relations between models -
for example, that there is a path in a flow graph interpretation for every chain of related
states in an execution. Finally, the model formalism has led to a clean design for algorithms

I implementing the transformation and execution mechanism of the E-L System.

I
I
I
I
I

