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Abstract

List ranking and list scan are two primitive operations used in many parallel algorithms that use list. trees.
and graph data structures. But vectorizing and parallelizing list ranking is a challenge hecause it is highly
communication intensive and dynamic. In addition, the serial algorithm is very simple and has very ,,mall
constants. In order to compete a parallel algorithm must also he simple and have %mall constants- A parallel
algorithm due to Wyllie is such an algorithm, hut it is not work ethtcnt-i•, pert'rmance degrade% hor
longer and longer linked lists. In contrast. work efficient PRAM algorithms, developed to date have6 %er.
large constants. We introduce a new fully vectorized and parallelized algorithm that hoth is •oik etficient
and has small constants. However. it does not achieve Of) log n ) running rime. But we contend that ,%work
efficiency and small constants is more important. given that vector and multiprocessor machines are used
for problems that are much larger than the number ui processors and, therefore, the ( log it t time is never
achieved in practice. In particular, to the best of our knowledge our implementation of list rankingz and list
scan on the CRAY C-9{) is the fastest implementation to date. In addition, it is the first implementation of
which we are aware that outperforms fast workstations. The success of our algorithm is due to its relatively
large grain size and simplicity of the inner loops. and the success of the implementation is due to pipelining
reads and writes through vectorization to hide latency. minimizing load balancing by deriving equations for
predicting and optimizing performance. and avoiding conditional tests except when load balancing
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I Introduction

As production parallel and vector machines become faster and common place. sol'nng larger and farger

problems becomes feasible. However. larce problems that have irregular sparsity structure or are dJ namic
are often most efficiently represented and manipulated using lists, trees, and graphs. Use of such data

structures has become natural and common on sequential machine, hut have been ,hunncd in parallel

implementations. Theory indicates that use of irregular data structures can signinicantly reduce the problem

size and, therefore, can improve asymptotic performance. Many Parallel Rantom Access Machine (PRA II

algorithms for such data structures have been developed. But are these PRAM algorithins practical. Can

we perform even the most primitive operations used by PRAM algorithms efficiently" We contend that

there is hope. For example, scan (prefix sum) is such a pnmitive operation and is applied to arrays. For

each element in the array it computes the "'sum" of all the preceding elements in the array. %',here "sum" is

a binary associative operator. .Isewhere, the efficient vector parallel impleinntation of the scan primitioe

has been shown to lead to greatly improved performance of several applications that cannot he vectortzed

withexisting compilers 16. 251. However. this version ofscan can only he applied toarrays that are linearly

ordered in consecutive locations. If the data are ,iored unordered and the ordering is provided h% links, or

pointers then we need to use other approaches for scan.
[n this paper we consider a vector parallel implementation of list ranking and the •can orieraton ipphd

to linked lists. List ranking and list scan are two fundamental primitie,. that are commonly u,-ed in

solving problems on linked lists, trees, and graph data structures. Parallel algonrithm, requently use list

ranking for ordering the elements of a list. finding the Euler tour of a tree, load balancing Il 11. contention

avoidance 115. 1]. and parallel tree contraction I171, and these problems are ,ubproblems of applications

such as expression evaluation, graph 3-coinectivity. and planar graph embedding [I 8. In addition, lI,,

ranking is very interesting because it involves the kinds of problems for which it is hard to get good vector

or parallel performance. In particular, it uses an irregular data structure, is highly communication hound.

and its communication patterns are dynamic. From an algorithmic point oI", iew it is interesting because it

has features common to many problems: contention avoidance and load balancing.

List ranking finds the position of each node in the list. by counting the number of links between each

node and the head of the list. This position information can be used to reorder the nodes of the list into

an array in one parallel step. Then, for example. .can can he applied to the array .-\lternatively. scan can

be applied directly to the linked list. We call this operation list m•s, and for each node in the linked list it

computes the "sum" of the values of the all prior nodes in the list, List ranking and It,, %can are related in
that list ranking is the list scan when: plus is the operator and the values to he summed are all equal it) one.

In the comprehensive review of PRAM list ranking aleorithms by i-lalverson and Das II I3 there ,s only

one reference to implementation of list ranking. which was Wyllie", algorithm1 on the CM-2. Th,: oiil,

other parallel implementations of list rankihg of which the author is aware use a random pointer lumping

technique. Wyllie's algorithm 1231 is work inefficient since it takes (Ait log i operations on a ,, element

list, whereas a serial implemtation takes 0(0i) operations. But. because it is very simple it works well for

short lists or when we can increase the number of processors according to the linked list mi/c. On the other

hand, the random pointer jumping technique 117. 31 ,ulffers from having to take multiple trials, on a,• crýrc



Algorithm Time Work jConstants Space

Serial 0)00) 0(11) ]small 311

Wyllie (o O() log it ) small 4.
Obrs 0(T+.,f,._.•), 0(11) small 3n -+- 5m

Random Mate ()(- + log i) 0(0) large > 51

Optimal 0 1, + logo ) 1(o ) very large > 4o

Table I Compari.on of several list ranking algorithms, where n is the length of the list. It is the number ot proc•s.•ar%.
and m is a parameter of our algorithm (in < n/log it. and for the CRAY C-9011. )( 0(log :#)')).

before being able to perform a pointer jump and. therefore, results in larger constants. Other work efficient

parallel PRAM list ranking algorithms have very large constants, which has inhibited their implementation.

Table I gives a comparison of list ranking algorithms, and Figure I compare'; the running times of five list

ranking algorithms on one processor of the CRAY C-90. The Miller/Reif and Anderson/Miller algorithms

use random pointer jumping, and the Belloch/Reid-Miller algorithm is the one on which we report here.
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Figure 1: Execution times per element tor several list ranking algoriihms on one processor (t the CRAY C-9() The

times for Wyllie's algorithm and our algorithm were obtained on a dedicated machine. "Tb saw tooth shape ot the
Wyllie curve is due to the algorithm performing rlog'i - I', rounds ot pointer jumping over all the data.

We introduce a new fully vectorized and parallelized algorithm that both is work tfficient and has -.mall

constants, However. it does not achieve O( log o) running time. But we contend that work efficiency and

small constants is more important, given that vector and multiprocessor machines are used for problemrs

that are much larger than the number of processors and, therefore, the Od log i) time is never achieved in

practice. For lists shorter than 7(XX) elements Wyllie'% algorithm is faster than our%. But for lone lists our

implementation of list ranking and list scan on the CRAY C-90 is the fastest implementation to date. to the

best of our knowledge. In addition, it is the first implementation of which we are aware that outperforms

fast workstations. For example. it achieves over two ordcrs of magnitude speedup over a DECstation 5(MX)

workstation. On a single processor it also achieves a factor of four speed up over a serial list scan on the

CRAY C-90, which is ,ignificant since CRAY computer% are also very fast -scalar machines (see fallacy in

Section 7.8 of 1141). In particular, when vectorizing a serial problem that requires gather/scatter operations.

the best speedup one can expect on a single processor CRAY C-90) is about a factor of 12-I 8; if the veclorized

algorithm does twice as much work as the serial code (both a reduction and contraction phase as our does)

then the best you can expect is a 6-9 fold speedup on one processor. We obtain an addition 6.7 speedup on



8 processors. In addition, our algorithm uses much less space than other algorithm%, including \,' Ilie's.

1.1 Vector Multiprocessors as PRAMs

We chose to implement list ranking oi a vector multiprocessor because these machines. such as the CRA\Y

family of'computers, closely approximate the abstract EREW PRAM machine. see Figure 2. Thee machiri',

use a shared memory model, have fine-grain access to memory. have extremely high global communication

bandwidth, and can hide functional and memory latencies through \,ectorization. The most important

feature that distinguishes these machines from MMP machines is the pipclined memory access. Processors

communicate to memory via a multistage butterfly-like interconnection network. As long as there are no

memory bank conflicts, the network can service one memory request per clock cycle. Thus,. the PRAM

model assumption that often is cited as unrealistic, namely memory, access takes one unit time, holds on

vector multiprocessors as long as we can avoid mzmory bank conflicts and hide latencies.

s,- "" -+'ý:v ""-

Phys Pmoete~

Figure 2: Vector multiprocessors as viewed as a PRAM

Zagha proposes several vector multiprocessing programming techniques for avoiding bank conflicts

and hiding latencies 1241. To address bank conflicts he proposes a data distrihution technique to manage

explicitly the memory system. To address memory and funitional units latencies, he proposes I-Irmal

processing, which is based on Valiant's Bulk Synchronous Processor (BSP) model 121 I. This unityine

model requires that algorithms are designed with sufficient parallel .slwkne..vv. so that programs are written

for rather more virtual prnces.sors than physical processors. For vector multiprocessors, this slack allows

for vectorization so that computations and communication can be pipelined to hide latencies.

In "agha's programming model we implement PRAM algorithms by treating a vector processor as a

SIMD (distributed memory) multiprocessor, where each element in the vector acts as a processor of the

SIMD machine, see Figure 2. Because processors in data parallel algorithms do not use the re'ults of another

processor in the same time step. there are no recurrences to worry about in the corresponding vectorized

implementation. Extending the vectorized algorithm to vector multiprocessors is straightforward it the

machine is SIMD; simply treat the vector multiprocessor as a I , /P SIMD multiprocessor, where I is, the

length of the vector-registers and i, is the number of processors, and apply the vectort7ed algorithm. If the

machine is MIMD. it can be treated the same way except that, for efficiency, the number synchronization

points should be minimized.
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The paper is organized as follows. In Section 2 we discuss the five list ranking algorithms we imple-

mented. Section 3 descnbes our implementation on the CRAY C-90 and gives timing equations for each

part of the implementation. In Section 4 we analyze the expected performance, decnbe how we tuned the

parameters. and give our overall performance results. In Section 5 we describe the multiprocessor version

of the algorithm and its performance and review other PRAM list ranking algoa'ithms. Finally, in Section 0

we discuss our conclusions and future directions.

2 The List Ranking and List Scan Algorithms

List ranking computes the distance each node is from the head of the linked list. List scan computes the

"sum" of the values on the links in a linked list from the head of the linked list to each node in the linked

list, where "sum" is any binary associative operator. Since, list ranking is a list scan with all weights equal

to one, we discuss list scan only. For simplicity we use integer addition as the "Sum" operator. We represent

the linked list as a pair of arrays. The value array contains the value of each node of the list and the link

array contains the index of the next node in the list. The tail of the list is a self-loop. ie. the link at the tail

is the index of the tail node.

2,1 The serial algorithm

The serial list scan simply walks down the list saving the accumulated values of the previous nodes until it

reacfles the end ot toe ist. On ihe Ca% C-90 it tak,;., 44 clock cycle,! or I SO n,•c to traverse each element

of the list, see Figure I. and can be coded as follows. Let the array Ijiext represent the linked list where

each element conta.as the index of the next node in the list. The tail of the list is indicated by a self-loop,

ie. if tail is the index of the last element in the list then lxumrtail] = tail

SerialLisLStan( L.m. inext. l_.'alue. head)

I * -sum - list scan results

• Inext - linked list terminated with a self loop

I lvalue - values of the nodes
* head - head of linked list

*/

.vum = ZERO;

next = head;

do I
Iyum[nextj = s.um;

sum += ILvaluefnext];

next = Inext~next];L while (next $ Ij.vexnexet );

4



2.2 %Nyilies algorithm

The first parallel algorithm for list ranking is due to Wl~he [231 The algorithm uses a technique common

to all parallel list ranking algorithm,,, "pointer jumping' or ",shortcuttint" A proctessor is asstociated •%ith

each node of the list. Each processor, in parallel, miodifle, its next pointer LIJzeti to point to it% successor*,

successor. For each round of pointer jumping the number of list elements that l1.att jumps o, er can douhle

from the previous iteration. The actual number of elements i! lmps o, er is retained in I wahs. arri'

This array is computed by adding an element's value with its successor',, ,alue during each pointer Iuifp

After flog, nil rounds of pointer jumping all elements point to the tail ot ine list and ,/dCIII contains

the distance each node if from the tail of the list. The data parallel .ersion of the inner loop oft W% lhe's

algorithm is as follows:

Wyllie -Loop( -next. I-value. it

/ * ILnext - next link

I-value - sum of values of list between self and next
*/

for' =t <), n~ 14-9+)

next =

I...ieit/ij = Lvali~t'( f + if!IU 1

Ltxt =l..next~nexta

For each statement we must ensure that all the data are read hefor, they are .. rttien hack to the same

array. We accomplish this in our vector multiprocessor version by writing to a different array from which

we are reading. Then, on each call to the inner ioop we :,w:tch back ind forth between arrays we read from

and arrays we write to. The simplicity of this algorithm makes it quite attractive. Howeser. there are two

main problems with Wyllie's algorithm:

e On each iteration the number of nodes of the list that concurrently read th,: values at the tail douhle%

At the final iteration anywhere from half the nodKJe, to all but one of the nodes ina. concurrcntly, rcad

the values at the tail. On CRAY X-MP/CRVY Y-MP computer% concurrent read*, are scriai/ed

* The algorithm is not work efficient and does log, times as much work as the serial algorithm.

Figure 3 shows the run times of Wyllie's algorithrr on I to 8 processor% of'the CRvY C-9(t. The saw tooth

shape of the curves is due to the addition of another round of pointer jumping whenever foh .i - I I chance

value. The negative slope between a pair of teeth is due to the amortization of the additive constant term,,

over larger size listv A~s you can %ee from the figue. Wyllie's algorithm quickly degrades. in performance

as the list lengths grow. However. it does scale linearly with the number of processors.
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FIgure 3: The running time per element to perform Wvllie',, list ranking algorithm on I. 2. 4. and X pricessor son

the CRAY C-90. Whenever flogii - I1 increases by one there t•s a corresponding jump in the per element runninv time
of the algorithm. where i is the list length. The implementation on one proce.sor has no overhead due to multirasking
and. hence, performs better on small lists than the multiprocessor version

2.3 Random mate

One of the simplest work efficient parallel algorithms was devised by Miller and Reif 117. 201 It used

randomization to break contention so that processors at neighboring nodes do not attempt to dereference

their successor pointer- simultaneously. Once a processor "splices out" a successor node, the processor for

the successor node becomes idle. At each iteration only 1 of the remaining node% are spliced out a%erae

After ()( log it) rounds all the nodes either point to the tail of the list or have been spliced out. Finally, there

is a reconstruction phase. in which spliced out nodes are reintroduced in reverse order frorn w hich the%. mtere

removed. We implemented this algorithm on a single processor ol the CRAY C-'). Our i.ersion removes

idle processors by packing the vectors on every round in order to make the implementation work elthcient.

Anderson and Miller 13. 201 modified the above algorithm so that it avoids load bahlncing (packin-

Processors are assigned the work of log n nodes. At each round a processor attempts to remove one node in

its queue of nodes. However. in order to splice out its own node, the processor needs revere link pointer-,

so that it can get the previous node to jump over the processor'% node. If a processor is ohle to splice

out its node in one round, in the next round it attempts to )splice out the next node in its queue. In this

simple way processor, remain busy without load balancing heing required. Alter about 4 logi rounds about

0(i /log it) nodes are left. at which point they can be compressed in memory and Wyllie•, algorithm can hie

applied. Finally, there is reconstruction phase to reintroduce spliced out nodes. Again only a 'mall constant

proportion (> I/4) of the processors remove nodes on each round. In our implementation of this algorithnm

we did not apply Wyllie's algorithm. We simply ,topp,-d processors from attempting to splice out nodes,

once they had completed their block of nodes.

Both implementations of the random mate approach are an order of magnitude slower than our algorithin

on one processor, and should be similarly slower on multiple processors, since all the algorithms scale almost

linearly on multiple processors, see Figure I. They ar: also slower than the serial implementation on one

processor. Although we did not spend much effon tuning these implementations. we doubt that ve ce,,J

get more than a factor of two improvement in their running time.
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2.4 Our parallel algorithm

Ntfanv other work efticient and optimal PRAM1, algorithm have been developed I-or lisýt rinkini: %ost use

%.r-itruct-rank-expand phases and address two consideration,;. One is how to find elements on w hic:h tow~ork

to keep all the processors busy and the second is how to avoid contention so that two processors are not

working on neighboring list ek~ments 121. We deal with contention by randomly hreakin!- up the linked 11st

of length itinto tio sublists that can be processed independently and in parallel. The Ii~t ranking procceds

in three phases:

Phase I Randomly divide the list in tit sublists. Reduce each sublist to a single node with 'tilue equal ito

the "sum" of the values in the sublist. Now the list is of length tit.

Phase 2 Find the list scan of the reduced list found in Phase 1. These values are the scan v alues for the

heads of the sublists.

Phase 3 Expand the nodes in (he reduced list hack into the original linked list hilling in the sCan '.alues

along the list.

Phase I and 3 can be done in parallel. The list scan in Phase 2 can be done rccursi~c1\ for larx,.

tit, using Wyllie's pointer jumping technique 1231 for imoderate size tot, or serially lor smiall if, For

small tot serial list rankine works best because it asoids the overhead associated with muftmproccesing and

filling vector pipe-, (see Figure I). Wyllie's algorit in perform,, best on moderate si/e lists where it can

take advantage of vectorization and inultiprocceýsing and where FJ1 it is smnall. For laree if, we! use ouir

algorithm recur-sively, until the number of sublists becomes, mall enouc2h to use eitlwr ihe serial or Vv~llmes

algorithm. We determined empirically the size tit should he when wve switct, between aleorithmsý.

There are two problems with our algorithm that make it appear poor theoretically:ý

"* The sublists lengths vary a great deal. from approximately In ( b)to - Ini tito on a~eraue. w.here

In is log base f. Thus, the processor%* work is unbalanced.

"* Since the expected length of the longest sublist is approximnately Int tit the parallel ninning, tume

can be no better than that. ie 0( Ini tit f. fit -it / log, it. In contrast, there are many parallel

al-orithms that have a 0( l og, ,it runnin,. time.

We ameliorate both problems by requiring tit' to be much greater than the number of processors. p In

this way a processor is responsible for several lists, namcv it# /p. Periodically we perform load balancing.

to regroup the lists, which Addresses the first problem. Ifi t it In it, then the runlning time is domlinated

by f/,tp and the length of the longest sublist is riot a problem.

The primary advantage to our algorithm is that it is both work efficient and has \cry smiall constants

Overall the algorithm is fully vector parallel, and scales almost linearly with the number oit pr(m'essors~

Figure 4 shows the speedup relative to one processor for various size lists.

In the following description wve assume that there is one virtual processor for every sublist~ Phyvsical

processors are assigned to do the work of an equal number oft virtual proxcessors Becaus tc he aleorit ibm is

7
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FIgure 4: Relative speedups of our list ranking algorithm on the CRAY C-90

data parallel the physical processor performs one step on each virtual procesor Ilefore proceeding to the
next step. The algorithm proceeds in three stages.

Input: The head of a linked list. the linked list. and its associated list %alues. It a%,,umes, that the linked

list is in contiguous memory and terminates with a ,elf loop.

Output: Th.e list scan of the linked list.

Initialization: Each processor picks a random position in the linked list to he the tail of a suHist It
saves the position of the tail and the successor link, and sets the tail to a %elf loop. It then -repares to

find the list scan of the following sublist (which another processor crn.ated). It initializes its ,uhlist head as

the successor link saved above and the list sum to :ern, where :ern is the identity of the list sum operator.

Figure 5 shows the linked list that is the input of the list scan algorithm and the result of the initialization

step.

One processor is responsible for finding the list scan of the first ,,uhlist whose head is the head (it the

whole list. This processor is also responsible for creating the (unknown) final suhlist. But %rince the linai

sublist already is terminated with a self loop it d(es nothing to create it. We do not let a proce.sor ch•o•oe

the tail of the whole list as its random position bec;iuse it is convenient not to worry ahout a iero length Ist

in Phase 2.

It is possible that two processors will pick the same random position at which to break the list. Then

the two processors will duplicate each other*% actions and cause contmntion. We can either u%,e a parallel

:agorithm (hat guarantees to find no duplicate random numbers, such as in 161, or we can remove duplic•.(t

random numbers by having a competition among the processors. Each processo, writes its index mt its

random location and then after everyone has written their index it reads hack the index at that location. If

the index is not its own it knows that it is a duplicate processor and can drop out of the computation. The

first approach uses mod arithmetic, which is relatively slow on the CRAY and the second approach ma,

require a pack, which to do efficiently is quite complicated. %,ee 1.1.
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Figure 5: At the top of the figure is the initial link list with its values at each node. At the hittom ot the figure i,
the results of initialization. The linked list is divided into 3 sublists. each terminating with a sit lhopý Each processor.
110. Pit . saves two values: its chosen random position. R?, and the succe•s.or oft he random position in the oricinal
linked list. which becomes the head of its ,ublist. HI. Each processor also initiali•es its subhist sum -, to :"em. thie
identity of the scan operator.

Phase I: Each virtual processor traverses its sublist adding the values along the links to the surn. When

a virtual processor reaches the tail of its sublist it "'drops out- of the computation. Even, ,. = I.2. .. 1

steps a load balancing step is done, reassigning virtual processors that haxe not completed their ,thblit to

the physical processors. Each time they load balance they increment i to get a new , Because (t the fairly

predictable sizes of the sublists we can determine what are reasonable values of ,. (Nee Section 4). Figur, 6

shows the status after every processor has dropped out and has found the sum of its sublist. Next the virtual

processor% create the reduced list of sublists sums.

R H 'r s H T s R It T S

prlic: PO 0 P 0TS 1

K E Y P * nu m I

Figure 6: The figure show the results of findine the sum of each sublit. Each processor hla, tra-er,,cd it ,.Uhisi
until it has reached the sublisi tail. 1. and has accumulated the ".uin" l the alues fli•,, the N,,hit.

At this point each virtual processor has reached the tail of its sublist. It also has the tail of the previous

sublist. which is the random position it chose during initialization. By writing the procesor", index into the



tail of the previous sublist and then reading the index at the tail of its own sublist, the processor determines

the index of its successor's sublist. From this index the processor creates a link from i:s sublist ,um ') its

successor sublist sum to form a new shorter linked list, see Figure 7.

RH T S 2R H T s

PO : 1P 3 43

KY prnc: tail sum
KEY

It:

Figum 7: The figure shows finding the reduced list of sublist sums during Phase I. Each processor writes its index
at its random position in the linked list. R. and reads the index written at the tail of its sublitm. V. This index is the
index of the processor with the successor sublist. The tail sublist finds no index at the tail oif its ,ubhlit.

For example, consider the tail of the first sublist in Figure 7. The random position for Processor 2 is

the tail of the first sublist. Processor 2 writes 2 at that tail, ie the tail of the sublist previous to Proccssor 2%,

sublist. Then Processor (0 reads the index at the tail of its own .suhlisi. namely the first ,ublit. The value is

2. the processor index of its successor sublist. Thus, Processor 0 links its sublist to the ,uhlist at Proces,,or2.I
The tail of the new linked list corresponds to the tail sublist. A processor can determine whether its

sublist is the tail sublist because no processor wrote its index in the tail. The processor for the tail sublist

can now set the tail of the new reduced linked list to a self loop. The values of each node of the reduced

sublist is the sublist sums found in Phase I.

Phase 2: Depending on the size of this new linked list the algorithm finds the %can of the reduced

linked list recursively, using Wyllie's algorithm, or serially. Figure 8 shows the result of this phase oi the

algorithm.

PO !tH T s P2 It If T sr It H T S.

KEY nic
KEY Il pr.w I. rad.a h. a., tail I -

FigurefR: The list scan on the reduced list otf uhlist sums,

Phase 3: Phase 3 starts with the scan value found in Phase 2 as the scan value for the head of its ,uhlist.

see Figure 9. Each virtual processor finds the scan of the remaining nodes in its sublist in the same manner

as in Phase I. It traverses its sublist setting the scan of each node to the sum of the scan and value of the

ID)
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previous node. Again, after q,. i = 1. 2.3 .. 1.1 steps load balancing is done.

R H T S PR H TS R N T s

KEY

list: - - nx

Figure 9: The scan of the reduced list found in Phase 2 are the scan values for the heads ot the sublists.

Restoraton: Finally each virtual processor reconnects the sublists to form the original linked list. using

the values saved during initialization. That is, each processor except Processor () replaces the self loop at its

random position with fink to its sublist head. Figure 10 shows the final scan values and the restored linked

list that is the result of the completed algorithm.

-R "T S R HT s 11I R T sP2 Pt0

proc: e 0 7

I•:
NM:-.d--9

KEY"

liM:

Figure 10. The resulting scan values of the linked list found in Phase 3. Tle links at the tail% ot the sublists. H?. are
replaced by links to the sublist heads. I. to remstore the linked list to its orignal form.

3 Vector Implementation of List Scan

We implemented our list scan algorithm on a CRAY C-90, a vector multiprocessor. Vector multiprocessor

machines consist of multiple scalar processors. each augmented with a bank of vector reisters. pipelined

functional units, and vector instructions The functional units divide their operation into several ,lags ,o

that the clock speeds can be incresed. On every clock cycle another element from the vector register enters

the pipeline of the functional unit while one results exits the pipeline. The delay txbtween the time the tirst

operands enters the pipeline until the lirst result leaves the pipeline is call the Icenr *-% or start up time of the

functional unit. If the functional units are fully pipelined. they can accept new operands every clock cycle.
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Multiple functional units can process data simultaneously, and if the hardware permits. the results of one

functional unit can be chuiried directly to the input of another unit. Thus. to execute operands of length it

on a fully pipelined functional unit with start up time .q takes .. + i clock cycles, where it < '. the vector

register length. To hide the latency .i we want i as close to v, as possible.

The vector multiprocessors are typically connected through a mullistage interconnection network to a

common memory. Memory is composed of multiple memory banks that can access different addresses in

parallel using a single global address space. Once a memory bank has been accessed it cannot be access

again until there is a delay, called the cycle time. Usually the memory is optimized for sequential access.

That is, banks are fully interleaved so that successive addresses are on successive memory banks and tnae

number of memory banks is greater than the cycle time. In this way, memory can be accessed sequentially

one element per clock cycle. Vectors can be loaded and stored sequential (stride = I) or at every k", element

(stride = k) of memory. Bad choices for k can result in the same memory bank being accessed at a rate

higher than the cycle time and a memory-bank conflict occurs, causing memory stalls. Memory can also

be accessed at arbitrary locations using an index vector. Often such loads are called gaither operations and

stores are called scatter operations. Because of memory bank conflicts each element during a gather or

scatter typically is accessed at a rate jower than the machine clock cycle (about 2 clock cycles/element for

random access patterns on the CRAY Y-MP machines). In addition to cycle time delays there are acce.v'

latency time delays. The latency for a load is the time to get the first word from memory to the register and

often is much greater than the latency of the functional units. Ihowever. for CRAY Y-MP machines memory

access latencies ,re about the same, but are gettint Ionoer as the machines get bigger.

When we implement a PRAM algorithm on vector multiprocessor. we treat each element in a vector

register as an element processor of a SIMD machine. We call the vector element an element processor to

distinguish it ii im a full vector processor. Any data parallel algorithm can he vectorized and paralleliZed

by having an element processor do the work of a virtual processor in the algorithm. For example. on a

CRAY C-90 each processor has a vector-register length ot 128 and there are 16 processors. Therefore. we

can have as many as 2048 element processors. However, by using strip-mining 1191 or loop-raking 125, 51
we can assign the work of several virtual processors to a single element processor.

We implemented our list scan algorithm using C and the standard Cray C compiler on a CRAY C-90.

Because many of our vector operations use indirect addressing we needed to give compiler directives in

order to get the compiler to vectorize the loops- the only portion that is not vectorizable is the serial list

scan in Phase 2. All loops we present in this section can he vectonzed. In the actual implementation. %%e

attempted to reorder the statements within a loop in order to till the multiple functional units f•or concurrent

operations, to avoid contention between input/output memory ports and the gather/scatter hardware, and to

avoid write after read dependencies [ 121. Chaining is also possible within loops. Because memory access

is dependent on the data. there is nothing we could do to avoid memory hank conflicts, except possibly

randomizing the input.. However, since we are choosing random positions for the heads of the sublists.

systematic memory bank conflicts are unlikely.

In this section we give pseudo C code to illustrate our implementation of the single vector processor

version. In section 5 we show how we modified this algorithm for a vector mulliprocessor machine. Below
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we use three structures containing sets of vectors to simplify the presentation. However, in our actual

implementation we use individual vectors. For each subroutine we discuss the vectorization, develop an

equation for estimating the execution time, and present the C pseudo code.

List.Scn We treat the linked list II as a pair of vectors where one vector li.,e.xt gives the indices of the

successive nodes in the linked list and the other vector ll.value gives the values of the nodes. The scalar

ll.head is the index of the head of the linked list and the scalar /.n is the length of the linked list. We assume

that the linked list terminates with a self loop. The resulting list scan will be store in the vector II..,urn.

We use another set of vectors vp that represent the virtual processors, which we periodically pack as

processors drop out. The vectors vp.next gives the index of the next successor in each sublist, vp virm the

current "sum" of each sublist, and vp.proc-id the virtual processor id. The scalar vp.n is the number of

currently active virtual processors.

In order to avoid having to check whether a processor has reached the end of a sublist at every puinter

dereference we modify the parallel algorithm described in the previous section. During initialization at the

tail of each sublist we destructively set I.me .r0 to its own index to create a self loop and set I.1ol,, to :ern.

where zero is the identity value of the %can operator. In this way, we can repeatedly add the tail value to the

sublist sum without affecting the sum.

Finally, we use a set of vectors slto save information about the sublists. So that we can restore /I betore

returning from LISTSCAN we save the random indices of the tails of sublists in si.randam. the values of the

tails in sI.vahue, and the successor links at the tails, namely the heads of the sublist, in ././twad. During the

course of the algorithm we save intermediate results. .4.ul. the index of the tail of each sublist./..smin. the

sum of each sublisl, s.next, 'he index of the [he successor sublist.

LiST..SCAN starts by calling INITIALIZE which sets up the sublists and returns the number of sublists

created. In Phase I LIST.•SCAN alternates between traversing each sublist and packing out completed ,ublists

until no sublists remain. INMALRANK traverses . links of each sublist summing the values at each node

(in Section 4.3 we discuss how we determine the values of .N(I]). Then INITIALPACK load balances the

remaining lists by removing the completed sublists from vp. It saves the results of the completed ,,uhlists in

vp and removes them from si by packing the remaining sublists to the initial portion of the arrays. By packing

the arrays we effectively reassign virtual processors to element processors. Finally. INITIAL.PACK returns

the number of incomplete sublists remaining. After all the sublists have completed. FIND-St1rtBST_-LIST

forms a linked list, sl.next, of the sublist sums. sl.stum. In Phase 2 it finds the list %can of this linked list

by calling either LIST.SCAN recursively, the vector multiprocessor routine WYtLIE. or the ,erial routine

SERIAL-_LISTSCAN. The results are put in the virtual processor array vp.samr. Phase 3 is like Phase I and

proceeds by alternating between traversing the sublists for .[f/] nodes and packing out finished sublists until

no sublists remain. Finally. RESTORELIST puts back the original links and values at the tails of the ,ublists

All the routines are vectorized except SERIAL.LISTSCAN.
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List.Scan( l.sum. 11)
{

/* PMtase s/
I = 0; /* Initialize the pack counter */

vp.n = s1.n = INmALIZE( vpMs II)', /* Initialize the virtual ptoces.ors */
while (vp.n > 0) { /* Find the sublist sums */

INmAL.RANK( vp. I1. s[! +-.);

vp.n = INMAL.PACK(vp. sl, 11);
I
FIND-SUBLISTLiST( II, sl); /* Turn the sums into a list */

/* Phasel */

if (sn > wvllie-cutoff)

LIST-SCAN( vp.sum. sI); I* Recursive *I

elseif (sLn > serialcutoffi

WYLLIE( vp.sum. sl);

else
SERIAL-LIST.SCAN( ip.sum. l.Inert. sl sum. 0);

P& Phase.- *1
I = 0; /* Reset the pack counter */

vp.n = sA.n; 1* Reset number of virtual processors -,
while (vp.n > 0) { /* Find the scan of the sublists */

FINALRANK( vp. II. s[i ++s]);

vp.n = FINAL.PACK( vp. s. II);

RESTORE..LIST(si. 11) /* Restore values at sublist tails */

Initialize: Initialization starts by finding AI.n, the appropriate number of sublists to use given the length of

the litiked list. In Section 4.3 we discuss how to determine what is an appropriate value for si•n. GEN .TAILS

finds sLn pseudo-random positions in the linked list, st.random. which are to be the tails of the sublists.

It also ensures that none of these positions are the tail of the whole list. To simplify the implementation

we chose to use equally spaced positions and assumed that the linked lists are randomly ordered. If the

ordering of the links is random then we can expect sublist lengths to follow the same distribution as when

the heads of the lists are chosen randomly. Next INITIALIZE saves the links and values at the tails. The

head of the first sublist is the head of the whole linked list. Because the links are retrieved from random

positions to retrieve lAnemt at sl.random requires a load and a gather, and to save si.head requires a store.

Then INITIALIZE gathers !. value at .random and stores them in .l. vahte.
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Next INITIALIZE turns the linked list into a set of sublists by setting the tails to self loops and tail values

to zero. As the tails are at random positions these assignments require two scatter operations. We need not

worry about the value of the tail of the whole list in Phase I because we do not need the correct ,urn for the

tail sublist when finding the scan in Phase 2. Finally INITIALIZE initializes the virtual processor vectors: it

stores the heads, stores zero's at the sums, and stores the processor id's.

Initialize( vp, sl. 11)
{

sLn = COMPUTE-NUMSUBLISTS(1l.n);

GENTAiLS(sl.random. sli. ll.n ); /* Find random positions *1

sl.head[Ol = ll.head; /* Set head of first sublist */

for (i = I. i < sl.n; i ++) { /* Save tails of sublists */

sl.he~il = ll.next~sLrandom(ijj; /* Gather heads and save */

sI.valuefi] = lvalue~st.random[ ]]; /* Gather values at tails and save I/

/* Set up sublists */

1I.value[sl.random[ = ZERO; /* Scatter zero at tails values */

II.next~sirandomfl]] = si.randomfid; I* Scatter self loops at tails *1

for ( = 0; i < Ai.i; i ++ ) /* Initialize virtual processors Vf

,'p.next]ij = st.headf.,; /P Store heads */
vp.sum[i] = ZERO: /* Initialize sums 1/

vp~proc[ij = i; /* Assign processor id' sl

The time for INITIALIZE in CRAY C-90 clock cycles (4.2 nsec) is

Finlwlah/c( ) = 13m + 87M0.

where m is the number of sublists.

Initial-Rank: INITIAL-RANK traverses each sublist for nrteps times computingr the sunm of the links.

Because the weight of the tail is zero, it can repeatedly accumulate the sum at the tail without affecting the

sum. Each traversal of the vector of links requires retrieving the values and links at arbitrary locations in II.

Thus, it uses two gather operations. To increment the sum requires loading, adding to, and storing vp.suim.

Finally it needs to store the current link vp.next.
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Ini•a•LJRnk( vp. i1, n-teps)

for (j = 0;j < nJteps; J'++ I /* dereference n-'teps times on each sublist *1

for(i = 0; i < vp.n;i++) {
Vp.sum[i] + = It.value[vp.next[i]]; /* Gather value and increment sum */

vp.next[i] = ll.nexz vp.nexi[i)]; /* Gather successor link *1
}

}

The time for inner loop of INMAL.RANK is

Tifl,,t~ank %ep(X) = 3.4.c + 80.

where x is the vector length of vp.
Strip mining currently is performed on the inner loop. However. it would be more efficient to do strip

mining of the inner loop outside the outer loop. In this way, we would not need to load and store intermediate

results between successive iterations of the outer loop. The only way to get this effect on the CRAY is to
unroll the inner loop. We did not do this optimization.

InitiaiPack: After traversing the sublists .s, steps LIST-SCAN packs out any completed list. Packing

requires saving the results of the completed lists according to their processor id's and then packing the

remaining lists in vp so that they are contiguous. A sublist is complete if the virtual processor has reached
the tail of the sublist. which is a self loop. To test for a self loop requires loading vp.ext,. gathering (I.next

at vp.next, and testing whether the two are equal. There are two ways we could get the compiler to save the
completed lists. One is to compute the indices of the completed lists and then using these indices to gather

vp.sum, vp.next, and vp.prmc-id. Then it can scatter vp.'um to sI.xsn and vp.suext to tu.tail at the indices in

vp.proc-id. The other way is to load vp.sum, vp.next, and vp.prm'cid. change them so that all a.tive sublists

use one of the completed sublist values by using a vector merge operation. Then. as before. it can scatter
vp.sum to s.sum and vp.next to sttail at the indices in vp.prrnc.id. The effect is to have all active ,uhlists

write to the same location in sLsum and s'tail. This approach causes much memory contention because

most of the sublists are active. Clearly, the former approach is better and is what we used.
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lnitial.Pack( vp, sl. 11)
{

=0;
for (i = 0; i < vp.n; i++)

if ( vp.next[ij == ll.next(vp.nextifl) { / Save completed sublists *1

sl.sumfvp.prmc-idli]= vp.sum[ii; /* Gather and scatter sum */

sI.taidvp.procid[i)] = vp.next[i]; /* Gather and scatter tail */

} else I /* Pack remaining sublists */

vp.pvc.du4j] = vp.proc-id[i]; l* Gather and store processor id's /

vp.sum[j] - vp..%umfi]; 1* Gather and store current sum /
vp.nextjj++] = vp.next4ij; /* Gather and store current link */

}
}

return j; 1* Number of remaining sublists */

Packing the remaining active sublists is done by computing the indices of the active sublists and for

each vector. vp.next, vp.sum and vp.procid, gathering the vector using the active indices and then storing

contiguously. The time for one application of INITIAL-PACK for vectors of length x is:

TinjialPa-pk, ,ap(' x) = 7x. + 540.

Find,.Sublist..List: At this point each sublist has reached its tail and is ready to start Phase 2. Recall

that sljail holds the tail of each sublist, while sl.randhm holds the tail of the previous sublist. Therefore,

when FINO.SUBLIST-LIST writes the sublist index to iI.next at sl.rndomn. then it is writing the index of the

successor sublist to the tails of the sublists. (We write to I/.next because we can easily regenerate the self

loops there.) This write requires loading sl.random and then scattering the index to I/oext at sI.raudoin.

Note that sl.random does not contain the index of the tail of one sublist, name!y the tail of the whole list.

Therefore, if it writes the negative index it can distinguish between values set at s.rwando,, and the original

self loops in il.next. Next FINDSUBLIST..LIST gathers these indices from Il.nexr, but this time using s.Iail.

These indices are the indices of the successor sublists as long as they are negative. Only one index is

positive and it is the index of the tail of the whole list. Notice that the writing and reading of the indices is

done in separate loops because the reading of the indices may not he done in the same order as the writing.

That is, we need to be sure that the write is complete before the read starts and that no chaining is allowed.
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Find.SublistList( II. sl)
}

for(i = I-i < s5.n.;++)

ll.nextslrandom[ij] = -i; /* Scatter index of next sublist /

for U = 0; i < sAn; i ++) { /* Create list of sublists */

next = ll.next[sl.ai4i]]; /* Gather index of next sublist */

slnextif] = -next; /* Store the index *1

if (next > 0){ I* Found tail of whole list */

sl.next[i] = i; /* Set tail sublist to self loop */

sI.random[O] = next; I* Save tail of whole list */

sl.value[O] = II.value[next]; I* Save its value */

I!.value[next) = ZERO; /* Set tail value to ZERO *1

I
I
for(i = 0;i < sl.n;i ++)

ll.nexv[sl.tai4i ]]= sl.taii[i]: I* Scatter self loops at tails *I

si.sum[i] + = slvalue[sl.nexifi]]; /* Gather tail values and increment sum */

vp.next(iI = I.'heatqij; I* Reset virtual processor heads */
}

}

Once FIND .SUBLIST...IST finds the tail sublist it sets the tail of xI.next to a self loop. saves the tail of the

whole list and its value in slrandom[O] and sl.value[O], and sets the value of tail of the whole list to zero.

Note that it was not necessary to set the value of the tail of the whole list to zero for the Phase I because we

do not need the correct sum of the tail sublist to find the scan of the reduce list. but in Phase 3 we need tail

value set to zero because, otherwise, we may repeatedly add the tail value to the scan at the tail.

Finally, FINDS UBLIST..LIST returns the tails of the sublists to self loops, which requires loading .s.tail

and scattering it to ll.next. Since the tail values were never added to the sublist sums during INITIAL-RANK

it next adds the tail values to the sublist sums. The tail values were saved in ALvidhe during INITIALIZE by

the successor sublist and therefore must be indexed by sAnexw. It loads s/sum. gathers Al value using s/next.

adds the values to the sums, which are then stored. Lastly. it reinitializes the virtual processor heads in

anticipation of Phase 3. Reinitializing the heads requires loading sA.head and storing It in vp.next.

The time for FIND-SUBLISTLIST is

/'FindSuhIt...LA0( ni) = 9",) + 770.

where it) is the number of sublists.
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Scan of the Reduced List: Next LIST-SCAN finds the list scan on the sublists sums vi..•im using the

list sinext. If the list is large then it finds it recursively. If list length lies between the recurssve cutoff

and the serial cutoff it uses WYLLIE. If the list length is small it uses SERIAL LIsTSCA.N. The time for

SERIAL..LIST.SCAN is:

"r nalJ.d.an(Ill) = 44.l ill + 255.

where ,l is the number of sublists.

FinaLRank: In Phase 3 LIST-SCAN repeatedly calls FINAL.RANK to traverse the sublists for ,aatep.s steps.

The scan of each sublist is found in the same manner as in Phase I. The only difference is that FINAL..RAK

scatters the resulting scan vp.sum to It.sum at the current positions in vp.next.

Final.Rank( II. vp. n-steps)

for(j = O;j < n.5teps.j i.+)

tor(i = ();i < vp.'n;.I++)

/I.sum[vp.nextji]] = vp.sumji,] /* Load and scatter sums 11

vp.sumfi] + = II.valu•evp.ne.rxt[,]; /* Gather value and increment sum */

vp.ne.[i1 = Ilmextfvp.ue.ttill]; /* Gather successor link and store I

The time for one iteration of the inner loop of FINALJ-ANK is:

I'Fnal-Rank 5.,r) = .r +" 1().

where x is the number of sublists remaining.

FinalPack: The packing step in PhIase 3 is a little simpler than the packing step in Phase I. Only the

completed lists need to write their sums to Itsum because the active sublists will write their sums on the

next call to FINAL-RANK. However. it is faster to simply load all of vp..swn and scatter to /I.1mn than it is

to compute the indices of the completed sublists and to gather 'p..mm and scatter them to /..1'mi. For active

sublist, FINAL-PACK packs vp..sum and vp.next a.s in INITIAL-PACK. However, it does not need to keep track

of the vp.pmc-id.
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FinaIJ'ack( vp. sI. 11)
4

j =0;

for(i = 0;i < vp.n;i++)4

II.sum(vp.next[i]l = 'p.sum111; /* Load and scatter sums .

if(vp.nexf.tit! = Il.next[vp.next[ilI) 4 /0 Pack remaining sublists 0/

vp.sumfjl = vp.sum[i'; /* Gather and store ,urs u /

vp.nextfj •] = vp.nextfiJ; /* Gather and store links */
}

}
return j;

The time for FINAL-PACK is:

TFnI.iPak ,cp(r) = 6r + 4M0.

where x is the number of sublists to be packed.

Restore-List: Finally each processor returns the original links and values at the sublit tails. Thi, require-,

loading si.random. sAhead. and sA.value and scattenng to lttuert and /.t'vhte using ./.randwn. Because the

tail of the whole list is supposed to be a self loop anyway, it d(oe,, not set 1,mer at the tail.

RestorelList( s.,11)

Il.value(sl.randomf(0l = sl.value{OI; /* Reset value of list tail */

for(i = l;i < sl-n;i ++)

II.nex~sl.random(ij] = sl.head(i]; I* Scatter links at tail /

It.valuetsl.random(ill = s,.valu•i[, /* Scatter values at tails *

The time for RESTORE-Lis r is

Fitc',iom-L-ja(m) = 4111 + 250.

where m is the number of sublists.

4 Analysis of the Algorithm

In Phase I and 3 of the algorithm we periodically perform load balancing so that processors that have

finished their sublists are removed from the computation. We would like to pack as soon as there are several

finished sublists. However, if we pack too frequen:ly we pack none or only a few sublist%. and when there
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are many sublists packing is expensive. If we do not pack often enough. we may have many proLcssor%

performing needless work repeatedly chasing the sublists' tails. In order to determine when are good times

to pack we first need a better understanding of what the expected distribution of the sublist, lengths are.
We find an estimate of the distribution in Section 4. 1. Next, in Section 4.2 we determine what is the overall

cost of performing the algorithm, given the timing data in Section 3. In Section 4.3. given n the length

of the linked list. nI the number of sublists, and %, the number of ranking steps to perform before the first

pack. we determine how to minimize the costs of the packs and the unnecessary tail chasing. In Section 4 4.

we discuss how to find nI and j, given ,I. Finally, we summarize the costs, by giving an esuiiate of the

overall performance of the algorithm and comparing it with the actual performance. The man theorem of

this section is:

Thtorem I The list ranking algorithm in this paper has expected time O) I/p+ ii In zn / II) of pproc'trs.

whe.i rn < n/log Ti.

4.1 Analysis of sublist lengths

In this sectc.n we show that the Jistnbution of the lengths of the sublists is approximately a negative

exponential distribution, when i and 'II are large. The analysis is from Feller 110(1. We firs consider the

following situation. Let X' ...... V_ be a' random numbers in the rine (). 1 ) For truly random numbers

Prob(.\, = .\':J = 0 for I j, Therefore. the numbers partition 1),1? into m +- I subiniervas. Let

N(t)..... X(,) denote the Vs ordered by their sizes from smallest to largest.

Proposition 2 ( Feller 1 101) If .\ t ...... Y.. tire ndependent and unti ormlv ,hi %trt hi fted over t; r the rie 10. 1

thent as it -•x the succe.•'ive intervals in our partition behave as thot.•'h they art, ntutriil' Independe•tt

exponentially distrihuted variables with I[ \'* ,+ - .'(, =

Lemma 3 If .X) ...... V... tare independent and uniform!v di.strtbuted over the tragner ). 1/1 th1e1

> / I = ( I - I I:" ,
It, III

Proof: The length of. -'t))exceeds 1'Iii iff all .... N'2 are in the interval 1. I1. Because the events

are independent and uniformly distributed the probabiiity otf •ombined events happcnmng is I I - 17 1" As

I- this probability tends, -'. Thus. the distribution of the firs interval in the limit is ,a negati,,C

exponential with mean f-t. -

Lemma 4 (without prnoj) If X\IN...... \. ]'allow an expopiential distributton st ith expe.ted vtahe /I -diefh

.V + + .\' follows a gamma di.rbrtbutm

;,. Pr, h . ... + .\ < .r1) = I - Y•.( )' '

21



Lemma S If X. ,,, are independent and unifirmly distributed over the ran tge (0. 1) then jor evern

jfied k

Pizmbj.\(j) > I- = FI - -) ,- - ','/!

which is the tail of the gamma distribution ,,.k.

Proof: In order for V(k) > L. less than k of the X'V lie in the range ((i. Recate the X esent%

are independent and uniformly distributed the probability that exactly i )f the V.\, lie in the range 10.
follows a binomial distribution with probability of success equal to and probability of failure equal to
I- . That is,

tit m 'n (it, -j +

", l',-'/j!

To obtain Probj .V(k. > - we need to sum over the range j = 4.. - I ) I
Proof (of Proposition):

.(k I is the sum ofthe first 4 intervals. X.()..,2 - 1. . .. . . . . VI A- V _•- In ihe limit as. tit -

X(4 follows a gamma distribution with parameters t'i. A. which is the distribution of the sum ot' I, |mmially

independent exponential variates with expectation ± Therefore, the successive intervals in the limit heha'. c
at though they are mutually independent exponential variates. I

Returning to the distribution of sublist lengths. In our case. we are chooing its random poitions in

a list of length it. Bec=u:= 'hese are random positions we can assume the lit is laid out in order from
left to right. Then the lengths of the sublits are the intervals determined by as random integral numbers

Y ...... from V to it - I. Let

1,, = )*,) -)i-

I.,,,, it - V

Ifit > to, t - -. , and too - x, then the lengths of the sublists tend to hehave as inulual!v indeTpndent

exponential variates with expectation '-- That i,. if I, is a sublist length. then

Probf I. > .}I ,--

If we let a = (ti + .5)/f i + I ) and solve for .r we get an estimate of the expected length of the sho'est

sublist of ti + I sublists, namely

Exp% /,(o)) ; In (as+.
lo +
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If we let a = .5(n + I) and solve for .r we get an estimate of the expected length of the longest sublist,

namely
ItExp(L(,,,J) • -- In(2(w + I ).

In general. wecan estimatedthe expected length of the Ith smallest sublist by setting = - -- .5 )/( + I j

and solving for x. This estimate seems to be reasonable for n and m as small as i > I(XW) and .i > I0W for

all but the smallest sublist. A better estimate for the smallest sublist seems to be

Exp(L(0n•1) -I In( "' + I

Figure I I shows the expected length of the it' sublist for several values of ti when i = I(XX)O and compares

it to some actual data averaged over 20 samples. Notice that as 'ti increases the expected length of the

longest, sublist decreases and there is less variation in list lengths. Therefore, to reduce the parallel running

time we want to make in large. However. as m increases the costs due to packs, initialization, and Phase 2

increases.

am-
,Zi

.M 110- m-~

MJ0--- 150

-- .,i4I

4011-

0 50 10 ISO 200 2590

%uhlist index

Figure I!: The function cures are the expecttd length of the i"' shortesi .uhlist when ii = I(XX)() lor everal
values of tit. the number of sublists. Thz observed lengths were found by takinm 20( .. ample% ot di iding a list ol i,/e
it z I(XXX) into ti sublists and for the collection of the •"' shortest sublist ot each .ainple. finding the average length
(shown with a data symbol) and the minimum and maximum lengths (shown wiot at, error harl.

4.2 Cost of the algorithm

Using the timing equations of each piece of the algorithm we can determine what the cost o1 the complete

algorithm, assuming we know the exact lengths of the sublists an"d when packs are performed. Assume we

traverse .%,. i = I.... I links of each list between packs. Let S, be the total number of links traversed in

each list before the i"' pack. That is,

50.' = 0

S.' = E=ll..
,= ,- ,-. 3 =I. I.
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I
Let g(x) be the expected number of sublists that have length greater than .r. From the previous section

y(.r) = i x Prob( sublist length >.r) (I)

"- -(2)

The dotted line in Figure 12 shows g(.c) when n+ = I(XXX) and m = 2(M). The x-axis is the sublist length

and the y-axis is the number of sublists with that length. You can think of each sublist as being laid out

from left to right, and placed one above the other from longest to smallest, each starting at x = 0. That is.

the y-axis is the number of sublists that are still active in the computation, namely the vector lengths ofthe

computations, while the x-axis is the number of links traversed in each list. As we proceed from left to

right, we are performing list ranking on a vector of length equal to the height of the step function. Every

time we perform a pack operation (at the comer of a step) the vector length decreases. The area under the

step function in Figure 12 is the expected total number of links traversed in either Phase I or Phase 3. If we

packed every step then this number would be i,. the area under the curve g( r. I. Our aim is to minimize the

area under the step function that is above the dotted line. while keeping the cost of packing down. The cost

of packing is proportional to the sum of the heights of the step function.

.a200

.- 160

a 120. '

- 80

"° 30 60 90 120 150 180 210 240 270 300suhlist Iennvh ftimeu

Figure 12: The dotted function is .(.r) the expected number ot sublists thai have length greater than j.. where
to = 10000 and rt = 21(M. When the number of packing steps is II. the expected execution time on the ('RAY C-90 1'. ,
minimized by packing at the vertical lines. The step function shows the expected number 1t %uhhfis that are currently
active at every iteration of list ranking. The sive o•t a step is the expected number ot suh•ists t) complete %ince the
previous pack.

Because the ., 's are the same for both Phase I and 3, we can combine the costs of INITIAL-RANK and

FINAL.RANK to get a single cost equation for ranking. Similarly we can comboic the costs of INITIALPA.CK

and FINAL-PACK to get a single cost equation for packing. Thus, the costs of a single rank step and a single

pack are:

'1Rnnk .p(.') = 8.4." + I 80

"t'Mak ,(r) = 13.r + 940).

where .r is the vector length over which the rank and the pack are taking place. The expected total time ot

all the packs are:
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I-I

Tpuk = Z[13y(.S,)+940]
1=0

1-)

= 13F!/(S,)+9401.
1=0

where g( S,) is the expected number of sublists remaining after S, steps of list ranking. Because we do .,

steps of list ranking between packs. the expected total time of the list ranking is:

1-I

Tfa.1 = "[.+a(8.4!(,)+ 180)]
1=0

1-i

= 8.4 11'(. 1) + 180s,

> 8.41t + 180S,.

where S1 is the first S, greater than the length of the longest sublist. If we pack everytime a sublist completes

then _- .,,+!/() = n. However, in general we delay packs and the sum is greater than u (see Figure 12).

Similarly, we can combine the times of INITIALIZE, FINDSUBLIST-LIST. and RESTORE.LIST since they

depend on the number of sublists only. These combined times are:

11er("m') = 26"' + 9720.

Thus, the expected total time for Phase I and 3 the algorithm is:

"*pI+p3 = "lmRak + 'Pa.k + l011v-r (3)

4.3 Minimizing the time given fixed parameters

Suppose we are given t the length of the original linked list. ,, the number of sublists and I the number o("

times to pack. How do we decide when to pack'? The simplest way is to divide I in to the expected length

of the longest sublist and pack every fixed number of inteivals. However. from the previous discussion we

know that the lists do not drop out at a constant rate. That is. 41.r) the expected number of ,,uhli,-iN that

have length greater than .r is not linear: it is exponential. In this section we show at which iterations of list

ranking we should pack so as to minimize the expected execution time of the algorithm, given ii. tit. and /

In the next section, we describe how we determine us and I given i.

Consider ri, it, and I fixed. We want to minimize the execution time with respect to i...S' •...... S ý. .
where S, is the number of iterations of list ranking that have occurred at the i"' pack. That is. we want to

minimize the following function:

I-I

'r,., I(S,*(. = F"[(.,+t - .", )(,,y(S.',) + I6) + rq(., l + ,I] + ,,, - f. i4+
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where TRIk WP( .r) = a.r + b, Tpak ,1p(-rW) = cX + d. and TOer(-.r) = '4- + f. We can minimize Equation 4

by taking partial derivatives for each .5, and setting to zero to obtain a set of I simultaneous equations. That

is,
-- = a(.' 1i,+ - .'", )/( .5', ) - (a/( ."',) + h) + (a/( .%,',_ ) + b) + c.j'( 5,% )=0

OOs (5+'.',)= gJ( .,_ a) -gIN.',) (5

,+, - S, +

Each equation specifies that for a set of three consecutive .s.s ",- -. S,. and S,+ the ., is located where

the slope of y at ,i isequal tothe slope of the line through the points (S,.j(S., I) and (.S,+, + n + . .

see Figure 13.

.1• N.. " ,.

9.. "-,.

S0-1bi S. . l.

%ublslt length

Figure 13: Time is minimized when. tor each set of three consecutive Ss,. S, 1 .','. and ., 4 the sdope li % ., )t
equal to the slope of the line through the points (N',. /( K, - )) and (S, + + ( ,) S.. is the point where time would
be minimized if there was no cost for packs.

Because f! is the exponential function it is not obvious how to solve for S, given S,, andS, + 1. However.

it is not difficult to solve for S,+1 given S, and S,_ (or to solve for S,_ given S, and , +). Namely,

. =',iS = . -'y - --~
1'(,+ S, )

= "N, + q,(%,+,) - 7, (6)

since !(.r) = "' That is, if we know the value of two consecutive packing points we can determine

the following (or previous) packing point. Since we know So = in, if we know .,i', we can compute
S. V, iteratively.

The vertical lines in Figure 12 were found using ." = 14.7 and the equations in Section 3. Notice that

the S,'s become increasingly further apart for larger i's reflecting the fact that tht: ate sublists complete

slows down over time. The factor c/a in Equation 6 reflects the relative cost of packing and ranking. To

see the effect of this factor, consider how the spacing of packs over all the iterations changes if we keep the
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total number of packs the same but increase the value of r. When r is increased, packing would occur less

frequently during the initial iterations of ranking and occur morC frequently during later iterations. That

is. the vertical lines in Figure 12 would be further apart for small iteration numbers and closer together for

large iteration numbers if we in.iease r. This reflects the fact that initially packing is expensive because

the vector lengths are long and later packing become less expensive because the vector lengths are short. If

we make c large enough eventually we find that the execution time is reduced by decreasing the number of

packs even though the number of ranking steps increases. In the next section we consider how to determine

the best number of packs to perform.

We can simplify Equation 4 by using equation 6 to substitute for ., - S, That is.

I-I I-i I-I

•j..,+, - **S )(il,[J( s ) + 6) t,,s:(.S.' ) + . - .%, ),( . , + ',-Z(.,,+ - .S,
i S 0

I- I

= +.'i - ,[. -i '(S- , ) + I,%.

I

where .51 In ut. Thus,
'rl

TP l+i'i(,St ...... (ý) ;:t (m + tiL In' in t, + ((t S, + f- + , ), ti h-t -Id
lit

For the CRAY C-90)

F1,1+1,3 :z 8.4n + 180-I In it + (8.4S, + 39(n, + 9401 + 9720. 17)

where in is the number of sublists. S, is the number of links traversed before the first pack. / is the number

of packs and is a function of S,. •it, and .

4.4 Overall vector performance

From the previous discussion we have a way to determine at which iterations we should pack. if we know the

length of the whole linked list. the number of sublists, and the iteration number of the first pack. However.

all we know is the the length of the whole linked list, namely it. We now need to tind good choices (or the

number of sublists ,i and the iteration number of the first pack ,1. which determines the number packs/. Our

approach is to estimate the running time of the algorithm, using Equation 7. for various values of ,ii. s I ang.

i. Then. for each value of it we find values of lii and , that minimized the running time within about two

percent. Finally. we fit functions to m iv. i and , vsx. it. It appears that tip and S, are approximately cubic

polynomials of log u. It is these fitted polylog functions thai we use in our implementation to determine ti

and S' givenit and Equation 6 to find successive values of S,.

However. we found that .it was a very sensitive parameter. From the previous section our intuition

is that packing should occur less frequently as we proceed though the processing. However. if 8 1 is too
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small, the packing steps become rapidly closer and closer until we are packing at every iteration of list
ranking. The result is far too much packing and performance degrades rapidly. To protect ourselves from
this sensitivity we modified Equation 6 so that successive S's are always increasing. With this modification
we found the the fitted cubic log functions performed very well in practice.

Figure 14 compares the predicted time with the observed running time. The predicted time was computed

by estimating the parameters values for each value of it using the fitted cubic equations and then applying
the equation 3 for those parameter values. As the figure indicates the equation is an accurate predictor of
the running time. Notice that the running time decreases until it reaches an asymptote of about 8.6 clocks

per element.

'1 300

V17eusured Perfarrman-e

' Prnledited Performance

S 8 .K 2K 8K 32K 128K 512K 2048K 8192K 327'68K
List Lenyth

Figure 14: The predicted performance and measured performance of the vectorized LISTSCAN on one processeor
CRAY C-90. The values for the parameters to and S, were determined by minimizing the predicted perfirmance.

S Vector Multiprocessor List Scan

In Section 3 we showed how we implemented the vectorized version of the data parallel list scan algorithm. In
this section we show that extending the algorithm to multiple vector processors is relatively straightforward.

We then discuss issues relating to the vector multiprocessor version performance and its speedup with

respect to the single vector processor version. Finally, we relate our algorithm to other parallel PRAM

algorithms and explain why we chose not to implement them.

The overall approach is to divide the virtual processors equally among the physical vector processors

and let vectorization proceed on the virtual processor data assigned to the physical processors. The CRAY

C compiler makes parallelizing relatively easy. Lo ?s are modified to be tasked Ioups using compiler

directives so that different iterations of the Ioo)ps are divided among the processors. Because our array, are

often longer than the vector length and we know that the loops can he vectorized, we chose to direct the

compiler to divide the loops into equal size chunks, one chunk per processor, and to vectorize the chunk

within each processor.
For MIMD processors we also tried to minimize the number of synchronization points. Data parallel

algorithms assume that each data parallel step is synchronized, whether or not it is necessary. In the code

we presented in Section 3 we need to synchronize at most after every innermost loop. In particular. we

must synchronize after the loops in INITIALIZE and FINDSUBLIST-LIST and after Phase I and Phase 3 for
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correctness. If we use the parallel algorithm as described in Section 2 and have equal number of active

virtual processors assigned to physical processors at all times, we also need to synchronize before each pack

in Phase I and Phase 3 so that load balancing can proceed globally across the physical processors.

However, we deviated somewhat from this strict form of assignment of virtual processors. Instead we

assign them to physical processors once at the beginning and pack locally within each physical processor

only. In this way each processor completes all of Phase I and Phase 3 independently of the other processors.

The effect is that we need to do no synchronization within Phase I or Phase 3 and there is no load balancing

across processors. Eliminating synchronization avoids needless delays at each synchronization point. No

global load balancing across processors is important because most compilers do not know how to do a pack

operation across processors in parallel. Of course, with some effort we couid apply loop raking to get a

vector multiprocessor algorithm for pack (51.

Because we use randomization, we do not expect a significant load imbalance when we only load

balance locally. Even if an imbalance should become a problem as the the procedure progresses. only one

across-processor load balancing should be necessary. Our results are quite good without any global load

balancing. If we ignore load imbalance and synchronization costs we can vet an estimate of the execution

time of Phase I and Phase 2 by dividing the vector lengths equally among the processors. Namely,

I-I

0+

S..n/p + I,- In in + (.Oi' + c + ' )i/11p + Id .
it

- O(n/p + -I InII).

where p is the number of processors and ti < it/log it.

Unfortunately, to tune the parameters in and S. we need to minimize for every possible number

of processors. For a highly or massively parallel machines tuning the parameters for every number of

processors would not be practical. We tuned the parameters for I. 2. 4, and 8 processors and result in the

execution times shown in Figure 15. For 8 processors we achieve a speedup of 6.7.

3200l250 orith

...... . pr29p r• 1,50 ."•- - ° 4 p nice -mim
_ t10oo • --.- . .1 pro'xv-,rm

4 ; 1.- .:• "-• " .,...,...,...o....; ..... . ........ ..

1K 8K 64K 512K 4096K 32768K
I.st leng~th

Figure IS: Execution time.s per element o)n 1. 2. 4. and 84 dedicated processors ,t the CRA'lY C-W) tor our li,,! ranking
'algorithm.
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5.1 Other work efficient list ranking algorithms

On one CRAY C-90 vector processor our algorithm takes about 10 clock cycles per list element asymptotically

to find the rank or scan of a linked list. If other algorithms are to be competitive, they must be able to use

no more than 10 cycles per element on average. Below we discuss various other algorithms that have been
described in the literature. Except for Wyllie's pointer jumping algorithm on short linked lists, we conclude

that other algorithms are unlikely to be competitive.

Cole and Viskin devised a parallel deterministic coin tossing technique [71 which they used to develop

an optimal deterministic parallel list ranking algorithm 18, 41. This algorithm breaks the linked list into

sublists of two or three nodes long (the heads of the sublists are called 2-ruling sets); reduces the sublists
to a single nodes; and then compacts these single nodes into contiguous memory to create a new linked

list. It recursively applies the algorithm to the new linked list until the resulting linked list is less than

(n/log n), at which point it applies Wyllie's algorithm. In the final phase it reconstructs the linked list by

unraveling the recursion in the first phase to fill in the rank values of the removed nodes. The algorithm
runs in 0( log n log log n) parallel time and uses O 0i) steps. Later they modified their algorithm to give the

first O(log n) time optimal deterministic algorithm 19, 22)] However, algorithms for finding 2-ruling sets
that give either of these time bounds are quite complicated and have very large constants. They also give a

much simpler 2-ruling set algorithm that is not work efficient but has smaller constants (see 141). Because

it is not work efficient and its constants are larger than Wyllie's or ours, we chose not to implement it.

Anderson and Miller 121 combined their randomized algorithm with the Cole/Viskin deterministic coin

tossing to get an optimal O(log it) time deterministic list ranking aigorithm. As with their randomized
algorithm, the processors are assign log n nodes which they process. At each round each processor executes

a case statement that either breaks contention or splices out a node in its queue or splices out a node at

another processor's queue. To break contention it finds a log log n ruling set. Finding log log i ruling sets
are much simpler (O( I ) time) than finding 2 ruling sets (O( log n) time with large constants). But because

each round involves a nonparallel three way case statement, where each case needs to be completed by all

the processors before the next case can be executed, its constants are also much larger than ours.
The basic structure of Cole and Viskin's algorithms is similar to the structure of our algorithm. The

main difference is that we break the linked list into a relatively few sublists that can be quite long, whereas
Cole and Viskin divide the linked list into more than to/3 sublists that are only two or three node: long. To

get such fine grain list lengths is quite expensive and needs to be repeated 0()log it) times. We find sublists
only a few times and because our sublists are relatively long, we can process the lists at full speed for their

entire length. The primary reason our algorithm is so successful is because it has very small constants

and is work efficient. And as long as the number of processors is small relative to the size of the list the
parallel running time is optimal. The success of the implementation is due to pipelining reads and writes
through vectorization to hide latency, minimizing load balancing by deriving equations for predicting and

optimizing pertnrmance, and avoiding conditional tests except when halancing points.
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6 Conclusions and Future Directions

In this paper we described a new parallel algorithm and its implementation for list ranking and list scan. List

ranking and list scan are primitive operations on lists and the building block of many parallel algorithms

using lists, graphs, and trees. Because of their expected poor performance on today's supercomputers, there

are virtually no implementations of algorithms using these data structures. Our contribution is that we have

implemented the most basic of these "untouchable" algorithms on the CRAY C-90 with success.

One of the primary problems with any list ranking algorithm is that the access pattern to the list is very

irregular and unpredictable. But fortunately, the CRAY class of computers have a very fast memory access

network that makes implementing a list ranking algorithm reasonable. It is CRAY'S pipelined memory access

and extremely high global bandwidth that makes our implementation so fast.

Although the parallel running time of our algorithm 0( l/p + i In ml/r ), where ti is small relative to it.

it is work efficient. And because it is work efficient and has small constants it is the fastest implementation
list ranking and list scan to date. Most parallel list ranking algorithms attempt to find a large numbei. ,i

least 0(ti/log i) and as many as n/2. of nonadjacent elements in the list and assign them equally among
the processors. Our algorithm only tries to find a relatively small number, ti, of such elements. However,

the amount work assigned to each processor can be quite different. But by a unique analysis of the -ýxpected
work loads we are able to determine at what iterations to perform load balancing to minimize the overall

running time of the algorithm.

As with any implementation there are a multitude of possible moditication and enhancements that could

improve its performance. A large part of the performance loss is clue to short vector lengths. As lists drop

out of the computation the vector lengths shorten. Not only are the vector lengths short, the number of
iterations remaining with short vector lengths can be relatively large, since the longest sublists can be much
longer that the other sublists. Short vectors are inefficient because with each iteration there is a latency due

to filling the vector pipes. On the CRAY computers this inefficiency is fairly small, because these machines

have particularly small vector half performance lengths. But many vector machines have quite long vector
half performance lengths. For these machines it may be better to reconnect the sublists into a single reduced

sublist before all the processors have reached the tails. The elements still remaining in the lists could then

be packed into contiguous memory and then Phase I recursively applied. Keeping track of which elements
have been processed and which have not, requires extra book keeping that would slow down the main
ranking portion of the algorithm. But the trade off may be worth it if the vector machine has long vector

half lengths.
Finally, the question still remains whether having a fast list ranking implementation is useful as a

primitive for other major applications. If so, we may have opened up major classes o" PRAM algorithms

that can have reasonable implementations. It also would be interesting to see whether our approach of
subdividing a problem randomly into a moderate number of fairly coarse gain subproblems and applying
load balancing periodically can be applied to other computational problems.
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