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Abstract

List ranking and list scan are two primitive operations used in many parallel algorithms that use List. trees.
and graph data structures. But vectorizing and parallelizing list ranking is a challenge because it is highly
communication intensive and dynamic. [n additon, the senal algonthm is very simple and hus verv small
constants, In order to compete a parallel algorithm must also be simple and have small constants. A parallel
algonthm due to Wyllie is such an algorithm, but it is not work cefhictent—its pertormance degrades for
longer and longer linked lists. In contrast, work efticient PRAM algorithms developed to date have ven
large constants. We introduce a new fully vectorized and paratiehized algorithm that both 1y work efficient
and has small constants. However, it does not achieve O(log ») runming time. But we contend that work
efficiency and small constants is more important, given that vector and multiprocessor machines are used
for problems that are much larger than the number o{ processors and. therefore. the (J(log 1| time 1s never
achieved in practice. In particular, to the best of our knowledge our implementation of list ranking and list
scan on the CRAY C-90 is the fastest implementation to date. In addition. it is the first implementation of
which we are aware that outpertforms fast workstations. The success of our algorithm is due toats relatively
large grain size and simplicity of the inner loops, and the success of the implementation is due to pipeliming
reads and writes through vectorization to hide latency. minimizing load balancing by deriving eguations for
predicting and optimizing performance. and avoiding conditional tests except when load balancing.
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1 Introduction

As production parallel and vector machines become faster and common place, ~olving larger and larger
problems becomes feasible. However, large problems that have irregular sparsity structure or are dynamic
are often most efficiently represented and manipuiated using lists, trees, and graphs. Use of such data
structures has become natural and common on sequential machine, hut have been shunned in puarallel
tmplementations. Theory indicates that use of irregular data structures can sigmincantly reduce the problem
size and, therefore, can improve asymptotic performance. Many Parallel Random Access Machine i(PRAM)
algonthms for such data structures have been developed. But are these PRAM algonthms practical”? Can
we perform even the most primitive operations used by PRAM algorithms efticiently” We contend that
there is hope. For example, scan (prefix sum) i1s such a pnmitive operation and is applied to arrays. For
each element in the array it computes the “sum™ of all the preceding elements in the array, where “sum™ is
a binary associative operator. <lsewhere, the efticient vector parallel implementation of the scan primitive
has been shown to lead to greatiy improved performance of several applications that cannot he vectorized
with existing compilers |6, 25}. However, this version of scan can only be apphied to arrays that are linearly
ordered in consecutive locations. [f the data are siored unordered and the ordering s provided by hinks or
pointers then we need to use other upproaches for scan.

In this paper we consider a vector paralfel implementation of tist cank g and the scan operation apphicd
to linked lists.  List ranking and list scan are two fundamental primitives that are commonly nsed 1n
solving problems on linked lists, trees. and graph data structures. Parailel algonthms frequently use hist
ranking for ordering the elements of a list. inding the Euler tour of a tree. load balancing (11]. contention
avoidance |15, 1], and parallel tree contraction |17], and these problems are subproblems of applications
such as expression evaluation, graph 3-connectivity, and planar ¢raph embedding [18]. In addition, hat
ranking is very interesting because it involves the Kinds of problems for which 1tis hard to get good vector
or parallel performance. In particular, 1t uses an irregular data structure, s highly commumcation bound.,
and its communication patterns are dynamic. From an algorithmic point of view it is interesung because it
has features common to many problems: contention avoidance and load balancing.

List ranking tinds the position of each node in the list, by counting the number of hinks between cach
node and the head of the list. This position information can be used to reorder the nodes of the fist into
an array in one parallel step. Then, for example, scan can be applied to the array. Alternatively. scan can
be applied directly to the linked list. We call this operation [ist scan and tor cach node in the linked fist it
computes the “sum™ of the values of the all prior nodes in the list. List ranking and list scan are related
that list ranking is the iist scan where plus is the operator and the values to be summed are all equal 1o one.

In the comprehensive review of PRAM list ranking algorithms by ifalverson and Das |13 there s only
one reference to implementation of list ranking, which was Wyllie's aigonthm on the CM-2 The only
other paralle) implementations of list ranking ot which the author 18 aware use a random pointer jumping
technique. Wyllie's algorithm [23] is work inefticient since it takes (0 log n) operations on a » clement
list, whereas a sertal implemtation takes (J{ ) operations. But, because it is very simple it works well for
short lists or when we can increase the number of processors according to the hinked list size, On the other

hand. the random pointer jumping technigue |17, 3] sutfers trom having to take multiple trals on average




[ Algorithm | Time | Work Constants | Space |
Serial Oin) O(n) small Iy
Wyllie O '—1‘7'5—‘-) O(nlogny | small 4n
Ours O((% + =22 [ O(n) small 3n + S
Random Mate | O(2 + logn) | O(n) large > Sn
Optimal Q{2 +logn) | O(n) very large | > dn

Table1 Comparison of several list ranking algorithms. where n is the length of the list. ;18 the number of processors,
and m is a parameter of our algorithm (1 < n/ log n, and tor the CRAY C-9n = O((logn Y.

before being able to perform a pointer jump and. therefore, results in larger constants. Other work efficient
parallel PRAM list ranking algorithms have very large constants, which has inhibited their implementation.
Table 1 gives a comparison of list ranking algorithms, and Figure | compares the running times of hve list
ranking algorithms on one processor of the CRAY C-90. The Miller/Reif and Anderson/Maller algonthms
use random pointer jumping, and the Betloch/Reid-Miller algorithm is the one on which we report here.
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Figure I:  Execution times per element tor several list ranking alponthms on one processor ot the Cray C-90. The
times tor Wyllie's algorithm and our algonthm were obtained on a dedicated machine. The saw tooth shape ot the
Wyllie curve is due to the algorithm pertorming [logn — 1] rounds of pointer jJumping over all the Jata.

We introduce a new tully vectorized and parailelized algorithm that both (s work cthcient and has small
constants, However. it does not achieve (J(log #) running time. Bul we contend that work ethiciency and
small constants is more important, given that vector and multiprocessor machines are used tor problems
that are much larger than the number of processors and, theretore, the O1log 1) time s never achieved in
practice. For lists shorter than 7000 elements Wyllie's algorithm is faster than ours. But tor long lists our
implementation of list ranking and list scan on the CRAY C-90 is the fastest implementation to dute. to the
best of our knowledge. In addition, it is the first implementation of which we are aware that outpertforms
fast workstations. For example, it achieves over two orders of magnitude speedup over a DECstation SO0
workstation. On a single processor it also achieves a tactor of four speed up over a serial list scan on the
CrAY C-90, which is signiticant since CRAY computers are also very fast scalar machines (see fallacy in
Section 7.8 of [ 14]). In particular, when vectorizing a serial problem that requires gather/scatter operations,
the best speedup one can expect on a single processor CRAY C-9) is about a fuctor of 12-18; if the vectonzed
algorithm does twice as much work as the scrial code (both a reduction and contraction phase as our does)

then the best you can expect is a 6-9 fold speedup on one processor. We obtain an addition 6.7 specdup on




8 processors. In addition, our algorithm uses much less space than other algonthms, including Wyllie's,

1.1 Vector Multiprocessors as PRAMs

We chose to implement list ranking 01 a vector multiprocessor because these machines, such as the CRaY
family of computers, closely approximate the abstract EREW PRAM machine, see Figure 2. These machines
use a shared memory model, have fine-grain access to memory. have extremely high global commumication
bandwidth, and can hide functional and memory latencies through vectonzation.  The most important
feature that distinguishes these machines from MMP machines 1s the pipclined memory access. Processors
communicate tc memory via a multistage buttertly -like interconnection network. As long as there are no
memory bank conflicts, the network can service one memory request per clock cycle. Thus, the PRAM
model assumption that often is cited as unrealistic, namely memory access takes one unit time, holds on
vector multiprocessors as long as we can avoid mzmory bank conflicts and hide latencies.
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Figure 2: Vector muitiprocessors as viewed as a PRAM

Zagha proposes several vector multiprocessing programming techniques for avoiding bank conflicts
and hiding latencies {24]. To address bank contlicts he proposes a data distribution technique to manage
explicitly the memory system. To address memory and functional units latencies, he proposes verrual
processing, which is based on Valiant's Bulk Synchronous Processor (BSPY model [21). This umitving
model requires that algorithms are designed with suthicient parallel sluckness. so that programs are wntten
for rather more virtual processors than physical processors. For vector muluprocessors, this sfack alfows
for vectorization so that computations and communication can be pipelined to hide latencies.

In agha's programming model we implement PRAM algorithms by treating a vector processor as a
SIMD (distributed memory) multiprocessor, where each element in the vector acts as a processor of the
SIMD machine, see Figure 2. Because processors in data paratlef algorithms do not use the results of another
processor in the same time step. there are no recurmences 10 worry about in the corresponding vectonzed
implementation. Extending the vectorized algorithm to vector muitiprocessors is straighttorward if the
machine is SIMD; simply treat the vector multiprocessor as a ! < p SIMD multiprocessor, where /s the
length of the vector-registers and p is the number of processors, and apply the vectorized algorithm. I the
machine is MIMD, it can be treated the same way except that, for efticiency, the number synchronization
points shouid be minimized.




The paper is organized as follows. In Section 2 we discuss the five list ranking algonthms we imple-
mented. Section 3 descnbes our implementation on the CrRaY C-90 and gives timing equations for cach
part of the implementation. [n Section 4 we analyze the expected performance, descnbe how we tuned the
parameters, and give our overall performance results. In Section 5 we describe the multiprocessor version
of the algonthm and its performance and review other PRAM list ranking algovithms. Finally, in Section 6
we discuss our conclusions and future directions.

2 The List Ranking and List Scan Algorithms

List ranking computes the distance each node is from the head of the linked list. List scan computes the
*sum” of the values on the links in a linked list from the head of the linked list to each node in the linked
list, where “sum” is any binary associative operator. Since, list ranking is a list scan wath all weights equal
to one, we discuss list scan only. For simplicity we use integer addition as the “sum” operator. We represent
the linked list as a pair of arrays. The value array contains the value of each node of the list and the link
array contains the index of the next node in the list. The tail of the list is a selt-loop. ie. the hnk at the tl
is the index of the tail node.

2,1 The serial algorithm

The serial list scan simply walks down the hist saving the accumulated values of the previous nodes until t
reaches the end ot tne iist. On the CRar C-90 1t takes 34 clock cycles or 1960 neec to traverse each clement
of the list, see Figure 1, and can be coded as follows. Let the array [srext represent the linked list where
each element contaias the index of the next node in the list. The tail of the list is indicated by a selt-loop,

ie, if tail is the index of the last element in the list then [exe(tail] = rail.

Serial_List_Scan(!.um. [ next. _value. heud)
{
! * I_sum - list scan results
* [_next - linked list terminated with a self loop
* |_value - values of the nodes
* head - head of linked list

*
sum = ZERO,
next = head,
do |

[ suminext] = sum:
sum += _value{next|,
next = |_next{next|;
] while (next # [_next{next}):




2.2  Wyilie's algorithm

The first parallel algorithm tor hist ranking is due to Wylhe [23]. The algonithm uses a4 technigue common
to all parailel list ranking algorithms, “pointer jumping”™ or “shortcutting™ A processor 18 assoctated with
each node of the list. Each processor, in parallel, modines its next pointer {tew 1o point to s successor’s
successor. For each round of pointer jumping the number of st elements that / sie v jumps over can double
from the previous iteration. The actual number of elements ot Jomps over s retaned o [ value arras
This array is computed by adding an element’s value with its successor's value duning each pointer jump
After {log, n] rounds of pointer jumping alf elements point to the tail of the list and /! calue contains
the distance each node if from the taif of the hist. The data paraliel version of the inner loop of Willie's
algorithm is as follows:

Wyllie_Loop(lnext. | value. i)

{
!/ * l_next - next link
* Lvalue - sum of values of list between self and next
*/
for(r =00 < niome)
next = { next{i],
{valueli] = Lvalue(i] + valucinew!:
{next(:] = {next{next),
}
}

For each statement we must ensure that all the data are read betore they are written hack to the same
array. We accomplish this in our vector multiprocessor version by wnting to a difterent array 1from which
we are reading. Then, on each call to the inner ioop we witch back und forth between arrays we read from
and armays we write to. The simplicity of this algorithm makes it quite attractive. However, there are two
main problems with Wyllie's algorithm:

¢ On euch iteration the number of nodes of the list that concurrently read the values at the tail doubies
At the hinal iteration anywhere from half the nodes to all but one of the nodes may concurrently read
the values at the tail. On CRAY X-MP/CRrRATY Y-MP computers concurrent reads are seniafized

o The algorithm is not work efficient and does log 1 times as much work as the senial algonthm.

Figure 3 shows the run times of Wyllie's algorithrr on | to 8 processors of the CRay C-90. The saw tooth
shape of the curves is due to the addition of another round of pointer jumping whenever oy - 17 changes
value. The negative slope between a pair of teeth is due to the amortization ot the additive constant terms
over larger size {ist* As you can see from the tigure, Wyllie's algorithm quickly degrades in pertormance

as the list lengths grow. However, it does scale linearly with the number of processors,
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Figure 3: The running time per clement to perform Wyllie™s list ranking algonthmoa 1. 2. 4. and ¥ processor’s on
the CRAY C-90. Whenever [log n — 17 increases by one there 15 a corresponding jump 1n the per efement runming tme
of the algonithm, where 7 1s the bist length. The implementation on one processor has no overhead due to multirashing
and. hence, performs better on small fists than the multiprocessor version

2.3 Random mate

One of the simplest work efticient parallel algonithms was devised by Miller and Reit {17, 20]. Tt used
randomization to break contention so that processors at neighboring nodes do not attempt to dereterence
their successor pointers simultaneously. Once a processor “splices out” a successor node, the processor for
the successor node becomes idle. At each iteration only 1 of the remaining nodes are spliced out average
After O(log n) rounds all the nodes either point to the tal of the list or have been sphiced out. Finally, there
iv a reconstruction phase. 1n which spliced out nodes are reintroduced in reverse order tfrom which they were
removed. We implemented this ulgonithm on a single processor of the CRAY C-90. Qur version removes
1dle processors by packing the vectors on every round in order to make the implementation work cthicient.

Anderson and Miller (3. 20] moditied the above algonthm o that it avoids load balancing (packing).
Processors are assigned the work of log # nodes. At cach round a processor attempts (o remove one node 10
its queue of nodes. However, in order to splice out its own node. the processor needs reverse hink pointers
0 that it can get the previous node to jump over the processor’s node. IF a processor is chle to splice
out its node in one round, in the next round it attempts to splice out the next node 10 ats gueue. In this
simple way processors remain busy without load balancing being required. Atter about 4 log n rounds about
()(n/ log n) nodes are left, at which point they can be compressed 1n memory and Wyllie's algorichni can be
applied. Finally, there is reconstruction phase to reintroduce sphiced out nodes. Again only a small constant
proportion (> 1/4) of the processors remove nodes on each round. In our implementation ot this algonthm
we did not apply Wyllie's algornthm. We simply stopp-d processors from attempting to sphice out nodes
once they had completed their biock of nodes.

Both implementations of the random mate approach are an order of magnitude slower than our algonthm
on one processor, and should be similarly stower on multiple processors, since all the algonthms scale almos
linearly on multiplc processors, see Figure |. They are also slower than the senal implementation on one
processor. Although we did not spend much cffort tuning these impiementations, we doubt that we could
get more than a factor of two improvement in their runming ime.

NP




2.4 Our parallel algorithm

Muanv other work etticient and optimal PRAM algonthm have been developed for st ranking Most use
«eatract-rank-expand phases and address two considerations. One 1s how to tind elements on which to work
te keep all the processors busy and the second s how to avoid contention ~0 that two processors are not
working on netghboring list elcments [2]). We deal with contention by randomly breaking up the linked list
of length » into m sublists that can be processed independently and in parallel. The st ranking proceeds

in three phases:

Phase 1 Randomiy divide the list in m sublists. Reduce each sublist to a single node wath value equal to
the “sum” of the values in the sublist. Now the list is of length 1.

Phase 2 Find the list scan of the reduced list found 1n Phase 1. These values are the scan values for the
heads of the sublists.

Phase 3 Expand the nodes in the reduced list back into the onginal linked hst hlhng i the scun values

along the hst.

Phase 1 and 3 can be done in parailel. The hist scan in Phase 2 can be done recursively tor laree

we, using Wyllie's pomnter jumping techmque 23] for moderate aze e, of senially tor small 0 For
small mi senal list ranking works best because 1t avords the overhead assoctated with multiprocessing and
tilling vector pipes (see Figure 1), Wylhie's algonthm performs best on moderate size lists where 1t can
take advantage of vectonzation and multiprocessing and where flog nhas small, For large o we use our
algorithm recunsively, until the number of sublists becomes »mall enough 1o use either the sertal or Wyllie's
algorithm. We determined empirically the size 1o should be when we switct between afgortthms,

There are two problems with our algorithm that make it appear poor theoretically:

o The sublists lengths vary a great deal, from approximately = In ( -———) 0 — Inc e onaverage, where

o1

In 15 log base «. Thus, the processors’ work s imbalanced.

¢ Since the expected length of the tongest sublist s approamately = Inc ) the parallel runming time

can be no better than that, ie O(< + = Intm ). m - o/ fogn, In contrast, there are many paraliel
b vp

It e

algorithms that have a O = + log, n) unmng time.

We ameliorate both problems by requirning 1 to be much greater than the number of processors, o In
this way a processor is responsible for several lists, namely i/ 0 Pentodically we pertorm load balanaing,
to regroup the lists, which addresses the tirst problem. 1E p - 0 Inae then the runneng tme s dominated
by n/pand the length of the longest sublist 1s not a problem.

The pnmary advantage to our algorithm is that 1t s both work etticient and has very small constants
Overall the algorithm is tully vector parallel, and scales almost lineurly with the namber ot processor
Figure 4 shows the speedup relative 10 one processor for vanous size ists.

{n the following description we assume that there s one virtual processor for every sublist. Phyvaical

processors are assigned (o do the work of an equal number of virtual processors . Because the algorithm s
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Figure 4: Relative speedups of our {ist ranking algorithm on the CrRAy C-90).

data parallel the physical processor performs one step on each virtual processor hefore proceeding to the
next step. The algonthm proceeds in three stages.

Input: The head of a linked list, the linked list, and (s assacuated fist values. It assumes that the linked
list is in contiguous memory and terminates with a eit toop.

Outpue: The list scan of the linked list. )

Initialization: Each processor picks a random position 1n the linked list to be the tall of a sublint It
saves the position of the tail and the successor tink, and sets the tal to a <elf loop. It then prepares o
find the list scan of the following sublist (which another processor created). It initualizes its sublist head as
the successor link saved above and the list sum to zero, where zero is the wentity of the list sum operator.
Figure S shows the linked list that is the input of the list scan algorithm and the result of the inttialization
step.

One processor is responsible for tinding the list scan of the tirst sublist whose head is the head of the
whole list. This processor is also responsible for creating the (unknown) final sublist. But since the tinai
sublist already s terminated with a self loop it does nothing to create 1t. We do not let a processor choose
the tail of the whole list as its random position beciause it s convenient not to worry about a zero length list
in Phase 2.

It is possible that two processors will pick the same random position at which to hreak the list. Then
the two processors will duplicate each other’s actions and cause contention. We can either use a paraitlet
algnrithm chat guarantees to tind no duplicate random numbers, such as in [ {6], or we can remove duplicute
random numbers by having a competition among the processors.  Each processor writes its index at its
random location and then after everyone has written their index it reads back the index at that location, If
the index is not its own it knows that it is a duplicate processor and can drop out ot the computation. The
tirst approach uses mod anithmetic, which is relatively slow on the CRAY und the second approach mayv
require a pack, which to do efticiently is quite complicated, see |S). .
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Figure 8: At the top of the figure is the initial link list with its values at each node. At the bottom of the figure 18
the results ot initialization. The linked listis divided into 3 sublists, each terminating with a seit loop. Each processor,
. Py Py, saves two values: its chosen random position. /2, and the successar of ihe random position i the onginal
linked list. which becomes the head of its sublist, //. Each processor also inmalizes ds sublist sum S to zero, the
identity of the scan operator.

Phase 1: Euch virtual processor traverses its sublist adding the vatues along the links to the sum. When
a virtual processor reaches the tail of its sublist it “drops out™ of the computation. Every ~..o = 1.2.3. ., /
steps a load balancing step is done, reassigning virtual processors that have not completed their sublist to
the physical processors. Each time they load balunce they increment 7 to get a new ~ . Because ot the tairly
predictable sizes of the sublists we can determine what are reasonable values of ~, {see Section ). Figure 6
shows the status after every processor has dropped out and has found the sum of its sublist. Next the virtual
processors create the reduced list of sublists sums.
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Figure 6:  The figure show the results of tinding the sum of each sublist. Each processor has traversed its wGbiva
until it has reached the sublist tal, 77, and has accumulated the “sum™ of the sidues afong the sukhing, <

At this point each virtual processor has reached the tail of its sublist. It also has the tail of the previous
sublist. which is the random position it chose during initialization. By writing the processor’s index into the




tail of the previous sublist and then reading the index at the tail of its own sublist, the processor determines
the index of its successor's sublist. From this index the processor creates a link from its sublist sum *9 its
successor sublist sum to form a new shorter linked list, see Figure 7.

proc: [rudom[head] tail l m
tist: [ indes |7

KEY

Figure 7:  The figure shows finding the reduced list of sublist sums during Phase {. Euch processor writes ns index
at its random position in the linked list, . and reads the index written at the tanl of its sublist, /7. This index 1s the
index of the processor with the successor sublist. The tail sublist finds no index at the tail of its sublist.

For example. consider the tail of the first sublist in Figure 7. The rundom position tor Processor 2 is
the tail of the first sublist. Processor 2 writes 2 at that tail, ie the tail of the sublist previous to Processor 2°
sublist. Then Processor () reuds the index at the tail of its own sublist, namely the tirst sublist. The value is

2. the processor index of its successor sublist. Thus, Processor () Jinks 1ts subhist 1o the sublist at Processor
bl

The tail of the new linked list corresponds to the tail sublist. A processor can determine whether is
sublist is the tail sublist because no processor wrote its index in the tail. The processor tor the tail sublist
can now set the tail of the new reduced linked list to a self loop. The values of each node of the reduced
sublist is the sublist sums found in Phase 1.

Phase 2: Depending on the size of this new linked list the algorithm tinds the scan of the reduced
linked list recursively, using Wyllie's algorithm, or serially. Figure 8 shows the result of this phase ot the

Jdooon™~onnnee onon’

KEY proc: l randomJ head! tail lscaa]

algorithm.

Figure 8:  The list scan on the reduced list ot sublist sums,

Phase 3: Phase 3 starts with the scan value found in Phase 2 as the scan value tfor the head of it sublist,
see Figure 9. Each virtual processor inds the scan of the remaining nodes in its sublist in the same manner
as in Phase 1. It traverses its sublist setting the scan of each node to the sum of the scan and value of the

10




previous node. Again, after 5,1 = 1.2,3,..../ steps load balancing is done.
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Figure 9: The scan of the reduced list found in Phase 2 are the scan vatues tor the heads ot the sublists.

Restoration: Finally each virtual processor reconnects the sublists to form the onginal linked list. using
the values saved during initialization. That is, each processor except Processor () replaces the self loop at its
random position with link to its sublist head. Figure 10 shows the final scan values and the restored linked
list that is the result of the completed algorithm.
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Figure 10: The resulting scan values of the linked list found in Phase 3. The links at the tails ot the sublists. /¢, are
replaced by links to the sublist heads, /1. to restore the linked list to ws original form.

3 Vector Implementation of List Scan

We implemented our list scan algorithm on a CRAY C-9N), a vector multiprocessor. Vector multiprocessor
machines consist of multiple scalar processors, ecach augmented with a bank of vector registers, pipelined
functional units, and vector instructions  The functional units divide their operation into several stages <o
that the clock speeds can be increased. On every clock cycle another element from the vector register enters
the pipeline of the functional unit while one results exits the pipeline. The delay between the time the first
operands enters the pipeline until the first result leaves the pipeline is call the latency or start up time of the
functional unit. If the functional units are fully pipelined, they can accept new operands every clock cycle.




Multiple functional units can process data simultaneously, and if the hardware permits, the results of one
functional unit can be chained directly to the input of another unit. Thus, to execute operands of length
on a fully pipelined functional umit with start up time s takes s + » clock cycles, where n < -, the vector
register length. To hide the latency ~ we want n as close to v as possible.

The vector multiprocessors are typically connected through a multistage interconnection network 1o a
common memory. Memory is composed of multiple memory banks that can access different addresses in
parallel using a single global address space. Once a memory bank has been accessed it cannot be dccess
again until there is a delay, called the cvcle time. Usually the memory is optimized for sequential access.
That is, banks are fully interleaved so that successive addresses are on successive memory banks and tue
number of memory banks is greater than the cycle time. In this way, memory can be accessed sequentially
aone element per clock cycle. Vectors can be loaded and stored sequential (stride = 1) or at every 4" element
(stride = k) of memory. Bad choices for k can result in the same memory bank being accessed at a rate
higher than the cycle time and a memorv-bank conflict occurs, causing memory stalls. Memory can also
be accessed at arbitrary locations using an index vector. Often such loads are called gather operations and
stores are called scatrter operations. Because of memory bank contlicts each element during a gather or
scatter typically is accessed at a rate iower than the machine clock cycle (about 2 clock cycles/element for
random access patterns on the CRAY Y-MP machines). In addition to cycle time delays there are access
latency time delays. The latency for a load is the time to get the first word from memory to the register and
often is much greater than the latency of the functional units. However, for CRAY Y-MP machines memory
access latencies are about the same. but are getting longer as the machines get bigger.

When we implement a PRAM algorithm on vector multiprocessor. we treat each element in a vector
register as an element prmocessor of a SIMD machine. We call the vector element an element processor o
distinguish it 1 ,m a full vector processor. Any data parallel algorithm can be vectorized und parailelized
by having an element processor do the work of a virtual processor in the algorithm. For example. on a
CRAY C-90 eaci processor has a vector-register length ot 128 and there are 16 processors. Therefore. we
can have as many as 2048 clement processors. However, by using strip-mining | 19] or loop-raking |25, 5|
we can assign the work of several virtual processors to a single element processor.

We implemented our list scan algonithm using C and the standard Cray C compiler on a CRAY C-90).
Because many of our vector operations use indirect addressing we needed to give compiler directives in
order to get the compiler to vectonze the loops. the only portion that is not vectorizable is the serial list
scan in Phase 2. All loops we present in this section can be vectorized. In the actual implementation. we
attempted to reorder the statements within a loop in order to till the multiple functional units for concurrent
operations, to avoid contention between input/output memory ports and the gather/scatter hardware, and to
avoid write after read dependencies [12]. Chaining is also possible within loops. Because memory access
is dependent on the data, there is nothing we could do to avoid memory bank conflicts. except possibly
randomizing the input.. However, since we are choosing random positions for the heads of the sublists,
systematic memory bank conflicts are unlikely.

In this section we give pseudo C code to illustrate our implementation of the single vector processor
version. In section 5 we show how we maditied this algorithm for a vector multiprocessor machine. Below
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we use three structures containing sets of vectors to simplify the presentation. However, in our actual
implementation we use individual vectors. For euch subroutine we discuss the vectonization, develop an
equation for estimating the execution time, and present the C pseudo code.

List_Scan We treat the linked list {{ as a pair of vectors where one vector {l.nexr gives the indices of the
successive nodes in the linked list and the other vector {l.value gives the values of the nodes. The scalar
{l.head is the index of the head of the linked list and the scalar {L.n is the length of the linked list. We assume
that the linked list terminates with a self loop. The resulting list scan will be store in the vector {[.sum.

We use another set of vectors vp that represent the virtual processors, which we periodically pack as
processors drop out. The vectors vp.next gives the index of the next successor in each sublist, vp sim the
current “sum’ of each sublist, and vp.proc.id the virtual processor id. The scalar vp.n is the number of
currently active virtual processors.

In order to avoid having to check whether a processor has reached the end of a sublist at every puinter
dereference we modify the parallel algorithm described in the previous section. During initialization at the
tail of each sublist we destructively set [l.n« r/ to its own index to create a self loop and set //.ralue to zern,
where zero is the identity value of the scan operator. In this way, we can repeatedly add the tail value to the
sublist sum without affecting the sum.

Finally, we use a set of vectors s/ to save information about the sublists. So that we can restore // before
returning from LIST_SCAN we save the random indices of the tails of sublists in sl.random. the values of the
tails in st.vafue, and the successor links at the tails, namely the heads ot the sublists in sl icad. During the
course of the algorithm we save intermediate results, sl.1ail, the index of the tail of cach sublist, sl the
sum of each sublist, sl.next, *he index of the the successor sublist.

LIST_SCAN starts by calling INITIALIZE which sets up the sublists and returns the number of sublists
created. In Phase | LIST_SCAN alternates between traversing each sublist and packing out completed sublists
until no sublists remain. INITIAL_RANK traverses «{/] links of each sublist summing the values at each node
(in Section 4.3 we discuss how we determine the values of s{/]). Then INITIAL_PACK load balances the
remaining lists by removing the completed sublists from vp. It suves the results of the completed sublists in
vp and removes them from s/ by packing the remaining sublists to the initial portion ot the arrays. By packing
the arrays we effectively reassign virtual processors 1o element processors. Finally. INITIAL.PACK retumns
the number of incomplete sublists rémaining. After all the sublists have completed. FIND _SUBLIST_LIST
forms a linked list, sl.next, of the sublist sums, sl.sum. In Phase 2 it tinds the list scan of this linked list
by calling either LiST_SCAN recursively, the vector muitiprocessor routine WYLLIE. or the serial routine
SERIAL LIST._SCAN. The resuits are put in the virtual processor armay vp.sarn. Phase 3 is like Phase 1 and
proceeds by altemating between traversing the sublists for «[/] nodes and packing out finished sublists unts)
no sublists remain. Finally, RESTORE_LIST puts back the original links and values at the tails of the sublists.
All the routines are vectorized except SERIAL _LIST_SCAN.




List_Scan(/l.sum. ll)

{

/* Phase_1 */

{ =0

vp.n = sln = INITIALIZE(vp, sl U},
while (vp.n > 0) {

/* Imtialize the pack counter */
/* Initialize the virual processors */
/* Find the sublist sums */

INITIAL _RANK (vp. (L. 5[l ++ );
vp.n = INITIAL.PACK(vp. sl. ll};

}
FIND_SUBLIST.LIST( !/, 1),

/* Turn the sums into a list */

/* Phase 2 */

if (sl.n > wyllie_cutoff)
LIST_SCAN( vp.sum.sl});

elseif (si.n > serial_cutoff)
WYLLIE( vp.sum. sl);

else
SERIAL_LIST_SCAN(vp.sum. sl.next, sl.sum.0);

/* Recursive */

/* Phase 3 */
=0 /* Reset the pack counter */
vp.n = sl.n; /* Reset number of virtual processors */

while (vp.n > 0) { /* Find the scan of the sublists */
FINAL RANK(vp. Il s{l ++]);

vp.n = FINAL_PACK(vp. sl. I},

}
RESTORE_LIST(s{. {l) /* Restore values at sublist tails */
}
Initialize: Initialization starts by finding si.n, the appropriate number of sublists to use given the length of

the linked list. In Section 4.3 we discuss how 1o determine what is an appropriate value for s/.n. GEN . TAILS
finds si.n pseudo-random positions in the linked list, s/ random. which are 1o be the tails of the sublists.
It also ensures that none of these positions are the tail of the whole list. To simplify the implementation
we chose to use equally spaced positions and assumed that the linked lists are randomly ordered. If the
ordering of the links is random then we can expect sublist lengths to tollow the same distribution as when
the heads of the lists are chosen randomly. Next INITIALIZE saves the links and values at the tails. The
head of the tirst sublist is the head of the whole linked list. Because the links are retrieved from random
positions to retrieve Il.next at sl.random requires a load and a gather, and to save slhead requires a store.
Then INITIALIZE gathers {L.value at sl.random and stores them in sivalue.
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Next INITIALIZE tumns the linked list into a set of sublists by setting the tails to self loops and tail vaiues
10 zero. As the tails are at random positions these assignments require two scatter operations. We need not
worry about the value of the tail of the whole list in Phase | because we do not need the correct sum tor the
tail sublist when tinding the scan in Phase 2. Finally INITIALIZE initializes the virtual processor vectors: it
stores the heads, stores zero’s at the sums, and stores the processor id’s.

Initialize{ vp. si. ll)
{
sl.n = COMPUTE_NUM_SUBLISTS(!.n);
GEN_TAILS(sl.random. sl.n. ll.n);, /* Find random positions */
sl.head|0] = ll.head. /* Set head of first sublist */
for (i = 1./ < sl i) | /* Save tails of sublists */
slhead(i] = L.nextsl.random{i}], /* Gather heads and save */
sl.valueli] = ll.value(st.random|:}]. /* Gather values at tails and save */
/* Set up sublists */
IL.value{sl.random{i]] = ZERO: /* Scatter zero at tails vatues */
ll.next{sl.random{i]} = sl.random{:}; /* Scatter self loops at tails */
}
for (i =0,/ < slmiiw) /* Initialize virtual processors */
vp.next(i] = slhead(s, /* Store heads */
vp.sum{i]| = ZERO: /* Initialize sums */
vp.proci] = i, /* Assign processor id's */
}
}

The time for INITIALIZE in CRAY C-90 clock cycles (4.2 nsec) is
.I.Imllaluc( m) = 13w + 8700,

where 1 is the number of sublists.

Initial_Rank: [INITIAL_LRANK traverses each sublist for n_steps times computing the sum ot the links.
Because the weight of the tail is zerm, it can repeatedly accumulate the sum at the til without atfecting the
sum. Each traversai of the vector of links requires retrieving the values and links at arbitrary locations in /1.
Thus, it uses two gather operations. To increment the sum requires loading, adding to, and storing vp.sum.
Finally it needs to store the current link vp.next.
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Initial_Rank(vp. ll. nsteps)

{
for (j = 0. < nsteps; j ++) /* dereference n_steps times on each sublist */
for (i = 0;i < vp.n;i++) |
vp.sum(i] += ll.value{vp.next(i]}; /* Gather value and increment sum */
vp.next(i) = ll.next[vp.next(i}]; /* Gather successor link */
}
}

The time for inner loop of INITIAL_RANK is

Tinwial Rank step( ) = 3.4 + 80.

where z is the vector length of vp.

Strip mining currently is performed on the inner loop. However, it would be more efficient to do strip
mining of the inner loop outside the outer loop. In this way, we would not need to load and store intermediate
resuits between successive iterations of the outer loop. The only way to get this effect on the CRAY is to
unroll the inner loop. We did not do this optimization.

Initial_Pack: After traversing the sublists s, steps LIST.SCAN packs out any completed list. Packing
requires saving the results of the completed lists according to their processor id’s and then packing the
remaining lists in vp so that they are contiguous. A sublist is complete if the virtual processor has reached
the tail of the sublist, which is a self loop. To test for a self loop requires loading vp.next, gathering (L.next
at vp.next, and testing whether the two are equal. There ure two ways we could get the compiler to save the
completed lists. One is to compute the indices of the completed lists and then using these indices to gather
vp.sum, vp.next, and vp.proc_id. Then it can scatter vp.sum to sl.sum and vp.next to si.tail at the indices in
vp.proc_.id. The other way is to load vp.sum, vp.next, and vp.proc id. change them so that all active sublists
use one of the completed sublist values by using a vector merge operation. Then, as before, it can scatter
vp.sum to sl.sum and vp.next to si.tail at the indices in vp.proc_id. The effect is to have all active sublists
write to the same location in si.sum and si.tail. This approach causes much memory contention because
most of the sublists are active. Clearly, the former approach is better and is what we used.




Initial_Pack(vp. sl. ll)
{
;=0
for (i = 0:i < vp.n; i) {
if (vp.next(i] == {l.next{vp.next[:]}) { /* Save completed sublists */

sl.sum{vp.proc_id(i]] = vp.sum(:l; /* Gather and scatter sum */
sl.eaillvp.proc id(i]] = vp.nexi[i}. /* Gather and scatter tail */

} else { /* Pack remaining sublists */
vp.procid|j| = vp.proc.id(i]; /* Gather and store processor id's */
vp.sum{;] — vp.sumii}; /* Gather and store current sum */
vp.next[j +] = vp.next(i]; /* Gather and store current link */

}

}
return j; /* Number of remaining sublists */

}

Packing the remaining active sublists is done by computing the indices of the active sublists and for
each vector, vp.next, vp.sum and vp.proc_d, gathering the vector using the active indices and then storing
contiguously. The time for one application of INITIAL_PACK for vectors of length r ix:

Tiawatpack sepl ) = Tr + 540.

Find_Sublist_List: At this point each sublist has reached its tail and is ready to start Phase 2. Recall
that sl.zail holds the tail of each sublist, while s/.random holds the tail of the previous sublist. Therefore,
when FIND.SUBLIST _LIST writes the sublist index t0 lL.next at sl.randem, then it is writing the index of the
successor sublist to the tails of the sublists. (We write to [Lnext because we can easily regenerate the self
loops there.) This write requires loading si.random and then scattering the index to /l.next at i random.
Note that sl.random does not contain the index of the tail of one sublist, namely the tail of the whole list.
Therefore, if it writes the negative index it can distinguish between values set at s, random and the original
self loops in /l.next. Next FIND_SUBLIST_LIST gathers these indices from {.next, but this time using si.rail.
These indices are the indices of the successor sublists as long as they are negative. Only one index is
positive and it is the index of the tail of the whole list. Notice that the writing and reading of the indices is
done in separate loops because the reading of the indices may not be done in the same order as the writing.
That is, we need to be sure that the write is complete before the read starts and that no chaining is allowed.




Find Sublist_List( /L. s!)
}
for (i = l.i < slai+)
ll.next{sl.random[i]] = —i; /* Scatter index of next sublist */
for (i =0;i < slmiw){ /* Create list of sublists */
next = ll.next{sl.tail(i]); /* Gather index of next sublist */
sl.next{i] = —next; /* Store the index */
if (next > 0){ /* Found tail of whole list */
sl.nextfi] = &; /* Set tail sublist to seif loop */
sl.random([0] = next; /* Save tail of whole list */
sl.value[0] = ll.value[next); /* Save its value */
lL.value{next) = ZERO; /* Set tail value to ZERO */
}
}
for (i =0;i < slniv) |
IL.next{sl.tail(i]] = sl.tail(i]. /* Scatter self loops at tuils */
sl.sum{i] += sl.value[sl.nexti}: /* Gather tail values and increment sum */
vp.next(t] = slhead(i]; /* Reset virtual processor heads */
}

}

Once FIND_SUBLIST_LIST tinds the tail sublist it sets the tail of sl.next to a self loop, saves the tail of the
whole list and its value in sl.random{0] and sl.value{0)], and sets the value of tail of the whole list to zer.
Note that it was not riecessary to set the value of the tail of the whole list to zero tor the Phase | because we
do not need the correct sum of the tail sublist to tind the scan of the reduce list. but in Phase 3 we need tail

value set to zero because, otherwise, we may repeatedly add the tail value to the scan at the tail. f
Finally, FIND_SUBLIST_LIST returns the tails of the sublists to self loops, which requires loading sliail

and scattering it to [l.next. Since the tail values were never added to the sublist sums during INITIAL _RANK

it next adds the tail values to the sublist sums. The tail values were saved in s/.value during INITIALIZE by

the successor sublist and therefore must be indexed by sl.next. It loads sl.sum, gathers sl.value using sl.next.

adds the values to the sums, which are then stored. Lastly. it reinitializes the virtual processor heads in

anticipation of Phase 3. Reinitializing the heads requires loading sl.fiead anci storing it in vp.niext.
The time for FIND_SUBLIST _LIST is

Tind_Subliv Lo 111} = 9 + TT0.

where m is the number of sublists.




Scan of the Reduced List: Next LIST_SCAN finds the list scan on the sublists sums si.sum using the
list sl.next. If the list is large then it finds it recursively. If list length lies between the recunive cutoff
and the serial cutoff it uses WYLLIE. If the list length is small it uses SERIAL _LIST.SCaN. The ume for
SERIAL _LIST_SCAN is:

Tsenal Lawt _Scand 1) = .1m + 255,

where m is the number of sublists.

Final_ Rank: In Phase 3 LIST.SCAN repeatedly calls FINAL _RANK to travene the sublists for n_steps steps.
The scan of each sublist is found in the same manner as 1n Phase 1. The only ditference 1s that FINAL RANK
scatters the resulting scan vp.sum to {{.sum at the current positions in vp.next.

Final.Rank(/l. vp. n_steps)

{
for (j = 0.) < nsteps: j v+
for (¢ =0,/ < vpt++) |
iL.sum|vp.next|i]] = vp.sum[:]. /* Loud and scatter sums */
vp.sum{i] += ll.value[vp.next{1]};  /* Gather value and increment sum */
vp.next(i] = ll.next{vp.nexi(i)]; /* Gather successor link and store ™/
}
}

The time for one iteration of the inner ioop of FINAL RANK 18

Teinal_Rank wept i) = So o+ 100,

where r is the number of sublists remaining.

Final Pack: The packing step in Fhase 3 is a little simpler thun the packing step in Phase 1. Only the
completed lists need to write their sums to /.sum because the active sublists will wnte their sums on the
next call to FINAL_RANK. However. it is faster to simply load all of vp.sum and scatter to [Lsum than it is
to compute the indices of the completed sublists and to gather vp.sum and scatter them to /Lsum. For active
sublist, FINAL PACK packs vp.sum and vp.next as in INITIAL_PACK. However, 1t does not need to keep track
of the vp.proc.id.




Final Pack(vp.sl.ll)

{
J=0;
for (i =0.i <vpmiive)|
I sum[vp.next(i]] = vp.sumli], /* Load and scatter sums */
il (vp.nex:i]! = llnext{vp.nextfi]]) {  /* Pack remaining sublists */
vp.sum(j| = vp.sum(i}; /* Gather and store sums */
vp.next(j ++| = vpnext|i], /* Gather and store links */
}
}
return J.
}

The time for FINAL_PACK is:
TF nai_Pack siepl( ) = 60 + HX).

where - is the number of sublists to be packed.

Restore List:  Finally each processor retumns the onginal links and values at the sublist tails. This requires
loading sl.random, sl.head. and sl.value and scattening to [Lnext and L value using sl.random. Because the

tail of the whole list is supposed to be a self loop anyway, 1t does not set [lnext at the tal.

Restore List(s!/. /1)

{

Il.value(st.random{0]] = st.value{0)]: /* Reset value of list tail */

for (i = 1ii < slniivs) |
ILnext{sl.random(i]] = sl head[!}. /* Scatter links at tails */

{Lvalue|st.random{1]] = sl.value{s].  /* Scatter values at tails */
}
}

The time for RESTORE_LIST is
TRrevore L 112) = dm 4 250,

where /1 is the number of sublists,

4 Analysis of the Algorithm
In Phase 1 and 3 of the algorithm we periodically perform load balancing so that processoms that have

tinished their sublists are removed from the computation. We would like to pack as soon as there are several
finished sublists. However, if we pack too frequently we pack none or cnly a few sublists. and when there
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are many sublists packing is expensive. If we do not pack often enough. we may have many processors
performing needless work repeatedly chasing the sublists™ tails. In order to determine when are good nnmes
to pack we first need a better understanding of what the expected distribution of the sublists lengths are.
We tind an estimate of the distnibution in Section 4.1. Next, in Section 4.2 we determine what is the overall
cost of performing the algonthm, given the timing data in Section 3. In Section 4.3, aiven » the length
of the linked list, 1 the number of sublists, and | the number of ranking steps to perform before the tirst
pack. we determine how to minimize the costs of the packs and the unnecessary tail chasing. [n Section 4 4
we discuss how to tind m and ~; given n. Finally, we summanze the costs, by giving an estimate ot the
overall performance of the algonthm and comparnng it with the actual performance. The main theorem of
this section is:

Theorem 1 The list ranking algorithm in this paper has expected time O/ p+ wIn i/ nryon p processors,
whearm < n/ logn.

4.1 Analysis of sublist lengths

In this sectixn we show that the Jistnbution of the lengths of the sublists s approximately a negative
exponential distribution, when n and 0 are large. The analysis is from Feller {10, We fint consider the
following situation. Let \'j..... X, be . random numbers in the range (0.1) For truly random numbers
Prob(.\', = \,) = O for: # ;. Therefore, thc numbers partition t0).}) into 1 + 1 subintervals. Lot

Xi1).--. Y[, denote the X' 's ordered by their sizes from smallest to largest.,

Proposition 2 (Feller [10)) // \'...... X\, are independent and uniformiy distributed over the ranve 10,1
then as m — x the successive intervals in our partition behave us though they are mutuatly mdependent

exponentially distributed variables with 11X, ~ N, = <.

e

Lemmal /f\,...... ', are independent and uniform!v distributed aver the range (0.1 then

"

- / ! ar T -t
”I‘l)ll{.\“)> '*} =(l - = ot .
1 [

Proof: The length of (0. X (y)) exceeds '/ ifFall X'y, Vs areinthe interval i —. ). Because the events
are independent and uniformly distributed the probabiiity v combined events happening is (1 = =17 A

t

m — ~x this probability tends ¢« ~'. Thus. the distribution of the Aest interval inthe fimat s a negative

exponential with mean ="', |

-1

Lemma 4 (without proof) If Xy. .. ... N follow an exponential distribution with expected value jr=' then

Xy + -+ Ny follows a gamma distribution
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Lemma$ IfX,...... X, are independent and uniformly distributed over the range (0.1) then for every
Sfixed k
t “om t\! t o i
Prob{ XN > =) = — | S et g,
wbt¥a > ph= S () (5) - pr S S

which is the tail of the gamma distribution(/ , ;..

Proof: In order for X(;) > +. less than & of the X's lie in the range (0. =1. Because the X' events
are independent and uniformly distributed the probability that exactly j ot the XS lie in the range (0. =)
follows a binomial distribution with probability of success equal to - and probability of falure equal to
1 - & Thatis,

m (!)1 | I)""J lll(l)i-l)'-~(lll—j+l’/’(l I)""
j m m - nt 7! 1

"

Nt
To obtain Prob{.\'(yy > L} we need to sum over the range ; = O..... th=n. 8
Proof (of Proposition):
X4 is the sum of the first b intervals, XN  Noy = N0V = Voo, Inthe limutas, i —

Nz, follows g gamma distnbution with parameters . k. which is the distribution of the sum ot & mutually
independent exponential variates with expectation - Therefore, the successive intervals in the ot behave
at though they are mutuaily independent exponential variates. |

Retumning to the distribution of sublist lengths. In our case. we are choosing v random positions in
a list of length ». Becuu:= hese are random positions we can assume the list is laid out in order trom
left to right. Then the lengths of the sublists are the intervals determined by 1/ random integral numbers
Vi Y, fromCton - 1. Let

I,u = Y“,
I;, = Y(,, - )'(,_“

I'I" = - ,.(m)

W > m n— x,and m — x then the lengths of the sublists tend to behave as mutually independent
exponential variates with expectation = That is, if . is a sublist length, then

Prob{/ > r} = ¢~ % = u.

Ifweleta = (m + .5)/0m + 1) and solve for .r we get an estimate of the expected length of the shotest
sublist of 1 4+ 1 sublists, namely

Exp( L) = iln(”' +! )
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If we leta = .5/(m + 1) and solve for r we get an estirate of the expected length of the longest sublist,
aamely
Exp(Li)) = % In(2(m + 1)).
]

In general, we can estimated the expected length of the /'* smallest sublistby settinga = (11 =i+ .5}/ (m+1]
and solving for £. This estimate seems to be reasonable for n and m as smallas n > 1000 and v > 100 for
all but the smailest sublist. A better estimate for the smallest sublist seems to be

m+ 1

m

n
Exp( L)) = E,m ).

Figure 11 shows the expected length of the i'* sublist for several values of i when # = 1000 and compares
it to some actual data averaged over 20 samples. Notice that as 1 increases the expected length of the
longes: sublist decreases and there is less variation in list lengths. Therefore, to reduce the parallel running
time we want to make m large. However, as /1 increases the costs due to packs, initialization, and Phase 2
increases.

1000-
-
)
[
X 800~
2
60~ m=100 m = 150
- m = 200
00 - . N

1} I
0 50 100 150 200 250

sublist index

Figure 11: The function cures are the expected length of the /" shortest subhist when 1 = LK tor several
values ot 1n, the number of sublists. The nhserved lengths were tound by taking 20 samples ot dividing a list ot size
n = [0 into 1 sublists and for the collection of the /" shortest sublist of each sample. tinding the average length
(shown with a data symbol) and the minimum and maximum lengths (shown with an error bar).

4.2 Cost of the algorithm

Using the timing equations of each piece of the algorithm we can determine what the cost ol the complete
algorithm, assuming we anow the exact lengths of the sublists and when packs are performed. Assume we
traverse s,.¢ = I.....1 links of each list between packs. Let 5, be the total number of links traversed in
each list before the " pack. That is,

S = 0
5 = Y. TR P |
s = 8 =S 1=l /




Let 4(r) be the expected number of sublists that have length greater than . From the previous section

glr) = m x Prob(sublist length > r) nH

= me™ W (2)
The dotted line in Figure 12 shows g{ ) when » = 10000 and m = 200. The x-axis is the sublist length
and the y-axis is the number of sublists with that length. You can think of cach sublist as being laid out
from left to right, and placed one ubove the other from longest to smallest, each starting at x = €. That is,
the y-axis is the number of sublists that are still active in the computation, namely the vector lengths of the
computations, while the x-axis is the number of links traversed in euch list. As we proceed from left to
night, we are performing list ranking on a vector of length equal to the height of the step function. Every
time we perform a pack operation (at the comer of a step) the vector length decreases. The area under the
step function in Figure 12 is the expected total number of links traversed in either Phase | or Phase 3. If we
packed every step then this number would be n, the area under the curve ¢(.r). Our aim is to minimize the
area under the step function that is above the dotted line, while keeping the cost of packing down. The cost
of packing is proportional to the sum of the heights of the step tunction.
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40

# of sublists (vector length)

olll =
b} 30 60 20 120 150 180 210 240 270 300
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Figure 12: The dotted function is ¢(s) the expected number of sublists that have length greater than . where
n = 10000 and m = 200. When the number of packing steps is 11, the expected execution ume on the Cray C-90 18
minimized by packing at the vertical lines. The step function shows the expected number of sublists that are currentiy
active at every iteration of hist ranking. The size of a step 1s the expected number of sublists to complete since the
previous pack.

Because the «,’s are the same for both Phase | and 3, we can combine the costs of INITIAL _RANK and
FINAL_RANK to get a single cost equation for ranking. Similarly we can combune the costs of INITIAL _PACK
and FINAL_PACK to get a single cost equation for packing. Thus, the costs of a single rank step and a single
pack are:

Taok wepl ) = B.4r + 180
Toack wpl ) = 130 + 940,

where r is the vector length over which the rank and the pack are taking place. The expected total time of
all the packs are:




=1
ST113g050) + 940]
=0
1=
133" g(50) + 9401
1=0

5
1}

where g( 5.} is the expected number of sublists remaining after 5; steps of list ranking. Because we do »,
steps of list ranking between packs, the expected total time of the list ranking 1s:

(=1
Trak = Q_[%4+1(8.39(5,) + 180))
=0
=1
= 8.4Y xyg(9) + 1803
=)

8.4n + 1805;.

AV}

where 5 is the first S, greater than the length of the longest sublist. If we pack everytime a sublist completes
then 3/} s.+19(9,) = n. However, in general we delay packs and the sum is greater than n (see Figure 12).

Similarly, we can combine the times of INITIALIZE, FIND_SUBLIST _LIST, and RESTORE.LIST since they
depend on the number of sublists only. These combined times are:

Towerl 111) = 260 + 9720,
Thus, the expected total time for Phase | and 3 the algorithm is:

Tor4py = Trank + Trock + Tonner R3]

43 Minimizing the time given fixed parameters

Suppose we are given n the length of the original linked list. /v the number of sublists and / the number of
times to pack. How do we decide when to pack? The simplest way is to divide / in to the expected length
of the longest sublist and pack every fixed number of inteivals. However, from the previous discussion we
know that the lists do not drop out at a constant rate. That 1, () the expected number of sublists that
have length greater than . is not linear: it is exponential. In this section we show at which iterations of hist
ranking we should pack so as to minimize the expected execution time of the algorithm, given #. i and /
In the next section, we describe how we determine m and / given ».

Consider n, 0, and [ fixed. We want to minimize the execution time with respect to Sy. 5. 51.... .| TR
where %, is the number of iterations of list ranking that have occurred at the i pack. That is, we want to
minimize the following function:

-1

Tovers(So..... 500 = Y [(Ser = S HaglS) +b) +cq(S,) +d) + om + . (4)
[}]




where Trank sep(£) = 02 4 b, Toack wep(+) = ¢ + d, and Tomer( #) = ¢ & + f. We can minimize Equation ¢
by taking partial derivatives for each .5, and setting to zero 10 obtain a set of / simultaneous equations. That

is,

()LZ = a(Sipr = S5 = (ag(S) + W)+ (ag(Sci) + )+ eg'(SH =0
. 's'l— ) - ﬂ( s()
"(9,) = g2) = 900) 5
715.) Sior = 5.+ (5)

Each equation specifies that for a set of three consecutive 5°s, 5,_;, 5,, and 5,4 the 5, is located where
the slope of 5 at 9, is equal to the slope of the line through the points (5, g( S~ ) and (S, 4 + . 9050,
see Figure 13.
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Figure 13: Time is mimmized when, for each set of three consecutive N's. N, _ . S, and S, 4. the slope (N, ) s
equal to the siope of the line through the points (5, . y(5,21)) and (5141 + 7. 4(5,]). 57 15 the point where tme would
be minimized if there was no cost for packs.

Because ¢ is the exponential function it is not obvious how tosolve for 5, given 5, _; and 9,4 ,. However,
it is not difficult to solve for 5,4 given 5, and 5,_; (or to solve for 5, _; given ¥, and 5, . (). Namely,

. oglS ) =glS) e
Gy = 5, A2 =yB)
+ 9'(S5,) “
Se_)—glS) e

= 54 yl mx) .!/( ) '.. )
7'/( ‘Sl’ it

since g(r) = me ™~ ""/"_ That is, if we know the value of two consecutive packing points we can determine
the following (or previous) packing point. Since we know Sy = m, if we know 5, we can compute
Sao Y, iteratively.

The vertical lines in Figure 12 were found using 5y = 14.7 and the equations in Section 3. Notice that
the 9,'s become increasingly further apart for larger /'~ reflecting the fact that the ate sublists complete
slows down over time. The factor ¢/« in Equation 6 reflects the relative cost of packing and ranking. To
see the effect of this fuctor, consider how the spacing of packs over all the iterations changes if we keep the
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total number of packs the same but increase the value of +. When ¢ is increased, pucking would occur less
frequently during the initial iterations of ranking and occur more frequently during later iterations. That
is, the vertical lines in Figure 12 would be further apant for small iteration numbers and closer together for
large iteration numbers if we incicase ¢. This reflects the fact that initially packing is expensive because
the vector lengths are long and later packing become less expensive because the vector lengths are short. If
we make c large enough eventualily we tind that the execution time is rcduced by decreasing the number of
packs even though the number of ranking steps increases. In the next section we consider how to determine
the best number of packs to perform.
We can simplify Equation 4 by using equation 6 to substitute for &,y — 5, That is,

=1 {=1 =1
Z(SH-' - 51 )(“y( Sl) + b) “'s'l.'/< S()) + Z(-S.A-Fl - 's.l )’/( sn) + 4 Z( '5‘14-[ -5)
4] | 0

[}

1}

-1 )
amSy + a Z[,%(y( S_1)=qgt8)) - :—ly/t S+ 0
|

=1

amSy 4+ an - "Z gls,) + b5,
!

where 5 = ZInm. Thus,
n

Tpyeri(S...... Sy=an +h—Inm + (aSy + e+ cdm +1d + .
1

For the CrRAY C-90
Tprepy =840 + 18()1 Inm + (8.45) + 39V + 940/ + 9720). Al
m

where m is the number of sublists, .5 is the number of links truversed before the first pack, / is the number
of packs and is a tunction of 5. i1, and n.

4.4 Overall vector performance

From the previous discussion we have a way to determine at which iterations we should pack. it we know the
length of the whole linked list, the number of sublists, and the iteration number of the first pack. However,
all we know is the the length of the whole linked list, namely n. We now need to find good choices for the
number of sublists 1 and the iteration number of the tirst pack 5. which determines the number pucks /. OQur
approach is to estimate the running time of the algorithm, using Equation 7. for various values of 11, 5 ang
n. Then, for each value of » we tind vaiues of 11 and ) that minimized the running time within about two
percent. Finally, we hit functions to »r vs. » and 5y vy, 1. Itappears that /0 and &) are approximately cubic
polynomials of log ». It is these fitted polylog functions that we use in our impiementation to determine 1
and 5y given n and Equation 6 to find successive values of 9,.

However, we found that 5; was a very sensitive parameter. From the previous section our intuition
is that packing should occur less frequently as we proceed though the processing. However, if S} is too
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small, the packing steps become rapidly closer and closer until we are packing at every iteration of list
ranking. The result is far too much packing and performance degrades rapidly. To protect ourselves from
this sensitivity we modified Equation 6 so that successive 5's are always increasing. With this moditication
we found the the fitted cubic log functions performed very well in practice.

Figure 14 compares the predicted time with the observed running time. The predicted time was computed
by estimating the parameters values for each value of n using the fitted cubic equations and then applying
the equation 3 for those parameter values. As the figure indicates the equation is an accurate predictor of
the running time. Notice that the running time decreases until it reaches an asymptote of about 8.6 clocks

per element.
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Figure 14: The predicted performance and measured pertormance of the vectorized LIST_SCAN on one processor
CRAY C-90. The values for the parameters 1t and 5, were determined by minimizing the predicted performance.

S Vector Multiprocessor List Scan

In Section 3 we showed how we implemented the vectorized version of the data paraliel list scan algorithm. In
this section we show that extending the algorithm to multiple vector processors is relatively straightforward.
We then discuss issues relating to the vector multiprocessor version performance and its speedup with
respect to the single vector processor version. Finally, we relate our algorithm to other parallei PRAM
algorithms and explain why we chose not to impiement them.

The overall approach is to divide the virtual processors equally among the physical vector processors
and let vectorization proceed on the virtual processor data assigned to the physical processors. The CRAY
C compiler makes parallelizing relatively eusy. Lo s are moditied to be tasked toops using compiler
directives so that different iterations of the loops are divided among the processors. Because our arrays are
often longer than the vector length and we know that the loops can be vectorized, we chose to direct the
compiler to divide the loops into equal size chunks, one chunk per processor, and to vectorize the chunk
within each processor.

For MIMD processors we also tried to minimize the number of synchronization points. Data parallel
algorithms assume that each data parallet step is synchronized. whether or not it is necessary. In the code
we presented in Section 3 we need to synchronize at most after every innermost loop. In particular, we
must synchronize after the loops in INITIALIZE and FIND_SUBLIST.LIST and after Phase | and Phase 3 for
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correctness. If we use the parallel algorithm as described in Section 2 and have equal number of active
virtual processors assigned to physical processors at all times, we also need to synchronize before each pack
in Phase | and Phase 3 so that load balancing can proceed globally across the physical processors.

However, we deviated somewhat from this strict form of assignment of virtual processors. Instead we
assign them to physical processors once at the beginning and pack locally within each physical processor
only. In this way each processor completes all of Phase 1 and Phase 3 independently of the other processors.
The effect is that we need to do no synchronization within Phase | or Phase 3 and there is no load balancing
across processors. Eliminating synchronization avoids needless delays at each synchronization point. No
global load balancing across processors is important because most compilers do not know how to do a pack
operation across processors in parailel. Of course, with some =ffort we couid apply loop raking to get a
vector multiprocessor algorithm for pack [5].

Because we use randomization, we do not expect a significant load imbalance when we only load
balance locally. Even if an imbalance shouid become a problem as the the procedure progresses, only one
across-processor load balancing should be necessary. Our results are quite good. without any giobai load
balancing. If we ignore load imbalance and synchronization costs we can get an estimate of the execution
time of Phase 1 and Phase 2 by dividing the vector lengths equally umong the processors. Namely,

=1
Trvepal 9. S = Z[( St = SNagt S/ p+ by +eqy )y p+di+om/ p+ [
[}]

" .
~ an/p+b—Inm+(aS +ec+ym/p+ld+ |
m

n
= Oln/p+ —Inm;.
m

where p is the number of processors and i < n/ logn.

Unfortunately, to tune the parameters m and 57 we need to mimimize for every possible number
of processors. For a highly or massively paraliel machines tuning the parameters for cvery number of
processors would not be practical. We tuned the parameters for 1, 2. 4, and 8 processors and result in the
execution times shown in Figure 15. For 8 processors we achieve a speedup ot 6.7.

- serial

| e——— 1 processor
om0 ) Processors
- =« J processors
- = § processors

Time / Element (nsec)

4096K 32768K
List lenpth

Figure 15:  Execution times per element on |, 2. 4, and 8 dedicated processors of the CRAY C-90 tor our list ranking
algorithm.




5.1 Other work efficient list ranking algorithms

On one CRAY C-90 vector processor our algorithm takes about 10 clock cycles per list element asymptotically
to find the rank or scan of a linked list. If other algorithms are to be competitive, they must be able to use
no more than 10 cycles per element on average. Below we discuss various other algorithms that have been
described in the literature. Except for Wyllie's pointer jumping algorithm on short linked lists, we conclude
that other algorithms are unlikely to be competitive.

Cole and Viskin devised a parallel deterministic coin tossing technique [7] which they used (o develop
an optimal deterministic parallel list ranking aigorithm (8, 4]. This algorithm breaks the linked list into
subilists of two or three nodes long (the heads of the sublists are called 2-ruling sets); reduces the sublists
to a single nodes; and then compacts these single nodes into contiguous memory to create a new linked
list. It recursively applies the algorithm to the new linked list untii the resulting linked list is less than
{n/log n), at which point it applies Wyllie's algorithm. In the final phase it reconstructs the linked list by
unraveling the recursion in the first phase to fill in the rank values of the removed nodes. The algorithm
runs in O(log n log log n) parallel time and uses O( 1) steps. Later they modified their algorithm to give the
tirst O(log n) time optimal deterministic algorithm [9, 22]. However, algorithms for finding 2-ruling sets
that give either of these time bounds are quite complicated and have very large constants. They also give a
much simpler 2-ruling set algorithm that is not work efficient but has smaller constants (see [4]). Because
it is not work efficient and its constants are larger than Wyllie's or ours, we chose not to implement it.

Anderson and Miller [2) combined their randomized algorithm with the Cole/Viskin deterministic coin
tossing to get an optimal O(logn) time determinsstic list ranking argorithm. As with their randomized
algorithm, the processors are assign log n nodes which they process. At each round each processor executes
a case statement that either breaks contention or splices out a node in its queue or splices out a node at
another processor’s queue. To break contention it finds a loglog n ruling set. Finding loglog » ruling sets
are much simpler (O( 1} ime) than finding 2 ruling sets (((log n} time with large constants). But because
each round involves a nonparaliel three way case statement, where each case needs to be completed by all
the processors before the next case can be executed, its constants are also much larger than ours.

The basic structure of Cole and Viskin’s algorithms is similar to the structure of our algorithm. The
main difference is that we break the linked list into a relatively few sublists that can be quite long, whereas
Cole and Viskin divide the linked list into more than n/3 sublists that are only two or three node: long. To
get such fine grain list lengths is quite expensive and needs to be repeated ()(log 1) times. We find sublists
only a few times and because our sublists are relatively long, we can process the lists at full speed for their
entire length. The primary reason our algorithm is so successful is because it has very small constants
and is work efficient. And as long as the number of processors is small refative to the size of the list the
parallel running time is optimal. The success of the implementation is due to pipelining reads and writes
through vectorization to hide latency, minimizing load balancing by deriving equations for predicting and

optimizing pertormance, and avoiding conditionat tests except when balancing points.




6 Conclusions and Future Directions

In this paper we described a new parallel algorithm and its implementation for list ranking and list scan. List
ranking and list scan are primitive operations on lists and the building block of many parallel algorithms
using lists, graphs, and trees. Because of their expected poor performance on today's supercomputers, there
are virtually no implementations of algorithms using these data structures. Our contribution is that we have
implemented the most basic of these “untouchable™ algorithms on the CRAY C-90 with success.

One of the primary problems with any list ranking algorithm is that the access pattern to the list is very
irregular and unpredictabie. But fortunately, the CRAY class of computers have a very fast memory access
network that makes implementing a list ranking aigorithm reasonable. Itis CRAY's pipelined memory access
and extremely high global bandwidth that makes our implementation so fast.

Although the parallel running time of our algorithm O(»n/p+ n lnm /m), where m is small relative to n,
it is work efficient. And because it is work efficient and has small constants it is the fastest implementation
list ranking and list scan to date. Most parallel list ranking algorithms attempt to tind a large number, ui
least O{ n/ logn) and as many as n/2, of nonadjacent elements in the list und assign them equally among
the processors. Qur algorithm only tries to find a relatively small number, /1, ot such elements. However,
the amount work assigned to each processor can be quite different. But by a unique analysis ot the =xpected
work loads we are able to determine at what iterations to perform load balancing to minimize the overall
running time of the algorithm.

As with any impiementation there are a multitude of possible modification and enhancements that could
improve its performance. A.large part of the performance loss is due to short vector lengths. Ax lists drop
out of the computation the vector lengths shorten. Not only are the vector lengths short, the number of
iterations remaining with short vector lengths can be relatively large, since the longest sublists can be much
longer that the other sublists. Short vectors are inefficient because with each iteration there is a latency due
to filling the vector pipes. On the CRAY computers this inefticiency is fairly small, because these machines
have particularly small vector half performance lengths. But many vector machines have quite long vector
half performance lengths. For these machines it may be better to reconnect the sublists into a single reduced
sublist before all the processors have reached the tails. The elements still remaining in the lists could then
be packed into contiguous memory and then Phase | recursively applied. Keeping track of which elements
have been processed and which have not, requires extra book keeping that would slow down the main
ranking portion of the algorithm. But the trade off may be worth it if the vector machine has long vector
half lengths.

Finally, the question still remains whether having a fast list ranking implementation is useful as a
primitive for other major applications. [f so, we may have opened up major classes ot PRAM algorithms
that can have reasonable implementations. It also would be interesting to see whether our approach of
subdividing a problem randomly into a moderate number of fairly coarse gain subproblems and applving
load balancing periodically can be applied to other computational problems.
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