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Chapter 1

Introduction and Summary of
Results

For more than 20 years, near-field techniques have been formulated and applied to the mea-
surement of antenna radiation and target scattering [1], [2]. The theory, computer programs
and experimental procedures have been successfully developed for the determination of com-
plex radiation and scattering from measurements taken on planar [3], [4], cylindrical [5],
[6], and spherical [7], [8], [9] scanning surfaces in the near field. However, nearly all of the
previous work with near-field techniques has been limited to the frequency domain, so that
radiation or scattering is determined at one frequency at a time. For antennas and scatterers
excited by short pulses, it is therefore appropriate to extend the near-field techniques to the
time domain.

This report addresses the problem of formulating planar near-field antenna measurements
in the time domain, so that a single set of time-domain near-field measurements yields the
entire field and, in particular, the far-field pattern in the time domain or over a wide range of
frequencies. The time-domain planar near-field techniques are developed for both acoustic
and electromagnetic fields and the space outside the region occupied by the antenna is
assumed to be isotropic and homogeneous. Probe correction is ignored, that is, it is assumed
that the probe is ideal so that the exact values of the field on the measurement plane are
known.

Two fundamentally different approaches are used in deriving time-domain formulas that
give the fields in the half space z > Zo in terms of their values on the plane z = zo. In the
first approach the time-domain formulas are obtained by inverse Fourier transforming the
corresponding frequency-domain formulas. Since this approach requires extensive use of the
frequency-domain near-field formulas, we start by giving a rigorous derivation and review of
the frequency-domain formulation that addresses a number of subtleties which have not been
dealt with adequately in the literature. As part of this review, planar near-field formulas for
the static electric and magnetic fields are derived for the first time. In the second approach
the time-domain near-field formulas are derived directly in the time domain. The equivalence
of the resulting time-domain formulas obtained by the two different approaches demonstrates
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the validity of the formulas and the utility of both approaches.
The report is organized as follows. Chapter 1 introduces the subject, outlines the report,

and gives a brief summary of the major results.
Chapter 2 gives a rigorous derivation of the frequency-domain planar near-field formulas.

These formulas are given in a form that is useful for the subsequent time-domain derivation.
The well-known plane-wave spectrum formulas [3] and Green's function formulas [10] are de-
rived for both acoustic and electromagnetic fields. The validity of the plane-wave spectrum
formulas is proven rigorously by showing that they produce the correct field for a general
source distribution. It is shown that the spectrum in the plane-wave spectrum formulas
has one and only one possible nonremovable singularity and its order is determined. A new
derivation of the Green's function formula for the electric field is performed, using the dyadic
Dirichlet Green's function for a half space and the dyadic version of Green's second identity.
Far-field expressions are derived both from the plane-wave spectrum formulas and from the
Green's function formulas. The validity of the far-field formulas is also proven rigorously.
It is shown that the evanescent modes in the plane-wave spectrum formulas cannot be ne-
glected when the far field is calculated on-axis, that is, in the direction perpendicular to the
scan plane, and when the far field is calculated on the scan plane. For all other angles of
observation, the far field from the evanescent modes is negligible compared to the far field
from the propagating modes. These asymptotic results agree with Sherman, Stammes, and
Lalor [11] and with Nieto-Vesperinas [12]. To derive the far-field formulas from the plane-
wave spectrum representation, we use the results of Appendix A on the analyticity and
differentiability of the plane-wave spectrum. The frequency dependence of the far field is
determined as the frequency approaches zero, and it is shown that, in general, this frequency
dependence is different for acoustic and electromagnetic fields.

The propagating part of the spectrum is proportional to the far field, and the evanescent
part of the spectrum is proportional to the analytical continuation of the far field to complex
angles of observation. If this analytic continuation is possible, the complete spectrum can
be obtained from the far field and thus the fields everywhere could be calculated from the
far field.

The electromagnetic power radiated through a plane parallel to the scan plane is expressed
in terms of the spectrum for the electric field. When the medium surrounding the antenna
is lossless, only the propagating modes radiate real power and this power is independent of
the distance between the radiator and the plane through which the power is radiated.

The frequency-domain formulas discussed so far are derived for a lossless medium sur-
rounding the sources. When losses are present, most of the formulas remain unchanged ex-
cept for the propagation constant becoming complex. However, a major difference between
the lossless and lossy case is that all modes of the spectrum (not just the evanescent modes)
are attenuated in the latter case. Also, it is shown that if the proper constitutive relations
are used, magnetic monopoles need not be introduced [13] into Maxwell's time-dependent
equations to represent a loss in magnetic materials.

Finally, in Chapter 2 we derive formulas that give the static electric and magnetic fields in
the half space z > z0 in terms of their values on the plane z = zo. A variety of different losses
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are considered and we determine which field components need be specified on the scan plane
z = z0 to calculate the static fields in the half space z > zo. The static case is fundamentally
different from the general time-harmonic case because of the different coupling between the
static electric and magnetic fields. (For example, when no losses are present the static electric
and magnetic fields are uncoupled, whereas the time-harmonic electric and magnetic fields
are coupled.)

In Chapter 3 we derive four sets of time-domain near-field formulas using the two different
approaches mentioned above. The first set of time-domain formulas is obtained by inverse
Fourier transforming the frequency-domain Green's function formulas of Chapter 2 to get the
corresponding time-domain Green's function formulas. The class of time functions for which
the inverse Fourier transform can be applied is discussed along with the determination of
the magnetic field. Next a time-domain Green's function is used along with Green's second
identity to derive these time-domain Green's function formulas directly in the time domain.
The formulas for the electromagnetic fields are derived using a time-domain Dirichlet dyadic
Green's function along with the dyadic version of Green's second identity and agree with
those derived by Baum [14]. Far fields are also obtained from these Green's function formulas
and the far electric field agrees with the result of Hill [15].

Using the inverse Fourier transform along with the frequency-domain formulas giving
the plane-wave spectrum in terms of the far field, a formula is derived expressing the time-
domain field everywhere at all times in terms of the time-domain far field and its analytic
continuation. This general formula requires the values of the far field for complex angles
of observation. It is shown that at times after which all sources have been turned off, this
formula reduces to the result of Moses, Nagem, and Sandri [16] which gives the time-domain
field everywhere in terms of its far field evaluated at only real observation angles. This last
formula is valid only after all sources have been turned off, whereas the analytic continuation
of the far field (evanescent spectrum) is also needed to calculate the fields while the sources
are on.

It is found that the time-domain far field due to bandlimited sources in a finite region
of space is an analytic function of the spherical angles 0 and €. This means that a far
field with zero sidelobes cannot be generated by sources in a finite region of space unless
it is identically zero for all angles of observation. This latter result holds even for sources
that are not bandlimited, provided the fields outside the source region can be written as a
superposition of time-harmonic fields.

Furthermore, it is shown that the time-domain electromagnetic far fields integrated over
all time are zero unless the source current remains nonzero as t -+ oc (or equivalently the
electromagnetic frequency-domain far fields evaluated at w = 0 are zero).

Also, it is proven that the time-domain far fields decay as 1/r if the first time derivative
of the current is a bounded function of time. Consequently, we prove that "electromagnetic
missiles" [17] can be excited only if the first time derivative of the current (or the secant
slope if the first time derivative does not exist) becomes infinite at some point in time.

Having obtained the Green's function formulas in the time domain, we investigate the
possibilities for obtaining time-domain formulas involving the spatial Fourier transform of
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a spectrum, similar to the frequency-domain plane-wave spectrum formulas. This leads to
the second set of time-domain formulas giving the field in terms of a double spatial Fourier
integral and a time dependent plane-wave spectrum. To determine the field in the half space
z > z0 in terms of its values on the plane z = z0 , the z dependence of the time-dependent
spectrum has to be determined. This is done using the "method of descent" [18, ch.6, sec.12]
to solve the partial differential equation satisfied by the spectrum. The final time-domain
plane-wave formula is then written down, but due to the complicated z dependence of the
spectrum, it has not been possible to express the far field directly in terms of the spectrum.

The third set of time-domain near-field formulas is obtained by taking the inverse Fourier
transform of the frequency-domain plane-wave spectrum formulas. These time-domain for-
mulas give the fields in the half space z > zo in terms of the Radon transform of the fields
on the plane z = zo, and involve only real fields evaluated at real times. It is shown that the
Radon transforms of the electric and magnetic fields on the plane z = z0 satisfy relations
similar to those satisfied by the frequency-domain plane-wave spectra. The time-domain
far-field formula obtained from the Radon transform formulas is found to be equivalent to
the far-field result obtained from the Green's function formulas.

Finally, the fourth set of time-domain formulas are derived in Chapter 3 by using the
analytic Fourier transform in conjunction with the frequency-domain plane-wave spectrum
formulas. The resulting time-domain planar near-field formulas are three-dimensional vector
analogs to two-dimensional scalar formulas in Steinberg, Heyman, and Felsen [19]. These
formulas, which also involve the Radon transform, are simpler in form than the formulas of
the third set, but they involve analytic fields that cannot be measured directly. This fact
makes these formulas less attractive for near-field measurements than the Radon transform
formulas derived from the standard Fourier transform and the Green's function formulas.

Chapter 4 presents and compares two different computation schemes to numerically cal-
culate the time-domain far-field pattern from sampled time-domain near-field data. The
sampled time-domain near-field data are obtained by measuring the near-field at discrete
points on a finite scan plane at discrete times.

The first scheme, called the frequency-domain computation scheme, is based on the
frequency-domain formulation in Chapter 2. This frequency-domain scheme consists of the
following three steps: (1) use the Fourier transform to calculate the frequency-domain near
field from the time-domain near field, (2) calculate the frequency-domain far field from
the frequency-domain near field, and (3) use the inverse Fourier transform to calculate the
time-domain far field from the frequency-domain far field. This scheme makes use of well-
known frequency-domain far-field formulas, sampling theorems, and the fast Fourier trans-
form (FFT).

The second scheme, called the time-domain computation scheme, is based on the time-
domain formulation in Chapter 3. This time-domain scheme simply uses the formula that
directly gives the time-domain far field in terms of the time-domain near field. A time-
domain sampling theorem is derived to determine how small the sample spacing between
points on the scan plane has to be to calculate the far field accurately. Furthermore, the
number of time samples needed for accurate far-field calculations from the near fields of
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different types of radiators is determined.
The two computation schemes are compared and used to calculate the far-field pattern

of a simple acoustic point-source antenna from near-field data. It is found that the direct
time-domain computation scheme is much simpler to program and use than the frequency-
domain computation scheme. However, because the frequency-domain computation scheme
uses the FFT it is much faster for large antennas than the time-domain computation scheme
when the full far field is calculated for all times.

When only part of the far field is calculated, the difference in computer time for the
two computation schemes becomes smaller and the time-domain computation scheme there-
fore becomes more advantageous because of its simplicity. Furthermore, the duration of the
far-field pattern is extended erroneously due to the finite-size scan plane and this longer
time-duration has to be taken into account in the frequency-domain calculation scheme.
Specifically, the frequency spacing in the frequency-domain computation scheme has to be
chosen small enough so that significant time-domain aliasing is avoided in the calculation
of the time-domain far-field pattern. The problem of choosing the frequency spacing small
enough does not occur for the time-domain computation scheme because no frequency spac-
ing is used.

Furthermore, the time-domain computation scheme can be used to calculate the far-field
pattern at early times from near-field measurements taken at early times only. This capability
is not possessed by the frequency-domain computation scheme because the near field is
required for its entire duration to calculate its Fourier transform. For many antennas fed by
short pulses, the time dependence of both the near field and far field consists of an early-time
part, which contains most of the power, and a late-time part which is oscillatory and contains
little power. The duration of the early-time part may be much smaller than the duration
of the entire field. If only the early-time part of the far field is of interest, one can use the
time-domain computation scheme to determine this part from near-field measurements taken
for early timez only; thereby significantly reducing the number of near-field time samples
needed for the far-field calculation. If instead, the frequency-domain computation scheme is
used, the number of near-field time samples cannot be reduced because time samples taken
over the entire duration of the near field are needed to calculate the Fourier transform of the
near field.

No matter which scheme is chosen, planar time-domain near-field antenna measurements
can eliminate the error in the far-field pattern due to the finite scan plane because this error
is separated in time from the correct far-field pattern. This makes it possible to use planar
scanning in the time domain to compute the far fields of broadbeam antennas in both the
time and frequency domains.

In addition to the four chapters, the report contains two appendices. Appendix A proves
differentiability and analyticity with respect to two spectral variables of the frequency-
domain plane-wave spectrum and its related far-field functions. In Appendix B, we derive
formulas that give the time-domain far field directly in terms of the sources, and determine
conditions on the current that assure the validity of the far-field expressions.
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Chapter 2

Frequency-Domain Formulas

The planar near-field frequency-domain formulas will be derived in this chapter for both
acoustic and electromagnetic fields. Section 2.1 derives the plane-wave spectrum and Green's
function representations for both acoustic and electromagnetic fields in a half space in terms
their values on a plane. The plane-wave spectrum formulas are proven valid by showing that
they produce the correct field of a general source distribution located in a finite region of
space. The singularities of the spectrum are also determined explicitly for a finite source
distribution. Far-field formulas are derived in Section 2.2, and the contributions to the far
field from the evanescent modes are determined. Furthermore, the plane wave spectrum
is given in terms of the far field in spherical coordinates. Section 2.3 calculates the power
radiated through a plane and Section 2.4 deals with lossy media. The special cases of static
electric and magnetic fields in media with different types of losses are analyzed in Section
2.5.

The planar scanning geometry shown in Figure 2.1 will be considered. The arbitrary finite
source region is located in the half space z < z0 and the values of the fields are measured on
the plane z = zo. Except in Section 2.4 on relations in lossy media, and in Section 2.5 on
statics, the part of space not occupied by the sources is lossless free space with permeability
it and permittivity c. In addition to the rectangular coordinates (X, y, z), the usual spherical
coordinates (r, 0, 0) defined by x = r cos 4 sin 0, y = r sin 4 sin 0, and z = r cos 0 will also be
used.

The planar near-field formulas will be derived in detail for the case where the measure-
ment 'ane is located to the right of the source region as in Figure 2.1. The necessary
modifications are stated for the case where the sources are located to the left of the mea-
surement plane. Throughout the report, e"iw time dependence is suppressed in all the
time-harmonic equations. It is assumed that the frequency w is positive except, of course,
in the static equations of Section 2.5.
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Scan plane

Source region

Z Z0

Figure 2.1: Planar scanning geometry.

2.1 Basic Planar Near-Field Formulas

The basic planar near-field formulas are derived in this section for both acoustic and elec-
tromagnetic fields. Both plane-wave spectrum and Green's function representations will be
derived. Most of the plane-wave spectrum formulas can be found in Kerns [3], [20] and the
Green's function formula for the electric field can be found in Jackson [10, sec.9.10]. How-
ever, the plane-wave spectrum formulas are proven valid rigorously for the first time and a
new derivation of the Green's function formulas is given in this section.

2.1.1 Plane-Wave Spectrum Representations

Let us first derive formulas for a scalar acoustic field 4 satisfying the scalar Helmholtz
equation

V2.(z) + k24p() = 0, Z > zo (2.1)

in the free-space region. (Then ib can also be any rectangular electric or magnetic-field
component.) The finite source region is located in the half space z < zo as shown in Fig-
ure 2.1. The plane-wave spectrum formulas are derived heuristically in this section and then
validated rigorously in the next section.
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Begin by expressing the field in terms of the spatial Fourier integral

4b(f) = - 1.f b(k., k,v,z)e'(k-x+tkr)dk,ýdk,, z >_ zo 22
2r 00 Žz (2.2)

where b is the Fourier transform of $t(f) given by

b(k2,rz) = L O J (x, y,z)e-(k+')dxdy, z > zo. (2.3)

Inserting the Fourier integral (2.2) into the Helmholtz equation (2.1), and taking the inverse
Fourier transform, one finds that the function b satisfies

, O = k-kx-kz" (2.4)

Consequently for -y # 0 we have

b(k., ky, z) = T, (k., ky) )eiYz + T2 (k., k)e (2.5)

where T, and T2 are independent of z, and -y is defined to be positive for k. + k2 < k2 and
to have a positive imaginary part when k. + k2 > k2 . The field 'I decays as z --+ oo and
thus from the Fourier representation (2.2) we see that T2 must be zero for imaginary -y. For
real y, an asymptotic evaluation (see Section 2.2.3) of (2.2) with b inserted from (2.5) shows
that T2 must be zero if no energy is coming in from z = +0o. Therefore, (2.5) reduces to

b(kf, k.,z) = T(k., ky)ei', z > zo (2.6)

where T is independent of z and is called the plane-wave spectrum of 4b. For -y = 0 it is
found that

b(k, k,z) = b,(k,ky) + zb2(k=, k,), k! + k2 = k2  (2.7)

where b6 and b2 are independent of z. Since the area in the (k., k.) plane of the region where
k• + k• = k2 is zero, the contribution to the integral (2.2) from that region is zero and we
do not need to include (2.7) in the spectral integral (2.2). (We are assuming the sources
are in a finite region of space so that b(k., k., z) does not contain delta functions in k. and
ky. Moreover, the solution (2.7) does not satisfy the boundary condition of zero field at
z = +oo.)

Inserting b from (2.6) into the Fourier representation (2.2) one finds

()= 2, 1i -1iT(k', ky)ei(klz+k1y+zrz)dkdk',, z > zo (2.8)

and that the spectrum is given by

T(k=, k) = -2r J0 0t(x, y, z)e-'(k-z+k'Y)dxdy, z > zo. (2.9)
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If z is set equal to zo in (2.9), the formula (2.8) gives the field 4) for z > zo in terms of 't on the
plane z = zo. The formulas (2.8) and (2.9) comprise the plane-wave spectrum representation
of 4P. In Section 2.1.2 it is shown that they produce the correct field provided the integral in
(2.9) is calculated in a prescribed manner. (If the finite source region is located in the half
space z > zo the field for z < zo is given by (2.8) and (2.9) with -y replaced by -7-.)

As will be shown in Section 2.1.2, for solutions to the wave equation with sources in a
finite region of space, the fields are well-defined by (2.8) at every point in the half space
z > zo. However, Section 2.1.2 also shows that the spectrum given by (2.9) is well-defined
at every (ks, k,) except possibly at k, = kv = 0, and y = 0.

Now consider the electric field E. Since each of its rectangular components satisfies the
Helmholtz equation (2.1) in the free-space region, and since they all are of order r- 1 at
infinity, the plane wave spectrum representation of the electric field is immediately found
from (2.8) and (2.9) to be

1f+00 t+O00

S= _ T(k., k_)e ( (kz,+kPy+yz)dkzdk,, Z > ZO (2.10)27r f- oo 0

and the spectrum T for the electric field is given by

T(kk) e-z +00 +00 (x,y,z)e i(kx+k,,Y)dxdy, z > zo. (2.11)

If z is set equal to zo in (2.11), the formula (2.10) gives the electric field for z > Zo in terms
of the electric field on the plane z = Zo. Since the electric field has zero divergence it is found
that the spectrum for the electric field satisfies

T(k., ky) -k = 0 (2.12)

where k is defined by
/ = ki& + kj + -yi. (2.13)

That is, T is perpendicular to the propagation direction of the plane wave ei(k'x+kI+-z) =

e"'*. Consequently for -y # 0, T. can be found from T. and T. and thus the electric field
in the free-space region z > z0 is determined uniquely by specifying E. and E. on the
measurement plane z = z0.

The z component of the electric field can also be found directly from the x and y com-
ponents by integrating V./R = 0 with respect to z, to obtain the formula

E.(f) = - :[Ej(y,z') + E9 (x,y,z') dz' + C(x, y), z > zo (2.14)

where C(x, y) is a function of x and y only. Since the sources of the electromagnetic field
are contained in a finite region of space, the amplitude of the electric field is of order r-1 at
infinity so E, -* 0 as r --+ oo. Therefore

E.(f)= J aE(y,Z') + aE,(xyZ') dz', z > Zo (2.15)
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and thus E, is determined uniquely from E., and E. in the source-free half space z > zo.
Using the induction law V x E = irWpH, which gives the magnetic field in terms of the

electric field, it is found that the magnetic field is given by (2.10) with T replaced by

TH(k., y) = k x T(k.,kv) (2.16)

that is,

900= + 17 70 TH(k' 4)ei(kZ+ Ž+"yZ0dk Z > Zo (2.17)

where TH is the spectrum for the magnetic field also given by

e-iYz +00 +0oo
TH (k., ky) = -_ (x,y,z)e-(k'z+k'Y)dxdy, z > zo (2.18)

and k = k-'k with k_ given by (2.13). Because the divergence of the magnetic field is zero
in the free-space region, the spectrum for the magnetic field also satisfies (2.12) [as is seen
directly from (2.16)].

As with the electric field, the tangential components of the magnetic field on the plane
z = zo uniquely determine all the field components in the half space z > z0 . Also, H, can be
determined from H. and Hy in the half space z > zo by the formula (2.15) with B replaced
by Ar. In general, any two of the six components of EF and H on the plane z = zo determine
all fields in the half space z > zo. We do not prove this more general result in this section
because the method of proof is identical to that used later in proving the analogous result
for the static equations of Section 2.5.3.

In principle, once the spectrum is computed from the measured data on the plane z = zo
(2.10) and (2.17) can be used to compute the electric and magnetic fields on any z plane
(not just z > zo) up to the source region. In practice, however, the scan plane z = Zo is
usually chosen a few wavelengths away from the test antenna to keep multiple reflections
between the probe and test antenna at an acceptably low level. This means that most of
the evanescent fields have decayed to a value too small to be detected by the measurement
system. Thus, most of the evanescent part of the spectrum could not be computed with any
accuracy from the measured data in (2.11) or (2.18) on the plane z = zo, and the evanescent
fields, which may dominate in the region a few wavelengths from the source, could not be
computed from (2.10) or (2.17).

(If the sources are located in the half space z > zo, the electromagnetic field formulas
(2.10)-(2.18) are valid for z < zo if 7 is replaced by -'-.)

2.1.2 Validation of Plane-Wave Spectrum Representations

In this section the validity of the plane-wave spectrum formulas is proven. Since the proofs
for the acoustic formulas and the electromagnetic formulas are very similar, we shall consider
only the acoustic formulas.

10



Before proving the validity of the acoustic plane-wave spectrum formulas (2.8) and (2.9)
we note that the acoustic field is neither absolutely integrable nor square integrable on any
plane z = zo. This follows from the fact that t(x, y, zo) = O[(X2 + y2)-1 /2] as (X2 + y2)1 /2

oo so that both the integrals f+.' f+• I(x, y, zo)ldzdy and fil fi: It (X, y ZO) 12 dxdy are
infinite. Consequently, the theory of the Fourier transform in the Lebesgue spaces L1 or L2

[21], [22] cannot be used to prove the validity of (2.8) and (2.9) because the acoustic field
belongs neither to Li or L 2. (Note that the energy radiated through the plane z = zo is
proportional to the integral of t-1V over this plane [20]. This energy is finite even though
the integral of 1I02 over the plane z = zo is infinite.)

To prove (2.8) and (2.9), start with Green's second identity and the radiation condition
for the acoustic field to show that the acoustic field can be written as [23, p.62]

fl a =~ L f'' ) - G(f , f)an4~') dS'. (2.19)

Here S is a finite smooth surface which is located in the free-space part of the half space
z < zo and encloses the finite source region. It is assumed that the fields in free space and
their first time derivatives are continuous functions of position. G(f, f') is the free-space
Green's function given by

G(f,f') = ekR ' R = If- f'1. (2.20)

The formula (2.19) is valid when the observation point f is outside S and is the scalar analog
to the vector electromagnetic formulas (A.5) and (A.6) of Appendix A.

Next specify that the integral in the expression (2.9) for the spectrum T be calculated
in polar coordinates with the angular integration performed first, that is

T(k•, kv) = 2--- 0 p 1 (p cos 4, p sin ), z0)e-iP(k cos +kysim4O)d4dp (2.21)

where the polar coordinates (p, 4) are given by x = p cos 0 and y = p sin 4. Alternatively,
this integral could be calculated in rectangular coordinates by first evaluating the double
integral over a finite rectangle with a fixed side length ratio and then letting the side lengths
of the rectangle approach infinity. These two ways of calculating the spectrum are exactly
the two ways used for most practical planar near-field measurements. Section 2.1.3 discusses
some practical differences between using circular and rectangular scan planes.

Write the integral (2.21) as the limit

T(k.,ky) =e- z lim N p 2r @(pcos ,psin ,zo)e-ip(k.cos +kys )dddp (2.22)
r N-oo Jo J

where N is an integer, and insert the expression (2.19) for the acoustic field into (2.22). Note
that , ,,, G, and AG are continuous functions on the bounded closed surface S and
on the bounded circular disk with radius N. Then use the theorems of Hobson [24, p.339,
p.359] to show that the integral over S can be interchanged with the integrations over p and
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0 and that the normal derivative can be brought outside the p and 0 integrals so that the
spectrum is given by

T(k., k1 ) - lim Irna tI)

2wr N--coJS a'J o

SY lim I 1 2rG(f, f')e-'P(k-'O' + ," D "¢)d'dp j -•(F')dS'.

2wr Noo is.- • o
(2.23)

We will now use standard theorems on the validity of interchanging limits and integrals to
show that the limit in (2.23) can be brought inside the integral over S. To do this define a
sequence of functions by

N (f', k., ky) = pf G(f, f')e-iP(ks ces +k s'in)ddp (2.24)

and introduce new polar coordinates (p,, 01) so that x - z' = pi cos 01 and y - y' = p, sin 01.
With these new polar coordinates as integration variables it is found that

liM fN f' k. ky = e -,(k.x'+4yr') . +0 e i /,•f + (. o-e') 2 o

lim fN(f',k=, k.d) = P ..... cos(pi ,Fk'2 + k. sino, )do, dpl.No 2v i , + -I20
(2.25)

At this point of the derivation we do not know if this limit exists. From the integral ex-
pression for the Bessel function of zero order it is found that the integral over 01 is simply
7rJO(P, •k + k.). For (k., ks) # (0,0) the remaining integral over pi can then be calculated

from the formula in [25, eq.(25), p.9] and we find that

lim fN(f', k., ky) - (2.26)
N--oo 27"

This calculation shows that the limit of the function fN exists for all P' and for all (k., ky)
except at - = 0 and at (k., kv) = (0, 0). Furthermore, the limit of fN is a continuous function
of f;' on the bounded closed surface S so fN converges uniformly with respect to f'. From
the standard theorem on limits of integrals in Hot. ;on [24, p.293] it now follows that the
limit in the second term of (2.23) can be brought inside the integral over S except for -t = 0
and for (k., ky) = (0,0). Similarly, it is found that --LfN converges uniformly with respect
to f' so that the limit in the first term of (2.23) can be brought inside the integral over S
[24, p.293] and inside the normal-derivative operator [26, p.282] except for -y = 0 and for
(k:,,ky) = (0,0). For 7 # 0 and (k.,k 1 y) # (0,0) the expression (2.23) for the spectrum then
becomes

T(ks, kv) Lr a' C dS'. (2.27)

This is the final expression for the spectrum given in terms of the acoustic field on the finite
surface S and it is the scalar analog to the vector formula (A.1) in Appendix A with F and
U substituted from (A.2) and (A.7).

12



Note that although the expression (2.27) is not valid for (ks, ks) = (0, 0) it remains finite
and approaches a bounded value as (k., ks,) -+ (0, 0), which shows that the spectrum has a
removable singularity at (k_, kv) = (0, 0). Furthermore, it is seen that the only other possible
singularity of the spectrum is at y = 0 and that its order is 7- 1, which is integrable with
respect to (ks, kv).

Insert the expression (2.27) for the spectrum into (2.8) and note that the resulting inte-
grand is absolutely integrable because -f = il71 for k' + ks > k2. Therefore we do not have
to specify how the integrals over (ks, k.) are calculated. We can directly use the theorems
in Hobson [24, pp.339, 355] to show that the integral over S can be interchanged with the
integral over (ks, k,,) and that the normal-derivative operator can be brought outside the
integral over (ks, k.). Thus, the plane-wave spectrum formulas predict that the acoustic
field in the half space z > z0 is given by

) (ra + r 8[+00 coetk
81r2 Is T . , 10LO7-dk~dky

S+00 j+c 6i[z(xz')+ks(V•-')+(Z-Z') +(az 1
dkzdk,-LD(f') dS'. (2.28)

Using the identity in Weyl [27] or Lalor [28]

z J+2 f e-dkdk• = G(i,f') (2.29)

which can be proven by direct calculation, it is seen from the exact formula (2.19) that the
result (2.28) predicted by the plane-wave spectrum formulas is correct. We have now shown
that the plane-wave spectrum formulas (2.8) and (2.9) are valid provided that the integral
for the spectrum is calculated in the way described in this section, which is consistent with
the way practical calculations are performed for planar near-field scanning. By starting with
E from (A.5) inserted into the integrand of (2.11), the validity of the plane-wave spectrum
formulas (2.10) and (2.11) for the electromagnetic fields is proven in a manner similar to
that used for the acoustic formulas.

2.1.3 Singularities of the Spectrum

This section determines the possible singularities of the spectrum and writes the spectrum
in a form that is convenient for the asymptotic analysis of Section 2.2.3. As noted in Section
2.1.2, (2.27) shows that the spectrum T(k,, ky) is a continuous bounded function of k. and
k. except possibly at -y = 0. Therefore, the spectrum may be written as

T(k., ky) = -F(k., k•) (2.30)

for all (k_, k.), where F is a continuous bounded f+:nction for all (ks, k"). Similarly, in the
electromagnetic case, we have

i:-
T(k., k,) = -F(k., kI). (2.31)

7
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Furthermore, in Appendix A it is shown that the function F (or F) is infinitely differentiable
for all (k., k.) except possibly at -y = 0. (For F this can also be seen directly from (2.27).)
Appendix A shows also that F (or F) is an infinitely differentiable function of (-Y, kk), except
possibly at - = k, when the propagation vector is expressed in polar coordinates.

The -y- singularity in the spectrum T is also exhibited by the formulas in Kerns [3, ch.3,
eqs.(2.2-7a), (2.2-7b)] (also see Appendix A) relating spectra to the prescribed currents.
Substituting T from (2.30) into (2.64) or T from (2.31) into (2.65) shows that F(k,, k,) or
F(kX, k.) represents the complex far-field pattern of the source region when k' + k• < k2,
that is, when -t is real so that the associated plane waves are propagating.

Before leaving this section, note that (2.21) (or its electromagnetic vector analog) is
the integral that one evaluates to determine the spectrum (or far field) of a radiator from
measured data taken in plane-polar coordinates [29]. For practical measurements the infinite
radial limit of integration in (2.21) is replaced by the finite radius of the circular scan plane.
Thus, the results of Section 2.1.2 show that the on-axis far field (k. = k, = 0) evaluated from
(2.21) diverges by oscillation no matter how large a radius is chosen for the circular scan
plane. (The integral over 01 in (2.25) is simply equal to ir so that the integral over pi diverges
by oscillation.) For the main beam of directive radiators the oscillation is usually negligible.
However, for broadbeam radiators the oscillation can severely limit the accuracy of the far-
field pattern near the z axis computed from plane-polar, measured near-field data. For a
rectangular scan plane, the integral corresponding to (2.21) converges for all kX + ky < k
including the on-axis direction (k. = ky = 0), as the size of the rectangular scan plane
approaches infinity. However, for broadbeam antennas and practical size rectangular scan
planes, the computed far fields near the z axis may be in error by several decibels [30]. This
limitation in the measurement of broadbeam antennas by planar near-field scanning in the
frequency domain was discussed in References [30] and [1]. In Section 4.4 we show that these
finite-scan errors can be avoided in the time domain.

(When the sources are located in the half space z > z0 the formulas in this section hold
for the fields in the half space z < zo provided that the spectrum is given by (2.9) with -y
replaced by -- y.)

2.1.4 Green's Function Representations

Representations involving the free-space Green's functions for the fields in the half space
z > zo in terms of fields on the plane z = z0 are derived in this section for both acoustic and
electromagnetic fields.

First consider the scalar acoustic field t satisfying the Helmholtz equation (2.1) in the
free-space region. Green's second identity will be used in the following to derive the rep-
resentation for this field. The free-space Green's function G(f, f') satisfying V ' G(f, e') +
V G(f, f') = -6(f - f') is given by (2.20) and the Dirichlet Green's function for the half
space z > zo is given by

GD(f,rf') =G(ff')-G(fF,)), - -' =- ' +y'ý (2zo -z')i. (2.32)
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Let the surface C(Ro) be the circular disk: x2 + y2 < Rj, z = zo, and let S(Ro) be the half
sphere: x2 + + + (z - z0)2 = z > zo as shown in Figure 2.2.

Green's second identity applied to the region bounded by S(Ro) U C(Ro) gives

- = I I= 4D(f)-aGD(f, e) - GD(f, e a't-(f) dS (233)
JS(,RD)UC(,Ro) [ an an J

where f;' is inside the region bounded by S(Ro) U C(R0 ) and ii is the normal out of this
region. On the disk C(Ro), -GD = -2-G and GD = 0. On the half sphere S(RO) it is
found that the expression in the square brackets in (2.33) can be written in terms of the
free-space Green's function as

t - GD-t= $aGD- GD- = G • -
an n 8r 4Or a

-Rjk~ - I]- G - k?-RiG] (2.34)

where G, = G(f,fý), R= (f - f;')R-1 , =( - f')R.- 1 , and R, = if- ffl. Using the
asymptotic relations ÷-/R = 1 + 0(r-1) and A. = 1 + O(r-1 ), the radiation conditions for

the acoustic field [23, p.57]: t = O(r-1 ) and R ,9t - ikt] -- 0 at infinity, along with (2.34)

shows that the integrand in (2.33) on S(R0 ) goes to zero faster than R-2 . Consequently, the
contribution to the integral in (2.33) from S(R0 ) vanishes as Ro --ý +oo and (2.33) reduces
to + 0tb(f) = t2 (f;')' (f')dx'dy', z > zo (2.35)

where f and f' have been interchanged and f' = x'i + y'ý + zoi. Taking the z' derivative of
the Green's function, we may write (2.35) as

ZoD- ~z+ + ,r 11kR
f (f)00 _•-, - i - dx'dy', z > zo (2.36)

27r _- 00 -0R JR

with R = V/(x - x') 2 + (y - y,) 2 + (z - zo) 2. The formula (2.36) (or (2.35)) is the Green's

function representation for the acoustic field t in the half space z > zo given in terms of
Son the plane z = z0. These formulas will prove valuable in Chapter 3 for obtaining the
corresponding time-domain representations. The Green's function representations can also
be derived from the plane-wave representations (2.8) and (2.9) by using the identity

_7_ ekR [+00 ei(k+(0-z')+ky((-y')+-(z•zo))dkdk (2.37)

a~z R -'_ -00(237

which may be proven directly by expanding the free-space Green's function in a plane wave
spectrum, or by taking the derivative of (2.29).

(If the sources are located in the half space z > z0, the acoustic field for z < zo is given
by the negative of (2.35) or (2.36).)
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Figure 2.2: Half sphere of radius RO in a rectangular coordinate system.

After having dealt with the acoustic fields, consider the electromagnetic fields. Because
each of the rectangular components of the electric field R satisfies the scalar Helmholtz
equation (2.1), the scalar formula (2.36) immediately gives

ZO Z +00 [00 11 etkR
(f) = o- z - o E,(') 1:k - ý] -- dx'dy', z > Zo (2.38)27r f* ./ .R

where it has been assumed that each rectangular component of the electric field satisfies the
scalar radiation conditions [23, p.57]. The formula (2.38) gives the field in the half space
z > z0 in terms of all three components of the electric field on the plane z = ZO.

Next we will derive a formula that gives the electric field in the half space z > z0 in
terms of only the tangential components of the electric field on the plane z = zo. To do
this, employ the dyadic version of Green's second identity from van Bladel [31, p.509] to the
region V(Ro) bounded by S(R&) U C(Ro) shown in Figure 2.2

V(-Ro) [V xV x ×G -EV x Vx +GDdV

S(Ro)uC(Ro) x (2.39)
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where GD is the Dirichlet dyadic Green's function for the half space z > zo given by Tai [32,
p. 68]

D(r, f) = r, - V vv'] [G(f, :') - G(f, )] + 222G(f,,,) (2.40)

satisfying V x V x GD - k2GD = I6(f - f') in the half space z > z0 and the boundary

condition 2 x Go = 0 on the plane z = zo. Here I = 22 + • + i is the identity dyad. When
P' E V(Ro), the vector Helmholtz equation for the electric field V x V x E - k2E = 0 and
the corresponding equation for GD show that the left side of the Green's identity (2.39) is

equal to -2•(f'). Inserting the Dirichlet boundary condition 2 x GD = 0, z = z0 , the identity
V x GD = 2VG x I, z = zo, and the vector dyadic formulas from van Bladel [31, pp.507-508,
eqs.(15), (18)]

E . , x (VG x I) =-(x E).(VG x I) = -V'G x ( xE) (2.41)

into (2.39), one finds

-. E(f) = -2 J V'G(f, f) x (2 x ,(f))dS

sI& [B] (2.42)

Using the result of van Bladel [31,_p.507, eq.(2)], the integrand in the last integral of (2.42)
may be written as , -,h x V x GD - h x V x E • GD, which according to the radiation
conditions for the dyadic Green's function and the electric field [23, pp.58, 62] goes to zero
faster than R- 2 as Ro -+ oo. Thus the contribution from the last integral in (2.42) vanishes
as R0 --+ oo and we have

E(f) = 2 L J VG(i, f') x [2 X E(f')J dx'dy', z > Zo (2.43)

where f and f' have been interchanged and P' = x'i + y'ý + z0i. Upon calculating VG this
equation becomes

1 Lo +0 kR -Rx[

E'(f) n ik x [i x 2(f')] dx'dy', z > zo (2.44)

with R = (x - x')2 + (y - y')Y + (z - zo)!. Equations (2.43) and (2.44) are the Green's

function representations for the electric field in the half space z > zo given in terms of E.
and E, on the plane z = zo. These formulas were first derived by Smythe [33] using a double
current sheet in the plane z = zo.

Let us finally express the magnetic field H in the half space z > zo in terms of E, and
Ey on the plane z = zo. Since the induction law shows that H = "V x B, the magnetic
field can be found by taking the curl of (2.43) to get

ft(f).Ž = 1-f [7k2 + VV) G(f, fi)]. [2 x E(f')] dx'dy', z > zo. (2.45)
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With the help of [31, eq.(7.136)], (2.45) can be written in expanded form as

1 +0•00 (ik)FJpeO+O f . (- x .('))• E(f) +zik [3R.( x B('))22krý1f o f -0 1 R2 R3

1. +[3 (ix E (f')) -j 1 e
+-k x .(f + RR, R2i x } zd'dy', z > zo. (2.46)

This is the Green's function representation of the magnetic field in the half space z > zo
given in terms of the z and y components of the electric field on the plane z = zo.

(When the sources are located in the half space z > zo, the electromagnetic fields in the
half space z < zo are given by the negative of (2.43), (2.44), and (2.46).)

2.2 Far-Field Formulas

The far-field formulas that give the fields as r --+ oo will be derived in this section in terms of
the fields on the plane z = zo. We start by deriving the far-field formulas from the Green's
function representations and then proceed to derive them from the plane-wave spectrum
representations. Both acoustic and electromagnetic fields are considered.

2.2.1 Far Fields Found from Green's Function Representations

Start with the acoustic field 0 given by (2.36). Inserting the far-field approximations R =

r - (z'cosd'sin0 + y'sin sin0 + zocos0) + 0(r-1) and ' = -cos0 + 0(r- 1) into the
Green's function representation (2.36), one finds that the acoustic far field is

,ik os f_ e ° f_•,O(f')e-'f'"dz'dy' +O (-'), z > z (2.47)27r" r J-0 oC r

with P = x'i + y'ý + zOg., and ÷ = i cos 0 sin 0 + j sin 0 sin 9 + - cos 0. Note that this may
also be written in terms of the spectrum T in (2.9) as

4 )(I) >
,()-ikcos9-T(kcosdsinO,ksin4sinO)+O , z>zo. (2.48)

r

Inserting A = ÷ + 0(r-1 ) along with the asymptotic relations above (2.47) into the
Green's function representation (2.44) for the electric field, one finds the following far-field
formula for the electric field

(•)J Jr _ 2. x E(F)e-ikf' dx'dy' + 0 -, z > zo. (2.49)
21r r_0 r)I

Inserting the relation ÷ x (2 x E) = (t- E)i - cos OE, and the definition of the plane-wave
spectrum from (2.11) into (2.49) yields

E(f).,-+kcos -(T(kos)sinO,ksin~sin#)+O z> zo (2.50)
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where we have made use of (2.12), that is, -T(x,y) = 0.
The far magnetic field is similarly written as

AM H) x E(f) k. - 0os krf x T(kcos sin0,ksin sinO) + 0 1 2 z > zo

(2.51)
or alternatively

(i) ~ V i,2 ,- x 1 i x ,()e-'dx'dy' + 0 (), z > zo. (2.52)

It should be noted that the derivation of the formulas (2.47), (2.49), and (2.52) required
that the limit as r -- 00 be interchanged with the infinite (x', y') integration. We cannot use
standard theorems of calculus to justify this interchange because -t and B are not absolutely
integrable on the infinite (x', Y') plane. However, these far-field formulas can be proven valid
by first expressing t(f') and E(f') in the integrals of (2.47), (2.49), and (2.52) in terms
of their volume sources, (2.53) and (2.54)-(2.56), or equivalent surface sources, (2.19) and
(A.5); and then proceeding as in Section 2.1.2.

(When the sources are located in the half space z > z0 , the far fields in the half space
z < z0 are given by the negative of (2.47), (2.48), (2.49), and (2.51).)

2.2.2 Frequency Dependence of the Far Fields as w Approaches
Zero

The integral over all time of a time-dependent function equals the function's frequency
spectrum evaluated at w equal to zero. Thus, it is of interest for both frequency-domain
and time-domain representations to determine the behavior of the far fields as w approaches
zero.

As w approaches zero, (2.48), (2.50), and (2.51) show that the far fields behave as w
times the frequency dependence of their plane-wave spectra. However, because we do not
know the frequency dependence of the plane-wave spectra, let us express the acoustic and
electromagnetic far fields in terms of their sources, Q(f) and i(f), respectively,

4W) 4r- Q(F')e-'W'edV' + 0 ( (2.53)

/eikrJJ.).1TdVI+ 0 (')) .54)

where/H and .: are given in terms of the vector potential A as

- 1 - 1
H=-VxA, E -- Vx (v x A) (2.55)I' 1 wp9
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or as r -- oo

ft(~ -~iwV xA(f) + 2 4) (f) ,-iw X( x A(f)) + 0 4) (2.56)

(The interchange of the volume integral with the limit as r --+ oo required to derive (2.53)-
(2.54), and with the curl to obtain (2.56) is allowed as shown in Hobson [24, pp.324, 355]
under the assumption that the source functions Q and j are absolutely integrable over the
volume V.)

Assuming the acoustic sources are in a volume V of finite extent, (2.53) shows that
the frequency dependence of the far field as w --+ 0 is the same as that of the spatially

integrated source function Q. However, (2.56) and (2.54) show that the frequency dependence
of electromagnetic far fields as w --+ 0 is w times the frequency dependence of the integrated
current over the volume of finite extent. This means that the far electric and magnetic fields
in the time domain will depend on the time derivative of the spatial integrated current.
A further implication, proven in Section 3.3.2, is that the far electric and magnetic fields
integrated over all time will be zero for currents that turn on and off in a finite time period.
Only if the current stays on forever, so that the fields, for example, eventually become static,
can the far electric and magnetic fields integrated over all time have nonzero values.

2.2.3 Far Fields Found from Plane-Wave Spectrum Representa-
tions

Asymptotic evaluations of the spectral integrals in the plane-wave spectrum representations
of the acoustic and electromagnetic fields are performed in this section. Most of the acoustic
far-field results have been derived previously in Sherman, Stammes, and Lalor [111 and in

Nieto-Vesperinas [12]. Start with the acoustic field 4 and write its plane-wave spectrum

representation (2.8) as

IM +0= + 12 T(k., k,)eirqk(f'k.k )dk~dk,, z > zo (2.57)

where T is the spectrum (2.9) and the phase 'k is

k(t, k•, ky) = k. cos 0sin 0 + k, sin 0sin 0 + -y cos0 (2.58)

with 0 and 0 being the spherical angles at the observation point. Equation (2.57) will now
be evaluated asymptotically for r -. oo. According to Bleistein and Handelsman [34, p. 3 4 1],
the critical points for this integral are (1) stationary points of the phase 0, and (2) points
where the spectrum T or the phase ? is not infinitely differentiable.

Far fields for 0 < 0 < 7r/2
Start by considering the stationary points of the phase where •-LO = -b = 0. With k

given by (2.58), the following equations are satisfied at the stationary points
z k• z k,

x--- =0, y--- 1 =0 (2.59)
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which imply that
r2 r2

"" r2'~ k2=k2 . (2.60)

Now, as z -_ 00, (2.59) shows that k. and k4 must have the same signs as z and y, respec-
tively, so that the stationary point is found from (2.60) to be

k, = kcos4'sin0, ky = ksin4'sin0. (2.61)

To determine the asymptotic contribution from the stationary point (2.61) we have to eval-
uate 2-• t,, and 8'bth which at the stationary point are found to be

8____ 822 8![sin 2  si
a2 1 [1 Cn 20 i 0 2]f

a2 cos 4, sin 4 sin 2 e
ak.rky kCOS2 6 (2.62)

Consequently, at the stationary point (2.61)Ia2 892 a__82\ 21 1Tk'0k 2k 0 (2.63)

and [34, p.347] then shows that the asymptotic contribution from the stationary point (2.61)
to the spectral integral (2.57) is

((f) -, -ikcos -T(kcos4,sin0, ksin4,sin0) + 0 z > zo. (2.64)

This well-known result is identical to the far field (2.48) found from the Green's function
representation.

Similarly, one finds that the far electric field is

E(f) - Z-ikcosO--T(kcos4sinO,ksin4,sinO) + O , z>zo (2.65)
r r

where t is the spectrum for the electric field given in (2.11). The far magnetic field is

r 0 ikr 1lH~t(f),-, - ikcosO0---÷ x T(kcos4,sinO, ksin4,sinO)+0 z > z0  (2.66)

where the relation (2.16) between the spectra for the electric and magnetic fields has been
used. The asymptotic results (2.65) and (2.66) are identical to (2.50) and (2.51) obtained
from the Green's function representation.

We have calculated the asymptotic contribution from the stationary points of the phase
ik and will now proceed to calculate the asymptotic contributions from points where the
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spectrum and/or phase ik are not infinitely differentiable. To perform such a calculation,
the singularities of the spectrum T must be known. In Section 2.1.3 and in Appendix A it
is shown that the spectrum may be written as

T(k.,kv) = -F(k,,k) (2.67)
7

where the far-field function F is a bounded infinitely differentiable function of (k., k.) for
all (k., k1 ) except possibly at 7 = 0. In addition, Appendix A shows that when the propa-
gation vector is written in polar coordinates, as in the following paragraph, F is infinitely
differentiable with respect to 7 and k,, except possibly at 7 = k. Thus, the spectrum has a
possible singularity of order 7-1 at 7 = 0. Furthermore, the only point at which the phase
4' is not infinitely differentiable with respect to (k., k.) is at 7 = 0, so the only asymptotic
contribution (apart from the stationary point contribution) comes from the point 7 = 0.
This asymptotic contribution will be calculated by adding the contributions from 7 = 0
to the integrals over the regions k2 + k' < k2 (the propagating part of the spectrum) and
k2 + k2 > k2 (the evanescent part of the spectrum).

Start with the propagating part of the spectrum. The contribution OP from y = 0 to the
integral over the propagating part of the spectrum can be written

4p(f) = - . J F(k, cos k,, kjI:,, sin+k*+z']d-dkb, z > zo (2.68)

where we have introduced the polar integration i ariables (ký = k" cos kO and k. = k, sin kO)
and used the relation kpdk, = -- yd 7 . The integral denoted by f 0 in (2.68) refers to the
upper end-point contribution from the 7 integration, and F is the far-field function defined
in (2.67). Standard integration by parts [34, p.78] applied to the 7 integration of (2.68) gives

227rIrcocos6I sink#~ksnke ' y.) , z > zD. (2.69)

The asymptotic value of the integral (2.69) is found by the method of stationary phase.
The stationary points k4, satisfy the equation tan ko = = tan 0 which has the solutions
ko= and k~o = 4 + 7r. The second derivative of the phase of the integrand in (2.69) at
these two stationary points is equal to -k sin 0 and k sin 0, respectively. Consequently the
stationary phase formula [34, p.220, eq.(6.1.5)] shows that [12, p.63]

ei•-/4 1i
vm ,/ _7= [F(k cos 4, k sin 0)ei G

+i*F(-k cos0,,-k sin O)e-ikIn 9] + 0 z > z.. (2.70)

It is seen that this contribution is of order r-3/ 2 and is thus negligible compared to the
stationary-phase contribution (2.64) which is of order r-.
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Having calculated the asymptotic contribution from -Y = 0 to the integral over the prop-
agating modes, we will now calculate the corresponding contribution V from the evanescent
modes. It is found that the first term in the asymptotic expansion of the contribution from
the upper limit of the integral fo equals the negative of the first term in the asymptotic
expansion of the contribution from the lower limit of the integral fo, so (2.70) shows that

Seii14 [F(k cos 4), ksin O)eikrSi8

/ 7 cos0 v -r

+ IF (- kcos 0, -k sin0))e-ik- 6- 01 + 0() > .0 (2.71)
)r2

The total asymptotic contribution to the acoustic field 0 (2.57) from the singularity at
= 0 is the sum of OP and 0' given in (2.70) and (2.71). From these equations it is seen that

this total asymptotic contribution is of order r-2 or smaller, so that it is negligible compared
to the stationary-phase contribution (2.64).

The corresponding formulas for the electric field are given by

ei /4 1Af a
e[F•/ 1(kcos4,ksinO)et's

72W,/ coso r

+iF(-kcos 0, -ksin O)e-krine] + 0 (z) ~> z,0 (2.72)

and

-ir/4 1[(k cos 4, k sin O)eikr sin

+iF(-k cos 4), -k sin O))&iI. kr "-8 + 0 z > z0 . (2.73)
)r2

where P = -i-fT, with T equal to the electric field spectrum (2.11). The formulas for the
magnetic field are given by (2.72) and (2.73) with F(k, k•,) replaced by k x P(k,, k,) (see

(2.16)). By direct calculation one finds that 2. x RH* = 0 for all observation points so
the evanescent modes do not radiate any electromagnetic power into the half space z > zo.
The same statement holds for the contribution of 2- 2EP x AP* to the electromagnetic power.
Thus all the radiated electromagnetic power comes from the stationary-phase contribution
given in (2.65) and (2.66).

Far fields for 0 = 0
The above far-field results were derived for 0 < 0 < 7r/2. Here we consider the special

case of the far fields along the z axis, that is, 0 = 0. From (2.64) it is immediately seen that
the contribution from the stationary point in the region k' + ky < k2 is given by

O(z) --ikzT(,O)+ , z > zo. (2.74)
z
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Similarly, (2.69) shows that the contribution from 7 = 0 to the integral over the propagating
part of the spectrum is

o"(zl) - ] F(kcosk,,ksink,)dk + (-)0 z >zo (2.75)

and that the corresponding contribution from the evanescent part of the spectrum is

$e(zr) ,. 1i... F(Iccos k#, kc sin k,)dk, + 0 1 z > ZO. (2.76)

Thus it is seen that along the z axis both the propagating and evanescent modes give an
asymptotic contribution from 7 = 0 of order z- 1, the same far-field dependence as the
contribution (2.74) from the stationary point. However, the dominant terms in (2.75) and
(2.76) cancel upon addition to leave a dependence of O(z- 2).

For the electric field one finds that the contribution from the stationary point in the
region k, + kv < k2 is given from (2.65) as

F_(z,) ~-ik--T(O,) + 0 ( , z > zo. (2.77)

The contribution from 7 = 0 to the integral over the propagating part of the spectrum is

EP(zi) 1 -(kcsk'ksinko)dkoI+ - , z>Zo (2.78)
2irz Jo (Z 2 )

and the corresponding contribution from the evanescent part of the spectrum is

1 fo2"$F(k cos k#, k sin k,)dk, + 0 (-) Z>Zo. (2.79)

2rz z 
o

The formulas for the magnetic field are given by (2.77), (2.78), and (2.79) with F(k.,/%)
replaced by ••k x F(k..i,/k) (see (2.16)). In this case one finds that in general i -Re xHC # 0.

However, since the contribution to the far field from the evanescent modes is of order r-1

only on the z axis (0 = 0), and is of higher order for 0 > 0, no power is radiated by the
evanescent modes. Similarly, no power is radiated by the contribution of • EPP x HfP at
0=0.

Far fields for 0 = 7r/2
Finally, let us consider the far fields in the scan plane z = z0. For simplicity, assume that

z= = 0 and that f = xi with x > 0. The plane-wave spectrum representation (2.57) then
reduces to

t _xi -I [+o-o+T(k, i%)ei'-kdk.,di%,
- 27r -oo o

i j+oo 21rkP k
= r o 1 F(k, cos kj, k. sin ks)eskPcg•kdk,'dkpd (2.80)

24



where again k,, = k, cos kO, ks, = k, sin ko, and the far-field function F is defined in (2.67).
Denoting the kO integral in (2.80) by G(k,, x) and noting that the phase of the integrand of
this function has a stationary point at kO = 0 and at k,4 = r, the method of stationary phase
shows that

i 'f 27r -i/ 2 _rG(k#, x) -~ letPF (kp 0) -+ xkPF(..k 0)V~ ~eu1/4 +0() (2.81)

Inserting this asymptotic expression for G(ko, x) into (2.80) one finds that

ze-i /4 +oo ]o + [1+

27r 10 [F(k~,,Oik + iF(-, O)ikl v '[ Ox/) (2.82)

The only critical point for this integral is at y = 0, that is, at k" = k. The asymptotic
contribution to the integral from this point is found as the sum of the asymptotic end point
contributions at k4 = k to the integrals over propagating (k, < k) and evanescent (k, > k)
modes. Because of the singularity of the integrand at these end points, the standard method
of integration by parts cannot be used. However, one can change the integration variable in
(2.82) from k, to -y and use the method of stationary phase for a stationary point at an end
point [34, p.222] to prove that

jF(kp,0) e " kPVi ' F(k, 0) V e1  ± ( (2.83)

and that

jF(kp,0 )e tzkPV/• r -' F(k, 0)V/Ie~r/e- e + 0 ()(2.84)

which is seen to equal (2.83). Equation (2.83) shows that

jF.fkpOeixkPr~± -d (~j izk,, dP/•k)

if(-k,0)V i7r/"4 e'ik + 0 G) (2.85)

where -y = -y, k, < k has been used (the * indicates complex conjugation), and (2.84) shows
that

2 flko, 0)e- rkPV' -P (ij oF* (- k..k0) e rkpv-~

-iF(-.k,O) v/ e et/4-&iz + 0 G) (2.86)

where -y* = -- , k, > k has been employed. Inserting (2.83) and (2.85) into (2.82) it is found
that the far-field contribution from the propagating modes is

1 [F(k, O)etk- - F(-k, O)e-tk'] + O(x-3 /2) (2.87)
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or for an arbitrary direction f = xi + yj in the scan plane

§P(f) ,T'- [F(k cos 4, k sin 4 )esk_ - F(-k cos 4, k sin 4)e-kr] + O(r-3/2). (2.88)

Inserting(2.84) and (2.86) into (2.82) one finds that the far-field contribution from the evanes-
cent modes, generalized to an arbitrary point in the scan plane, is

V1 [F(kcos 0,ksin O)etIn. + F(_kcos 0, ksin4,)e7ik,, + O(r-3/)2 (2.89)

Consequently, both propagating and evanescent modes contribute to the far field with a term
of order r-1 and they both contribute with incoming as well as outgoing waves. Adding the
contributions from the propagating and evanescent modes one finds that the total far field
is an outgoing wave given by

4(f F(k cos 4,, k sin -) + O(r-3/2) (2.90)

r

whose first term agrees with the result obtained by letting 9 -+ ir/2 in the stationary-point
formula (2.64). A more detailed analysis would show that the O(r-3 / 2 ) terms in (2.88)
and (2.89) cancel to leave an 0(r-2) instead of O(r- 3/2) in (2.90) and (2.93) below. This
expression shows that the incoming waves in the expressions (2.87) and (2.89) cancel and thus
incoming waves result from dividing the spectrum into propagating and evanescent parts.
Consequently, when the sources are in a finite region of space and radiate in a direction
for which 6 = 7r/2, the evanescent part of the spectrum cannot be zero. Furthermore, by
neglecting the contribution from this part of the spectrum one obtains the erroneous result
that waves are coming in from infinity.

For the electric field one finds that the contribution to the far field in the scan plane from
the propagating part of the spectrum is

ER(P) rl [F(kcos4, ksino)ei)", - P(-kcos 0,-k sin O)e--i] + O(r-3 / 2) (2.91)

and that the contribution from the evanescent part of the spectrum is

1- [F,(kcos 0,ksin O)e'kr + P(_kcos4,,_ksin O)etkr] + O(r-3/2). (2.92)

The total far electric field is then

E(F) - F(k cos 0, ksin 0) + O(r-3/2) (2.93)
r

whose first term agrees with the result (2.65) with 0 -+ 7r/2. The formulas for the magnetic
field are given by (2.91), (2.92), and (2.93) with F(k=, k,) replaced by V;'_k x F(k,, k,,) (see

(2.16)).
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To determine if the evanescent modes radiate any real power in the scan plane, consider

Re(i . RE x Hf*) = \/Re ([IP(kcos 4, ksin 01)2 - IF(-kcos 4, -ksin 0)1'

- (k cos 4, k sin 4) .F*(-k cos 4, -k sin O)e 2ik

+ P(-k cos 4,, -k sin 4,) -F*(kcos 4,, k sin Oe2k]

1- r [IP(kcos 0,,ksin 0112 - IF(-kcos4,,-ksin0)12] (2.94)

where ,- F(k cos 4,, k sin 4,) = 0 and ÷. F(-k cos 4, -k sin 4) = 0 have been used. Although
this real part of the evanescent Poynting's vector in (2.94) decays as r-, it is valid only
for 0 = 7r/2. For 0 < 0 < 7r/2 we have shown above that the real part of the evanescent
Poynting's vector decays faster than r-2 . Thus, an integration over 0 of the real part of the
evanescent Poynting's vector shows that evanescent modes do not radiate power in the scan
plane.

In summary, the evanescent spectrum can contribute to the far fields at 0 = 0 and
0 = 7r/2, but do not contribute to the radiated power. This latter result, of course, can
be proven directly from the plane-wave spectrum representation of the B and R fields; see
Section 2.3.

The result that the evanescent spectrum contributes to the far field at 0 = 0 and at
O = 7r/2 has important practical consequences. When computing fields for radiators from
the plane-wave spectrum formulas (2.8) or (2.10) [351, usually only the propagating part
of the spectrum (the radiated field) has been determined from measurements. Thus, the
computed fields will contain errors near the 0 = 0 and 0 = 7r/2 directions caused by the
neglect of the evanescent spectrum regardless of how large the distance is from the radiator.

(If the sources are located in the half space z > zo, the asymptotic contributions for the
fields in the half space z < zo are given by the negative of the expressions derived in this
section.)

2.2.4 Spectrum Given in Terms of the Far Field in Spherical
Coordinates

To derive a formula that gives the spectrum in terms of the far field in spherical coordinates

(r, 0, 4), write the far field as

(t - -(-(O, 0), r --, 0o (2.95)
r

where F is the complex far-field pattern in terms of the spherical coordinates (0, 4). From
the expression (2.48) we see that the far-field pattern F can be expressed in terms of the
plane-wave spectrum

.F(0, 4) = k cos OT(k cos 4,sin 0, k sin 4,sin 0). (2.96)
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To find the spectrum in terms of the far-field pattern we need to express 9 and 0 in terms
of k, = kcos4sinO and ky = ksin4sinO. For k.2+k, < k 2 and z > zo it is found that
0 = arccos :r and 0 = arctan h, so that the spectrum is given bykk

T(k.,k,) = (k,,kv) = •-(arccos ,arctan <) k +k(2<97

where the first equation in (2.97) is taken from (2.30). For k2 + k2 > k2, the far-field pattern
." does not immediately give us the spectrum since its values for complex observation angles
is required (arccos 2 is complex when -y is complex). However, for sources in a finite region,
it can be shown [12, sec.4.31 that the function .'(0, 4,) is part of an entire (analytic) function
defined for complex observation angles. Thus, in principle, it is possible to analytically
continue the far-field pattern Y" to complex values of 0, and still use the expression (2.97)
to calculate the spectrum. (Appendix A reduces the conditions required for the proof in
Nieto-Vesperinas [12, sec.4.3J from continuous source functions to fields that are continuous
outside the source region.) Appendix A generalizes the theorem in Nieto-Vesperinas [12,
sec.4.3] to electromagnetic fields that are continuous outside the source region, a condition
that is satisfied by fields that obey Maxwell's differential curl and divergence equations
outside the source region.

Writing the far electric field as

eikr_

()-,.F(0, 4), r -- oo (2.98)r

where P is the electric far-field pattern, one finds similarly, that the spectrum (2.11) for the
electric field is given by

k2 2T(k., ky) = -P(k., ky) = !F(arccos , arctan--), k2 + ky < k2  (2.99)
k kv

Thus, in principle, one can analytically continue the electric far-field pattern P" to complex
values of 0, and (2.99) can be used to calculate the spectrum everywhere. In practice,
numerical errors usually prevent the analytic continuation of a measured far-field pattern.
When a closed-form expression for F(O, 4') is known for real (0, 4), one way to obtain the
analytic continuation to complex values of 0 is to expand the far field in a series of spherical
harmonics [36, eqs.(3.9), (4.10)], [9, eq.(6)]. With such an analytic continuation, the near
fields can be computed from the far electric field through formulas (2.10) and (2.17).

(If the sources are located in the half space z > zo, the relations in this section still hold
for the fields in the half space z < z0 provided that -/ is replaced with --y.)

2.3 Power Relations for the Electromagnetic Field

The electromagnetic power radiated through the plane z = z, > zo will be given in terms
of the electromagnetic spectrum T in (2.11). Poynting's and Parseval's theorems show that
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the complex power P(zi) radiated through the plane z = z, is given by

P(zi) 2 il f0 X R(' ' ld'y

- 1-0000 IO T x T× J,(kk,)ek",ez'l-')dkzdk,, zi > zo (2.100)

where T is the spectrum for the electric field given in (2.11) and TH is the spectrum for the
magnetic field given in (2.16) and (2.18). The superscript * denotes complex conjugation.
Now, from (2.16),

T x Tý(k.., kv) = 1 ~x [k-x T-(kk,)J1 1
= - -T k. (2.101)

Using (2.12) to show that T- k" = (-y - 7 )T. we find that

. T x Tý((k, k1,) = 1I1127" I V --( 7" )T. 2  (2.102)
WI' WI'

and (2.100) then gives

P(z 1) = 1- I[T2,-=dk•dk, + if 1-Y1121T.12 1-TM21 ' 2zl 1-fdkdk (2.103)P~l-2wA [I ,k<k

where the fact that -y is real for k, = . + ky < k, has been used. The first and second
integrals in (2.103) are the real and imaginary power, respectively, radiated through the
plane z = z1. It is seen that the real power (the first term of (2.103)) is carried solely by
the propagating part of the spectrum and is independent of z1 . The imaginary power (the
second term of (2.103)) involves only the evanescent part of the spectrum and decays as
z1 -+ +oo. No real power is radiated by the evanescent part of the spectrum as we showed
previously in Section 2.2.3.

(When the sources are located in the half space z > zo, the power radiated (to the left)
through the plane z = z1 < zo is given by (2.103) with z, replaced by -zl.)

2.4 Lossy Media

In this section we assume that the space surrounding the sources is lossy. The losses are
accounted for by the complex permittivity e = e + ic" and the complex permeability A =
A'+i" where t, c", u', and I" are real. (For example, f"' = for a medium with conductivity
a.) The propagation constant in the lossy medium can be expressed as

k =wV'- = 0 +i (2.104)
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where both the attenuation constant a and the phase constant 0 are positive (3 = k and
a = 0 for a lossless medium).

All the plane-wave spectrum formulas in Section 2.1.1 are valid with k replaced by # + ia
when losses are present. This means that 7 is complex for all (k,, k4) so that every plane-wave
mode is attenuated. Thus, the spectrum does not divide into propagating and evanescent
parts. Also, the Green's function representations in Section 2.1.4 hold with k replaced by #+
ia. The far-field expressions in Section 2.2.1 found from the Green's function representations
hold with k replaced by P + ia, and we see that the fields are exponentially attenuated as
r ---ý +00.

The asymptotic far-field analysis in Section 2.2.3 of the plane-wave spectrum represen-
tations is no longer valid because there is no stationary point and the entire spectrum is
decaying. To obtain the far field from the plane-wave spectrum representation one would
have to use the method of steepest descent. However, the result (2.48) from the Green's
function representation still holds and thus we have the far field in terms of the spectrum
with argument (k cos 0 sin 0, k sin 0 sin 0), where k is complex.

The spectrum has no singularities when losses are present because the electric field in the
plane z = zo decays exponentially at infinity so that the integral of IEI over the plane z = Zo
converges. Equation (2.97), which gives the spectrum in terms of the far field, still applies.
However, now -y is complex for all real (k,,, k4) and thus to get any part of the spectrum one
has to know the far-field pattern F for complex angles of observation.

The power P(z1 ) radiated through the plane z = z1 > zo in the lossy medium is found
by inserting the value of i. P x Phý given in (2.102) into the general power relation (2.100).
One finds 1 [ + 0 01 + 0 0 I T 2 - -1+ 0 0 + : 2ITI I ' 1 2 U- r d . d k ,
P(z1 ) = [ -1i ITly 7 e- dkdk + i I 7[, -I. e- dkdk

(2.105)
where both integrals are real and -y. and 7- are the real and imaginary parts of 7, respectively.
Since the definition of 7 ensures that -y' > 0 it is seen that both the real and imaginary power
decay as z, -- +00.

(When the sources are located in the half space z > zo, the power radiated (to the left)
through the plane z = zi < zo is given by (2.105) with z, replaced by -zl.)

2.5 Static Electromagnetic Fields

This section derives formulas that give the static electric and static magnetic fields in the
half space z > zo in terms of static electric or magnetic fields on the plane z = zo. The cases
where the half space z > z0 is (a) lossless, (b) has only electric losses, (c) has only magnetic
losses, and (d) has both electric and magnetic losses, are analyzed. We start by obtaining
the static Maxwell equations from the time-harmonic ones and discuss the class of losses
treated by the following analysis.

In a lossy medium with zero charge the time-harmonic Maxwell equations can be written
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as
VxH=---W•E, VxE=iw- sH, V-H=O, V.E=0 (2.106)

where
f(W) = 6'(W) + if"(W), p,(W) = p'(,,) + i/1 "(W) (2.107)

with c, e', A', and A" real. From an entropy argument [37, p.274] (for passive media) it
follows that for w > 0, e>' _ 0 and A" > 0.

Because the time-domain fields calculated from the integral over w of the time-harmonic
fields are real, the real and imaginary parts of e(w) and p(w) are always even and odd
functions of w, respectively. That is

C'(-W) = e'(w), p'(-w) = s'(w) (2.108)

" =-"(w), ("(-w) = -p"(w) (2.109)

regardless of the frequency dependence of these functions. This implies that no material can
have a constant loss in permittivity or permeability for all values of frequency (-oo < w <
co). 1 In particular, the constitutive relations

D(f,t) = foE(f,t), B(f,t) = poH(f,t) (2.110)

for time-domain fields, where co and IAO are constants, imply that there are no losses in the
material. When losses are present these simple constitutive relations must be replaced by
the more complicated convolutions

D(f,t) = I (r)E,(r)e dw = - e(f, t - t')E(f, t')dt' (2.111)

PV(f,t)= J pw(r)H.(f)eiwtdw = 12+ j- ,(f, t - t')o-(f, t')dt' (2.112)

where the frequency dependent parameters in (2.111) and (2.112) are denoted by the sub-
script w. For example, if e(Q) = co + iaow or A.'(f) = po + ioumw, both of which satisfy the
dispersion relations [37, p.281], then (2.111) and (2.112) reduce to

D(f, t) = foE(f;, t) + a f E, 0t')dt' (2.113)

B(f , t) = poH(f, t) + ,,, 0 (f, t')dt'. (2.114)

Contrary to the statements in [13], if the proper constitutive relations are used, magnetic
monopoles need not be introduced into Maxwell's time-dependent equations to represent loss
in magnetic materials.

1In the words of E.J. Post [38, p.162], "The imaginary elements, therefore, if different from zero, should
be functions of frequency under all circumstances. One can express this in another way by saying that the
imaginary elements are associated with effects which are essentially dispersive."
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For many lossy materials it is found that [37, p.2811

,(W) C'(0) + iW -. 0 (2.115)

where o is the static electric conductivity and d(O) is the finite static permittivity. Similarly
one can postulate a permeability that behaves like

p(W) ~- p'(0) + i--, w - 0 (2.116)w

where a,, is the static magnetic conductivity and p'(0) is the finite static permeability. From
the facts thate" > 0 and 1" > 0 for w > 0 it follows that a > 0 and a,, _> 0. (Also, a > 0 can
be proven directly from a static entropy argument [37, p.87] for passive materials.) Although
a constant a. (independent of frequency) can be postulated for lossy magnetic materials,
no physical material has been found that maintains a constant a. as w approaches zero [37,
p.283]. However, for the sake of completeness we will also consider cases with o,, constant
as w approaches zero.

For materials with permittivity and permeability obeying (2.115) and (2.116) the time-
harmonic Maxwell equations (2.106) show that the static Maxwell equations are given by

VxA-=crE, Vx E=-OmH,,, V ./=0, V.8E=0 (2.117)

where both the electric conductivity a and the magnetic conductivity a,, are non-negative
constants.

2.5.1 The Lossless Case (U = 0, aUr = 0)

The static Maxwell equations (2.117) show that for a lossless medium (a = 0, a,, = 0) the
electric and magnetic fields are uncoupled and satisfy the same differential equations. In
this section we will therefore consider only the electric field satisfying V x 2 = 0, V- E = 0,
which imply V 2 E = 0. For finite source regions Stratton [39, p.168] shows that II = -2)

as r --+ oo and the standard Fourier theorem allows 2(F) to be expanded as

2r= 1f f+-0 6(k., k,, z)e'(kz+k)dkzdk, z >_> z (2.118)

where 6 is the Fourier transform of E(f). Because V 2E = 0, the function 6 satisfies

S- - k (k.k,,,z) = 0. (2.119)

By using the fact that b -- 0 as z -+ oo, one finds the solution to (2.119) is

b(kz, kIk, z) = T(k., k, (2.120)
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Insertion of (2.120) into (2.118) shows that the static electric field can be expressed by the
plane-wave spectrum representation

- = f f T(k>, -z Ž zo. (2.121)

Taking the inverse Fourier transform of (2.121) yields the plane-wave spectrum of the electric
field

T'(k:,ki,) = 2% E(x',y',z)e-i(kx±'+ky')dx'dy', z > zo. (2.122)

Because IEI = O(r 2 ) at infinity, (2.122) shows that the spectrum T has no singularities.
Bringing the derivatives inside the integral in (2.121) one finds that V./F = 0 implies that

T(k?,k,) • k = 0 (2.123)

where kk+ + kY+ + 0•2ki. Similarly, V xEL = 0 implies

T(k:,ky) x k = 0. (2.124)

Crossing k into (2.124) shows that (2.123) is implied by (2.124) because k- k = 0. Equation
(2.124) with k • k = 0 implies that the spectrum can be written as

T(k., k,) = L(kx, kv)k (2.125)

where L is a scalar function. (This means that T- T = 0 (since k- k = 0), which does not
imply that T = 0, because T is a complex vector. In other words, the dot operation is not a
scalar product.) Thus the spectrum is parallel to the propagation direction k of the "plane

wave" et(k z+ki+ ky') (even though it is also perpendicular to k in the sense of (2.123)),
and consequently only one of the spectrum's three rectangular components is necessary to
specify it completely. This means from (2.121) and (2.122) that the electric field in the half
space z > z0 is completely determined from one component of the electric field (for example
EO) on the plane z = zo.

The static analysis in this section has been based so far on the static plane-wave spectrum
representations for the fields. The static Green's function representation can be obtained
from the limit of (2.44) as k approaches zero; namely

1= Rx x R(')] dx'dy' zI Z-O (2.126)

wheref B= (x-x')i+(y-y')g+(z-zo)i. Equation (2.126) gives the electric field for z > z0

in terms of the x and y components of the electric field on the plane z = zo. Combining
(2.126) with the Stratton-Chu formula [39, p.467] for w = 0 shows that the electric field is
also given by the integral

1 +, +0,,
,(7) = ._ .f L -EE 2 (f')dx'dy', z > zo (2.127)

33



involving only the z component of the electric field on the plane z = Zo.
We can also find a Green's function representation for the static electric field in the half

space z > zo in terms of either the x or y components of the electric field on the plane z = zo.
An easy way to do this is to insert (2.125) into (2.121) and (2.122) to get

1 j+O0 +C 1 r+00I*+o0
() = - I I kL(k.,ky)e't.Fdkzdk = V I+ L(k.,ki )etikdk.dk- (2.128)

27r _0 2irz _J

kL(k, k.) - 2 + ] E(X1,YIzo)et(kx'+k1Y)dx~dy1. (2.129)

Substitute the x, y, and z components of (2.129), respectively, into the right side of
(2.128), and use the relationships

Ii- •'I 2ii . c/ dk c + k> Z' (2.130)

_-"___ I - --12r (+c0 oo k= d~d• z > z' (2.131)

If d-'I 2lj J_. I-o + q+ke:"+'-k
S dy' J f+- •+0 - . , kF dk~dk,, z > z' (2.132)

to obtain

1 +00 +f+E +00 E. (")
'f -- __ d_ 1' ydd z> z1

lV_ 1.) Ed( '..,., (2.133)
27r 9z d R 8 ay z > zo

which are expressions for the static electric field in the half space z > zo in terms of one
rectangular component on the plane z = z0 . The first integral expression in (2.133) is, of
course, identical to (2.127). These formulas could also have been derived using the scalar
potential for the electric field and the scalar static Dirichlet and Neumann Green's functions.

The magnetic field, which is uncoupled from the electric field, can be found from the
same expressions with B replaced by R. (When the sources are located in the half space
z > z0 the formulas (2.122)-(2.125) hold for the fields in the half space z < zo provided that

k + k is replaced by -_kf + k. . The Green's function formulas (2.126), (2.127), and
(2.133) hold also for z < zo provided they are multiplied by -1.)

By working directly with the static equations instead of the spectra, we will now give
an alternative proof that by specifying one component of the static electric field and one
component of the static magnetic field on the plane z = z0 one can determine all static field
components in the half space z > zo. To do this, we start by showing that the equations
for the electric field V x E = 0 and V B = 0 together with one component of B on the
measurement plane z = zo, are sufficient to determine P in the half space z > zo. The curl
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equation shows that E may be expressed as the gradient of a scalar field, and thus P is
uniquely determined except for an additive gradient field. Therefore consider the field

E, =E+VTI (2.134)

where E is the correct electric field and T is a scalar function satisfying Laplace's equation
V 2T -= 0. Our proof is now reduced to showing that if one rectangular component of P1 on
the plane z = zo equals that of P, then VT = 0 for z > zo. From Morse and Feshbach [40,
p.1265] it follows that a scalar field T satisfying Laplace's equation can be written in terms
of spherical harmonics as

n=-too

T (f)= E An(O, O)r n (2.135)
n= -Co

outside the source region. Since the source region is finite it is found that An = 0 for n > 0
and since Ao = C is a constant, it is found that T = C + O(r- 1) at infinity. The constant
C may be chosen to be zero and consequently IF = O(r- 1) at infinity.

Assume now that we know E, = El. on the plane z = zo. Then P = 0 on that plane.
Because T -- 0 at infinity, this means that T = 0 on the plane z = Zo. Using the facts that
T satisfies the Laplace' equation and is of order r- 1 at infinity, the divergence theorem now
shows that

1, IViT12 dV V (TVT)dV = -/F X=,.dxdy = 0 (2.136)

since there is no contribution from the semicircle at infinity. Consequently XI is identically
zero in the half space z > zo. Thus 2 = .E1 and it has been shown that by specifying the
x component of the electric field on the plane z = zo, all electric field components can be
calculated in the half space z > z0 . Similarly, by specifying the y component of the electric
field on the plane z = z0, all electric field components can be calculated in the half space
Z > Zo.

Assume now that we know E. = E1 z on the plane z = zo. Then one finds that IF satisfies
the Neumann boundary condition on the plane z = zo, and (2.136) again shows that T is
identically zero in the half space z > zo. Thus, specifying any component of the electric field
on the plane z = zo determines all electric field components in the half space z > zo. Of
course, the same is true for the magnetic field. Thus, the specification of one rectangular
component of both the static electric and magnetic fields on the plane z = zo determines all
static field components for z > zo.

In the time-harmonic case (w # 0), non-zero far fields always have eikr/r radial depen-
dence (except at isolated nulls in the far-field pattern). Thus, the convenient far-field formula
(2.49) could be derived from (2.44) by inserting the asymptotic form of the Green's function.
The same procedure applied to the static Green's function representations (2.126), (2.127),
and (2.133) fails, in general, to produce the correct static far field. There are two reasons for
this failure. First, the radial dependence of the static far field differs depending on the lowest
multipole present in the source distribution (r-- 2 for the nth multipole, n = 0, 1, 2,...). Sec-
ondly, the limit as r --+ co of the integral in (2.126), (2.127), and (2.133) does not, in general,
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equal the integral of the limit. For example, if one replaces R/R 3 by f/r' in the integral of
(2.126) one gets the ridiculous result that the far electric field is always perpendicular to the
far-field direction f. (For a point charge Q to the left of z = z0 the integral in (2.126) can be
evaluated to show that as r -- 00, ,(f) correctly approaches Q÷/(47reor 2). If however, the
limit as r -- oo is mistakenly taken under the integral first, so that A/R 3 becomes f/r 3 , the
integral evaluates to zero.) Thus in general, there is no single simple expression for static
far fields analogous to (2.49) for the time-harmonic fields.

2.5.2 Electric Losses Only (o0 # 0, a, = 0)

From the static Maxwell equations (2.117) it is seen that the electric field in this case satisfies
the same differential equations (V x B = 0, V- R = 0, and V 2! = 0) as in the lossless
case. Consequently from Section 2.5.1, the electric field is given by the plane wave spectrum
representation (2.121) and its spectrum T satisfies (2.122), (2.123), (2.124), and (2.125).
The magnetic field satisfies V-fH = 0, V2 H = 0 (but not V x H = 0) and the analysis of
Section 2.5.1 shows that

1 f_-oo ~t-o k•)i(k'x+kvy+i 2d~dr
P(F) = V L o 1i TH(kY, z > zo (2.137)

where the spectrum TH for the magnetic field is

TH(k., ky) -k2 1. +00 X y z)et(kz'+kvy')dx'dy', z > zo. (2.138)

One finds that V H = 0 implies that

TH(k., k1 ) k = 0 (2.139)

and that V x H = at shows

ik x TH(k•,ky) = aT(k,,kv) (2.140)

where T is the spectrum for the electric field. As in the lossless case, k = kxi + kj +
/k.2+ ky+k. Taking the vector cross product of k with (2.140) shows that (2.124) and

(2.140) imply (2.139).
Let us now discuss which field components must be specified on the plane z = zo to

determine all field components in the half space z > z0 . As in the lossless case, one component
of the electric field on the plane z = z0 is sufficient for calculating all electric field components
in the half space z > zo. Because of (2.139) (which is a consequence of V- H = 0) it is
seen that two components of the magnetic field on the plane z = zo completely determine all
components of the magnetic field in the half space z > zo. One component of the magnetic
field is not sufficient because V x fR : 0. Furthermore it is seen from (2.140) that T can
be determined from PH so two components of the magnetic field on the plane z = Zo are
sufficient for calculating all electric and magnetic fields in the half space z > z0 .
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Since a vector parallel to k may be added to TH in (2.140) without changing T, it is
seen that the electric field does not determine the magnetic field. Thus, it is necessary to
specify at least one component of the magnetic field on the plane z = zo to find the fields for
z > zo. To find out if one component of both electric and magnetic field on the plane z = zo
is sufficient to calculate the fields for z > zo, use (2.125) and write (2.140) in matrix form as

k. 0 i~. + k, k THZ
iaL(k:, kA) kv )= -__+k2 0 Tk )) (2.141)

Assur - now that any one of the components of the electric field is known on z = zo
(which means that all components of the electric field can be calculated) and that H. is
known on z = zo (which means that TH, is known). Then (2.141) can be solved uniquely
for TH,• and TH.. Consequently, any component of the electric field and H., on z = Zo
completely determine all fields for z > z0. Similarly one finds that all electric and magnetic
field components can be calculated in the half space z > zo if a single component of both
the magnetic field and the electric field on the plane z = zo is specified.

After having determined the plane-wave spectrum formulas, we now turn to the Green's
function representations. Clearly the electric field is given by the Green's function formulas
(2.126), (2.127), and (2.133). The magnetic field is also given by the formula (2.126) (but
not (2.127) because V x R # 0) with B replaced by ff. This shows again, that by specifying
H. and H. on the plane z = zo one can determine all fields for z > zo because the electric
field can be determined from - V x H.

Using the static equations instead of the spectra, we will now give an alternative proof
that one rectangular component of both the electric and magnetic field on the plane z = Zo
determines all field components in the half space z > zo. To do this assume first that one
component of the electric field, and the x component of the magnetic field, are known on the
plane z = zo (then the electric field is known for z > zo). The equations for the magnetic
field V x R = ,E (where B is known) and V . H = 0 determine the magnetic field except
for an additive gradient field. The scalar T in this gradient field satisfies Laplace's equation
and the boundary condition -T = 0 on the plane z = zo. Proceeding as in Section 2.5.1
shows that T a 0 and thus all field components are uniquely determined in the half space
z > Zo. Similarly, one finds that this is true when the y or z component of the magnetic
field is specified on the plane z = zo. Thus we have an alternative proof that all fields in the
half space z > zo can be calculated if one component of both electric and magnetic fields are
known on the plane z = zo.

(When the sources are located in the half space z > zo the formulas in this section hold

for the fields in the half space z < zo provided that F2 + k is replaced by - Fk2 k+k2.)
For the case with only magnetic losses (a7 = 0, a.. # 0) the analysis of this section applies

with B and ft interchanged and ar replaced by Urn.
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2.5.3 Electric and Magnetic Losses (a 5 0, or, # 0)

The static Maxwell equations (2.117) show that the electric field satisfies

V2 ELmUEr0=0, V"•E=0 (2.142)

and the magnetic field satisfies the same equations with R replaced by Hf. The identity
V 2 = V(V-) - V x Vx easily shows that (2.142) along with V x R = -aOm is equivalent

to the static Maxwell equations (2.117). Although (2.142) has the same form as the time-
harmonic Helmholtz equation, there is a major difference; namely -u,,,o is less than zero
while k2 = (w/c) 2 is greater than zero. Thus the solutions have a very different character.
(In particular, the plane-wave spectra of 2 and f have only attenuating modes.) Performing
a derivation similar to the one in Section 2.1.1, we find that

E+o +of) = t~~ -,+•+*)/ Z Ž.Z_ (2.143)B~; = ;0 f ~."k)ikx4~ývmrk2+vzd..,_..,, z > zo (213

with the spectrum T for the electric field given by

T(ke,-k+) 2r f_-'oz foo (x, y, z)e= (kz+k,,)dxdy, z> Zo. (2.144)(kk)= 2ir LoJi oo~~~e~s~k~zy

The condition V •/E = 0 implies that

T1(ký, ky) • k = 0 (2.145)

where k = k., + k J + i r,* + k. + k~j. The spectrum TH for the magnetic field is given

by (2.144) with B replaced by H, and the magnetic field is given by (2.143) with T replaced
by TH. Of course TH also satisfies (2.145). The static Maxwell equation V x E = -a,"ft
shows that

ik x T(kf, k,) = -,TH(ky,, ) (2.146)

and V x Hf = ar shows that

ik x TH (k., ks) = aT(k., k11). (2.147)

Note that (2.147) can be obtained from ikx(2.146) along with the relation k- k = -a•a

and (2.145). Similarly (2.146) can be obtained from (2.147). Because T and TH are both
perpendicular to k, only two components of / or two components of A are needed on the
plane z = zo to calculate all fields in the half space z > zo.

Let us now see if it is sufficient to specify one component of the electric field and one
component of the magnetic field on the plane z = zo. Assume first that we know H. and

E. on the plane z = zo. Then T, and TH,, can be calculated from (2.144) and its equivalent
equation for TH, respectively. Taking the dot product of i and (2.146) we get

(/ O~+ k2 + k•2 + ikyi) . T = .TH.,. (2.148)
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Along with (2.145), (2.148) gives two equations that determine T completely and (2.146)
then determines TH. Thus, all fields are determined in the region z > zo by specifying H.
and E. on the plane z = zo. Assume now that H. and E. are known on the plane z = zo.
Then T. and THv can be calculated, and taking the dot product of : and (2.147) we get

( + k,2 + Vkj + ik•,) -TH = -aT. (2.149)

which determines TH,. Equation (2.145) with T replaced by TH now gives us Tm, and thus
TH is completely determined. Equation (2.147) then gives T and all fields are determined in
the half space z > zo. Repeating this analysis for any combination of rectangular components
of the electric and magnetic fields one finds that a single component of both the electric and
magnetic field on the plane z = zo is sufficient for calculating all fields in the half space
z > Zo.

Let us now consider the Green's function representations. The expressions for the perme-
ability and permittivity in (2.115) and (2.116), and the equation for the static electric field
(2.142) show that the time harmonic results from Section 2.1.4 can be used after replacing
the propagation constant k with

lim w e(w)4(w) (2.150)

The time harmonic equation (2.44) now shows that the electric field is given by

2) r f-ooCo R2 +-- x [i x B(F)]d.'d, z> (2.151)

with R = (x - x').- + (y - y')j + (z - zo)i and f' x'i + y'ý + zOi. From (2.46) it is found
that the static magnetic field is

2a,,,ir - ,00/• ('
= o n• 1i cm[ RJ2  1?- Z x •€

_ •-•-• 3R(XxE(f')) f, .•¢)R

03-,0 ) _ 1 3 R R 1 X

"+ [3f? - R -Bfz X E(f)] } 8R dx'dy', z > zo. (2.152)

(When the sources are located in the half space z > zo the spectral formulas in this
section hold for the fields in the half space z < z0 provided that 4k.2 + k. is replaced by

- -X + k•. The Green's function formulas (2.151)-(2.152) hold also for z < 2o provided
they are multiplied by -1.)
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Chapter 3

Time-Domain Formulas

In this chapter, we derive the time-domain planar near-field formulas for both acoustic and
electromagnetic fields. As in the previous chapter, the planar scanning geometry is shown
in Figure 2.1 with the finite source region located in the half space z < 2o. The fields are
specified on the plane z = 2o and we are interested in calculating the fields in the half space
z > zo. All fields are assumed to be zero for t < 0 and to have arbitrary time dependence
for t > 0.

The electric and magnetic fields in the source-free half space satisfy the time dependent
Maxwell equations

V xflR= aB + E=IP, V.=A=0, V.B=0 (3.1)

where e, p, a, and a,,, are the space and time independent permittivity, permeability, electric
conductivity, and magnetic conductivity, respectively, all discussed in Section 2.5. (In par-
ticular, it was shown in Section 2.5 that, in principle, a constant a,, can be obtained from
the proper constitutive relations for lossy magnetic material without postulating magnetic
monopoles.) For a lossless medium both a and a,,, are zero.

Maxwell's equations (3.1) show that

8RH + -H VX (3.2)

which, under the assumption that all fields are zero for t < 0, gives the expression

H(f,t) = - jAt/ ea"'-/V x 2(f, t')dt' (3.3)

for the magnetic field. Also, recall from (2.15) that E_ and E. in the half space z > zo
determines E, in that half space. Consequently, all components of both the magnetic and
electric fields can be calculated from (3.3) and (2.15) if E, and E. are known for z > z0 .
Moreover, the derivations of Section 3.1 will prove that causal E. and E. for z > zo are
uniquely determined from their values on the infinite plane z = zo. Thus, the complete
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causal electromagnetic fields obeying Maxwell's equations are uniquely determined in the
z > zo half space from the transverse electric field on the plane z = zo.

Maxwell's equations (3.1) in the half space z > zo show that En = E.,i + Ej satisfies

1 t) - (o,.f + t) - a,,,a E (f, t) = 0 (3.4)

where c = (.)- 1/ 2 is the speed of light. Because E& satisfies (3.4), (2.15) shows that E,
satisfies (3.4), and thus

1 a2 a -
V 2E(f, t) -c 2E(f,t) - (a,,,e+at).E(ft) - a,,aE(f,t) = 0 (3.5)

which, of course, also follows directly from Maxwell's equations (3.1). Since V2 E = -V X

V x R, the curl of 2 from (3.2) (an equation implied by (3.3)) can be inserted into the first
term of (3.5) to give

(V X/R-Or)- (B =0 (3.6)

a differential equation with the zero-initial-value solution

V x ft-aB -C- P =0. (3.7)

Therefore, we have shown that (3.4) along with V. E = 0 and (3.3) imply that E and ft
satisfy Maxwell's equations (3.1). In other words, it is sufficient to work with the time-
domain wave equation (3.4), satisfied by E. and E., to determine fields for z > zo. A similar
statement holds, of course, for the magnetic field.

3.1 Time-Domain Green's Function Formulas

This section derives time-domain formulas that are analogs to the frequency-domain Green's
function formulas of Section 2.1.4. These time-domain formulas are obtained in Section 3.1.1
by Fourier transforming the frequency-domain Green's function formulas, and are rederived
in Section 3.1.2 by working directly in the time domain with time-domain Green's functions.
In Section 3.1.3 a formula is derived that gives the time-domain magnetic field in the half
space z > zo in terms of the time-domain electric field on the plane z = z0 , and the class
of time functions for which the Fourier transform can be used to calculate the time-domain
fields is discussed. The space surrounding the sources is assumed in the following sections
to be lossless, that is, a = 0 and a,, = 0, because for lossy space the expressions for the
time-domain fields in the half space z > zo do not reduce, in general, to simple integrals of
the time-domain fields on the plane z = zo.
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3.1.1 Derivation from the Fourier Transform

Start by considering the acoustic field 0 satisfying the wave equation

V 2 (-(f,t) _ 1a2 '(rt) = 0, z> z0. (3.8)

(In the acoustic field equations, c is the speed of sound.) Clearly 0(f, t) can be found from
its Fourier transform 1,(f) given in (2.36) using the Fourier inversion formula

(If, t) = +0 0,(P)e"dw. (3.9)

(In this chapter frequency-domain fields are labeled with subscript w.) Writing the propa-
gation constant as k = w/c, the frequency-domain formula (2.36) becomes

ZO- z +0 +0 4'(' j 1Ci"'/C
0f 2v fc ,,c - R---- dz'dy', z > Zo (3.10)

with P' = x'i + Y'ý + zoi and R = (X - x') 2 + (y - 9')2 + (z - z0 )2. Inserting 4, from
(3.10) into (3.9) and interchanging the orders of integration, (3.9) becomes

f, ) i=- ] _ _f-(ft-R/:c)+ j$_t(f't -Rc) dx'dy', z> z (3.11)

where the derivative rule

t) = +j -i(f,(f)e-"dw (3.12)

has been used. Equation (3.11) gives the time-domain field in the region z > zo in terms of
the field on the plane z = zo. Because we assume that all fields are zero for t < 0 and that
the sources are in a finite region of space, the f;' integration in (3.11) is over a finite region.
Therefore, the expansion R = r - ÷. f' + O(r- 1) as r -, oo can be inserted into (3.11) to
obtain the time-domain far-field expression

2-(r t - r/c + '. l c)dx'dy'+O - Z > Zo (3.13)

where i = 2 cos € sin 0 + j sin 0 sin 4 + i cos 0. This result could also have been obtained
by Fourier transforming the frequency-domain far field (2.47). Note that the far field is of
order r- 1 if the first time derivative of the field on the measurement plane z = zo is a finite
function of time (see Section 3.3.3 and Appendix B).

Similarly, by Fourier transforming the electromagnetic frequency domain formula (2.44),
one finds that the time-domain electric field is given by

(f -1t) f 2"-o.-• 2 2E(f ',t - R/c) + -2 x R(f',t - RIc) dx'dy', z > zo

(3.14)
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and that the time-domain far electric field is

E(f, t) x-1 xjE(r, t-r/c+f'./i c)dr'dy'+O z>zo (3.15)

which shows that the far electric field is of order r` if the first time derivative of the x and
y components of the electric field on the plane z = z0 are finite functions of time (see Section
3.3.3 and Appendix B). This far-field result was derived previously by Hill [151 by taking the
inverse Fourier transform of (2.49). Although it has been assumed that all fields are zero for
t < 0, the formula (3.14) is also valid for static electric fields, as can be seen from (2.126).
The corresponding formulas for the magnetic field will be derived in Section 3.1.3.

In this section it has been assumed that the time dependence of the field is such that its
time Fourier transform exists. For time signals with infinite energy, such as the unit step
function, the standard Fourier transform cannot be used because the Fourier integral does not
exist and the analysis in this section does not apply. However, one can repair this deficiency
in the derivation of (3.14) and (3.15) in a number of ways: Onc way is to use distribution
theory. Another way is to give the time signal with infinite energy an exponential decay and
then let the decay go to zero after having derived the near-field formulas. Still another way
is to use the complex Fourier transform, described in Dettman [41, pp.365-369], which is
obtained by letting the real contour from the standard Fourier integration become complex.
The use of the complex Fourier transform is illustrated in Section 3.1.3 where the magnetic
field is calculated.

(When the sources are located in the half space z > z0, the fields in the half space z < zO
are given by the negative of the time-domain formulas derived in this section.)

3.1.2 Derivation from Time-Domain Green's Functions

This section derives the time-domain near-field transformation formulas (3.11) and (3.14)
for the acoustic and electric field using a time-domain Green's function approach. The idea
of this approach comes from Stratton [39, sec.8.1], who deals only with scalar fields, and is
based on Green's second identity.

First consider the acoustic field '1 satisfying the wave equation (3.8) in the free-space
region. Green's second identity will be used in the following to derive the representation for
this field. The time-domain free-space Green's function G(f, f', t,' t) is

G(i;, f', t, t') = S(t - t' + R/c) R = If- P1 (3.16)
47rR

and the Dirichlet Green's function for the half space z > zo equals

GD(f, f',t,t') G(, f',t,i') - G(fr,t,t'), fr- = x''i + y'- + (2zo - z')i. (3.17)

The Dirichlet Green's function satisfies the wave equation

1 (92
V 2GD(, f',t,t') -i -- 2GD(f,e',t,t') = -- (f - ')S(t - t'), z > zo (3.18)
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and the Dirichlet boundary condition GD = 0 when z = zo or z' = zo. Employing Green's

second identity in the region bounded by the circular disk C(R0) and the half sphere S(Ro)

in Figure 2.2, the identity

V2 GD - GDV 2' - It 0 [-GD - G4D -m(f - e')6(t - t') (3.19)

and the Dirichlet boundary condition for GD, one finds that

-,&)- t') - ()GD dV

ati
t /G• dxdy, r' E V(P&) (3.20)

where V(Ro) is the region bounded by S(Ro) U C(R0). It has been assumed that 'I(f, t) = 0

for t < 0 and that Bo >> ct so that speed-of-light causality insures there is no contribution

to the integral over the half sphere S(Ro). Integrating (3.20) with respect to t from -oo to

+0o yields

=]f ]i $" GD dt dx d3, f' E V(&o) (3.21)

where limt-.±.o GD = 0 has been used to show that the first integral in (3.20) does not

contribute. Letting R - +0o, using

Go= ' [61(t - -t-t'+R/C) - (t-t' + Rc)] (3.22)
.3zG =Z 27rcR2  R

and integrating by parts to show that f+•' 6'(t - to)$(f, t)dt = -a(f, to), (3.21) becomes
+-0o +0+_ 1 ra. 1

t) 2rc L- o - [L-(-t - RIc) + j4(i',t - RIC) dx'dy', z > zo (3.23)

where f' and t' have been interchanged with F and t. The near-field formula (3.23), obtained

directly in the time domain, is seen to agree with the near-field formula (3.11), obtained by

Fourier transforming the frequency-domain formula (2.36).

To derive the corresponding near-field formula for the electric field, it is convenient to use

the time-domain Dirichlet dyadic Green's function GD(r, f', t, t') for the half space z > zo.

This function can be found by Fourier transforming the corresponding frequency-domain

dyadic Green's function (2.40). The expression for GD(f, ;', t, t') is found to be
-(f, e,'t, t') + C2

OD , = -GD 00 t, VV'GD(f;, e, u', O)du'du + 2izG(r, fi, t, t')

(3.24)

where GD(f,f',t,t') is the Dirichlet Green's function (3.17) and G(F,f',t,t') is the free-

space Green's function (3.16). The dyadic Green's function (3.24) satisfies the dyadic wave

equation -- 1 a2 • 3.5

V x V x GD + -- G- = 7(f; - f'),(t- t'), z > zo (3.25)
C2 at2
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and the Dirichlet boundary condition i x GD = 0 on the plane z = zo. The dyadic version of
Green's second identity (2.39) will now be used to derive a time-domain near-field formula
for the electric field. Applying this identity to the region bounded by the circular disk C(Ro)
and the half sphere S(Ro) in Figure 2.2, and using the identity

VXVXE=GD-F,.VXVXGD -- E GD-E,-GD o-E6(f- ')6(t-t')

(3.26)

and the Dirichlet boundary condition for GD, one gets

-ES(t-t')=C at [(R,) aE B) - . D] dV

JC(&) B- [-" x V x GD] dS, f' E V(Ro) (3.27)

where Ro is assumed to be sufficiently large so that the causal field is zero on S(Ro). The

identity V x GD = 2VG x I for z = zo, along with (2.41) show that E -P x V x GD] =

2V'G x (i x B) where G is the time domain free-space Green's function (3.16). Inserting
this into (3.27), integrating (3.27) with respect to t from -oo to +oo, and letting Ro --+ oo
one finds that

[+Of +00 +00
t') = 2] J - V'G(if',t,t') x [i x E(f',t)] dtdzdy, z > zo (3.28)

where the fact that limt.+o..,, GD = 0 has been used to show that there is no contribution
from the first integral in (3.27). Now from (3.16)

V'G(, f,', t, t') = k' 1  [6'(t - t'+ Ric) - cR(t - t'+ Rlc)] (3.29)

where •' = (x'- x)& + (y'- y)j + (z'- zo)!. Inserting this result into (3.28) and interchanging
f with f' and t with t', (3.28) becomes

-1 f+00f+00 f rI. a 1 -1E(V,t) = - -x × x × -E(f It - R/c) 27r-z x E(ix ',t - R/c)I dx'dy', z > zo
E.wt --00 1 -00 i CX ~ -Rc

(3.30)
which is seen to agree with the near-field formula (3.14), obtained by Fourier transforming
the frequency-domain formula (2.44).

3.1.3 Magnetic Field Calculated from Electric-Field Data

In this section the time-domain magnetic field in the half space z > z0 is calculated from the
time-domain electric field on the plane z = z0. This time-domain result is first derived by
taking the inverse Fourier transform of the corresponding frequency-domain result. Then we
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explain how it could also have been obtained by working directly in the time domain with a
time-domain Green's function.

It is seen from (2.46) that there are terms of order w- 1 in the frequency-domain formula
for the magnetic field. To avoid this possible singularity at w = 0, we first multiply (2.46) by
-zw and then take the inverse Fourier transform to get an expression for the time derivative
of the magnetic field. (When we multiply (2.46) by -iw, we recover the time-harmonic form
of Maxwell's equation, -iwHf = -V x.8,,, which holds for all w including w = 0.) Finally,
we integrate this expression for the time derivative of the magnetic field with respect to
time, recall that all fields are zero for t < 0, and thereby obtain the following time-domain
near-field formula for the magnetic field

(R, 0 [_ x -E(f',t- RIc) + -iX - (t - R/c)
2', 1t R/ at

- .- x E(f%,t - Ric)] R+ T2 x E(f',t - Ric)

3c R 2 x E(i', t')dt' R? + -C 2o 1 x E( ,t )dt' dx'dy', z > zo

(3.31)
where R = F - F' and f' = x'i + y'P + zol. This is the time-domain formula, which gives
the magnetic field in the region z > zo in terms of the x and y components of the electric
field on the plane z = zo. Both this formula for the magnetic field and formula (3.14) for
the electric field were derived previously by Baum f14), [42] by taking the inverse Fourier
transform of the Smythe formulas [33].

The formula (3.31) could have been derived directly in the time-domain in the following
way: Use Maxwell's equations and the initial conditions E(V, t) = 0, H(F, t) = 0 for t < 0
to prove (3.3) for or = 0, that is, r(f,t) = - fV x E(f, t')dt'. Insert the time-domain
formula (3.30) for the electric field into this expression for the magnetic field, and (3.31) is
recovered. Alternatively, equation (3.31) can be derived in a manner similar to the derivation
of the electric field formula (3.30), using the Neumann dyadic Green's function for the half
space z > zo. This shows that (3.31) is valid for all electromagnetic fields for which both
B and R are identically zero for t < 0; even for fields with a time dependence like the unit
step function that cannot be represented by a standard Fourier integral. However, (3.31)
cannot represent a purely magnetostatic field, that is, a non-zero magnetic field that remains
constant for all time (-oo < t < oo), unlike (3.30), which remains valid for electrostatic
fields. If such a magnetostatic field is present, one has to add its value to the formula (3.31)
to get the correct total magnetic field.

The discussion of static fields brings up a subtlety in (3.30) and (3.31) that may be easily
overlooked. Suppose all sources and fields are zero for t < 0 so that (3.30) and (3.31) apply.
At t = 0, close a switch that charges a conductor and produces current to flow through a
resistor. After a time to assume all charge and current have practically reached a constant
value, so that for r < c(t - to) there remain only static electric and magnetic fields. These
remnant static electric and magnetic fields, which build up from zero fields at t = 0, are
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entirely determined from the formulas (3.30) and (3.31), respectively. This is unremarkable
for (3.30) which, as mentioned before, remains valid for electrostatic fields (-o0 < t < co).
However, it seems quite remarkable that (3.31) can represent a remnant static magnetic
field for t > 0 even though it cannot represent a purely magnetostatic field for all time
(-oo < t < oo). Of course, the explanation lies in the fact that the remnant static magnetic
field is generated by time varying sources with electric and magnetic fields intimately related
through Maxwell's equations, whereas a purely magnetastatic field (-oo < t < oo) exists
independently of an electric field turned on at t = 0.

The time-domain far magnetic field in the half space z > zo is found from (3.31) to be

fX(f,t) x -- × x o -E(f t - r/c + f'-
2wrcr/ 7 U r l~xd'

(3.32)
which shows that the far magnetic field is of order r-1 if the first time derivatives of the x
and y components of the electric field are finite functions of time on the plane z = zo. It also
shows that the far magnetic field equals x/- PE where B is the far electric field in (3.15).

So far we have not been concerned with the restrictions on the time functions we impose
by assuming they can be represented by standard Fourier-transform integrals. The standard
theorems for the Fourier transform hold for time functions that are either absolutely inte-
grable or square integrable [21], [22] and are therefore not valid for time functions like the
unit step. Furthermore, even though a time function f(t) can be represented by a standard
Fourier integral, it is not guaranteed that we can calculate the time integral of f(t) directly
from its Fourier transform, that is calculate the integral f+j-oo)-1f uJte w in which the
integrand possibly has a singularity at w = 0. Such an integral with a w- 1 singularity has
to be computed if one has to determine the time-domain magnetic field directly from the
frequency-domain electric field on the scan plane [see (2.46)]. We thus see that the standard
Fourier transform is insufficient for analyzing certain types of problems which can occur in
planar near-field measurements.

One way of dealing with this problem is to use the complex Fourier transform explained
in Dettman [41, pp.365-369] instead of the standard Fourier transform. Let us illustrate the
use of the complex Fourier transform by calculating the time integral of f(t) directly from
its spectrum f, for the case where f(t) is the unit step function, that is f(t) = 0, t < 0 and
f(t) = 1, t > 0. The complex Fourier transform is given by Dettman [41, p.365]

f, = L f(t)eiwt dt = Im(w) > 0 (3.33)

and the inversion formula is
f(t) = fwetw t dw (3.34)

where C is the complex contour above the real axis shown in Figure 3.1. (Note that Dettman
uses ei't time dependence and thus has Im(w) < 0.)

The inverse Fourier transform of f• will now be calculated. When t < 0 the function

-2-2 e is exponentially decaying on the semicircle w = Rei", 0 < 0 < 7r as R -- + oo, and
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w plane

C10

Figure 3.1: The inversion contour C for the complex Fourier transform.

because it has no singularities above the contour C, it follows that the inversion integral
(3.34) is zero.

When t > 0 the function Ie-iwt is exponentially decaying on the semicircle w =
Reia, 7r < 6 < 27r as R --+ 00, and the inversion integral (3.34) equals -27ri times the sum of
all residues in the half plane below the contour C. The only singularity is the pole of order
2 at w = 0 and its residue is - so the inversion integral (3.34) equals t. Thus

1 !e- t f 0, t<O (3.35)
-2- -•2• 4 , t_>o0

which is seen to equal ft . f(t')dt. Thus, we have demonstrated how one can use the rigorous
complex Fourier transform to directly evaluate the time-domain magnetic field from the
frequency-domain electric field even when the time dependence of the electric field is a unit
step function.

If the time function f(t) is absolutely integrable, that is f+• If(t)Idt < oo, and satisfies
Aft) = O(ItI-1-O), 0 < a < 1 as t --+ =oo, one may derive a formula that gives the time
½xtegral of f(t) in terms of fw evaluated at only real w. To do this write f, as

f•R= fo +_ (t)[e dt- 1] di + f f(t) [e"-' - 11 dt (3.36)

where fo = fwlw=o and R is a positive constant. The assumed asymptotic behavior of f

shows that there exists a positive constant Co such that
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Figure 3.2: The semicircle C. in the complex w plane.

J£" fct)[Ie -i] dtj , ./ , v f()Ile - dt < Co "-- - lldt

= cow' J+00 U,- IIOi- 11du _< Cowoj/o +00-i - l•I du (3.37)

where we have used the transformation u = wt and the fact that u-1-0 lej` - 11 = O(u-*)
as u --, 0 to show that the last integral converges. A similar result holds for the integral
f -! f(t) [eiwt - 1] dt and since the integral f!_R f(t) [eiwt - 1] dt = O(w) it follows from (3.36)
that f, = fo + O(wa) as w --+ 0.

After having determined the behavior of fo, at w = 0, write the complex Fourier inversion
formula (3.34) for the function -9f, as

f (tI)dtl --- dL• lim dw (3.38)
0 o C• 

Ji - 0 - % - + c . - -w .

where the bar indicates a Cauchy principal value integration and CQ is the semicircle of radius
a shown in Figure 3.2. Using the facts that on the contour Ca we have w = ae i, 0 < 0 < 7r,

f, = fo + 0(aa), and e-tt = 1-+0-(a), one finds that the last integral in (3.38) simply equals
7rfo and the final inversion formula (3.38) becomes

' f(t')dt' = &_) fe + -o (3.39)

which involves only a real integral. The right side of (3.39) gives one a practical formula for
evaluating the inverse Fourier transform of the problematic integrals in (2.46) that involve
1/k.
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Figure 3.3: Square pulse of width 2 and height 1.

Let us illustrate the use of this formula with the example where f(t) is the square pulse of
width 2 and height 1, shown in Figure 3.3. In this case f= - and fo = -. Furthermore,

+COfo-ii if+ sinwsinwt 1, t < -1
J&W- d'&= - = t ) -1 < t < 1 (3.40)

1, t>1

so that (3.39) becomes

S0, t<-1
0f (t)dt' t + 1, < t < 1 (3.41)

oo2, t>l1

which is seen to be correct. We have now illustrated how the complex Fourier transform can
be used to compute time-domain fields that cannot be computed from the standard Fourier
transform.

3.2 Time-Domain Analogs of the Plane-Wave Spec-
trum Formulas

The formulas derived in Section 3.1 for the time-domain field in the half space z > zo are
the time-domain analogs to the frequency-domain Green's function formulas of Section 2.1.4.
In the present section, time-domain analogs to the frequency-domain plane-wave spectrum
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formulas of Section 2.1.1 are derived. (In Section 3.3 we will derive formulas for time-
domain near fields in terms of far fields that are analogous to the frequency-domain formulas
of Sections 2.2.4 and 2.1.1.) First, in Section 3.2.1 we proceed as in Section 2.1.1 and write
the time-domain field in terms of a double spatial Fourier integral over a time-dependent
spectrum. This approach leads to a formula for which it has not been possible to explicitly
calculate the far field, and thus it does not seem attractive for measurement purposes.

A more fruitful approach is taken in Section 3.2.2 where the frequency-domain plane-wave
spectrum formulas are Fourier transformed. This approach leads to time-domain near-field
formulas which give the field in the half-space z > zo in terms of the Radon transform of the
field on the plane z = zo. Only real measurable time-domain fields evaluated at real times
occur in these formulas.

Finally, in Section 3.2.3 the analytic Fourier transform [19] is used in conjunction with the
frequency-domain plane-wave spectrum formulas to obtain time-domain near-field formulas
that also involve the Radon transform. These formulas are simpler than those of Section
3.2.2 but they involve complex times and analytic fields which means that they are less
attractive for measurement purposes.

3.2.1 Time-Domain Plane-Wave Spectrum Formulas

Proceed as in Section 2.1.1 and write the acoustic field t(f, t) in terms of plane waves

4(f, t) = 1 1j+1 J-+0 b(k., k', z1 t)ei(k-++kyy)dk2 dky, z > zo (3.42)

where b is the time-domain spectrum given by

b(kxI k1, z, t) = 1 J j •(X1Y)z, t)e-i(k'z+kPY)dxdy, z > Zo. (3.43)

Inserting the Fourier integral (3.42) into the time-domain wave equation (3.8) one finds that
the spectrum b satisfies

1 a2 1, 22
[ c2 t2 ,+ k + z, t)= (3.44)

Our objective here, as in Section 2.1.1, is to determine the z dependence of the spectrum so
that it can be expressed in terms of the field on the plane z = zo. Therefore assume that the
spectrum b is known on the plane z = zo. The solution to the boundary value problem in
which b satisfies the partial differential equation (3.44) and is given on the plane z = zo can
be found from the method of descent described in Courant and Hilbert [18, Ch.6, sec.12].
To solve it uniquely one must specify both b and its normal derivative on the plane z = zo
[18, Ch.6, sec.12]. To construct the spectrum b, two solutions to two related boundary value
problems will now be written down.
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According to Courant and Hilbert [18, pp.692-694] the solution u(z, t) to the boundary
value problem

1z '2 U(Z t)

+ k2 + u'zU(z't), u(O,t) = 0, -U(O, t) $ 0 (3.45)
LC22  V~ I ) = 82 t) (, )=

is given by ([18, p.694] with n = 1)

1 o9
u(z, t) = -U(0, t + z'/C)Jo(i k: + kv'2 T 7 2)dz' (3.46)

and the solution v(z, t) to the problem

182 2 a+-• k.2k + k- v(zVt) v(z t), v(Ot) 0 O, v(O,t) = 0 (3.47)
az2 't ' I8Mz(.7

is, according to ([18, p.682] and (3.46)) given by

v(z, t) - I J v(O,t + z'/c)Jo(i Nkz2 + k.vrz2-z)dz' (3.48)

where J0 is the Bessel function of the first kind and order zero. Replacing z with z - zo and
using Jo(ix) = Io(x), where 1o is the modified Bessel function of the first kind and order
zero, one finds that the spectrum b is given by

1 kzZ)-0 ) Tb(.,,kv, zo, t +z'/c)o0 ( J.2+k•• (z-j z) 2 -z' 2 )dz' S= J(-)8 '

+ -- f b(k.,ky, ZO, t + z'/c)Io(Vf'.2 + k,2(z - Zo) 2 - z 2 )dz', z > zo (3.49)

where -1 b(k, k, ,zo, t + z'/c) is defined to be -Lb(k,, k., z,t) evaluated at (k., kv, Z, t) =
(k., k,, zo, t + z'/c). The expression (3.49) determines the time-domain spectrum b for z > zo
in terms of its values on the plane z = zo. Note that the time-domain spectrum (3.49)
has a very complicated z dependence, whereas the frequency-domain spectrum (2.9) has the
simple z dependence ei'-Y. To use the time-domain plane wave spectrum formulas derived in
this section one has to know both the acoustic field and its normal derivative on the plane
z = z0 . To use the frequency-domain plane-wave spectrum formulas from Section 2.1.1, one
needs only the acoustic field on the plane z = zo.

The complicated z dependence of the spectrum b has made it impossible to express the
far fields in terms of the spectrum, which makes the formulas in this section unattractive for
far-field calculations.
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3.2.2 Formulas Obtained from the Standard Fourier Transform

This section derives representations for both acoustic and electromagnetic fields in the region

z > 0 involving the Radon transform of the fields on the plane z = 0. Without loss of

generality it is assumed that zo = 0 because it substantially simplifies the analysis of this

section. The starting point of the derivation is the frequency-domain plane-wave spectrum

formulas of Section 2.1.1 with the spectrum T,, in (2.9) rewritten as

1= +l _ +00 /1,(z', Y', 0)e-tW(ýX+IM')dx'dy•, z > 0. (3.50)

Because the time-domain field t is real it is found that C, = *_ where * indicates complex

conjugation. From (3.50) it is then seen that T,(wC,wi) also satisfies this relationship, that

is, TL(wC,w7) -w, 7).
The inverse Fourier transform of T,,(wý,wii) is denoted by T(C, 17, t) and is given by

T(,7,lt) = _7r Lf 100f0 (xIyI,. 0)e-,u(t+f='+tY')d;dxzdy'

w s t th Ro y(', 0,o t + 6' + ny')d 'dy' (3.51)

which is seen to equal the Radon transform of the time-domain field 't on the plane z = 0.
Writing the frequency-domain plane-wave spectrum formula (2.8) in terms of the function

T,,(wý,w77) and introducing (k,, k,) = (wý,wii) one finds for w > 0 that

-21r = 1 [+ f- J T W ,,(w ,wl)eiw(,,(+ny)ei (,)z•dd77, z > 0. (3.52)

For w > 0 the definition of -y shows that we can write 7(w) = w( where C is a new spectral
variable given by

C 1/- V - • - •, + rl < C'(353
Z + 72 _ C--21, 2 + 72 > C- I3.53)

The relationships I% = V'__ and T,,(wý,w77) = T(_,( -w,7) show that for w < 0 the

expression for 4% is given by (3.52) with -y(w) = w(*. This means that -y(w) = -y*(-w) for

all real w and that the following expression for 4t, is valid for all real w

1 frI 2
1 WTz> 0. (3.54)

27r +772>C-2

Taking the inverse Fourier transform of (3.54) and using the convolution rule

1 fg0 e dw = f(t- t')g(t')dt' (3.55)
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in the last integral, one finds that the time-domain field in the half space z > 0 is given by

,(t 62 I- T( 17,+ c t - ýx - Ty - (z)Addl

21r (14+,72< 2 &2~

2 +00 -a T( Y1,,t - t' - ,,- 7) dt'dd, z >0 (3.56)

where the identity
I+0d - CIz z > 0 (3.57)_00 ICl2z2 + t2'

has been used.
Note that (3.56) gives the field in the half space z > 0 in terms of the Radon transform

of the field on the plane z = 0. Note also that the second time derivative of the Radon
transform, and therefore also the second time derivative of the field on the plane z = 0, is
required to calculate the field for z > 0. The formula (3.56) is a time-domain analog to the
frequency-domain plane-wave spectrum formula (2.8).

Finally let us express the time-domain far field in terms of the Radon transform of the
field on the plane z = 0. Writing the frequency-domain far field (2.48) in terms of T" defined
in (3.50) one finds

iw CosOa Ciwr/c

Ob"() , ( i - T'(kcs~sinOksinbsinO)+O(1), z>0. (3.58)

Taking the inverse Fourier transform of (3.58) gives us the time-domain far-field result

---- OT -i"(ci cososin, c-'sinosinO, t-r/c)+O ('), z>0 (3.59)
cr T2

which, upon inserting the definition of T from (3.51), is seen to equal the far field (3.13)
found from a Green's function representation.

The formulas derived in this section hold for each of the rectangular components of the
electric and magnetic fields and one finds from

1+0 (+00+

T,(wC,wi/) = 10,- , -(x" Y', O)e- I(4z'+'N')dx'dy", z > 0 (3.60)
21,r i-oo f-oo

that

T( ) 77, - 1-00 EP(xy',0',ot + ýx' + ,77')dx'dy' (3.61)

which is the Radon transform of the electric field on the plane z = 0.
From (3.56) the time-domain electric field is given by the Radon transform representation
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2(f, t)-1, t - ýx - tly - Cz)dýd&

- 22fýI ] cJ T - ') zl ± dt'd~dq, z> 0. (3.62)
2•_. +T•>- . t'-f('t- -z-I)C2z2+tn

The formula (2.12), showing that the spectrum T,, is perpendicular to the complex prop-
agation direction k,& + kA + -fl, gives

T-(w4,wr9)- (V+' - r+ + ) = 0, w > 0 (3.63)

and the same result with C replaced by C* for w < 0. Noting that C is real for ý2 + q 2 < C-2

(3.63) shows that the Radon transform of the electric field on the plane z = 0 satisfies

T(ý, 1,t)- (• + i + C2) = 0, ý2 + 17 < C-2 (3.64)

that is, for ý9 + r72 < c-2 the Radon transform of the electric field on the plane z = 0 is
perpendicular to the direction ý& + rq + (i and thus is completely determined from two
components of the electric field on the plane z = 0. For ý2 + 772 > c-2 it is found that for all
real w T(Wý'' W17 _z ri + 7 2+12>C-2

w(w'•,w?1)- (• + 'i• + i-~-Ci) = 0, + > (3.65)

which by use of the relationships

1= 2ilmf feie-i-td = -i?-f(t) (3.66)

(f•= f_ for any real time signal f(t)) leads to

T,7,(t). (ýi + 77) + I( T(ý,17,,t) -i = 0, ý2 + q2 > c- 2  (3.67)

where 7-/denotes the Hilbert transform defined below in (3.76). The last part of (3.66) follows
from the facts that f(t) = 2Refo+' f~e-•dw, f+' f,,,etdw is analytic for Im(t) < 0, and
that the real and imaginary parts of an analytic function are related on the real axis through
the Hilbert transform [40, pp.370-372].

(The minus sign on the right side of (3.66) occurs because we are dealing with analyticity
in the lower half of the complex t plane rather than in the upper half as in Morse and
Feshbach [40]. Sufficient conditions for the existence of the Hilbert transform of f(t) is that
f(t) be H6lder continuous and that f(t) approaches the definite value f(oo) as t -+ 4oo
such that If(t) - f(oo)l < C/Itl*, where C and a are positive constants [43, sec.43]. This
latter condition plays the role of the H6lder condition at t = ±oo, and of course, f(oo) = 0
for the functions of time we are considering that are zero for t < 0. The Hilbert-transform
relationships in (3.66) can also be proven by first multiplying the integrand of the first integral
in (3.66) by e-411 (a > 0), secondly applying the convolution theorem, thirdly expressing
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the convolution as a principal-vlue integral, and finally taking the limit of the integral as
a --, 0 by means of the theorem in Hobson [24, sec.225].)

Equations (3.64) and (3.67) enable us to calculate the z component of the Radon trans-
form of the electric field from its z and y components.

The formulas derived in this section also hold for the magnetic field provided that B is
replaced by H and T is replaced by TH, where PH is the Radon transform of the magnetic
field on the plane z = 0. The relation (2.16) between the spectrum tfA for the electric field
and the spectrum TH• for the magnetic field shows that

TH•(w•,w2) = -(•& + •Y + C¢•) x T(wt,w?), w > 0 (.8
w> (3.68)

and the same result with C replaced by (* for w < 0. Again, for ý2 + 17' < c-2 , (3.68) shows
that

TH(ý,7, t) = -_(ý + (ii+C) x T(,•,7,t), ý2+.?l2 <c 2  (3.69)

and for ý2 + 712 > C-2

TH( , = !(7t + ,,7) x t( 4 ,, 1, t) + -1•, x WT(,,,, t), C + ,72 > C-. (3.70)

Thus the Radon transform of the magnetic field on the plane z = 0 is determined from the
Radon transform of the electric field on that plane.

The far electric field formula analogous to (3.59) is

E( Cst)"c- -- (c-1cosssinOc-'sin4sinOt-r/c)+O(1), z>O (3.71)

and the far magnetic field can be expressed from (3.69) as

H(f, t) x E(f,t) (3.72)

where B is the far electric field in (3.71).
The formulas derived in this section are time-domain analogs to the frequency-domain

formulas of Section 2.1.1 and it is seen that the Radon transform in the time-domain formulas
plays the role of the spatial Fourier transform in the frequency-domain formulas. Further-
more, the Radon transforms of the electric and magnetic fields on the plane z = 0 satisfy the
relations (3.64)-(3.67) and (3.69)-(3.70) which are similar to, but more complicated than the
relations (2.12) and (2.16) satisfied by the plane-wave spectra for the electric and magnetic
fields. If the evanescent fields are negligible, then the second integrations in (3.56) and (3.62)
are negligible and the time-domain Radon-transform relations take the simpler form of the
analogous frequency-domain Fourier transform relations.
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3.2.3 Formulas Obtained from the Analytic Fourier Transform

In this section it will be shown that by proceeding as in Section 3.2.2 with the analytic
Fourier transform [191 instead of the standard Fourier transform one may obtain formulas
that are in a simpler form than those in Section 3.2.2. However, the formulas of the present
section are only valid for the so-called analytic field which is defined below and cannot be
determined directly from measurements. The analytic field, which corresponds to the real
measurable time-domain field $, is denoted by V and is given by the inverse analytic Fourier
transform

( - 2 10 Im(t) < 0 (3.73)

where t, is the usual Fourier transform of t given by

f+00

C = 1 4D(ft)e'wtdt. (3.74)
27r i-e

The relation between the real field 4 and analytic field V is [40, pp.370-372], [19]

ta(ft) = t(f,t) - i'Ub(f,t), t real (3.75)

where 7iD(f, t) is the Hilbert transform of t(i, t)

(ct) = Wo r(t - t') (3.76)

Again, the minus sign in (3.75) occurs because j" is analytic in the "lower" half plane. The
real field is thus recovered from the analytic field by the equation 4(f, t) = Re[ta(f, t)] for
real t. From the definition (3.73) of the analytic field it follows that it is analytic in the lower
half of the complex t plane, that is, in the region Im(t) <•0.

One can now define the analytic field Ta(ý, 17, t), which corresponds to T(ý, q, t) defined
in (3.51), by

Ta(ý7,r t) = -• . ]. ] 4.(X', Y" 0)e-C'w(t +f"z+n')&,dz'dy'

2 1 - ¢(z', y', 0, t + ýx' + ity')dx'dy', Im(t) < 0 (3.77)

which is seen to equal the Radon transform of t on the plane z = 0.
Taking the inverse analytic Fourier transform of the frequency-domain formula (3.52) one

finds that the analytic fie * the half space z > 0 is given by

,ba(f,t) =+ ---1/_oo/I -T 0o a2-T(,, t_- -_ -C(z)d•d2', z>0, Im(t)<S0. (3.78)

Note that (3.78) gives the analytic field in the half space z > 0 in terms of the Radon
transform of the analytic field on the plane z = 0. Note also that this formula is much
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simpler than the formula (3.56) obtained from the standard Fourier transform. It is easily
seen that the time-domain far-field formula (3.59) also holds for the analytic field. That is

t( Re (-.---eTa(c cos4sine, c- sin 4.sin , t -r/c) +0 (-L, z>0 (3.79)

which in turn is seen to be identical to the far-field formula (3.59).
To calculate the real field t = Re('0 6 ) for real times from (3.78) one has to know the

Radon transform T2 for complex times because C becomes complex when ý2 + 'q2 > c-2 .
Equation (3.77) shows that to get TG for complex times, the analytic field @' must be known
on the plane z = 0 for complex times. Consequently, to use (3.78) one has to compute the
analytic field Oa for both complex and real times.

To derive the corresponding formulas for the electromagnetic field, start by defining

7'](4, 77, 0 E'(zx',y',0,t + ýx' + iry')dx'dy', Im(t) < 0 (3.80)

which is the Radon transform of the analytic electric field

Ea(?, t) = 21 E•(f)e-"'dw, Im(t) < 0 (3.81)

on the plane z = 0 where 1 +

&M = - f2  '(f,,t)e'-tdt. (3.82)

From (3.78) it is then found that the time-domain electric field is given by the Radon
transform

E = -2--' L -jT"(ý, 77, t - ýx - rly - (z)d4di, z > 0, Im(t) < 0. (3.83)

The formula (3.63) along with the analytic Fourier transform (which only involves positive
w) shows that in agreement with (3.64) and (3.67)

Ta(ý,77, t) . (ýi + 77i + (i) = 0 (3.84)

that is, for all (ý, r7) the Radon transform of the electric field on the plane z = 0 is perpen-
dicular to the complex propagation direction ý& + r7ý + (i and thus is completely determined
from two components of the electric field on the plane z = 0. The formulas (3.80)-(3.84)
hold also for the analytic magnetic field provided that B is replaced by f. The relation
(3.69) between the Radon transforms of the analytic electric and magnetic fields along with
the analytic Fourier transform show that for all (ý, 17)

TýV, 17,t= 1(f :± + i + (i) x Ta(•,r1, t) (3.85)
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and thus, in agreement with (3.69) and (3.70), gives the Radon transform of the analytic
magnetic field on the plane z = 0 in terms of the Radon transform of the analytic electric
field on that plane. The far-field formulas (3.71) and (3.72) also hold for the analytic fields.

The Radon transform near-field formulas (3.78) and (3.83) are valid only for the analytic
fields and cannot be used for the real fields. Consequently, to calculate the field at an ar-
bitrary point of the half space z > 0, one has to first calculate the frequency-domain field
on the plane z = 0 and then use (3.73) or (3.81) to determine the corresponding analytical
field. After this is done these Radon transform formulas can be used to determine the field
at the arbitrary point of the half space z > 0. Thus it seems as if the Green's function
representations of Section 3.1 and the real Radon transform formulas of Section 3.2.2 would
be more useful for numerical calculations since they involve only real fields that are obtain-
able directly from time-domain measurements. Moreover, the Radon transform formulas of
Section 3.2.2 reduce in simplicity to that of the corresponding plane-wave spectrum formulas
in the frequency domain when the evanescent fields [second integrals in (3.56) and (3.62)]
are negligible. Also, the expressions for the far fields using any one of the three methods axe
identical.

3.3 Near Fields in Terms of Far Fields

In this section, we derive a formula that gives the field everywhere at all times in the half
space z > zo, in terms of the far field. The formula is similar to the frequency-domain formula
obtained from Sections 2.2.4 and 2.1.1, giving the spectrum in terms of the frequency-domain
far field. In Section 2.2.4 it was found that to calculate the spectrum from the far field for
all (k., k.), and thereby be able to use the far field to calculate the field everywhere in the
half space z > zo, one has to know the frequency-domain far field for complex angles of
observation. Similarly in this section, one finds that to get the time-domain near field, at
all times in the half space z > zo, from the time-domain far field, one has to know the
time-domain far field for complex angles of observation.

First, the formula for the acoustic field 1 is derived and then the corresponding formula
for the electric field is obtained by using the result for the acoustic field.

According to (3.13), the time-domain far field can be written as
•(•,) F(8,4,t - ,rlc)

4W - , r --+ oo (3.86)
r

where ." is the time-domain far-field pattern. The far-field formula (3.86) can be obtained
from the frequency-domain far field i, in (2.95) by means of the inverse Fourier transform:

+00r= ( = r-(O, 0, t - r/c) (3.87)
J..QrAo r

and it is seen that .'•(O, 4) is simply the Fourier transform of 'F(O, €, t).
To derive the formula giving the field in the half space z > 0 in terms of the far field,

begin by using (2.30) to show the following relation between the far-field function F, and
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Figure 3.4: The contour F in the complex ae plane.

the spectrum T,
T-(ýw,i7w) = F.(w, 7w) (3.88)

where y(w) = w( for w > 0, 7(w) = wC* for w < 0, and C is given by (3.53) [see the discussion
below (3.53)]. Then insert (3.88) into (3.54) and use the definition (3.53) of C to get

1f1
I,,'(V) = 1 J J$+,172<C-2 iwFC,(wý,wi7)ei'(tX+7u+Cz) d~dq

+ .1 .L, w/, ef((W+ )) -e-IdIk 4d•. (3.89)

27r JJ+,n 2>C- 2 Ii C

which is valid for all real w.
Introduce the new integration variables (ae, a,) given by

ý = C-1 cos5aO sinf, 77= c-1 sin aisinoe8, (=c 1 cos ue (3.90)

with 0 < oo < 27r, and with oe E F, where r is the contour in the complex ae plane consisting
of the line segment from 0 to 7r/2 and the half line from 7r/2 to 7r/2 - ioo, as shown in Figure
3.4.

Since sin(7r/2 - ia) = cosh a and cos(7r/2 - ia) = i sinh a, it is seen from (3.90) that
with 0 < oo _< 27r, ore E F, the entire real (ý, 77) plane is covered through the transformation
(3.90). Furthermore, with these new variables we have C'-kddr = c- 1 sin aedo'edao. Inserting
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this transformation into the spectral expression (3.89) for the frequency-domain field 4b, and
using the relation (2.97) between the far-field pattern F and the far-field function F to show

.F,(o-9, ak ) = F,(wc-1 cos a sin or,wc-I sina5 sinae) (3.91)

one finds that

1 12 r~ 1/2 it= 1b / i(f')( =)ewl ,,,wcl(zcoga#8,U,0+y sin0,0si.+zcosue) sin aedaodorj2rc _. o

+ 1 2,r j+0 iw.F.(7r/2 - ia, or,)eiWC--(xcosac6h a+y sinG coshce)

._pe-(z/c)IwI S Ifh ( .)- cosh adadau (3.92)

which is valid for all real w. To obtain the last integral of (3.92) it has been assumed that
,1, is known for complex angles of observation (see the discussion in Section 2.2.4). Taking
the inverse Fourier transform of (3.92) and using the convolution rule (3.55) along with the
identity i- i] LO We-(z/c)jwlsinhte-iwtdw 

= 2 t (3.93)
f 00Iwi (zc-1 sinh a)2 + t2

one finds that the time domain field is given by

1(W, t) = 127r fo/2 -F(ure, o, t - f &6e/c) sin c- daedcrs

i(,/2 - or, t - t' - f- &OC cosh a)
+ 2ýr 2C Jo Jo fc 00 at

(zc- sinh a)2 + 1 dt' cosh addcrad (3.94)

where F(O, €, t) is the time-domain far-field pattern given in (3.86), and the unit vectors are
given by &90 = i cos or sin ae + ý sin ak sin o-9 + ; cos ae and &0 = i cos ak + y sin U-.

For sources in a finite region of the half space z < 0 the formula (3.94) gives the time-
domain field everywhere in the half space z > 0 in terms of the time-domain far-field pattern
.F. To calculate the last integral of (3.94), in general one has to know the time-domain
far-field pattern F(O, 0, t) for complex values of 0. If the far-field pattern is not known for
complex angles of observation, (3.94) cannot in general be used to determine the near field.
However, as will be shown below, one may derive a formula for the near field, first derived by
Moses et al. [16], involving only the far-field pattern evaluated at real angles of observation,
which is valid after all sources have been turned off so that b(F, t) satisfies the homogeneous
wave equation (3.8) throughout all space.

To derive this formula, note that any acoustic field can be written as the Green's function
superposition [10, p.2251

t(ft) = J I f(e'I ti)G(F, F', t, t')dt'dV' (3.95)
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where

G(f , f',Rt,t) = 8(t - t'+ Rc)396)
47rR

is the time-domain free-space Green's functions and f(f', t') is the source-distribution func-
tion. The volume integration in (3.95) is over the finite source region and the t' integration
in (3.95) is over the time interval to < t' < tj where to and tj are the times at which the
sources are turned on and off, respectively. Thus all fields are zero for t < to and the sources
are turned off at t = tj so that the field t(f, t) satisfies the homogeneous wave equation
(3.8) throughout all space for t > ti. Also the far-field pattern .F(O, €, t) of the field t(f,t)
can be written as a superposition

.F(O, 0, t) = JI j f(' rt)YG(O,,,t',"f)dt'dV' (3.97)

where F•(O, 0, t, t', f') = -8(t - t' + f'. /c) is the far-field pattern (with respect to the
origin) of the Green's function G(f, f', t, t') and the (f', t') region of integration is the same
as in (3.95).

We will now derive a formula which expresses the near field of the Green's function
G(f, f',t, t') for t > t' in terms of its far-field pattern .FG(0, 4,t, t', f') evaluated at real
angles of observation only. Since the source that produces this Green's function field is
turned off (and on), at t = t' this formula will enable us to express the general acoustic field
(3.95) for t > ti in terms of its far-field pattern (3.97) evaluated at real angles of observation
only.

The source that generates the field G(f, f', t, t') is located at f' and we start by letting
the rectangular coordinate system (x, y, z) be located so that this source point is on the
negative z axis, that is f' = z'i, z' < 0. The first integral of (3.94) is denoted by VP because
it represents the contribution to the acoustic field from the propagating modes and for the
observation point f located on the positive z axis we find for the Green's function field that

1 f 2' '1r w2 G0"o Or,___Z
=IV(zj, t) = -- z;. &o /c, t', z'i) sin aoedacda

- -41l o'q,(t t, (z - z)c 1 cos ae) sin adaoe

(- t, - (z - z')/c) - - t') (398)
41r(z - z')

where z' < 0, z > 0, and the substitution u = t - t' - (z - z)c-' cos ae has been used to
calculate the last integral. It is seen from (3.98) that V(zi, t) = G(zi, z'i, t, t') for t > t',
that is, at times after which the source has been turned off.

Since the z axis may be chosen arbitrarily, (3.98) enables us to calculate the field of
the Green's function at any point in space from the far-field pattern evaluated at only real
angles of observation. Geometrically (3.98) states that the Green's function field along the
positive z axis can be calculated from the Green's function far-field pattern on the far-field
hemisphere in the region z > 0 with center at z = 0 as shown in Figure 3.5.
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Figure 3.5: Far-field hemispheres.

To calculate the field at a point not on the z axis, one has to define a new z axis
containing the new point of observation as well as the source point f' and then integrate over
the corresponding new far-field hemisphere. Consequently, to use (3.98) one has to change
the far-field hemisphere whenever one changes the angles of observation.

To obtain a near-field formula in which the region of integration does not depend on the
angles of observation, note that if the upper limit of the ae integration in (3.98) is changed
from 7r/2 to 7r the result is

_jr Jo (ue, Ot - Z- &80/c, t/'I z'!) sin oredoredao

6(t- -(z -z')/c) -(t-t' + (z -z')/c) (3-99)
4?r(z- z')

which is also equal to G(zi, zi t, t') for t > t'. Thus, after the source has been turned off
there is no contribution to the field at the observation point in Figure 3.5 from an integration
over the opposite far-field hemisphere also shown in Figure 3.5. Now let z' = 0 in (3.99), that
is, let the source be located at the origin of the (x, y, z) coordinate system. Then introduce
the new coordinates (x1 , Yi, z1 ) with the same origin as the original (x, y, z) coordinates. Let
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the point of space that was represented by zi in the (x, y, z) coordinate system be represented
by f, in the new coordinate system (xi, yi, z1). Because the region of integration in (3.99)
is independent of the orientation of the coordinate system it is found that for the source
located at the origin

G(f,0,It,t') 2w 7r9F (ae, ao, t - f, &9.0/c, t', 6) sin aodoueda,0

,- - Ii ]/c) - 6(t - t' + IfI/c) t > t'. (3.100)

(This can also be proven directly by introducing new spherical coordinates (oh, a•) with
ae = 0 corresponding to the direction ÷.)

Thus, a formula is obtained expressing the Green's function field G(f 1 , 0, t, e') for t > t'
at an arbitrary point of observation f, as an integral of the Green's function far-field pattern
over the full far-field sphere. Assume now that the source point is not located at the origin,
but at F' # 0. Then clearly the formula (3.100) remains valid provided that we replace f,
with f, - f' and refer the Green's function far-field pattern to the source point, that is let

'.F = •6(t - t'). The formula obtained in this manner is equivalent to

G(f 2f-" It," t)/c,tf, ) sin aodJoJda, t > t1 (3.101)

with the Green's function far-field pattern referred to the origin (which does not coincide
with the source point), that is, with FG(O,4, t,t',FX) = -'6(t - t' + f.- f /c). We have
now obtained a formula that gives the general Green's function near field G(F1 , f, t, t') for
t > t', as an integration of the Green's function far-field pattern (referred to the origin)
over the full far-field sphere. Inserting the expression (3.101) for the Green's function into
the superposition (3.95) and employing the expression (3.97) for the far-field pattern, one
obtains the following expression for the general acoustic near field in terms of its far-field
pattern

'(Dt) = 0 1o T cOF(a, e , t - f . &o/c) sin aoduoedao, t > tl (3.102)

where tj is the time after all sources have been turned off and &00 = i cos oa sin ae +
9 sin ak sin ae + 2 cos a0 . This is the final result giving the near field at times after all sources

have been turned off in terms of the far-field pattern integrated over real angles of obser-
vation. This interesting result (3.102) was first derived, as far as we know, by Moses et al.
[16]. The general result (3.94) appears to be new.

Consider now the electromagnetic field. One finds from (3.15) that the far electric field
can be written as

E(f,t) Pf(O, ,t- r/c)-, r -- oo (3.103)
r

where Yi is the time-domain far-field pattern satisfying ÷ • = 0. Performing a derivation
similar to the one that led to the acoustic equation (3.94) one finds that the electric near
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field for all times is given by
S=1 2w or/ -

2•rc - -1(, I, a,, t - f -e /c) sin aedardar

+ f o2C ola,[, t- t-(r/2- ic-, f,t- - &.Oc- coshca)

(zc_,sinhc) 2 + t 2dt'coshcadadaj (3.104)

when the sources are located in the half space z < 0 and the observation point is in the half
space z > 0. As for the acoustic field one finds that after the sources have been turned off
(V x V x B - -- 0 and V. = 0 throughout all space) the near field can expressed
by the real integral [161

E(ft) -j-] J -(ue,a,,t- .0 1/c)sinaedorodaj, t > t, (3.105)

where t, is the time after which all sources have been turned off. (To prove this, replace
the scalar Green's function (3.96) in the acoustic derivation with the corresponding dyadic
Green's function, found by Fourier transforming the Green's function given in van Bladel
[31, p.221], and noting that the far field again just involves a delta function.)

In summary, both acoustic and electromagnetic near fields, at all observation points and
times, can be expressed as integrals of the far fields over both real and complex angles of
observation. The near fields, at all points of observation and at times after all sources have
been turned off, can be expressed in terms of integrals of the far fields over only real angles
of observation. This rather surprising result was first derived by Moses et al. [16] for both
acoustic and electromagnetic fields.

3.3.1 Electromagnetic Bullets

It may be tempting to insert an arbitrary desired far field into (3.104) or (3.105) to compute
the near field that will generate this far field. However, care must be taken to choose a
time-domain far field that is compatible with sources in a finite region of space. Specifically,
the time-domain far field of sources confined to a finite region of space must be an analytic
function of the far field angles 0 and 0.

To prove this, express the time-domain far field in terms of the frequency-domain far
field, that is, as the Fourier transform

.(O, , 0(, )e= td+0. (3.106)

We are assuming that the electromagnetic fields outside the source region can be written as
a superposition of time-harmonic fields that satisfy Maxwell's equations. From Appendix A
or Theorem 29 of Miller [44], or Section 4.3 of Nieto-Vesperinas [12], the frequency-domain
far field jý,(9, 0) of sources in a finite region of space is an analytic function of 0 and 4. The
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analyticity of P'(0, 4, t) with respect to 0 and 4 follows from the theorem in Section 5.32 of
Whittaker and Watson [45] applied to (3.106), provided (i) the integral in (3.106) converges,
(ii) the first derivatives of AF,(0, 4) with respect to 0 and 4 are continuous functions of w,
and (iii) the Fourier integrals over w of the first derivatives converge uniformly in 0 and €.
(Because 0 and 4 have finite domains, uniform convergence is assured if f+. I f0 (0, 4))dw
and f_+• *(0,A ))dw are finite for all 0 and 4.) These restrictions on .,(9, 4) are ex-
tremely weak and are satisfied by physically generated fields that have continuous, effectively
bandlimited (negligible for Iwi > w0) frequency spectra.

The analyticity of F;(O, 4, t) implies, for example, that the far field of finite sources cannot
have zero sidelobes (unless it is zero everywhere), because an analytic function that is zero
on a line segment is identically zero everywhere. If, unknowingly, such a nonanalytic far
field is inserted into (3.104) or (3.105), one obtains a near-field distribution that cannot be
generated by sources in a finite region of space but requires a source of infinite extent. In
particular, "electromagnetic bullets" (fields with zero far fields outside an angular cone) [16],
[46] cannot be excited by physically realizable sources in a finite region of space, even though
analytic far fields with very low sidelobes are permissible.

Of course, the impossibility of obtaining zero sidelobe far fields in the time domain (elec-
tromagnetic bullets) from sources in a finite region follows directly from (3.106). Specifically,
taking the inverse Fourier transform of (3.106) in the angular region where F;(O, 4, t) is cho-
sen to be zero shows that 5-(O, 4) equals zero in the same angular region. Since analyticity
of .7F(0, 4) from sources in a finite region implies FJý(9, 4) cannot equal zero throughout
an angular region (unless it is zero everywhere), it follows that 'F(O, 4, t) cannot be chosen
zero throughout an angular region, unless it is zero everywhere. However, it is emphasized
that (3.104) and (3.105), like their frequency-domain counterparts, can still be useful for
determining near fields and source distributions that produce low sidelobes.

3.3.2 Far Fields Integrated over Time

There are also restrictions on the time dependence that the far fields can have, as mentioned
in Section 2.2.2. In particular, we shall show that the time-domain far electric and magnetic
fields integrated over all time are zero, if the sources are located in a finite region of space
and are turned on and off in a finite time period. One may be tempted to prove this result by
integrating (3.15) and (3.32) over all time and interchanging the time and space integrals.
Unfortunately, this interchange may not be a valid mathematical operation because the
spatial limits of integration are infinite. As an illustration, such an interchange applied to
the expression (3.13) for the acoustic far field produces the erroneous result that the acoustic
far field integrated over all time must be zero for sources that are turned on and off in a
finite time interval (see Section 4.4).

The behavior of the electromagnetic far fields integrated over all time can be found
directly from the expressions for the far fields in terms of the current density J(f, t) located
in a volume V of finite extent. Specifically, it is shown in Appendix B that the far magnetic
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and electric fields are given by the expressions

-(N, t) - 1- r xJ I-j(fx t - r/c + fIc)dV'+ 0 (3.107)
47rcr V tr2

L'(lt) '/-X'- 1 i (v c t - r/c + i÷. '/c)dV' +O (3.108)
e 41rcr 9tkr21

if the time derivative of the current is a continuous function of time that is bounded by
a time-independent function that is integrable over the finite region V. Since the current
is in a volume of finite extent, (3.107) and (3.108) can be integrated over all time, and the
integrations over time and space can be interchanged to prove that the integrated far electric
and magnetic fields must be zero if the current turns on and off in a finite time interval.

Only if the current remains nonzero as t -4 oo can the far electric and magnetic fields
integrated over all time be nonzero. For example, if the time-domain current is zero for
t < to and approaches a nonzero static value as t o oc

lim J(ft) = Jo(f) (3.109)

the integrals of the far fields (3.107) and (3.108) over all time can be written as

t(f, t)dt x- J .7o(f;')dV' + 0 (3.110)

] E(f, t)dt .. x r- x]f io(')dV' + 0 (3.111)

With Jo inserted from the vector identity, V. (FJo) = f(V - Jo) + Jo, the equations (3.110)
and (3.111) become

f +0-(f,'t)dt '-r4 x I rf 'po(? 1 ,oo)dV' + 0 (3.112)i+ co 4ircr• , '- x iv t (;0
E(f,t)dt ,-Vj-L rxx J f Fpo(f', oo)dV' + 0 (3.113)

where use has been made of the divergence theorem and the continuity equation
a a
L po(f, 00) = - lim -po(f,t) = V. Jo(i). (3.114)at- t-+00 at

The divergence of jo(f) is not a function of time in (3.114) so that the charge distribution
increases linearly with time as t --+ oo, that is

po(ft) "- -V. i 0 (f)t, t -- cc. (3.115)

Thus, the electromagnetic far fields integrated over all time can be nonzero when the current
approaches a static value as t -- oo, but only if the static charge distribution, or more
precisely, the electric dipole moment of the charge distribution, grows linearly with time as
t -+ 00. (Of course, the continuity equation valid for all times implies that the total charge
remains zero because it is assumed zero for t < to.)
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3.3.3 Electromagnetic Missiles

In 1985 Wu published a paper [171 in which he showed that the energy in an electromagnetic
pulse of finite width and length could decay mort slowly than 1/r 2 as r approaches infinity.
He proved these results mathematically from the classical Maxwell equations for sources in
a finite region of space radiating a finite amount of energy. He called these unusual far-
field pulses "electromagnetic missiles." In this section we shall give the necessary conditions
in both the time and frequency domains for the far fields to decay more slowly than 1/r,
and for the far-field energy to decay more slowly than 1/r , that is, for the existence of an
"electromagnetic missile." (The necessary conditions for an electromagnetic missile are more
restrictive than for the far fields to decay slower than 1/r, because the time duration of the
far-field pulse may approach zero as r becomes infinite.)

We shall derive these necessary conditions for two kinds of sources: first, sources com-
posed of a finite number of moving point charges, and secondly, for a continuum of charge-
current.

For a finite number of separate point charges, each point charge q that moves with velocity
ii and acceleration ii has far fields given by [39, p.4751

3 qf2

E(,t) q x 47r-rc lc'[ -ii/c() ) - s] (3. 16)

A~~) r ýx'8f',t) (3.117)

where Y = 1/(1 -÷-i'/c) and the primes on the velocity and acceleration indicate that they
are evaluated at the retarded time t' = t - If - fq(t')l/c. The vector fq(t') is the position
of the charge at the retarded time t'. The origin of the coordinate system, and thus that of
the asymptotically large vector f, is chosen in the vicinity of the charge during the retarded
times of interest.

Equations (3.116) and (3.117) reveal that the far electric and magnetic fields of the point
charge decay as 1/r (or faster) unless the acceleration of the charge is infinite at some point
(or points) in time. Thus, we conclude that the far fields of a finite number of moving point
charges decay more slowly than 1/r only if the acceleration of a least one of the point charges
becomes infinite at some point in time. (Of course, it is assumed that each point charge q is
finite.) Also, the square brackets in (3.116) cannot be zero (for nonzero u) in all directions
of observation f. Thus, for a single point charge, the above necessary condition is sufficient
as well.

For rectilinear motion, these points of infinite acceleration must be isolated points in
time, and must integrate over time to a value less than c, because the speed of each point
charge must be less than the speed of light.

The magnitude of the Fourier transform of the acceleration can be written as

1I(t)l = L< Iwd (3.118)
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which is finite if Iii,,j decays as aI(2+c), a > 0. Using the even and odd functional depen-
dence on w of the real and imaginary parts of the velocity spectrum ii"', and assuming that
u(t) is zero before some initial time, it can also be shown that the condition Iil _ 1~ / 2 as
1wI -- oo produces a finite acceleration. Thus, we conclude that the far fields of a moving
point charge can decay more slowly than 1/r only if the frequency spectrum of the velocity
of the point charge decays slower than 1/1w 2 as Ijw -- oo. In addition, if IiiI -wlI 2-0 as
Iwi -+ 0o, examples of fi• can be found that produce infinite acceleration at some point in
time.

The energy radiated per unit area in a far-field pulse can be expressed from (3.116) and
(3.117) as

fj5 (B x A). - dt -~ 0 (j uKi2dt = 2-,, (0~ C w2Iij~I2 d (3.119)

(Only jIuI2 is retained in the second integral of (3.119) because the expression in the square
brackets of the last part of (3.116) is never infinite but is nonzero for most far-field directions.
Because dt = dt'/ly, and 1/,y is never infinite or zero, it also has been omitted from the time
integration of I 12 in (3.119).) Thus, the necessary condition for the finite number of point
charges to radiate an "electromagnetic missile" is that at least one point charge have infinite
acceleration at some time, and in addition

/ u 12ldt = 21r W2Iii12dW = 00 (3.120)
Jpuse f0

which implies that the magnitude of the velocity spectrum If,,j decays as 1/11I 3/2 or slower
as IwI --* oo. Furthermore, examples of velocities (such as t' exp(-t), t > 0, and zero for
t < 0) are easily constructed that produce electromagnetic missiles (0 < a < 1/2), or no
electromagnetic missile, yet slower than 1/r far-field decay (1/2 < a < 1).

For rectilinear motion, the condition (3.120) also implies from (3.116) and (3.117) that
the point charge radiates an infinite amount of energy because the energy radiated per unit
area decays slower than 1/r 2 over most of the far-field sphere.

Now assume the source region consists of a continuum of current rather than a finite
number of moving point charges. We prove in Appendix B that the electromagnetic far
fields decay as 1/r (or faster) provided the first time derivative of the source current exists
and is bounded by an integrable time-independent function in the finite source region V.
Therefore, only if the first time derivative of the current in a region of space (or secant slope
if the time derivative does not exist)1 is infinite at some point in time2 can the far fields

'If the first time derivative does not exist, bringing the curl operator under the integral sign in Appendix
B to obtain (3.107) and (3.108) is no longer a valid interchange. In that case, the derivatives operating on
the vector potential integral can be expressed in terms of their defining limits to show that the far fields
decay as 1/r unless the secant slope, [j(i, t + At) - J(f;, t)] /At, becomes infinite for some t and At [47],
[24, sec.246, p.355]. Of course, if the limit of the secant slope exists as At --* 0, the limit equals the time
derivative.

2 Note that the first time derivative of the current &j(f, t) must become infinite as a function of time t
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decay more slowly than 1/r. Taking the Fourier transform of the first time derivative of
the current, as we did for acceleration in (3.118), shows that the necessary condition in the
frequency domain for slower than 1/r far-field decay is that the magnitude of the frequency
spectrum of the current decays more slowly than 1/w2 as Iw I --- o0.

As in the case of the accelerating point charge, an additional condition on the current
is required to excite an electromagnetic missile. Namely, the energy carried by the far-field
pulse must decay slower than 1/r2. From equations (B.9) and (B.10) of Appendix B, [or
(3.107) and (3.108)], one finds that the energy radiated per unit area in a far-field pulse
behaves as

(B R -Ht, 21,t -J(f", t")dt dVd" (3.121)
](ulE ( 1t .it ki) IV IV 1Ipulse ijJOf' I' t , jd'V

where t' = t - r/c + . f'/c and t" = t - r/c + i. F"/c, provided the time derivative of the
current exists and is finite. (For surface current the volume integrals in Appendix B and
(3.121) are replaced by surface integrals.)

Equation (3.121) implies that the far-field energy in the pulse cannot decay more slowly
than 1/r 2 unless the time integral is infinite over some region of (f', F"). Specifically

J a- t') . a j(f", t")dt = oo (3.122)

pulse at ' at
for some F' and F". If we let f be the value of f' or f" in (3.122) that has the largest time
derivative of the current, (3.122) implies that there must be some F for which

/ jJ(ft) dt JW 2 (f)12dW 00. (3.123)
plse oo IC

Thus, in addition to the first time derivative of the current being infinite at some point
in time, (3.123) is a necessary condition on the singularity of the current to produce an
electromagnetic missile. Specifically, the first time derivative of the current in a region of
space must be infinite at some point in time, and the time integral of the magnitude squared
of the first time derivative of the current must be infinite to produce an electromagnetic
missile. In terms of the frequency spectrum of the current, IJ,,l must decay as 1/ W131/2 or
slower as w --+ oo. For linearly polarized current, the singularities (infinities) of the first
time derivative of the current must be isolated and integrate over time to a finite value if
the current itself is to remain a finite function of time, even though the square of the first
time derivative of current must integrate to an infinite value to produce an electromagnetic
missile.

The exact expressions for the time-domain fields radiated by a circular current disk
[47] demonstrate that a spatial distribution of current can be found that will produce an

(not just position f) to generate an "electromagnetic missile". For example, the current parallel to a perfectly
conducting sharp edge is infinite right at the edge. Yet this singularity is a function of the spatial coordinates
and will not generate an "electromagnetic missile" because the singularity is integrable with respect to the
spatial coordinates.
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electromagnetic missile for any given time or frequency dependence satisfying (3.123). Note
that the condition (3.123) does not imply that the current source radiates an infinite amount
of energy, because a continuum of current, unlike an accelerating point charge, can have
infinite directivity. Therefore, the energy in the far-field pulse that decays slower than 1/r2

can be confined to a finite transverse area as r -- oo. Also it is emphasized that (B.9)-(B.10)
and (3.121) are no longer valid expressions for the far fields and for the far-field energy when
o9J/lt is infinite. To find the exact behavior of the far fields when lJ/at is infinite, one
must return to the expressions (B.1) and (B.2), keeping the curl operators outside the vector
potential integral in (B.3), as is done in [47] for the circular current disk.

In summary, classical sources of finite charge and current in a finite region of space can
produce classical Maxwellian far-field pulses that decay slower than 1/r and carry energy
that decays slower than 1/r. 3 However, these anomalous pulses require either infinite
acceleration of point charges or infinite first time derivatives in the current. Presumably, the
infinite acceleration of a point charge and infinite time derivatives of current are not realizable
in the classical laboratory, and thus "electromagnetic missiles" cannot be generated within
the realm of classical physics (Maxwell's equations with sources that are finite and have finite
first time derivatives in a finite region of space).

In reality, of course, electromagnetic missiles exist in the form of single photons, which
travel indefinitely without decay, have a rapidly decreasing narrow frequency spectrum (cer-
tainly faster than 1/I2), and are generated by finite energy sources in a finite region of space.
Thus, as a corollary to the theorems proven in this section, photons are not solutions to the
classical Maxwell equations with classical finite sources in a finite region of space. Moreover,
when the photons and their sources combine in great numbers to form a statistical continuum
of sources and fields that obey Maxwell's equations, the far fields cannot decay slower than
1/r if the first time derivative of the current is finite, and electromagnetic missiles cannot be
generated. Is a nonclassical physical mechanism possible for generating a source frequency
spectrum that decays as 1/1w13/2 or slower as jIw -+ 0o, so that an infinite time derivative
of current can be synthesized to produce a classical electromagnetic missile? As unlikely as
this possibility may seem, as far as we know, this is an unanswered question.

3Although the far-field energy decays slower than 1/r 2, it still must go to zero as r -- oo for finite sources
with finite energy in a finite region of space. The reason the far-field energy must approach zero is simply
that finite sources with finite energy must have an energy spectrum that approaches zero as IwI -. oo, and
for finite sources in a finite region of space, it is only the energy in the increasingly higher frequencies that
contributes to the slower than 1/r 2 far-field energy decay as r -. oo [17].
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Chapter 4

A Time-Domain Sampling Theorem
and Numerical Far-Field Calculations

In this chapter we derive sampling theorems and present two different computation schemes
to numerically calculate the time-domain far-field pattern from sampled time-domain near-
field data. The sampled time-domain near-field data are obtained by measuring the near
field at discrete points on the scan plane at discrete times.

The first scheme is based on the frequency-domain formulation and is presented in Section
4.1. This frequency-domain scheme consists of the following three steps: (1) use the Fourier
transform to calculate the frequency-domain near field from the time-domain near field, (2)
calculate the frequency-domain far field from the frequency-domain near field, and (3) use
the inverse Fourier transform to calculate the time-domain far field from the frequency-
domain far field. This scheme makes use of well-known frequency-domain far-field formulas,
sampling theorems, and the fast Fourier transform (FFT).

The second scheme is based on the time-domain formulation and is presented in Section
4.2. This time-domain scheme simply uses the formula that directly gives the time-domain
far field in terms of the time-domain near field. A time-domain sampling theorem is derived
to determine how small the sample spacing between points on the scan plane has to be in
order to calculate the far field accurately.

Two numbers determine the amount of computer time required to perform a far-field
calculation using each of the two computation schemes. The first is the number of spatial
sample points on the scan plane, which is determined from the maximum effective frequency
of the near field and the size of the scan plane. The second is the number of time samples
taken at each near-field point on the scan plane. This number depends on the maximum
effective frequency of the near field and on its effective time duration. Section 4.3 determines
the number of time samples needed to perform accurate far-field calculations from the near
fields of different types of radiators.

Finally, in Section 4.4 the two computation schemes are compared and used to calculate
the far-field pattern of a simple acoustic point-source antenna from near-field data. For
different types of antennas we compare the convenience and the computer time for the two
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computation schemes. It is found that the direct time-domain computation scheme of Section
4.2 is much simpler to program and use than the frequency-domain computation scheme of
Section 4.1. However, because the frequency-domain computation scheme uses the FFT it is
much faster for large antennas than the time-domain computation scheme when the full far
field is calculated for all times. When only part of the far field is calculated, the difference
in computer time for the two computation schemes becomes smaller and the time-domain
computation scheme therefore becomes more advantageous because of its simplicity.

Most of the results of this chapter are derived for acoustic fields. The corresponding
results for the electromagnetic fields are immediately obtained by noting that the electro-
magnetic time-domain, near-field to far-field transformations have the same form as the
acoustic transformations.

4.1 Frequency-Domain Computation Scheme

The frequency-domain computation scheme consists of first calculating the frequency-domain
near field by taking the Fourier transform of the measured time-domain near field

1/(+00
,(fo) = 1 ,(fo,t)ei"dt, o = xoi + yo0  (4.1)

and then using the frequency-domain far-field formula (2.47) to get the frequency-domain
far-field pattern

S= f, c ( 00 0(f)&tw `O/cdxodyo. (4.2)27rc I-aol

The time-domain far-field pattern is then found by Fourier transforming the frequency-
domain far-field pattern

( ,= J .00 (0 O)e-'wtd. (4.3)

We will now show how the integrals (4.1)-(4.3) can be calculated using the fast Fourier
transform (FFT).

If the time-domain near field is effectively bandlimited, so that 't can be set equal to
zero for IwI > ,,a=, the sampling theorem [48, sec.5.4] can be applied to convert (4.1) to the
summation

I= 4P(foMAt)f? 'At, IW! < Wax (4.4)

where At = lrlw,,, is the time sample spacing determined from the sampling theorem. In

practice, the time signal begins at some time t o (which may depend on the position in the
scan plane) and ends approximately at some time which can be expressed as t o + (N" - 1)At.
Then (4.4) can be written as

1 N•-+ItAt

4ý ,V(o) = - E 4(Do, to + mAt)'ei (i+'"')zt, I < WM- (4.5)
2~r 

7=O
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According to Nussbaumer [49, p.881, if Nt, is chosen such that N,, = 2' where I is an
integer, the FFT requires M = 12 log2(N,) complex multiplications and A - N" log 2(N•)
complex additions to calculate (4.5) for the following N, values of w: W - nAw, n -

0, 1,2,..., N, - 1 with Aw = 2W"./N,. (There appears to be no significant reduction in
the number of complex multiplications if ID is calculated only for n = 0 to n = N,/2.)
Since complex multiplications take considerably longer than complex additions, the required
computer time is approximately proportional to M = !N, log2(N").

Having calculated the frequency-domain near field we can now use (4.2) and the two-
dimensional FFT to calculate the frequency-domain far-field pattern. According to the
frequency-domain sampling theory Yaghjian [1, Fig.10] one has to sample the near field
(outside the reactive zone of the radiator) with a sample spacing of approximately Axo -

AyO = Ain/ 2 where Amin = 27rc/wma is the minimum effective wavelength occurring in the
time-domain field. The double integral in (4.2) is thereby replaced by an infinite double sum-
mation. For actual measurements the scan area is finite and the infinite double summation
is given by

W cos N. Ny (46)
.F'•(1, 4,) - 'ct • wF,,V ,)-•••°mn ~o~ (4.6)

2 -rc =-N -=-N

where fG0 n = mr 0Ax + nAyoJ is a sampling point on the scan plane. The integers N.
and Ny are determined by the size of the scan plane and are proportional to km,,ar, where
k,ma = 27r/Amin = wn,•,/c and r, is the radius of the circle circumscribing the scan plane.

From Nussbaumer [49, p.103] the number of complex multiplications it takes for the two-
dimensional FFT to calculate the full far-field pattern (4.6) for a fixed w at 4N Ny far-field
points is M = 2NXNy log2(4N.Ny) which is proportional to (k7 7~rs)2 log 2(kmazr,). (Again it
is assumed that NX and N. are chosen equal to 2 raised to an integer.) If we are interested
only in a single principal-plane far-field cut (40 = 0 or 900) the number of operations for large
scan planes is dominated by the 4NZ N , complex additions needed to collapse [50] the data in
one of the rectangular coordinates before performing the FFT in the remaining rectangular
coordinate. Thus the number of operations required to compute the far field in a principal
plane is proportional to (ka.r,)2.

Now that the frequency-domain far-field pattern is calculated, (4.3) can be used to cal-
culate the time-domain far-field pattern. The integral in (4.3) is converted to

N(, /2 2W Amax (4

•'r(0,0't) = E) FA(0, O)e-Ai' Aw, Aw (4.7)in=-Ný/2 N

by means of the sampling theorem if the far field F(O, 4), t) has about the same duration
as the near field t(fo, t). The values of F•,, for negative w are obtained from the equation

= . -, where * indicates complex conjugation. If the time duration of the far field is
longer than that of the near field one has to decrease the frequency sample spacing AŽW (by
increasing N, in the FFT's used to compute (4.5) and (4.7)) to avoid significant time-domain
aliasing. Specifically, if the duration of the far field is Tf the frequency sample spacing Aw
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should be chosen less than or equal to 21r/Tf according to the sampling theorem. (This is
seen by shifting the far-field pattern to make it symmetric around t = 0 and then noting
that the shifted far-field pattern is zero for ItI > -!Tf. In Section 4.4 it will be shown that
Tf, in general, depends not only on the near field but also on the size of the scan plane.
This is because the artificial edges of the scan plane produce a diffracted field that will make
the time duration of the far-field pattern calculated from (4.6) longer than that of the exact
far-field pattern.) The FFT calculation of the summation (4.7) for N, different values of t
requires M = N log2 (N) complex multiplications.

Let us now calculate the total number of complex multiplications required for the compu-
tation of the full time-domain far-field pattern at 4N,,NY different angles of observation and
N,, different times. To calculate the frequency-domain near field from the summation (4.5) for
4NNI, near-field points and for N,, different frequencies requires M1 = 2NNN,Y Nlog2(N,)
complex multiplications. Furthermore, to calculate the frequency-domain far-field pattern
from (4.6) for 4N.,N, different angles of observation and N, different frequencies requires
M 2 = 2N.NNw, log2(4N.Ny) complex multiplications. Finally, to calculate the time-domain
far-field pattern from (4.7) foi 4N.N. different angles of observation and N, different times
requires M 3 = 2N, N•N,N log2(N,) complex multiplications. Consequently, the total number
of complex multiplications required for this FFT computation of the full far field is

M = M, + M 2 + M 3 = N.NIIN, [41og 2(N-) + 2log2(4N.Ny)]

(kmaxrs) 2 N, [log2(N1 ) + log2(kmaxrs)]. (4.8)

Similarly, the number of operations required to calculate a principal-plane far-field cut
(for example the 0 = 0 cut) at N, different times is dominated by

Me = M, = 2N.NN, log2 (NM) -" (km..r, )2N, log2(N,,) (4.9)

complex multiplications required to calculate the frequency-domain near-field at 4N.,N, near-
field points and N,, different frequencies.

Section 4.4 shows a numerical example illustrating the use of the frequency-domain com-
putation scheme and discusses some of its advantages and disadvantages. Having explained
the frequency-domain computation scheme in this section, we deal with the time-domain
computation scheme in the next section.

4.2 Time-Domain Computation Scheme

The time-domain computation scheme consists simply of using the direct time-domain for-
mula (3.13) for the far-field pattern

-F(Oq ,t) - 2-r -](fo, t + .fo/c)dxodyo, fo= xoi'yo (4.10)

which uses the time-domain near field directly. Assume for simplicity that we know the time
derivative of the near field on the scan plane. (This is a realistic assumption because some
probes actually measure the time derivative of the field [51].)
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Equation (4.10) can be obtained by Fourier transforming the frequency-domain formula
(4.2), which was converted to the double summation in (4.6) by means of the sampling
theorem. Therefore, (4.10) can be converted to a summation by Fourier transforming (4.6)
to get

cos 9 N= NS,  a
-.F(9,0,t)- 2= c E E Z ( + -,o./C)AXOA0 (4.11)

n=-N1 ,

where fom. = mAxoi + nAyop is a sampling point on the scan plane and Ax0 = Ayo =
Amin/ 2 . This formula represents a time-domain sampling theorem that requires one to sample
the time-domain near field at a spatial sample spacing of Amin/ 2 , the same spacing required
by the frequency-domain computation scheme.

The direct time-domain formula (4.11) reveals a useful property of the time-domain
computation scheme. If the source is turned on at t = to one can calculate the far-field
pattern for times t < t, by measuring the near field only for t < t 2. (This is not true for
the frequency-domain computation scheme because the calculation of the frequency-domain
near field requires the values of the near field over its entire duration.) To determine t 2 as a
function of tj and the angle of observation 0 we assume that the scan plane is large enough
that the near field has not reached its edges at t = t 2. Because the source is turned on
at t = to the near field 4(fo, t) is zero for IVol > c(t - to) when fo is far from the source
region, so that the minimum distance from the source region to fo is approximately V0ol.
From the time-domain formula (4.11) it is then seen that the latest time t2 required to
calculate the far-field pattern at the angle of observation 0 and time t, is approximately
given by t2 = t, + IfVolIc-1 sin 0 where Ifoma1I is the radius of the circle in the scan plane
circumscribing the nonzero near field at t = t2. Consequently, Ifoio,1 = c(t 2 - to) and it is
found that t2 = "o + to. Therefore, to calculate the far-field pattern at an angle 0 forI - sin 8

to < t < tj one only has to measure the near field for to < t < t2 . In particular, if the far-field
pattern is calculated on the z axis (0 = 0) we have that t2 = tj as can be seen immediately
from the time-domain formula (4.11) since - -E 0 on the z axis. Thus, in contrast to the
frequency-domain computation scheme, the time-domain computation scheme can calculate
the far-field pattern for early times from near-field data measured at early times.

To calculate the far field at the angles of observation (0, 0) and time t from the formula
(4.11) one has to know the near field at the point f•,, on the scan plane at the time
Tmn( 9 ,0) = t + mAtcososinO + nAtsinosinO where At = c-'Axo = c-'AyO = 7r/waz..

Similarly, to calculate the far field at the angles of observation (9', €') and time t, one
has to know the near field at the point fo,,n, at the time ,,,(9', 4/). The time difference
1 td,,(0, 4) - mrn,,(0', 0')1 for the two different angles of observation can bc smaller than At,
and therefore, in general, one needs the value of the near field at each fo•n at times that
lie between time samples with spacing At. However, since the near field is bandlimited, the
standard sampling theorem shows that it is sufficient for reconstruction to sample the near
field with time-sample spacing given by At = 7r/wm,,, = A,•,n/(2c). Assuming this has been
done, the reconstruction theorem [48, p.83] shows that the near field can be calculated at an
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arbitrary time t from the summation

a =+8 sin(7r(t/At - p)) aT fo,. ,t)= 7rt ---p) (fo,.,pt). (4.12)

As in the previous section we assume that the time-domain near field is significant only in
the time interval to < t < to + (N,, - 1)At, where to may depend on the positiun TO,,,. Then
the summation (4.12) becomes

a0(fr0  It) = N ir r(- )]p) -D(fom ,to + pAt) (4.13)

where No, is the integer occurring in the frequency-domain formula (4.5). This reconstruction
formula requires the calculation of N•, values of the sinc function, No, real multiplications,
and No, real additions. The reconstruction calculation has to be performed for a number of
time values depending on the far-field points, and at every near-field measurement point.
Consequently, if No, is large, it may require a considerable amount of computer time.

However, for practical applications it may not be necessary to use the exact reconstruction
formula (4.13). Instead one may be able to calculate the near field at a time t between the
two time-sample points pAt and (p + 1)At by using the linear approximation formula

a9 a . +1)t ap t] a f'0(fo", t) = [(P + 1)At - ti- O(j.,pAt) + [t - PAtl ( P + 1)At).

(4.14)
If this linear formula is inaccurate one can oversample, that is, let At < ir/wo,, and then
again use (4.14).

Assume that the linear approximation formula (4.14) can be used to accurately calculate
the near field between time samples at times required by the far-field formula (4.11). Then it
takes 5 real additions and 3 real multiplications to obtain the near field at each value of time
between the time samples. On a typical computer (VAX 8650) the time it takes to perform
one real multiplication is approximately 1.5 times larger than the time it takes to perform
one real addition. Therefore the calculation of the near field at a time between two time
samples requires approximately the time it takes to perform 10 real additions. Thus, the
time it takes to calculate the full time-domain far-field pattern in (4.11) for 4NZN, far-field
points and No, times is approximately equal to the time it takes to perform

A1 = 160NO,(N=Ny)2' - No,(k=r. )4  (4.15)

real additions. Similarly, to calculate a principal-plane far-field cut (for example the q = 0
cut) requires the time it takes to perform

A, = 80N.N.N2 - Nw,(kor,r) 3  (4.16)

real additions. No complex multiplications are needed and it is seen that the number of
additions required to calculate a principal-plane far-field cut is significantly smaller than the
number required to calculate the full far field.
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Note from the expression (4.11) for the far-field pattern that if all fields are zero for t < to,
the finite scan plane does not introduce any error into the far-field pattern calculation at
times before the near field has reached the edges of the scan plane. This follows from the
fact that O(fo, t) - 0 for s > c(t - t0 ) where s is the shortest distance from the source region
to the point fo. In Section 4.4 we show a numerical example that illustrates this important
property of the time-domain computation scheme.

4.3 Number of Near-Field Time Samples Needed for
Far-Field Calculation

This section computes the time-sample spacing At and the number of time samples N,,
required to calculate the far field accurately from near-field data for different types of acoustic
and electromagnetic antennas.

Acoustic point-source antenna
We start by considering a simple acoustic point-source antenna located at f1. Its field is

given by
4 If -f•- (4.17)

where f(t) is the time dependence. Since the time dependence of the far-field pattern of
this antenna is the same as that of its near field, the required number of time samples is
determined such that the reconstruction formula [48, p.83]

Nv,-l sin [Ir Nt'. -P)f(t) = 6 [ t - f(to + pAt) (4.18)( _ ~p) St

is accurate. Here the time sample spacing At = 7'/Wmx is determined from the sampling
theorem, to is the time at which the time signal begins, and N" is determined such that
to + At(N•, - 1) is the time at whbch the time signal ends. The field of the acoustic point-
source antenna will be analyzed for two different types of time functions f(t).

We start with the Gaussian time function, which, along with its spectrum, are shown in
Figure 4.1 and are given by

f(t) = -4t 2/, 2 , f, -,,2,/16 (4.19)

where r equals half the signal width. The signal width 27- is defined such that If(t)I <
0.021f(O)l for ItI > r-. Strictly speaking, this Gaussian pulse is not bandlimited. However,
as seen from Figure 4.1, the spectrum is approximately zero for w > 12/?- and therefore the
Gaussian pulse (4.19) can be approximated by a pulse that is bandlimited with a bandlimit
given by w,m, = 12/,r. With At = 7r/lwmax = T-/4 being the sample spacing found from
the standard sampling theorem, the curve obtained from the reconstruction formula (4.18)
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Figure 4.1: Gaussian time function f (t) and its spectrumf.

with N,= 10 and to = -1.25,r was impossible to distinguish from the exact curve in Figure

4.1. This means that any Gaussian signal, no matter how wide a bandwidth it has, can be
reconstructed quite accurately from 10 time samples.

Having considered the Gaussian time function, which is nonzero for all times, consider
now the more realistic time function

fet) 0 -2/(16t2) 2-4t/,r --/,2 (4.20)e1+(4t--2) 23e- + 4t/I" , t > 0

which is shown in Figure 4.2 and is constructed so that it is identically zero for t < 0, it is
of order t-2 at infinity, it is infinitely differentiable for all t, and it has a zero time integral,
that is, its spectrum is zero for wo = 0. The spectrum f,,, which decays faster than w-" for
all n > 0 as jtwi --+ oo, is found by straightforward numerical integration and is also shown
in Figure 4.2. This spectrum reveals that the realistic time function (4.20) is approximately
bandlimited with bandlimit tw,,,, = 32/,r so that the sample spacing for the reconstruction
formula (4.18) is At = =rt,,•" 0.10,r. It was found that the reconstruction formula (4.18)
with N,, = 20 and to = 0 could not be distinguished from the exact curve in Figure 4.2
and thus 20 time samples are sufficient to accurately reconstruct the fairly complicated time
function (4.20) no matter how broad its bandwidth.

The analysis of these two types of near fields has shown that only a small number of time
samples is required to accurately reconstruct them even in the case of the fairly realistic
pulse shown in Figure 4.2. The corresponding far fields can be calculated accurately from
the same small number of near-field time samples as will be demonstrated in Section 4.4.

Open-ended waveguide antenna
Let us now consider thmre complicated electromagnetic antenna consisting of an open-

ended rectangular waveguide fed by a source that has a time dependence f'(t) and is located
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Figure 4.3: Open-ended waveguide antenna.
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at the point (z, y, z) = (0, 0, -d) in the waveguide shown in Figure 4.3. Assuming that the
source is such that only the TE10 mode is excited, the part of the electric waveguide field
that propagates in the direction of the positive z axis is given by

-10( f= cos (x) eikzz (4.21)

where the longitudinal propagation constant is

ikV!e-' -1,w < wc
kz W (4.22)

Furthermore, wC = irc/a is the cutoff frequency for the TE10 mode and f, is the spectrum
of the input signal. Note that the spectrum of the electric field is exponentially attenuated
below cutoff and that its value at the center of the aperture is given by

EA. = {-kd 0< w < we, (4.23)

The on-axis value of the far-field pattern F'(8 = 0) is given approximately by [52, eqs.(1),
(6)]

-F( = 0) = -F.(O = 0 = CowEA. [l+ r+t- ( r)] (4.24)

where Co is a frequency independent constant and r is a reflection coefficient that is approx-
imately frequency independent over the recommended usable bandwidth of the waveguide.

Let us now calculate the time dependence of the aperture electric field and the on-axis
far field for the special case where the source is Gaussian and the waveguide is X-band. In
this case the TE10 cutoff frequency is w, = 7rc/a = 4.1 - 10"s-1, r = 0.27c 1 , a = 2.86 cm,
and b = 1.016 cm. The Gaussian source is chosen so that its spectrum, at the midpoint of
the interval from w, to the next cutoff frequency 2w, = 27rc/a = 8.2 - 1010s-1, equals half
its value at w = 0, as shown in Figure 4.4. In this case the input pulse and its spectrum
are given by (4.19) with r = 5.4- 10-"s. For d = 5 cm the absolute value of the spectrum
EA. and the time dependence EA(t) of the electric field at the center of the aperture are
shown in Figure 4.5. It is seen from Figure 4.5 that the spectrum for the aperture electric
field is significantly attenuated below cutoff and that its slope is very large around the cutoff
frequency. This spectrum is thus very different from that in Figure 4.4 of the Gaussian input
pulse because of the dispersion of the TE1 0 mode over the 5 cm of travel in the waveguide.
The time dependence of the aperture electric field is also shown in Figure 4.5 and is seen
to be completely different from the Gaussian input pulse (4.19). In particular the aperture
electric field has a pulse width of approximately 80r while the Gaussian input pulse has
a pulse width of approximately 2r. Since the bandwidth of the aperture field is the same
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Figure 4.6: Amplitude of spectrum and time dependence of on-axis value of the far-field
pattern for open-ended waveguide antenna.

as that of the input pulse, the time sampling spacing for the signals is the same. This
means that the number of time samples required for the aperture electric field is 40 times
the number of time samples required for the Gaussian input pulse. It was shown above that
the Gaussian input pulse required approximately 10 time samples so the aperture electric
field requires approximately 400 time samples. In other words, to reconstruct the aperture
electric field by use of the reconstruction theorem [48, p.83] one has to sample this field at
400 different times. And therefore, when a near-field to far-field calculation is performed for
this near field one has to use 400 time samples to make sure that the far field is calculated
accurately.

Let us now consider the on-axis value of the far-field pattern (4.24) whose spectrum and
time dependence are shown in Figure 4.6. It is seen that the spectrum of the on-axis far
field is very similar to that of the aperture electric field and that it is very different from
the spectrum of the Gaussian input pulse. Near the cutoff frequency the spectrum of the
on-axis far field is much smoother than the spectrum of the aperture electric field. The time
dependence of the on-axis far-field pattern, also shown in Figure 4.6, is very similar to the
time dependence of the aperture electric field. However, because of the smoother spectrum,
the far field dies off faster with time than the aperture electric field and the pulse width of
the far field is approximately 40r which is 20 times that of the input pulse.

In summary, for the open-ended waveguide antenna the time dependence of the aperture
electric field and of the far field are very different from the time dependence of the input
pulse because of the dispersive effects of the waveguide on the TE 10 mode. In particular,
for a Gaussian input pulse the time widths of the aperture electric field and the on-axis
far field are approximately 40 and 20 times larger than the time width of the input pulse,
respectively. Assuming that the near field behaves as the aperture field, this means that one
has to measure the near field (at every near field point) at approximately 400 different times
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when the waveguide is fed by a Gaussian pulse, which alone only requires 10 time samples.

Monopole antenna
In [53] the time-domain radiation from a monopole on a ground plane, fed by a Gaussian

input pulse, is calculated using the Finite-Difference Time-Domain method. From [53, Figs.7,
11] it is also seen that for this type of antenna the number of time samples required for the
radiated field is much larger than the number required for the input pulse. In particular,
[53, Fig.7] shows that when the Gaussian input pulse is given by [53, eq.(6)] (which requires
approximately 10 time samples and has a pulse width of approximately 5.7 -r.), the radiated
field has a pulse width of approximately 5Tr = 62,rp. This is 11 times wider than the input
pulse and therefore requires approximately 110 time samples. Consequently, as for the open-
ended waveguide, the number of time samples required for the field radiated by the monopole
is much larger than the number required for the input pulse.

4.4 Comparisons of the Two Computation Schemes

Having determined in the previous section the number of time samples required for different
types of near fields, we shall now compare and discuss the advantages and disadvantages of
the frequency-domain computation scheme of Section 4.1 and the time-domain computation
scheme of Section 4.2. To compare the efficiency and convenience of the two schemes we
start by using them to numerically calculate the far-field pattern of a simple acoustic antenna
from near-field data taken on a square scan plane.

Acoustic point-source antenna
The simple acoustic antenna radiates the point-source field given in (4.17) with f(t) being

the Gaussian time function (4.19). As explained in Section 4.3 this antenna field is effectively
bandlimited with bandlimit w,,- = 12/1- which means that ,,i,, = 2irclwma= 7 -r/2 and
thus the spatial sample spacing is Ax0 = Ay0 = A ,,/2 = ci/4. The point source is located
at F, = -di where d = 2Amin -- c7 and the scan plane is taken to be a square of side length
10d located in the plane z = 0.

We start by showing results for the on-axis values of the far-field pattern F(O = 0,t)
obtained from the time-domain formula (4.11) and the linear approximation formula (4.14).
Figure 4.7 shows three plots of the time dependence of the on-axis values of the far-field
pattern F•( = 0,t): (a) the exact value, (b) the value obtained from (4.11) and (4.14) with
At = 7rlw,ma (as prescribed by the standard sampling theorem), and (c) the value obtained
from (4.11) and (4.14) with At = ir/(3w,m,,) (that is, a value obtained by oversampling in
time).

The first curve (a), which is exact, has the Gaussian wave form and is only significantly
nonzero on the interval -0.1-r < t < 2.1-r. The second curve (b), which is obtained by using
the standard time sample spacing At = ir/w,,, and the linear approximation formula (4.14),
has some visible discontinuities in its slope and approximates the exact curve well on the
interval -,r < t < 47. On the interval 4T < t < 87- it is negative and erroneous. The third
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Figure 4.7: On-axis values of the far-field pattern for a Gaussian point source calculated with
the time-domain computation scheme. (a) exact; (b) At = r/w,,m; (c) At = lr/(3w,oz).

curve (c), which is obtained by oversampling with At = 7r/(3wm,) and using (4.14), cannot
be distinguished from the exact curve on the interval -r < t < 4r and is erroneous (like the
second curve) on the interval 4r < t < 8r. Before discussing the erroneous behavior of the
two approximate curves (b) and (c) over this late-time interval, we note that by oversampling
with At = 7r/(3wmaz) one can use the simple linear approximation formula (4.14) to obtain
an excellent approximation to the exact curve.

The erroneous behavior of the two approximate curves (b) and (c) on the interval 4r <

t < 87- can be explained by first noting that the time integral of the expression (4.11) from
t = -oo to t = +oo is zero for finite (truncated) scan planes because t(t = -oo) = O(t =
+oo) = 0. This means that for the far-field patterns approximated by the summation in
(4.11), f+i• .F(O = O,t)dt = 0 which, of course, is not the case for the exact non-negative
Gaussian far-field pattern. The integral representation (4.10) of the far-field pattern is exact
and since the near field is sampled with spatial spacing of Ai,n/2 (as required by the near-
field sampling theorem [1]), we conclude that the erroneous behavior of the two approximate
curves is due to the finite scan plane. This observation is confirmed by the fact that the
time between the arrival of the direct signal (t = -0.1,r) and the arrival of the erroneous
signal (t f" 4.17r) is equal to the time it takes the signal to travel the distance 11 - d, where
11 = V2/d is the distance from the source to the midpoint of the edges of the scan plane
(recall that r ý- d/c). Similarly, the time difference between the end of the direct signal
(t = 2.1r) and the end of the erroneous signal (t " 8,r) is the time it takes the signal to
travel the distance 12 - d, where 12 = v1F5d is the distance from the source to the corners of
the scan plane.

Thus, the erroneous parts of the approximate far-fields are caused by the finite scan plane

85



and represent diffraction from the artificial edges of the truncated scan plane. Enlarging the
scan plane makes the erroneous part of the approximate far field move to later times but
it will never disappear when the scan plane is finite. Furthermore, from the exact integral
(4.10) it is seen that for t < 4r there is no contribution from the region outside the square
scan plane with side length 10d. Thus, for early times the truncated scan plane does not
introduce any error into the calculation of the far-field pattern because the signal has not
yet reached the edges of the scan plane. However, as time gets larger the signal reaches these
edges and the finite scan plane introduces an error which is separated in time from the exact
far-field pattern as demonstrated above.

This simple example shows that by oversampling in time, one may avoid using the time
consuming reconstruction formula (4.13) and instead use the simple linear approximation
(4.14). Furthermore, it shows that the errors due to the finite scan plane are separated in
time from the exact far field and can therefore be eliminated when using the direct time-
domain computation scheme.

Having shown and discussed results obtained from the time-domain computation scheme,
we now turn to the frequency-domain computation scheme. As explained in Section 4.1, the
frequency sample spacing Aow = 2 w,,,,,/Nw for this scheme depends on the bandwidth wa,

of the near field and on the duration of the far field. Moreover, we have just shown that
the duration of the far field is erroneously extended beyond that of the near field by the
truncation of the scan plane. Thus, in practice, the required frequency sample spacing
Aw = 2wm,,/N,, depends not only on the bandwidth Wm= (and, the duration of the near
field) but also on the size of the scan plane.

From Figure 4.7 showing the time dependence of the on-axis values of the far-field pattern
calculated from the time-domain computation scheme, it is seen that with our chosen scan-
plane size the duration of the calculated time-domain far-field pattern is Tf = 8.2r and
therefore to avoid significant time-domain aliasing one must chose Aw = 27r/T! = 0.77r-'.
This means that the number of time samples needed to avoid significant time-domain aliasing
is N,, = 2w,,=/Aw - 32.

Figure 4.8 shows the following three plots of the on-axis values of the time-domain far-field
pattern -F(O = 0, t) calculated with the frequency-domain calculation scheme: (a) the exact
value, (b) the value obtained from the frequency-domain formulas (4.5)-(4.7) with N, = 16
(which is sufficient for reconstructing the near-field pulse), and (c) the value obtained by
using (4.5)-(4.7) with N,, = 32 (the number prescribed by the sampling theorem to compute
the far field extended in time by the truncated scan plane). The exact Gaussian curve (a) is
significantly nonzero only on the interval -0.1r < t < 2.1r. The second curve (b) is periodic
with period T = irN,,,/w,,,m = 4.2r and is clearly erroneous due to time-domain aliasing. The
third curve (c) is periodic with period T = 8.4r and cannot be distinguished from the exact
curve (a) on the interval -0.5- < t < 4.1r. No significant time-domain aliasing occurs for
the curve (c) and from Figure 4.7 it is seen that curve (c) is simply a periodic repetition of the
far-field pattern calculated from the time-domain computation scheme. Consequently, it has
been demonstrated that the frequency-domain computation scheme produces the same field
as the time-domain computation scheme when the frequency sample spacing Aw is chosen
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Figure 4.8: On-axis values of the far-field pattern for a Gaussian point source calculated
with the frequency-domain computation scheme. (a) exact; (b) N" = 16; (c) N" = 32.

small enough to avoid time-domain aliasing caused by the field diffracted at the edges of the
finite scan plane.

Open-ended waveguide antenna
Without actually calculating the far-field pattern for the open-ended waveguide antenna

of Section 4.3, we will now discuss some of the consequences of using the two computation
schemes to determine this far-field pattern. Assuming that the time dependence of the near
field is similar to that of the aperture field shown in Figure 4.5, 400 near-field time samples are
required to calculate the far-field pattern. (The open-ended waveguide antenna is directive
so it is assumed that the diffraction due to the edges of the scan plane is negligible.) The
on-axis values of the far-field pattern of the open-ended waveguide antenna, shown in Figure
4.6, consists of a main (early-time) part (0 < t < 107-) which contains most of the power and
an oscillatory part (t > 10,r). For applications one may only be interested in the main part of
the far-field pattern. From Section 4.2 it is found that the time-domain computation scheme
can determine this early-time part of the on-axis far field from measured near-field data
taken in the time interval 0 < t < 100. Since the duration of the near field is approximately
80,r (see Figure 4.5) this means that only -• 400 = 50 time samples are needed to calculate
the main part of the far field using the time-domain computation scheme. Because the
calculation of the frequency-domain near field requires the near field for its entire duration,
the frequency-domain computation scheme needs all the 400 time samples of the near field
to calculate the main part of the far field. This example shows that if one is only interested
in the far-field pattern for early times, the number of time samples of the near field required
by the time-domain computation scheme can be much smaller than the number required by
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the frequency-domain computation scheme.

Computer time
Let us now compare the computer time required by the two computation schemes. For

the far-field calculation performed in this section for the acoustic point-source antenna with
Gaussian pulse excitation, the number of near-field sample points was 4N.,N• = 1600 because
Ný = Ns, = 20. To avoid time-domain aliasing caused by the edges of the scan plane, the
number of time samples was N, = 32 for the frequency-domain computation scheme (4.5)-
(4.7) and therefore from (4.8) and (4.9) it is found that this scheme requires the calculation
of M1 = 5.3- 10' and Mc = 1.3- 10' complex multiplications to compute the full far field and
a principal-plane far-field cut, respectively. The on-axis result of this calculation is curve
(c) of Figure 4.8, which cannot be distinguished from the exact far field on the time interval
where the exact far field is nonzero.

To perform the same far-field calculation for the acoustic point-source antenna using
the time-domain computation scheme (4.11) with the linear approximation formula (4.14),
two different values of N, were used; namely N,, = 10 (giving curve (b) of Figure 4.7) and
N, = 3- 10 = 30 (giving curve (c) of Figure 4.7). The far-field obtained with N,, = 10 is
a good approximation to the exact far field. The far-field obtained with N,, = 30 cannot
be distinguished from the exact far field on the time interval where the exact far field is
nonzero. From (4.15) it then follows that Af = 2.6- 108 and Af = 7.7. 108 real additions are
needed to calculate the full far field with 10 and 30 time samples, respectively. Similarly, to
calculate a principal-plane far-field cut A, = 6.4. 106 and A, = 1.9- 107 real additions are
needed using 10 and 30 time samples, respectively.

Before comparing the results we note that on a typical computer (VAX 8650) the time it
takes to perform one complex multiplication equals approximately 6 times the time it takes
to perform one real addition. For the acoustic point-source antenna we see that when the
full far field is calculated, the frequency-domain computation scheme is by far the fastest
because it makes use of the FFT. When only a principal-plane far-field cut is calculated the
computation time for the time-domain computation scheme reduces significantly whereas
that of the frequency-domain computation scheme does not.

Next consider the open-ended X-band waveguide antenna of Section 4.3 fed by the Gaus-
sian pulse with w,,,, = 4w, = 1.6. 101s-1 as shown in Figure 4.4. The scan plane is taken to
be a square of side length 20 cm. Since Ami, = 27rc/Im,, = 1.1 cm we find that N. = NI = 18
and that the total number of near-field scan points is 4N.N3, = 1296. From the discussion
of Section 4.3 it follows that the number of near-field time samples is N, = 400.

With these values of N=, N., and N,, one finds from (4.8) and (4.9) that the frequency-
domain computation scheme requires Mf = 7.1 - 106 and M, = 2.2- 106 complex multiplica-
tions, respectively, to calculate the full far field and a principal-plane far-field cut. Similarly
the formulas (4.15) and (4.16) show that the time-domain computation scheme requires
Af = 6.7- 10' and A, = 1.9- 108 real additions, respectively, to calculate the full far field
and a principal-plane far-field cut.

Again, when the full far field is calculated, the frequency-domain computation scheme
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is by far the fastest while the difference in computer time for the calculation of a principal-
plane far-field cut is small. Furthermore, as discussed above, if one is interested only in
calculating the far field for early times the number of time samples required by the time-
domain computation scheme reduces significantly whereas that of the frequency-domain
computation scheme does not. Thus, when only the early part of the far field is needed the
time-domain scheme becomes more attractive.

In summary, when far fields are calculated for all times and all angles of observation, the
FFT makes the frequency-domain computation scheme much faster than the time-domain
computation scheme. When only part of the far field is calculated, the difference in computer
time for the two computation schemes becomes smaller and the time-domain computation
scheme becomes more advantageous because of its simplicity. In general, the time-domain
computation scheme is much more direct and simpler than the frequency-domain computa-
tion scheme and it does not have the problems of time-domain aliasing caused by the finite
scan plane. The time-domain computation scheme is much easier to use than the frequency-
domain computation scheme and it is consequently the more attractive scheme when one
is not concerned with the amount of computer time it takes to perform the far-field cal-
culations. Regardless of what computation scheme is used, planar time-domain near-field
antenna measurements, unlike single-frequency near-field measurements, have the capability
of eliminating finite scan errors. For some radiators, such as broadbeam antennas, this may
be ample reason to consider time-domain measurements even when the final characterization
of the radiator or scatterer is required in the frequency domain.
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Appendix A

Differentiability and Analyticity of
the Plane-Wave Spectrum and
Far-Field Function

Since the derivation in this Appendix applied to the scalar acoustic spectrum is analogous and
simpler than that of the electromagnetic spectrum, we will consider only the electromagnetic
case.

The electromagnetic plane-wave spectrum can be expressed in terms of the source current
density i(f) through the relationships [3, ch.3, eqs.(2.2-7a), (2.2-7b))

T(k., k,) = 7f(k., kv) (A.1)

where the far-field function P(k., k.) is given by

P(k., ky) = -ik X [k x 0(k,, k,)] (A.2)

with C defined as

L74(kr, k f) w 4-f J(f)e-"dV (A.3)

for the finite source region V.
Assuming the magnitude of each component of the current is finite (or more generally, the

absolute value of the current is integrable over the finite region V), the theorem in Hobson [24,
sec.246, p.355] implies that the integral in (A.3), and thus U(k., k.) is infinitely differentiable
with respect to k, and ky if e-k'f is infinitely differentiable. Writing k - F = kxx + kyy + yz,

where - k2 - k2 - k shows that k -f is an infinitely differentiable function of k• and

kv for all (k., ,k) except at -y = 0. Thus, U_(k,:,ky) and, from (A.2) and (A.1), F(k.,,ky) are
infinitely differentiable functions of k_ and ky except possibly at Y = 0.

Moreover, if k is expressed in polar coordinates so that k- - = kp(x cos kj + y sin ki) + ,z,
where k. = U/YW', U becomes a function of the independent variables (-y, kk). Then
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eC'• is infinitely differentiable with respect to y and k, for all (-y, kk) except at -t = k
(since dk,/d 7 = - = -y/ vf ). Therefore, U(VN T7Icos k5, -yý sin k,)
and F(Vr/k'_C7 cos kj, V sin ks) are infinitely differentiable functions of -y and k, for
all (y, ko) except possibly at -y = k.

We can also express the propagation vector k in spherical coordinates so that k•- =
k(x sin ke cos k,, + y sin ke sin ks + z cos kq), and U becomes a function of the spherical angles
(ke, kO). Then e-ik` is infinitely differentiable with respect to (ke, ko). Furthermore, e-'k•

satisfies the Cauchy-Riemann conditions with respect to complex ke and k, for all (ke, kA).
Thus, from the theorem in Hobson [24, sec.246, p.355], the rectangular components of a also
satisfy the Cauchy-Riemann conditions for all complex (ke, kO), provided the magnitude of
each component of the current in (A.3) is finite (or more generally, the current is absolutely
integrable over the finite region V). In other words, U(k sin ke cos ko, k sin ke sin kj) and
F(k sin ke cos ko, k sin ke sin k,) are infinitely differentiable and analytic functions of ke and
k¢, for all values (ke, ko). Furthermore, for real values of (ke, kk) the relation F(k sin k0 cos kO,
k sin ke sin k,6) = P(ke, kk) exists between the far-field function F and the far-field pattern
F" defined in Section 2.2.4.

The above result on the differentiability and analyticity of the spectrum and far-field
function required that the sources J(f) be located in a volume of finite extent, and that the
magnitude of the current be an integrable function. We shall now show that these results
can be proven without even requiring this condition of absolute integrability on the current.

Assume the sources are in a volume of finite extent and outside the source region produce
continuous electric and magnetic fields that satisfy Maxwell's homogeneous curl equations

VxE-iw1L1H=O, VxH +iWCE=O. (A.4)

(If the divergence of R and H1 exist outside the source region, so that Maxwell's divergence
equations also hold outside the source region, namely V. - = 0, V Hr = 0, then E and A
must be continuous functions of the spatial coordinates outside the source region.)

The fields outside the finite source region can be generated by equivalent electric and
magnetic surface currents (Ke = h x H, K, = -fh xE ) on a surface S (for example, a sphere)
enclosing the sources [39, sec.8.14], [44, Theorem 35]. Taking the curl of these "Stratton-
Chu" formulas, an operation allowed by the theorem of Hobson [24, sec.246, p.355], converts
them to the Kottler-Franz formulas [54], [55], [56], [57]

E(F) = -V X Lx(f')G(ff')dS I V X V x Ke(f')G(f, f')dS' (A.5)

and
H(f) = v x j× ,(f')G(f, f')dS' - -4--v x V x f 'Af')dS 6)

The unit normal h is directed out of the surface S, that is, away from the source region.
In terms of these equivalent surface currents, the function U in (A.3) is given by

0(k.,k,)- 1 [ J V() - 1 -j k x k,()] e-'k-' dS. (A.7)
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(The relationship (A.1) with F and U substituted from (A.2) and (A.7) can be rigorously
proven to be a valid expression for the electromagnetic plane-wave spectrum by inserting
E from (A.5) into (2.11) and repeating the analysis applied to the acoustic plane-wave
expressions in Section 2.1.2.)

Under the extremely weak condition that the electric and magnetic fields are continu-
ous outside the finite source region, a condition that must hold if the fields obey Maxwell's
curl and divergence equations outside the source region, Kf,(f) and f-,(f) are continuous
functions on S. Consequently, the above analysis applies to (A.7) to prove the same differ-
entiability and analyticity of the spectrum and far-field function for sources in a volume of
finite extent without requiring continuity or absolute integrability of the current J in (A.3).

In a similar manner, the theorem of Hobson [24, sec.246, p.355] can be applied to (A.5)
and (A.6) to prove that the continuous electromagnetic fields everywhere in a source-less
region are infinitely differentiable functions of their rectangular, cylindrical, and spherical
spatial coordinates. Also, it follows that the rectangular components of B and H are part
of analytic functions of complex spatial variables (in rectangular, cylindrical, or spherical
coordinates) in a three-dimensional domain that contains the real spatial variables outside
S. This analyticity of the electromagnetic fields everywhere outside the source region implies
that the fields outside a finite source region must be zero everywhere if they are zero in any
region with nonzero volume outside the source region.
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Appendix B

Time-Domain Far Fields in Terms of
Current Sources

The far-field equations derive rigorously from the vector-potential solution to Maxwell's
equations in the time domain

= -V x A(f,t) (B.1)Is

= x [VI(;,t')dt', f . V (B.2)

where

A(ft) -j(f, t- R/c)dV" (B.3)

and R = If - f'I. The current in (B.3) is assumed integrable over its finite source volume
V (at least for observation points f outside the source region).' Inserting A from (B.3)
into (B.1), and bringing the curl operator under the integral sign produces the following
expression for the magnetic field

1 fv ? x -a-J(f ,t - R~c) RR

--(f, t) = v-[f-t' cR / c + 3x J(', t - RIc)] dV' (B.4)

where we have introduced R = - f' and used the identity [31, App.1, eq.(186)]

J(f',t- R/c) tx aJ(r ,t - R/c) R_
V X R -R 2  - x j(f',t - RIc). (B.5)

1The interchange of the time integration with the curl operator on the right side of (B.2) can be proven
valid by interchanging the space and time integrations in the integral form of Maxwell's second equation to
get E .f -A S = J, (f ' ide') -"l, where no point of the surface S or the curve C is in the source region

V. Then Stokes' theorem is applied to obtain (B.2). This interchange of space and time integrations is
permitted by standard theorems of integration [24, sec.237] under the very weak condition that ft(, t) is
integrable over any finite space-time domain (C, t), where no point of the curve C is in the source region
V. Alternatively, one could simply take the above integral equation as the fundamental form of Maxwell's
second equation.
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The interchange of differentiation and integration required to obtain (B.4) is valid outside
the source region if the time derivative of the current exists and is finite, or more generally,

atJ(r, t - R/c)j < ca(f'), where a(f') is a function, independent of time, that is integrable
over the finite region V [24, sec.246, p.3 5 5].

Multiplying (B.4) by r, then taking the absolute value and limit of (B.4) as r -- oo gives

R x -Lj(fr,t - R/c) R -lim IrR(,t)l = lim 1r a + X i(f',t- R/c) dV'rn-rHo4t r )-1 oo V cR 2  R3

< m •¢)dW.(B-6)

Bringing the limit inside the last integral of (B.6) is allowed by standard theorems on limits
of integrals [24, p.324]. To obtain the analogous results for the electric field, insert A from
(B.4) into (B.2) to get

iij r[1o- ,1 o
E•(f,t) -- -- tJ(f' ,t - R/c) - [.-J(f' ,t - RI/c) k•

4 r - Rr .j t)

3-_R -j(f, t - Rlc)f? + J(f',t- Rc)

5- j(f t)dt') A + W ,-3 / t)dt'] dV'.

(B.7)
And as r -+ Zc one obtains the far-field result similar to (B.6), namely

lim _<~f tI !5'V.S ,('dV 8

The inequalities (B. 6) and (B. 7) prove that the far magnetic and electric fields decay as 1/r
(or faster) as r -+ c•, provided the first time derivative of the retarded current function is
bounded by an integrable function in the finite source region V.

If, in addition, the first time derivative of the current is a continuous function of time,
the limit of (B.4) and (B.7) as r --+ oo can be brought inside the integrals [24, p.324] to get
the following explicit expression for the far magnetic and electric fields

HVf t)-'-- x•0 jv 't - tc + i* i'/c)dV'+ 0 (B.9)47rcr -IJV r2

and

E(f', t) ,e.-., ,x f 1J×i•-(,t-r/c+÷.f'/c)dV'+O (-) (B.1O)

The far-field expressions in the time domain (B.9) and (B.10) check with the far-field
expressions in the frequency domain (2.56) in that they are Fourier transforms of each other.
However, in this appendix we have given conditions on the current that assure the validity
of the time-domain far-field expressions; specifically, (B.9) and (B.10) are valid if the first
time derivative of the retarded current function is bounded by an integrable function in the
finite source region V, and is a continuous function of time.
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