276 378
VAR

il

i

|

AD-A
L

E-L Users’ Manual

DTIC

ELECTE
MAR 0 7 1994

Judy G. Townley

LY
") 94-06845
BRI

February 17, 1994

Software Options, Inc.
22 Hilliard Street
Cambridge, Mass. 02138

This work was supported in part with funds provided by the Defense Advanced Research
Projects Agency under contract N00014-85-C-0710 with the Office of Naval Research.

- - -]
© - I -
u‘ ;-:v';':: N -

MATERIAL INSPECTION AND RECEIVING REPORT

Forw Approved
OME NG, C 0,68

Pt reporting Byrden for (N Collection of womaum " aUmewmd W0 aver
Qethering 1ng maintaming (he diats moﬁ 0

mgmdlwbwhl !Nx

Of INOrmelion Send cOmMment /egerdt

19 minvtm 287 00K indudmg the (»mt T 10v e wing NItuCion. W™ g paal ~7 L1 4,:,« [}
thi Durde® Bumate Of any D1 prgmct

o thay corectior

o inturmat e, wioding un)onliom ‘or red

Jeftonon Davn Highwoy, Yuile .?an

0 Dypmrtment &
VA muuw onc 0 the Ofrwe o« s

Owtervy. Wavin oﬂ HARIGUIten evVK M.
VOPEL. PorT w Ik Ao AWF Trgeect (D704 0148) Washagron OL L0W)

AIQETET
0T RETURN YOUR COMPLETED FOIM TO EITHER OF THESE ADDRESSES.

(EOWQrate {31 In o matdn Dper auion, and Aepons. '11%

1, PROC WATSMAFNT 1A% «covmucn (OROEA) HO. €. WYOIKCE %Q, 1 OATE 1. PAGE Iov § ACCIPTaNGE POWT
N00014~ 85-C-~0710 1 1 D
T SHPAfNT NO ¥ DATE SHPLO N S LICONT TERMS
SCI-001 23 Feb '94 Ten N/A N/A
9 PRME CONTRACTOR (00¢ 2V509 T ACMINTIALC B ‘°°'[DZ./_U:’.\‘
Software Options, Inc, DCMAQO, Boston
22 Hilliard Street 495 Summer Street
Cambridge, MA 02138 Boston, MA 02210
TV SHIPPED FAGM (If ather Son 9 o0t 3 12 PAYMENT WALL B¢ MADE OY €O | 51016
} DIFAS-Columbus Center I
ATTN: Bunker Hill Division
PO Box 182077
Columbus, Chio 43218-2077
[13. weert® 70 tﬁ] ¢ WMaRKLD FOR coas |
see Envlosure Number 1 of contract
0] . STOCK/PART NO. DESCRPTION |V) v %
o P by Bl sdotRien e LLwT | uNT PRCE AMO T
M
A0002! Final Report in accordance with
: AQ002 and Exhibit A
!
' 15 copies enclosed
' Distribution made in accordance
' with Enclusure Number 1 of contract 1 LO NSP NSD
]
]
)
'
[}
t
1
1
)
o CONTRACT QUALITY ASS RANCE u RECEIVER'S USE
A. ORIGIN 8. DESTINATION Yvantussnown ncuiymn 17 we e ‘eceived
QA [} ACCEPTANCE of fisted rtems €Qa [T] ACCEPTANCE of 'sted items has been | 7 2PPONT§000 condition gucent a5 noted
2t been Made by Me Of under My supervision | M7 Je by Me wr urkie My sueryon end they
and they conform to contract, except a3 agued | coiform to contracy, extept a3 noted herein 010N P TRiNTD™ TORATOR BF AUTH TV T AT
herein or on supparting documents. supporting docymens.
TYPED NaME
AND OFENE
DAY SiGHA TURL OF AYTH COVY TTY DAL VORATIM OF AT GG~ ner
r - - e emend
TYPED NAMSE TYPED NAME * If quantity received by the Government s the
LR 29V AND YT 3me 235 Quantrty shinped, indicote by (/)
mark, it Trerent, eNTer JCTvd!/ Quamity re-
cervnd below quentity thipped and eacirche.
19 CONTRACTON Ut UPRY

0D Form 250, OEC 99

Previous eaitions 3re obsolete.

Bst Avaiable_Cofy

Users' Manual

Contents
1 Introduction
1.1 Artifacts L
1.2 Updating
1.3 Plexes e
2 Getting Started
21 Drafts e
22 Simple Commands
23 Notices e e
24 Subsequent Editing
3 More About ITiX Artifacis
3.1 References to Other Artifacts
3.2 Creating an Index or Bibliography
3.3 Dividing a Document intoParts L.
34 Customizing Errors oL
3.5 postscript Artifacts Lo
4 More About Artifacts and Drafts
4.1 As Argumentsto Commands.
4.2 Further Dealings with Artifacts, ..
4.3 Further Dealings with Drafts
4.4 Further Dealings with Problems
45 Comparing. e e e
46 Searching
4.7 Highlighting
48 Annotating e
5 Plexes
5.1 Imtroduction
52 TheartifactsPlex o oL
53 ThedraftsPlex
54 Scheduling
5.5 ThenmnoticesPlex.
56 TheusersPlex
57 ThehostsPlex
6 Troubleshooting
6.1 Servers
6.2 Missing Drafts

A Customizing IATgX Output

W Yy — -

el N

(=230, B N o

St b o s

o O —~1

_- =1 Ut e (D b= e

-1

B e

i

' Users’ Manual
B Automatic Deletion 1
. C Installation 1
C.1 Prerequisites. e 1
' C.2 Installing B-L 2
C.3 Artifacts System Administration. L L 0
C.4 Obtaining Assistance 8
' Index Accesion For 1
NTIS CRA&I g
I OTIC TAB
Urannounced O
Justiti
' BY
Distribution|
' Availability Codes
) Avail and|or
l Dist Special
ﬂa
iv

Users' Manual

1 Introduction

E-L is a software development environment that reflects a fresh look at how the design of
a programming system and the design of the languages it supports can reinforce each other
in ways that increase software productivity. The benefits of this coordinated environment-
and-language design! are reflected most directly in E-L’s tools for manipulating programs.
In E-L, one sets up a structure that indicates a desired result. E-L uses a strategy called
opportunistic scheduling to minimize manual tool invocation and to mediate the objectives
of maximizing the use of tools and maximizing responsiveness. Most tool invocations are
automatic, typically in response to editing or to actions taken by other tools, which are
themselves automatically invoked. Because tools are “scheduled™, not run immediately, tue
system can optimize the use of resources. For example, the system may locate idle machines
on the network and use them for some invocations. The system will usually not run more
than one scheduled tool on any one machine at a time (to minimize swapping and thrashing).

E-L also supports multiple distributed users in an unusual way. Rather than mereiy tryving
to keep different users from harming one another, the goal is to encourage close cooperation.
For example, in addition to supporting branching and merging lines of development. E-L also
aids users in concurrently editing different but closely related pieces of the same program
or document and coordinating the construction of the next version. In particular. a user
examining a part of the E-L repository will see changes to that part as they are made. even
if by other users or by background tool invocations, perhaps on other machines.

1.1 Artifacts

In most environments one deals with files; in E-L, one deals with artifacts. which differ
from files in several respects. Perhaps the most significant is that while one can “change
the contents” of a file, the contents of an established artifact are immutable. In E-L. when
one “edits an artifact”, what actually happens is that one creates a new artifact, starting
from the existing artifact. The image is that of producing a new edition of a book, rather
than modifying what is written on a piece of paper. The latter is the model provided by
file systems. The former takes a while to internalize but provides a better basis for tracking
the evolution of a constantly changing system. Because an artifact is immutable, it is also a
verston, that is, it is unchanging data created at a particular time. A user of E-L need not
resort to an external system like RCS to track versions—it happens automatically as part of
using the system.

Another difference between artifacts and files is that an artifact has a type. Typing of
files is done by some operating systems (e.g., text vs binary), but typing of artifacts in E-L
plays a central role in integrating tools. The set of types grows as new tools are added to
the environment. In classical file systems, naming conventions are often used to achieve
something of the effect of types, but there is generally no enforced correspondence hetween a
nami.g convention and the contents of a file. Types of artifacts are used in a more classical
programming way: they govern the structure of the artifact and the operations that can be

I'The name E-L is intended to suggest the simultaneous concern with environment and language.

1-1

Users' Manual

applied to it.

Artifacts can reference other artifacts. A reference is more than just a relation between
artifacts—a reference emanates from a particular place in the contents of the referencing
artifact. For example, an artifact that describes a document might have references to artifacts
that describe the chapters, one of which might, in turn, have a reference to an artifact that
provides a drawing to be inserted in the document. Unlike file systems, E-L understands these
references. For example, you cannot delete an artifact that has references to it. Combined
with the immutability, the guarantee of “no dangling references” provides a conceptually
simple basis for configuration management. In E-L, a configuration is defined to be the
transitive closure of an artifact under the references relation. It is the smallest structure
containing a given artifact, called the “root” of the configuration, and all artifacts referenced
by an artifact in the structure. The rule about not deleting an artifact having references to
it means that the integrity of configurations is guaranteed.

The integration of tools involves both the notion of a reference and that of a derivative.
A derivative of an artifact is an object that can be computed from the configuration rooted
at that artifact. A derivative does not depend upon any other information than what is in
the configuration, such as the time of day or the contents of a setup file. Furthermore. a
derivative is associated with the artifact at which the configuration is rooted. Thus, the user
does not stumble across an executable and wonder where it came from. Instead, the user
points to the artifact that specifies the executable—that is, the one with the executable as
a derivative—and says “execute”. E-L then finds the derivative and executes that program.

A deriver—that is, a tool that computes a derivative-—does not care about the type of
a referenced artifact, only about the kinds of its derivatives. This is the basis for an open
architecture. One can write a new deriver, whose input is a new type of artifact and whose
output is an existing kind of derivative. The new tool is automatically integrated: artifacts
that reference artifacts of the new type will automatically trigger the running of the new
tool when their their tools need a derivative of the existing kind.

1.2 Updating

When several people are working together on a single program, making changes to it requires
coordination. Some of the difficulties are unavoidable—everyone wants the system they
are using to incorporate all the latest changes, but no one wants the latest bugs that are
introduced in the process of making those changes. E-L is not magic, but it does provide
some help in allowing several people to work on a program at once, in a reasonably controlled
way. You have enough flexibility to step on each other’s toes, and enough information to
find out who did it.

In E-L, when one edits an artifact, what actually happens is that one creates a new draft—
starting from the existing artifact. The draft comes into existence when editing begins. and
it is committed, and turns into a new artifact, when editing ends.

There is the question of whether an artifact is up-to-date. This attribute of an artifact
cannot be part of its contents, because it can change long after an artifact is committed.
Artifacts become out-of-date when they are superseded by other artifacts; committing an
edit is a common way that this happens. With the notion of “up-to-date™, we can correct a

1-2

Users' Manual

white lie of the previous section:

o Editing an artifact has the effect of editing all artifacts that reference the edited artifact
and that are also up-to-date.

A visual image is given in the following picture, in which A, B, C and D are the artifacts.
and x marks the change.
old new

g C .

ElEEhEnEE)

After the change, C is out-of-date (and its successor is C'') because it was edited directly,
and A is out-of-date (and its successor is A’) because it references (. Note that B and D
do not have successors but are referenced by two artifacts: B by A and A’. D by (' and
C’. The rule that editing affects only up-to-date referencers means that a new version of B
will bring forth a new version of A’, but not of A. Additional details about the effects of
committing a draft are in sections 3.1 and 5.3.

One might worry that propagating the effects of editing would consume tremendous
amounts of storage, but this is not so. Clever representation reduces the storage required for
both A and A’ in the above example to about what it is for one of them alone. Treating them
as two artifacts simplifies the bookkeeping for version control and provides a simple mental
model to account for the effects of an edit. It also provides a basis for building incremental
tools: the derivative associated with a predecessor can be used to compute the derivative
of its successor with confidence; one always knows what went into producing the derivative.
(Much more can be said about incremental tools than is appropriate in a Users” Manual.)

1.3 Plexes

Up to this point, we have been concentrating on artifacts, whose contents are static. We use
the term pler to describe a portion of the E-L repository whose contents are dynamic. The
notion generalizes that of “relation” as it is used in database terminology. A relation is a
plex whose state at any one time can be described by a set of tuples, all of the same length.
Plexes generalize this by allowing the state to take other forms, for example a list or a tree.
(It is understood that relations are logically sufficient; the reason for plexes is that sets of
tuples may not be convenient for some purposes.)

A user views a plex with an editor and, to the extent allowed by the plex, uses an editor
to change it. Because plexes may be large, viewing is controlled by a filter to limit the
amount of the plex that the user sees on the screen. While a filter controls which artifacts

1.3

Users' Manual

a user sees, a format controls how those artifacts are presented on the screen. The details
of what a user sees when viewing a plex through a particular filter, arranged according to
a particular format, are of course dependent upon that plex, as are the specifics of how to
specify a filter or a format for the plex. However, the notions of filter and format apply
when viewing any plex. The commands for specifying filters and formats are described in
section 5.

Several important plexes are built into the system. One of these is the artifacts plex.
which not only keeps track of all the artifacts in the system, but also various attributes
attached to them; these include type, time of creation, whether the artifact is up-to-date.
name, and the person who created it. The artifacts plex is the means by which a person
locates a particular artifact; for example, users generally organize their data so that there is
no more than one element in the set of artifacts that is up-to-date and has a particular name
and type, or name and creator. The interface for the E-L system makes locating artifacts i
this way no more difficult than specifying a file name. It is also common to use the viewing
machinery to locate artifacts in other ways. For example, a user may wish to see all artifacts
with a given type that are up-to-date and created before a given time or all artifacts with a
given name, regardless of their type or whether they are up-to-date. Such subsets of artifacts
may be viewed by specifying the appropriate filter. Similarly. a format may indicate sorting
first by name or by time of creation or may say to include or omit the display of certain
attributes.

In the normal daily life of a programmer, artifacts may be created by the score: a large
program may have thousands of up-to-date artifacts. In contrasi, the creation of a new plex
is a relatively rare event; doing so has more of the flavor of extending the environment than
developing a program.

Users' Manual

2 Getting Started

The current user interface to E-L, which is not the one of our dreams, is based on EPOCH.
an extension of GNU EMACS that runs exclusively under the X window system. So before
starting EPOCH E-L, you should be at an X terminal or a workstation running X, talking to a
shell that has its DISPLAY environment variable set appropriately.! Then the shell command
e-1 starts an EPOCH that has been augmented with commands for using E-L.

This manual assumes familiarity with EPOCH, which provides highlighting and multiple
fonts, versatile mouse commands, and the use of multiple X windows (called screens in
EPOCH) in a single EMACS session. EMACS has complete on-line documentation for EMACS
and EPOCH, including a tutorial under the command M-x help-with~tutorial.? All key
bindings for E-L commands begin with C-z.> Each command also has a name, of course,
and can be invoked from EPOCH by first typing M~x and then the command. You may use
E-L to edit files in the usual way, but this will not be your normal activity. To exit. type
C-x C-c.

Because E-L makes it especially easy to program by writing a document (in which the
code is sprinkled), we will introduce E-L by describing how to prepare a document. using
ITEX. We assume some knowledge of IATEX and defer exposing the full generality of most
features until later chapters. By the end of this chapter you will be able to create and edit
simple ATEX documents.

2.1 Drafts

When you are editing in E-L, you are working on a draft. For the present, you may think
of a draft as corresponding to an EMAcs buffer. Unlike ordinary uses of EMACS on files.
a draft is not connected to some file whose name you know, but exists unto itself. A draft
also has a type. When preparing IATEX documents, the first type of interest is latex-root.
corresponding to the “root” file for a document.

There are several ways to begin working on a new draft. One of these initializes the draft
to be the default for a type:

e create-draft type name C-z C-c

1The DISPLAY environment variable is described in the on-line X manual. To check its value, say
echo $DISPLAY
To change it, say, e.g.,
setenv DISPLAY myhost:0.0

2The EMACS notation for commands is the first thing explained in the tutorial. If you aren’t familiar with
it, press the Escape key, then x, then type help-with-tutorial and press Return. The Meta key mentioned
in EMAcCs documentation usually exists on X terminals, but is rarely labeled as such. Try keyvs marked with
O, Left, Right, Alt, Compose Character,

3Non-E-L EPocH also uses C-z as a prefix for commands having to do with EPOCH screens. These key
bindings are not available in EPoch E-L, but you can of course bind such commands to other key sequences
in your own initialization file (~ /.emacs).

2-1

Users' Manual

For example, suppose you wish to prepare the root for a new document. You can use create-
draft, supplying “latex-root” as the fype argument? and, say, “trial™ as the name. After
you supply the name, the following will appear on your screen:

\documentstyle[12pt]{article}
\begin{document}

\end{document}

The cursor will be on the blank line between the \begin{document} aud \end{document}
commands.

2.2 Simple Commands

You edit a latex-root draft in the usual way. To indicate to the system that vou have
finished editing a draft, you can use the following command:

e commit-one-draft draft C-z C-s

The command supplies a reasonable default and asks for confirmation. It uses the draft
to make an artifact, which, like a draft, has a type but, unlike a draft. is permanent and
unchanging. You will note that, while the buffer remains, it changes to read-onlv. signifving
its change from a buffer on a draft to a buffer on an artifact.

Once you commit a latex-root draft, you are guaranteed that IATEX will be run on
it.> Once the IATEX run completes, you may preview the results on the screen. print the
results, or examine the log that IATEX produces. Each of these commands may be applied
to a latex-root and, in each of the cases, if you ask for something before it is ready. you
will be told of the difficulty. We complete the description of these commands in section 3.3.

To preview the output, use the first command to invoke a “dvi” previewer and the second
to invoke a full PostScript previewer (if you don’t know what the difference is. use the first
command):

e preview artifact
e ps-preview artifact

If you want to print the output, use
e hardcopy artifact switches

The contents of switches depend upon the particular Unix utility used to print .dvi files.
Your system administrator can give you the specifics for your site.
You can examine the log that IATEX produces with

4E-L allows completion of type names in the same way that EMACS allows completion of command nanes
A TAB following partial input causes the name to be extended as far as possible. A second TAB at that point
produces a list of acceptable completions.

$Unless you commit it with a C-u prefix.

2.2

Users” Manual

e latex-log artifact

This command sets up a buffer whose contents are the IATEX log pertaining to the artifact.
The cursor is positioned at the end of the buffer, making some of the warnings and error
messages (if there are any) visible right away. You will see that the buffer on the log
contains references to the artifact(s) involved in the run; each reference is prefixed by the
word “Insert”, “Begin”, or “F'nd”. The latter pair are used to indicate that processing the
referenced artifact generated the several enclosing lines of output in the log. The buffer-
dependent commands

e follow-link C-z ~
and
o follow-link-reverse C-z M-~

allow you to bounce, in this case, from the log to a buffer on a referenced artifact and Lack.
respectively. We do the best we can, given the limitations of IATEX's error reporting. to
position the cursor in the buffer on the artifact near the cause of the warning or error. While
in the artifact buffer, typing two C-xs will bounce the cursor to the opposite end of the
offending construct.

The following commands. though perhaps less fundamental to the use of IATEX. give you
access to additional information that it produces.

e latex-aux artifact
e dvi-file artifact file
e ps-file artifact switches file

The first displays the .aux file, and the latter two allow vou to obtain the raw data for dvi
and PostScript, respectively. The swifches are extra arguments passed to dvips. and the
output is put into the file argument. These latter commands are useful, for example. when
you want to transmit the data to someone who doesn’t have E-L.

2.3 Notices

Errors may arise in computing derivatives and, when they do, they will be transmitted back
to you as a notice. Notices appear in a pop-up screen, with each notice containing vour
name, an id for the notice (currently a number), and a short description of the reason for
the notice. If, after committing the artifact, you get out of E-L before the notice arrives.
you will see the pop-up screen when you next start E-L.

Notices can alert you to other events than the discovery of an error. For example. vou
may want to know when a job. like the running of IATEX. is complete whether or not an
error was discovered. The value of the variable job-done-notice controls whether a notice
is sent to you upon job completion.

To get more details on a notice and to delete a notice, use the following commands:

2-3

Users' Manual

e display-notice user id C-z C-n
e delete-notice user id C-z M-n

An undeleted notice is carried over from session to session, so you will eventually want to
use the second of these commands. A natural response to the arrival of a notice is C-z C-n
to display it, followed by a C-z M-n to delete it. The notices buffer is actually a view of the
notices plex, about which you can le.rn more in section 5. The first command, in the case
of IATEX artifacts, calls a generic function

e examine-problems artifact

that you can also call directly. It will display a buffer on the log file IATEX created, thus
having the same effect as cailing latex-log on the latex-root artifact.

Because we take care to rerun IATRX automatically as many times. but only as many
times, as necessary to catch forward references (of labels, for example). anything that I8TEX
reports as a warning is an unresolvable error. Thus we treat these situations. plus conven-
tional errors (in which IATEX waits for a response from the user). as error situations and
generate a notice. You can customize the definition of an error. however. and thereby cus-
tomize the situations in which the system generates a notice. We describe these features ir
section 3.4.

2.4 Subsequent Editing

Suppose you have examined the output of IATEX, as described above. but you don't like
the results. We have said that you can’t change an artifact. This is because it serves as a
version. However, you can create a new artifact, based on the contents of an old one. For
this you use

e edit-artifact artifact C-z C-e

A draft that is started by an edit-artifact command may be edited and committed in the
same way as a draft resulting from create-draft.

2-

Users” Manual

3 More About IATEX Artifacts

As a gentle introduction to E-L, we told you about some of the features for creating IATEX
documents. What follows here is the next chapter in the* story.

3.1 References to Other Artifacts

In ordinary IATEX, you can embed one file in another with an \input command. In an
artifact, you use a reference—where the \input{file} would appear—and omit the \input
command. A reference is not an ordinary sequence of characters. Rather, you must insert
it, while editing a draft, with one of several commands.

The first of these that you are likely to want is

¢ create-draft-and-reference fype name C-z M-c

Like create-draft, this sets up a new draft with a given type and name. In addition.
it inserts a reference to that draft at the cursor. The fype of artifact that most closely
corresponds to a file that you would “input” in a IATEX document is latex-piece. Supposc
that you choose latex-piece as the type and triall as the name. The text that will appear
as the reference is [triall latex-piece]. However, this is not ordinary text. as indicated
by the fact that it is highlighted. The characters that appear are just a readable way of
displaying what is in reality a reference to another draft. To edit the draft, simply switch
to the buffer labeled triall latex-piece, using ordinary EMACS commands like C-x b or
C-x C-b.

You can also insert a reference to an existing artifact or draft into a draft buffer (at the
position of the cursor) with the following commands. The first two commands are most
appropriate when you want to identity the artifact or draft to insert by its name.

e insert-artifact-into-draft name
e insert-draft-into-draft name

The following command uses the cursor position to identify a default argument. That is. if
your cursor is near the artifact or draft you wish to insert, you can use

® copy-as-kill C~z x

This command copies an artifact or draft reference into the kill-ring. from which vou can
yank it (into the draft buffer, for example) using an ordinary EMACS command like C-y.

When you have finished editing the reference, you can use the commit-one-draft com-
mand to commit it. One aspect of committing that you must be aware of from the start
is the following: you may not commit a draft that references other drafts. Continuing the
previous example, suppose that you first try to commit the latex-root draft named trial.
before committing the 1atex-piece draft named triall. You will see the following message
in the minibufler:

This draft references a draft

3-1

Users’ Manual

You may commit the drafts one by one bottom up (i.e., triall first) or use one of the
commands described in section 4.3 that commit several drafts at once. In all cases, when
you commit a referenced draft, the reference changes to include a timestamp, indicating the
date and time of committing the draft. (We say more about timestamps in section 5.2).

Returning to the specifics of IATEX artifacts, the contents of a latex-piece artifact is
ordinary input to IATEX, except for its references to other artifacts. The semantics of a refer-
ence from either a latex-root artifact or a latex-piece artifact to a latex-piece artifact
is essentially that of textual inclusion. However, a 1atex-root or latex~piece artifact can
reference other types of artifacts as well. For example, if E-L supports programming in a
given language, it will support typesetting of program fragments in that language. A refer-
ence from a latex-root or latex-piece artifact to an artifact whose type indicates that it
holds source text for the language will result in a typeset version of the program fragment
appearing at the point of reference.

The usual rule is that, when a latex-root or latex-piece artifact references an artifact.
the manuscript derivative of the reference is inserted. Each artifact type has its own rule
for how manuscript derivatives for artifacts of that type are produced. if at all. There
is enough flexibility here that no general rule is possible. For example, the manuscript
derivative of a latex-piece artifact is simply the contents of the artifact. with suitable
provisions for obtaining the manuscript derivatives of its references. On the other hand.
a latex-root artifact has no manuscript derivative—what with the \documentstyle and
\begin{document} and \end{document} commands, a reference from another document to
such text would only confuse IATEX. To learn about the manuscript derivative for a specific
type, you have to read about the details for that type.

An exception to the usual rule occurs when a reference to an artifact is immediately
followed by <caption>. In this case, the caption derivative, rather than the manuscript
derivative, is inserted at the point of reference. Like manuscript derivatives. each type
has its own rule for producing a caption derivative, but, as the name suggests. caption
derivatives are intended to be short. The caption derivative of a latex-piece is seldom
used; consequently, the default simply indicates that the user did not provide a caption.
To specify a non-default caption, start the first line of the artifact with %%Caption:: the
remainder of the line following the : and stripped of leading and trailing whitespace. will
be used for the caption derivative. You can specify a caption derivative for a latex-root
similarly, useful when referencing a latex-root.

3.2 Creating an Index or Bibliography

To create a document with an index, you need to do two things: put a \makeindex command
in the preamble before the \begin{document} command in the latex-root (just as you
would do in ordinary IATEX) and put a \printindex command where you want the index
to appear (where you would put \input{file.ind} in ordinary IATEX).

You can engage BIBIEX’s help in producing a bibliography by using a 1atex-bib artifact
type. The text you put in a latex-bib artifact is the same that you would put in a .bib file.
A latex-root artifact may reference one or more latex-bib artifacts: each should appear
just before the \begin{document} command—that is, after any \makeindex command or

3-2

Users’ Manual

references to other latex-piece artifacts—with <bibliography> immediately following the
reference. The derivative of a 1atex~bib artifact is another exception to the rule that refer-
ences in latex-root or latex-piece artifacts supply manuscript derivatives. Its derivative
is a bibliography, which is used like a file argument to the \bibdata command. Again.
where you want the bibliography to appear, use, in this case, a \printbibliography com-
mand (in the same way you would use the \bibliography command in ordinary IATEX)—
along with a \bibliographystyle command, if desired. In combination with the usual
\cite command, these commands and the use of latex-bib references will produce cita-
tions and a bibliography in the document. E-L does all the delicate. interleaved invocations
of WTEpX andBIBTEX automatically, something that you won’t appreciate if you haven't
struggled through it.

As a matter of style, one typically puts references in the latex-root to latex-pieces
containing the \printindex or \printbibliography commands. You can examine a log
that describes the results of the \printindex or \printbibliography command.

e makeindex-log artifact
e bibtex-log artifact

These commands work like the 1latex-log command, setting up a buffer whose contents are
the appropriate log. The cursor is positioned at the end of the buffer, making some of the
warnings and error messages (if there are any) visible right away.

A single command

e latex-summary-file artifact name

displays any of the many log and summary files that the various processors of a manuscript
produce. The first argument must be either a 1atex-root or latex-piece artifact. and the
second argument is the name of the summary file that you want to see. (You can sec the
list of possible file arguments in the usual way, by asking for completion with a [t]. after
supplying the artifact argument.)

3.3 Dividing a Document into Parts

In using ordinary IATEX for a large document, the \include and \includeonly commands
divide the document into smaller parts on which IATEX can be run. To achieve the same
effect with artifacts, place a \parts command immediately after the \begin{document}
command. Each reference is then treated as a separate part and E-L will rerun IATEX only
on those parts affected by an edit.

If you apply one of the commands mentioned in section 2.4 to a latex-root with parts.
you will be prompted for the name of a part. You can also supply just the name of the part
if it is referenced by only one latex-root. As this suggests, the full story on the commands
is

e preview artifact [part]

which assumes it will not encounter any PostScript in the artifacts;

33

Users” Manual

e ps-preview artifact [part]
which is for previewing artifacts that contain PostScript; and
e hardcopy artifact [part] switches
e latex-log artifact [pari]
e latex-aux artifact [part|
e dvi-file artifact [part] file
e ps-file artifact [part] switches file

The latex-log, latex-aux,dvi-file, ps-file, and the preview commands require a part
if you have used the \parts command. The hardcopy command will print either a latex-
root or a part.! If you supply a latex-root artifact as the argument to hardcopy. the
system asks for a part name, assuming you typically want to print part of a document. You
can reply with an artifact or type a carriage-return. If the latter is supplied. the system will
ask for confirmation that you want to print the whole document. If you type "no”. it will
prompt you again for the name of a part; if you type “yes”, it will print the whole document.

The examine-problems command similarly takes advantage of the finer structure of a
latex-root artifact with parts. A document with parts typically has problems with more
than one part; the examine-problems command will present you with a list of just these
parts, from which you can use follow-1link to see the latex-logs. If only one part has an
error, the examine-problems command will take you directly to the log for that part (rather
than presenting you with a one-line list).

If you ask for something to be done for a part when a part is expected, no second argument
is necessary if the part is referenced in exactly one up-to-date latex-root artifact. (We say
more about what up-to-date means in section 4.3.) If you apply a command to a part
referenced by more than one up-to-date latex-root artifact, you will see the error

Sorry - can’t deal with more than one referencer yet
If there is no latex-root artifact referencer of the given part. you will see the error
Artifact name has no referencers

To summarize, if you use \parts, your latex~root artifact would conform. in general.
to the following structure

\documentstyle[12pt]{article}
preamble
[artifact]<bibliography>

1The utilities used for printing and previewing depends upon the user's installation. The values of
the variables hardcopy-command, preview-command, and ps-preview-command (which can be examined in
EMACS with M-x describe-variable) indicate which will be used.

3-4

Users' Manual

[artifact] <bibliography>
\begin{document}
\parts

Lartifact]

[artifact]
\appendix
Lartifact]

[artifact]
\end{document}

where anything that you want in the preamble could be contained in references. You can
count on the following to guide your use of IATEX artifacts.

o If you change anything in the preamble, IANTEX will be rerun on everything.

o If you change, add, or delete a bibliography reference, IATEX will be rerun only on the
changed references and those parts whose citations are affected.

o If the document uses \parts, you can change a reference and/or add and/or delete
references after the \parts command and E-L guarantees IATEX is rerun on every part
and only those parts affected by a change. For example, if you add a new reference
that changes the section or page numbering in the rest of the document, IATEX will be
rerun on subsequent sections. On the other hand, if page numbers are start at 1 at the
beginning of each part, then changing the number of pages in one part will not cause
IATEX to be rerun on subsequent parts.

o E-L will rerun IATEX on parts affected by a change until the results (such as labels and
counters) stabilize—that is, until subsequent runs would leave the output unchanged.

If the document does not use \parts, IATEX is always run on the entire document, so the
issue of where it must be rerun does not arise.

3.4 Customizing Errors

After running IATEX, we scan several log files to look for errors. For this scan, we use three
regular expressions (re's). One is for the IATEX log (log), one for the BIBTEX log (blg) and
one for the makeindex log (ilg). You can substitute your own re’s for the defaults. To do so.
you add comments of a particular form to the latex-root. For instance, if you included

%watch-log: "~! \\|-LaTeX \\(error\\.\\|Warning:\\) "
%watch-blg: "“Warning--\\|"(There w\\(ere\\las\\) [0-9]+ error messages?)$"
Awatch-ilg: “done ([")]*[1-9][0-9]* rejected)\\."

3-5

Users’ Manual

anywhere in your root artifact, you would preseve the default behavior. Note that the
re’s themselves must be double-quoted string constants. They obey EMACS Lisp escape
conventions, so, for example, the constants “\n", “\C-j", and "\012" are equivalent, and
each contains a single character, i.e., newline. There can be spaces and tabs between the
%watch-xxx: and the string constant. Anything at all can follow the string constant, e.g..
some explanatory words.

Because these regular expressions must be skipped entirely by IATEX, it’s not feasible to
let quoted re’s cross line boundaries. So none of the string constants can contain an actual
newline character, although any of the escape sequences mentioned above are permissible.
What’s not allowed is something like

%watch-ilg: "[0-9]+["
J*errors"”

because IATEX will try to interpret each line that doesn’t start with a percent sign. The
equivalent

%watch-ilg: "[0-9]+["\n]l*errors"

would be fine. To build up a long re, you can put several %watch-xxx: lines together, with
the same xxx in each. For example

hwatch~log: "~! \\|"LaTeX \\(error\\.\\|Warning:\\) " (Default error checks)
%watch~log: "\\|~\\(Over\\|Under\\)full \\\\[hvlbox " (Knuth aesthetics)

produces a single re for scanning .log files. It is obtained by concatenating the two string
constants, Note that the whitespace and comments at the ends of the lines are ignored.
The lines for a given watch-xxx declaration must be contiguous, and there can be at most
one such declaration (possibly occupying multiple lines) in the latex-root for each of the
three expression types. Furthermore, the (concatenated) re must be a valid EMACS regular
expression. If any of these rules is broken at commit time, an error will be raised to prevent
commitment.

3.5 postscript Artifacts

This section is of interest to aficionados of IATEX and PostScript who want to use PostScript
in documents, for which we offer a postscript artifact type. A postscript reference can
appear anywhere that a manuscript derivative is expected. When you create a postscript
artifact, the first line must contain a macro string that can serve as the replacement text of
a TEX macro that conforms to the following rules:

o It may not have [0] (the null character), [1] (C-a), or [n](newline).
o It must have a single parameter, denoted in the usual way: ####1.

o In the eventual expansion of the macro string, one of the following macros must be
applied to the parameter:

3-6

Users’ Manual

oo \ELPH—insert the PostScript file in the “header”, where it will be outside the
save or restore context of individual pages. This is typically used for setting up
PostScript libraries.

oo \ELPP—insert the PostScript file where it will remain only for the current page.
This is typically used for insertion of PostScript pictures.

In other words, the first line of a postscript artifact might be
Macro string: \ELPP{####1}

which, in fact, is the default in an initial postscript draft buffer. The ultimate effect of a
reference to a postscript artifact is that the text of its contents, after the first line, is made
into the body of a PostScript function that is called at the point of reference.

Users’ Manual

4 More About Artifacts and Drafts

4.1 As Arguments to Commands

The default for an argument identified in this manual as artifact is taken from the cursor
if possible. If the cursor is on a line that references an artifact, the artifact just after the
cursor or else the last artifact on the line becomes the default argument. If the cursor is in a
buffer on an artifact, but not on a line referencing another artifact, the artifact becomes the
default argument. If you wish to refer to an artifact other than the default, simply type its
name. You will be prompted for a type when one is needed for disambiguation. Yet other
ways to use the cursor to identify an artifact argument are mentioned in section 5.2. The
conventions for specifying a draft argument are analogous.

Once an artifact argument appears in the minibuffer, with the cursor at the beginning
of the buffer, you can navigate to neighboring artifacts. [Ephemeral navigation is not yet
available for drafts.] A neighbor is chosen with an EMACS-like command:

o C-p—referencers (previous/up)

o C-b—predecessors (back)

o C-f—successors (forward)

o C-n—references (next/down)

o DEL—previous default (where you just came from)

The DEL command is particularly handy if you have navigated from artifact A to one if
its referencers, B, and then want to get back to A without going through a menu of B’s
references. Just hit DEL and you’ll be back at A. If there is a unique neighbor in the
direction indicated, it immediately becomes the new default without an intervening menu.

The navigation menu is an EMACS buffer invoked in a mode similar to the one used by
electric-buffer-list (C-x C-b). It lists the artifacts one step away from a given artifact in the
direction mentioned the menu’s first line. The order of lines and the format of each line
is the same as the default format on the artifacts plex. To select a new default artifact,
place the cursor on the appropriate line and type a space. To get more information about
menu keys, type your help key followed by "m” while in the menu (i.e. get help on the menu
buffer’s mode).

Some commands require two artifact/draft arguments. These commands will take their
first argument from the mark, if possible, and their second argument from the cursor, if
possible. Sometimes you want to cut and paste references into a draft buffer. For this,
and for multi-artifact/draft commands, you can use the kill ring as you would in ordinary
EMAcs. That is, you can put references into the kill ring with the usual functions (C-w, M-w,
C-k, M-d, or C-d, with or without a numeric argument), and you can yank them from the kill
ring with the usual functions (C~y or M-y). This means you can cut and paste text within
a draft buffer or even between draft buffers, using ordinary edit commands and not lose
artifact references. You can also use the command copy-as-kill mentioned in section 3.1
to copy a reference into the kill ring.

4-1

Users’ Manual

4.2 Further Dealings with Artifacts

To examine an artifact without creating a draft, use
e examine-artifact artifact C-z C-x

This creates a buffer on the artifact, exactly like the buffer obtained after committing a
draft. To examine an artifact in another window, use

e pop-to-artifact artifact

It is sometimes useful to base an edit on several artifacts, rather than zero (create-
draft) or one (edit-artifact). The following command allows you to do this.

e append-artifact-to-draft artifact draft
— The draft must -10t be owned by another session. If not owned by this session, it

is taken over.

— The artifact and draft may be of different types, but, if they are too dissimilar,
you will get an error message. The command attempts to put the picces of the
artifact into reasonable places in the draft.

— The artifact becomes thc predecessor of the draft.

You can append several artifacts to the draft; each becomes a predecessor of it.

As you continue editing, you will generate more and more artifacts. Rather than rely
completely on users to delete irrelevant artifacts, the system includes a customizable auto-
matic deletion mechanism, described in appendix B. Situations also arise in which you do
want to delete one or more artifacts directly. An artifact may be deleted only under the
following conditions:

o The artifact is not referenced by another artifact.
o There is no active draft based on the artifact.
o There is no other process (such as a user) that has it cached.

If these conditions are met, you may delete artifacts with the following commands:

e delete-one-artifact artifact C-z C-d
o delete-artifact-and-references artifact C-z M-d
e delete-artifacts-in-region C-z M-D

The first command confirms the deletion or says why it was not done. The second command
attempts to delete the given artifact, and, if this was successful, attempts to delete referenced
artifacts, and so on. It reports how many artifacts were deleted (perhaps none), but does
not indicate why any particular artifact was not deleted. The third command is usable only
when the cursor is in a view on the artifacts plex. It deletes all the artifacts between the

4-2

Users’ Manual

mark and the cursor, including the end points. Note the uppercase D in the command, which
is there to make it difficult to issue the command accidently. The command announces the
number of artifacts it has deleted, it will say when it's done, and it will update the view on
the artifacts plex as it goes. If an attempt to delete multiple artifacts is unsuccessful, you
can, of course, try deleting one of the artifacts (not referenced by any other artifact). If that
is unsuccessful, you will learn why. (When you delete an artifact, its predecessors become
up-to-date. Thus, even after you delete an artifact, you may still see an up-to-date artifact
with the same name, but a different creation date.)

As with any repository system, you may eventually find that you want to export data
stored in it—to archive the data off-line or to move it to another, compatible repository—in
a form that permits it to be imported at a later date. The first command that you will need
is

e vrite-archive artifact file [pred-p)

which stores the appropriate representation of the artifact and all its direct and indirect
references in file. If the command is prefixed with two or three C-us, it will archive all of the
artifact’s direct and indirect predecessors as well. The mate of this command is

e read-archive file [override-timestamp) [override-creator]

which, by default, will restore the original timestamps and creators of the archived artifacts
if possible. If the command is prefixed by one or three C-us, the current date and time will
be used for the timestamp. If the command is prefixed by two or three C-us, the current user
will become the creator. (Section 5.2 describes the timestamp, creator, and other attributes
of artifacts.)

Each of the following commands has to do with derivatives. After being asked to confirm
the artifact, you will be prompted for the kind of derived information that you desire. The
system also provides completion for kinds of derived information, so, by pressing tab at the
prompt, you will see your choices. The commands also will take the kind argument, like
the artifact argument, from the cursor’s position if possible. A reference in a buffer to a
derivative, again like an artifact, is not ordinary text, as indicated by the fact that it is
highlighted. The first command allows you to examine a derivative of an artifact.

e examine~derivative artifact kind C-z M-x

You can call examine-derivative, for example, with a latex-root and an errorlatex-
directory as arguments; this has the same effect as calling examine-problems on the
latex-root (if it has no bad derivatives). It is a generic function that you can apply to any
type of artifact, however. You can delete a derivative.

e delete-derivative artifact kind C-z d

Though the need seldom arises, you can request the derivation of a particular kind of deriva-
tive from an artifact.

e derive-from artifact kind

4-3

Users’ Manual

4.3 Further Dealings with Drafts

We mentioned earlier that there are commands to commit several drafts at once. One of
these is the following command, which, if it finds a referenced draft, first attempts to commit
it and, recursively, its references.

e commit-draft-and-references draft C-z M-s

If the draft that you are trying to commit references drafts that someone else is editing,
however, the commit will not be successful; you must get the other person to commit first.
Another command

e commit-draft-and-references-and-referencers draft C-z M-C-s

attempts to commit drafts that reference the current draft and those that it references. In
fact, it tries to commit every draft that it reaches by following reference relationships, in
either direction.

To commit a draft without scheduling any tools (such as IATEX) to be run on its behalf,
precede the commit command by C-u, a standard “prefix” argument in EMAcs. This is
useful, for example, if you expect to make several passes over a part or parts of a document
and want to commit them periodically but delay running IATEX until things settle down.

You may wonder what happens to an up-to-date artifact, like trial in the example
in section 2, when a referenced artifact, like triali, is edited. Is it up-to-date or out-
of-date? The answer is almost out-of-date. When the user creates a draft of triall, the
system generates a draft of trial, call it d. Starting a draft doesn’t make an up-to-date
artifact out-of-date, but E-L does consider an artifact that has a draft successor to be almost
out-of-date. The user must explicitly commit d to create an up-to-date successor artifact,
after which the original trial is simply out-of-date. A user may want to edit a number of
referenced artifacts before bringing forth an up-to-date referencing artifact. (The command
commit-draft-and-references-and-referencers is provided for this very purpose.) We
state some additional rules linking the notions of up-to-date, almost-out-of-date, and out-of-
date in section 5.3. If you commit a draft of, say, triall, you will have two artifacts named
triall; if you use the name in a subsequent edit-artifact, it will be assumed that you
mean the most recent one.

To rename a draft, use

e rename-draft draft name
To delete a draft, use
e delete-draft draft

If another draft references the draft you're deleting, the reference will revert to a predecessor.
If the deleted draft has no predecessor, the reference to it will become empty.

If there is a crash while you were editing, drafts that you were working on become
“abandoned”. To continue working on them (from the last autosave, with the cursor restored
to the position it had when the draft was abandoned), you may use the command

4-4

Users’ Manual

e takeover-draft draft C-z e

This command can be used to resume working on any “unhosted” draft. See section 5.3 to
learn more about system and abandoned drafts, both of which are considered unhosted. You
may deliberately abandon a draft with the following command:

e abandon-draft draft C-z C-a

A typical use of this command is in handing a draft off to someone else to finish editing.
without having to do an intervening commit. If the system finds any drafts lying around
when you exit E-L, you will be given the option of abandoning or deleting them before
exiting. You can also C-g and pursue other options, such as committing drafts. If you
get out of EMACS in some other way, such as by exiting a window system, all your drafts
automatically become abandoned.

If you attempt to edit an artifact that has a draft successor, you will be warned that the
artifact is “almost-out-of-date™ and asked if you wish to edit it anyway. If you respond with
a yes, and eventually commit both successor drafts, you will end up with two up-to-date
artifacts with the same name and type. If you respond with a no, vou will be asked if you
wish to takeover the draft. If you respond yes and the draft successor is unhosted, vou will
simply become the creator of the draft and may proceed to edit it in the normal way. If the
draft is hosted, you may edit it only if you are the creator. If vou respond no, the system
will prompt you again for an artifact to edit. You can find the successor draft of an artifact
by issuing the command

e find-successor-draft

while in a view on the drafts plex.

Sometimes an editing mistake will so destroy the contents of a buffer that undo will not
restore it properly. If this happens, the following command wil! restore the buffer from the
last autosave

e revert-buffer draft

with the cursor restored to its position at the time of the autosave.

4.4 Further Dealings with Problems

The command, examine~problens, in general, provides information about bad or error
derivatives. The former occurs, for example, when a tool crashes or is aborted; the latter,
when a tool signals an error. If the examine-problems command finds only one probiemn
derivative—the typical case—it takes you directly to a buffer on that derivative. (In the case
of IATEX artifacts, this is an errorjlatex-directory derivative.) If none exists, it tells
you that. If there is more than one problem derivative, it sets up a buffer with one line per
problem in it, indicating the bad or error derivative, a short description of the problem,
and a button to follow to learn more about the problem—or # if there is nothing further
to examine. Placing your cursor on the button and issuing the follow~1link command will
examine the kind derivative of the artifact if the artifact button is followed by <kind> or will
examine the artifact otherwise. If your cursor is not on a button, but on a line without a *.
the follow-1link command will examine the problem derivative.

4.5

Users’ Manual

4.5 Comparing

The two commands that highlight differences between artifacts use a single command diff-
buffers that highlights differences between any two EMACS buffers. This command prompts
for two argument buffers and, with a prefix argument (C-u), asks for a result buffer. The
default result buffer is *merge*. Using the Unix utility diff, diff-buffers' combines the
first two buffers and, in the third buffer, displays

o their common parts with the standard background,
o data in the first but not in the second on a red background, and
o data in the second but not in the first on a green background.

The unbutton command C-z u, when issued with the cursor in a differing (red or green)
region, removes the highlighting; with a prefix argument (C-u}, it deletes the highlighted text.
You can move to the next, or previous, differing region with the next-diff-button-pair
command C-z >, or previous-diff-button-pair command C-z <, respectively. You can
even customize the colors that diff-buffers uses with the commands set~diff-bucton-
colors and set-diff-reference-colors; the latter is relevant when using the following
artifact-oriented commands.
The command

e diff-artifacts artifact; artifact, buffer

is similar to diff-buffers, except that the first two arguments are artifacts not buffers.
The result buffer has not only the red and green regions from diff-buffers, but also the
usual blue regions displaying artifact references. Artifact references in differing regions still
have a blue background, but the letters are red or green indicating that they are in differing
regions. The command

e diff-artifacts-recursively arfifact; artifact, buffer

takes the same arguments as diff-artifacts but lists in the third argument the pairs of
differenced artifacts, one line per pair of artifacts. A C-z ~ (follow-1link) in this buffer
switches to the buffer where the differences are displayed; killing such a buffer deletes the
line. This command will compare artifacts that seem to be in the same place in the two
referencing artifacts, without regard for whether they have the same name.

As with other commands that take two artifact arguments, these commands will use
mark to offer a default for the first argument and the cursor to offer a default for the second
argument. If it is not convenient to have both artifacts in the same buffer, you can put one
of the artifacts in the kill ring and, when diff-artifacts[-recursively] prompts you for
the artifact, yank the argument into the minibuffer. (It will be blue in the minibuffer. too.)

1The present implementation requires EPOCH and color monitors.

46

Users’ Manual

4.6 Searching

To search through a set of artifacts, you can wse one of a couple of commands.

e re-search-artifacts-recursively artifact regular-ezpression filter [prefir] C-z s

Starting at the given artifact, this command searches for the given regular expres-
sion in its contents. With no prefir argument, it stops when a match is found, at
which point you should respond with one of the following keys:

* c-—continue the scan

* s—suspend the scan

* m—mark this occurrence by placing it in a log buffer and continue the search
* !—continue the scan without further interaction, marking each match.

With a prefir argument, it does not stop when a match has been found but behaves
as if m had been typed.

After searching the contents, the algorithm is applied recursively to each of the
artifact’s references that pass the filter and have not yet been scanned.

The filter is accepted in the same way as the filter for a view on the artifacts
plex. The first time this command is executed the default filter is one that includes
all artifacts. For subsequent commands, the default filter is the filter given to the
command previously.

If the prefir was used or if you responded with m or !, the command switches to a
buffer having a line for each occurrence that you marked. You can jump to that
occurrence in the usual way, with C-z

The re-search-artifacts-recursively command names its buffer *Re-Search
Artifacts*. To get two searches going at once, simply rename this buffer and
start another search.

e re-search-artifacts-recursively-continue [log-buffer] [artifact] [prefir] C-z ,

The purpose of this command is to allow you to resume a suspended search or
extend a completed search. A suspended search is associated with a buffer. If
there is only one such buffer, you will not be asked for the log-buffer argument.

If the previous search was suspended (using s), the artifact argument is not re-
quested and the scan resumes just after the last match detected. (It remembers
where it was in the recursion.) Previously scanned artifacts are not rescanned.

If the previous search exited normally, the artifact is requested and a new scan
begins at that point. Again, previously scanned artifacts are not rescanned.

The prefizr argument plays the same role as in the previous command—it says to
mark matches without interaction.

Users’ Marual

4.7 Highlighting

Several artifact/draft types have contents that indicate certain information by highlighted
regions, where by “highlighted”, we mean having a special color in a buffer. This isin addition
to the use of highlighting for artifact references and the use of inverse video to indicate the
format of contents. The visual effect of the highlighting and, of course, the interpretation
depend upon the type. The command that you use to highlight text is independent of type.

Several of the current artifact/draft types, including those that support programming,
support two uses of highlighting. You indicate your intent in a particuiar use of highlighting
by giving a numeric argument to the highlighting command.? (If you specify a numeric argu-
ment that is greater than the number of kinds of highlighting for that buffer, the maximum
for that buffer is used instead.) The default value of the numeric argument is 1, for the more
common kind of use. Thus, for the common case, you need no argument; for highlighting
with a prefix argument of 2, you can use C-u 2. You may also use M-n in all cases.

To highlight text, use

e highlight-region® n C-z C-h

— Using the prefix numeric argument n, highlights the region from mark to point.
You may see other changes to the buffer, depending upon the type of the draft.

~ If your cursor is in a highlighted region, this command will unhighlight the region.

Instead of mark and point, you can use left-mouse click and drag to indicate the region. If
you move your cursor into a highlighted region and begin typing, the new text will become
part of the highlighted region.

4.8 Annotating

The artifact type note allows you to attach a note to an artifact, much like you might attach
a Post-1t to a document. The contents of a note is unstructured and. in particular, may
freely reference other artifacts. A note artifact differs from other types of artifacts in several
ways: it has no derivatives, the system does not automatically create a successor draft to a
note artifact when you create a successor to an artifact it references, and the system does
not automatically delete note artifacts. You could use a note artifact. for example. to attach
a version number and list of recipients to a system artifact (that would naturally continue
to evolve) or to associate profiling data with an artifact for future comparisons.

2Gee the section “Numeric Arguments” in the Gnu Emacs Manual. In the fifth edition (version 18), this
is section 4.9, page 29.

3Interactively, the arguments are mark and point and a prefix argument indicating the kind of highlighting.
or 1 if none has been given.

4-8

Users’ Manual

5 Plexes

5.1 Introduction

We use the term plex for that portion of the E-L repository that describes dynamic relation-
ships, such as among the artifacts, drafts, and their various properties. Plexes may involve
large amounts of information, much of which you are not interested in at any one time.
Consequently, a buffer on a plex has an associated filter to limit the amount of data that
you see. Filters not only allow you to reduce clutter on the screen, but also result in faster
interaction, because EMACS is dealing with smaller buffers. A buffer on a plex additionally
has an associated format to control how the information in the plex that passes the filter is
presented on the screen. The contents of filters and formats depend upon the particular plex
and cannot be described in general. However, the commands for examining the information
in plexes allow you to specify filters and formats in a uniform way.
To open a buffer onto a plex, use the following command:

e view-plex plez [filter] [format] C-z C-v

— The second and third arguments are optional; a value for filter is requested if the
command is prefixed by one or three C-us, and a value for format is requested if
the command is prefixed by two or three C-us. (Thus three C-us means that both
a filter and a format are requested.) Default values are used if these arguments
are unrequested.

— This command opens a buffer on plex and makes this buffer visible in a window.

A buffer on a plex may be killed in any of the usual ways of killing a buffer.

You may change the filter or format on a buffer by issuing one of the following commands
while the cursor is in the buffer. If they are given when the cursor is not in a buffer on a
plex, you will get an error.

e refilter filter C-z C-i

e reformat format C-z C-o

A fundamental point to keep in mind is that a buffer opened on a plex is actually a buffer
of characters representing the “real” plex. You can think of it as a view onto the plex. Do
not confuse the commands that change this view with commands that can actually change
a plex.

You will notice that a buffer on a plex is always read-only. This does not mean that you
cannot change a plex, but you usually can change plexes only in a very controlled way, with
the details depending upon the particular plex.

To find out the names of the available plexes, you can say

e view-plex plexes

The default format of the plexes plex is an alphabetized display. You may change this plex
only by adding or removing plexes. You can get on-line documentation of many of the plexes
by issuing the command

3-1

Users' Manual

buffer-documentation C-z 7

with your cursor in the plex about which you want information.

5.2

The artifacts Plex

The artifacts plex is used to view all the artifacts in the repository. It displays artifacts,
one per line, permitting the use of the cursor position in the artifacts plex to identity an
artifact argument to commands. Both filters and formats for this plex are based on universal
attributes, attributes that exist for every artifact. The current universal attributes are

o

o)

name—this can be any sequence of inking characters.
type—one of the types recognized by the system.
creator—the user who created the artifact.

timestamp—the time, down to the second, when the artifact was created. These are
displayed according to the format

year/ mo/ da hr: mn: sc

In this format, all fields have two digits except year, which has four.

up-to-date—a flag indicating whether the artifact has been superseded by one or more
artifacts, or whether a referenced artifact has been superseded, and so on, recursively.

The system automatically completes names of attributes for filtering or formatting. A filter
on the artifacts plex is a set of filters on the individual universal attributes, and an artifact
passes such a filter if each of its attributes passes the corresponding filter on the universal
attribute. The syntax and semantics of filters on universal attributes are

o name—a regular expression.! A name passes the filter if the regular expression matches

the entire name. (This tends to discourage the use of characters that are special to
regular expressions in the names of artifacts, e.g., + and *.) The default is .*, which
matches all names.

type—a set of types. A type passes the filter if it is in the set. The default is the set
of all types. For this, as well as other attributes drawn from finite sets, the user is
presented with an electric menu for augmenting and removing elements from the set.
It is modelled after the electric buffer menu mode, and typing ? when the menu is first
presented will display the available commands. The differences between the electric
menu and the electric buffer mode are that a space doesn’t exit an electric menu, the
search commands C-s and C-r are available, and < and > scroll the menu left and right,
respectively.

1You can access the on-line description of the syntax of regular expressions in EMACS, with M-x info
and going to the node (emacs)regexps.

5-2

Users’ Manual

o creator—a set of users. A creator passes the filter if it is in the set. The default is
the set consisting only of your name; elements are added or deleted from the set in the
same way as for types.

o timestamp—a pair of strings, each of which is either a timestamp in the usual format
or is the empty string (meaning open-ended). A timestamp passes a filter if

— the first element of the filter is the empty string, or this element is before (inclu-
sive) the timestamp, and

— the second element of the filter is the empty string, or this element is after (ex-
clusive) the timestamp.

In other words, the filter defines a time interval, perhaps open at either end. The
default is open at both ends.

o up-to-date—one of the symbols +, -, or +-; an up-to-date flag passes these filters,
respectively, if it indicates the artifact is up-to-date, if it indicates the artifact is out-
of-date, or always. The default is +.

When you are queried for a filter (either as an argument to view-plex or by the refilter
command), there is always a notion of the “previous filter”, perhaps the default. You are
prompted to indicate the universal attribute whose filter you wish to change—completion is
provided for the names of the attributes—and after doing so are presented with an electric
menu indicating the previous value, which you may edit in the minibuffer. Also, you only
need to specify an initial segment of a timestamp sufficient to indicate the non-empty element.
Typing C~] while being prompted for the next universal attribute allows you to avoid going
through all the universal attributes once you have changed what you want to change.

A format for the artifacts plex is a list of formats for the individual universal attributes,
called “column formats”. Order matters, because each line in a view on the artifacts plex
lists the attributes in the order of the column formats. A column format consists of the name
of a universal attribute, the width of the column (perhaps 0, which suppresses the column),
and some data that depends upon the paiticular column.

o name, type, creator, timestamp—no format data in addition to the width.

o up-to-date—two strings, the first to be used when the artifact is up-to-date, the
second when it is out-of-date.

As with filters, when you are queried for a format, there is a “previous format”. You are
prompted for universal attribute names in the order in which they appear in the previous
format; to change the order, just type the universal attribute that you want to appear next.
Once you indicate which one is next, you are given the chance to change the width, and, if
there is additional format data, then that too. The following commands may be useful:

e C-]—signals the end of input: use the changes indicated so far, followed by the un-
changed columns in their original order.

5-3

Users’ Manual

e M-]—restart input with the changes made so far acting as the previous format.

e M-C-]—restart the input with the original format.

5.3 The drafts Plex

The drafts plex tracks all drafts in the system. A user’s principle interaction with it is to
provide arguments to commands for drafts (such as those in section 4.3). Filters for this plex
are not available, but there is little harm in that since there are never many drafts around
at one time.

The format for the drafts plex is similar to that for the artifacts plex, although a
draft has only a subset of the universal attributes of those for an artifact:

O name, type, creator.

(It does not have the timestamp or up-to-date universal attributes.) In addition to fields
for the universal attributes, the drafts plex has fields for predecessors and references. If
the draft has no predecessors, the corresponding field is blank; if it has one predecessor,
the name, type, and timestamp appear; if a draft has more than one predecessor, a number
of dashes equal to the number of predecessors appears. A number of asterisks equal to the
number of references appears in the references column. [Eventually you will be able to supply
an artifact argument by positioning the cursor on a reference in the drafts plex.] An entry
in the drafts plex also has “where” and “initialized” fields. The where column presently
has a host and port number, not yet quite reasonable to look at, identifying the E-L session
responsible for the draft. If the where column is blank, the draft is said to be unhosted.
The initialized field is either blank or simply the string “initialized”. Drafts may thus be
catalogued as follows:

o system draft—unhosted and uninitialized

o abandoned draft—unhosted and initialized (see section 4.3)
o starting draft—hosted and uninitialized

o normal draft—hosted and initialized

There are a number of invariants governing the maintenance of the drafts plex. The
first two of these require the presence of certain lines in this plex.

o For every EMACS buffer on a draft, there is a line in the drafts plex whose where field
is the host and port number for that buffer’s E-L session.

o All referencers of an almost-out-of-date artifact are also almost-out-of-date.

If necessary, the system creates drafts to maintain the latter invariant. We also need an
invariant to remove such drafts if edits are aborted, but, before we get to that, it is necessary
to understand the roles of the user and the system in editing references. The general principle
is that only a person may add or delete a reference, while the system is allowed to change an

5-4

Users’ Manual

existing reference, such as changing a reference to a draft to a reference to a newly committed
artifact. Recall that artifacts referenced by an up-to-date artifact have no successor artifacts
(by definition). There is a similar rule for references within drafts.

o An artifact that is a reference of a draft must be up-to-date and not almost-out-of-date.

Assuine that this holds at the start of an edit. [At present, E-L does not check this.] If
an artifact p referenced in a draft d becomes almost-out-of-date during the edit of d, it is
because there is some draft d’ having p as cne of its predecessors; in this case, the system
changes the reference of p in d to a reference of d’. Similarly, if d’ is subsequently committed,
the reference of d’ in d is changed to an reference of the new artifact generated by the commit
of &'

A reference in a draft may actually “reference” multiple artifacts or drafts, reflecting
support for divergent and convergent evolution and aborting drafts. For example, creating
two successors of an artifact (divergent evolution) will create a system draft where the
reference corresponding to the now out-of-date artifact will be the two references, one to
each successor. Similarly, referencing a draft with two predecessors (convergent evolution)
and then aborting the draft will result in a reference (with references) to the two predecessors.
Finally, consider the reference of a draft with no predecessors, followed by an abort of the
draft. This will result in a reference with a null set of references.

We are finally in a position to describe the elimination of system drafts if edits are
aborted.

o A system draft exists only so so long as it has at least one reference that is different
from the corresponding reference in its predecessors.

5.4 Scheduling

Whenever you commit an artifact, E-L schedules one or more jobs that take that artifact as
input. A job is run by a process called a job server. Although job servers may be started and
stopped by E-L commands, the lifetime of a job server is independent of any E-L session.
Jobs are run one at a time by a given server, but there may be several servers per host and,
of course, several hosts on the network. In general, nothing prevents a job server on one
host from running jobs scheduled anywhere on the network. We describe the commands for
starting and stopping a job server in section 6.1.

The variable job-done-notice provides a convenient way to know whether a job that
you have scheduled is done. The default value of the variable is the symbol query, which
means the system will ask you each time vou commit an artifact whether you want it to send
you a notice when it has completed computing the relevant derivatives. If the variable’s
value is nil, E-L sends no notice, and, if the value is neither ’query nor nil, E-L always
sends a notice. Thus, if you want to be notified when a job is done, you can set the value of
job-done-notice to, say, t.

You can also get all the gory details about the status of jobs by viewing the scheduling
plexes—past, present, and future.

5-5

Users’ Manual

o future—this plex has one line for each job that is scheduled but not yet being run.
Columns in this plex are

— priority—a single digit integer indicating the priority of the job; 1 is the highest
priority, and 9, the lowest.

— start-time—a timestamp indicating the time at which the job was scheduled.

— who—the person who submitted the job (often by committing an artifact).

— tool—specifies what is to be done. If some kind of information is to be derived,
then the job to be run is what is called a deriver for that information (and too!
will be derive); otherwise, it’s the name of the specific tool to be run.

— args—specifies arguments for the tool. When the tool is derive, this field is the
name and type of the artifact and the kind of information to be derived.

o present—has one line for each active job server on the network. Job servers run tools
opportunistically. Columns in this plex are

— server—a host and port. If the server is not actively running an E-L tool invoca-
tion, the other columns are blank. Otherwise, the other columns give information
on a currently running job.

— start-time—carried over from the future plex.

— who, tool, and args—same as in the future plex.
o past—has one line for each completed tool invocation.

— start-time—carried over from the present plex.

— stop-time—time at which the job completed. (The year, month, and day are not
displayed.)

— who—carried over from the present plex.

— results—in the case of derivers, a string indicating a successful completion (ok)
or giving some hint of the difficulties encountered.

— tool and args—tool-dependent.

In each of these plexes the default order of columns is that given above. [There is presently
no meaningful format to change the appearance of these plexes, nor are there meaningful
filters for the future and present plexes, each of which is usually quite short.] A filter for
the past plex is the same as the filter on the timestamp attribute of the artifacts plex: a
pair, each of which is either a timestamp or the empty string. Only jobs whose start-time
passes the filter appear in a view on the past plex. The default filter has the time of the
start of the E-L session as a lower bound and an open-ended upper bound.
The following command offers a convenient way to delete jobs from the future plex:

o delete-future-jobs
[There will eventually be a schedule plex that provides a way of looking at the past,

present, and future plexes in a single window.]

5-6

. Users® Manual

5.5 The notices Plex

The notices buffer discussed in section 2 is actually a view on the notices plex. A filter
for this plex is a list of users, initialized to the name of the person starting the E-L session
(so by default, you see only your own notices). The filter may be changed in the same way
as the creator attribute of the artifacts plex. A format for the notices plex consists of
three integers: the widths of the name, id, and summary fields.

A view on the notices plex is established as part of starting an E-L session, but the
window is displayed only if there are notices that pass the filter. Changes to the notices
plex cause a screen on the buffer to pop up.

If you create several views on the notices plex or if you delete all views on it, there
are obvious difficulties with the behavior of the default arguments to the notices com-
mands described in section 2. Since the notice commands always ask for confirmation, the
indeterminacy of default arguments should not be a serious problem.

In the present version of E-L, if you delete all views on notices, the system stops alerting
you as new notices arrive. The notices are not lost, however. You can see them by viewing
the notices plex with C-z C-v.

5.6 The users Plex

Every user of E-L must be registered in the E-L repository. This happens automatically
now, when you start E-L. In the future, installations may want to have some control over
the addition and removal of users. With that in mind, we have the following basic EMACS
commands:

e new-user name (this must be a login name)
e delete-user name

The set of authorized users is kept in a users plex, which may be examined in the usual
way. You are not permitted to delete a user who is the creator of an artifact. Though you
are the default creator of artifacts, you can change this default behavior with the command

e change-active-user name

5.7 The hosts Plex

Every machine that is expected to host a job server must be registered in the repository, for
which we have the following commands:

e new-host host machine
e delete-host host

where host is the local name for an instance of a particular machine architecture, like sun3
or mips. Each line in the hosts plex simply names a registered hosf and its machine type.

5-7

Users' Manual

6 Troubleshooting

6.1 Servers

The E-L system employs several servers in its efforts to support multiple simultaneous users,
active views, and opportunistic tool invocation. These include one lock server; one activation
server, which invokes the repository checker and automatic deletion mechanism using the
information in the alarm-clock plex; any number of job servers, entries for each of which
appear in the present plex; and a pair consisting of a utility server and a message server
for each EMACS session. Should it be necessary, you can abort, stop, and start the servers
from within E-L with the commands described below or, as a final resort, you can stop them
from the shell with kill ~2.

If you are told that there is no active job server on the network, you may need to start
a new one. To do so, use the command

e start-job-server
To shut a job server down gracefully, use the following EMACS command:
e stop-job-server server

The default for a server argument is taken from the cursor position if the cursor is in a view
on the present plex; alternatively, a host and port number, separated by a colon, may be
provided. If the server is running a job, shutdown will occur when the job is complete. If
the job server has crashed while in the middle of a job, the job data will be moved to the
past plex. If you want to terminate a job pre-emptively (because, for example, you know it
cannot complete), you can issue the command

e abort-job server

with the cursor on a line in the present plex. The job server will try to terminate the
specified job and, if successful, will produce a bad derivative with an indication of why it
was produced. For a stronger hammer, you can prefix the abort-job command (with the
usual C-u); it will then definitely abort the job (and may abort other jobs in the same job
server as well) and produce a bad derivative.

If a job server crashes after it has created an artifact (and updated a view on the arti-
facts plex) but before the artifact has been preseved on disk, the user can see the following

warning:
Artifact is in a view twice

This is only a warning, reflecting an operational problem, not a bug.

Host crashes and other system failures can leave E-L’s repository with dangling references
to processes—either job servers or E-L sessions—that no longer exist. In such cases, E-L
will warn you that it cannot connect to a particular hostport, and it records the warning in
a buffer called *error-log*. If you believe that the process identified with the hostport is
no longer alive, you can safely remove the dangling reference with the command

6-1

Users’ Manual

e goodbye-hostport server

This will pick up its argument from the cursor’s position, much as is done for artifact and
draft arguments. For example, you can position the cursor on the appropriate warning
message in the *error-log#* buffer. If the hostport identified an E-L session, then any draft
that was hosted by that session will become unhosted (see section 5.3 for a discussion of
this aspect of drafts) and can be taken over or deleted (see section 4.3 for a description of
takeover-draft and delete-draft). The command not only excludes the hostport of the
user’s current session from consideration but also checks, in general, whether the process for
a hostport is actually dead.

If the system seems to be taking unduly long to respond, it may be because a server has
an exclusive lock on data that you need. You can determine the status of all the locks and
servers with the command

¢ show-locks [server switches]

You can request information about a particular hostport with the usual notation (host and
port separated by a colon) or request some other subset of information with switches:

o -i displays information about the lock server
o -s displays the status of all locking clients

o -p displays the pending lock requests

o -g displays the granted locks

o -c displays the locks held by each client

Giving no server or switches displays the status of all the locks and servers.

6.2 Missing Drafts

If your E-L session crashes, references may exist to drafts that do not appear in the drafts
plex. In that case, you will be told to use

e find-missing-draft draft-id

and given the relevant draft-id to provide as the argument. The command tries to return a
hostport to which you can apply goodbye-hostport, after which all references to the draft
are gone.

6-2

Users’ Manual

A Customizing IATEX Output

As we say in section 3.1, each artifact type has its own rules for producing manuscript and
caption derivatives. To encourage uniformity, however, we advertise here several macros
that allow users to affect the way a deriver typesets an artifact, its caption, a reference’s
caption, and any inter-section dividers. By redefining a macro, with \renewcommand, in
a WTEX artifact you can change the typesetting of subsequently referenced artifacts. A
common practice is to include customizing definitions in the preamble of your latex-root
referencer. Any deriver using the default definitions should also give reasonable output on
most text. Be warned that what we describe below is expected, but not required, behavior
of derivers.

o \MScaption This is used to typeset an artifact’s caption (when typesetting the artifact
itself). Whatever appears in the caption line—that which follows Caption: in the
buffer—is passed as the sole argument to this macro. Its default definition

\def\MScaption#1{{\rm\bf #1}\hfill\\}

typesets the caption line in bold Roman type. If, say, you wanted the caption line in
italic type followed by extra vertical space, you could make the following redefinition:

\renewcommand{\MScaption} [1]{{\it #1}\hfill\\[2ex]}

You can also inhibit the typesetting of the caption altogether by defining the macro to
do nothing:

\renewcommand{\MScaption}[1]{}

o \MSreference This macro is used to typeset a reference’s caption, arising when a
reference is followed by <caption>. By default, it typesets the caption derivative in
Roman type and encloses it in square brackets, while respecting, of course, any further
typesetting commands within the caption line itself. Its default definition is

\def\MSreference#1{{\tt [}{\rm #1}{\tt 1}}

You could redefine the macro in the following way if you want references to stand out
more

\renewcommand{\MSreference}[1]{\fbox{\bf #1}}

o \MSuncaptionedreference If the caption of a reference is wanted but none has been
provided, a manuscript deriver would use this macro, with the reference’s type as its
argument. Its default definition is

\def\MSuncaptionedreference#i1{Uncaptioned{\tt #1}}

A-1

Users’ Manual

o \MSdivider The editor may display an artifact with dividers to delineate sections of
the artifact. A manuscript deriver can use \MSdivider to typeset such dividers, with
the divider's label (e.g. Targets for unix-program artifacts) as its single argument.
The default definition is

\def\MSdivider#1{\raisebox{.6ex}{\makebox[\linewidth] {¥%
\makebox[1in] {\hrulefill}\raisebox{-.6ex}{\it\ #1 }\hrvlefill}}}

which you are free to override.

o \MSnulldivider This differs from \MSdivider only in that it has no argument for a
label. Its default definition is

\def\MSnulldivider{\raisebox{.6ex}{\makebox[\linewidth] {}%
\makebox[1in] {\hrulefill}\raisebox{-.6ex}\hrulefill}}}

o \MSsetcaption This one-argument macro typically appears first in a manuscript
derivative. It would be passed an artifact’s caption, either one explicitly provided
by the user or a type-specific default. If neither is available, the command would not
appear in the derivative.

\def\MSsetcaption#i{\def\MScaptiontext{#1}}

Its function is to make the text of a caption available for use, via \MScaptiontext. in
other macros.

You would normally put these definitions in a referencing latex-root artifact or just before
the first reference that you wanted them to affect.

A-2

Users' Manual

B Automatic Deletion

The system includes a repository checker that looks for inconsistencies in the repository
and deletes artifacts according to parameters we describe below. The following observations
motivate the deletion policy:

o The time between the creation of artifact p and its youngest succezsor is a rough
measure of the difference in their content and the “stability” of p. If p is succeeded
almost immediately, the chances are that the change is small. If p persists for quite a
while before it is changed, its content is more likely to be correct. However, as p’s age
increases it becomes less and less likely to be preferred to its immediate successors.

o If p has many, many successors, it is probably unimportant unless it has somehow been
marked as important by a user.

To make precise the policies implied by these observations, we need some definitions. A
successor chain of length n of artifact p is a sequence of artifacts p = po, p1.. .., pn such that
each p;_; is a successor of p; (1 = 0,...,n~1) and p, has no successors. A minimal successor
chain for p is one whose length is no greater than any other. Define &, to be the length of a
minimal successor chain. For example, k, = 0 if and only if p has no successors.

Let p’ be the youngest successor to p. Let t’ be the difference between the timestamp
of p’ and that of p, and let t, be the age of p. Define the age ratio of p to be r, = 1, /t".
Obviously this definition only makes sense if p has at least one successor.

The criteria for automatic deletion fall into two categories. The primary deletion criteria
are formulated as conditions under which an artifact may not be automatically deleted.

o The artifact has referencers. The reason is obvious.

o The artifact is of type note. This allows users to preserve artifacts by including them
in note artifacts.

o The length of a minimal successor chain is less than two. Thus an artifact must be
doubly out-of-date to be considered for automatic deletion.

Once these conditions obtain, deletion depends on the secondary deletion criteria, based on
two integer parameters:

o R, the maximum allowable age ratio; and
o K, the maximum length of a minimal successor chain.
An artifact p is subject to deletion if it meets the primary deletion criteria and if either
>R
or

k, > K

B-1

Users' Manual

The present value for each of R and K is 20.

To give users an additional last-minute opportunity to retain useful artifacts, we create
a list of so-called doomed artifacts that meet the deletion criteria; we actually delete the
artifacts 24 hours later. You can view this list with the command

e view-doomed-artifacts

The command presents the list of doomed artifacts in the format of a default view on the
artifacts plex. The first two lines show the parameters used to determine the list. Artifact
entries may be copied to the minibuffer or used as arguments to commands that take artifact
arguments, just as in a view on the artifacts plex.

B-2

Users’ Manual

C Installation

This chapter is intended for the installer of the E-L system—someone who wants to set up
E-L from the distribution as received via network or tape.

C.1 Prerequisites
An E-L distribution contains:

e E-L sources.

e Sources for Epoch-3.2 E-L, a variant of Epoch-3.2 (patch level 2) that has been modified
for use with E-L. Epoch-3.2 is a version of GNU Emacs 18.55 that has been integrated
with the X window system.!

e Sources for Emacs-18.55-E-L, which is a GNU Emacs that has been customized in the
sarne way as Epoch-3.2-E-L. This version of Emacs is used for batch-mode compu-
tations, such as the nightly running of an integrity checker and garbage collector for
E-L’s repository.

The customizations of these editors made for E-L enable its database views, error summaries,
menus, and so on, to be more informative. Furthermore, the customized versions are more
reliable than the stock versions from which they derive; they respond more gracefully to
signals and transient memory exhaustion, and they can automatically checkpoint certain
critical buffers when an interactive session is idle. Each is also suitable as a stand-alone
editor, independent of its use for E-L.

Until recently, we did not distribute Emacs as well as Epoch. There is a good deal of
common code in the source trees, and much of it (notably the Emacs Lisp library) remains
after installation. We have added Emacs to our distribution because of storage corruption
bugs that we have fixed in Emacs 18.55; with vanilla Emacs, these bugs sometimes made it
impossible to collect repository garbage in the background. Rather than spend time making
a merged distribution of Epoch-3.2-E-L and Emacs-18.55-E-L, we intend to move as soon as
possible to Epoch 4.2. That system has been structured so that an ordinary, batch-operable
Emacs can be produced from the same source tree as Epoch.

In addition to Epoch, E-L uses, or may optionally use, other commonly available systems
which are not on its distribution tape.

e X windows. E-L is intended to run under X, and it works best on a color monitor.
While it can be used acceptably on a monochrome display, E-L has some commands
that require color to be useful. for example, a class of “diff-based” commands, based
on a fancy display of differences between files, artifacts, etc., distinguish old and new
versions using color.

'Epoch was developed by researchers at the computer science department of the University of llinois.

C-1

Users’ Manual

e IATEX. E-L is a highly document-oriented environment, and it depends on the JATEX
typesetting system. If you do not have it already, you’ll need to obtain and install
IATEX. (Note: the makeindex program distributed with JATEX is old; a more recent
version is available in the pub/tex/pub directory at csc-sun.math.utah.edu.)

e dvips. E-L also supports postscript artifacts, to allow PostScript inserts in IATEX
documents with efficient incremental update processing. The implementation of post-
script artifacts depends on a particular utility, called dvips, for translating IATpX's
output (in “dvi” format) into PostScript. In the US, dvips seems to be the most
popular and feature-full of the PostScript drivers for dvi files. It is quite well docu-
mented and maintained. On the Internet, it can retrieved by anonymous ftp from
host labrea.stanford.edu.

If you do not plan to use postscript artifacts, you don’t need to obtain dvips, but
you will need some means to convert dvi files to printable form.

o Ghostscript. E-L’s activity coordination facility requires this PostScript interpreter.
It is also the basis for a very good PostScript previewer called ghostview. Both
can be retrieved from the pub/ghost directory at ftp.cs.wisc.edu. Version 2.5.2 of
Ghostscript works quite well with E-L. A later version is available but has not yet been
tried with E-L.

e Lucid Common Lisp. E-L supports programming in Lucid Common Lisp, version
3.0 or later. (The dependence upon Lucid has to do with its foreign function facility
and its asynchronous processes. Other Lisps with similar facilities could be similarly
supported.) As we will see later in the installation instructions, this is optional on an
architecture-by-architecture basis, including the case of no support for Coramon Lisp
at all.

To date, E-L has been ported to Sun3 and Sun4 workstations running SunOS 4.x and to
the DecStation 3100 running Ultrix 4.2. All the hosts sharing an installation of E-L must
be linked by a common file system.

C.2 Installing E-L

To install E-L, you need three source directory trees, one for E-L (called e-1-distribution),
one for Epoch (called epoch-3.2~e-1), and one for Emacs (called emacs-18.55-e-1).

Disk space for installation. The three source trees (E-L, Epoch, Emacs), in uncom-
pressed form, together consume about 30 megabytes of space. If you install E-L for use on
N types of machines (“architectures”) of which L will have artifact support for Common
Lisp, expect the space required to swell to about 28 + 34 N 4+ 8L megabytes. After everything
is in place, you’'ll need to retain about 18 + 24 N + 8L megabytes.

To start installation, make an empty directory on in a filesystem with sufficient free space
and change into that directory.

C-2

Users' Manual

Reading sources from tape. If you received E-L on tape, mount the tape and use tar
to read the tape:

$ tar xf /dev/rsto

The device /dev/rst0 used here would be typical for reading a cartridge tape on a Sun
workstation. Substitute the correct device file for your tape drive. You will have three
subdirectories named e-1-distribution, epoch-3.2-e-1, and emacs-18.55-e-1.

Extracting E-L sources from a compressed tar file. If you received E-L by net-
work file transfer, you can uncompress and extract the E-L source tree from the file e~1-
distribution.tar.Z as follows.

$ zcat e-l-distribution.tar.Z | tar xBf -

Once the E-L tree has been extracted, the compressed tar file can be deleted to save space.
Repeat the same procedure for the compressed tar files epoch-3.2-e-1.tar.Z and emacs-
18.55-e~1.tar.Z.

Installing Emacs and Epoch Next, install the customized versions of Emacs and Epoch.
Since Epoch is a variant of Emacs, the directions for building them are the same. The
file README.E-L in the emacs-18.2-e-1 subdirectory just created by tar leads to full in-
structions for building and installing Emacs. The corresponding file in the epoch-3.2-e-1
directory tells how to install Epoch.

Installing Ghostscript If you plan to use E-L’s activity coordination facilities, be sure
that your installation of Ghostscript includes support for the PostScript level 2 and Display
PostScript extensions. With Ghostscript version 2.5.2, this is done by adding level2.dev
and dps.dev to the definition of FEATURE DEVS in either unix-cc.mak or unix-gcc.mak
(depending on whether you compile Ghostscript with cc or gcc). The resulting definition
typically reads

FEATURE_DEVS=filter.dev dps.dev level2.dev
Contents of e-1-distribution. The file named MANIFEST in the e-1-distributionsub-

directory contains a list of the files and subdirectories in the E-L portion of the distribution.
Check to be sure that all seem to have been extracted.

Setting configuration parameters. Set up three directories to hold the permanent re-
sults of installation:

e The repository directory, where all the data for E-L is kept. In the example below, the
name is /usr/local/e-1/repository.

e The bin directory, where E-L programs are kept. The example will use /usr/local/
e-1/bin.

C-3

Users’ Manual

e The lib directory, where libraries needed for certain extensions of E-L are kept. The
example will use /usr/local/e-1/1ib.

These do not need to be subdirectories of a common directory, as they are in the example.
However, they need to be accessible from any host on which E-L will be used. The path
leading to each must exist before you install.

Make a copy of e-1-distribution/configure-e-1.sample. Call it configure-e-1, or
whatever you like. We’ll refer to it as your configuration script. It records decisions made in
setting up E-L, such as where the three permanent directories mentioned above are located.

Following the instructions in configure-e~1.sample, edit your configuration script to
customize it for your repository. Record the paths of the three permanent directories by
editing the values of CONFIG_REPOSITORY, CONFIG_BIN, and CONFIG_LIB.

When E-L refers to programs and other files that are not part of the artifacts system
itself, it does so via links that reside in the bin directory. (This ensures that utilities like
I TEX that may be invoked within E-L processes will not be misidentified through some quirk
of a particular user’s $PATH setup.) For each of the remaining CONFIG.... variables in the
configuration script, supply an absolute path that is appropriate for your sy<vem. For each
type of host on which you compile E-L, the configuration script will be read and a separate
sets of links will be created, so you may use (Bourne shell) conditionals to differentiate among
host types if you wish.

In the same directory, the file universal-paths.el contains additional absolute paths,
those of system header files and commands that may be referred to within C language arti-
facts. Installation incorporates these paths in universal artifacts as a way of encapsulating
dependence on the external objects and tracking changes to them. (See the Language User’s
Manual) Scan the lists for appropriateness at your site; edit and extend them as needed.
The set of universal artifacts created during initial installation (owned by the pseudo-user
e-1) will be adjusted accordingly.

Building the E-L executables. All executables are built on site. This minimizes instal-
lation difficulties, but it takes a while. To prepare executables for the machine architectures
(e.g., sun3, sun4, or mips), on your network, go through the following steps once for each,
using a representative host machine.

e Log in to the host, if necessary, and make the e-1-distribution directory (created
above) your current working directory.

e Using the configuration script that you customized, issue the command

$./compile-e-1 [-no-1lisp| ./configuration-script
output from the compilation process, ending with:
Finished compiling

Use the no-1isp switch if you do not want lisp support on the particular architecture. The
effect of the compile-e-1 command is to add a subdirectory (named by the machine type)
to the e-1-distribution/bin directory, and to put the relevant executables into it. It also
adds subdirectories to the lib directory. One, named by the machine type, receives object
files and archives. Another, called include, receives header (.h) files.

C-4

Users’ Manual

The installation environment. After the above step, the e-1-distribution directory
is ready for installation. You must be running X, and Epoch must be available. Be sure
your DISPLAY environment variable is properly set for your X server, e.g.:

$ setenv DISPLAY server-host:0.0

E-L uses the environment variables E.LL_REPOSITORY, E_L_BIN, E.L_LIB, and E_.L_MACHINE to
communicate with the processes it creates. An attempt to install E-L or to run E-L once
installed while you have any of these set in your environment will produce an error message
unless your settings agree precisely with the ones E-L means to establish. In short, be sure
these variables are not in your environment before installing E-L or starting an E-L session.

The installation program starts a daemon process named e-1-lock-server and leaves
it running after installation is complete. This lock server process is E-L’s resource manager
for the whole network of machines sharing E-L, and there should be only one instance of it
running at any time on the network.? Choose as stable and fast a machine as possible to host
this resource manager. Log in to that machine (if necessary) to complete the installation,
and change your working directory to be the e-1-distribution directory.

Installation. Issue the command:
$./install-e-1 ./configuration-script &

This starts an Epoch session and displays messages about the progress of the installation.
If everything goes normally, Epoch exits when installation is complete. In any case, the
progress log is saved in a file called progress in the e-1-distribution directory. Glance
over that file to be sure no errors have occurred.

The next step is to add e-1 to the command directory (or directories, if there are different
file servers for different hosts) from which it will be executable by your E-L user community.
A typical choice is /usr/local/bin/. You may need root (super-user) privileges do this.
Create a symbolic link called e-1 in the command directory to a shell script of the same
name in /usr/local/e-1/bin/scripts.?

$ ln -s /usr/local/e-1/bin/scripts/e-1 /usr/local/bin/e-1

Finally, you should add e-1-1lock-serverto the set of daemons started at reboot time on
the host you have chosen to run the resource manager.* Typically, this is done (again, with
super-user privileges) by adding the following lines to the end of the script /etc/rc.local
on that host:

2That is, one instance per installation of E-L. As will be discussed below under “Creating a branch
repository”, it is sometimes desirable to have multiple instances of the artifacts system at a site, with
independent repositories for each. There should be one lock server process (but only one) for each repository.

3Because symbolic links are used, however, it is only necessary to have rights to change the command
directory when initially installing E-L, or when changing the location of the bin directory, in which case you
will need to re-link e-1 in the obvious way.

4While this step is highly desirable to support regular use of E-L, you can omit it if you’re prepared to
restart the lock server manually whenever its host machine is rebooted. The command to do so requires
no special privileges: e~1 -do e-l1-start-lock-server. (The -do switch is explained in section C.3.) It
is also a very good idea to stop the lock server gracefully before a planned shutdown of its host: e-1 -do
e-l-stop-lock-server.

C-5

Users’ Manual

Lock server for E-L
]
if [-f /usr/local/bin/e-1]; then
(/usr/local/bin/e-1 -do e-l-start-lock-server) >/dev/console
fi

At this point, E-L is ready to run. Under the C shell, you may need to rehash if you
have just finished installing E-L, so that the e-1 command will be recognized. To t:y it out,
start E-L in the background (so as not to tie up your shell window); it will create its own
windows:

$ rehash
$e-12

Updating an existing installation. The installation procedure above creates a fresh
artifacts repository, completely empty. If the distribution you received is an update for
your existing installation, the procedure is slightly different, so that the information in your
repository will not be destroyed.

Begin by shutting down all E-L-related processes on your network. To shutdown any
existing job servers, use the M~x stop-job-server command. Terminate any E-L (Epoch)
sessions. Shutdown the resource manager (lock server) using the command

$ e-1 -do e-l-stop-lock-server

Next, compare your old configuration script with the new configure-e-1.sample. Merge
and edit if necessary to create a new configuration script for your site. Use the same reposi-
tory, bin, and lib directory paths as in your existing installation. Then follow the instructions
in the paragraph above on “Building the E-L executables™. Finally, perform the update using
the command

$./update-e-1 ./configuration-script &

Creating a branch repository. Occasionally, it is useful to create a secondary artifacts
repository, one that shares the basic functionality of the primary installation, but that has
separate artifacts and plexes, and may even have some different (perhaps experimental) arti-
fact types and derivative classes. We call such a secondary repository a “branch” system—by
analogy with a branch office, such as a bank branch. A branch is quick to set up, given the
distribution directory and the results of a primary installation, and doesn’t use much addi-
tional disk space (less than a megabyte, independent of the number of machine architectures
accommodated). Use one to test extensions of E-L if you need to be certain of not interfering
with production use of the system.>

To set up a branch repository, set your working directory to be the distribution directory.
If you haven’t kept the directory used to perform the original installation on disk, you should

5In a future version of E-L, there will be other ways of isolating experimental extensions, so the need for
a separate repository will not arise.

C-6

Users' Manual

recover it and be sure that the configuration script is as you modified it originally. You do
not need to repeat the compile-e-1 step, however, because a branch repository shares the
compiled C executables and makes copies of the Emacs Lisp and shell-script executables of
the original installation.

Now edit the configuration script to define and export the new environment variables
BRANCH.REPOSITORY, BRANCH.BIN, and BRANCH.LIB in the same way as for the variables
CONFIG_REPOSITORY, CONFIG.BIN, and CONFIG_LIB, but using directory paths chosen for
your branch system. For example

BRANCH_REPOSITORY="/usr/local/e-l-branch/repository"
BRANCH_BIN="/usr/local/e-l-branch/bin"
BRANCH_LIB="/usr/local/e-l-branch/1ib"

export BRANCH_REPOSITORY BRANCH_BIN BRANCH_LIB

Again, there is no requirement that these three directories have a common root. You should
create each of them before starting branch installation. If any of them is not empty when
branch installation begins, you’ll be asked whether it is all right to delete the contents.

The command to install a branch E-L is just like that for primary installation, except
that branch-e-1 replaces install-e-1:

$./branch-e-1 ./configuration-script &

The bin and lib directories share the C-code executables and libraries of the initial installa-
tion. However, the subdirectories containing Emacs Lisp code and shell scripts are separate
for the branch system, as is the whole repository directory.

Example artifacts. In addition to the artifacts of type universal mentioned earlier, the
initial installation creates some example artifacts for use in understanding how programs and
documents are constructed and interconnected in E-L. These are rooted in an artifact named
Life, whose creator is the pseudo-user e-1. This is the source of a document called A Literate
Implementation in the Artifacts System of the Game of Life. To view this document on line.
you’ll need to start a job server (see the next section), then issue the M-x derive-from
command, giving the artifact Life and derivative kind latex-directory as arguments.
When derivation has completed successfully, use the M-x preview and/or M-x hardcopy
commands to preview or print the document. To try the example program that it describes,
issue derive-from again, with artifact Life-C and kind Unix-program. The M-x execute
and M-x dbx commands allow you to run it, once derivation is complete.

C.3 Artifacts Systern Administration

E-L includes a number of commands for querying and altering the state of associated pro-
cesses, such as the lock server and the job servers that manage derivations. Among the most
useful are start-job-server, stop-job-server, show-locks, grab-locks, start-lock-
server, stop-lock-server, and ping. Use M-x describe-function within E-L to see the
on-line documentation of any of these commands.

C-7

Users' Manual

All of the above commands can also be issued outside E-L, i.e., directly from a shell, using
the -do argument to e-1. For example, the shell-level equivalent of the M-x show-locks
command with option -p would be

$ e-1 -do e-1l-show-locks -p

Instead of starting an E-L session, this prints a summary of pending lock requests. In general,
the appearance of -do as the first argument of e-1 causes it to set environment variables,
including PATH, appropriately for starting E-L, but then evaluate its remaining arguments
as a shell command line instead of starting a session. The file named e-1-show-locks
implements the M-x show-locks function of E-L, and since e-1 -do causes it to be found
on a search through $PATH, the above shell command behaves like the corresponding M-x
show-locks would in a session.

Incidentally, another very useful show-locks option is -s, which gives the status of all
E-L-related processes (on all hosts) known to the lock server. Information about the lock
server itself is obtained with the -i option.

C.4 Obtaining Assistance

If you have problems, please contact Glenn Holloway (glenn@soi.com) at Software Options
(617-497-5054). There is also a mailbox for bug reports about E-L: e-1-bugs@soi.com. We
encourage you to send problem reports or questions to that address to ensure the fastest
response.

C-8

Index
mergex, -6

abandon-draft, 4-5

abandoned draft, 5-4

abort-job, 6-1, 6-1

activation server, 6-1

alarm-clock (plex), 6-1

almost out-of-date, 4-4

append-artifact-to-draft, 4-2

artifact arguments, 4-1

artifacts, 1-1

artifacts (plex), 4-2, 4-3, 5-2-5-4, 5-6,
5-7, 6-1, B-2

bad (kind), 4-3, 4-5, 6-1
bibliography, 3-2
bibliography (kind), 3-3
bibtex-log, 3-3
buffer-documentation, 5-2

c-1, 5-3

C-u, 2-2, 4-3. 4-4, 4-6, 5-1
C-x C-¢, 2-1

C-z

<, 4-6
>7 4'6
?,5-2

=, 2-3,4-6
C-a, 4-5
C-c, 2-1
c-d, 4-2
C-e, 2-4
C-h, 4-8
c-i, 5-1
C-n, 2-4
C-o, 5-1
C-s, 2-2
C-v, 5-1
C-x, 4-2
d, {-3

e, 4-5
M--, 2-3

M-c, 3-1

M-C-s, 4-4

M-D, 4-2

M-d, 4-2

M-n, 2-4

M'S, 4'4

M-x, 4-3

u, 4-6

x, 3-1

in E-L commands, 2-1
caption (kind), 3-2, A-1
change-active-user, 5-7
commit-draft-and-references, 4-4
commit-draft-and-references-and-

referencers,
44

commit-one-draft, 2-2, 3-1
committed, 1-2
configuration, 1-2
copy-as-kill, 3-1, 4-1
crzate-draft, 2-1, 4-2
create-draft-and-reference, 3-1
creator (universal attribute), 5-2-5-4, 5-7

delete-artifact~and-~references, /-2
delete-artifacts-in-region, §-2
delete-derivative, 4-3
delete-draft, 4-4, 6-2
delete-future-jobs, 5-6
delete-host, 5-7

delete-notice, 2-4
delete-one-artifact, {-2
delete-user, 5-7

derivative, -2

derive-from, 4-3

diff, 4-6

diff-artifacts, 4-6, 4-6
diff-artifacts-recursively, §-6
diff-buffers, 4-6, 4-6
display-notice, 2-4

draft, 1-2, 2-1

draft arguments, 4-1
drafts (plex), 4-5, 5-4, 6-2
dvi-file, 2-3, 3-4

e-l-lock-server, C-5

edit-artifact, 2-4, 4-2

electric menu, 5-2

error, 4-5

errorjlatex-directory (kind), 4-3, 4-5
examine-artifact, 4-2
examine-derivative, 4-3, 4-3
examine-problems, 2-4, 3-4, 4-3, 4-5

filter, 1-3
find-missing-draft, 6-2
find-successor-draft, /-5
follow-1link, 2-3, 3-4, 4-5, 4-6
follow-link-reverse, 2-3
format, 1-4

future (plex), 5-5, 5-6

goodbye-hostport, 6-2, 6-2
grab-locks, C-7

hardcopy, 2-2, 3-4
hardcopy-command, 3-4
highlight-region, 4-§
hostport, 6-1

hosts (plex), 5-7

index, 3-2
insert-artifact-into-draft, 3-1
insert-draft-into-draft, 3-1

job server, 5-5, 6-1
job-done-notice, 2-3, 5-5

kinds, 1-2
bad, 4-3, 4-5, 6-1
bibliography, 3-3
caption, 3-2, A-1
error¥latex-directory, 4-3, 4-5
latex-log, 3-4
manuscript, 3-2, 3-3, 3-6, A-1, A-2

latex~aux, 2-3, 3-4
latex~bib (type), 3-2, 3-3

Users’ Manual

latex-log, 2-3, 2-4, 3-3, 3-4

latex-log (kind), 3-4

latex-piece (type), 3-1-3-3

latex-root (type), 2-1, 2-2, 2-4, 3-1-3-6,
4-3, A-1, A-2

latex-summary-file, 3-3

lock server, 6-1

M-]1, 5-4

M-C-], 54

makeindex-log, 3-3

manuscript (kind), 3-2, 3-3, 3-6, A-1, A-2
message server, 6-1

name (universal attribute), 5-2-5-4
navigation, 4-1

new-host, 5-7

new-user, 9-7
next-diff-button-pair, /-6
normal draft, 5-4

note (type), 4-8, B-1

notice, 2-3

notices (plex), 2-4, 5-7

opportunistic scheduling, /-7
out-of-date, 4-4

past (plex), 5-5, 5-6, 6-1
ping, C-7
plex, 1-3
plexes
alarm-clock, 6-1
artifacts, 4-2, 4-3, 5-2-5-4, 5-6, 5-7,
6-1, B-2
drafts, 4-5, 5-4, 6-2
future, 5-5, 5-6
hosts, 5-7
notices, 2-4, 5-7
past, 3-3, 5-6, 6-1
plexes, 5-1
present, 5-5, 5-6, 6-1
schedule, 5-6
users, 5-7
plexes (plex), 5-1
pop-to-artifact, 4-2

postscript (type), 3-6, 3-7
present (plex), 5-5, 5-6, 6-1
preview, 2-2, 3-3
preview-command, 3-4
previous-diff-button-pair, 4-6
printbibliography, 3-3

printindex, 3-2

ps-file, 2-3, 3-4

ps~-preview, 2-2, 3-4
ps-preview-command, 3-4

re-search-artifacts-recursively, 4-7
re-search-artifacts-recursively-
continue,
4-7
read-archive, 4-3
reference, 1-2
refilter, 5-1, 5-3
reformat, 5-/
regular expressions, 5-2
rename-draft, {-4
revert-buffer, 4-5

schedule (plex), 5-6
scheduling, 4-4

server, 6-1
set-diff-button-colors, 4-6
set-diff-reference-colors, 4-6
show-locks, 6-2, C-7
start-job-server, 6-1, C-7
start-lock-server, C-7
starting draft, 5-4
stop-job-server, 6-1, C-7
stop-lock-server, C-7
system draft, 5-4

takeover-draft, 4-5, 6-2
timestamp (universal attribute), 5-2-5-4,
5-6
type, 1-1
type (universal attribute), 5-2-5-4
types
latex-bib, 3-2, 3-3
latex-piece, 3-1-3-3

Users’ Manual

latex-root, 2-1, 2-2, 2-4, 3-1-3-6,
4-3, A-1, A-2

note, 4-8, B-1

postscript, 3-6, 3-7

unix-program, A-2

unbutton, 4-6

unhosted, 5-4

universal attributes, 5-2
creator, 5-2-5-4, 5-7
name, 5-2-5-4
timestamp, 5-2-5-4, 5-6
type, 5-2-5-4
up-to-date, 5-2-5-4

unix-program (type), A-2

up-to-date, /-2

up-to-date (universal attribute), 5-2-5-4

users (plex), 5-7

utility server, 6-1

version, 1-1
view-doomed-artifacts, B-2
view-plex, 5-1, 5-3

write-archive, 4-7

