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ABSTRACT

This report describes a new fast projection technique for adaptive beamforming. It is
based on a technique proposed by Yeh where Gram-Schmidt orthogonalization is applied to N
rows of the covariance matrix to obtain the signal subspace. In Yeh's technique, N is equal to
L the number of jammers. This technique, applied to bearing estimation, requires a priori
knowledge of the number of sources. Even though it gives good results when the number of
sources is much smaller than the number of array elements, the performance of Yeh's technique
degrades severely as the number of jammers increases. We improve the technique by taking a
larger number of rows in the orthogonalization: we add a thresholding procedure to the technique
in order to optimize N. We compared this new technique, called Subspace E. -ation without
Eigenvectors (SEWE), with other fast projection techniques. SEWE was shown to give superior
performance in terms of the Signal-to-Noise-plus-Jammer Ratio achievable with a given
computational load, except when a very high SNJR is required.

RESUME

Ce rapport décrit une nouvelle technique de projection rapide pour la formation
autoadaptative des faisceaux. Cette technique est basée sur une méthode proposée par Yeh ou une
orthogonalisation de Gram-Schmidt est appliquée a N colonnes de la matrice de covariance pour
obtenir le sous-espace du signal. Dans la technique de Yeh, le nombre de colonnes, N, est égal
au nombre de brouilleurs, L. Cette technique, utilisée pour I’estimation des directions des sources,
requiert une connaissance a priori du nombre de sources. Méme si elle donne de bons résultats
lorsque le nombre de brouilleurs est trés faible par rapport au nombre d’éléments, la performance
de la technique de Yeh se dégrade rapidement lorsque le nombre de brouilleurs augmente. Nous
améliorons la méthode en lui ajoutant un seuil ce qui permet d’optimiser la valeur de N en
augmentant le nombre colonnes utilisées pour faire 1'orthogonalisation. Cette nouvelle technique
‘est comparée avec d’autres techniques de projection. On démontre qu’elle donne une meilleure
performance en terme du Rapport Signal-sur-Bruit-plus-Brouillage (RSBB) qu’on peut atteindre
avec une charge de calcul donnée, sauf dans le cas de RSBB trds élevé.




EXECUTIVE SUMMARY

Jamming of radar systems via the antenna sidelobes or the antenna mainbeam can
seriously degrade radar performance. Thus jamming can provide a crucial advantage to enemy
forces if radar electronic counter-counter-measures (ECCM) are not effective.

Adaptive antenna nulling provides an effective ECCM but at the cost of increased
equipment complexity and capability. A major cost factor is the need for a very high speed, real-
time, computational capability. The computational capability required is so high it limits the
application of this effective ECCM.

This report decribes and evaluates a computationally efficient algorithm that reduces the
requirements for high speed computation by 10 times in some cases.

The new method, called Subspace Estimation Without Eigenvectors (SEWE), uses the
concept of signal and noise subspace. Here the noise subspace is the jamming space. The
algorithm calculates a projection matrix which represents a subspace orthogonal to the jammer
subspace. The projection matrix is applied to a weight vector that steers the array in a particular
direction. When the resulting adapted weight vector is applied to superimposed signal and
jamming, the jamming signals are greatly reduced while the loss of signal is small. This occurs
because the adapted weight vector is approximately orthogonal to the jamming signals.

We compared the SEWE technique with other fast projection techniques. SEWE was
shown to give superior performance in terms of the achievable Signal-to-Noise-plus-Jammer
Ratio (SNJR) for a given computational load, except for the case where very high SNIR is
required.
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SUBSPACE ESTIMATION WITHOUT EIGENVECTORS FOR ADAPTIVE
BEAMFORMING

1.0 Introduction

Array signal processing techniques based on eigenvector projection are highly effective
for both interference suppression and for estimation of signal angle-of-arrival. Projection methods
employ the concept of signal and noise subspaces. In the case of jamming signals, the noise
space represents the jamming space. Jamming is cancelled by projecting the array data vectors
into a space orthogonal to the noise space, ie the signal space. In the case of angle-of-arrival
estimaticn, the array data vectors are projected into a space orthogonal to the signal space. These
techniques estimate the noise and signal subspace with an error that decreases when an increasing
number of sample vectors is used in the calculation of the covariance matrix. A.veraging is
exploited by incorporating many data vectors into an estimated covariance .natrix which
approaches the true covariance matrix asymptotically as the observation period increases.

Bilhring [1,2]) proposed an eigenvector-based projection technique for adaptive
beamforming; the eigenvectors corresponding to the strongest eigenvalues of the covariance
matrix are used to calculate a projection matrix orthogonal to the jammer subspace. This
projection matrix is applied to the array steering vector which is projected into a subspace
orthogonal to the interference. The resulting adapted steering weight vector is, ideally,
orthogonal to the jamming signals. Variations of the eigenvector-based adaptive nuiling
algorithms have been studied by Gabriel [3]. He showed that the sidelobes of low sidelobe
antennas were less perturbed when eigenvector-based projection techniques were used as an
alternative to the Samgle-Matrix-Inversion (SMI) technique of Reed et al [4]. Because the signal
or interference subspace is estimated with a finite sample size, the cancellation of the jamming
is imperfect.

Projection techniques based on eigenanalysis are computationally demanding particularly
for arrays with a large number of elements. This limits the applicability of these techniques where
high-speed real-time processing is required. Fast projection techniques based on Data Vector
Orthogonalization (DVQ) {5,6,7.8] avoid calculation-intensive eigenanalysis, but at a cost in
performance. The loss in performance comes from the inability of these techniques to incorporate
averaging to better estimate the signal or interference subspace. In contrast, eigen-based methods
become progressively more accurate as the number of data vectors incorporated in the covariance
matrix increases. In the most advanced version of DVO, Nickel (8] introduces a double-threshold
procedure that improves performance; an internal threshold rejects data vectors that do not add
sufficient information about the signal or interference subspace, while an external threshold keeps
the procedure going until a performance criterion is satisfied. Toulgoat and Turner [9,10,11]
have developed a technique called Data Vector Selection and Orthogonalization (DVSO) which
pruvides a better estimate of the interference subspace than does DVO, albeit at the price of a
higher computational load. The required load is, however, still much less than that of the
eigenvector techniques. In addition, Toulgoat and Tumer [9,10,11] have used DVSO with
averaging procedures to develop two algorithms that provide a better trade off in performance




versus comy Mational load. The first technique, called Data Vector Selection, Orthogonalization
and Weight A\VERaging (DVSO-WAVER), averages repeated computations of the adapted weight
vectors to ‘,ive a final adapted weight vector for nulling the jamming. The second, called DVSO-
COVAR, uses a data selection process for the choice of data vectors used in the formation of the
covariance matrix. Gram-Schmidt (GS) orthogonalization is then applied to the columns of the
covariance matrix to obtain a good estimate of the signal subspace. These two methods provide
essentially the same Signal-to-Noise-plus-Jammer Ratio (SNJR) as the SMI method but require
far fewer computations.

The data-vector selection iechnique used in DVSO-COVAR is similar to a technique that
Reilly and Law (12] used for direction finding. However, [12] applies the selection process to
the permutation and selection of columns of a covariance matrix. In contrast, in DVSO-COVAR,
the data selection is applied prior to the calculation of the covariance matrix, in order to choose
the data vectors to be used in the formation of the covariance matrix. A procedure cquxvalent to
that of [12] is then applied for selecting a subset of the columns vectors of the covariance matrix.

Yeh [13,14] proposed another technique based on Gram-Schmidt orthogonalization. This
technique was first applied to bearing estimation; the projection matrix is computed by using any
L rows of the covariance matrix where L is the number of jamumers. It is computationally more
efficient than projection techniques using eigenvectors especially for the case where the number
of jammers is much smaller than the number of array elements. In .his report, the Yeh technique
is applied to adaptive beamforming and shown to give good results when the number of jammers
is much smaller than the number of array elements. We propose an improved version of the Yeh
technique incorporating a threshold procedure, called Subspace Estimation Without Eigenvectors
(SEWE). This new algorithm is compared with eigenvector decomposition, DVSO and DVSO-
COVAR techniques.

2.0 Signal and jammer characteristics

Radar systems usually transmit pulsed signals that are narrowband with respect to the
carrier frequency. Since the targets of interest are in the far field, the received signals are plane
waves. When no reflection is received from a target, the data vector, Xx(t,), is defined by:

L
x(t,) = ;jl(tn)a(e,) +n(t,) =Aad,+n,
-1

where L is the number of Jammcrs, Jo=lii(t ) jx(t)] is the jammer vector with j(t,) being
complex gaussian amplitude of the i® jammer at time t,, n, is the receiver noise vector with
mutually independent componeants. Its power is E{n, 2}=Ko* where K is the number of array
elements. The sampling rate is selected such that the quantities ji(t,) and ji(t,,,) are statistically
independent. The matrix A represents the directions of the jammers with A=[a(6,)... .3(9,()] The
quantity a(8,) is a deterministic vector representing the direction of arrival of the i® jammer.
Without any loss of generality, we assume a uniform linear array with equally spaced elements.
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In that case, a(0,) is defined as

a(0,)T=[1,exp(J 2’idsin(ei) | ,exp(j-z—"—d—(i@-)-sin(el) Y1 (1)

where d is the inter-clement spacing, €, is the direction of arrival of the i® jammer, A is the
jammer wavelength.

When projection techniques are applied to radar systems for adaptive nulling of jammers,
it is important that sample vectors be taken in the absence of signal and clutter. This is a
standard radar problem; one solution is to sample at time intervals corresponding to ranges where
it is known that there are no targets or clutter returns.

3.0 Performance criterion

The ultimate measure of performance of an adaptive array is the Signal-to-Noise-plus-
Jammer Ratio (SNJR). We attempt to maximize this quantity by using an adapted weight vector,
w,, that discriminates against jamming while causing a minimal loss of useful signal. The adapted
weight vector, w,, is calculated from a steering vector, w,, which specifies the direction for which
the SNJR is to be maximized:

w,~aTw,

where T is a transformation matrix and & an arbitrary constant. The optimum solution for
maximisation of the SNJR is given by T=®"' where ® is the true covariance matrix. For an
infinite Jammer-tc-Noise Ratio (JNR) in each channel the transformation can be written as

T - I-A(a¥a)-1a%

where A is the matrix of the directions of the jammers given by (1). The transformation matrix
T, projects the steering vector into a subspace orthogonal to the subspace which is spanned by
the directional vectors of the jammers (jammer subspace). Instead of using the direction vectors
of the jammers to build up the projection matrix, T, one can use any L basis vectors which span
this subspace. The projection matrix, T, is written as:

TeTI-VVH (2)

where V=(v,,....v,] is the matrix of the L basis vectors. When sensor noise is present (especially
for low JNR), we may need more than L basis vectors to better define the jammer subspace.

With this adapted weight vector the SNIR is given by:




Eilw;a@F} o  la@*Ta@P o

SNJR(8) =
Elvdw) « a(@®)"ToTa(d x

where a(0) is the steering vector with 8 being the steering direction. The quantity o°/K is the
normalization factor.

We calculate a two-dimensional SNJR to evaluate the performance in all directions. It
is defined as follows:

win

SNJR,; = Y SNJR(8)
Q-2
2
An area of one beamwidth around each jammer is excluded since the SNJR degrades severely
at those locations. The beamwidth, BW, is defined as follows:

A
We2 2
B 2K

where L is the length of aperture; L = K /2,

3.1 Test case

The array has 64 clements with half-wavelength spacing between each element.
Performance is evaluated for three different scenarios: scenario #1 with L=3 jammers located at
0,=-33.4°, 0,=-12.7° and 6,=-8.6° scenario #2 with L=5 jammers located at 8,=-41.3°, 0,=-
24.2°, ,=-9.2°, 6,=-6.3° and 8,=-3.4°; scenario #3 with L=10 jammers located at 8,=-45.2°, 8,=-
41.3°, 9,=-37.6°, 0,=-24.2°, 6,=-18.1°, §,=-15.1°, 8,=-12.1°, 6,=-9.2°, 8,=-6.3° and 0,=-3.4°.
We use two different values for the JNR: 26.9 dB and 40 dB. The noise power, @2, is set at 1.

4.0 Yeh-Projection technique
4.1 Description of the technique

The Yeh-projection technique [13,14] calculates the projection matrix using any L
columns of the covariance matrix, where L is the number of jammers. The sample covariance
matrix is defined as follows:

L

R = iz:,;’,'- (£, ....2] (3)

Mi-l




where M is thc qumber of samples used in the formation of the cov' iu.ce matnx and r, is the
j® column of the covariance matrix. The jammer subspace, /, is calculated by an
crthonormalization of the L columns of the covanance matnx, R, that have been estimated. The

projection matnx is then calculated with cquation (2).

Yeh [13,14] used this projection matrix to evaluate a spectral estimator and then determine
the positions of the sources. It gives poor results when the Signal-to-Noise Rato is low {13].
Moreover, the direction finding application requires the technique to be able to discriminate
between two sources which are very close together. In contrast, adaptive beamforming has only
to cancel jamming signals which are very strong with respect to the receiver noise power;
furthermore, there is no need for two different nulls if the signals are very close together. For
those reasoas, the projection technique of Yeh is well suited for jammer nulling. The projection
matrix is used to calculate an adapted weight vector, w,, from a steering weight vector, w,,

w, = Tw,
where the steering weight vector, w,, is given by

v, - (1, exp(;.}i dsin(8,)),..., exp<2-}(x—1)i d sin(@,)]

Besides its good performance in terms of SNJR, Yen’'s technique has a small
computational load compared with other adaptive beamforming algorithms such as Biihnng
technique, SMI or the DVSO-COVAR technique. The computational load for Yeh's technique
is given in terms of the number of complex multiplications (c.m.) required to find the adapted
weight vector:

MKL+L3K

where M is the number of samples used in the formation of the covariance matrix, K is the
number of array elements and L is the number of jamm.zrs. Note that only L columns of the
covariance matrix have to be calculated, which reduces the number of complex multiplications
to MKL (c.m.) compared with M(K+1)K/2 (c.m.) for the calculation of the lower triangle of the
covariance matrix. If L<<K, this greatly reduces the computational load incurred in the
calculation of the covariance matrix.

The next section presents simulation results for the Yeh-projection technique as applied
to adaptive beamforming,.
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4.2 Simulation results-Yeh’s technique

In this section, Yeh's technique is compared with conventional Founier beamforming with
Taylor antenna tapering to control the sid:lobes. The comparnison i1s camed out by scennag the
array over the entire range of angles, 0, i.c. for -1S sin(8) S1. As the scan engle passes the
jamming signal there is a very large decrease in SNJR; however the region of decreased SNJR
is, in general, very much narrower fo- *he Yeh technique.

Figures 1, 2, 3 show the no-- ‘zed SNIR versus sin(8) for scenarios 1 (L=3), 2 (L=5)
and 3 (L=10) for both the Yeh techi. e and Fourier beamforming with Taylor weights. For all
of the scenarios, the JNR is 26.9 dF For the small ratio L/K in scenario 1, the SNJR curve for
the Yeh technique approaches the o .'um value of O dB except .or areas around the jammer.
The SNJR for Fourier beamforming w:‘h Taylor weighting is severely degraded everywhere. As
the number of jammers increases or as they get closer together, the performance of the Yeh-
projection degrades progressively as seen in Figure 3. Here the number of jammers has increased
to ten with a cluster of six closely spaced. In Figure 3, the SNJR for the Yeh technique is 8 dB
below SNJR maximum.

The performance of the Yeh technique can be improved by using a larger number of
columns in the orthonormalization. To evaluate the number of columns required, the normalized
SNJR,p, is plotted versus the number of columns, N, used in the orthonormalization. Figure 4
gives SNJR,, versus N for scenarios 1 (L=3), 2 (L=5) and 3 (L=10) respzctively with INR=26.9
dB. In the first scenario where L=3, the optimum value for N, N, equals the number of
jammers, L. For L=5, the optimum value for N stands at N =8, while the value N_,=19 gives
the maximum SNJR,, when L=10. We observe, in general, that SNJR,, is very poor for N<L,
and that the SNJR,;, decreases slowly as a function of N for N>N,,,. Figure 5 gives the same
results for INR=40 dB. In this case, N, tends to be slightly lower as expected.

Figures 6, 7 and 8 display SNJR versus sin(8) curves for N=L and N=N,, for the same
scenarios as above with the INR=26.9 dB. As expected, using N=N, instead of N=L gready
improves the performance of the Yeh technique for scemarios 2 and 3 while leaving the
performance unchanged for scenario 1. Yeh's technique can then be modified by using N,
columns instead of L for the Gram-Schmidt orthogonalization. Since the quantity N /L increases
with the number of jammers, it is not possible to find a single value for N, convenient for every
scenario. In order to determine N, for each scenario, we have devised a thresholding procedure
for Yeh's technique. This procedure allows the number of sample vectors, N, to increas=z beyond
L to approximately, N,,, eliminating the requirement for a priori knowisdge of the number of
jammers and their disposition and power. In the nexi scct-"~ ~ present a new version of Yeh's
technique, called Subspacc Estimation Without Eigenvectors (SEWE).
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5.0 Subspace Estimation Without Eigenvectors (SEWE)

The SEWE technique trades off a small increase in the computational load for an
improved SNJR. It is shown that the addition of a thresholding procedure to the
orthonormalization procedure considerably improves the performance of Yeh's technique at the
cost of a moderate increase in computational load. The thresholding procedure has two
advantages: firstly, a priori knowledge of the number of jammers is not required; secondly, the
procedure leads to selection of values for N close to N,

We investigate two different statistics. The first statistic is defined as the power of the
residual basis vector after orthogonalization, T, (5,6):

T, = o (@)

where u,, is the residual basis vector after orthogonalization at the m® step. This is compared to
a threshold, A,, which is proportional to the noise power. The procedure terminates when the
power of the residual basis vector is approximately equal to the noise power. The second statistic
T, is based on the volume of the generalized parallelepiped defined by the vertices of the
vectors, [r,,....r,] where r, is the i* column vector of the covariance matrix (8]. Noting that u,
is the i® orthogonal basis vector generated from the column vectors, r,, r, up to r;, the volume

of the parallelepiped is given by:
x fu,|

i=1

It is also noted that Irf 2 laf. A test statistic based on the square of the volume is given by

a |up
Tm™ ‘E.EP'

(5)
We observe that T, , < 1, with T, ,=1 when the r;’s and u,’s are colinear. Secondly, because the
u,’s are generated from the r;’s by the Gram-Schmidt process, T, is independent of any overall
scale fas:tors or gain factors i.e. multiplying all of the data vectors by a constant will not change
Tya- In general as m increases, a point will be reached where the jamming space is well
represented by the N=m vectors, u, to uy. T, decreases rapidly as m increases beyond N. The
optimum value for N, N, is selected when the quantity, T, '?®, which is the length of the edge
of a cube of volume equal to (T,)'"? falls below a threshold, A,. Since the statistic T, is always
smaller than 1, A, is chosen accordingly.

The details of the new algorithm follow. As in Yeh’s technique, the covariance matrix is
calculated one column at a time:

11




L4

where t,, is the * clement of the m™ column of the covariance matrix.

The algorithm is’ presented here with a statistic T, and a threshold A, which are equal to
either T, , and A, or T,, and A, depending on the statistics investigated.

The technique is implemented as follows:

1) Set m=1 and calculate r,, for &=1 to K.

2 u, =r, =g fa - Fxal

~ 3) Calculate a statistic T, according to equation (4) or (5)

4)
KT, >A
Vo = U/ Uy |
v, = 0; the procedure terminates indicating no jammers are present.
5) Set m=m+1

6) Calculate r,, for ¢=1 to K according to (6).
7

m-1 vff
=-r, - (ViZ,) V.
u, ; 1 1

8) Calculate the statistics T,, according to (4) or (5).
9)
. Ta>A

Vo =0/, ]

Vo = 0; the procedure terminates with N basis vectors where N=m-1.

else

Calculate w, as,

12




N
V, =W, - Z (vﬁ'w,) v

i=1

The choice of a value for A depends on the choice of the statistics. If T, = T, ,, A is chosen
proportional to noise power. If T, = T, 4, is related to a length. The addition of a threshold
in the procedure increases the computational load. The new computational load is given by:

Cw N[ (M~ .75)K + N(K - %’) N %’ + (K+.5)]

where N depends on the threshold value. As the threshold A decreases, the computational load
increases.

5.1 Simulation results - SEWE technique

We first determine through simulation the optimum values for A, and 4,. We also analyze
the effect of the number of jammers and of the Jammer-to-Noise Ratio, JNR, on the selection of
the threshold. Figure 9 gives normalized SNJR,, versus A, for scenarios 1, 2 and 3 with
JNR=26.9 dB. All three scenarios have a maximum SNJR,, for a value of A, between .65 mW
and 3.2 mW. As A, gets larger than A, ., the SNJR,;, decreases very quickly for scenarios 2 and
3. This region corresponds to a small number of basis vectors (Same area as N<L in section 4.2).
On the other hand, as 4, gets smaller than A, ,, the SNJR, gently rolls off (Case where N>N,,
in section 4.2). Setting the threshold's value to 1.3 mW gives performance near optimum SNJR,,,
(£0.1 dB).

SNIJR,; versus A, is shown in Figure 10 for the same scenarios as above with JNR=40
dB. In this case, a value of 1.3 mW for A, gives the near maximum value (£0.15 dB) for the
three scenarios. The value of the threshold is only slightly affected by the number of jammers
and the INR. However, the threshold depends on the number of array elements, K, and is also
proportional to the squared power of the noise power, p,.

We then investigate the second statistic T, and the threshold, 4,. Figures 11 and 12 give
SNIR,, versus A, for scenarios 1, 2 and 3 with JNR=26.9 ind 40 dB respectively. We observe
basically the same behavior as for A,. A value of 0.005 for A, gives near maximum SNJRy, (%
0.15 dB) for SEWE technique for the three scenarios with the two different JNR’s. This threshold
is independent of the noise power, a very practical advantage.

Figures 13, 14 and 15 give SNJR,;, versus sin(6) for scenarios 1, 2 and 3 respectively
when using T,. Results for conventional beamforming and the Yeh-projection technique are also
shown on the same graph. It is clear from these results that adding a thresholding procedure to
Yeh's technique improves the performance. The next section compares the SEWE technique with
DVSO-COVAR and an eigenvector-based projection technique.
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6.0 Comparison with other projection techniques

The SEWE technique is compared with three projection techniques: DVSO, DVSO-
COVAR and an eigen-decomposition based projection method. A brief description is given of
the projection techniques. This is followed by simulation results illustrating the comparative
performance of the various techniques.

6.1.1 DVSO technique

The basis of the Data Vector Selection and Orthogonalization (DVSO) [9, 10, 11}
technique is the selection of the best M vectors from a larger group of N vectors which are
sampled when the transmitting signal is absent and stored before the process begins. The M
vectors are selected on the basis that they yield the highest SNJR as compared to any other set
of M vectors selected from the set of N. The selection process, the Gram-Scmidt
orthogonalization and the computation of the adapted weight, w,, are combined in a single
procedure. The computational load is given by [16]:

Covso = K(0.5+0.5N+2M+MN+M?) +0.5MN

17
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6.1.2 DVSO-COVAR technique

DVSO-COVAR [11] employs the DVSO method in calculating the covanance matrix and
processing its columns to obtain an adapted weight vector. The major feature of DVSO-COVAR
is its selection process: the bsst data vectors are chosen to form the covariance matrix. We are
thus able to obtain a good estimate of the covariance matrix using fewer, but higher quality, {«a

vectors than in the conventional approach. The DVSO method is applied in order to find th.- oA
best data vectors out of a set of N vectors, {x,}. This process is repeated Q times to give

0
- M
My ;_; /
data vectors which are used to calculate the covariance matrix R:
1 < <
R~ =Y x
ur?;: o

The final step applies the DVSO method to the columns of the covariance matrix to find an
adapted weight vector.
The number of computations required by the DVSO-COVAR technique is data-dependent;

the mean number of calculations is estimated by Monte-Carlo simulations. For a single trial
evaluation of the projection matrix, the number of multiplications is [16}):

Q
Y Co (M, N, K) +M (K+1) K/2+C, (H, N, K)
i=1

where

C, = K(0.5+0.5N+2M+MN+M?) +0.5MN

6.1.3 Eigenvector-based projection technique
This technique is based on an eigendecomposition of the covariance matrix. The

covariance matrix is calculated as in Yeh'’s technique with equation (3). This Hermitian matrix
is then decomposed in terms of its eigenvectors as

K
R=Y Av v
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where A, 2 A; 2 ... 2 A is the set of ordered cigenvalues and {v,,....vc} are the corresponding
eigenvectors.

The Akaike Criterion (AIC) [15] is used to select the signal space eigenvectors. The
number of these vectors is the value p which minimizes the function

K
. A

P 1
AIC(p] = (K-p) ln—-_fﬁﬂ.'%._ + pl2K-D),

| S
o Af?
fepel

The computational load of the eigendecomposition technique is given in terms of the
number of complex multiplications as [16]:

C=C, + C,,

The first term, C_,, is the number of multiplications required to calculate the covuriance
matrix:
MK (K+1)

Con = > ,

where M is the number of data vectors used in the formation of the covariance matrix and K is
the number of array elements. The second term, C,,, is associated with the calculation of the
eigenvalues and associated eigenvectors. The total number of multiplications for the evaluation
of the eigenvalues and some associated eigenvectors is

Cov = Cer *+ Cpr, ’Cpov'

where C,, the number of operations required for the tridiagonalization, is given by

Ctt- —§-K’ + l

2, 25
K + 5 K-17,
The number of computations for the QL algorithm is
COL ad 6K2"3K,

The number of operations required for the power method, C,, is

Coow ™ 6K%n,, + 12Kni, + 6£,(n),) + 8n),.

pow
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where n_ is the number of eigenvectors to be calculated and f(n,)) is the number of
computations required for the full eigen solution of a n,, x n., matsix.

6.2 Simulation results - projection techniques

This section compares SEWE technique with DVSO, DVSO-COVAR and an eigen
decomposition technique in terms of SNJR versus computational load. We performed simulaiions
for the three s.enarios discussed previously with JNR=26.9 dB. In DVSO-COVAR, the
parameter N was set to approximately (1.5 L), while Q was varied from I to 20. Figures 16, 17
and 18 give SNJR,, versus the aumber of complex multiplications for DVSO, DVSO-COVAR,
SEWE and an eigenvector-based projection technique for scenarios 1 (L=3), 2(L=5) and 3 (L=10)
respectively. When L<<K as in scenario I, the SEWE technique achieves near optimum
performance (only .53 dB below maximum value while DVSO-COVAR is 0.2 dB below) with
20 times fewer computations than DVSO-COVAR. For larger L (scenario 3), the SNJR;p was
2.72 dB below the optimum in SEWE method as opposed to .34 dB for DVSO-COVAR. But
SEWE required 10 times fewer computations than DVSO-COVAR. For all the three scenarios,
eigen decomposition-based method achieves the optimum SNJR,; but at the cost of a huge
computational load. DVSO gives sub-optimum performance but with far fewer computations.

These results show that SEWE technique is certainly the best choice for cases where
L<<K (scenarios 1 and 2 for example). It is also a good choice for a larger aumber of jammers
if one is willing to trade-off some performance for a large reduction in the number of
computations.




o —
—— '2
[en]
=
ga -
(5] -8 /
N
E -8
S —SEWE
2 _10 --- DVSO-COVAR
-0 | DVSO
- EIGENVECTORS
-12 T e
100 1000 10000 100000 1e+006

Complex Multiplications
Figure 16  Normalized SNJR,, versus Complex Muitiplications with L=3, K=64 and

=26.9 dB
0 — v
2k -
B st
;
g:a € |
= F
172 ] -8 F
N .10 E—
g az b —SEWE
=2 : -- DVSO-COVAR
14 F - DVSO
g - EIGENVECTORS
'16 C A, PP | POV i
100 1000 10000 100000 1e+006

Complex Multiplications

Figure 17  Normalized SNJR,, versus Complex Multiplication for L=5, K=64 and JNR=26.9
dB.

21




o pmrm————m0- B momMm——— o
-2 f [—sEwWE
—_ E |-~ DVSO-COVAR ™~V
(=a) < F | -DVSO P
Ea & | |~ EIGENVECTORS
S e
P .10 F
g 12 |
g -14F
-18
-m S . e L Y 1 . iy '} b
100 1000 10000 100000 1e+006

Complex Multiplications

Figure 18  Normalized SNJR,, versus Complex Multiplication for L=10, K=64 and JNR=26.9
dB.

7.0 Conclusions

This report has shown that the Yeh projection technique significantly improves the
performance of adaptive beamforming provided a priori information is available on the number
of jammers. An improvement to the Yeh technique has been developed and presented; this
improved technique, called Subspace Estimation witout Eigenvectors (SEWE), does not require
a priori knowledge of the jammer scenario. The SEWE technique has been compared with other
fast projection methods and also with an eigenvector decomposition technique. The SEWE
technique demonstrated superior performance in terms of Signal-to-Noise-plus-Jammer Ratio
(SNJR) versus computational load, except when a very high SNJR is required; in this latter case,
DVSO-COVAR and eigenvector projection perform somewhat better. It sould be noted however,
that the best performance for SEWE for a 64 element array with 10 jammers was a loss of only
2 dB with respect to the optimum. This loss was considerably less for smaller number of
jammers, e.g. 3 and 5 jammers where the loss was 0.2 dB and 1.2 dB respectively.
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