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I
ABSTRACT

This report describes a new fast projection technique for adaptive beanforming. It is
based on a technique proposed by Yeh where Gram-Schmidt orthogonalization is applied to N
rows of the covariance matrix to obtain the signal subspace. In Yeh's technique, N is equal to
L the number of jammers. This technique, applied to bearing estimation, requires a priori
knowledge of the number of sources. Even though it gives good results when the number of
sources is much smaller than the number of array elements, the performance of Yeh's technique
degrades severely as the number of jammers increases. We improve the technique by taking a
larger number of rows in the orthogonalization: we add a thresholding procedure to the technique
in order to optimize N. We compared this new technique, called Subspace E-. -ation without
Eigenvcctors (SEWE), with other fast projection techniques. SEWE was shown to give superior
performance in terms of the Signal-to-Noise-plus-Jammer Ratio achievable with a given
computational load, except when a very high SNJR is required.

RISUM

Ce rapport dicrit une nouvelle technique de projection rapide pour la formation
autoadaptative des faisceaux. Cette technique est basde sur une mithode proposde par Yeh oft une
orthogonalisation de Gram-Schmidt est appliquie A N colonnes de la matrice de covariance pour
obtenir le sous-espace du signal. Dans la technique de Yeh, le nombre de colonnes, N, est dgal
au nombre de broujileurs, L. Cette technique, ut"lis•e pour I'estimation des directions des sources,
requiert une connaissance a priori du nombre de sources. Meme si ele donne de bons rdsultats
lorsque le nombre de brouilleurs est trts faible par rapport au nombre d'4ldments, la performance
de la technique de Yeh se d6grade rapidement lorsque le nombre de brouilleurs augmente. Nous
am~liorons la mithode en lu ajoutant tin scuil cc qui permet d'optimiser la valeur de N en
augmentant le nombre colonnes utilisdes pour faire l'orthogonalihation. Cette nouvelle technique
est comparde avec d'autres techniques de projection. On d~montre qu'eIle donne une meilleure
performance en terme du Rapport Signal-sur-Bruit-plus-Brouillage (RSBB) qu'on peut atteindre
avec tne charge de calcul donnde, sauf dans le cas de RSBB trns 61evd.
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EXECUTIVE SUMMARY

Jamming of radar systems via the antenna sidelobes or the antenna mainbeam can
seriously degrade radar performance. Thus jamming can provide a crucial advantage to enemy
forces if radar electronic counter-counter-measures (ECCM) are not effective.

Adaptive antenna nulling provides an effective ECCM but at the cost of increased
equipment complexity and capability. A major cost factor is the need for a very high speed, real-
time, computational capability. The computational capability required is so high it limits the
application of this effective ECCM.

This report decribes and evaluates a computationaUy efficient algorithm that reduces the
requirments for high speed computation by 10 times in some cases.

The new method, called Subspace Estimation Without Eigenvectors (SEWE), uses the
concept of signal and noise subspace. Here the noise subspace is the jamming space. The
algorithm calculates a projection matrix which represents a subspace orthogonal to the jammer
subspace. The projection matrix is applied to a weight vector that steers the array in a particular
direction. When the resulting adapted weight vector is applied to superimposed signal and
jamming, the jamming signals are greatly reduced while the loss of signal is small. This occurs
because the adapted weight vector is approximately orthogonal to the jamming signals.

We compared the SEWE technique with other fast projection techniques. SEWE was
shown to give superior performance in terms of the achievable Signal-to-Noise-plus-Jammer
Ratio (SNJR) for a given computational load, except for the case where very high SNJR is
required.
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SUBSPACE ESTIMATION WITHOUT EIGENVECTORS FOR ADAPTIVE

BEAMFORMING

1.0 Introduction

Array signal processing techniques based on eigenvector projection are highly effective
for both interference suppression and for estimation of signal angle-of-arrival. Projection methods
employ the concept of signal and noise subspaces. In the case of jamming signals, the noise
space represents the jamming space. Jamming is cancelled by projecting the array data vectors
into a space orthogonal to the noise space, ie the signal space. In the case of angle-of-arrival
estimation, the array data vectors are projected into a space orthogonal to the signal space. These
techniques estimate the noise and signal subspace with an error that decreases when an increasing
number of sample vectors is used in the calculation of the covariance matrix. 6.veraging is
exploited by incorporating many data vectors into an estimated covariance natrix which
approaches the true covariance matrix asymptotically as the observation period increases.

Btlhring [1.2] proposed an eigenvector-based projection technique for adaptive
beamforming; the eigenvectors corresponding to the strongest eigenvalues of the covariance
matrix are used to calculate a projection matrix orthogonal to tha jammer subspace. This
projection matrix is applied to the array steering vector which is projected into a subspace
orthogonal to the interference. The resulting adapted steering weight vector is, ideally,
orthogonal to the jamming signals. Variations of the eigenvector-based adaptive nulling
algorithms have been studied by Gabriel [3]. He showed that the sidelobes of low sidelobe
antennas were less perturbed when eigenvector-based projection techniques were used as an
alternative to the Sample-Matrix-Inversion (SMI) technique of Reed et al [4]. Because the signal
or interference subspace is estimated with a finite sample size, the cancellation of the jamming
is imperfect.

Projection techniques based on eigenanalysis are computationally demanding particularly
for arrays with a large number of elements. This limits the applicability of these techniques where
high-speed real-time processing is required. Fast projection techniques based on Data Vector
Orthogonalization (DVO) [5,6,7,8] avoid calculation-intensive eigenanalysis, but at a cost in
performance. The loss in performance comes from the inability of these techniques to incorporate
averaging to better estimate the signal or interference subspace. In contrast, eigen-based methods
become progressively more accurate as the number of data vectors incorporated in the covariance
matrix increases. In the most advanced version of DVO, Nickel [8] introduces a double-threshold
procedure that improves performance; an internal threshold rejects data vectors that do not add
sufficient information about the signal or interference subspace, while an external threshold keeps
the procedure going until a performance criterion is satisfied. Toulgoat and Turner [9,10,111
have developed a technique called Data Vector Selection and Orthogonalization (DVSO) which
provides a better estimate of the interference subspace than does DVO, albeit at the price of a
higher computational load. The required load is, however, still much less than that of the
eigenvector techniques. In addition, Toulgoat and Turner (9,10,111 have used DVSO with
averaging procedures to develop two algorithms that provide a better trade off in performance



versus comr tational load. The first technique, called Data Vector Selection, OthogonaJization
and Weight ,VERaging (DVSO-WAVER), averages repeated computations of the adapted weight
vectors to ',ive a final adapted weight vector for nulling the jamming. The second, called DVSO-
COVAR, uses a data selection process for the choice of data vectors used in the formation of the
covariance matrix. Gram-Schmidt (GS) orthogonalization is then applied to the columns of the
covariance matrix to obtain a good estimate of the signal subspace. These two methods provide
essentially the same Signal-to-Noise-plus-Jammer Ratio (SNJR) as the SMI method but require
far fewer computations.

The data-vector selection technique used in DVSO-COVAR is similar to a technique that
Reilly and Law (121 used for direction finding. However, (12] applies the selection process to
the permutation and selection of columns of a covariance matrix. In contrast, in DVSO-COVAR.
the data selection is applied prior to the calculation of the covariance matrix, in order to choose
the data vectors to be used in the formation of the covariance matrix. A procedure equivalent to
that of (121 is then applied for selecting a subset of the columns vectors of the covariance matrix.

Yeh [13,14] proposed another technique based on Gram-Schmidt orthogonalization. This
technique was first applied to bearing estimation; the projection matrix is computed by using any
L rows of the covariance matrix where L is the number of jamnmers. It is computationally more
efficient than projection techniques using eigenvectors especially for the case where the number
of jammers is much smaller than the number of array elements. In his report, the Yeh technique
is applied to adaptive beamforming and shown to give good results when the number of jammers
is much smaller than the number of array elements. We propose an improved version of the Yeh
technique incorporating a threshold procedure, called Subspace Estimation Without Eigenvectors
(SEWE). This new algorithm is compared with eigenvector decomposition, DVSO and DVSO-
COVAR techniques.

2.0 Signal and jammer characteristics

Radar systems usually transmit pulsed signals that are narrowband with respect to the
carrier frequency. Since the targets of interest ace in the far field, the received signals are plane
waves. When no reflection is received from a target, the data vector, x(t.,), is defined by:

L

N(,. t,.jx•) a (e,) + n (t,) - A.I + n,

where L is the number of jammers, J.=fAj(tj,...,jK(tQ)] is the jammer vector with j,(t4) being

complex gaussian amplitude of the ih jammer at time %. n, is the receiver noise vector with
mutually independent components. Its power is En.2 }=Koa2 where K is the number of array
elements. The sampling rate is selected such that the quantities ji(t.) and j1(t..,) are statistically
independent. The matrix A represents the directions of the jammers with A=[a(,)...a(OK)1. The
quantity a(O) is a deterministic vector representing the direction of arrival of the id' jammer.
Without any loss of generality, we assume a uniform linear array with equally spaced elements.
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In that case. a(61) is defined as

a(0O)T-[1,exp(j..25.dsin(0,)) ... exp(j 2rd(K-1) sin(8,) ) (1I XI

where d is the inter-element spacing, e, is the direction of arrival of the id jammer, . is the
jammer wavelength.

When projection techniques am applied to radar systems for adaptive nulling of jammers,
it is important that sample vectors be taken in the absence of signal and clutter. This is a
standard radar problem; one solution is to sample at time intervals corresponding to ranges where
it is kIown that there are no targets or clutter returns.

3.0 Performance criterion

The ultimate measure of performance of an adaptive array is the Signal-to-Noise-plus-
Jammer Ratio (SNJR). We attempt to maximize this quantity by using an adapted weight vector.
w,, that discriminates against jamming while causing a minimal loss of useful signal. The adapted
weight vector, w,, is calculated from a steering vector, w, which specifies the direction for which
the SNJR is to be maximized.

V, - a T v,

where T is a transformation matrix and a an arbitrary constant. The optimum solution for
maximisation of the SNJR is given by T--•' where 0 is the true covariance matrix. For an
infinite Jamner-te-Noise Ratio (JhR) in each channel the transformation can be written as

T - I-A (ANA) -'A"

where A is the matrix of the directions of the jammers given by (1). The transformation matrix
T. projects the steering vector into a subspace orthogonal to the subspace which is spanned by
the directional vectors of the jammers (jammer subspace). Instead of using the direction vectors
of the jammers to build up the projection matrix, T, one can use any L basis vectors which span
this subspace. The projection matrix, T. is written as:

T - I - vvN (2)

where V=[v1,....vj is the matrix of the L basis vectors. When sensor noise is present (especially
for low JNR), we may need more than L basis vectors to better define the jammer subspace.

With this adapted weight vector the SNJR is given by:

3



SN ( {Ie) a(e)(P a2 is(e) T a(e)P a2

E( W ) K a(e) m T*Ta(e) K

where a(6) is the steering vector with 0 being the steering direction. The quantity oY/K is the
normalization factor.

We calculate a two-dimensional SNJR to evaluate the performance in all directions. It
is defined as follows:

2SNJR= w SNJR (oe)

An area of one beamwidth around each jammer is excluded since the SNJR degrades severely
at those locations. The beamwidth, BW, is defined as follows:

BW-2 2' K

where L is the length of aperture; L = K W.2,

3.1 Test case

The array has 64 elements with half-wavelength spacing between each element.
Performance is evaluated for three different scenarios: scenario #1 with L-=3 jammers located at
Ot=-33.4°, e2=-12.7° and 03=-8.6°; scenario #2 with L-=5 jammers located at 91=-41.3°, 0=-
24.2", 03=-9.2*, 04=-6.3° and 01=-3.4°; scenario #3 with L,=l0 jammers located at 06=-45.2°, 02=-
41.30, 03=-37.6*, 04=--24.2°, 05=-18.1, 06=-15.P, ",=-12.1", 0,=-9.20, 0,=-6.3 .and 82o=-3.4°.
We use two different values for the JNR: 26.9 dB and 40 dB. The noise power, a', is set at 1.

4.0 Yeh-Projection technique

4.1 Description of the technique

The Yeh-projection technique [13,141 calculates the projection matrix using any L
columns of the covariance matrix, where L is the number of jammers. The sample covariance
matrix is defined as follows:
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where M is the number of samples used in the formation of the covy .,,-.ce matrix and r, is the
j" column of the covariance matrix. The jammer subspace. /, is calculated by an
erthonormalization of the L columns of the covanance matrx, R. that have been estimated. The
projection matrix is then calculated with equation (2).

Yeh ( 13,14) used this projection matrix to evaluate a spectral estimator and then determine
the positions of the sources. It gives poor results when the Signal-to-Noise Ratio is low [13].
Moreover, the direction fi'ding application requires the technique to be able to discriminate
between two sources which are very close together. In contrast, adaptive beamforming has only
to cancel jamming signals which are very strong with respect to the receiver noise power;
furthermore, there is no need for two different nulls if the signals are very close together. For
those reasoas, the projection technique of Yeh is well suited for jammer nulling. The projection
matrix is used to calculate an adapted weight vector, w., from a steering weight vector. w,,

w. = Tw.

where the steering weight vector, w,, is given by

w,- [1. exp(:-I! d sin(8,)).... exp(2 (K-1)i d sin(e,)I

Besides its good performance in terms of SNJR. Yen's technique has a small
computational load compared with other adaptive beamforming algorithms such as Bihnng
technique, SNLI or the DVSO-COVAR technique. The computational load for Yeh's technique
is given in terms of the number of complex multiplications (c.m.) required to find the adapted
weight vector

MK,,+L 2K

where M is the number of samples used in the formation of the co'variance matrix, K is the
number of array elements and L is the number of jammzrs. Note that only L columns of the
covariance matrix have to be calculated, which reduces the number of complex multiplications
to MKL (c.m.) compared with M(K+I)K/2 (c.m.) for the calculation of the lower triangle of the
covariance matrix. If L<<C, this greatly reduces the computational load incurred in the
calculation of the covariance matrix.

The next section presents simulation results for the Yeh-projection technique as applied
to adaptive beamforming.
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4.2 Simulation results-Yeh's technique

In this section. Yeh's technique is compared with conventional Fourier bearmforming with
Taylor antenna tapering to control the sid,.dobes. The comparison is carried out by %,:.,.ni'n the
array over the entire range of angles, 0, i.,. for -15 sin(@) S1. As the scan angle passes the
jamming signal there is a very large decrease in SNJR; however the region of decreased SNJR
is, in general, very much narrower fov the Yeh technique.

Figures 1. 2. 3 show the no-- '.zed SNJR versus sin(0) for sccnarios I (L=3). 2 (L-=5)
and 3 (L=10) for both the Yeh techts.,.e and Fourier beamforming wi.th Taylor weights. For 311
of the scenarios, the JNR is 26.9 dT For the small ratio L/K in scenario 1. the SNIR curve for
the Yeh technique approaches the o. ,,um value of 0 dB except -or areas around the jammer.
The SNJR for Fourier beamforming w,-h Taylor weighting is severely degraded everywhere. As
the number of jammers increases or as they get closer together, the performance of the Yeh-
projection degrades progressively as seen in Figure 3. Here the number of jammers has increased
to ten with a cluster of six closely spaced. In Figure 3, the SNJR for the Yeh technique is 8 dB
below SNJR maximum.

The performance of the Yeh technique can be improved by using a larger number of
columns in the orthonormalization. To evaluate the number of columns required, the normalized
SNJRI0 is plotted versus the number of columns, N. used in the orthonormalization. Figure 4
gives SNJRo versus N for scenarios I (L=3), 2 (L,=5) and 3 (L=10) resp'tctively with JNR=26.9
dB. In the first scenario where L=3, the optimum value for N. N•,., equals the number of
jammers, L. For L=5, the optimum value for N stands at N.,=8, while the value N,= 19 gives
the maximum SNJRD when L=0. We observe, in general, that SNJR, is very poor for N<L.
and that the SNJR. decreases slowly as a function of N for N>N.. Figure 5 gives the same
resulth for JNR=40 dB. In this case, N. tend& to be slightly lower as expected.

Figures 6, 7 and 8 display SNJR versus sin(@) curves for N=L and N=NO, for the same
scenarios as above with the JNR=26.9 aB. As expected, using N=N. instead of N=L greatly
improves the performance of the Yeh technique for scenarios 2 and 3 while leaving the
performance unchanged for scenario 1. Yeh's technique can then be modified by using N',
columns instead of L for the Gram-Schmidt orthogonalization. Since the quantity No,/L increases
with the number of jammers, it is not possible to find a single value for N., convenient for every
scenario. In order to determine N,. for each scenario, we have devised a thresholding procedure
for Yeh's technique. This procedure allows the number of sample vectors, N, to increase- beyond
L to approximately, N,., eliminating the requirement for a priori knowledge of the number of
jammers and their disposition and power. In the next scc'...- - resent a new version of Yehs
technique, called Subspacc Estimation Without Eigenvectors (SEWE).

6
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5.0 Subspace Estimaton Without Eigenvectors (SEWE)

The SEWE technique trades off a small increase in the computational load for an
improved SNJR. It is shown that the addition of a thresholding procedure to the
orthonormalization procedure considerably improves the performance of Ych's technique at the
cost of a moderate increase in computational load. The thresholding procedure has two
advantages: firstly, a priori knowledge of the number of jammers is not required; secondly, the
procedure leads to selection of values for N close to N0,.

We investigate two different statistics. The first statistic is defined as the power of the
residual basis vector after orthogonalization, T, (5,6]:

Tia -l (4)

where ua is the residual basis vector after orthogonalization at the inm step. This is compared to
a threshold, A,, which is proportional to the noise power. The procedure terminates when the
power of the residual basis vector is approximately equal to the noise power. The second statistic
T2. is based on the volume of the generalized parallelepiped defined by the vertices of the
vectors, [r1,....rJ where r, is the i column vector of the covariance matrix (8]. Noting that i,
is the i* orthogonal basis vector generated from the column vectors, r,, r2 up to r,, the volume
of the parallelepiped is given by:

1-1

It is also noted that bIr a W. A test statistic based on the square of the volume is given by

Slu? 
(5)

We observe that T2 . 1, with Tz=I when the r,'s and u,'s are colinear. Secondly, because the
u,'s are generated from the r,'s by the Gram-Schmidt process, T2. is independent of any overall
scale fw:tors or gain factors i.e. multiplying all of the data vectors by a constant will not change
T2.. In general as m increases, a point will be reached where the jamming space is well
represented by the N--m vectors, u, to u.. T2, decreases rapidly as m increases beyond N. The
optimum value for N, N.,, is selected when the quantity, T2 Ma, which is the length of the edge
of a cube of volume equal to (T2)"2 falls below a threshold, 2. Since the statistic T2 is always
smaller than 1, A. is chosen accordingly.

The details of the new algorithm follow. As in Yeh's technique, the covariance matrix is
calculated one column at a time:

11



.(6)

where r, is the I* element of the m* column of the covariance matrix.

The algorithm is presented here with a statistic T. and a threshold A. which are equal to

either TI,. and A,, or T2 and A2 depending on the statistics investigatd.

The technique is implemented as follows:

1) Set m=l and calculate r.. for f=1 to K.

2) a. = r, - [r,. r2 ... r]J T

3) Calculate a statistic T. according to equation (4) or (5)

4)
IfT.>A

v. = ,I Ui.
else

- 0; the procedure terminates indicating no jammers are present.

5) Set m---m+l

6) Calculate r,.. for t=-I to K according to (6).

7)

1 V-IZ. V

8) Calculate the statistics T. according to (4) or (5).

9) If"':. > A
v. =U./tI,.

else
v= 0; the procedure terminates with N basis vectors where N=m-l.

Calculate w, as,

12



W. -W. ( W .

The choice of a value for A depends on the choice of the statistics. if T, = TI.., A is chosen
proportional to noise power. If T, = T2., A2 is related to a length. The addition of a threshold
in the procedure increases the computational load. The new computational load is given by:

C-N[ (M- .75)K + (K - H) + H + (K+.5)]
2 2

where N depends on the threshold value. As the threshold A decreases, the computational load
increases.

5.1 Simulation results - SEWE technique

We first determine through simulation the optimum values for A, and A2. We also analyze
the effect of the number of jammers and of the Jammer-to-Noise Ratio, JNR, on the selection of
the threshold. Figure 9 gives normalized SNJRm versus A, for scenarios 1. 2 and 3 with
JNR=26.9 dB. All three scenarios have a maximum SNJR2D for a value of Au,, between .65 mW
and 3.2 mW. As A, gets larger than Al,, the SNJR2D decreases very quickly for scenarios 2 and
3. This region corresponds to a small number of basis vectors (Same area as N<.. in section 4.2).
On the other hand, as A, gets smaller than A, the SNJR20 gently rolls off (Case where N>N0 ,,
in section 4.2). Setting the threshold's value to 1.3 mW gives performance near optimum SNJR2D
(*0.1 dB).

SNJRwo versus A, is shown in Figure 10 for the same scenarios as above with JNR=40
dB. In this case, a value of 1.3 mW for A, gives the near maximum value (*0.15 dB) for the
three scenarios. The value of the threshold is only slightly affected by the number of jamnmers
and the JNR. However, the threshold depends on the number of array elements, K, and is also
proportional to the squared power of the noise power, p3.

We then investigate the second statistic T 2 and the threshold, A2. Figures 11 and 12 give
SNJRw versus A2 for scenarios 1, 2 and 3 with JNR=26.9 ind 40 dB respectively. We observe
basically the same behavior as for A,. A value of 0.005 for A2 gives near maximum SNJRw, (t
0.15 dB) for SEWE technique for the three scenarios with the two different JNR's. This threshold
is independent of the noise power, a very practical advantage.

Figures 13, 14 and 15 give SNJR2o versus sin(e) for scenarios 1, 2 and 3 respectively
when using T2. Results for conventional beamforming and the Yeh-projection technique are also
shown on the same graph. It is clear from these results that adding a thresholding procedure to
Yeh's technique improves the performance. The next section compares the SEWE technique with
DVSO-COVAR and an eigenvector-based projection technique.
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6.0 Comparison with other projection techniques

The SEWE technique is compared with three projection techniques: DVSO, DVSO-
COVAR and an eigen-decomposition based projection method. A brief description is given of
the projection techniques. This is followed by simulation results illustrating the comparative
performance of the various techniques.

6.1.1 DVSO technique

The basis of the Data Vector Selection and Orthogonalization (DVSO) [9, 10, 11]
technique is the selection of the best M vectors from a larger group of N vectors which are
sampled when the transmitting signal is absent and stored before the process begins. The M
vectors are selected on the basis that they yield the highest SNJR as compared to any other set
of M vectors selected from the set of N. The selection process, the Gram-Scmidt
orthogonalization and the computation of the adapted weight, w,, are combined in a single
procedure. The computational load is given by [16]:

CD= - K(0 .5+0. 5N+2M+MN+M 2 ) +0. 5MN
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6.1.2 DVSO-COVAR technique

DVSO-COVAR [11( employs the DVSO method in calculating the covanance matrix and
processing its columns to obtain an adapted weight vector. The major feature of DVSO-COVAR
is its selection process: the best data vectors are chosen to form the covariance matrix. We are
thus able to obtain a good estimate of the covariance matrix using fewer, but higher quality. 4 'ia
vectors than in the conventional approach. The DVSO method is applied in order to find tt.- A
best data vectors out of a set of N vectors. xj}. This process it repeaed Q times to give

0

data vectors which are used to calculate the covariance matrix R:

MrR - 1 A,4

The final step applies the DVSO method to the columns of the covariance matrix to find an
adapted weight vector.

The number of computatiorns required by the DVSO-COVAR technique is data-dependent;
the mean number of calculations is estimated by Monte-Carlo simulations. For a single trial
evaluation of the projection matrix, the number of multiplications is [16]:

0
1C,(M,,N,K) +M4(K+J)K12,Cb( H,NK)

I-'

where

Cb - K(O. 5+0.SN*2M÷MN.M2 ) +0.5MI

6.1.3 Eigenvector-based projection technique

This technique is based on an eigendecomposition of the covariance matrix. The
covariance matrix is calculated as in Yeh's technique with equation (3). This Hermitian matrix
is then decomposed in terms of its eigenvectors as

K
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where X, Z X > ... Z IX is the set of ordered eigenvalues and (v, ... vK} are the corresponding
eigenvectors.

The Akaike Criterion (AIC) (15] is used to select the signal space eigenvectors. The
number of these vectors is the value p which minimizes the function

K

AIC(p] - (K-p) 1n + p(2K-pl

II A.• '

The computational load of the eigendecomposition technique is given in terms of the
number of complex multiplications as [16]:

C M Cm + C.,

The irust term, C., is the number of multiplications required to calculate the covzniance
matrix:

cM - M(K) (K+1)
2

where M is the number of data vectors used in the formation of the covariance matrix and K is
the number of array elements. The second term. C,, is associated with the calculation of the
eigenvalues and associated eigenvectors. The total number of multiplicatiotis for the evaluation
of the eigenvalues and some associated eigenvectors is

C.,- C . co +,

where C., the number of operations required for the tridiagonalization, is given by

2K] -1 3-1K 2 -L- K-7,
3 4 12

The number of computations for the QL algorithm is

CoQL - 6K 2 -3K,

The number of operations required for the power method, C,,, is

62 3Kp ] 2nlay 12102,, +6r,(n,. 8n.
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where n,, is the number of eigenvectors to be calculated and f,(nQ,) is the number of

computations required for the full eigen soluuon of a n,, x n,, matrix.

6.2 Simulation results - projection techniques

This section compares SEWE technique with DVSO. DVSO-COVAR and an eigen

decomposition technique in terms of SNJR versus computational load. We performed simuhuions

for the three s.;enarios discussed previously with JNR=26.9 dB. In DVSO-COVAR, the

parameter N was set to approximately (1.5 L), while Q was varied from I to 20. Figures 16. 17

and 18 give SNJRL versus the number of complex multiplications for DVSO, DVSO-COVAR.

SEWE and an eigenvector-based projection technique for scenarios I (L=3), 2(L=5) and 3 (L-10)

respectively. When L<<K as in scenario 1, the SEWE technique achieves near optimum

performance (only .53 dB below maximum value while DVSO-COVAR is 0.2 dB below) with

20 times fewer computations than DVSO-COVAR. For larger L (scenario 3), the SNJRzD was

2.72 dB below the optimum in SEWE method as opposed to .34 dB for DVSO-COVAR. But

SEWE required 10 times fewer computations Than DVS3O-COVAR. For all the three scenarios,
eigen decomposition-based method achieves the optimum SNJRm but at the cost of a huge

computational load. DVSO gives sub-optimum performance but with far fewer computations.

These results show that SEWE technique is certainly the best choice for cases where

L<<K (scenarios I and 2 for example). It is also a good choice for a larger number of jammers

if one is willing to trade-off some performance for a large reduction in the number of
computations.
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7.0 Conclusions

This report has shown that the Yeh projection technique significantly improves the
performance of adaptive beamforming provided a priori information is available on the number
of jammers. An improvement to the Yeh technique has been developed and presented; this
improved technique, called Subspace Estimation witout Eigenvectors (SEWE), does not require
a priori knowledge of the jammer scenario. The SEWE technique has been compared with other
fast projection methods and also with an eigenvector decomposition technique. The SEWE
technique demonstrated superior performance in terms of Signal-to-Noise-plus-lammer Ratio
(SNJR) versus computational load, except when a very high SNJR is required; in this latter case,
DVSO-COVAR and eigenvector projection perform somewhat better. It sould be noted however,
that the best performance for SEWE for a 64 element array with 10 jammers was a loss of only
2 dB with respect to the optimum. This loss was considerably less for bmaller number of
jammers, e.g. 3 and 5 jammers where the loss was 0.2 dB and 1.2 dB respectively.
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