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I. INTRODUCTION
Neuroscientists have known for decades that sensory information is encoded in the

intervals between the action potentials or "spikes" characterizing neural firing events.
Statistical analyses of experimentally obtained spike trains have shown the existence of a
significant random component in the inter-spike intervals. There has been speculation, of
late, that the noise may actually facilitate the transmission of sensory information; cer-
tainly there exists evidence that noise in networks of neurons can dynamically alter the
properties of the membrane potential and the time constants [37,66]. The recent re-
kindling of interest in the Stochastic Resonance phenomenon has lead to speculation that
such nonlinear cooperative effects may occur naturally in living systems.

Stochastic resonance (SR) is a cooperative nonlinear phenomenon wherein the
signal-to-noise ratio (SNR) at the output of a noisy nonlinear dynamic system driven by a
weak deterministic modulation (which we shall take to be time-periodic), can actually be
enhanced by increasing the noise. Given a bistable dynamic system, for example, infor-
mation is transmitted through the system in the form of switching events between the
stable states (attractors) of the potential function underlying the dynamics. Suppose a
periodic signal is applied; its effect is to rock the potential, alternately raising and lower-
ing the wells. However, should its amplitude be very low (compared to the height of the
potential barrier), it will not be able to induce switching. In the presence of even small
amounts of noise (assumed throughout this work to be Gaussian and delta-correlated)
there will, however, always be a finite switching probability. Since the switching proba-
bility is greater when the system is in the 'elevated' well, which occurs when the signal is
at its maximum, one realizes that the noise-induced switching events may acquire some
degree of coherence with the deterministic signal as long as certain important system
parameters (notably the potential barrier height and the locations of the fixed points) are
appropriately adjusted. The power spectrum obtained from the time-series solution of this
system shows a sharp signal, together with its weaker odd harmonics (for the case of a
symmetric potential), superimposed on a Lorentzian-like noise background. Theoreti-
cally, the signal is represented as a 8-function spike; in practice, of course, the spike has a
finite width and amplitude determined by the bandwidth of the measuring system [73,74].
Then, in order to compare theoretical results with experiments or simulations, one
integrates over the line-shape of the signal function (at the fundamental frequency). If the
signal feature is narrow and, in particular, falls entirely within one bin of the (discrete)
experimental Fourier transform process, then one replaces the 8-function by 1/ar, the
inverse of the width of a single frequency bin in the FFT. The area obtained by the
integration represents the fraction of total switching events that are coherent with the
stimulus. With increasing noise, the signal power spectral density, S (measured at the
fundamental frequency Q,), rises until, for a critical noise strength, the intra-well motion
gives way to inter-well (or hopping) motion as the major contributor to the dynamics. At
this point S decreases with noise; for very large noise strengths, the switching becomes
noise-dominated and very rapid, with all coherence with the periodic signal being
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destroyed. For modulation frequencies comparable to the Kramers rate (the characteris-
tic well-to-well switching rate in the noise-only case), the critical noise strength (at the
maximum of the signal-power curve) corresponds to a matching between the modulation
frequency and twice the Krarners rate, hence the somewhat misleading characterization
of this effect as a 'resonance' in the physics literature. The noise power spectral density
N(w) is given by the background at the base of the signal feature and the SNR defined, in
decibels, as SNR a 101oglo(S/(N Aco)). A plot of SNR vs. noise strength demonstrates a bell-
shaped profile similar to that of the signal power spectral density; in the limit of very low
(compared to the unperturbed Kramers rate) drive frequency, this curve and the signal
power spectral density peak at approximately the same critical noise strength [27,501. In
the literature (and in this review), the SNR vs. input noise variance profile is sometimes
taken to be the hallmark of SR, although the classical definition of the resonance involves
the above-mentioned behavior of the signal feature in the output, rather than the SNR.
The physics literature is replete with theories and examples of SR with good reviews
available in forthcoming articles by Moss [52] and Jung [36] as well as the proceedings
of a recent NATO workshop on the subject [53]. From a biological perspective, the
recent work on SR in globally coupled arrays of nonlinear switching elements [8,35,54]
is particularly significant.

It is important to point out that stochastic resonance (as characterized by the bell-
shaped curve of SNR vs. noise) has not yet been directly observed in living systems with
internal noise. One of its prime ingredients, noise-induced switching, has however been
demonstrated in biological experiments [16,24,25]. In all such experiments, it is common
to assemble an ensemble of firing events and fit a histogram to the refractory or reset
intervals occurring between the "spikes". Such Inter-Spike-Interval Histograms (ISIHs)
are ubiquitous in the neurophysiological literature and, as we shall see below, can be sim-
ply and elegantly explained by simple models of neurons as bistable dynamic switching
devices subject to noise. The results have lead a few bold individuals to speculate on the
possible beneficial role of noise (in particular, cooperative stochastic processes such as
described in the preceeding paragraph) in the processing of sensory neural information
[7-11,44-48]. Other researchers have speculated [40,61,62] that the experimentally
observable background noise may be a natural phenomenon rather than a laboratory
curiosity. Statistical analyses of experimentally obtained spike trains --the ISIH is
obtained from experimental data, by assembling an ensemble of quiescent intervals (that
separate firing events) into a histogram-- have also shown the existence of a significant
random component in the inter-spike-intervals. These observations have lead neuroscien-
tists to ponder the role of noise in sensory information processing for decades, usually
relying on experimentally obtained spike trains and their associated ISIHs (both of which
are ubiquitous in the neuroscience literature). It is impossible to exhaustively cite this
vast body of prior work, but it must be pointed out that our efforts complement and
extend conventional treatments by examining the response of our model neuron to a
time-periodic external stimulus that is too small to induce firing by itself; in this case, the
background noise nudges the system past its firing threshold (which, as we shall see in
the next section, may actually be a function of the noise). Hence the noise, in some sense,
mediates the response of the model neuron to the stimulus, an idea that will turn out to be
central to our treatment of the ISIH.

The results of an investigation into some aspects of the role of noise in periodically
modulated nonlinear systems in a neurophysiological context, constitutes the subject of
this article. Our previous work [for a review, see e.g. refs. 11,12) consisted of modelling
the sensory neuron as a noisy bistable (describable by a dynamics predicated on a "soft"
potential) switching element. Such a model has been derived [8-10] from a fully coupled
model of a cell body interacting (at the axon hillock), via a weak nonlinear coupling,
with a dendritic "bath", the dendrites being represented as quasi-linear elements which, in
general, would also be capable of "firing". Of course, the idea of bistability in this con-
text is not new; it dates back to the seminal work of Landahl, McCullough and Pitts [41]
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who considered the neuron as a discrete (i.e. two-state) noisy threshold device. Today,
their model while generally viewed as an over-simplification of real neurons, has served
as a convenient starting point for the class of "connectionist" models of neural networks
[2,17,18,20,30,32,33,49]. Although our model yields acceptable fits to experimental data
and can provide a very elegant explanation of the salient features of experimentally
observed ISIE-s (these are summarized in the following section) it has become evident,
recently, that it raises almost as many questions as it answers. For instance, it is generally
accepted that neurons show bistability, of the type described above, only in certain res-
trictive regimes of parameter space. Different classes of neurons (even sensory neurons)
are thought to exhibit different types of bistability, e.g., bistability between a fixed point
and limit cycle that characterizes excitable oscillators such as those considered by Win-
free [73]; the Fitzhugh-Nagumo model of excitable cells [26] belongs to this class.
Experiments show [24] that background noise produces qualitatively similar cooperative
behavior in this class of bistable models as well. Bistability of various kinds has been
quantified in simplified Hodgkins-Huxley-type models [23] and postulated via theoretical
arguments [1,57,72]. However, in other simple quasi-linear neural models e.g,. the "per-
fect" integrate-fire models, the results can be ambiguous. Here, noise introduces effects,
in the ISIH, that closely resemble those observed in bistable models; the explanation of
these effects cannot, however, be based on the same nonlinear stochastic-dynamic effects
that underlie the response of bistable models. Recent results for this class of models are
described in section InI. Our fundamental characterization of bistable model neurons as
threshold devices (no firing in the absence of noise) raises the issue of information loss
during signal processing since only the firing events, that occur when a threshold is
crossed, are recorded, with dynamical details regarding the passage to threshold being
ignored. Of course, this must be weighed against experimental studies that demonstrate
the existence of cooperative stochastic effects (e.g. SR) that cannot be explained by any
form of linear filtering theory.

A final caveat: our approach lacks detailed "neurophysiological rigor". As physi-
cists, we take a reductionist view by attempting to describe the global response of a com-
plex system in terms of the response of a very few degrees of freedom that characterize
the gross properties of the system (the renormalization group approach and the enormous
success that it has enjoyed in treating complex systems is a classic example of this idea).
As will become evident, in the following sections, noise introduces qualitatively similar
effects in different dynamical models of stimulated neurons. These effects are visible at
the level of the ISIH and the SNR, both of which are statistical (i.e. averaged) characteri-
zations of the response. In addition to these measurements, other quantities that charac-
terize the response (e.g. the mean firing rate and its variance) can be obtained via simple
averages computed with respect to the ISIH; these quantities can also be directly meas-
ured in repeated trials in an experiment. Our approach is, therefore, quite adequate for
describing the coupling between the noise and modulation in the neural dynamics on a
statistical or coarse-grained level, as well as the mechanism whereby noise might actu-
ally enhance the flow of information through the system.

II. NEURONS AS BISTABLE ELEMENTS CHARACTERIZED BY A 'SOFT'
POTENTIAL; STATISTICAL ANALYSIS OF SPIKE TRAINS

Recent work by Longtin, Bulsara and Moss (LBM) [44,45,48] has demonstrated
how experimental ISIHs measured, for example, on the auditory nerve fibers of squirrel
monkey [60] could be explained via a new interpretation of noise-driven bistable dynam-
ics. They have introduced a simple bistable neuron model, a two-state system controlled
by a double-well potential with neural firing events corresponding to transitions over the
potential barrier (whose height is set such that the deterministic stimulus alone cannot
cause transitions). The cell dynamics are described via a variable x(t), loosely denoting
the membrane potential, and evolving according to
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i =f (x)+q sino(t +Ft) (1)(

where f(x) is a hysteretic flow function (expressible as the gradient of a potential U(x))
and F(t) is noise, taken to be Gaussian, delta-correlated, with zero mean. In the bistable
description, the potential is taken to be the "soft" function U(x)=ax2 12-b In(cosh x). The
system (1) has been numerically integrated, with the residence time in each potential well
(these times represent the firing and quiescent intervals in our model) assembled into a
histogram (the residence times density function P (t)), which displays a sequence of peaks
with a characteristic spacing. Two unique sequences of temporal measurements are pos-
sible: the first measures the residence timeb in only one of the states of the potential and
the histogram consists of peaks located at t =n T012, To being the period of the determinis-
tic modulation and n an odd integer. The second sequence encompasses measurements of
the total time spent in both potential wells, i.e. it includes the active and reset intervals;
in the presence of noise, the reset intervals are of largely stochastic duration. The histo-
gram corresponding to this sequence consists of peaks at locations t = n To where n is any
integer. The sequence of peaks implies a form of phase locking of the neural dynamics to
the stimulus. Starting from its quiescent state, the neuron attempts to fire at the first max-
imum of the stimulus cycle. If it fails, it will try again at the next maximum, and so on.
The latter sequence is the only one observable in an experiment; the former sequence,
which corresponds to the refractory events is elegantly elucidated by the LBM theory. In
addition to the peak spacing in the ISIH, most of the other substantitive features of exper-
imental ISIEs are explainable [47] via the simple model (1):
(a). Decreasing the noise intensity (keeping all other parameters fixed) leads to more
peaks in the histogram since the "skipping" referred to above becomes more likely. Con-
versely, increasing the noise intensity tends to concentrate most of the probability in the
first few peaks of the histogram.
(b). In general, the probability density of residence times is well approximated by a
Gamma-like distribution of the form P(T)=(TI<T>2)exp(-TI<T>), where <T> is the mean
of the ISIH. It is apparent that P (T) -*0 and exp(-T/<T>) in the short and long time limits,
respectively. For vanishingly small stimulus amplitude q, the distribution tends to a
Gamma, conforming to experimental observations.
(c). Increasing the stimulus amplitude leads to an increase in the heights of the lower
lying peaks in the ISIH.
(d). Memory effects (even within the framework of a description based on the theory of
renewal processes) frequently occur, particularly at very low driving frequencies; they
manifest themselves in deviations from an exponentially decaying envelope at low
residence times (the first peak in the ISIH may not be the tallest one).
(e). The mean of the ISIH yields (through its inverse) the mean firing rate.
(f). The ISIH decay rate ), (the slope of the envelope on a semi-log scale) itself depends
sensitively (exponentially) on the stimulus amplitude q for constant noise strength, and
(again, exponentially) on the noise strength for fixed q.
Analog simulations of the dynamics yield an extremely good fit [44,48] to experimental
data; the fit can be realized by changing only one parameter (the stimulus intensity or the
noise intensity) and the results are almost independent of the functional form of the
potential U(x), depending critically on the ratio of barrier height to noise variance; this
ratio determines the hopping rate between the basins of attraction in the absence of noise.

The LBM theory demonstrates that the peaks of the ISIH cannot exist in the absence
of noise. In fact, one could speculate that, over a certain range of parameters, the noise
and signal play interchangeable roles in determining the shape of the ISIH. All the
stimulus and noise features are encoded in the ISIH, with the phase preference (we
assume perfect phase locking to the stimulus throughout) encoded in the peak width, this
assumptions seems to be consistent with experimental auditory nerve data at least. The
noise may be used by the neuron to encode the stimulus features in the ISIH, while
preserving a fine amplitude discrimination through the exponential dependence on X.
Other researchers [66] have shown that noise linearizes the mean firing rate-vs. current
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characteristic in neurons, producing a large dynamic range along with ISIH variations.
This dynamic range is not found in noiseless Hodgkins-Huxley type models. Identifying
the mean firing rate with the inverse of the mean of the ISIH seems to lead one naturally
to this encoding. Although the LBM model provides an important first step in the under-
standing of the (possibly pivotal) role of noise in sensory information transfer, it is far
from complete. The results do not appear to depend critically on the characteristics of the
potential function U(x) and the fundamental question: what aspects of the data are due to
the statistical properties of noisy two-state systems as opposed to real (i.e. biological)
properties of cells that transcend this simple description, has not been satisfactorily
answered.

Bistable models of the type discussed above provide one of the simplest explana-
tions of the possible mechanism underlying the processing and coding of sensory infor-
mation in the nervous system. They elucidate the sequence of reset events that follow
each neural firing, and noise is seen to play a pivotal role in the production of the ISIHs.
The dynamics in a generic bistable system of the form (1) displays the N-shaped flow
characteristic that is known to exist in exciteable cells [57]. In our derivation of the
bistable model from the fully coupled neuro-dendritic model, the coefficients a and b in
the potential function U(x) are obtained in terms of the cell and bath parameters. Hence,
the effect of the dendritic coupling is to modify the height of the potential barrier,
thereby directly affecting the switching dynamics and the structure of the ISIH. The
potential function for the system becomes bimodal above a critical value of b/a; this tran-
sition to bimodality is mediated by the noise in the dendritic bath; in fact, the theory
introduces the concept of a noise-dependent firing threshold (defined as the barrier
height). Stochastic resonance (as described in the preceeding section) is readily observ-
able in these many-body models and the output SNR can be further enhanced (over its
expected value for the isolated case) by the coupling to the dendritic bath. Since none of
the cooperative effects that we have described here will occur in a monostable potential,
the critical role of background noise is evident.

The physical model outlined above is striking for its simplicity and provides an
elegant explanation for several features of experimentally computed ISIHs. Nonetheless,
it can be criticized for lacking the neurophysiological rigor afforded by, say, the
Hodgkins-Huxley equations and their derivants, including the class of "Integrate-and-
Fire" models. We now consider some of the statistical properties of the simplest of these
models.

11I. THE 'PERFECT INTEGRATOR' REVISITED
In our work to date, we have confined our attention to nonlinear dynamic models of

neuronal firing; the models rely on bistable firing characteristics to model the dynamics.
However, the neurophysiological literature is replete with stochastic models of spontane-
ous and induced firing which are similar in spirit to the bistable models: firing takes place
when the membrane voltage crosses a threshold. However, the models are not all charac-
terized by hysteretic flow functions. The most ubiquitous of these models, the class of
integrate-fire (IF) models, can be heuristically derived from single-neuron dynamics of
the form (1), in the limit when the nonlinear term in the dynamics is very weak, so that
the potential U(x) is approximately parabolic, using stochastic linearization techniques
[5,59]. In the most general case, the "leaky" integrator with threshold, one writes the
dynamics in the form [65],

x =X(u, -x)+g.+F(t)+q cosiot. (2)
which represents an Omstein-Uhlenbeck process [15,69,711 in which p. is the (positive)
drift to a firing threshold a, and X is a decay constant governing the decay of the voltage
variable x(t) to an equilibrium or resting level u,. F(t) is taken to be white noise having
zero mean and variance D. Equation (2), in the absence of the periodic stimulus, has been
extensively studied [3,14,19,21,31,34,39,42,43,55,56,63,67,68] in the theoretical



-6-

neuroscience literature. In these studies, it is generally assumed that the noise term F (t)
represents the net contribution from all the synaptic inputs to the cell. Deterministic IF
models have been studied by Keener et. al. [38].

We consider now a simplification of the above model due originally to Gerstein and
Mandelbrot (GM) [29] in which the q=OX=0 case was considered, the so-called "perfect
integrator". Assuming the underlying dynamics to be time-stationary, a random walk
description of the neural firing dynamics has been invoked by GM, based on the corner-
stone requirement of a stable distribution function for the probability density of first pas-
sage times corresponding to the dynamics. The state variable x is assumed to execute a
biased random walk to an absorbing threshold at which point a firing event is designated
to have occurred and the membrane potential x is then instantaneously reset to its starting
value (the reset mechanism being purely deterministic). It is this reset which renders the'global' dynamics nonlinear. The distance between the origin and the threshold is the
"barrier height" a, analogous to the height U0 of the potential barrier in our bistable
model. Further, it is assumed that the motion in phase space occurs under the influence
of a positive drift coefficient gt which was defined by GM as roughly the difference
between the drift velocities corresponding to excitatory and inhibitory synaptic inputs (it
is neurophysiologically reasonable to assume these velocities to be different). For this
model, the Wiener process with drift, one readily writes down the associated Fokker
Planck Equation (FPE) [28,58,70]:

a aP D a2P-P(x . ')=-it-•-x+ 2 x(3)

whence the probability density function of first passage times is (22,29],

a { (a aou)2(4
go(t)= 2= 3 exp - t j' (4)

a0 being the starting point of the random walk. The density function go(t), often referred
to in the statistical literature as the 'Inverse Gaussian', reproduces many of the properties
of experimentally observed ISIHs for the spontaneous firing case. The mean first passage
time (a-ao)lp to the absorbing threshold is calculated as the first moment of go(t), and its
reciprocal yields an average firing rate. The variance of the first passage time is
D (a-aO)itL. The model reproduces the salient features of the ISIHs obtained from spon-
taneous firing events reasonably well, including the long (exponential) tail in the first
passage time density function g(t). It also has numerous limitations (which have been
ennumerated by GM), the most fundamental one being the assumption that the mem-
brane potential is reset following each spike, with the random walk to the threshold re-
starting; nevertheless, the model provides a simple vehicle to explain the dynamics (on a
grossly simplified level) that arise from the coupling of the noise and the periodic
stimulus. A more rigorous (from a neurophysiological standpoint) grounding of the FPE
(3) has been given by Stevens [64]. In order to make even better contact with experimen-
tal results, it is necessary to provide reasonably good numerical values for the drift
coefficient gt, the "barrier height" a and the background noise variance D in the above
model. A first attempt to do so (while simultaneously providing a test of the goodness of
fit of the model to neurophysiological data) was carried out by Berger et. al. [4]. They
carried out an experiment aimed at recording the inter-spike-interval distribution from
extra-cellular recordings on the cat visual cortex. Having obtained the experimental
ISIHs, they were able to compute the equivalent model quantities jt and a via the mean
and standard deviation of the experimentally obtained ISIHs, assuming a fixed back-
ground noise variance D. While we do not give any further details of the experiment, it is
noteworthy that, once these "self-consistent" values of g., a and D were substituted into
the first passage time probability density function, an excellent fit of the model to the
experimental ISIHs resulted.
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We now consider the GM model in the presence of a deterministic periodic stimulus
q cos (w, assuming the initial condition ao= 0. Once again we assume the phase-locked
case. One can then write down and solve [13] the FPE to yield the probability density
function P(x ,t). The first passage times density function is then computed via the
prescription [221:

9(1)=- d, LP(x ,t)dx,

which yields, after some calculation,

g(t)= I a e,(-.1+ -a- (tcosot - sincot )0,(h3(a ,t))eha), (5)

where 0, (x) I - 2 -'dt is the Complementary Error function and we have defined,

(a - w - --E sin~ot )2

h,(a ,t) -- 2Dt-

Dith2,(t)- S g + -Eqia
IDt (0

(a + t + - sinwt)
h3(a ,t)-=(0)

We now discuss briefly some of the properties of the density functions (4) and (5).
A plot of (5) yields an ISMI with the peaks at locations nTo where n is an integer and To
the stimulus period. The hidden or reset mechanism in this model is instantaneous (and
deterministic), in contrast to the bistable models. However, the model differs from the
bistable models in another very important respect. In the absence of noise and the
periodic stimulus, the state-point will reach the threshold, provided the drift g. is positive;
the model admits of the possibility of deterministic 'switching' or firing. For the q <<«
case, a first-order perturbation solution (for t) of the dynamic equation a = W + sincot(a)

yields the deterministic passage time,

a o ~ ,(6)
Ti-{-A--. sin 0•

f + 'Cos ' (6)

where toaa/g is the mean first passage time (MFPT) in the presence of noise alone. Note
that T -: to at high drive frequencies co, as should be expected. The deterministic passage
time (6) is also the MFPT in the presence of the noise and the periodic stimulus. For a
long-tailed distribution of the form (3) however, possibly the more important quantity is
the most probable time, or the mode. For the q=0 case, this time is readily obtained by
differentiation:

-+ 4- a _L2} (7)

It is significant that the mode t, depends on the noise. In experiments, firing times
clustered about the mode are more probable. The mean of a large number of firing times
may yield a MFPT to which, depending on the physical characteristics of the density
function (3) is close to the mode or far out in the tail. When analysing the properties of
the ISIM the interplay of the three time-scales To,to, and t,, is crucial. With decreasing
inhibition (represented as increasing drift g. for fixed excitation) or with decreasing noise
strength (keeping the drift fixed), the ISIH approaches a more sharply peaked (Gaussian-



like) density (in effect, the tail of the Gamma-like density (3) shrinks, with the mean
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Fig I. Mode of the noise-only density function (4), normalized to the
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approaching the mr .e). This may be demonstrated via a Gram-Charlier expansion of the
density functior ,1) and is depicted in figures 1 and 2 in which we plot the ratio t./to vs.the drift i an, ihe noise variance D respectively. Increasing the drift leads to a more shar-ply peaked distribution (characterized by the rate at which t. to-+ 1) for a given noise
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Fig 3. First passage time density function (5) and its q=0 counterpart (4)
for (a ,ptq o,D ) (20, 04, 0312).
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variance; the approach to a very sharply peaked distribution is more rapid at lower noise
strengths as seen in both figures. Figures 3-5 show the effect of increasing the drift ýt on
the ISIF-; in these figures, the smooth curves represent the q=0 density function (3). Note
that if we introduced a' phase ý into the argument of the periodic stimulus and then
defined a phase-averaged ISIH (the averaging being performed over a uniform distribu-
tion on [0,2x]), the two curves in each of the figures 3-5 would coincide; for the phase-
locked case, one obtains an IS[H that is qualitatively similar to those observed for the

0.010

0.008

"0.006

0.004

0.002

0.000
0.0 3.0 6.0 9.0 12.0 15.0

t/To

Fig 5. Same as figure 3 with i= 0.1.

bistable models. The mean, variance, and mode of the ISIH (for small q) are seen to be
extremely close to the corresponding quantities for the q=0 ISIH, as predicted above. It
should be evident that if we adjust the stimulus and/or system parameters such that

t,, =nTo, (8)

then the nik peak in the ISIH will be the highest one.
The interesting feature about the ISMI-I (5) is that the peak heights go through max-

ima as functions of the noise variance D, all other parameters being held constant. This is
demonstrated in figure 6 for a particular set of system and modulation parameters. One
can calculate from (5) the critical noise D, at which the n't peak passes through its max-
imum. Note that the peaks in (5) occur at times t=nTo. Hence, the amplitude of the n1h
peak is given by

g. =g 0+g 1, (9)

where

go= a exp[ (a -p.)/22Dt] , (10a)

=-' e2a D J (lOb)
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are the contributions from the q=0 and q>O parts of the density function (7) (we set
1 =nTo=2nn/o*). Writing D, =D, 0+8 where Do is the noise variance at which the expres-
sion (10a) is maximized and 8 is the (much smaller) contribution from (10b), we easily
find

DO=(a -J1) 2/t. (13)

The remaining contribution 8 is found by setting the derivative of (9) equal to zero and
then expanding to 0 (8). This contribution is, however, much smaller than Do and can be
neglected for the present. In figure 7, we focus our attention for a particular peak (n=4).

We set ji-p, =0.159 where, for this case, g, is found by setting nTo=to. For a fixed noise
variance D, this value of I, maximizes the height of this peak, although this does not
imply that the peak in question is the highest one in the ISIH. Now, the noise variance is
further decreased. This has the effect of moving the mode t, such that the n' peak coin-

cides with the mode (t, =nTo) and this peak becomes the highest one. Decreasing the
noise further causes the peak to get taller and narrower, it becomes delta-function-like
and attains its maximum height in the t, --4 to=nTo limit as discussed earlier.

0.005

0.004

.C0.003

M

. 0.002

0.001 ,

0.000
0.0 1.0 2.0 3.0 4.0

D
Fig 6. Peak heights vs. noise variance D for the density function
(5) with (a 9,rq ,o)--(20,.055,.0475). Curves correspond to
(reading from left to right) peak numbersn =7,6,5,4,3.

IV. DISCUSSION, CONCLUSIONS AND SPECULATION

It seems fitting to conclude this article with a question and some speculation.
Clearly the question to be answered is: "Can the neuron indeed be characterized by a
noisy nonlinear switching element, describeable by a bistable dynamics of the form (1)
(with, say, a 'soft' potential U(x)) or a far simpler switching element described by the
dynamics (2)?" Certainly, there is ample evidence that noise plays a critical role in the
transmission and coding of information in the nervous system; most reasonable models
of neural firing invoke some kind of diffusion process representation of the system on a
statistical or coarse-grained level (in which the system is described via a probability den-
sity function rather than an individual trajectory solution). It seems reasonable then, that
there should exist a form of self-regulatory mechanism such that the internal parameters
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of the system (these parameters control, for instance, the height Uo of the potential bar-
rier) can be adjusted in response to the stimulus and noise characteristics. In our previous

0.06

0.04

0.02

0.00
0.0 2.0 4.0 6.0 8.0 10.0

trr,

Fig 7. Height of peak no. 4 with (a q, cz)) (20,.0475,.2) and
g1=0.159 (critical value...see text). Top curve: D=0.012, middle curve:
D=0.06, bottom curve: D=1.0.

work [8,9], in fact, we have been lead, in a simple way to the concept of a noise-
dependent firing threshold. This is important because, for given stimulus and noise, one
obtains well-defined histograms for only a small range of U0. One may speculate furtherthat the neuron (or the network) then uses the background noise so that its response
(measured via the SNR or, equivalently, through the ISIH) is optimized. This implies
that, for configurations that admit of stochastic resonance, the neuron (or network)
operates close to the maximum of the stochastic resonance curve (SNR vs. noise vari-
ance) while simultaneously obtaining other information (e.g. amplitude, frequency, andphase) about the deterministic stimulus, via the ISIH. In effect, our construction and
interpretation of the ISIH (together with the remarkable ability to explain most of thefeatures of experimentally obtained ISIHs) as a natural outcome of our modelling the
neuron as a noisy bistable switching element (in the LBM theory) or even via the
extremely simple model of section III implies that sensory neurons may measure the
stimulus intensity by comparing it to the background noise, using the (internally
adjusted) potential barrier height to mediate and optimize the measurement [F. Moss
1992; private discussions]. In the perfect integrator model, the firing threshold is
equivalent to a 'barrier' in the jargon of bistable dynamics; such models may be, in fact,
derivable from more complex models such as those considered in the LBM studies. Our
studies of collective behavior in large networks show that the coupling to other elements
can enhance or degrade the SNR depending on the magnitudes and signs of the coupling
coefficients, i.e., the excitatory or inhibitory nature of the interactions is critical. In the
perfect integrator, the drift tL is controlled by the inhibition which, therefore, plays a
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critical role in even this simplest of descriptions of neural dynamics. What should be
amply clear from this study and our previous work is that there is no single model that
describes the dynamics of neurons everywhere in the nervous system; even the very sim-
ple model of section III has its drawbacks, but it serves to provide a simple description of
the role of noise and inhibition in the firing dynamics of a single cell. In fact, a generali-
zation of this model, the so-called 'leaky' integrator characterized by the full dynamics
(2) may well provide a good model of the bursting that is so ubiquitous a feature of
axonal firing.

The Inter-Spike-Interval Histograms are not, by themselves, necessarily an indicator
of the presence of stochastic resonance as an underlying cooperative effect in neurophy-
siology. For bistable models having the general form (1) they are, however, a product of
correlated (between the noise and deterministic modulation) switching and, as we have
indicated in section I, there is some evidence that such switching processes do occur in
neurophysiology (although the form of the bistability may be different from the potential
systems defined by dynamics such as (1)). Various features of these histograms can, how-
ever, lend themselves to explanations based on stochastic resonance. Perhaps the most
important of these features is that the heights of successive peaks pass through a max-
imum as a function of the noise strength. This has been demonstrated in section III for
the simple 'perfect' integrator model and is also known to occur in bistable systems of
the form (1) [47,76]. So far, attempts to quantify this "resonance" as a matching of two
characteristic rates have been inconclusive, for the bistable case, largely because of the
difficulty of (numerically) producing good ISIHs with low noise. For the simple IF model
of section III, however, this connection (or lack of it) might be possible to establish, due
to the analytical tractability of the problem; this is an area currently being actively inves-
tigated. Since these models admit of a deterministic switching (or firing) mechanism, in
contrast with the fundamental precept of no deterministic switching that underlies the
bistable models, the mechanism for the observed "resonances" of figure 6 may well differ
from the corresponding mechanism in the bistable case.

What should be clear from this paper is that effects that, qualitatively at least,
appear to be similar can occur in systems that are quite different. A simple observation of
the ISIH or the resonance in the peak heights as a function of noise is not sufficient to
establish a model for the underlying dynamics. In different terms, it is probable that sim-
ple models of the type discussed in section III may provide a good fit to experimental
ISIHs just as we have seen [24,44,45,48] in various forms of bistable descriptions. In
fact, we have shown that, for the bistable case, a good fit to experimental data is obtained
using dynamics of the form (1) with different flow functions f(x); the data shed no light
on the precise form of the dynamics. This is a characteristic of our coarse-grained
description of the dynamics in terms of probabilities and power spectra. In most theories
of stochastic resonance in bistable systems, the quantity that critically mediates the
dynamics is the ratio of the barrier height to the noise variance. This ratio, in fact, deter-
mines, as outlined in section II, the number and sizes of the peaks in the ISIH. So, one
must end this review with the (by now) somewhat obvious question: "Which features of
the ISIHs are due to underlying neurophysiological processes and which features are
influenced by the statistics of the detection/measurement process or the statistics of the
simple models such as (1) and (2) which have been invoked to explain the features of the
ISIHs?"
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