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ABSTRACT

Two different algorithms to navigate an AUV within a charted environment are

presented. They use sonar returns and a local map together with the dynamic model to

estimate the vehicle's position and acceleration at all times. Kalman filtering techniques

are used to compute the estimates. The main difficulty is the presence of uncharted

obstacles, which are identified by the potential function algorithm. Results from the

application of the potential function algorithm in a pool using Tritech ST725 high

resolution sonar show the feasibility and robustness of the potential function approach to

the navigation problem.
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I. INTRODUCTION

A. GENERAL

Stated most simply, the problem of navigation can be summarized by the following

three questions: "where am I?", "where am I going?", and "how should I get there?".

The first question is one of localization: "how can I work out where I am in a given

environment, based on what I can see and what I have previously been told?". The

second and the third questions are essentially those of specifying a goal and being able

to plan a path that results in achieving this goal. Investigation of the latter two questions

usually comes under the domain of path planning and obstacle avoidance [Ref. I]. In this

thesis, we are principally concerned with the first question, localization, since a robust

and reliable solution to this problem is essential to answering the remaining two

questions.

An Autonomous Underwater Vehicle is a type of Unmanned Underwater Vehicle

(UUV), that is not limited by the need for local human control. The freedom from

requiring an external control interface theoretically allows this type of vehicle to perform

a great range of missions [Ref. 2]. To widen the range of application of an AUV, it is

necessary to develop systems with high levels of autonomy and to operate in unstructured

environments with little a priori information. To achieve this degree of independence,

the AUV must have an understanding of its surroundings, by acquiring and manipulating



a rich model of its environment of operation [Ref. 3]. While autonomy has clear

advantages, it requires a sophisticated level of on board processing ability.

B. AIM OF THE STUDY

This thesis is concerned with the navigation problem of an AUV in the horizontal

plane. For any navigation system to be useful, the accuracy of the instruments has to be

such that the navigator's error is within the required tolerance of the vehicle which relies

on the navigation system. However, accurate sensors such as high quality inertial

navigation systems and doppler sonars tend to be large and expensive, and unsuitable to

a small vehicle. It is the aim of this thesis to study the feasibility of combining

measurements from the sonar device on board to generate relatively good position

estimates over a short time interval.

C. METHOD OF APPROACH

This thesis is concerned with the short-range navigation problem for the NPS

testbed AUV. Being limited in complexity and cost, the navigator has to rely on the

available hardware. Also, because the system needs only to operate over short ranges,

the effects of the earth's orbit and rotation can be neglected. This approximation also has

the effect of simplifying the model to be built.

The approach taken in this thesis to solve the navigation problem in the horizontal

plane is to use a nonlinear dynamic model of the vehicle to filter the sonar range returns

for estimation of the vehicle's position. The measurements obtained from sonar and

nonlinear model are run through the Kalman filter to calculate the Kalman gain. Then,
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the Kalman gain is used to make the next position estimation of nonlinear model. This

approach is diagramed in Figure 1.1. The filter to be used is an Extended Kalman filter.

COMMOL XNP~rS -T ORACTUAL

POFITION

Figure 1. 1 Kalman Filtering Concept

The Kalman filter theory, which appeared in the early 1960's, was recognized as

an ideal solution to the navigation data processing problems for navigation. These data

processing problems can be adapted nicely into the necessary Kalman filter assumptions,

which means that the estimates of the desired navigation outputs are, in fact, very nearly

optimum. This gives the engineer confidence that the system is the best that can

reasonably be expected. Also, the recursive form of the filter is convenient. A new

optimum estimate can be made very shortly after each new measurement is obtained. Nor

is it necessary to store a great amount of data or invert a large matrix, as might be

necessary in more conventional, least-squares fitting techniques [Ref. 4].

Navigation systems are among the most popular areas for the application of Kalman

filtering. Most of the major navigation system manufacturers have developed or proposed

3



systems based on Kalman F;tering techniques, and they are being used in several vehicles

in operational use. X "man filtering has now become an integral part of almost any

navigation system. The reasons for the popularity of Kalman filtering in navigation

syst.;ms are not hard to find. There are at least three major complementary factors that

have come together at the proper time. These factors are an increased need for self

contained navigation systems, the mathematical tools to design, and the necessary

equipment to implement [Ref. 4].

This thesis is presented in four parts. Chapter II discusses background and the

theory behind the navigator design and presents some results for a model designed to

operate in a pool without any obstacles in the operation environment. Chapter HI

discusses the details of potential function technique used in simulations and the

autoregressive extended (ARX) model based parameter estimation. Finally, Chapter IV

summarizes the results of this research and contains conclusions and recommendations

for application and further study.
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H. A GEOMETRICAL MODEL OF ENVIRONMENT

A. GENERAL

In this chapter, we set up the nonlinear model for the dynamics of an AUV and the

model for sonar measurements.Then, we define the experiment in a pool without

obstacles and implement Kalman filtering techniques for estimating the position of the

vehicle. In the estimation process, we use the sonar range measurements only.

B. DISCRETE KALMAN FILTER EQUATIONS

The Kalman filter estimates the state of a system given a set of known inputs to the

system and a set of measurements [Ref. 5]. The system is assumed to be driven by both

a known input and an unknown random input:

x(k+l)=0x(k)+Azu(k)+A2w(k), (2.1)

where u(k) is the known input, w(k) is the random input called the plant driving noise,

x(k) is the state vector, 4, is state transition matrix, A, is known input matrix, and A2 is

random input matrix. We assume that w(k) is white noise.

The measurements of the system are related to the state by

y(k)=Hx(k)+v(k) , (2.2)

where y(k) is the measurement, H is the measurement matrix, and v(k) is the random

measurement noise. We assume that v(k) is white noise.
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The solution of the estimation problem can be shown to have the following form:

.t(k+llk+1)=-t(k+llk)+G(k+l)[y(k+l)-(k+l)] , (2.3)

where G(k+ 1) is the Kalman filter gain at the given specific time.

The Kalman filter gain G(k+ 1) is found by applying the orthogonality principle

which leads to the recursive equations:

P(k+I Ik)-4P(klk)ST+A 2WA 2T

G(k + 1)=P(k + I Ik)H qHP(k+ 1I k)H T+ V]q (2.4)

P(k+ l k+l)=[Z-G(k+l)H]P(k+ I k) ,

where P is the covariance matrix of the estimation error. The following is the summary

of the Kalman filter equations in the order in which they are implemented throughout this

thesis:

The Gain Eguations:

P(k+l Ik)=,P(klk),T+ A2W&2T

G(k+l)=P(k+ltk)HT[HP(k+lIk)H r+V]- (2.5)

P(k+1 k+ 1) =/-G(k+ 1)H]P(k+ 1 Ik)

The Filter Equations:

I(k + I kt) = lbl(k I ) +A ,u(k)

ý(k+1 Ik) =•H(k+ 1 Ik) (2.6)

#(k+ l k +1)=(k+ 1k)+G(k+l)(y(k +1)-Xk+ Ik)]
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This is known as the predictor-corrector form of the Kalman filter in which the

next state is predicted using the state space model and the measurement is used to correct

the prediction. [Ref. 5]

The W matrix is the covariance of the system's noise, while the A2 matrix

describes the way this noise enters the system. If W is diagonal, then the disturbances

are assumed to be independent, otherwise they are correlated, as described by the off-

diagonal terms in W. [Ref. 5]

The V matrix describes measurement noise from the sensors. The Kalman filter

considers the measurement noise to enter all the individual measurements. As with the

measurement noise covariance matrix, if V is large, then the measurements are e -pected

to deviate more from the states being measured, and the Kalman filter will rely more on

the predicted state than on the measurements.[Ref. 5]

The initial P matrix affects the dependence the Kalman filter has on the initial

conditions. Large values in initial P mean that the filter will not depend on the initial

conditions, but will instead give more weight to the measurements. This allows the

estimated state to change rapidly as the filter goes through its transient stage. In steady

state, however P has no effect on the Kalman filter because it approaches a constant

value that is dependent only on the system and the noise covariance matrices. [Ref. 5]

Because the gain equations do not depend directly on time or on the state trajectory

in a LTI system, the gain can be calculated a priori and recalled from memory as

needed. There is no need for real-time gain computation. Moreover, in the time invariant

case the gain matrix approaches a steady-state value, which is determined by the system

7



equations and the W and V matrices through the associated Kalman filter equations. In

many cases, using the steady-state gain matrix instead of the time-varying gain matrix

gives satisfactory results in a reduced-complexity algorithm which does not take into

account prior knowledge of the initial conditions. [Ref. 5]

C. LINEARIZATION

Thus far, the discussion has been limited to linear systems; however, many systems

in which the control engineer is interested are nonlinear. Nonlinear system models are

more general than linear models and can contain a wide variety of nonlinear

characteristics for which limited analytic tools exist. In general, nonlinear systems do not

exhibit the properties of homogeneity or superposition, and many include transcendental,

trigonometric or other nonlinear functions [Ref. 6]. Such is the case with the model

chosen for this thesis.

A method for working with nonlinear systems is to linearize them using a truncated

Taylor series approximation. The Taylor series approximates a function around a given

point as an infinite sum of weighted, analytically determined, partial derivatives. A

general Taylor series around the point x,, is given by:

AX daf(x,) (2.7)

R-1 nldx

A truncated Taylor series only uses a few of the terms of the sum. In order to

realize a linear function from the Taylor series expansion of a nonlinear one, the series

must be truncated at the first term. This model is general and can be applied to any

8



nonlinear system, and it will be valid in a region surrounding the linearization point [Ref.

7].

For the case of a continuous-time dynamic system represented in state-space form,

which, in general, is not a function of a single variable, but is rather a function of time.

the input vector, and the past state vector, the Taylor series is defined over the partial

derivatives of each of the independent variables. In the case of a time-invariant system,

the series is expanded about an operating point described by the state, xo, and a

corresponding input, u0. A nonlinear state space equation can then be approximated as

=fxo,uo)+i (u (XX)+i (uuo) , (2.8)

where f is the nonlinear system function. This notation implies that the partial derivatives

are constant terms, calculated analytically and evaluated at xY, and uo [Ref. 8].

Just as a nonlinear system equation can be expanded using a Taylor series, and

linearized, a nonlinear measurement equation can also be expanded and linearized. The

formulation for this expansion is similar to the equation 2.8.

D. EXTENDED KA12IAN FILTER

The Kalman filter is derived for linear systems with linear measurement equations;

however, using the linearization techniques described in the last section, this filter can

find application to general, nonlinear systems. This is known as the Extended Kalman

filter. The Extended Kalman filter is suboptimal and may suffer convergence and stability

problems, but it has been shown to be useful in variety of applications. [Ref. 5]
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The form of the Extended Kalman filter equations are essentially similar to those

of the Linear Kalman filter. The nonlinear model is used to predict the state and the

nonlinear measurement is used to correct the prediction. The most significant difference

between the Extended Kalman filter and the Linear Kalman filter is the gain equations.

Rather than using 4' (the state transition matrix), A (the input matrix), and H (the

measurement matrix) matrices to calculate the gain, the Extended Kalman filter uses the

linearized model of the nonlinear system. It uses the partial derivatives of the nonlinear

state equations and the nonlinear measurement equations. These partials are evaluated at

each estimated state. As such, the gain, G, cannot be computed in advance, because it

is dependent on both the state trajectory and the input history.

Calculating partial derivatives of the nonlinear system and measurement equations

for each measurement as well as calculating the Kalman filter gain matrix is a

computational burden. In order to overcome this problem, it may be possible to use gain

matrices calculated in advance and by choosing discrete points in the system's state space

about which to linearize the nonlinear system. Practically, in choosing the points, it is

convenient that only some of the system states are varied while others are kept constant.

Using the chosen points, several linear approximations to the nonlinear system are

calculated and then used to calculate the steady-state Kalman filter gain matrix associated

with those particular points. Once the gains are calculated, the Extended Kalman filter

is implemented by determining which of the chosen linearization points are closest to the

current estimated state and the corresponding gain matrix is used in the Extended Kalman

filter equation as given as the last of Equations 2.6. [Ref. 5]
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9 In using the Extended Kalman filter, nonlinearities are modeled as plant noise. This

means that the A2 matrix is usually the identity matrix. Furthermore, because the

nonlinear effects are not included in the gain equations, the Extended Kalman filter can

be very sensitive to the W and V matrices. Choosing improper values can make an

Extended Kalman filter unstable. The values chosen for these matrices should not

necessarily correspond to the actual noise expected in the system or in the measurements,

but rather they must be made large enough to provide a robust prediction in spite of the

nonlinear effects.

E. MODELLING FOR PLANAR MOTION OF THE AUV

The basic component of the estimation process is a state vector whose value at any

time t is given by:

Yv

x= V (2.9)

where (x,,y,) defines the position of the vehicle with speed v, heading 0, yaw rate 0 . The

subscript "v" is used to distinguish the position of vehicle from the state vector x and

measurement y.

11



Input to the system are propeller speed, u,, and vertical rudder command, u2.

M U11. (2.10)

The differential equations forming to our model are as follows:

"v cosO

"v sinO

-a v+1 U1 (2.11)

-Y 6+0 ,u

where ax, -y, and o are constants depending on the dynamics of the vehicle.

As we can see, equations 2.11 are nonlinear and they have to be linearized for

further analysis. Now let us apply truncated Taylor series expansion to the first two

equations. In the following equations the subscript "o" indicates the current value of the

particular state around which we linearize the model,

t,;o~ose*+ C (V~o -VO) + a( (°..-Oo) (2.12)

j, =Vosin0ov+ -(vo,0)) (V-VO)+ ,(V, ))(0-) (2.13)

S~80

where v. and 0. are the current speed and heading of AUV respectively. Now if we

follow the algebra involved in equations 2.12 and 2.13 we can find the following results:

"12



1 = w"O0o-Ovosineo+Ovosineo (2.14)

ý,=vSine,+OvcosO-OovoPsO* (2.15 )

The last two terms in the equations 2.14 and 2.15 are almost identical; they differ in one

sign. Now the following approximations can be made:

iv vcosse (2.16)

• "--sinO°( 2.17 )

In the model introduced above, sonar range is the only measurement that depends

on the current position and orientation of the AUV with respect to the environment. The

-j parameter is sonar heading which is measured with respect to the x-axis of the vehicle

and defines the angle between x-axis and the sonar beam at the measurement time.

y=g(x 1y,, y) (2.18)

In this study, we address the problem of navigating the vehicle in a geometric

environment, like a pool or tank with known dimensions L, by 1.2. Figure 2.1 shows the

setup for range measurements . The V parameters define the particular angle computed

between x-axis and comers of the pool, taking the current position of the vehicle as the

origin. Range r, sonar heading y, and vehicle position (x,, yv) are related by the

geometry of the environment as

13



X, (2.19)

cosy

r= Siny(2.20)

(Lr-YC ) (2.21)

Yy (2.22)
siny

rw-O

L3a

q3

(0.0) LI

Figure 2.1 Determination of sonar range in the pool

If we call H the measurement matrix defined as

,=[±r AY 0 0 ] (2.23)

then we can compute it from the equations 2.19 through 2.22 as

14



H 1---~ ~~o i2 -~ 1~~1 (2.24)

H= I- Io- 0 0 ]72=Y<9 15<1

H= -1:' 0 0 ;] '13-"5'Y<-2 1;157<7,<4 ( 2.25 )

In the light of the preceding discussion, the state space representation of the

particular model can be defined as:

X=0 0 -a 0 0 X+b 0 U+W (2.26)

00 0 0 1 I00

00 0 0 -c Od

y=Hx+v (2.27)

F. SIEMULATION RESULTS

Figures 2.2 through 2.10 show the simulated vehicle trajectory, as determined by

the nonlinear model. In all the cases, the vehicle was given a constant propeller speed

of 140 RPM. It starts from an estimated position when it is at rest initially. After the

convergence of the Kalman filter to the simulated trajectory, a rudder command is given

for a turn to be executed. In smooth turns, like shown in Figures 2.2 through 2.10, the

model is able to track the actual simulated trajectory.

15



The lower left hand corner of the pool is accepted as the position reference point

for all the runs. There are no obstacles present in the pool, which yields to clear sonar

returns from the borders of the pool.
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Figure 2.2 A sample run with initial heading 01
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M. POTENTIAL FUNCTION APPROACH FOR ENVIRONMENT

A. GENERAL

In this chapter, we will approach the problem of navigation with the same model

used in Chapter II by using a potential function, which is intended to define the

environment.

B. MODELLING ASSUMPTIONS

The basic component of the estimation process is based on the state vector which

is defined in equation 2.15. This leads to a dynamic model of the form

z.,=4ýA ,w) (3.1)

with zý E W the state of the vehicle, u E 12 the vector of external commands (RPM and

RUDDER ANGLE) and w, disturbances, modelling errors between model and the actual

physical dynamics. [Ref. 9]

The measurement vector consists of dynamic observations of sonar range p at an

angle a with respect to the longitudial axis of the vehicle with v indicating measurement

noise

y=g(z", p,,v) . (3.2)

We assume the noise sources w and v to be of zero mean, white, and Gaussian, as

is standard in this class of problems. The function g is defined by the map of the

21



environment, and apart from measurement noise, it is zero when the sonar return

information (p, a) is consistent with the vehicle position with respect to the map. The

criterion we use to choose g is critical for this thesis, and it is based on the use of a

potential function properly def'ned. For a vehicle moving on a plane and located by

position (x,y) and heading 0, the function g is defined as

g(x,y,Op,a) = V(x+ pcos(0 + a),y+ psin(0 +az)) (3.3)

The vector

[x,,yJ =[x+ pco(e + ),y + psin(O +)] (3.4)

denotes the location of the tip of the sonar range vector in the given reference frame.

With this definition, function V has to satisfy the following necessary conditions.

"* V is continuous and differentiable

"* V(x0,y.)=O if the point (x0,y.) is on a reflecting surface defined on the map

"* V is uniformly bounded over R1

Considering a pool of rectangular shape with sides L, by L2 units, and by taking

the lower left comer as the origin of our map and two adjacent sides as axis, we can

write the potential function V as

V(xoy) = F, (x(x- LWy~- ) ) (3.5)

We choose F. in equation 3.5 in order to provide boundedness for V. In particular, the

choice of a "squashing" function such as the sigmoid

22



1 -e(-A) (3.6)

for some positive X, will make the potential V satisfy the conditions stated above.

The parameter X in the squashing function has to be chosen as a compromise

between two conflicting necessities:

"* large enough to provide a sufficient region of attraction to correct for errors in
estimates

"* small enough so that objects which are in the field of operation and not on the map

are outside the region of attraction

In the application shown below we use a time varying X decreasing with time in

order to accommodate larger errors at the beginning of the estimation processes. The

estimate of the state z is just a standard Extended Kalman filtering operation, which is

basically defined in Chapter H.

C. SIMULATION RESULTS

The navigation algorithm has been tested on a rectangular pool with sides L, by 1-2 .

Figure 3.1 shows typical contours of potential function, while Figure 3.2 is the three

dimensional plot of the potential function over the pool.

The sonar returns are recorded from several scans spanning the whole 3600 circle

at intervals of 0.9*, thus resulting in 400 sonar returns per scan. The source codes used

during the simulations are listed in Appendix-B. The programs SCAN5.M, SIMUL5.M,

VP.M, SIG.M, and DSIG.M are main files listed. The numbers used in the names of

codes indicates the version number of a main change in program structure.
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Figure 3.1 The contours of the potential function
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FIgure 3.2 Three dimensional potential function
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The forward velocity estimate, shown in Figure 3.3, approaches a constant value.

The estimation error seen in the beginning of this run is induced by the random

disturbances added to the initial state.The yaw rate estimate, shown in Figure 3.4, and

the yaw estimate, shown in Figure 3.5, exhibits fairly good estimates. The initial errors

are due to the initial estimates of the system states and added random disturbances. The

yaw estimate approaches its actual value after 30 seconds of simulation time,which shows

us the sensivitivity of the system to the heading estimates.

MEASURED AND ESTIMATED VELOCITIES
0.41.

0.35 4

0.3

02 ESTIMATE0.25 . .

r MEASUREDý" 0.2 -1

I-
Z 0.15-

0

0 10 20 30 40 50 60

TIME IN SECONDS

Figure 3.3 Measured and estimated forward velocities
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Figure 3.4 Mesred and estimated yaw rte

MEASURED AND ESTIMA TED HEADIGS
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Figure 3.5 Measured and estimated yaw angle of the AUV
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The results of the position estimation are shown in Figures 3.6 through 3.9, where

we used the data collected for seven successive 3600 scans for each case. In Figures 3.6

and 3.7, we assume the initial position and orientation of the AUV to be known. In these

figures the sequence of location of the estimated reflective surfaces is shown for each

scan, superimposed to the contour of the potential function. The estimated trajectory is

also shown, which coincides with the actual induced motion of the sonar head. The

estimates of the reflection from charted objects can easily be distinguished from the

charted regions, since the value of the potential function is close to one for the uncharted

and zero for the charted. In Figures 3.8 and 3.9 we repeat the same simulation with a

significant error in the estimate of the initial location of the sonar head. When the

original location is unknown, we start with a large enough value of the parameter X and

make it decrease exponentially. In Figure 3.9, we notice that until the convergence of the

Kalman filter we might get some estimates that are strictly outside the map defined by

the potential function. Then these initial estimates eventually converge to the original

trajectory of the vehicle.
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Figure 3.6 Estimation with known initial conditions and zero degrees heading as a start
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D. ESTIMATION OF SYSTEM PARAMETERS

The estimation of the system dynamics is the subject of system identification.

Identification has many aspects and phases, and it is customary to organize identification

by considering a certain number of steps each time we encounter an identification

problem. It is often natural to restrict the complexity of modeling to a certain model

structure. The class of models thus adopted often belong to some standard category of

models such as linear systems or ARMAX model associated with certain mathematical

properties. Another standard approach often used is to make assumptions as to the

physical nature of the system or other restrictions that define physical parameterization.

1. Model Structures

The approaches to modelling of linear systems and linear regression models

yields to the following equation, in the regression form as

Yk +Vk 3.7)

Linear regression identification consists in reformulating various estimation and

prediction problems, in the form of equation 3.7, which for suitable definitions of the

observations yl, regressors O, and disturbances vk also applies directly to the model

A (z - )yt= B(z -)+v., (3.8)

where the discrete time series yk and Uk provide data. The term time series here means

a sequence of data ordered in time [Ref. 10]. The corresponding identification problem

consists in determining the model structure and parametric estimation of the polynomials

involved. In many cases, such parameters can be identified by using a linear regression
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approach. The least-squares solution to the linear regression problems exhibits excellent

properties in cases where the disturbances at different sampling times are uncorrelated.

The systematic errors in cases with more complicated spectral disturbance characteristics

constitute a significant problem. Conversely, the presence of correlated disturbances of

composition other than white noise renders bias reduction necessary. Efforts to solve

such problems have given rise to several extensions of linear regression models. In

particular, Recursive Least-Squares (RLS) Method applied to the estimation of

Autoregressive Moving Average Extended (ARMAX) models is of central importance

in this thesis.

2. ARMAX Models and Difference Equations

The ARMAX models constitute an important class of difference equations on

the form

A(z -')y(t) =B(z -')u(t) +C(z -')e(t), (3.9)

where z-1 is a time delay and A,B,C are polynomials

A(z -1) =I +az -1 +... +aZ -1
B(z -1)=b,+blz -1 +... +b~z -1 (3.10)

Q~z 'l)= I +ciz -I +... +c4Z -I

The ARMAX model, in equation 3.9, is completely defined by the polynomials A, B,

and C. So we can group all unknown coefficients in an array

,, (3.11)

which completely defines the model.
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The special case of ARMAX model that admits a reformulation to the linear

regression model is the controlled autoregressive extended model (ARX)

A(z -')yk=B(z -')Uk+Wk , (3.12)

where Wk is white noise. In this thesis, we de,l with first order ARX models.

3. Recursive Estimation

Real-time application of identification algorithms is interesting for various

purposes such as supervision, tracking of time-varying parameters for adaptive control,

filtering, prediction, signal processing, detection, diagnosis and artificial neural networks

[Ref. 9]. However, most identification methods based on a set of measurements are not

suitable for real-time application. It is, therefore, desirable to make a suitable

retormulation of the algorithms in order to provide efficient procedures.

There are several attractive features of recursive estimation. It is obviously suitable

for real-time applications, and only a few data points need to be stored. It is thus a

method which is attractive also as a computational method of off-line algorithms. In

particular, it provides a method for identification of systems with time-varying

parameters.

There are also certain drawbacks such as the fact that the model structure is

determined a priori and the fact that iterative solutions based on large data sets may be

difficult to organize. Thus, it is of some interest to consider the desirable modifications

for real-time application of algorithms originally stated as off-line methods. The

following study shows one such simple derivation.
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Consider an ARX model of the form

A(z -')y(t) =B(z -)u(t) +e(t) (3.13)

with u(t), y(t) input,output sequences, and e(t) zero mean white noise. Also, A and B are

polynomials in the delay operator z-1 as

A(z-1)=I +az -'+... +az-
(3.14)

B(Z -1)=btz-l +... +b,,z-1

The problem is to estimate the parameters a, and b, from the data {u} and {y} in a

recursive fashion. In order to do so, we put the model, in equation 3.13, in Regression

form as

y(t)=!.r(t).Q+e(t)

it0 [-~-1,..-yt-),~-],..u(t-n1)] (3.15)

In the light of equation 3.15 we can apply Kalman filtering techniques to estimate #. If

we assume, 0 is a constant vector, we can write the following state space equations

O(t+ 1) =(t)
(3.16)

y(0) =1rtWOM( +e(t)

Notice that equation 3.26 is a standard state space equation, where e(t) is white noise,

and we can easily apply Kalman filtering for the estimation of f(t) as
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11(t+l)=-O(t)+K/tX(t),(-A 00t)]

K~t) = ;L2+ (t)-c

_t 2 (t~)&((t) (3.17)

P(t)-_tj r(t)p-(t)

with V2 =E(e(t)2]. It seems that in equation 3.17 we need to know V2; the covariance

of the error e(t), which is usually not known. However, in practice we do not need X2 .

Just define

P(t) (3.18);L2

The rest is an easy exercise to show that the recursive least squares estimation method

can be written as

(t1) = P(t)j(t)

K 1t MAO)Q~() (3.19)

It + 1) =P() P-t)_CT___r(tP(t)

1 +.Y(t)(t)i(o_)

Therefore, P(t) is the error covariance matrix,and it is initialized as P(O)=p.1, with I

identity matrix, p. a large positive value.

4. Simulation Results

So far, we assumed the system dynamics introduced in the following

differential equations are known.
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v•=--•v~jp 1  (3.20)

6=-y6+aaa2

At this point, we try to estimate the parameters ot, 0, y, and a by means of RILS,

explained above. During the estimation process, we try to fit our model to a first order

ARX model by using the sampled values of V, u,, 0, and u2. After off-line estimation of

discrete parameters (see Fig. 3.10), we transform discrete time parameters to continuous

time parameters by Laplace Transforms and obtain our a, 0, -y, and a parameters,

which will be used in further simulations. The source code used to do the simulations

described above are written in MATLAB and listed in Appendix-B.

The results of the estimation for different initial conditions are shown in Figures

3.11 through 3.18 , where we used the data collected for seven successive 3600 scans.

In all the figures, the sequence of the estimated reflected surfaces is shown for each of

the scans superimposed to the contours of the potential function. In Figures 3. 11 through

3.14, we assume the initial position and orientation of the sonar head to be known, but

the velocity and direction have uncertainties. In Figures 3.15 through 3.18, we repeat the

same simulations with a significant error in the initial estimate of location. In Figures

3.13 and 3.17, we introduce one slow moving object on portside of our vehicle, and two

slow moving objects in Figures 3.14 and 3.18 on both sides of the vehicle. As a result

of these simulations, we conclude that our model is able to recover by using potential

function approach even when reasonable numbers of obstacles, which are not on the map,

are present in the operation area.
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Figure 3.11 Estimation with known initial location, no obstacles are present.
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Figure 3.12 Estimation with known initial location, no obstacles are present.
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Figure 3.18 Estimation with unknown initial location, two obstacles are present.

46



IV. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY

This thesis presents a study of model-based estimator for small autonomous

underwater vehicles. The approach taken in the design and testing of the estimator

included:

"* The development of linearized models

"* The development of potential function for the environment

"* The estimation of parameters by means of an ARX model

"* The programming in MATLAB

"* Simulation studies using additive white Gaussian noise

B. CONCLUSIONS

In this study, an estimator which uses knowledge of the vehicle dynamics is

developed. In particular, position estimation is obtained by combining the sonar range

information with inertial measurements.

The following conclusions can be drawn from the results of this study:

"* Position, velocity and pitch rate estimation is possible.

"* A piecewise constant Extended Kalman gain is adequate for estimator.

"* Estimation of states by Potential function technique is possible.
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C. RECOMMENDATIONS

The algorithm explored in this thesis could be used in the interim for the NPS AUV

II during pool missions. It is therefore recommended that the following be accomplished

to facilitate implementation of the estimator:

"* Convert the estimator's main loop and other MATLAB functions to C

and compile the entire program for use in the NAPS AUV I computer.

"* Find a better way of identifying potential functions for non-geometrical

environments.

"* Implement neurol networks to identify potential functions.

"* Try to eliminate an extra controller by using potential functions in

obstacle avoidance problem.
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APPENDIX A

A. PROGRAM STRUCTURE

The programs are PRDATA4.M, RANGEH.M, and AUV5.M. The names of the

source code files for different versions of the programs are appended with the version

number, for example, PRDATA4.M.

AUV5.M is the main source code, which initializes the filter parameters, the

simulated vehicle state, the Extended Kalman filter state, the control input, and the f',

A,, and H matrices of the linearized model. The program reads the data file as a standard

MATLAB matrix instead of running a separate vehicle model to generate simulated

measurements.

PRDATA4.M is the source code, which generates the simulated measurements. It

also saves the measurements into a data file as a standard MATLAB matrix.

RANGEH.M is the source code, which generates the estimated nonlinear

measurements of range. It also calculates the gradient of range with respect to heading

and position of the vehicle. RANGEH.M is called by both PRDATA4.M and AUV5.M.
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B. PROGRAM LISTING FOR SIMULATIONS IN CHAPTER II

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% File AUV5.M%
% This little program is designed for estimating the position of an AUV which
% moves in horizontal plane. We assume that AUV starts from a known
% position with a constant heading and constant speed. In this model we also
% use RPM and RUDDER angle as the inputs to the system.

% Calls RANGEH.M

% Modified 26 Jun 93

% Ver.5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear
cig
clc

LI =6;L2=6; %pool dimensions

Ts=0.0225; %entering sampling time
load datae25.dat
clear D
D=datae25;
kmax = length(D) + 1; %discrete time
x0•-.8,1.2,0,1,0]'; %initilization of states
xklk=zeros(5,kmax);
xklk(: ,1)=xO;

PO=diag([10 10 0 10 0]);
pklk=PO;
R=0.1;
alfa=1;
beta=0.O01;
sigma = 1;
gama=-1;

for k=1:kmax-I
headh=xklk(4,k); %heading of vehicle
theta--D(k, 1);
rho=D(k,2);
RPM(k) -D(k,6);
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RUDDER(k) =D(k,7);

a =cos(headlV'pi/ 180);
b=sin(headh"'pi/18O);
A=[ OaO0O

0O0bOO
0 0 -alfa 0 0
00001
0 0 00-gama];

B=[0 0;0 0;bcta 0;0 0;0 sigma];
[phi,dell] =c2d(A,B,Ts);

shdg =theta+ headh;
if shdg > 180

shdg =-360+ shdg;
end
[rhoh,ho] =rangeh(xklk(1 ,k),xklk(2,k),shdg,L1 ,L2); % sonar range
drdx=ho(1 ,2);
drdy = ho(I, 3);
h =[drdx drdy 00 0];
KG pklk*b)/(h*pklk*h' +R);
pklkl =(eye(5)-KG*h)*Ipklk;
pklk=phi~pklkl*phi';
xklkl (: ,k) =xklk(: ,c) +KG*(rbo-rhoh);
xklk(: ,k+ 1) =phi*xklkl (: ,k) +dell *[RPM(k) RUDDER(k)]';

xp(k) =xkclkI (I,k) +rhoh*cos(shdg~piI1 80);
yp(k) =x~klkl(2,k) +rhoh*sin(sbdg*pi/l 80);

end
axis([-l L1+1 -1 U2+1])
plot(xkclkl (1,:),xklkl (2, :),D(: ,4),D(: ,5), 'g' ,xp,yp, '*'),gjid

xlabel('x'),ylabeI('y'),title('POOL')
!del tezg25.met
meta tezg25
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% File PRDATA4.M

This little program is designed for creating data.We assume that AUV gnu
% from a known position with a constant heading and constant speed.We also
% use the RPM and RUDDER angle as the input. In this program we also added
% small noises to the states.

% Calls RANGEH.M

% Modified 26 Jun 93

% Ver.4

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear
cig

ic

LI -6;L2=6; %pool dimensions

Ts=0.0225; %entering sampling time
Tf=9; %time required for a 360 degrees return
kmax=99*Tf/Ts; %discrete time
xf=zeros(5,kmax);
x(:,l)=-l 1 0 315 0]';
RPM= 150*ones(l ,kmax);
RUDDER =zeros(l ,kmax);
aifa=l;
beta=0.001;
sigma= 1;
gama=l;

for kf= l:kmax-I
tetha=x(4,k);
a =cos(tetha*pi/180);
b=sin(tetha*pi/180);
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A=[ 0 0a 00

0 0 -alfa 0 0
00001
00 00 -gama];

B=[0 0;0 0;bcta 0;0 0;0 sigma];
E=cyc(5);
[phi,dell] =c2d(A,B,Ts);
[phi,dcI2] =c2d(A,E,Ts);

RUDDER(k) = 5;

rand('normal')
cx =0.01 *rand;
ey =0.01 *rad;
cv =0.01 *rad;
ct=0.01 *rand;
etd=0.01 *md;
X(:,k+ 1) =phi*x(:,k) +dcell*[Rpm(k) RTJDDER(k)]'+deI2*[cx ey cv et ctd]';
head(k) =x(4,k);

shdg(k)=rem(head(k)+0.9*k,360); %sonar heading
shdgl(k) =rem(0.9*k,360);
if shdg(k) > 180

shdg(k) = -360 + shdg(k);
end
if shdgl(k) > 180

shdgl(k) =-360+shdgl (k) +0.01 *rand;
end
(r,h] =rangeh(x(1 ,k),x(2,k),shdg(k),LI ,L2); %sonar range
dist(k) =r+0.01 *rad;

edtemnp(k, :) =[shdgl(k) dist(k) x(3,k)x(1 ,k) x(2,k) RPM(k) RUDDER(k) x(4,k) x(5,k)J;

!del datae33.dat
save datae33.dat temp /ascii %saving data file in ASCII code

axis(' square')
axis([0 Li 0 212)
plot(x(1 ,:),x(2,:)),grid
title('POOL')
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% File RANGEH.M

% [r,h] =range(x,y,theta,Ll,L2)
% computes the sonar range (r) and its gradient (h)
% at position (x,y) with heading theta
% in the LI by L2 pool.
% h=[dr/dtheta, dr/dx, dr/dy]

% Modified 26 Jun 93

% Called by AUV5.M and PRDATA4.M

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [r,h] =rangeh(x,y,theta,L1 ,L2)
theta=theta*pi/180;
thl =atan2(-y,-x);
th2 =atan2(L2-y,-x);
th3 =atan2(L2-y,Ll-x);
th4=atan2(-y,Ll-x);

while (theta >thl +2*pi),
theta =theta-2*pi;
end
while (theta < =th4),
theta=theta+2*pi;
end
c = cos(theta); s = sin(theta);

if (theta> =th2)&(theta < thl +2*pi),
r=-x/c;
h-[-x*s/c^2,-l/c,O];

end

if (theta> =th3)&(theta<th2),
r=(L2-y)/s;
h =[(y-L2)*c/sA2,0,- 1/s];

end

if (theta> =th4)&(theta<th3),
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r=(L1-x)/c;

end

if (theta > =thlI + 2*pi)&(theta <th4 + 2*pi),
r= -y/s;
h =[-y*c/s^2,O,- us];

end
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APPENDIX B

A. PROGRAM STRUCTURE

The programs are S1MUL5.M, SCANS.M, VP5.M, SIGMOID.M, DSIG.M,

SHOW5.M, SIMUL8.M, and SCAN8.M. The names of the source code files for

different versions of the programs are appended with the version number, for example,

SIMUL8.M.

SIMUL5.M is the main source code, which initializes the filter parameters, the

simulated vehicle state, the Extended Kalman filter state, the control input, and the t,

A,, and H matrices of the linearized model. The program reads the data file as a standard

MATLAB matrix instead of running a separate vehicle model to generate simulated

measurements. In this source code the dynamic parameters of the vehicle are assumed

to be known.

SCAN5.M is designed for estimating the states of the vehicle using the potential

function approach. It scans the estimated borders of the map. VP5.M, SIGMOID.M,

DSIG.M, and SHOW5.M are designed to calculate the value of the potential function,

the value of sigmoid function, the derivatives of sigmoid function and to show the

graphics respectively.

SIMUL8.M and SCAN8.M are basically same with the SIMUL5.M and

SCAN5.M. The only difference introduced in these versions is the estimation of the

dynamic parameters of the vehicle by using an ARX model and RLS method.
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B. PROGRAM LISTING FOR SIMULATIONS IN CHAPTER iM

% File SIMUL5.M

% This source code is designed for estimating the position of an AUV which
% moves in horizontal plane. We assume that AUV starts with a constant
% heading and speed. In this model we use RPM and RUDDER angle as the
% inputs to the AUV system.

% Calls SCAN5.M, SHOW5.M

% Modified 9 Jul 93

% Ver.5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;
cig;
hold off;
clC
subplot(221)
load c:\mat\tez\data\datae32.dat % data of pool
data=datae32;
n =length(data);

nl=l; n2=400;
lambda=50;
zhm =zeros(5,1);
P=diag([10,10,1Ol0,10]); zhO=[3,1,0,0,0]'; % initialize estimate
i=0;
while n2<n,

[zh,P,zs] = scan5(zhO,P,data(nl :n2,:),lambda);
xm=zs(1,:); yni=7-v(2,:);

zhm = [zhm, zh];
i=i+l;
show5
if i==4
meta tezg37
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end
hold off
ni =n2; n2 =min([nl +400,n]);
lambda-O.5*lambda;
nz=length(zh); zhO=zh(:,nz);

end

hold off
show5
hold on
plot(zhm(l,:), zhm(2,:),'*g'), title(' Estimated Trajectory')
meta
end
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% File SCAN5.M

% This source code is designed for estimating the position for static point using
% potential fuction. It scans the estimated borders of the map

% Calls VP5.M

% Modified 8 Jul 93

% Ver.5

function (zh,P,zs]= scan5(zh0,P,data, lambda)
n = length(data);
zh(:,1)=zh0;
R=1;
alfa= I11.2957;beta= .011 ;sigma= 1 .0023;gama= I .0023;Ts=0.0225;
for t=I:n-I
rho =data(t,2); theta =data(t, 1); headh=zh(4,t);
RPM(t) =data(t,6); RILJDDER(t) =data(t,7);
a =cos(headh~'piI1 80); b= sin(headh~'pi/ 180);
A=[O 0a 0O

0 0 -alfa 0 0
00001
0 0 00 -gama];

B=II0 0;0 0;beta 0;0 0;0 sigma];
[Phi,del] =c2d(A,B,Ts);
dx = rho*cos((theta+ headh)*pil 180);
dyO =rho*sin((theta +headh)*pi/ 180);
xO=zh(1 ,t)+dxO;
yO=zh(2,t)+dyO;
zs(:,t)=[x0;yO];
[v,dvx,dvy] =VP5(xO,yO, lambda);
h =[dvx,dvy,0,(-dvx*dyO +dvy*dxO)*pil 180,0]';
s=h'*P*h+1; K=Phi*P*bls;
e=0-v;
zh(: ,t+1) =Phi*zh(: ,t) +del*[RPM(t) RUDDER(t)]' +K*e;

end
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% File VP5.M, SIGMOID.M, DSIG.M, SHOW5.M

% These source codes are designed for calculating the potential function, the
% ~value of sigmioid, its derivative at a given point and to show graphics.

% Modified 9 Jul 93

% Ver.5

function [v,dvx,dvy] = VP5 (x, y, lambda);

z =(vO)/QIambda); v =signioid(z);
dvx =dsig(z)*((x-6)*(y. *(y.-6)) + x(y. *(y-6))')/Iambda;
dvy =dsig(z)*((x. *(x..6))*(y-6)' +(x. *(x..6))*y')/Iamtxla;
end % VP5

function y = sigmoid(x)
x=niin(x,l00); x=max(x,-IO0);
y= (I-exp(-x))./(l +exp(-x));
end % SIGMOID

function d=dsig(x)
% derivative of sigmoid
x=min(x, 100);
x =nax(x,-l00);
temp exp(-x);
d=temp ./ (1+2*temp + temp 2"temp);
end %DSIG

%SHOW5.M
x=-1:.1:7;
y = -:. 1:7;
[v,dvx,dvy] =VP5(x' ,y' ,lambda);
contour(v~x,y)
hold on
for t = 1: :ength(xm)
plot(xm(t), ym(t), 'og')
end
end % show
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% File SIMUL8.M

% This source code is designed for estimating the position of an AUV which
% moves in horizantal plane. We assume that AUV starts with a constant
% heading and speed. In this model we use RPM and RUDDER angle as the
% inputs to the AUV system. Also we try to fit the heading rate and speed data
% to an ARX model by using RLS.

% Calls SCAN8.M, SHOW5.M

% Modified 10 Aug 93

% Ver.8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

!del tezg46. met
!del para8.met
clear; clg; hold off;clc
subplot(221)
load datae25.dat
data = datae25;
n = length(data);
Ts=0.0225;

%ESTIMATION OF SYSTEM PARAMETERS BY USING RLS AND
%FIRST ORDER ARX MODEL

%ESTIMATION FOR SPEED PARAMETERS
vl =data(:,3); %MEASURED SPEED DATA
ul =data(:,6); %RPM INPUT

thl =zeros(2,n);
P1 = 10*eye(2);
for kl =2:n-I

phitl(kl,:)=[-vl(kl-l) ul(kl-1)];
denl(kl) = 1 +phitl(kl,:)*Pl*phitl(kl,:)';
K1(: ,kl) =Pl*phitl(kl,:)'/denl (kl);
PI =Pl-PI*phitl (kl ,:)'*phitl (kl ,:)*Pl/denl (kl);
thl(: ,kl + 1) =thl(: ,kl)+K1(: ,kl)*(vI(kl)-phit1(kl,:)*thl(: ,kl));

end
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%ESTIMATION FOR YAW RATE PARAMETERS
v2=data(:,9); %MEEASURED HEADING DATA
u2 =data(: ,7); %RUDDER ANGLE INPUT

th2 = zeros(2, n);
P2 = 10*eye(2);
for k2=2:n-l

phit2(k2,:)=[-v2(k2-l) u2(k2-l)];
den2(k2) = Il+phit2(k2,:)*P2I*phit2Oc2,:)';
K2(: ,k2) =P2"'phit2(k2,:)'/den2(k2);
P2 =P2-P2*phit2(k2,:)'*phit2(k2,:)*P2/den2(k2);
th2(: ,k2 + 1) =tb2(: ,k2) +K2(: ,k2)*(v2(k2)-phit2(k2, :)*th2(: ,k2));

end

%TRANSFORMING PARAMETERS FROM DISCRETE TO CONTINUOUS TIME
phil =[-thl(l,n) 0;0 -th2(l,n)];
deli =[thl(2,n) 0;0 tb2(2,n)];
[Al ,BI] =d2c(phil ,dell ,Ts);
przns=[-AIl (,l1);Bl(l, ,);-Al(2,2);B1(2,2)];

%PLOTING THE DISCRETE PARAMIE'TERS
ti =O:n-l;
t=0.0225*tl;

plot(t,-thl(l ,:));title('ALFA ESTIMATE');xlabel('Time');grid
plot(t,thl (2,: ));title('BETA ESTIMATE');xlabel('Time');grid

plot(t,-th2(2, :));title('SGAMA ESTIMATE'); xlabel('Time');grid,

pause
meta para9
cig

%SIMULATION DUE TO PARLAMEERS ESTIMATED ABOVE

axis('normal')
subplot(22 1)
nI=l; n2=400;
Iambda=200;
zhm =zeros(5,l1);

P=diag([l00, 100,100,100,100]); zh0=[2,3, 1,10,10]'; % initialize estimate
i=0;
while n')< n,
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[zh,P,zs] = scan8(zhO,P,data(nl: n2, :) ,Iainbda,prms);
xm=zs(l,:); ym=zs(2,:);
zhm =[zhm, zh];
i=i+1;
show5
if i==4
meta tezg46
end
hold off
n I = n2; n2 =min([n I + 400, n]);
lambda =0. 5*lamnbda;
nz=length(zh); zhO=zh(:,nz);

end

hold off
show5
hold on
plot(zhm(l ,:), zhm(2,:), '*g'), title(' Estimated Trajectory')
meta
end % simulation
!del den. dat
save den.dat Ahm /ascii
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% File SCAN8.M

% This source code is designed for estimating the position for static point using
% potential fuction. It scans the estimated borders of the map

% Calls VP5.M

% Modified 8 Aug 93

% Ver.8

function [zh,P,zs] =scan8(zh0,P,data,lambda,prins)
n = Iength(data);
zh(:, 1) =zh0;
R=l;
alfa =prms(l1);beta =prnis(2); sigma =prms(3);gana =prms(4);Ts =0.0225;
for t=1:n-I
rho=data(t,2); theta =data(t, 1); headh =zh(4,t);
RPM(t) =data(t,6); RUDDER(t) =data(t,7);
a =cos(beadh~'piI 180); b =sin(headh*pi/ 180);
A=[O 0a 0O

0O0bO0O
0 0 -alfa 0 0
00001
0 0 00-gama];

B=[0 0;0 0;beta 0;0 0;0 sigma];
[Phi,del] =c2d(A,B,Ts);
dx0 rho*cos((theta+headh)*pil 180);
dy0 =rho*sin((theta+headh)*pil 180);
xO=zh(1 ,t)+dxO;
yO=zh(2,t) +dy0;
zs(: ,t) =[xO;yOl;
(v,dvx,dvy] =VP5(x0,y0,lambL..);
h=[dvx,dvy,0,(-dvx*dy0+dvy*dx0)*piI180,0]';
s=h'*P*h+ 1; K=Pbi*P*hls;
e=0-v;
zh(: ,t+1) =Phi*zh(: ,t) +del*(RPM(t) RUDDER(t)]' +K*e;
P=phi*P*Phi'-K*s*K';
end
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