
"REPORT DOCUMENTATION PAGE iI_______ ____

F• avea 1 hou pe rmzponee., il' ing the time hr rew lg inetru~oCi, O .VB h. be i-nhri M~lting• datal acro gethehri

* - A ~ 3 ~ #'tAA eion. Send mmmentew regarding this burden aetirnete or eri other mpeet of this = 1in ltEimn ofihmwion. arcuding/iMe. irecorate fr knforrnauan Opraonst end Raports. 1215 JSiW DaS t.ghWay, SuAe 1204, A-•Inon. VA
2 - im of Inaegement wad Budget. Washington. DC 20S0.

1 I1111ii ii111 'ORT 3. REPOR-T TYPE AND DATES

4. TITLE AND 5. FUNDING

VADS Windows NT/486, VAda 110-36315, Version 6.2, Host:
Compudyne 486 (with Floating Point Co-Processor) under Windovs
NT, 3.1 , 940110W1.11337

6.

Authors:

Wright-Patterson AFB
7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

Ada Validating Facility, Language Control Facility ASD/SCEL ORGAN.ATION
Bldg. 676, Room 135
Wright Patterson AFB, Dayton OH 45433

9. SPONSORING'MONITORING AGENCY NAME(S) AND O T10. SPONSORINGIMONITORING

Ada Joint Program Office
The Pentagon, Rm 3E118 E L E CT
Washinqon, DC 20301-3080 FEB 2 3 1994

11. SUP-PLENiz-NTARY

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

Approved for public release; distribution unlimited

13. (Maximum 200
VADS Windows NT/486, VAda 110-36315, Version 6.2, Host: Compudyne
486 (with Floating Point Co-Processor) under Windows NT, 3.1,
940110W1. 11337

DTIC Q 7h17M'7.

94-05674

14. SUBJECT ¶5. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Comp ¶6 PRICE

AA114IL.S49WtY~lI Testing, Ada Val. Office, Ada Val. Facili y
17. SECURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION e CLASSIFICAT1ON
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

st.ara Fom 2=&. (Rev. 249)
fPrtsarbd by ANSI Sl.

AVF Control Number: AVF-VSR-579.1293
Date VSR Completed: 1 February 1994

93-11-22-VRX

Ada COMPILER
VALIDATIN SUqMMARY REPORT:

Certificate Number: 940110W1.11337
Verdix Corporation

VADS Windows NT/486, VAda 110-36315, Version 6.2
Compudyne 486 (with Floating Point Co-Processor) under Windows NT, 3.1

(Final)

Prepared By:
Ada Validation Facility

645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

NTIS CRA&I
DT'IC TAB 0•

By
Distribution I

Avalalbility Codes

D is Avjil jc " iot
Dist Special

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.

Testing was completed on 10 January 1994.

Compiler Name and Version: VADS Windows NT/486, VAda 110-36315, Version 6.2

Host Cocputer System: Compudyne 486 (with Floating Point Co-Processor)
under Windows NT, 3.1

Target Computer System: Same as host

Customer Agreement Number: 93-11-22-VRX

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940110W1.11337
is awarded to Verdix Corporation. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation Faci
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFh OH 45433-5707

)Kyiia n--d 0ganiztion
Dir tor ter and Software Engineering Division
Institute -or Defense Analyses
Alexandria VA 22311

AMda Joint Program Office
;-.-M. Dirk Rogers, Major, USAF

Acting Director
Department of Defense
Washington DC 20301

4.

DECLARATION OF CONFORMANCE

(Customer: Verdix Corporation

Ada Validation Facility: ASD/SCEL. Wright-Patterson AFB OH 454:33-6503

A(AVC Version: 1.11

Ada lInllementation:

(ompiler Name and Version: \ADS \\indows NT/48(. Version 6.2
VAda 110-36315

Host ('omputer System: Conipudyne 486
(under Windows NT 3.1)

Target (Computer System: Saine as Host

Customer's Declaration

I. the undersigned. representing Verdix ('orporation. declare that Verdix (Corporation has no
knowledge of deliberate deviations from the Ada Language Standard ANSI/ MI L-ST D- I1 1SA
in the implementation listed in this declaration. I declare that Verdix Corporation is tile owner
of the above imlplementation and the certificates shall be awarded in the namie of the owner's
corporate namle.

;,4 >~4 LU, ~Date: -

Robert S. Wilbourm. Director of Engineering
-erdix ('orporation

10 Pasteur Street
Irvine. ('A 92718

TABLE OF CCITENTS

CHAPTER 1 INTRODUCTICN

1.1 USE OF THIS VALIDATION StMMARY REPORT 1-1
1.2 REFER S 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATI(ON DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 21
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING EN.RONMENT. *3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION. 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTICN

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the -Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITICN OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.
Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1981. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/oiitput control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro921.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLMDNTATICN DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C3550'70 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54BO2A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BD1BO6A
ADIBO8A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4G24D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE360 Z CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATICON DEPENDEN!CIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LUMG INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55BO7A B55BO9C B86001W C86006C CD7101F

C35713C, B86001U, and C86006G check for the predefined type LONGFLOAT;
for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less then 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, Cr2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL0IO
CE2102F CREATE IN0UFT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIAL--IO
CE2102P OPEN OUT FILE SEQUENTIAL--IO
CE2102Q RESET OUT-FILE SEQUENTIALIO
CE2102R OPEN INOVT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN -FILE DIRECT--IO
CE2102V OPEN Off FILE DIRECT-IO
CE2102W RESET OUT-FILE DTRECT-IO
CE3102E CREATE IN FILE TEXT I_
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT_10
CE3102I C"EATE OUT FILE TEXT_10
CE3102J OPEN IN FILE TEXT_-I
CE3102K OPEN Off FILE TEXT-IO.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this-implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inapproprTate value for the eiternal file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of
COJNT'LAST is greater than 150000, making the checking of this objective
impractical.

2-3

IMPLEMENTATION DEPENDECIES

2.3 TEST MODIFICATICNS

Modifications (see section 1.3) were required for 22 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC3005B BD2BO3A BD2DO3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST as
the range constraint of a floating-point type declaration because the bounds
lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

CD1009A, CD1009I, CD1CO3A, CD2A24A and CD2A31A..C (3 Tests) were graded
passed by Evaluation Modification as directed by the AVO. These tests use
instantiations of the support procedure LENGTH CHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590. The
AVO ruleU that this interpretation is not binding under ACVC 1.11; the tests
are ruled to be passed if they produce Failed messages only from the
instances of LENGTHCHECK-i.e, the allowed Report.Failed messages have the
general form:

" * CHECK CN REPRESETEATIN FOR <TYPE ID> FAILED."

AD9001B was graded passed by Test Modification as directed by the AVO. This
te-t checks that no bodies are required for interfaced subprograms; among the
procedures that is used is one with a parameter of mode OUT (line 36). This
implementation does not support pragma INTERFACE for procedures with
parameters of mode OUT. The test was modified by commenting out line 36 and
40; the modified test was passed.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Laurie J. Ogino
Verdix Corporation
10 Pasteur Street
Irvine, CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system - if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3796
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 69
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 270 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun Workstation an copied over Ethernet to
the host machine.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

-w (warnings) Suppress warning diagnostics.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN LE 199 - Value of V

$BIGIDI (i..V-1 -> 'A', V -> 'I')

$BIG ID2 (1..V-1 -> 'A', V -> '2')

$BIGID3 (I..V/2-> 'A') & '3' &
(1..V-1-V/2 -> 'A')

$BIGID4 (1..V/2 -> 'A') & '4' &
(l..V-l-V/2 -> 'A')

$BIGINTLIT (1..V-3-> '0') & "298"

$BIGREALLIT (1..V-5-> '0') & "690.0"

$BIGSTRINGI '"' & (i..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (..V-1-V/2 -> 'A') & '1' & '"'

SBLANKS (i..V-20 -> '

$MAXLEN _INTBASEDLITERAL
"2:" & (1..V-5-> '0') & "11:"

$MAXLEN REAL-BASEDLITERAL
"16:" & (1..V-7-> '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAXSTRINGLITERAL '"' & (l..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNT LAST 2147483647

$DEFAULTMEM_SIZE 16777216

$DEFAULT STOR UNIT 8

$DEFAULT SYS NAME WINNT386 SELF

$DELTA DOC 2.0**(-31)

SENTRY ADDRESS SYSTEN. "+" (16#40#)

$ENTRY ADDRESS1 SYSTEM."+"(16#80#)

SENTRY ADDRESS2 SYSTEM.1"+"(16#100#)

SFIELD LAST 2147483647

$FILETERMINATOR , I

$FIXED NAME NO SUCH TYPE

$FLOAT NAME NO SUCH TYPE

$FORM STRING

$FORMSTRING2 "CANNT RESTRICTFILECAPACITY"

$GREATER THAN DURATION
100000.0

$GREATER THAN DURATION BASE LAST
-T000000.0

$GREATER THAN FLOAT BASE LAST
1 .UE+308

$GREATER THAN FLOAT SAFE LARGE
-- - -- 5.E307

A-2

MACRO PARAMETERS

$GREATER THAN-SHORT FLOAT SAFE LARGE
- 9.0E37 -

SHIGH PRIORITY 99

$ILLEGALEXTERNALFILE NAME1
/NODIRECTORY/FILENAME1

$ILLEGALEXTERNAL FILE NAME2
-7NODIRECTORY/FILENAME2

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELE?4GTH

-1

$INCLUDE.PRAGMAI PRAGMA INCLUDE ("A28006DI.TST")

$INCLUDEPRAGMA2 PRAGiA INCLUDE ("B28006F1.TST")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUAGE C

$LESS_THANDURATICN -100000.0

$LESS THAN DURATICN BASE FIRST
- -10oooooo.o

$LINETERMINATOR ASCII.CR & ASCII.LF

$LOW PRIORITY 0

$MACHINECODE STATEMENT
CODE 0'(OP -> NOP);

$MACHINECODETYPE CODE_0

SMANTISSA_DOC 31

$MAXDIGITS 15

$MAX INT 2147483647

$MAXINT PLUS 1 2147483648

SMININT -2147483648

$NAME TINYINTEGER

A-3

MACRO PARAMETERS

$NAME LIST WINNT386_SELF

$NAME SPECIFICATION1 Q:\vads\acvctest\X2120A

SNAME SPECIFICATION2 Q:\vads\acvctest\;C2120B

SNAME SPECIFICATION3 Q:\vads\acvctest\X3119A

$NEG BASED INT 16#FOOOOOOE#

$NK_?4EM _SIZE 16777216

$NEWSTORUNIT 8

$NEW SYSNAME WINNT386_SELF

$PAGETERMINATOR ASCII.CR & ASCII.LF & ASCII.FF

$RECORD DEFINITION RECORD SUBP: OPERAND; END RECORD;

$RECORD NAME CODE_0

$TASKSIZE 32

$TASK STORAGE SIZE 2048

STICK 0.01

$VARIABLE ADDRESS VAR_1 'ADDRESS

$VARIABLE ADDRESS1 VAR 2 'ADDRESS

$VARIABLE ADDRESS2 VAR 3 'ADDRESS

$YOURPRAGMA PRAGMA PASSIVE

A-4

APPENDIX B

COMPILATICN SYSTEM OPTICNS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

Syntax

ada [options] [source-file]... (object file.o]...

Arguments

objectfile.o non-Ada object file names. These files will be passed
on to the linker and will be linked with the specified
Ada object files.

options options to the compiler. These are:

-A (disassemble) Disassemble the units in the source file after
compiling them. -A can be followed by arguments that further
define the disassembly display (e.g., -Aa, -Ab, -Ad, -Af,
-Al, -As).

a Add hexadecimal display of instruction bytes to
disassembly listing.

b Disassemble the unit body [default].
d Print the data section (if present) as well.
f Use the alternative format for output.
1 Put the disassembly output in file "filename.das"
s Disassemble the unit spec.

-a file name
(arc-hive) Treat file name as an object archive file created
by ar. Since some archive files end with .a, -a is used to
distinguish archive files from Ada source files.

-Bstatic/dynamic (SPARCompiler Ada only)
(static) If static is indicated, the Ada program is compiled
and linked statically. The default is dynamic.

B-I

COMPILATION SYSTEM OPTIONS

-c suppress the control messages generated when pragma PAGE
and/or pragma LIST are encountered.

-D identifier type value
(define) Define an identifier of a specified type and value.

-d (dependencies) Analyze for dependencies only. Do not do
semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. The -d option is
used by a.make to establish dependencies among new files.
This option will attempt to do imports for any units
referenced from outer libraries. This should reduce
relocation and reduce user disk space usage.

-E
-E directory

(error output) Without a directory argument, ada processes
error messages using a.error and directs a brief message to
standard output; the raw error messages are left in
source file.err. If a directory name is given, the raw error
output-is placed in directory/source file.err. The file of
raw error messages can be used as input to a.error. Only
one -e or -E option should be used.

-e (error) Process compilation error messages using a.error and
send it to standard output. only the source lines containing
errors are listed. Only one -e or -E option should be used.

-Eferror file source file
(error) Process iource file and place any error messages
in the file indicated Ey error file. Note that there is
no space between the -Ef and errorfile.

-El
-El directory

(error listing) Same as the -E option, except that a source
listing with errors is produced.

-el (error listing) Intersperse error messages among source
lines and direct to standard output.

-Elferror file source file
(erro? listing) Same as the -Ef option, except that a source
listing with errors is produced.

-ev (error vi(l)) Process syntax error messages using a.error,
embed them in the source file and call the environment editor
ERROR EDITOR. If ERROR EDITOR is defined, the environment
variaBle ERROR PATTERN-should also be defined. ERROR PATTERN
is an editor search coumand that locates the first occurrence
of '###' in the error file. If no editor is specified, vi(l)
is invoked.

B-2

COMPILATIN SYSTEM OPTIONS

The value of the environment variable ERROR TABS, if set,
is used instead of the default tab settings-(8).

-F (full DIANA) Do not trim the DIANA tree before output to
net files. To save disk space, the DIANA tree will be
trimmed so that all pointers to nodes that did not involve
a subtree that define a symbol table will be nulled
(unless those nodes are part of the body of an inline or
generic or certain other values needing to be retained for
the debugging or compilation information). The trimming
generally removes initial values of variables and all
statements.

-G (GVAS) Display suggested values for the MINGVASADDR
and MAX GVAS ADDR INFO directives.

-K (keep) Keep the intermediate language (IL) file produced
by the compiler front end. The IL file will be placed in
the .objects directory with the file name Ada_source.

-L library name
(library) Operate in VADS library library_name.
[Default: current working directory]

-ifile abbreviation (VADSself only)
(library search) This is an option passed to the ld(1)
linker, telling it to search the specified library file.
(No space between the -1 and the file abbreviation.)

-M unit name
(maTn) Produce an executable program by linking the named
unit as the main program. unit name must already be
compiled. It must be either a parameterless procedure or
a parameterless function returning an integer. The
executable program will be named a.out unless overridden
with the -o option.

-M source file
(mainT Produce an executable program by compiling and
linking source file. The main unit of the program is
assumed to be The root name of the file (for foo.a the
unit is foo). Only one file may be preceded by -M. The
executable program will be named a.out unless overridden
with the -o option.

-N (no code sharing) Compile all generic instantiations
without sharing code for their bodies. This option
overrides the SHARE BODY INFO directive and the SHARECODE
or SHAREBODY pragmas.

-0[0-91
(optimize) Invoke the code optimizer. An optional digit
(there is no space before the digit) provides the level of
optimization. The default is -04.

B-3

COMPILATICN SYSTEM OPTICNS

-O full optimization
-00 no optimization (use for debugging)
-01 copy propagation, constant folding, removing

dead variables, subsuming moves between scalar
variables

-02 add common subexpression elimination within
basic blocks

-03 add global common subexpression elimination
-04 add hoisting invariants from loops and address

optimizations
-05 add range optimizations, instruction scheduling

and one pass of reducing induction expressions
-06 no change
-07 add one more pass of induction expression reduction
-08 add one more pass of induction expression reduction
-09 add one more pass of induction expression

reduction and add hoisting expressions common to
the then and the else parts of if statements

Hoisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

-o executable file
(output) 1his option is to be used in conjunction with
the -4 option. executable file is the name of the executable
rather than the default, a.out (self) or a.vox (cross).

-P Invoke the Ada Preprocessor.

-R VADS library
(ricompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of any that are out
of date. VADS library is the library in which the
recompilation Ts to occur. If it is not specified, the
recompilation occurs in the current working directory.

-r (recreate) Recreate the library's GVAS TABLE file. This option
reinitializes the file and exits. Thiu allows recovery from
"GVAS exhausted" without recompiling all the files in the library.

-S (suppress) Apply pragma SUPPRESS to the entire compilation
for all suppressible checks.

-sh (show) Display the name of the tool executable but do not
execute it.

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time of
compilation, name of file compiled, command input line,
total compilation time and error summary line. Storage usage
information about the object file is provided.

B-4

COMPILATION SYSTEM OPTIONS

-w (warnings) Suppress warning diagnostics.

source-file name of the source file to be compiled.

Description

The ada command executes the Ada compiler and compiles the named Ada
source file. The file must reside in a VADS library directory. The
ada.lib file in this directory is modified after each Aria unit is
compiled.

By default, ada produces only object and net files. If the -K option
is used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the main program.

For cross systems, the compiler generates object files compatible with
the host linker in VOX format. The VOX format is discussed in
Appendix A of the Programmer's Guide.

Non-Ada object files (.o files produced by a compiler for another
language) may be given as arguments to ada. These files will be passed
on to the linker and will be linked with the specified Ada object files.

Command line options may be specified in any order but the order of
compilation and the order of the files to be passed to the linker can
be significant.

Several VADS compilers may be simultaneously available on a single
system. Because the ada command in any VADS location/bin on a system
will execute the correct compiler componenti based upon visible
library directives, the option -sh is provided to print the name of
the components actually executed.

Program listings with a disassembly of machine code instructions
are generated by a.db or a.das.

NOTE: If two files of the same name from different directories are
compiled in the same ada library using the -L option (even if the
contents and unit names are different), the second compilation will
overwrite the first. For example, the compilation of
/usr/directory2/foo.a -L /usr/vads/test will overwrite the
compilation of /usr/directoryl/foo.a -L /usr/vads/test in the
VADS library /usr/vads/test.

Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the RM. Each RM reference includes a
section number and optionally, a paragraph number enclosed in
parentheses.

B-5

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

Syntax

a.ld [options) unit-name [linker_options]

Arguments

linker options
Xl arguments after unit name are passed to the linker.
library abbreviations or-object files.

options options to the a.ld conmand. These are:

-DO (objects) Use partially linked objects instead of archives
as an intermediate file if the entire list of objects cannot
be passed to the linker in one invocation. This option is
useful because of limitations in the archiver on some hosts
(including ULTRIX, HP-UX and System V). (VADSself only)

-DT (time) Displays how long each phase of the prelinking process
takes. (VADSself only)

-Du unit list
(uniTs) Traces the addition of indirect dependencies to the named
units. (VADSself only)

-Dx (dependencies) Displays the elaboration dependencies used each
time a unit is arbitrarily chosen for elaboration. (VADSself only)

-DX (debug) Debug memory overflow (use in cases where linking
a large number of units causes the error message "local
symbol overflow" to occur). (VADSself only)

-E unit name
(eliborate) Elaborate unit-name as early in the elaboration
order as possible.

-F (files) Print a list of dependent files in order and suppress
linking.

-K (keep) Do not delete the termorary file containing the list of
object files to link. This file is only present when many object
files are being linked. (SGI only)

-L library name
(library) Collect information for linking in library_name instead

B-6

COMPILATION SYSTEM OPTIONS

of the current directory. However, place the executable in the
current directory.

-o executable file
(output) Use the specified fielnaue as the name of the output
rather than the default a.out (self) or a.vox (cross).

-sh (show) Display the name of the tool executable but do not
execute it.

-T (table) List the symbols in the elaboration table to standard
output.

-U (units) Print a list of dependent units in order and
suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command but suppress execution.

-w (warnings) Suppress warning messages.

unit-name
name of an Ada unit. It must name a non-generic subprogram.
If unit name is a function, it must return a value of the
type STRNARD.INTEGER. This integer result will be passed back
to the shell as the status code of the execution.

Description

a.ld collects the object files needed to make unit name a main
program and calls the ld(l) linker to link togetheT all Ada and
other language objects required to produce an executable image in
a.out (self) or a.vox (cross). The utility uses the net files produced
by the Ada compiler to check dependency information. a.ld produces
an exception mapping table and a unit elaboration table and passes
this information to the linker. The elaboration list generated by
a.ld will not include library level packages that do not need
elaboration. Similarly, packages that contain no code that can raise
an exception will no longer have exception tables.

a.ld reads instructions for generating executables from the ada.lib
file in the VADS libraries on the search list. Besides information
generated by the compiler, these directives also include WITHn
directives that allow the automatic linking of object modules
compiled from other languages or Ada object modules not named
in context clauses in the Ada source. Any number of WITHn
directives may be placed into a library but they must be
numbered contiguously beginning at WITH1. The directives are
recorded in the library's ada.lib file and have the following form.

WITH1:LINK:object file:
WITH2:LINK:archive file:

B-7

COMPILATICN SYSTEM OPTICNS

WITHn directives may be placed in the local Ada libraries or in
any VADS library on the search list.

A WITHn directive in a local VADS library or earlier on the
library search list will hide the same numbered WITHn directive
in a library later in the library search list.

Use the tool a.info to change or report library directives in
the current library.

For VADSself on Silicon Graphics Computer Systems, the
USE LAST LINK INFO directive speeds relinking by retaining a list
of units- their types, seals and dependencies.

VADS location/bin/a.ld is a wrapper program that executes the
correct executable based upon directives visible in the ada.lib
file. This permits multiple VADS compilers to exist on the same
host. The -sh option prints the name of the actual executable file.

Files

a.out (self), a.vox (cross) default output file
.nets Ada DIANA net files directory
.objects/* Ada object files
VADSlocation/standard/* startup and standard library routines

Diagnostics

Self-explanatory diagnostics are produced for missing files,
etc. Additional messages are produced by the ld linker.

B-8

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type TINY INTEGER is range -128 .. 127;
type SHOR1T INTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;

type SHORT FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type FLOAT-is

digits 15 range -1.79769313486232E+308 .. 1.79769313486232E+308;

type DMRATICN is delta 0.0001 range -214748.3648 .. 214748.3647;

end STANDARD;

C-1

1 Implementation-Dependent Pragmas
" INLINEONLY Pragma

The INLINEONLY pragnma, when used in the same way as pragma INLINE.
indicates t.o the coml)iler that tile subprogram must always be inlined. This
pragma also suppresses the generation of a callable version of the routine which
saves code space. If a user erroneously makes an INLINEONIY subprogram
recursive a warning message will be emitted and all PROGRAM-ERROR will
be raised at run time.

"* BUILTIN Pragma

The BUILTN pragma is used in the implementation of some predefined Ada.
packages. but provides no user access. It is used only to implement code
bodies for which no actual Ada body can be provided. for example tile MA-
('HINEODE package.

" SHARECODE Pragma

The SHARE-CODE pragma takes the name of a generic instantiation or a
generic unit as the first argument and one of the identifiers TRITE or FALSE
as the second argument. This pragma is only allowed iinniediately at the place
of a declarative item in a declarative part or package specification. or after a
library unit in a compilation, but before any subsequent. compilation unit.

When the first argument is a generic unit the pragma applies to all instantiations
of that generic. When the first argument is the name of a generic instatitiation
the pragma applies only to the specified instantiation, or overloaded instantia-
tions.

If tile second argument is TRITE the compiler will try to share code generated
for a generic instantiation with code generated for other instantiations of the
same generic. When the second argument is FALSE each instantiatioil will
get a unique copy of tile generated(code. The extent to which code Is !hared
between instantiations depends oil this pragma and the kind of generic formal
p~aramet.ers declared for the generic unit.

The name pragma SHAREBODY is also recognized by thie implevientaltion
and has the same effect as SHARE_('ODE. It is included for compat.ability
with earlier versions of VADS.

" NOiNIAGE Pragma

The pragnia suppresses the generation of the image array used for the INIAGE
attribute of enumeration t ypes. This eliminates tihe overhead required to store
tile array in the executable image. An attempt to use tlie INIAGE attribute
on a type whose image array has been suppressed will result. in a compilation
warning and PROGRAN•iERROR raised at run time.

" EXTERNALNANIE Pragma

Tile EXTERNAL.NANIE pragma takes the name of a subprogram or variable
defined in Ada and allows tile user to specify a different external name that may

be used to reference the entity from other languages. The pragma is allowed at
the place of a declarative item in a package specification and must apply to an
object declared earlier in the same package specification.

* INTERFACENAME Pragma

The INTERFACE'NAME pragma takes the name of a a variable or subprogram
defined in another language and allows it to be referenced directly in Ada. The
pragma. will replace all occurrences of the variable or subprogram name with
an external reference to the second. link-argument. The pragma is allowed at
the place of a declarative item in a package specification and must apply to an
object or subprogram declared earlier in the same package specification. The
object must be declared as a scalar or an access type. The object cannot be
any of the following:

- a loop variable.

- a constant.

- an initialized variable.

- an array. or

- a record.

IMLiCITCODE Pragma

Takes one of the identifiers ON or OFF as the single argumnent. This pragma
is only allowed within a machine code procedure. It specifies that implicit code
generated by the compiler be allowed or disallowed. A warning is issued if OFF
is used and any implicit code needs to be generated. The default is ON.

9 OPTIMIZECODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragmna
is only allowed within a machine code procedure. It specifies whet her the code
should be optimized by the compiler. The default. is ON. When OFF is specified.
the compiler will generate the code as specified.

2 Implementation of Predefined Pragmas

* CONTROLLED

This pragma is recognized by the implementation but. has no effect.

* ELABORATE

This pragma is implemented as described in Appendix B of the Ada RNI.

* INLINE

This pragma is implemented as described in Appendix B of the Ada RNI.

* INTERFACE

This pragnia supports calls to 'C' and FORTRAN functions. The Ada sub-
programs can be either functions or proceditres. The types of parameters and
the result type for functions must be scalar. access or tile predefined type AD-
DRESS in SYSTEM. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS attribute.

* LIST

This pragma is implemented as described in Appendix B of the Ada RM.

* MEMORY.SIZE

This pragma is recognized by the implementation. The implementation does
not allow SYSTEM to be modified by means of pragmas. the SYSTEM l)ackage
niust be recompiled.

* NON-REENTRANT

This pragma takes one argument which can be the name of either a library
subl)rogram or a subprogramn declared inuniediately within a library p)ackage
spec or body. It indicates to the com-piler that the subprogram will not be
called recursively allowing the compl)ier to l)erform specific optimizations. The
praglma can be applied to a subprogram or a. set of overloaded subp)rogra-sni
within a package spec or package body.

e NOT-ELABORATED

This pragma can only appear in a. library l)ackage specification. It indicates
that the package will not be elaborated b)ecause it is either part. of the HTS.
a configuration package or an Ada. package that is referenced from a language
other than Ada. The presence of this pragma suppresses the generation of
elaboration code and issues warnings if elaboration code is required.

* OPTIMIZE

This praglia is recognized by the implementation but has no effect.

* PACK

This l)ragnra. will cause the compl)iler to choose a non-aligned representation for
composite types. It will not, causes objects to be packed at. the bit level.

e PAGE

This pragina is implemented as described in Appendix B of the Ada RNI.

* PASSIVE

The pragnia has three forms

- PRAGMA PASSIVE:

- PRAGMA PASSIVE(SEMAPHORE):

- PRAGMA PASSIVE(INTERRUPT. number):

This pragma Pragma passive can be applied to a task or task type declared
inunediately within a library package spec or body. The pragma directs the
compiler to optimize certain tasking operations. It is possible that the state-
ments in a task body will prevent the intended optimization. ill these cases a
warning will be generated at compile time and will raise TASKINCG.ERROR at
rutltilne.

* PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

* SHARED

This pragnia is recognized by the implementation but has no effect.

e STORAGEUNIT

This pragma is recognized by the iml)lementation. The implementation does
not allow SYSTEM to be modified by means of pragnias. the SYSTEM package
must. be recolnpiled.

e SUPPRESS

This pragma is implemented as described, except that DIVISION_CHE('K and
ill some cases OVERFLO_HECIK cannot be supressed.

• SYSTEMNAME

This pragma is recognized by the implementation. The implenmentation does
not allow SYSTEM to be modified by means of praglias. the SYSTEM package
must. be recompiled.

3 Implementation-Dependent Attributes

* P'REF

For a prefix that denotes an object. a program unit. a label, or an entry:

This attribute denotes the effective address of the first of tihe storage units
allocated to P. For a subprograml. p)ackage. task unit. or label, it refers to
the ad('.ess of the miachine code associated with the corresponding body or
statement. For an entry for which an address clause has been given. it refers to
the corresponding hardware interrul)t.. The attribute is of the type OPERAND
defined in the package MACHINECODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for tnore information on the use of thlis attribute.

(For a package. task ii:it. or entry, the 'REF attribute is not supl)ported.)

e TTASKID

For a task object or a value T. T'TASKD yields the Ulnique task id associated
with a task. The value of this attribute is of the type ADDRESS ill the package
SYSTEM.

4 Specification Of Package SYSTEM

-- Copyright 1987, 1988, 1989 Verdix Corporation
-- Preserve line numbers as they are reported in ACVC tests.

with unsigned-types;
package SYSTEM is

pragma suppress (ALLCHECKS);
pragma suppress(EXCEPTIONTABLES);
pragma not-elaborated;

type NAME is (WINNT386-SELF);

SYSTEM-NAME : constant NAME :u WINNT386_SELF;
STORAGE-UNIT constant := 8;
MEMORY-SIZE : constant :-16_777_216;

-- System-Dependent Named Numbers

MININT constant :--2-147483-648;
MAXINT constant :-2-147_483-647;

MAX-DIGITS : constant :- 15;
MAX-MANTISSA : constant :- 31;
FINE-DELTA : constant :- 2.0*(-31);
TICK : constant :- 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer : 64*1024;

type AUDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS;

function MEMORY-ADDRESS

(I: UNSIGNEDTYPES .UNSIGNEDINTEGER) return ADDRESS renames "+" ;

NOADDR : constant ADDRESS;

type TASKID is private;
NOTASKID : constant TASK_ID;

subtype SIGSTATUST is INTEGER;
SIGSTATUSSIZE: constant :- 4;

type PROGRAMID is private;
NOPROGRAMID : constant PROGRAMID;

type LONG.ADDRESS is private;

NOLONGADDR : constant LONG-ADDRESS;

function "+" (A: LONGADDRESS; I: INTEGER) return LONG-ADDRESS;
function "-" (A: LONG-ADDRESS; I: INTEGER) return LONG-ADDRESS;

function MAKELONG.ADDRESS (A: ADDRESS) return LONG-ADDRESS;

function LOCALIZE(A: LONG-ADDRESS ; BYTE-SIZE : INTEGER) return ADDRESS;

function STATIONOF(A: LONG-ADDRESS) return INTEGER;

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNEDINTEGER;

NOADDR : constant ADDRESS := 0;

pragma BUILTIN(">");
pragma BUILTIN'<") ;
pragma BUILTIN(">-");
pragma BUILTIN("u<");
pragma BUILTIN("-");
pragma BUILTIN("+");

type TASKID is new UNSIGNEDTYPES.UNSIGNEDINTEGER;
NO.TASKID : constant TASKID :- 0;

type PROGRAMID is new UNSIGNED.TYPES.UNSIGNEDINTEGER;
NOPROGRAMID : constant PROGRAM.ID :- 0;

type LONG-ADDRESS is new UNSIGNED.TYPES.UNSIGNEDINTEGER;

NOLONGADDR : constant LONG.ADDRESS :- 0;

pragma BUILTIN(MAKELONGADDRESS);
pragma BUILTIN(LOCALIZE);
pragma BUILTIN(STATIONOF);

end SYSTEM;

5 Restrictions On Representation Clauses
9 Pragma PACK

In the absence of pragma PACK record components are padded so as to provide
for efficient access by the target hardware. pragma PACK applied to a record
elinina.te the padding where possible. Pragma PACK has no other effect on the
storage allocated for record components a record representation is required.

9 Size Clauses

For scalar types a representation clause will pack to the number of bits required
to represent the range of the subtype. A size clause applied to a record type will
not cause packing of components. an explicit record representation clause must
be given to specify the packing of the components. A size clause applied to a
record type will cause packing of components only when the component type is
a. discrete type. An error will be issued if there is insufficient space allocated.
The SIZE attribute is not supported for task. access, or floating point types.

e Address Clauses

Address clauses are only supported for variables. Since default initialization
of a variable requires evaluation of the variable address elaboration ordering
requirements prohibit inititalization of a variables which have address clauses.
The specified address indicates the physical address associated with the variable.

e Interrupts

Interrupt entries are supported with the following interl)retation and restric-
tions:

An interrupt ent ry may not, have any parameters.

A passive task that contains one or more interrupt entries must. always be
trying to accept. each interrupt entry. unless it is handling the itlterrlipt. The
task mniust he executing either an accept, for the entry (if there is onily mle) or a
select statement where the interrupt entry accept alternative is open as defined
by Ada RNM 9.7.1(4). This is not a restrict ion on normal tasks (i.e.. signal ISRs).

Aln interrupt, acts as a, conditional entry call in that interrupts are not queued
(see the last sentence of Ada RM 13.5.1(2) and 13.5.1(6)).

b

No additional requirements are imposed for a select statement containing both
a terminate alternative and an accept alternative for an interrupt entry (see
Ada RM 13.5.1(3)).

Direct calls to an interrupt entry from another task are allowed and are treated
as a normal task rendezvous.

Interrupts are not queued.

The address clause for an interrupt entry does not specify the priority of the
interrupt. It simply specifies the interrupt vector number. For passive ISRs.
the 1rnn of the passive(interrupt.nnn) pragma specifies the interrupt priority of
the task.

Representation Attributes

The ADDRESS attribute is not supported for the following entities:

- Packages

- Tasks

- Labels

- Entries

e Machine Code Insertions

Machine code insertions are supported.

The general definition of the package AIA'HINE_('ODE provides all assembly
language interface for the target, machine. It provides the necessary record
type(s) needed in the code statement., all enumeration type of all the opcode
nmneunronics, a set of register definitions, and a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

- ('ODE_,'(opeodf. opf rand [. ope rand]):

where i indicates the inumber of operands in tile aggregate.

A special case arises for a variable ntumber of operands. The operands are listed
within a subaggregate. The format is as follows:

- CODE_.'(opcodc. (operand f. opf rand])):

For those opcodes that require no operands. named notation must be used (cf.
RM 4.3(4)).

- ('ODE0"(o) -> opcodr):

The opcodf must be an enumeration literal (i.e. it cannot be an object. attribute.
or a reniame).

An opf rand can only be an entity defined in MA('HINE_(ODE or the 'REF
attribute.

The arguments to any of the functions defined in MACHINECODE must be
static expressions, string literals. or the functions defined in MACHINECODE.
The 'REF attribute may not. be used as an argument in any of these functions.

liline expansion of machine code procedures is supported.

6 Conventions for Implementation-generated
Names

There are no imiplenmentation- generated namies.

7 Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as physical addlresses.

8 Restrictions on Unchecked Conversions

None.

9 Restrictions on Unchecked Deallocations

None.

10 Implementation Characteristics of I/O Pack-
ages

Instantiations of DIRECTIO use the value MAXREC-SIZE as the record size
(expressed in STORAGE_UNITS) when the size of ELEMENTTYPE exceeds
tfhat value. For example for unconstrained arrays such as string where ELE-
MENTTYPE'SIZE is very large, NIAXRECSIZE is used instead. MAXRECORDSIZE
is defined in SYSTEM and call be changed by a program before inst-antialing
DIRECTIO to provide an upper linlit on the record size. In ally case t lie max-
ittiim size supported is 1024 x 1024 x STORAGETNIT bits. DI!ECT'T0 will
raise ITSE._ERROR if NIAXREC.SIZE exceeds this absolute limit.

Instant iations of SEQI TENTIAL-10 use the value NIAXRECSIZE as lhe record
size (expressed in STORACEUNITS) when the size of ELENIENTTYPE ex-
'eeds that value. For example for unconstrained arrays such as string where EL-
EMENTTYPE'SIZE is very large. MAXRECSIZE is used instead. NIAXRECORDSIZE
is defined in SYSTEM and can be changed by a program before instantiating
INTEGERIO to provide all upper limit, on the record size. SEQUENTIALI0
imposes no limit on MAX.RECSIZE.

11 Implementation Limits

The following limits are actually enforced bw the iniplmentat.iou. It. is not
intended to imply that resources up to or even near these limits are available
to every program.

- Line Length
The implementation supports a maximum line length of 200 characters
including the end of line character.

- Record and Array Sizes
The maximum size of a statically sized array type is 4,000.000 x STOR-
AGEUNITS. The maximum size of a statically sized record type is 4,000.000
x STORAGEjNITS. A record type or array type declaration that. exceeds
these limits will generate a warning message.

- Default Stack Size for Tasks
ht. the absence of an explicit STORAGESIZE length specification every
t.,,k except the main program is allocated a fixed size stack of 10.240
STORAGEITNITS. This is the value returned by T'STORAGESIZE for
a task type T.

- Default Collection Size
In the absence of an explicit STORAGE-SIZE length attribute the default
collection size for an access type is 100 times the size of the designated
type. This is the value returned by T'STORAGESIZE for anl access type
T.

- Limit on Declared Objects
There is an absolute limit of 6.000.000 x STORAGEUNITS for objects
declared statically within a coml)ilation unit. If this value is exceeded the
compiler will terminate the compilation of the unit with a FATAL error
message.

