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ABSTRACT

A theoretical description of electromigration in metallic microstructures has been
developed. We have addressed the question of how electromigration in a small metallic
system is affected by surfaces, interfaces, and extended defects such as grain boundaries
and dislocations. The electronic aspects of electromigration and the dynamical response of
an atom to the electron current have been considered, with special emphasis on mesoscopic

systems. In the standard adiabatic picture, the driving force for electromigration is due to
the action of the local electric field accompanying the electronic conduction process. We
have investigated this local transport field in very small structures, and have calculated
the variations of this field in the vicinity of a grain boundary and dislocation. We have
found that the spatial variation of this field can be effectively probed by the scanning
tunneling microscope. We have also considered the effects of inelastic scattering oil the
electrical conductivity and on electromigration of a migrating impurity. We find that
Pauli-blocking effects due to the exclusion principle give rise to nonlinearities in the
electron and atom response with applied voltage. Mesoscopic systems show this effect more
strongly than do bulk systems because in mesoscopic systems the Fermi-distribution can be

strongly perturbed in the current carrying state. We have investigated the local heating
of an impurity by an electron current. Explicit expressions are found for the effective
temperature of the impurity as a function of time in the presence of electron and phonon
coupling to the impurity. We have performed the first electromigration calculation in which
the quantum-mechanical dynamics of the interacting atom-lattice(phonon )-electron system

is taken into account. Our theory is mnost applicable to the migration of light interstitials in
metals. We find that the net atom flux can be expressed in terms of an effective driving force
according to a Nernst-Einstein relation, but in the case of phonon-assisted diffusion of light

interstitials, the driving force can be much smaller than obtained from previous theories.
The results have been generalized to account for non-adiabatic effects on electron screening
and on the direct force for electromigration. We have also investigated dynamical aspects
of diffusion for the complementary case of classical diffusion processes, and we have set up
the first numerical simulations of electromigration at the atomic level. We find that for the

case of light interstitials, there is a significant enhancement of electromigration due to the
dynamical recoil effect. The problem of electromigration-induced failure in metallizations
has also been addressed. We show that in completely passivated films operating under
normal operating conditions, a bottleneck effect arises due to the low lattice diffusivity,
which reduces the flux of matter leaving a grain boundary network during void growth. As
a result, typical failure times can be orders of magnitude larger than predicted by models

that neglect lattice diffusion.
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I. INTRODUCTION

The purpose of our research program was to obtain a better understanding of elec-

tromigration in metallic microstructures, with special emphasis on microscopic driving

forces and mesoscopic systems. The primary focus of the project is the role of electron

current and electric fields on the migration of impurities in metallic microstructures. There

are two related aspects to this problem: First, how is a microscopic electric field and

microscopic electron current set up in the vicinity of an impurity in a microstructure or

a mesoscopic system; and second, how does the microscopic field and current influence

impurity migration. In studying this problem it is essential to understand the role of
elastic and inelastic electron scattering, both on the electrons and on the impurity.

The study of electromigration in mesoscopic systems is especially useful, both in its
own right and for the light it sheds on the physics underlying the electronmigration process

in a variety of different systems. The crucial aspect of mesoscopic systems is that they

have one or more dimensions that are comparable to, or less than, the inelastic mean-

free-path. Since the physics of the electromigration process always takes place on this

very local, microscopic level, it follows that mesoscopic systems are ideally suited for

electromigration investigations. Such phenomena as elastic and inelastic scattering and

the close-in dynamics of the coupled impurity-lattice system are natural points of focus

in a mesoscopic system. Furthermore, as the dimensions of fine metallic lines become

progressively smaller with increased miniaturization, devices in fact, will be entering the

mesoscopic regime. At lower temperatures one is in fact already in the mesoscopic regime

for some of the very thin films currently in use in integrated circuits.

Building on our previous work,1'2 we have investigated the local transport field in the
vicinity of an impurity. The local transport field is the microscopic electric field which is

dynamically set-up as electrons flow past scatterers in a metallic system. The importance of

this field is that it supplies the adiabatic force that drives the atom in the electromigration

process. The local transport field arises self-consistently from electron scattering by an

impurity (or by any defect for that matter) and the resulting electron pile-up in the vicinity

of the scatterer. Because local fields give rise to a change in the voltage across the system,

the electrical conductivity of the system is also affected, and this establishes a connection

between the electrical conductivity and the driving force for electromigration. The results

of some calculations for an impurity near a grain boundary and near a dislocation core are

obtained in Section II. The question of whether the local field can be directly probed by

means of a scanning tunneling microscope (STM) is addressed in Section III. The results

in Sections II and III generalize and extend the results we have reported previously.1-3
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An interesting feature of current flow at the microscopic level is that in the vicinity
of a scatterer the current flow is inhomogeneous even if the system is macroscopically
homogeneous (e.g., a system containing uniformly distributed interstitial impurities or
vacancies). Furthermore, in a mesoscopic system such as a "point contact," the current

inhomogeneity can extend over very large distances. As a result, there are some novel
effects associated with electromigration in these systems. This is shown in Section IV.

A critical aspect of electrical conductivity and electromigration in mesoscopic systems
is the role of inelastic scattering of electrons by an impurity and the concomitant local
heating that takes place. This is analyzed in Section V. Among the important issues
addressed there are the role of the Pauli exclusion principle and the relative importance of
energy transfer vs. momentum transfer to an impurity that is bombarded by an electron
current. The local heating of an impurity by an electron gas is of great importance because

it is the mechanism by which a "cold" atom is able to be excited out of its potential well
and successfully complete a jump to a neighboring site. In this sense there is no diffusion
or electromigration without local heating, or at least, local energy transfer.

Although it is customary to analyze electromigration within a classical description of
atom dynamics, there are cases in which the classical picture is inadequate and needs to be

replaced by a quantum-mechanical one. An example of this is the electromigration of light
interstitial impurities (such as hydrogen in metals) where the atomic jump mechanism is

phonon-assisted tunneling. For this mechanism, we have performed a self-consistent quan-

tum mechanical theory of electron screening and non-adiabatic effects in electromigration.
This is described in Section VI.

The dynamics of an impurity being subjected to inelastic scattering by an incident
electron current is a difficult problem to solve analytically. In the usual adiabatic picture,

the collisions are regarded as perfectly elastic and one focuses on the momentum transfers

per second to the impurity; this is the so-called "electron wind force." However, it is
actually the energy transfer to the impurity that is crucial in exciting an atom out of its
potential well. (This conclusion is in keeping with our earlier discussion of the local heating

phenomenon, which will be considered in Section V.) The recoil energy effects associated
with inelastic scattering go beyond the standard adiabatic picture, and are expected to
lead to substantial enhancement of electromigration, especially for lighter atoms. We have

investigated the recoil-enhanced electromigration phenomenon by performing numerical
simulations for an atom in a periodic potential. The atom is subjected to random collisions
with electrons and with a structureless phonon-bath. The impulses from the electron

collisions are responsible for the net atomic migration, and the results for light impurities
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do show substantial enhancement of electromigration compared to the standard adiabatic
model. This work is described in Section VII.

Finally, we investigated electromigration-induced failure and the reliability of metal-
lizations in integrated circuits. Unlike the other work described in this report, which is
concerned with the origin of microforces in electromigration, in this reliability study we

assumed that a driving force exists and can be described by an effective valence Z*. We set
out to obtain an expression for the mean-time to failure (MTF) for a passivated thin film
in the DC regime. By assuming an ideal passivation layer that remains intact, we are able
to derive an analytical expression for the MTF. Our result shows that the MTF is greatly
increased due to a "bottleneck effect" caused by the requirement that void formation at
a grain-boundary triple-point requires vacancies to diffuse out of the grain boundary into
the lattice. The MTF analysis is presented in Section VIII.

II. LOCAL TRANSPORT FIELD, ELECTROMIGRATION AND RESIDUAL
RESISTIVITY FLUCTUATIONS

Work has been completed on calculating the residual resistivity and electromigration
driving force for an impurity near a grain boundary and for an impurity near a dislocation
within a jellium model. Previously we had considered these two problems for the case that
the electron current is parallel to the plane of the grain boundary and parallel to the axis
of the dislocation.' We found that in the parallel-current geometry, the impurity feels an

electron wind force, FP(R/), which is proportional to the product of the incident electron
current and the residual resistivity of the defect complex (impurity plus grain boundary
or dislocation).1 We also showed that F-,,(A) correlated well with the microscopic current
density at the position of the impurity. Hence the electron wind force, is a measure
of the local electron "wind." It was found that F,(R) is smaller when the impurity is
insido- the grain boundary or dislocation core, essentially because the impurity is shielded
from the incident electron current in that case. When an impurity jumps into and out
of the grain boundary or dislocation core, fluctuations on the order of 20%-50% are
expected in the magnitude of the wind force and in the residual resistivity of the defect
complex. Fluctuations of the residual resistivity on this scale would lead to 1/f-noise that
is compatible with experimentally observed values.6 The relevance of our analysis to the
experiment is limited, however, because it is restricted to the parallel-current orientation,
and in this orientation the extended defect is not effective in scattering electrons.

To overcome this restriction, we have generalized the analysis to include the case that
the electron current is perpendicular to the plane of the extended defect, i.e., perpendicular
to the grain boundary or parallel to the axis of the dislocation. The perpendicular
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orientation is more difficult to treat than the parallel orientation because there is no

net momentum transfer to the extended defect in the parallel orientation. Consequently

one must employ more drastic approximations to deal with the perpendicular orientation

and the associated interference terms between the impurity and the extended defect. To

obtain analytic expressions we employ the Born approximation, treating both impurity and

extended defect as weak scatterers. (For the parallel orientation, we were able to employ

the distorted-wave Born approximation which treats the impurity as a weak scatterer, but

the extended defect is treated as an arbitrarily strong scatterer.)

To calculate the wind force and residual resistivity, we use the Born approximation
for electron scattering by the net potential v + U where v is the impurity potential and

U is the barrier potential associated with the grain boundary or dislocation core. The

total wind force FIOtaJ on the entire scattering complex can be found from the rate of

momentum transfer from the electrons to the scatterering complex. This gives

j.=o h k-k)Pkk, k,
kk'

where Pkk' = 27rh- IVkk' + Ukk' 12b( Ek - Ek) is the transition rate between electron states

k and k', corresponding to electron energies (k and fk,, resp•ectively. The incident shifted

electron distribution function is denoted as 9k. The calctilation is further simplified

by taking the impurity potential to be a very localized s-wave scatterer (delta-function

potential).

The total wind force is proportional to the net resistivity presented by the scattering
complex.4 Using this fact and observing that the interference contribution to the net

force arising from the cross-term Vkk',U[k, is equally shared by the impurity and the grain

boundary (or dislocation core), we are able to derive expressions for the wind force and the

residual resistivity when the impurity is at position R. We find that the part of the residual

resistivity that depends upon the position of the impurity is directly proportional to that

portion of the wind-force on the impurity that depends upon the position of tile impurity.

Thus, if we write the resistivity of the system of an impurity in the vicinity of a grain
boundary as p(r = P0 + PGB + Pimp + Ap(r-), where Po is due to thermal phonons. PG8 is

the residual resistivity due to the grain-boundary defect and Pimp is the residual resistivity

due to an impurity in a bulk homogeneous system, then the extra resistivity Ap(/).

which contains all the dependence of p on impurity position R, is related to the spatially-

dependent part of the wind-force, AF,(/(R), according to Ap(R)/,,mp- = ½AF•,(R)/F•,.

where F,,, is the wind-force on the impurity in a bulk homogeneous system. (When the

impurity is very far from the grain boundary, Ap(/f) and AF,,(/R) approach zero.)
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We have performed detailed numerical calculations of Ap/pp, and find that as an

impurity enters a grain-boundary or enters a dislocation core, AP/pmnp is typically of order
unity. Thus large variations in resistivity and electromigration driving forces occur when

the current is in the perntidicular orientation. This is similar to tile result obtained for the

parallel orientation 'Qiough unlike the situation for that case, AF,(R) does not correlate

with variations in the local current density. It remains true, however, that impurity hopping

into and out of an extended structural defect such as a grain-botmdary or dislocation call

give rise to resistance fluctuations that are compatible with experimentally observed 1/f-

noise.. Our numerical results for Ap(r-)/pjmp in the case of an impurity at position z in the

vicinity of a grain boundary is shown in Fig. 1 for different values of the grain-boundary

thickness D. In Fig. 2, we show the results for an impurity at position R near a dislocation.

In both cases the electron wind is perpendicular to the extended defect (grain boundary

or dislocation). We note that when the impurity is within the extended defect. wave-

interference of electrons results in an enhancement of AF,,(/R) and Ap(r-) for repulsive

imp)urity potentials (positive v, or equivalently, negative phase-shift 60). On the other

hand, sulppression occurs for attractive potentials (negative v. or positive to).

III. STM AS A PROBE OF THE LOCAL TRANSPORT FIELD

The local microscopic electric field accompanying electron transport plays a special

role in electromigration. This local transport field (LTF) is a local electric potential set up

by the pile-up of current carriers in the vicinity of defects when a transport current passes
through a conductor. 1-5 It is the total LTF drop across a sample that contributes to the
macroscopic voltage drop across the sample,.5 and it is the gradient of the LTF that gives
a driving force on an impurity within an adiabatic description of electromigration.

It would be very useful if there existed and independent way of measuring the LTF.
A possible technique for measuring the LTF in mesoscopic systems would be to probe
the system with a scanning tunneling microscope (STM). In such a technique, one could
simultaneously measure the surface topography and the spatial variations of the LTF across
a grain boundary, for example. The local potential in the sample might then be associated
with the measured STM voltage. The validity of this association is not clear. In a previous
study '3 we showed that some qualitative features of the LTF could be recorded by the
STM. However, in that study we neglected the phase coherence of the scattered electron
waves at the grain boundary. We have now included these important interference terms in
our analysis.

A theoretical approach was devised to analyze the LTF and the voltage measured
by the STM in a current-carrying mesoscopic system. Generalizing our earlier work,3 we
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considered the phase coherence between the incident electron wave and the electron wave

reflected from a defect. This phase coherence leads to Friedel-like oscillations in both the

LTF and STM voltage (VSTM). The expressions for the electric potential corresponding

to the LTF and to the STM voltage turn out to be formally identical, and have the form7 :

VSTM(fV = VLTF(r = [PsTAf (r) - l/C

where it is the equilibrium chemical potential (in the absence of current) and c is the

magnitude of the electron charge. Here ;STM(r-f) is given by the following weighted average

of the incident electron distribution, g7 k:

IISTA(•?) = -,jk D ,kgnk
Zva, D,1k

where Dnk = II'nk(r-j 26( Enk - 11) is a local density of states factor, which depends oil

the electron scattering wavefunctions ?',k. The wavefuiiction quantum numbers it. k refer

to transverse modes n perpendicular to the surface and traveling waves of wavevector k

p~arallel to the surface. Despite the formally identical expressions for V5s'T.% and VLTrFp,
there is a critical distinction between the two quantities. The point is that the STM picks

up the electron wavefunctions at position F" which is in the vacuum region outside the

metal, whereas the LTF picks up the wavefunctions at position F which is inside the metal.

Now, electron wavefunctions decay exponentially into the vacuum region, with the decay

being less rapid for higher modes of the transverse staniding wave patterns. Consequently.

V STAt is being more heavily weightcd by the higher-mode electron wavefunctions and does

not accurately describe the LTF inside the metal.

To study the accuracy of scanning tunneling potentiornetry in measuring the LTF,

we calculated the spatial profile of LTF and VSTM for the case of grain boundaries in

a thin film and for the case of an impurity near a surface. For the case of a thin film

containing grain boundaries within tile jellium model, we find that VL'r- and 1
7STM differ

in their spatial variation, but their drops across a grain-boundary are of the same order

of magnitude. In general, the VSTM fluctuates on a larger length scale than the LTF.

The reason for this behavior is that the wavefunctions dominating the STM response

have higher transverse momentum and therefore smaller longitudinal momentum. The

smaller longitudinal momentum implies variations of longer wavelength. This behavior is

illustrated in Fig. 3, where the STM voltage profile and the LTF profile is plotted in a

region across a grain boundary in aluminum metal.

For the case of a scatterer on a metal surface, the short range variations of both VSTM

and VLTF near a surface scatterer are on the order of 1 /LV when the current density is
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on the order of 10' A/cm and the distance d between the STM tip and the metal surface
is about 3 A. Observation of the long-range variation in VSTM away from an impurity

requires sub-microvolt resolution and smaller values of d. The results are illustrated in
Fig. 4, which shows the VSTM and LTF profiles calculated near an impurity at the surface
of an aluminum film.

Our general conclusion is that the STM can be profitably used as a qualitative probe
of the local transport field in the vicinity of a defect in a mesoscopic system, and that the
gradient of this potential field should correlate with the electromigration driving force.

IV. CURRENT CONCENTRATION AND ELECTROMIGRATION IN A
MESOSCOPIC POINT CONTACT

Continuing microminiaturization of electronic devices (including nanofabri cation) has
resulted in increasing interest being attached to mesoscopic systems, i.e., those systems
whose dimension along the direction of transport is smaller than the inelastic electron mean

free path. Such systems have provided a convenient and powerful instrument for studies
of quantum interference phenomena and spectroscopy of elementary excitations in solids.
Here we investigate a unique possibility for electromigration studies offered by mesoscopic
metal constrictions (point contacts).

When studying electromigration phenomenon one is interested in a microscopic driving

force f exerted on the impurity atom by the local transport electric field. This force, as well
as the field itself, consists of two parts traditionally called the "direct" and the "electron-
wind" contributions. The direct force fd is associated with the local electric field f existing
in the absence of the migrating atom, which is, however, screened to some extent by the

polarization of electrons around the impurity. The wind force fu, arises from the scattering
of the electron flow by the impurity atom. In the simplest case (e.g., free-electron-like
system) this force is given by Pf, = Keje' where T. is the local electron charge-density

current.4',', The coefficient K, although its form differs for different microscopic models,

is not a point of any serious theoretical disagreement.
As opposed to that, the magnitude of the direct force Pd is a subject of long-lasting

controversy. A number of authors10-12 showed that for a weakly scattering impurity the
effective screening of its charge due to the polarization of the electron gas is small, i.e., the

direct valence Zd defined by fd = ZdeE, is close to the bare valence Z. The considerable
deviation of Zd from Z can be caused by strong scattering;" 3 15 there can also be a
renormalization due to non-adiabatic electron response.16 At the same time, according to
some other workers' views,17,18 weak scatterers as well as strong scatterers are completely

screened by conduction electrons, and consequently, Zd = 0.
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The main difficulty in the experimental determination of the direct valence is that for

a bulk-like system Zd appears in any measurable characteristic in combination with the
electromigration wind-force coefficient K. (By definition, the effective valence due to the
wind force Z*,, is related to K by Z%, = K/p, where p is the sample resistivity). Indeed,
if the local Ohm's relation for electrons ie = acf holds, then the total driving force canl
be written as F = Z*eE with the so-called effective valence Z* = Zd + KIp. Therefore,

the value of Zd can only be obtained by the insufficiently reliable method of separating a
resistivity-independent part of Z* in electromigration experiments.19

The situation is quite different in the case of a metal constriction having a dimension,
a, smaller than both the elastic and inelastic electron mean free paths, and connecting
two bulk samples. In such a system electrons traverse a constriction region along the

quasiclassical trajectories ballistically, i.e., without scattering if a > AF, where AF is
electron Fermi wavelength. However, the geometric effect of current concentration is
responsible for the large resistance of a ballistic point contact. The resistance is of

order he- 2 (AF/a)2 and is determined by the nonequilibrium electron distribution and

the transport electric field in the constriction region. 4 ,20- 22 In this situation a steady state

is characterized by div j. = 0, div f $ 0, and consequently, the local Ohm's la-, relation

no longer holds. In this case, the driving force for electromigration has the general form

F =ZdeE + KeJe

and so, an impurity current J, = NiMP, determined by atomic mobility M, has a non-

conserved (div i i 0) part proportional to the direct valence Zd. Such nonconservation

requires the existence of the diffusive current component fdi -- -DVNi, i.e. a spatially

inhomogeneous impurity density Ni, in order for the net current to be conserved. The
inhomogeneous part of N, determines a nonlinear correction to the current-voltage charac-

teristic, associated with scattering of electrons by the impurities. This effect can be used

for a direct measurement of Zd.

We have performed a general analysis of the steady-state electron and impurity trans-
port problem in a mesoscopic point contact. The analysis is based on the simultaneous

solution of the kinetic equation for electrons and the continuity equation for both electrons

and impurity atoms, with the electroneutrality condition taken into account. As a result,

we obtained the general expression for the normalized nonlinear correction I, to the I-V

characteristic 1e23 :

I'l ZdeV
= "kBT + ZZdN,/vF

10



Here T is the temperature, Z is the bare valence, T', is the equilibrium impurity density,
and VF is the electron density of states at the Fermi level. The parameter -Y depends only
on the point contact geometry and on the electron transport regime. For the quasiballistic
regime (f, = VFT > a) we get an estimate - - a/li with fj = VFtr being the electron mean-
free-path due to impurity scattering. The above relation for I,'/II can be used for a direct
determination of Zd from the I-V characteristic. Assuming temperature-independent Zd.
we get

Zd -= ' I,2)T + kBT),

where Ie2) = dP1 /dV2 . Hence, the value of the direct valence can be obtained by
measuring the temperature-dependent second derivative of the I-V characteristic of a
mesoscopic point contact in the quasiballistic regime. These measurements can be easily
(lone using well-developed point-contact techniques.2 4

We note that our results are not based on any specific mechanism of atomic diffusion,
and are, therefore, quite general. The only restrictions are those of low enough temperature
for the inelastic mean free path to be larger than point contact dimension a, and low voltage
so that I/Ie be small. These conditions are readily attainable.

V. INELASTICITY, CONDUCTIVITY AND LOCAL HEATING IN MESO-
SCOPIC SYSTEMS

Inelastic scattering has especially important consequences for electromigration and
electron transport in mesoscopic systems. Of specific interest is the question of energy
transfer to atoms and the role of the Pauli exclusion principle in blocking transitions of
electrons between states. Such effects have been traditionally ignored in electromigration
theory, even though it is the very energy transfer to an atom that allows the atom to climb
over the harrier and accomplish a diffusion jump. The process by which an atom gains
sufficient energy to jump over a potential barrier may be described as "local heating." That

is, an initially cold atom is heated, or raised in energy, by interactions with the electron
gi, and with the lattice atoms (phonons).

The inelastic interaction of an impurity atom with the electron gas is of primary
concern. This interaction has two important effects, namely, it modifies the electronic
conductivity, and it can excite the atom to a higher effective temperature (local heating
effect). To investigate these effects, we consider a simple geometry consisting of an impurity
between two electron reservoirs that are kept at different chemical potentials. This is the
situation relevant to a very narrow mesoscopic conductor that provides a channel for
electrons to flow between two massive voltage pads. We first present an analysis of the
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effect of inelastic scattering on the electrical conductivity; after that, we consider the local

heating phenomenon.

A. Inelastic Scattering and Electrical Conductivity

The microscopic response of the electron-atom system has been considered within a

scattering theory approach.2 5 '26 We have investigated the transport of an electron current

through a mesoscopic system consisting of a confined electron gas and an impurity, taking

into account the energy loss by the electron gas to the impurity. We can thus account for

phonon-like excitations of the vibrating or moving impurity and the Pauli-blocking effect

caused by the restrictions of the Pauli exclusion principle on electronic transitions. In

contrast to previous treatments of inelastic scattering, we focus on the effects due to a

single impurity scatterer in a mesoscopic system. The impurity is treated as a dynamical

entity which can recoil and transfer energy and momentum to the lattice. In focusing on

a single impurity, we are excluding from consideration the multiple scattering of electrons

through an array of scatterers or through a random distribution of background inelastic

scatterers. In exchange for this simplification, we are able to consider in microscopic detail

the effects of a scatterer at which both elastic and inelastic processes can occur. In this

respect, the system we consider is the single-impurity realization of Biittiker's model in

which a voltage probe simultaneously acts as an elastic and inelastic scatterer."6 We make

no a priori assumptions, however, concerning the separation of coherent and incoherent

processes at the microscopic level.

Within our model of a single dynamical impurity in a mesoscopic system, we assume

that the impurity's degrees of freedom are in thermal contact with the solid at constant

temperature. When the incident electrons are scattered by the impurity, both elastic and

inelastic scattering events are possible. However, it is clear that some inelastic events will be

blocked because of Pauli-exclusion restrictions on final electron states. Because of current-

conservation, this Pauli-blocking must also have an indirect effect on elastic scattering

processes. Furthermore, the effectiveness of Pauli blocking will depend on the energy of

the incident electrons with respect to the equilibrium Fermi energy. As a consequence, the

electron conductance will be voltage dependent, and a new type of nonlinearity is suggested

by our calculations. The nonlinearity arising in our treatment is an inelastic effect and

represents the dynamical coupling between the injected current and the impurity. It arises

from the fact that only electrons with enough excess energy given by the shift of Fermi

level are capable of producing impurity excitations, hence the I-V characteristics become a

probe for the dynamical spectrum of the target system and for the scattering mechanism.
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Our expression for the current going through a microstructure consisting of a narrow

channel connecting two voltage pads, held at voltage difference V with respect to each

other, involves an integral over energies E, E' and the dynamic structure factor S(q,w).

Explicitly, we found2 7

J e J dE[f(E - eV) - f(E)]

- ýr 12 JdEJ dE1{S(2k,, E - E')f(E - eV)[1 - f(E')]

- S(2kF, E' - E)f(E')[1 - f(E - eV)]}

where Ir12 = )2 IV(2kF)I 2 is the elastic reflection coefficient for electrons of mass

m at the Fermi level, kF is the Fermi wavevector and V(2kF) is the scattering potential

evaluated for backscattering on the Fermi sea The blocking effect due to Pauli exclusion

is evident from the factor (1 - f), where f is the final state distribution for the electrons.

The dynamics of the impurity enter only in the dynamical structure factor S(q,w), which

depends on the nature of the impurity and on the so-called recoil energy, given by R =

h 2 q2/2M for an impurity of mass M. Explicitly, the dynamic structure is defined as

follows:
28

S(q,W) =+0 dt e-t (e-tX e:qx(t) )T

where X(t) is the time dependent impurity coordinate in the Heisenberg representation.

Once a model for the impurity scatterer is chosen, S(q,w) may be calculated and

the results then used in the expression for J. This, in turn, allows us to determine the

conductance G, which is defined as dJ/dV. We have initiated such a program for two

specific models of an impurity, namely, the harmonic oscillator model and the free-particle

model. In terms of the electromigration phenomenon, these cases represent complementary

situations-the oscillator model is appropriate for an impurity before it undertakes a

diffusion jump, and is more or less rattling around in its cage, while the free particle

model is more appropriate to the situation when the impurity is "in flight" between lattice

sites. For each case, we were able to determine analytically the dynamic structure factor,

and use the results to evaluate our conductance expressions.

For the case of an impurity oscillating in its well, we find that relative to the idealized

case of perfectly elastic scattering there is a reduction in the conductance (or an increase in

the resistance) due to the motion of the impurity, and this effect is present even in the case

of zero-temperature. In the latter case, it is the zero-point motion of the impurity that
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accounts for the extra resistance. In general, as the voltage V increases, the conductance G

remains flat until an energy is reached where an impurity vibration (localized phonon) can
be excited. The condition for this is eV = hw, where w is the natural (angular) frequency

of oscillation of the impurity in the harmonic-oscillator well. At this value of V, the

conductance drops down to a lower value, and stays there as V increases until elV = 2&ý.

which corresponds to 2-phonon excitations, and similarly, for n-.phonon excitations. We

estimate that these nonlinearities would be experimentally measurable for metallic systems

containing light interstitial impurities, such as hydrogen. Our numerical calculations for
G(V) are shown in Fig. 5 for the case that the impurity is a bound particle oscillating in

a well. In Fig. 6 we show results for the case that the impurity is still bound but is now

very weakly bound.

For the case that the impurity acts as a free-particle in solid, we find that except for
thermal spreading, the scattering of an electron by a free impurity is solely inelastic and

is blocked at V = 0. The conductance equals e2 /h before eV reaches the recoil energy,

at which point it suddenly drops and becomes flat again with increasing V. (The fraction

by which the conductance drops is Irl2 , where r is the reflection amplitude for elastic

scattering). In general, the blocking effect due to the Pauli exclusion principle plays a

crucial role: The nonlinear behavior of G is characterized by the opening-up of Pauli-

blocked channels at finite voltage. The results for a3 free-particle impurity are shown in

Fig. 7. Note the similarity to the weakly bound case; the distinction in these two cases

is that the discrete phonon levels are obliterated, and a smooth continuum of excitations

replaces these discrete levels.

We have generalized our theory beyond the quasi 1-dimensional mesoscopic system
to treat the case of a 3-dimensional mesoscopic system. In extending our analysis to a

3-dimensional mesoscopic system, we consider a point-contact geometry with a mesoscopic

bridge connecting two otherwise separated bulk metals. The mesoscopic structure is taken

to be an electron waveguide, with direction of transmission along the z-axis. The cross-

section of the waveguide in the xy plane is rectangular with width w and thickness d. The

confined electrons have quantized transverse energy levels, each of which is referred to as

a channel. As a basic assumption, we adopt the adiabatic flare model29 for the restriction

openings, so that the transverse energy levels extend continuously into the region far away

from the restriction.

As in our previous studies of an electron waveguide, 29 we can write the unperturbed
single electron wave function as

S= F 2wd sin sin e ikz

4 d ]sn Ul
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where the channel indices p and v are positive integers. The energy of an electron with

channel indices (y, v) and momentum k in the z- direction is Er, ,, = h 2 K2/2m, where

K2 = k2 + (Mir/d)2 + (vir/w)2 .

After some considerable mathematical processing, we can express the conductance

G of the system in terms of a generalized dynamical structure factor S(T, ý"; w) which

contains all the necessary information about impurity dynamics. In the special case of a

free-particle impurity, and a conducting channel having dimensions much larger than an

electron wavelength, we find that the I-V curve is again non-linear, i.e., G shows significant

dependence on V. Our result for this case can be cast into the suggestive form 27

1 dG _ e2  rdu(e) _da(-e)]

edV =--g(EF)VF

where a(c) is the total scattering cross section for electron energy loss less than or equal

to c, and a(-e) is the total scattering cross section for electron energy gain less or equal

to E. Here g(EF) is the density of states at the Fermi level and vF is the Fermi velocity.

Similar to what we found for the ld case, we find that for a free impurity, electron

scattering is inelastic; it is therefore blocked when the voltage V equals zero at low

temperatures. Therefore the conductance at V = 0 equals Go, which is the conductance

in the absence of the impurity, and which is given by

Go = Fe2VF g(EF)A

with A being the cross-sectional area of the electron waveguide. The above equations

specify the entire G-V curve. We find that at sufficiently large voltage (eV > Recoil

energy) the net drop of conductance due to impurity scattering is given by

AG 1
G- = [a(oo) - 0(-oo)].

We point out that the nonlinearities which we have obtained here should be directly

measurable in nanobridge circuits of the kind investigated by Rails et al.3", and should

correlate with electromigration in such systems. In principle, the opening-up of Pauli-

blocked channels and the associated non-linearity due to inelastic scattering are also present

for bulk systems. However, because of the extremely small drift velocity of the electrons,

the effect is negligible in bulk systems even at current densities on the order of 106 A/cm 2 .

On the other hand, for mesoscopic systems the departure of Fermi level from equilibrium

can be substantial, as V can be in the millivolt range or larger. Therefore, the link between

inelasticity and nonlinearity is, ultimately, a mesoscopic characteristic.
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B. Inelastic Scattering and Local Heating

Inelastic electron scattering of electrons by an impurity will affect the impurity's
energy and spatial distribution, and this will be important for electromigration. We have
analyzed the thermal excitation of an impurity atom by an electron current in a mesoscopic
system. The impurity is taker to be a harmonic oscillator that is only weakly coupled to the
electrons and to the phonons. The electrons and the phonons act as thermal baths to the
impurity and are treated separately. First we consider the density matrix of the combined

system of the electrons and the impurity. Following the Landauer-Biittiker scattering
theory formulation for mesoscopic systems, 25' 26 we assume that the incident electron
distribution, having temperature and chemical potential determined by the reservoirs, is
not affected by the weak electron-impurity interaction. This allows us to "trace out" the
electron degrees of freedom and arrive at a master equation for the impurity. The solution
to the master equation shows that the current carrying electrons act as a thermal bath for
the impurity with an effective temperature determined by the voltage. Thermal heating
is given in terms of impurity "relaxation" towards this elevated temperature. Phonons
enter into the impurity master equation as an additional term which attempts to bring the
impurity back into thermal equilibrium with the lattice.

We consider the probability function for an impurity atom to be at some energy f in

its potential well at time t. Denoting this distribution as P(C, t), we can average over all
electron transitions (i.e., "trace-out" the electron degrees of freedom) and obtain

O P(ft) I- 3{W(W, f)P(e, t) - W(e,FE')P(F, t)}
att

where W(f', c) is the transition rate from state j,) to state je'), and IT'(, c') refers to the

reverse process.

Explicitly evaluating W(e', f) using the Born approximation, we get3 l

2 Ih IC=11r('le2ikX1E) 1'2[0,- (eV + F -- ') +l31(eV- e+') + (e - e')]

=27rh

where the function 3, is defined by
Stanh(/3 

x/2)

The dynamical distribution of the inelastic process is governed by the "structure-factor"

I(Ele 2 ikFXlE)I2 , where X is the position of the impurity, and 0 = 1/kBT, where T is the
equilibrium temperature of the reservoirs and kB is Boltzmann's constant.
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In our subsequent calculations we consider the situation of moderately large voltage
bias V, where the effect of Pauli blocking is unimportant and thus the excitation of the

impurity by the electrons is fully realized. Since local heating is expected to be most
important when the current density at the impurity is high, the high-bias limit is relevant
for studying the local heating effect in mesoscopic systems.

Within our model we can obtain analytical results in the high-bias, high temperature
regime defined by eV, kBT much greater than the recoil energy R, which is typically on the

order of an meV or less. The result is that if the atom is initially at thermal equilibrium
before the electron current is turned on, then the distribution at any later time t is is a

Boltzmann distribution with a time-dependent temperature, i.e., 31

P(fe,t) = fte-ftt

with

where the subscript t in #I denotes the time variable. The effective temperature Teff(t) is

related to /3t in the usual way, namely, kBTeff(t) = /tI. Note that our expression for flu'
implies that i3-1 satisfies the equation

Te

which is a relaxation-rate equation for the temperature. (Here and in what follows, when
we refer to f6-1 as temperature, we are using energy units in which kB = 1.) In the above,

= (R/irh)lrl2 plays the role of the relaxation rate characterizing the electron-impurity

scattering. Using typical values for the recoil energy R and the reflection coefficient r for
electron scattering, we estimate that re - 10-1' s. This very short time implies that local

heating is virtually an instantaneous process. However, this need not be the case when the
external driving field (and the associated electron current) is very rapidly oscillating, i.e.,
for driving frequencies on the order of GHz.

We now turn our attention to the effect of a phonon bath. In general, both non-

equilibrium electrons and phonons are coupled to the impurity, and local heating by
electrons occurs when the phonon coupling is relatively weak. In that case, the energy
deposited at an impurity remains rather well localized in the vicinity of the impurity. On

the other hand, if the impurity-phonon coupling is large, most of the energy deposited at
the impurity effectively leaks away into the lattice.
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To analyze the effect of coupling between the impurity and the phonon bath, we
consider an interaction between the impurity and the phonons in the simple form:

E gk(akb+ + ba+)
k

where gt is the coupling constant between the impurity and the lattice, b+ and b are the
creation and annihilation operators for impurity oscillations with frequency Ql, and at, ak

are the creation and annihilation operator for a lattice phonon with wave vector k. The
phonon distribution is given by

1

n(wk) = (atak) = - 1

where (.-.) denotes the ensemble average, Wk is the frequency for lattice mode k, and /3 is
the inverse lattice temperature which is taken to be the same as the inverse temperature
of the electron reservoirs.

In the first-order Born approximation the transition rate of the impurity due to phonon
scattering is given by

W(f" C) = - V 'b 1r(Q),(f) + - I V'ble) )r(Q)[n(Q) + 1] (22)

where r(ft) is the phonon density of states at Wk = Q, and Ig(Q)12 is 19k12 averaged over

all orientations in k-space at wk = Q2.
For a weakly bound impurity, Q lies within the spectrum of wk, and the impurity

forms a resonant mode with a decay rate determined by W(e', f). When S2 lies outside the
range of wk, W(f', e) = 0, and the impurity gives rise to a localized mode whose lifetime
can be calculated provided that there is anharmonic coupling between the impurity and
the lattice. In the present work, we consider the case where the impurity is weakly bound
and forms a resonant mode. For simplicity we also assume that hQ is small in comparison
with the experimental temperature /-1.

Following the mathematical steps of our earlier analysis, we are again able to solve

the master equation, and we find 3'

P(e,t) =,6t e-fle

with
39 = 1 - (O - -)e-t/
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where
O1 = 3-r ' + IrpI3'

-r + Tp

and r-1 = rT- 1 + Tr;-. The quantity rp is the scattering time appropriate to the phonon-
impurity interaction, and is given by r;-' = 27rh-1 Ig(n2)i 2P(Ql). Our result for /3-1 implies
that the effective temperature satisfies the new relaxation equation

/I - 1 d71/ _ I /371 _- /37#e _3-1

We conclude that the impurity-phonon coupling provides an additional relaxation
term for the impurity's thermal energy. Local heating takes place as the impurity relaxes
towards a weighted defect temperature fd-I at a rate given by r-'. The dotted curve in
Fig. 8 shows 3#-1 as a function of eV, with rp/Ir, = 0.5. We see that the defect temperature

is lower than the effective electron temperature /3-1 due to coupling to a phonon bath.
Generalizations of these results to a 3-d model have been given elsewhere.3 1

We now discuss our results in the light of previous work. For the electron-impurity
interaction part, the present work agrees with the steady state numerical calculation of
Ralls et al." in that the non-equilibrium electrons from the shifted Fermi distribution
provide a thermal interface to the impurity with an effective temperature higher than
the reservoir temperature 0- 1 . Notable in our derivation are the explicit expressions for
the two key quantities for understanding local heating, namely, /, and r,, which arise
naturally from consideration of the time dependent impurity distribution function. In
the presence of a phonon bath, we are able to incorporate the effect of impurity-phonon
coupling into the same framework as for the electrons. We thereby arrive at expressions
for an asymptotic effective temperature /3 d which characterizes the defect coupled both to
electrons and phonons. The rate at which the local temperature approaches fd is governed
by the relaxation time r, which is a function of both r, and rp. These results are consistent
with the model used by Ralls et al.3 o in explaining their experimental results.

When a current driven by the chemical potential difference eV flows across a meso-
scopic system, the effective temperature of the electrons is a fraction of eV on the energy
scale. For applied voltages from 10 to 1000 mV, the temperature ranges from 10 to 1000
K. For a quasi-classical metallic point-contact structure, r,-' -_ 1010 sec- 1 for an electron-
impurity cross section a = 1A'. Therefore, local heating is effectively an instantaneous
process, and is capable of ripping an isolated impurity atom out of its potential well in
a very short time. A limitation to such a dramatic effect is due to the impurity-phonon
coupling, characterized by the relaxation rate r;-1. For strong impurity-phonon coupling,
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r;-»I > r,-, and local heating will be insignificant. On the other hand, when r;-- is

smaller than or is comparable to T', local heating is significant, and one expects to

see local heating assisted electromigration at high sample biases. In reference 30, r-

is found experimentally to be comparable to or slightly smaller than rJ 1 , and indeed
electromigration resulting in permanent sample resistance change has been deduced from

that experiment.

To summarize, we have obtained a solution to the master equation for a single

impurity subject to electron and phonon scattering in mesoscopic systems. In the case

of high bias and high lattice temperature, we are able to show that the impurity follows

a Boltzmann distribution with a time-dependent temperature relaxing towards the steady

state local temperature. Hence, in this case local heating and time-dependent temperature

are concepts having thermodynamic justification.

VI. QUANTUM THEORY OF PHONON-ASSISTED ELECTRO-

MIGRATION

Theoretical work on electromigration in the literature has avoided the central problem

of simultaneously describing electron dynamics and impurity dynamics. Invariably, one

separates out the role of electrons in causing a driving force and then considers how this

driving force affects the impurity motion. We are the first to describe the combined

system as a single quantum mechanical entity using the polaron picture for diffusion.'32 -3 4

This allows us to avoid some of the questionable assumptions that are implicit in earlier

treatments, e.g., adiabaticity of impurity response, neglect of recoil effects, validity of the

Nernst-Einstein relation in electromigration, and the passive role of phonons.

The picture which we developed works best for light interstitials. The impurity

interacts with all lattice atoms dynamically and with a static substrate potential as well.

The electrons interact with the impurity, which is assumed to start off in an interstitial

well. The diffusion jump occurs when the lattice atoms vibrate at thermal equilibrium

and give rise to a fluctuation that increases the energy of the impurity in the original well

thereby making it energetically favorable to make a transition to a neighboring well. The

new feature which we are incorporating is the interaction of the impurity with the out-of-

equilibrium electron system as well as the usual atomic-polaron interaction between the

impurity and the lattice atoms.3 2-3 4 We initially focus on the light interstitial impurities,

in which case quantum effects are expected to play a very important role.

Generalizing the approach developed in References 32-34 for simple diffusion in the

absence of an applied field, we consider weak tunneling between localized states at adjacent

interstices as a basic mechanism for atomic transport. Furthermore, we assume sufficiently
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strong atom-phonon interaction, rather high temperature and a not extremely low concen-
tration of static lattice defects, which is the typical experimental situation. In this regimer
the atom band motion is completely destroyed,33 and the transport occurs by incoherent

hopping between polaron-type states at neighboring interstices. We also suppose that th,-
concentration of interstitial impurities under consideration is low enough to neglect thet

interaction between them and the effects of quantum degeneracy.
As far as electromigration is concerned we consider the effects of both the exterrial

electric field acting directly on the impurity and the scattered electron flow. The latter

generates a wind force on the interstitial atom during the hopping event. We calculart-

quantum-mechanically the probability of hopping to a neighbor interstice for an atom whil.
simultaneously interacts with the electron system in the nonequilibrium current startc.
thus taking into account self-consistently the nonadiabaticity effects in elect romigari,,:n

As a result, a general expression for net atomic current is obtained which includles l,•wl.

diffusion and conduction contributions, and in the linear response approximation oh,,y-
the Nernst-Einstein relation between mobility and diffusion coefficient. The driving forc,'
for electromigration is found to consist of a direct term and a wind force. The latter differ-

substantially from the appropriate results of adiabatic theories, and coincides with rht
Fiks-Huntington momentum-transfer expression8 ,9 only in the limit kFd << 1. wherc ;,-
is the electron Fermi momentum and d is the hopping distance. In the general cave. wt
find that the wind force includes a phase factor reflecting the effect of the change, in the

atom's position during the electron-atom scattering event. This results in a subltanti•a
decrease of the wind force for kFd > 1, due to the recoil effects associated with electro:.

momentum transfer to the lattice because of strong atom-phonon polaron couplinsl.
For the sake of simplicity we have restricted ourselves to the limit of weak ato:1i-

electron scattering treated within the Born approximation, and we assume a significan'l3
strong phonon-polaron effect. This makes it possible to neglect the electron-polaro:.
reduction of the atom diffusion coefficient. We also neglect the screening of the external
electric field by electrons, which formally corresponds to the limit of small "bare- valence (of
the impurity ion 15 and is consistent with the assumption of weak atom-electron interactio,.

Our result for the electronigration drift velocity U- for the impurity atoms turns our
to have precisely the Nernst-Einstein form, namely,

-. D-

21fner,
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where D is the diffusion coefficient, kB is Boltzmann's constant, and T is the temperature.

The quantity Fine may be regarded as a net driving force here, and our detailed derivation
gives the following pleasing form for this quantity:16

Pnet =- Pd + F.,,

where Pd is the usual direct-force contribution (Pd = ZeEn), and the electron-wind contri-

bution fPu, to the net driving force Fet is determined by the expression:

41r 4E IV00(k, k') 2 sin[(k - P'). d f( - I,)b(fE - q,),

where £* is the jump-vector from initial to final sites, V00(k, P') is the electron-atom

scattering potential matrix-element, and fE is the electron distribution function for an

electron in state k and energy eq. In the limit of small electron Fermi-momentum, this
formula for Pu, turns out to be exactly the same as the momentum-transfer expression of
the ballistic model"'9 for a fixed impurity in the ground state. The latter expression, for

the system considered here is
-b llistc --4r IV 0( ,• )f ( -f,,)( , - t,.

Our expression for the electromigration drift velocity it represents an important result
in electromigration theory in that it is the result of a self-consistent treatment in which
the interacting atom-electron-phonon system is treated simultaneously.

The effective wind force Fu, in our theory.turns out to be related to the corresponding
wind force Fballistic in the Fiks-Huntington" 9 ballistic model by a rather simple analytic
expression, which depends only on the hopping distance d and the Fermi wavevector k,'..

The result which we have found is16

Pu, =F Cballistic,

where

a=- ( sin2x+ cos2x -+1

and we have defined x = kFd. The function a(x) has the property that it rapidly falls

from the value unity at x = 0 to the value zero at x = 7r. Because of this functional
dependence of a on the parameter x = kFd, one can expect a substantial reduction of
electron-wind force for light interstitial impurities in metals. This behavior is due to the
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strong recoil effect for electron scattering by the hopping atom-polaron. In the case of

hydrogen diffusion in metals for which our approach should be most appropriate, typical

estimated values of x are between 2 and 4 (-, 1.8 for hopping between tetrahedral interstices

in bcc Nb, and - 3.7 - 3.8 for octahedral sites in fcc Pd and Cu 31). Therefore, a proper

analysis of experimental data on electromigration in such systems requires the use of our

general nonadiabatic expression for the wind force rather than the ballistic expressions.

We have succeeded in generalizing the quantum mechanical analysis described above

to take into account non-adabaticity in the electron-screening response as well as in the

wind force. This allows us to investigate the non-adiabatic corrections to the direct force

as well as the wind force. (The direct force is very sensitive to the electron screening

in the vicinity of the defect.) We have considered the realistic situation of multi-level

impurity states in individual interstitial potential wells. It turns out that for low enough

temperatures, namely, kBT K< hw, where hw is the energy gap between intra-well impurity

levels, and for weak impurity electron interaction, atomic transport occurs via ground-

level impurity hopping. In this regime, electromigration is associated with the hopping

probability involving anti-adiabatic electronic response to the change in the equilibrium

impurity position upon completion of a successful jump.

We have carried through the analysis of the electromigration driving force, using

methods similar to those we used earler 16 . We explicitly obtain electron-wind and direct-

force contributions to the net atomic current, and we find that the electromigration

contribution to the macroscopic atomic current obeys the Nernst-Einstein relation between

atomic current and an effective driving force. The only trace of impurity dynamics

in the effective driving force is the specific combination of local electron density and

interaction potential that appears in the final expression for the effective driving force.

This combination reflects the fact that both interstices (initial and final) are equally shared

by the tunneling impurity atom at the moment of a successful jump. The effect is purely

anti-adiabatic and shows itself in the renormalization of both the electron wind force and

the screening correction to a direct force as compared to the results of adiabatic theory.1 1

This renormalization, which is determined by an interference phase-factor, is in general

more pronounced for the wind force contribution associated with the real processes of

elastic scattering of electrons at the Fermi surface. On the other hand, the dynamical

screening of the direct force due to the local electron pile-up involves electrons from the

whole Fermi sea, which smears out the interference effect.

We find that our general formula for the electromigration driving force gives a wind-

force contribution identical to that which we presented earlier in this Section.36 The direct-

force contribution is the new feature in our latest work, and we have been able to derive
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an analytic expression for this contribution. Our expression is similar to that obtained in
the usual adiabatic picture'1 except for the presence of a renormalization factor -y(x) =

3(sinx - x cos x)/l 3 in the integrand of the integral expression for the direct valence Zd,

where the integration is over all x, and x = kFd is the product of the Fermi wavevector

kF and the jump distance d. This renormalization can result in an enhancement or a
reduction of Zd depending on the actual value of the parameter kFd. The magnitude
of the renormalization can be on the order of 20% or more of the bare valence Z in
typical cases. Our self-consistent microscopic derivation of the general expression for a
direct impurity valence helps resolve the "direct force controversy" between the results of

different adiabatic approaches to the screening effects in electromigration.

VII. NUMERICAL SIMULATIONS AND DYNAMICAL EFFECTS IN
ELECTROMIGRATION

In order to explore further such dynamical effects as local heating and recoil enhanced
atomic migration, we have performed numerical simulations of electrornigration. We
considered the classical motion of an impurity in a periodic potential due to the crystal.

The impurity is subjected to a series of random thermal impulses from a bath at thermal
equilibrium, while the wind force is simulated by a random sequence of impulses in the

direction of the electron wind. This study is an attempt to obtain a verification of our
non-adiabatic, recoil-enhanced atomic-migration mechanism, 37 and to examine the effects
of local heating in the atomic motion.

In the standard adiabatic picture, the electromigration driving force is calculated as if
the impurity were infinitely massive and atomic recoil effects are neglected. In this picture,

the force so determined is then to be used as a static perturbation which tilts the atomic
potential and causes an atomic current. In reality, the electron-wind force is a series of
impulses due to individual electron collisions, and the atom will generally recoil and absorb
energy in these collisions. For classical diffusion mechanisms, it is the energy transfer that
is responsible for electromigration. But energy transfer depends on the velocity of the
atom at the time of collision, the transfer being larger when the atom is moving at a
larger velocity. This in turn leads to an atomic current that is enhanced over the value
calculated in the purely adiabatic picture. This enhancement is expected to be a significant

effect for the case of light interstitial impurities such as hydrogen, especially in mesoscopic
systems, where the off-equilibrium electron distribution can contain a substantial "hot
electron" component that is virtually unaffected by Pauli-exclusion principal restrictions
on the allowed energy transfer per collision. To clarify the role of dynamical effects in
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electromigration , we have devised a simple model, which allowed us to perform the first

numerical simulations of the electromigration process at the atomic level.

Our model is appropriate to the the classical diffusion regime, where an atom jumps

over a potential barrier between two equivalent sites. We take the atom to be located in

a periodic potential, U(X) , having the following sinusoidal form

U(X) = ½E* [1 - cos(27rx/d)],

where E* is the height of the potential barrier and d is the jump distance (the periodicity

length). The atom is subjected to thermal collisions at an average frequency vth, and these

collisions randomize the atom velocity towards the equilibrium Boltzmann distribution. In

addition, the atom is subjected to collisions with the off-equilibrium electrons, at an average

frequency ve1, which is proportional to the product of electron current and the scattering

cross-section. (We estimate ve, - 10 9s' when J - 106A/cM 2 and the scattering cross-

section a - 1A2 .) All collisions are taken to occur randomly via a Poisson process,

i.e., there is an exponential distribution of waiting times for thermal collisions and for

electron collisions. For simplicity, we can assume a constant momentum transfer, p, for

each electron collision. The waiting times are easily obtained with the aid of a random-

number generator algorithm. The motion of the atom bceween collisions is calculated by

means of a fourth-order Runge-Kutta algorithm.38 At the moment of a thermal collision,

as found by the random-number generator, the atom takes on a new velocity determined

by random sampling of the Boltzmann velocity-distribution. At the moment of a collision

with an impulse due to the electron-wind, also with occurence times determined by the

random-number generator, the atom's velocity is increased in the electron-wind direction

by p/M, where M is the atom's mass.

The model that we have devised contains an interesting scaling feature with respect

to mass M. If we measure all times in terms of the period of oscillation t. for the atom

when it is at the bottom of its potential well, where the motion is harmonic, then the

atom current J appropriate to the case where the momentum transfer is p (and for fixed

values of E*, Vth, and ve,) satisfies the scaling relation J(p', M') = J(p, M) provided that

p' = p/l/i 1/M. Thus, for example, the plot of J vs. p for an aluminum atom is the same

for J vs. p for a hydrogen atom provided that for aluminum we use values of p that are

- 1/v2'7 = 0.192 times the value that would be used in the plot for hydrogen (assuming

that the other parameters are fixed as stated).

Although our model is relatively simple, the computer calculations are difficult because

the rarity of an atomic jump requires the computations to extend over a huge number of
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time steps. The situation is more tractable for smaller activation energies E* , but even
so, a very large number of time steps is required to obtain good enough numerical data for
meaningful statistics. To make the computations manageable, we have chosen a relatively
small activation energy (E* = 0.2eV). We find that the net atom flux in the direction
of the electron wind does have the expected linear variation with the collision frequency

Vel for collisions between the off-equilibrium electrons and the diffusing atom. We have
verified that the net atom flux is linear in v,1 for all physical values of v,1. This implies that
the electromigration current of atoms is linear in the electronic current density. Because

of this, we can crank-up the strength of Vel (or the electron current density) and obtain
meaningful results, i.e., we need not use the extremely small electron drift velocity that
one typically has in the experimental situation, but instead we can use much larger values
for the incident electron current. This in turn makes our computations less costly, since
there is less noise in the computer output when the electron current density is larger. Even
so, we required on the order of a billion time steps to amass meaningful statistics for the
atom current J at a single value of p, with all other parameters fixed. Although the net
atom current is linear in ve1, and hence linear in the electron current, the same is not true
for the dependence of the net atom current on the momentum transfer p per collision. In
fact, our main concern is with studying the recoil-enhancement effect, and this shows up
as a non-linearity in the J vs. p curve.

Calculations have been performed for the case of hydrogen atoms. The results for the
net atomic current are presented in Fig. 9 for the case that Vthto = 5.0 and veito = 0.1.
The distance d is chosen to be 2.75A. The period t0 is defined to be iK-/AM , where
K' = 2r 2 E*/d 2 is the effective spring constant at the bottom of a well. It is convenient to
express the atom current in terms of the net number of jumps per time period to made by
an atom in the direction of the electron wind. We call this the net atom flux, and it is the
quantity shown in Fig. 9 as a function of the momentum transfer per collision. The values
of momentum p are given in the computational units Vamu x eV = 1.60 x 10-23 kg m/s.
Each point corresponds to a run containing on the order of 100,000 total jumps (leftward

plus rightward jumps), but the net number of jumps to the right (rightward minus leftward)
is a small fraction of the total. Evaluation of each point in Fig. 9 took about 8 hours of
computer time on a Sparcstation ELC.

The results in Fig. 9 indicate a significant enhancement effect for hydrogen. This
effect is manifested by a non-linearity in the atom current as a function of momentum

transfer p . In the adiabatic model the wind-force equals veIp, which is the time average
force. 3 7 Departures from this linear behavior with respect to p indicate an enhancement.
In particular for p ; 0.23 computational units, which corresponds to electron momentum
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transfers for backscattering on the Fermi surface of aluminum metal, we see that the

atomic current for hydrogen electromigration is on the order of five times as large as would

be obtained from a linear curve extrapolated from small p values. The corresponding

enhancement for aluminum is much smaller, however. According to our scaling relation,

the enhancement for an aluminum atom would be only on the order of a few percent. These

results show that our theoretical ideas37 concerning recoil-enhanced atomic migration are

valid.
It is possible to push these calculations to higher activation energies, but the time

required for a run will quickly become prohibitive. However, if the temperature is raised

as larger values of E* are chosen, the run-time can be kept reasonable. For example, the J

vs. p calculation for E* = 0.4 eV and T = 600K takes about the same time to run as does

the curve shown in Fig. 9. It turns out that the results are quite similar-the curve has

about the same shape as in Fig. 9, but the values of atom flux are on the order of one-half as

large as in Fig. 9. A factor of one-half would be expected on the basis of a Nernst-Einstein

relation giving J cx DIT, and a simple diffusion model giving D xC to exp(-E*/kBT).
It would then follow that the atom current measured in the ntmber of jumps in time to

would be inversely proportional to T.
We have recently pushed the munerical simulations to the case where E* = 0.3 eV

and T = 300K. This requires about an order of magnitude more run-time than for the two

cases discussed above. The results for hydrogen are shown in Fig. 10. (The values of V'th t o

and velto are the same as for Fig. 9.) Each point required about four days of run-time on a
Sparcstation ELC. The results show an extremely large enhancement factor setting-in for

values of p beyond 0.10. According to our theoretical estimates of the recoil enhancement

effect 37 , the net atom flux is expected to behave roughly as (kBT/v*p)sinh(v*p/kBT),

where v* = ýM/_2UE*. This is consistent with the very large enhancement at larger p in the

case of larger E* values. It should be cautioned, however, that such large enhancements in

metallic systems are only likely to occur in mesoscopic rather than bulk systems because

collisions in which the , >ctrons transfer a very large amount of energy relative to kBT
are blocked by the Pau i- -.cclusion principle in a bulk metal. In a mesoscopic system, as

mentioned earlier, relatively large perturbations in the incident electron distribution are

possible, and this makes Pauli-blocking inoperative.

It is interesting that the classical diffusion model considered here gives an enhancement

of the effective wind force, whereas the quantum-mechanical theory gives a de-enhancement
factor (the quantity a in Section VI). This is not an inconsistency, but is in fact in

agreement with theoretical ideas we have put forward.37 The point to consider is that

quantum diffusion processes and classical diffusion processes are very different, and occur
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in very different regimes. In the classical case, one expects that the energy transfer is the

important thing in helping an atom go over a barrier, and this energy transfer is more
efficient when the atom is moving in the direction of the impulse. On the other hand, in a

quantum hop, the electron scattering tends to de-tune the below-barrier tunneling process,

and so the opposite effect occurs.

The calculations described here represent the first computer simulations of electromi-
gration at the atomic level. Although the model is rather oversimplified, it does reveal

interesting dynamical effects which transcend the conventional adiabatic picture. Clearly,
computer simulations of electromigration are an interesting area for future studies.

VIII. ELECTROMIGRATION-INDUCED FAILURE AND MTF

FOR METALLIZATIONS

In our previous work we analyzed the microscopic driving forces for electromigration.
This force is proportional to the local transport electric field, and all information about the

microscopic transport mechanism is contained in the appropriate coefficient Z*, which is
the effective charge of the atomic defect. Assuming that Z* is known, we are in a position

to address a critical problem in applied electromigration work, namely, irreversible damage

to thin film metallization in integrated circuits.

Because of the driving force, in general there will be a net divergence of atomic flux at

inhomogeneities in the microstructure. This leads to mass depletion (accumulation) and
formation of voids (extrusions). The actual failures occur when the growing voids coalesce

to form an open circuit in the current passage (or extrusions result in short circuits between
different conducting lines). In order to prevent extrusion-related failures, a passivation

(usually glassy) layer is put on the metallization, thereby eliminating surface diffusion.

Electromigration-induced failures then occur as a result of void formation at those points

in the grain boundary network where outgoing atomic flux exceeds the incoming flux.
Such void nucleation centers (most commonly, triple points where three or more grains

join together) are randomly distributed in the metallization, with the average separation
distance being on the order of the typical grain size.

The major reliability issue for microelectronic devices is the estimation of the mean

time to failure (MTF) and finding ways to increase it. The only practical way to estimate

MTF experimentally is to perform an accelerated failure test at high enough electric current
density j and temperature T and extrapolate the obtained data to real-life operating
conditions using a particular relation MTF = MTF(j, T) based upon some theoretical

model.
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A number of models have been used to predict the dependence of electromigration
failure times for thin metal films on electric current density and temperature. These
models differ substantially on whether the actual lifetimes are controlled mainly by void
incubation or their subsequent growth and on how important the local Joule heating is.
However, almost invariably, these models have one important thing in common, namely, it
is assumed that electromigration damage occurs exclusively via grain boundary diffusion
and the primary failure mechanism is the same for both use and test conditions. A useful

Arrhenius-like relation was first formulated empirically by Black 39 to extrapolate test data
to real-life operating conditions. The much-used Black equation for the MTF is

MTF = Aj--eE/- T,

where A is a material constant and E is the activation energy for electromigration-induced
failure. It was pointed out by a number of authors4 "42 that actual failure mechanisms and,
consequently, the resulting function MTF(j, T) (e.g., the value of n in Black's equation)
under high current stress and at elevated temperatures appropriate for test conditions
can be quite different from those corresponding to real-life operating conditions. For
example, if local Joule heating is inessential and the failure occurs by void growth at sites
of abrupt changes in atomic flux, then n = 1. At high enough currents, when the failure is
substantially accelerated by a local temperature increase due to the current crowding effect

in the immediate vicinity of a growing void, larger values n > 2 should be observed. The

value n = 2 is also characteristic of the regime of incubation-controlled electromigration

failure in the absence of local heating effects. 4 3 'a Experimentally, it has been found that

n •_ 2 in aluminum under typical test conditions (j • 1 -2 x 106 A/cm2 , T 2_ 150°C). But
since the failure mechanism can change at low current densities, which may result in the
value n = 1 in that regime, the legitimacy of the extrapolation to the operating conditions

made with n = 2 is questionable.

Another, even more important, issue here is whether the activation energy E for
electromigration failure in Black's equation has the same value under test and operating
conditions. In all theoretical models that one finds in the literature and, consequently, in
extrapolation results based upon them, the assumption is made that E is nearly constant
within the whole range of relevant values of the temperature and current density. This
assumption rests on the idea that only grain boundary atomic diffusion is essential for
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electromigration-induced failure in both test and real-life operating situations. *This idea
seems to be a natural consequence of the relation

Ji d DA

A- 6 D6'

where Jj, Jb are atomic fluxes due to electromigration in the lattice and at the grain
boundaries respectively, Dh, Db are corresponding diffusivities, d is the typical grain size,
and 6 is the effective grain boundary width. (For simplicity, atomic densities and effective
charges in the lattice and at the grain boundaries are assumed the same.) For a thin metal
film with a micron grain size at T < 0.5 Tmn, where Tm is the melting point, one obtains

the estimate J1 <« Jb , which is considered a sufficient justification for the complete neglect
of lattice diffusion.

At the same time, it is obvious that in the situation of a completely passivated
metallization electrically connecting two semiconductor elements, and with atomic flux
blocked at the metal-semiconductor contact surfaces, no major electromigration damage
can occur without lattice diffusion. Indeed, with the whole surface of the metal strip

(including its blocked ends) unavailable for atomic transport the only way for nucleating
voids to grow is that the removed matter spreads out either into the grain boundaries or into

the lattice or causes the passivation to lift and/or crack (delaminations/extrusions). If the
void nucleation centers are distributed randomly but on the average uniformly throughout

the film with the separation distance 1, then in the absence of lattice diffusion the typical
ultimate void size is - (col6)1/2, where co < 1 is the equilibrium grain boundary vacancy
concentration per atom. Since 1 > d > 6, this maximum size is much smaller than 1,

and it is very unlikely that such small voids can somehow coalesce and form an open
circuit in the film. In other words, large scale damage with the net fractional volume
of the voids much larger than co6/l can only occur if the removed matter spreads out
into the lattice. Therefore, when considering advanced stages of electromigration damage
and actual failures in metallizations with blocked surface diffusion one has to take into
account the atomic flux from the grain boundaries into the lattice. The failure rate, which
is proportional to the rate of void growth, is then proportional to the density of this flux.

The most important question that now arises is whether the intensity of this electro-

migration-induced flux is determined by grain boundary or lattice diffusion. The answer
depends on the relation between the length I of a grain boundary segment connecting two
neighboring voids and the diffusion length (Dbr)'/ 2 of a nonequilibrium atom (vacancy),
associated with its lifetime r in the grain boundary.

30



In the situation when (Dbr)1/2 < 1, all the atoms "injected" into the grain-boundar.
segment from the growing void and driven along by electromigration readily escape into

the lattice by the time they would have reached the opposite end of the segment. Hence,

there are no restrictions on the electromigration atomic flux (vacancy flux "feeding" the

void) associated with the escape process, and the intensity of this flux is determined

only by the grain boundary diffusivity Db. The resulting expression for the vacancy flux

feeding the growing void, Jo - noDbF/kBT (no is the equilibrium vacancy density, F is
electromigration driving force), is the same as the one used by all existing models based

upon the assumption of vanishingly small lattice diffusion and an infinite grain boundary.

In the absence of local heating effects, this corresponds to the activation energy E for

failure in Black's equation being equal to Eb, the activation energy for grain boundary

diffusion.

In the opposite limiting case (Dbr) 1 /2 >> 1 atoms leaving the void are not able to
escape from the grain boundary segment by the time they reach its end, wlhich results in a

bottleneck effect causing a drastic decrease in the electromigration flux. An MTF analysis

in this regime is outlined below.

It should be emphasized that our approach is appropriate only if the passivation

layer remains unchanged and perfectly adheres to the metallization surface during void

growth. Under high enough atomic flux stress, which is typical for most test conditions

due to large current densities, the passivation is likely to lift and/or crack at certain weak
spots. As a result, the matter removed in the course of void growth is spread out in

the form of extrusions and the failure rate can increase dramatically. However, here we

restrict our analysis to normal operating conditions, i.e., relatively low current densities,

and assume that the passivation remains perfectly undamaged until, perhaps, the last stage

of electromigration-induced failure.

Consider a simple 1-d model of a single grain boundary consisting of alternate segments

with higher (D+) and lower (D-) diffusivities. If we choose the x-axis along the grain

boundary in the direction of the electromigration vacancy flux (opposite to actual atomic

flux), then the points x, of abrupt negative change in the diffusivity, such that D(xn -0) =

D+ and D(x. + 0) = D_, are the nucleation centers for accumulation of vacancies and

subsequent void growth. These points correspond to grain boundary junctions where the

incoming electromigration vacancy flux exceeds the outgoing flux. Similarly, the points of

abrupt positive change in the diffusivity (from D- to D+), which are the vacancy depletion

centers, correspond to the junctions where the outgoing vacancy flux exceeds the incoming

one.
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The transport equation for vacancies in any particular grain boundary segment has

the form N N no -n

where n is local vacancy density, no is its equilibrium value, and r is the vacancy lifetime

in the grain boundary. J, the x-component of the vacancy flux, is given by

J=Db(n- h )

Here Db is the appropriate diffusivity, and the driving force F for vacancy electromigration
can be written in the standard form

F = -Z*epj,

where Z* is the effective atomic valence for elect romigration, p is the resistivity of the film,

and j is the x-component of dc electron charge-density current. In writing the vacancy-
flux equation (with T = const), we have taken into account only the electromigration and

diffusion components of vacancy flux, thus neglecting all contributions associated with
local heating effects and temperature gradients. According to existing estimates (see,

for example, Ref. 45), this is a very good approximation for typical operating conditions

(j < 5 x 105 A/cm 2 ). We will also neglect for simplicity all local changes in electron

current density j due to the changing cross-sectional area of the film and current crowding
associated with continuous void growth, which is appropriate for early enough stages of

electromigration damage.

Following most authors, we assume that the vacancy dynamics occur in two distinct

phases: First, void incubation, and, second, actual growth. During the incubation phase,
vacancies keep accumulating at the nucleation centers until their supersaturation level S =

(n - no)/no reaches some critical value S. As soon as this critical supersaturation has been

reached, the accumulated vacancies coalesce instantaneously thus nucleating macroscopic

voids. At this point the second phase begins and the voids start growing continuously,

with the supersaturation sustained at the level S, until an open circuit failure occurs. An

important issue here is that the value of S in a passivated metal film is substantially reduced

by the presence of tensile mechanical stress and can be as small as _ 0.01.44'46 Therefore,

the incubation time is short, and with the void growth slowed down drastically by the

earlier discussed bottleneck effect at low enough temperatures and current densities, the
actual failure times under operating conditions should be completely growth-controlled.
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To proceed further we invoke a simple model in which we consider voids growing
uniformly (on average) along 1-dimensional segments. We find that the crucial length

parameters in the analysis are the following: The distance I between nucleation centers,

the grain-boundary diffusion-length L, defined by L, = (Dbr)'/ 2 , and the electromigration

length LF, defined by LF = IkBT/Z*epjI. The two regimes of interest are

LF, L, >» 1 Bottleneck

1, L, > LF No bottleneck.

Estimates from normal operating conditions (non-test situations) in alumninum, give

LF - 40unm,L, - 30Lpm, and 1 -, lpm for Z*= -10 and j = 3 x 105 A/cm 2 at room
temperature. This puts us in the bottleneck regime. On the other hand, if we have much
higher currents and somewhat higher temperatures then it is possible to be in the no-
bottleneck regime. Most important, it is possible to make this transition from one regime

to the other simply by going from moderately high electron current density to very high

electron current density. Thus, there would be different observed values of the activation

energy E for field conditions and accelerated test conditions.

The result of our analysis47 is that in the no-bottleneck regime, the atom (or vacancy)
current density has the usual Nernst-Einstein form

A = noDbF/kBT,

while in the bottleneck regime, the atom (or vacancy) current is

J , nol 2 -r-F/kBT.

Thus, the ratio of atom (or vacancy) currents is

J/Jo -. 12/Dbr,

and with MTF being inversely proportional to current, we obtain

MTF DbT

MTFo  12

or MTF a6 (E,-Eb)IkBT

M TFo "2-3
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Estimates for aluminum at 300K with a = 2A, b = 5A, and 1 = .1/tm - 1/sm give

MTF/MTFo - 103 - 105 for the ratio by which the MTF is enhanced by the bottleneck
effect.

The analysis we have described represents a first attempt to self-consistently analyze
electromigration-induced failures in passivated metallizations. The important issue of
possible damage caused to a passivation layer by persistent atomic flux is not addressed
here. In our analysis, we assumed that this damage can occur only when atomic flux
exceeds a certain critical value that is sufficiently large for a high-quality passivation.

Therefore, as long as actual electromigration-induced atomic flux, which is drastically
reduced by the bottleneck effect at low operating temperatures, remains smaller than
this critical value, the results obtained in the present paper should be applicable. The
estimation of this critical atomic flux and the construction of a self-consistent description
of electromigration-induced failures in the presence of broken passivation is a complicated

problem which requires further analysis.

IX. CONCLUSION

Our investigation of microforces in electromigration has led to a better understanding
of the electromigration phenomenon on several levels. At the microscopic level, we find

that in the immediate vicinity of a defect complex, a local transport field is set-up, and
this field acts as the driving force for electromigration. The electron-wind part of the local

field correlates with the residual resistivity of the complex, as was shown in Sec. II for
the case of an impurity near a grain boundary or dislocation. This correlation implies a

connection between electromigration and 1/f-noise due to impurity motion. The local field

can be probed with an STM and this provides a link between electromigration and STM
measurements, as shown in Sec. III. The mesoscopic system consisting of the STM tip and
an impurity at or near a surface defines a mesoscopic system whose I-V characteristics give

information about electromigration driving forces. A related mesoscopic system, namely
the "point-contact," can, in fact, be used to measure the direct force in ,lectromigration,
and this is shown in Sec. IV. The underlying phenomena that makes this measurement
possible is the electron-current concentration and breakdown of the local form of Ohm's

Law ( o = u) in the immediate vicinity of the point-contact.

The relationship between inelastic scattering, electronic conductivity, and local heat-
ing is an important one, and is investigated in detail for a mesoscopic system in Sec. V.

Because electrons transfer energy to an impurity (or some other atom in a defect complex),
the electronic conductivity will show definite non-linear structure in the I-V curves. From

the point of view of the target atom, the energy deposited by the off-equilibrium electrons
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provides local heating at the microscopic level. This local heating can have a profoutd

effect on electromigration, as it may provide the otherwise scarce energy for the atom to

complete a diffusion jump. This enhancement of electromigration due to recoil energy

deposition to a target atom occurs for classical over-the-barrier atomic jumps. In the

quantum tunneling regime, however, the situation is different. As shown in Sec. VI, the

recoil effect tends to degrade the efficiency of atomic tunneling, and electronmigration is

diminished.

Further studies of dynamical effects in electromigration were undertaken by means of

numerical simulations. These simulations, which are described in Sec. VII, are the first for

electromigration at the atomic level. Our results indicate that large enhancement effects

are possible, especially for light impurities in mesoscopic systems. We also addressed the

more practical problem of electromigration-induced failure in metallizations. The analysis

described in Sec. VIII represents the first attempt to analyze self-consistently the failure

time in ideally passivated metallizations. We find that a bottleneck situation exists in which

failure-times are governed by the lattice diffusion rather than grain-boundary diffusion.

This results in a much longer time to failure than would be expected from usual models.

Finally, we point out that as electronic devices become progressively smaller and begin

to function exclusively in the mesoscopic domain, the phenomena which we have investi-

gated in this work will take on increasing importance. Specifically, local fields, resistivity

fluctuations, current concentration, local heating, and quantum diffusion processes will

be central to the operation of next-generation devices. A better understanding of these

phenomena is needed to assure the proper functioning of the mesoscopic and nano-scale

devices of the future. The work described in this report represents a first step in that

direction.
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FIGURE CAPTIONS

Figure 1. Relative change in resistivity for an impurity near a grain boundary of thickness

D in an aluminum film. Curves are shown for the cases that D = 2 a.u, 4 a.u. and
8 a.u. (1 a.u. = 0.53 A). The grain boundary lies in the region -D/2 < z < D/2,
and the electron wind is in the z-direction (perpendicular to the grail, boundary).

Results are shown for the case that the impurity is described by an s-wave phase-
shift, with the value of the phase shift, b15, set equal to the ratio of grain boundary

potential strength, U, over the Fermi energy, EF. (The results scale linearly with
the quantity (U/EF)/65o.) The relative change in the electromigration wind force
on an impurity is equal to one-half of the relative change in resistivity for this

model.
Figure 2. Relative change in resistivity for an impurity near a dislocation of radius equal to

2 a.u. in an aluminum film. The dislocation lies in the region 0 < R < 2 a.u., and
the electron wind is perpendicular to the axis of the dislocation. The impurity

is at a distance R from the center of the dislocation and at an azimuthal angle 0
with respect to the direction of the electron wind. Three cases for 0 are shown.
Results are shown for the case that the impurity is described by an s-wave phase-
shift, with the value of the phase shift, 6b, set equal to the ratio of dislocation-core

potential strength, U, over the Fermi energy, EF. (The results scale linearly with

the quantity (U/EF)/lo.) The spatial variation of the electromigration wind force
on an impurity is equal to one-half the variation in resistivity for this model.

Figure 3. STM voltage and LTF plotted against position x near a grain boundary in an

aluminum film of thickness 60 a.u. The vertical axis is in units of Ef, where E
is the macroscopic electric field and e is the mean free path due to background
processes. The grain boundary region is 0 < x < 4 a.u. The STM tip is 9.4

a.u. above the film, and the grain boundary potential is 20% of the Fermi energy.

The VSTM result calculated from a theory which ignores phase coherence between
incident and reflected waves (Ref. 1) is indicated by the dashed lines.

Figure 4. STM voltage (full curves) and LTF (dashed curve) plotted against position near
an impurity at the surface of an aluminum film. The STM tip is at height z0

above the surface, and results are shown for z. = 2,4, and 6 a.u. The impurity

is at the origin, and the coordinate R11 is the position of the STM tip along the
surface, and measured along a line parallel to the electron wind.
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Figure 5. Upper: the conductance for a bound impurity modeled by local Einstein phonons,
with the recoil energy R = hwo and kBT = 0. Lower: The drop of G at different

voltages.

Figure 6. The conductance and its decrease as a function of eV, with R = 100hw0 and

kBT = /hwo. Inset: An enlarged portion showing the stepwise fine structure of

the G curve around eV = R.

Figure 7. The conductance and its derivative due to a free impurity with kBT = 0.01R.

Figure 8. Effective temperatures due to local heating. The solid curve is the effective

temperature of non-equilibrium electrons (/3j). The dashed curve is the defect
temperature (Od 1) in the presence of a phonon bath. The lattice is at 100K.

Figure 9. Net atom flux vs. electron momentum transfer per collision for hydrogen electro-

migration. (E* = 0.2 eV, T = 300K)
Figure 10. Net atom flux vs. electron momentum transfer per collision for hydrogen electro-

migration. (E* = 0.3 eV, T = 300K)
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Figure 10. Net atom flux vs. momentum transfer per collision by electrons.
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