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Abstract

Peak detection is an alternative to the commonly used threshold detection scheme in radar systems.
The present report is the first part in an investigation of peak detection performance, for Swerling
type targets, in an arbitrarv noise/clutter background. In this report, peak detection is compared
with classic fixed threshold detection in uncorrelated white noise. A methodology is also developed,
capable of handling arbitrary stochastic signal and noise/clutter models.

Résumé

La méthode de détection par pic est une alternative possible i la technique de détection par seuillage,
qui est largement utilisée dans les systémes radars. Ce rapport discute d’une premiére étape d’une
étude de performance de la méthode de détection par pic, pour des cibles du type Swerling, en
présence de bruit et de fouilli arbitraires. Dans ce document, la détection par pic est comparée i la
détection classique, par seuillage fixe, en présence de bruit blanc non-correllé. Une méthode capable
de traiter les cas de signaux stochastiques arbitraires et de modéles arbitraires de bruit et de fouilli

est aussi développée.




Executive Summary

Peak detection is an alternative to the commonly used threshold detection in radar systems. Classic,
fixed threshold detection, compares the received signal samples with a threshold, derived from
some probability model and a specified probability of false alarm, and estimates the probability
of signal detection as a function of signal-to-noise-ratio. Peak detection, on the other hand, does not
specifically employ a threshold. Instead, the signal maximum during a specified processing interval
is taken as the desired output. This output follows the original signal variations more closely and
the system gain for a specified probability of false alarm is much easier to set and presumably more
robust.

The present report carries out the first part of an investigation of peak detection performance

in a typical radar system. This is done as follows:

1. The proper methodology is determined. The Monte-Carlo method with importance sampling
is used here; the parameters of a given probability model are suitably scaled and the output
weighted so that the “rare” events are seen more often. This results in considerable savings of
simulation run-time.

2. The ideal peak detection performance is compared with ideal threshold detection performance,
by computing probability of detection curves for all Swerling type targets in a white noise
background. A comparison between fixed threshold detection and peak detection is performed
in the classical way, by estimating a new threshold based on the modified probability model
(the new probability density is the maximum order statistic of the unmodified density) for the
same probability of false alarm. Results show that the drop from ideal performance, where one
takes into account all incoming samples, to peak detection performance, where the maximum
(peak) of a number of consecutive samples is taken, was of the order of a few dB for a 50 %

or more probability of detection.

The second part of the investigation, in a future report, will complete the peak detection
performance evaluation, in a white noise background, by assuming a typical radar system, e.g. one
suitable for periscope detection [8]. The effects of bandwidth reduction and collapsing losses will be

examined and the overall detection performance established.




Finally, the third part will extend the noise/clutter background to cover K-distributed clut-
ter. This is the commonly accepted model for sea clutter statistics. Noise/clutter correlation aspects

will be covered, together with the design of the proper prewhitening filters.
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Introduction

The radar detection process is normally carried out by comparing the received rada- signal with
a threshold value. This is the s ~called threshold detection scheme. The threshold is determined
from the assumed probability model of the noise/clutter background in which the signal propagates
and a desired level of false alarm. In classic fixed threshold detection, this procedure is optimum
for maximizing the probability of detection, provided that the assumed probability model for the
‘noise/clutter background is correct.

As normally implemented, a biased diode establishes a threshold voltage level. The receiver
gain for the incoming signal can then be adjusted, either manually or automatically, through some
constant false alarm rate (CFAR) scheme. The combined effect is, that the signal is thresholded
at a specific false alarm value. It turns out that the threshold value is extremely sensitive to the
gain setting. A slight manual adjustment by the human operator, to make target discrimination
on the video display easier, may easily affect adversely the desired probability of false alarm, Ppg4,
since the transition from a “dark” screen to one “flooded” with “targets” can be quite abrupt. A
different detection process, with a smoother transition, would therefore be very useful in practical
applications. Peak detection is a possible candidate for this task. Instead of comparing the incoming
received signal samples (a digital approach is assumed) with a threshold, a number of consecutive

samples are peak detected, i.e. the maximum sample value is retained for the sample duration.

Implementation of threshold detection leads to “0” and “1” pulses depending on the detec-
tor decision between “noise” and “signal”. The “1” pulses are of equal intensity in this scheme.
Peak detection introduces a “gray” scale to the detection process since the intensity variation of the
incoming signal is followed more closely. Taking the peak value of several consecutive samples, in
place of the samples themselves, considerably reduces the received signal bandwidth. Normally, there
is some bandwidth reduction process, with effects similar to peak detection, inherent in a normal
implementation of a radar receiver, either at the front end or on the video display. Such imple-

mentations lead to significant hardware simplifications that far outweigh the slight loss in detection




introduced by bandwidth reduction. For a thorough evaluation of overall detection performance,
the effect of deliberately introducing the peak detection scheme at the front end of the receiver has
to be quantitatively investigated and compared with the normal implementation.

In this report, the goal is to begin the investigation of peak detection performance by com-
paring it to classic fixed threshold detection. A non-correlated white noise background is assumed.
The discussion of K-distributed clutter, which is more realistic for targets on the sea surface, and the
prewhitenir.g filters that should be used for the case of correlated clutter, are left to future reports.
The proper methodology is also developed to handle arbitrary stochastic signal and noise/clutter
models in preparation for that future work.

At this stage, it is not expected that the use of peak detection will exceed the performance
obtained with optimum threshold detection. In fact, the loss is expected to be of the order of a few
dB. However, the overall detection performance also depends on the specific bandwidth reduction
scheme used and on the collapsing losses at the display urnit. These losses are also of the order of
a few dB. Part II of this investigation will address these issues, taking a specific radar system into
consideration.

As already explained, the detector output signal is different for peak and fixed threshold
detection. An approach has to be found for comparing the outputs in a meaningful vay for the same
Pra. Fig. 1.1 illustrates the approach taken here. )

The top left graph is a qualitative example of a typical received signal which includes signal
and noise components. This is thresholded for a desired Pr 4, taking into account a knowledge of the
Probability Distribution Function, PDF, of the noise component. The output of this fixed threshold
detection scheme is shov n in the top right graph. The peak detector output is shown in the bottom
left graph (solid rectangular curve). It is different from the fixed threshold detector output, and
follows variations of the original input signal more closely. In order to compare the two cases, the
peak detector output is thresholded as well, using the same Pr4. Note that the wnderlying PDF is
different now. The thresholded peak detector output is shown in the bottom right graph. The two
methods, top and bottom right graphs, can then be compared as follows. Noting that the time scale
(z-axis) is the same for both graphs, the area under the pulses, divided by the the area within the
entire observation interval, can be used to give the proportion of the signal present. This proportion,
which is the probability of detection, Pp, can be graphed as a function of the signal-to-noise ratio
for both cases.

The investigation begins with an outline of the known case of classic fixed threshold detection
in a white noise background. The search for the proper methodology starts here, with a comparison
and verification of the results with the known performance curves published in the literature {1].

The criteria for comparison are:
e ease of implementation,

e estimator accuracy, and
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Figure 1.1: Scheme for comparing peak and fixed threshold detection.




o capability to handle arbitrary signal and noise structures.

The methodology finally chosen is that of Monte Carlo with importance sampling. The investigation
then proceeds by computing peak detection performance curves, similar to those computed for fixed
threshold detection, in an uncorrelated white noise background. The report concludes with a sum-
mary of the above results and outlines the work still required to complete a thorough investigation
of overall peak detection performance.




Classic fixed threshold detection

in white noise

The backscattered microwave signal, that arrives at the receiver from a target, in the presence of
clutter and receiver noise, is assumed to be a train of N pulses. The five Swerling cases interpret
this as follows:

Swerling 0: The target cross-section is constant, leading to a non-fluctuating pulse amplitude,
with a constant peak-to-peak signal-to-noise ratio, R. The variable on reception is the initial
phase of each pulse, which is assumed to be uniformly and independently distributed in [0, 2x].

Swerling I: The target orientation changes slowly compared to the pulse-train duration; this re-
sults in a nearly undistorted pulse train, so that a single random variable can characterize
the overall train amplitude. However, the target cross-section change is sufficiently large from
scan-to-scan, to result in scan-to-scan fluctuations of the train amplitude, which are described
by a Rayleigh probability density function. In addition, the initial phase of each pulse is
assumed to be uniformly and independently distributed as in Swerling 0.

Swerling II: The cross-section fluctuations are rapid enough, so that each pulse in the train is
a statistically independent random variable from the same Rayleigh distribution. Again, the
initial phase of each pulse is assumed to be uniformly and independently distributed as in
Swerling 0.

Swerling ITI: This is the same as Swerling I, except that the pulse-train amplitude comes from the
one-dominant-plus-Rayleigh distribution; this distribution assumes a single dominant strong

scatterer, together with many weaker ones in the resolution cell of the radar.

Swerling IV: Swerling IV is similar to Swerling II, except that each pulse amplitude comes from
the one-dominant-plus-Rayleigh distribution.




In all cases, the receiver structure that gives optimum performance in comparison with a
fixed threshold is the square law detector!. The Neyman-Pearson detection test, appropriate to the
case of binary detection with a constant false alarm, is

Ho: ri=n;

Hy: riz=si+n;

where the ith observation of the received signal, r;, is composed of noise only, which is hypothesis
H,, or signal plus noise, which is hypothesis Hy. The choice of one of the above hypotheses leads
to a comparison of the test statistic with a threshold. The probability of detection, Pp, is the
probability that the test statistic exceeds the threshold when a signal is present, and the probability
of false alarm, Pp4, is the probability that the test statistic exceeds the threshold when only noise
is present.

The test statistic for square law detection is [1]

z=
i= f=

where the PDF of the received signal amplitude, r;, for a single observation of signal plus noise is

ri exp[—(r? + R)/2)lo(riV/R) 20

p(r‘;R)={o ri<0

The function Iy above, is the zero order, modified Bessel function of the first kind, while the variable
R, is the peak-to-peak signal-to-noise ratio. The PDF of z; = r?/2 is

p(zi; R) = { exp[—(zi + R/2))Io(v2=: F) >0

0 ;<0

These are all special cases of the noncentral x? distribution [10]. Note that, for the noise-only case,
R = 0 and [(0) = 1. For Swerling 0, R is a constant while for the other Swerling cases, R is a
random variable with its own PDF. The overall PDF of the test statistic z is

o) = | : pz|R)p(R)dR

The classic approach of fixed threshold detection, due to Marcum and Swerling [3, 9], is as
follows:

o The test statistic, z, for a given R, is a sum of N independent random variables with a known
PDF, p(zi; R). The PDF of z, p(z; R), is the N-fold convolution of the individual p(z;; R)’s
(5]. In the Fourier domain, the characteristic function of z is the product of the characteristic
functions of the z;’s. Taking the inverse Fourier transform of the characteristic function of z,
p(z; R) is derived.

1 Actually this is strictly true for small signal-to-noise ratios, whereas the linear detector is “theoretically” optimum
for the other extreme. Practically speaking however, the performance of both detectors is shown to be almost the
same for all signal-to-noise ratios.




o The false alarm threshold, Tr 4, for a given probability of false alarm, P4, is computed from

oo Tra
Pra= [ plz;0)dz=1- / p(z;0)dz . 2.1)
Tra 0
e The probability of detection for a given R and Pp4 is computed from
o Tra
Pp = p(z;R)dz =1 —/ p(z; R)dz . (2.2)
Tra 0

While straightforward in principle, the analytical approach leads to complicated integrals and special
functions that require a variety of approximations before the final results can be derived with some
degree of accuracy. A recent paper by Hou et al. [2] outlines a method based on residues that leads
to exact formulae, in a finite sum form, with no special functions, for evaluating Pr4 and Pp (see
Appendix A). Another approach consists in numerically implementing the steps in the Marcum-
Swerling procedure above, using FFT’s (Appendix B). Figs. 2.1-2.4 show some examples of Pp’s vs
R for different false alarms. For ease of comparison, the notation in [1] is used. As can be seen, the
corresponding graphs are in excellent agreement.

The conclusions reached from investigating the residue (Appendix A) and FFT methods
(Appendix B) are:

1. For Swerling I-1V targets the residue method is better in computing the probability of detection.
However, there is a drawback: it is not suitable for complicated PDF’s, since it may not be
possible to compute the residuals analytically.

2. The FFT approach is better for Swerling 0 probabilities of detection. To achieve similar
accuracy with the residue method, many terms of an infinite series have to be computed,
leading to computer over/underflow. The FFT can also be used for arbitrary PDF’s.

3. Both methods perform well for calculating the false alarm thresholds, with the FFT having
the advantage for arbitrary PDF’s.

4. The FFT method suffers from numerical round-off errors when calculating probability of de-
tection for small peak-to-peak signal-to-noise ratios, R.

Clearly, another method is required for the calculation of probabilities of detection for arbitrary
PDF’s. This is the Monte Carlo method, discussed in the following section.

2.1 The Monte Carlo method

Often, in practice, the solution to a signal processing problem involving probabilities cannot be
obtained analytically. In that case, the preferred approach to be taken is the Monte Carlo method.
In this way, ensembles of the desired system can be constructed and, with suitable averaging, the

desired probabilities estimated.
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To estimate the probability of detection of a given signal, in a given noise background, with
the Monte Carlo method, all that is needed is to find the correct way of generating the signal and
noise samples. The receiver structure that simulates the necessary matched filter is easily coded in
software and one only has to count how many times the test statistic (e.g. the squared envelope)
exceeds the false alarm throshold.

In a straightforward implementation and without loes of generality, the simulated received
signal component is the RF pulse,

Acos(2xf.t + ¢) 0<t<T,
s(t) = .
0 otherwise

where the pulse width, Tj,, is equal to 2 time units, the carrier frequency f. = 3/T,, the sampling
period T, = 0.2 time units and the sampling rate f, = 1/7,. A is the signal amplitude, a constant
for Swerling 0, and a Rayleigh or one dominant plus Rayleigh for the other Swerling cases. ¢ is the
initial phase of the pulse, a uniformly distributed random variable in [0,2x]. It turns out that 20
samples are enough to adequately describe the pulse per ensemble. .

The matched filter with sampling at T, is implemented with a digital correlator receiver,

T, I(t) 2/:Ty ' I;
/0 r(t) { Q) } dt &« ; r Q: ,

where I(t) and Q(t) are the in-phase and quadrature components of the transmitted signal. The

which approximates

squared envelope is then taken, scaled by 1/2, leading to a single sample per pulse. For N integrated
pulses, N samples are summed up for each sample of the test statistic.

Each test statistic sample is then compared with the appropriate threshold. If larger than
the threshold, the probability of detection variable, Pp, (initial value 0) is incremented by 1/ng,
where ng is the number of ensembles used. The only problem is that, in order to adequately describe
the rare events, that is, the tails of the distributions, ng must be a very large number. This means
that the code required to compute the statistic, although simple, may be extremely time consuming
in execution.

2.2 Monte Carlo with importance sampling

A way to reduce the computational burden of the conventional Monte Carlo method, is to apply the
technique of importance sampling. With importance sampling, one can modify the PDF(s) of the
underlying distribution(s), so that the low probability events occur more frequently. The desired
output probabilities are then found by appropriately weighting each event by a factor that depends
only on the input state (Mitchell [4]).

The subject of interest in this report is the estimation of the probability of detection. Ap-
plying the Monte Carlo approach, the desired quantity to be estimated is the complement of the
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Conventional Sampling

input | processor
output l
—_xN F(z) 5 put, sorting | obszer'vab e,

threshold, Y

Importance Sampling

nput | processor
— output
"1z F(x) ——g—-p——h sorting | w(z) obs:'r“uozble>

threshold, Y

Figure 2.5: Sketch of operations performed with conventional and importance sampling.

Cumulative Distribution Function, CDF, of the test statistic
0
Q(y) =1-CDF(y) = / p(z)dz
v

For a given false alarm threshold, y, the desired probability of detection is Q(y). Or, in other words,
for a desired probability of false alarm, Pr,, the appropriate false alarm threshold is Q~!(Pr4).
With conventional sampling, a value around Q(y) = 10~ requires a sample size at least as large as
10° in order to achieve any precision at all in the estimate. With importance sampling, the required
sample size can drop by several orders of magnitude.

Fig. 2.5 sketches the operations performed with conventional and importance sampling. In
conventional sampling, the input data process, x, multidimensional in general, enters the processor
F(x) and a one-dimensional output process y is generated, which for the example of y being the
sum of N samples is given by y = E,N=1 z;, where x is an N—dimensional process. The process
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y is sorted, with the sorting threshold Y, which varies from ymin t0 Ymaz- The function Q(Y) is
computed as the observable z. This is done by “binning” the sorted values into a histogram and
computing the cumulative distribution function complement from it. In conventional sampling, the
weight associated with each sample y is w = 1. In importance sampling, some parameter of the
PDF of x is modified, to increase the occurrence of low probability events. The sorted samples y
now receive the scalar weight

p(x)
Pm(x)
which is the ratio of the original to the modified probability density functions.

w(x) =

¥

2.2.1 Evaluating Pr,

In estimating the false alarm thresholds in Table 3.1, we have, as input, N samples z;, each following
the exponential distribution exp(—z;). The input vector is

X = (21,22,. ..zN)T ,

and the processor F(x) simply adds the N components

N
y= F(x) =Zz.-

i=1

Assuming independent, identically distributed (i.i.d.) samples, the weight is

N .
w0 = 1T 7z Sty = Fhemslst =l

where the parameter to be modified is the mean Z of the individual exponential distributions, from

i=1

the value 1 to . The original, unmodified, exponential variates are generated as
zi=—Inu |,

where u ~ U[0,1] is a uniformly distributed random variable from zero to one, and the modified
variates as
(zi)m = (- Inuw)z,

Fig. 2.6 shows Q(Y) for N = 1 and N = 10, for 10,000 samples generated by conventional and
importance sampling. Solving Y = Q~1(Pr,) for a desired PFA, one can easily estimate the false
alarm thresholds. Spline interpolation is used to generate a continuous function Q(Y) from the
binned samples, accurate enough for Y € [ymin,¥maz]. Q(Y) — Pra = 0 is then solved for the
desired threshold with the bisection method. The value Z,, = 4.7 used in the figure is optimized for
Q(Y) = 10-¢. However, Q(Y) is relatively insensitive to the exact value of the modifying parameter.
Trying a variety of values, one usually observes that the estimates Q(Y) cluster together. It should
be emphasized that importance sampling is a technique designed to increase low-probability events.
E.g., the curve N = 10, £, = 4.7 in Fig. 2.6 starts from Y ~ 10. For high probability events,
Q(Y) ~ 0.1 — 1, it is advantageous to use conventional sampling.




2.2.2 Evaluating Pp

Mitchell [4] claims that the weight w(x) depends only un the input x and is not affected by the
processor F'(x). Note, however, his examples (5) and (6) where the processor outputs are:

K
y= Z Zk
k=1
and

K
y=y azn
k=1

respectively. The z,’s are exponentially distributed random variables in both examples. The only
difference is the arbitrary coefficients a; in the second. For both examples the weight, as a function
of only the input, is the same, independent of the a,’s. The simulation results, however, show a
larger error for the second case, for the same number of ensembles, ns, used. This is compensated
for by increasing ng.

In our implementation of importance sampling, his example (9) is useful. A log-normally
distributed random variable is combined there with thermal noise, which is Rayleigh-amplitude
distributed. The processor output is the sum squared of the two inputs, typical for noncoherent
radar systems.

Adapting this example to our case, the received signal, r(t), is a sum of two phasors, V, and
Va, the signal and noise phasors respectively, i.e.

r(t) =V, +V, = Aexp(j2aft + ) + V, ,

where f. is the carrier frequency and 8 ~ U[0,2x]. The noise phasor, V;,, can be generated from a
unit mean exponential distribution, leading to Gaussian noise, in-phase and quadrature components
nr and nq, of zero mean and variance 62 = 1/2. The envelope squared, z, [10, page 112] has the
PDF ,

p(z) = 2}7exp [—5‘17—2(1 + Az)] Io (AU—{E)
The amplitude of the sine wave, A, is scaled to the desired signal-to-noise-ratio (SNR), i.e. the
magnitude of V, is \/Im, where R is the peak-to-peak SNR. For Swerling 0, R is a constant. For
Swerling 1 and 2, it is associated with a Rayleigh variable, i.e. R is exponentially distributed with
mean R, the mean peak-to-peak SNR. For Swerling 3 and 4, R is associated with the one-dominant-
plus-Rayleigh distribution (Ao = (3R/4)!/2, see (1} ).

The method works well for all Swerling cases, and even improves the accuracy of the con-
ventional Monte Carlo method that was illustrated in Fig. 2.4. Note that for Swerling’s 0,1,2 and
3 cases, only 10,000 samples and 500 bins were required, as opposed to 100,000 samples for the
conventional Monte Carlo method. However, the Swerling 4 case, even with importance sampling,
did require 100,000 samples and 2,000 bins. Small values for the modifying parameters were ade-

quate for all cases (1 < Z,, < 2). With larger values, the importance sampling CDF complement,
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Q(w) (Fig. 2.7), is seen to be stepwise rough, even with a small Z,,. In this regard, it is similar to
Mitchell’s example (6) mentioned earlier. The way to reduce the number of samples for case 4, is to

increase both the bin size and the ensemble size, as was successfully done here.

2.3 Summary

In this section, the objective was to investigate and explore techniques for estimating the probability
of detection for Swerling targets. It is desirable that the methodology developed should be able to
handle, with relative ease, an arbitrary noise background and arbitrary probability densities for the
signals. The known case of classic fixed threshold detection [1] is used as the comparison standard.
The results of this investigation are:

1. The analytical method of residues works adequately for Swerling I-IV. It is less accurate for
Swerling 0 and implementation is likely to be extremely complex for more complicated signal
and noise PDF’s (peak detection in K-distributed clutter). Therefore it is not pursued further,
except as a conveniently fast way of checking different detection algorithms on the known white
noise case.

2. The numerical FFT technique is of more general scope, capable of handling arbitrary PDF’s.
It is also very simple, in principle, to implement. However, for fluctuating targets, where Ris a
random variable, the numerical integrations involved are computationally extremely intensive.
In addition, non-negligible numerical errors accumulate for lower SNR values. As such, it is of
limited scope.

3. The Monte Carlo approach is the method of choice. The conventional implementation is very
simple in concept, vsually following the same patterns of operations as the hardware signal
processing. As such, it is capable of handling arbitrary signal and noise backgrounds. To ease
the computational burden for low-probability events, impcrtance sampling may also be applied.
Note that, contrary to the conventional Monte Carlo method, the importance sampling Monte
Carlo method deals directly with the matched filter outputs instead of estimating them with

a correlator receiver structure. This makes software coding much simpler to implement.

The Monte Carlo method, with importance sampling when appropriate, is the technique

used in the following investigation.
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Figure 2.6: An example of conventional and importance sampling. Solid lines refer to importance
sampling, optimized for Q(Y) = 10~° with Z,, = 4.7 and dashed lines to conventional sampling.
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Figure 2.7: The cumulative distribution function complement, Q(Y'), for Swerling 3 and 4, N = 10,
R = 0 dB, with conventional (dashed) and importance sampling (solid), with Z, = 1 and 1.5
respectively. Note the behaviour for Swerling 4. By increasing the sample size from 104 to 10° and
the bin size from 500 to 2,000, the “staircase” for Swerling 4 becomes as smooth as for Swerling 3.
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Peak detection in white noise

In peak detection, we consider a set of N x m independent samples. We extract the peak value
from each consecutive subset of m samples, collapsing the N x m samples into N. The PDF of the
collapsed samples, p(m)(z), is that of the mth order statistic [5, page 175]

P(m)(z) = mF Y (z)pe(2)

where F, and p, are the CDF and PDF, of the original samples, respectively.
In order to analytically estimate the false alarm thresholds for a single observation (N = 1)
in white noise, the PDF and CDF of the original samples are defined as

p(z;0)=e"" forz>0

and .
Fe(z;0) =/ etdt=1-¢"% forz>0 ,
0

respectively. The mth order statistic PDF therefore becomes
pm)(2;0) = m(1 — e~%)""1e=" z2>0

It is now straightforward to evaluate the CDF complement

m-~1
Q) = e (™1 exp(=(k+1)y]
w=m> (") 28

and the exact false alarm thresholds

Tra = —In (1 - /1 Pm)

for N = 1. The latter can be used to validate the Importance Sampling, IS, thresholds for N = 1
(Table 3.2), and provide confidence in the results for N > 1, where IS is the only feasible method.
In Figs. 3.1-3.2, we see the estimated Q(y)’s for both conventional and importance sampling Monte

18
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Carlo. For comparison, the case for m = 1, corresponding to no peak detection, is included in the
figure.

Figs. 3.3 - 3.6 show the peak detection, Pp’s, vs the peak SNR, R. For comparison, the
corresponding Pp’s for classic fixed threshold detection, for N x m and N integrated pulses, are also
displayed.
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Table 3.1: Classic fixed threshold method false alarm thresholds, Tr4, for various values of n’,
computed with the residue (R), the FFT (F) and the Monte Carlo (MC) method. The size of the
FFT is 8192 for the F(N = 1) column and 16384 for the F(N = 10) column, and the maximum upper
bound used in the integration is uy = nFFT x Az. The MC method uses importance sampling on
exponentially distributed variables, with Z,, = 10Z and Z,, = 4% for the two columns respectively,
where £ = 1 is the mean of the unmodified exponential distribution.

" |[R(IN=D]|R(N=10)][F(N=1)]F(N=10) | MC(N=1) | MC (N = 10)
10 2.669 15.017 2.660 15.046 2.690 15.009
108 7.274 23.238 7.274 23.253 7.271 23.224
108 | 14.182 33.208 14.182 33.216 14.168 33.119
10° | 18.787 39.271 18.787 39.278 18.787 39.288
1010 | 23.392 45.084 23.392 45.090 23.350 45.090

Table 3.2. Peak detection method false alarm thresholds, Tr,, for various values of n’, computed
with the Monte Carlo (MC) method with importance sampling. For comparison, the analytically
derived values (A) for N =1 are given as well.

N=1 N=10

! m=5 m=10 m=5|m=10
A MC A MC MC MC
10 | 4.250 | 4.238 | 4.940 | 4.912 | 28.718 | 35.277 |
103 | 8.884 | 8.877 | 9.577 | 9.621 | 37.499 | 44.041
108 | 15.792 | 15.660 | 16.485 | 15.699 | 47.699 | 53.657
108 | 20.397 | 20.338 | 21.090 | 20.939 | 53.899 | 60.197
101° | 25.002 | 24.913 | 25.695 | 24.663 | 59.401 | 64.542
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Figure 3.1: The cumuative distribution function complements, Q(Y'), for the noise-only case in
peak detection, for N = 1. The top left graph displays the analytical Q(Y)’s. The top right
graph displays the case m = 1; analytical formula (solid line); importance sampling (dashed line);
conventional sampling (dotted line). Note that conventional sampling ends at Q(Y) ~ 10~ since
the ensemble size is 104. The bottom graphs follow the same conventions as the top right graph, for
the cases m = 5 and m = 10. These curves are used to derive the false alarm thresholds for various

m.
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Figure 3.2: The cumulative distribution function complements, Q(Y), for the noise-only case in peak
detection, for N = 10. The dashed line corresponds to conventional sampling; importance sampling
is represented by the solid line. These curves are used to derive the false alarm thresholds for various
m. This is done by first choosing the desired Pr4 on the vertical Q(Y) axis and then reading the
corresponding Tr4 on the Y axis.
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Figure 3.3: Probabilities of detection for n’ = 10. The solid curve is for N = 1, m = 10 peak
detection, and the dashed curves are for N = 10 (upper) and N = 1 (lower) classic fixed threshold
detection, respectively. At Pp = 0.5, the loss for the peak detected method vs the optimum N x m
is about 2.5 dB or less.
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Figure 3.4: Probabilities of detection for n’ = 10. The solid curve is for N = 10, m = 5 peak
detection, and the dashed curves are for N = 50 (upper) and N = 10 (lower) classic fixed threshold
detection, respectively. At Pp = 0.5, the loss for the peak detected method vs the optimum N x m
is about 1 dB or less.
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Figure 3.5: Probabilities of detection for n’ = 10°. The solid curve is for N = 1, m = 10 peak
detection, and the dashed curves are for N = 10 (upper) and N = 1 (lower) classic fixed threshold
detection, respectively. At Pp = 0.5, the loss for the peak detected method vs the optimum N x m
is about 5.5 dB or less.
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Figure 3.6: Probabilities of detection for n’ = 10%. The solid curve is for N = 10, m = 5 peak
detection, and the dashed curves are for N = 50 (upper) and N = 10 (lower) classic fixed threshold
detection, respectively. At Pp = 0.5, the loss for the peak detected method vs the optimum N x m
is about 2 dB or less.
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Conclusions and future work

At this point, following the peak detection investigation, the following progress has been made:

¢ The methodology for evaluating peak detection performance of arbitrary signal and noise/clutter

structures has been developed. The method that was chosen is the Monte Carlo method with

importance sampling.

Peak detection, Pp’s vs R, curves have been computed for all Swerling type targets in a white
noise background, for certain cases of the parameters N, m and n’. These have been compared
to classic threshold detection performance and, as expected, there was a loss of the order of a

few dB’s, that depends on the choice of the above parameters.

The work that remains to be done is:

. To complete the investigation of peak detection performance in a white noise background for

a specific radar system, e.g. a radar suitable for periscope detection [8]. The effects of band-
width reduction and collapsing losses will be examined and the overall detection performance
established.

. The noise/clutter background will be extended to cover K-distributed clutter. This is the

commonly accepted model used to describe sea clutter statistics.

. Finally, noise/clutter correlation aspects will be investigated, together with the design of the

proper prewhitening filters.
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Appendix A

Residue method

The residue method, as developed by Hou et al. [2], leads to exact formulae, in a finite sum form
and with no special functions, for evaluating Pr4 and Pp.
Given the test statistic, z, with PDF, p(z), they extend the characteristic function of z (see

i), )
)= [ soenis

by replacing the imaginary variable jw with the complex variable —z. The modified characteris-
tic function is called the Moment Generating Function, MGF, in essence a double-sided Laplace
transform:

C(z) = /_ Z plz)e*"dz

The residue theorem can then be used to compute
p(z) = Eres[C(z)e”;zk] ,
k

where the poles z; are in the left half-plane when z > 0, and in the right half-plane when z < 0.
W:th this approach,

-] bz
/ p(z)dz = - Z ra[C(z)e?; %]
T k

where T > 0 and z > 0, and

oo Traz
Ppa = / p(z;0)dy = - Z ra[Co(z)e s2k0]
Tra kO z
oo eTraz
Pp = p(z; R)ydz = - Zres[C1(Z) ize]
Tra k1 z

where zpo and z;; are the respective poles of Co(z) and C)(z) lying in the left half-plane, and R is
the peak SNR.
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The x? family of fluctuating targets have the PDF

1 (K\* . -
WR) = s (§) R< em(-KR/R)

where R is the average of R over target fluctuation and K > 0 is a fluctuation parameter. The
values K = 1,N,2,2N and K = oo correspond to the Swerling cases LILIILIV and 0, respectively.

A.1 Evaluating Pr4

The MGF for the random variable z; (single observation) for the case of noise only, is

o0 o0
Ci(z) = / p(zi;0)e™ " idz; = /o e~ (4% g, = &;
-00

The MGF for z (N observations) is

C(z)= IIC(Z) m‘

and the threshold, Tr4, for a given probability of false alarm, can be computed from!

] Z F‘AexP( Tra)

n=0

TpAz N-1
Pra = —res [C(z) ] = —(N i 1! zglfl :zlv-x [(" + I)Nc(z)e

In the present report, the numerical evaluation of the root of

f(Tra) = Z BacxelTrd) _p,,

n=0

is done with the bisection method [6], double precision arithmetic and a relative accuracy of 10~!2.

A.2 Evaluating Pp

When a target is present, R # 0, and the MGF for the nonfluctuating case (Swerling 0) is?

1 NR:z
em= e [-are s

1Use is made of the formula

LN-T [O(z)e i= Z ( n l) [M—_l:;.-“(z)] [dz—N-_fe ]
n=0 M

2Use is made of [7, page 306]

= 1 3
p(—bz) ], dr = — ( )
‘/; zex 22} Ig(cz) B\
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The unconditional MGF for the fluctuating case is

(1+z)K-N .
0+ + NR2K)Z K

Clz) = / " C:IR)P(R)AR =
0

For 1 < K < N, there is an (N — K)th order pole at z; = —1 and a Kth order pole at
23 = —F, where F = 1/(1 + NR/2K), so that

NE (N =n=2\ (-F)X exp(-T, TE
o=y ( Ko )( e “)g ot

n=0

=) (N -—m—-2\ (~F)K-m-1 (FT;-A)
¥ (N K—l) gR=met XP(=FTra )I_ZO

Q

with G =1~ F. For 1 € N < K, there is only a Kth order pole at z = —F and the detection
probability becomes

K-1 _ S
Po= & (i) G em(-rmrg 3 A

man—1 \K -m—1 =0

Using the above relations, the classic Swerling curves can be computed in a straightforward
manner. Note, however, that large factorials can overwhelm the capability of the computer, especially
for the Swerling 0 case, where K = co. For low values of N, putting K = 10N is usually sufficient.
Since we are mostly interested in ratios of factorials, computer limitations are also reduced by

using InT', for which efficient code exists in [6], and exploiting the relation of the gamma function
I(z)=(z-1.




Appendix B

The FFT method

An alternative approach for evaluating the integrals for Pp4 and Pp is to do it directly, with FFT's.
The main steps in this procedure are: )

1. Prepare a table of values for the individual PDF, p(z;; R).

2. Use the FFT to transform to the frequency domain. This is equivalent to computing the
characteristic function of the random variable z;.

3. Raise the Fourier transformed sequence to the power N to take into account the integration
of N observations. The PDF of the sum of a sequence of random variables is the convolution
of the individual PDF’s. This convolution is transformed to multiplication in the frequency

domain.

4. Compute the inverse FFT of the obtained result. This should be a table of values of the sum
PDF, p(z; R), where z = Z:'A;l z;.

5. Use spline interpolation to find function values at arbitrary points in the region of interest,
allowing the numerical computation of the threshold root and the integrals for Pr4 and Pp.

There is a trade-off here: the FFT sampling has to be fine enough, and the sample size
large enough, to adequately describe the relevant functions in the domain of interest. This makes
necessary the careful checking of the PDF’s involved, i.e. there is a need to make sure that the area
under the PDF curve is one and that no aliasing occurs to distort the PDF. For large values of N,
the size of the FFT can become prohibitively large.

When we apply this technique to the known case of classic fixed threshold detection for all
Swerling type targets, we have the situation described below.
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B.1 Evaluating Pry4

The probability of false alarm, Pr 4, for the non-fluctuating target, is identical in all Swerling cases,
since the PDF for the noise-only case is unaffected by assumptions about the signal. The individual
PDF for a single observation is:

exp(—z;) z; 20
zi) = , B.1
plz:) { : b (B.1)
while that for N observations is:
zN-!exp(—z)/(N - 1)! >0
= - B.2
p(z) { : o (B.2)

Fig. B.1 shows the results of the FFT method applied to (B.1). The comparison with the
exact PDF (B.2), for the two cases shown, is almost exact, except for the overshoot around the peak.
This suggests that the numerical quadrature should be performed on the right tail of the PDF with
the integration limits from an unknown threshold to a maximum upper bound. Table 3.1 compares
the residue approach thresholds with the FFT derived ones. As can be seen, agreement is excellent.

B.2 Evaluating Pp

For the evaluation of Pp, the FFT method fails to perform in a completely satisfactory manner.
Even though there is no problem in computing PDF’s for an arbitrary peak signal-to-noise ratio R,
the PDF’s are conditional upon R, which is now a random variable that must be integrated out.
If one places the conditional PDF values in the columns of an array, the rows, as functions of R,
must be multiplied by the PDF of R and integrated. A 10,000 x 10,000 array was used for Fig.
B.2 (requiring a look-up table of several Mbytes) and as can be seen, the numerical errors that

accumulate for low SNR’s are too large to be ignored.
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Figure B.1: Comparison of the exact, noise-only PDF (solid line) for arbitrary N, with the FFT
derived one, based on N = 1 (dashed line). Two cases are shown, N = 10 and N = 20. The FFT
step is Az =5 x 1073 for both cases, and the FFT size is 8192 and 16384, respectively. In general,
a larger FFT size leads to less overshoot. However, the discrepancy is less important in the tails,
where the match between the two curves is almost exact.
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Figure B.2: This is the “death” blow for the FFT method for Swerling I to IV. For lower SNR values,
the numerical errors accumulated in the integrations involved can no longer be ignored. (Solid curves
are computed with the FFT method, dashed curves with the residue).




Appendix C

Generation of Rayleigh and
1-dominant-plus-Rayleigh random

variables

The Rayleigh PDF is
A

AZ
PA) = gz xp (“ﬂg)

for A > 0. Rayleigh random variates can be generated by

A=\[z}+2} ,

where z; and z; are zero-mean Gaussian random variables with root variance ¢ = Ao. They can

also be generated from an exponential distribution with mean 2A3 as

A=4/(-nu)24} ,
where u ~ U[0, 1].

The one-dominant-plus-Rayleigh PDF is
943 3A?
#o = e (-37)
for A > 0 and they can be generated as follows: Using the transformation method in (6, pages
200-201], a random variable u ~ U[0, 1] can be transformed to a one-dominant-plus-Rayleigh z by
solving
e“"(l +azt)=1-u

for z, where a = 3/(2A2). This can be put in the form f(z) = z and solved iteratively, i.e.
( 1+ z)
In =z ,
l1-u
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where z = az?. The histogram from 1000 random variables generated this way, together with the

analytical PDF for Aq = 2, are shown in Fig. C.1. The application of importance sampling is shown

in Fig. C.2, where the modifying parameter is now Ap.
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Figure C.1: The histogram from 1000 one-dominant-plus-Rayleigh random variables, together with
the analytical PDF, for Aq = 2.
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Figure C.2: The cumulative distribution function complement Q(Y) for the one-dominant-plus-
Rayleigh random variable, with conventional (dashed) and importance sampling (solid). 10,000
samples and 500 bins were used with Z,, = 5 for importance sampling.
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