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Chapter 1 Objectives

1.1 OVERVIEW
We discuss our ongoing experience in the development of tools for research in materials science
and engineering. A measurable quantity of progress has been made during this SBIR 02 activity,
but much remains to be accomplished before we can say that a "complete" set of materials
discovery tools has been built. In our discussions here, it will be revealed that we have looked at
several important aspects of materials. Key is the notion that we did not restrict our tool building
to structural materials, but rather we branched out to explore biological materials as well. We
looked also into aspects of design, with design of molecules a target We see the tools we are
building as being appropriate to the entire materials science and engineering activities, starting
from concept discovery and ending with product manufacturing and suppo

This has been and continues to be a three-part project: (1) enhancing generalized discovery tools
on our existing computer platform, (2) building specialized discovery tools, and (3) applying
generalized and specialized discovery tools to specific materials-related projects including protein
studies and crystallography.

During the work, we have had the opportunity to incorporate some of our other activities,
including studies we have done in biomedical fields using our discovery system. We have also
folded in some of our external work in design. Portions of this other work are included in this
report because it serves to illustrate key points we wish to make. This report includes portions of
contributions made by our consultants, W.B. Dress and A.G. Jackson.

We begin our report with a review of the philosophical aspects of what we call compuarional
ltheoryformation. We then present the computer tool that has been extended as part of this work,

the goal of which is to address the issues brought up in the first section. Finally, the three
different applications mentioned above are introduced.

1.2 DISCOVERY
"There is nothing more practical than a good theory."

Hilbert

1.2.1 Philosophical Background: What Is Science?

The ideas we wish to explore and the paths we wish to follow concern the world of scientific
discovery and how such high-level human activities might be first simulated and then aided by
computer-based tools. The goal is a tool-building one, having immediate utility for selected
research programs, and long-term benefit for general scientific activities. This may be viewed as _-
a next-generation "intelligence amplifier" which Ashby hinted at nearly forty years ago [Ashby,
1960].

To clearly present our case, we need to say a few words about science., the task and tools of 0
science, and its relationship to the vast intellectual structure that make up its formal tools and
color how we perceive and think about the world. For example, is the study of molecular "
structure really the study of molecules? Or is it rather the study of the recorded behavior of
molecules as reported in the literature? Or is it the study of methods successfully used to study
molecules? What level of abstraction do we deal with? When. are we doing science and when are
we studying how science is done? Codes
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These are not meaningless questions as their answers will determine how we go about finding
new theories, how we go about verifying them, and how ensuing predictions relate to reality and
hence new ideas, methods, and products.

-1.2L11 Popper's Three Worlds

As a point of departure, imagine that reality consists of three distinct worlds as illustrated in
figure 1-1. Following Karl Popper (Popper and Eccles, 1977], we take these worlds to be

1. The world of entities having existence: naturally occurring entities and human artifacts. Examples
include molecules, automobiles, animals, and people.

2. The world of mental states and activities not directly perceptile as entities except by ourselves:
yet we know that they must exist.

3. The world of mental constructs (whether correct" or not). Here, we find polilical theories, plans of
action, subjects of contermptation, and scientific theories.

Figure 1-1: Possibke relatronshsps arong Poppers three worlds.

Note that this scheme is a convenience for our discourse, and not meant to be a philosophical

position to be debated or defended. It merely serves as a point of departure. We simply wish to
talk about reality, its reflection in the modeling relation, and the several levels of models needed
to describe that reality. Thus, the view of science as an activity of World 1 entities building
World 3 cons�ucts by means of World 2 acvities for elucidating World 1 relationships is the

real subject of our presentation.

We are not going to discuss the couplings between the worlds, except to note that they must
exist.

1.2.1.2 Dynamical Systems View

We will assume the sufficiency of the Newtonian Paradigm that generalized forces, coordinates,
and velocities are all that are necessary to describe the universe to any degree of accuracy. The
higher derivatives are not needed. Thus, the model is

*=fix, a, t]
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where x represents the generalized coordinates (i.e., coordinates and velocities in particle descrip-
tion), a represents any parameters (e.g., masses), t represents the time parameter, and dot denotes
time derivative. The generalized coordinates are observables of the system and their range
comprises the state space of the system. f is a vector of real-valued functions on the state space,
and any other observable of the system is represented by some f This is the most general
dynamical system that we will consider, in fact, this viewpoint may be said to comprise what we
mean by "science." Note that all of physics (even quantum mechanics), chemistry, and much of
biology fits into this scheme. The proof is the unparalleled success of the scientific method over
the last three centuries and the explosion in activity of the latter half of this one.

The study of dynamical systems then becomes a study of points and trajectories in the state
space. Topology may also be studied when ensembles of state-space points are important (as in
statistical mechanics).

Any of the standard models of science can be cast in the dynamical systems formalism, and the
difference-equation representation can serve as a computationally efficient model of the formal
dynamical system. We will call on this form of dynamical systems modeling exclusively when
we explore the construction of models from collections of finite-state automata.

1.2.1.3 Doing Science: The Modeling Relation

The main activity of science is the search for correct and useful models of natural systems. Once
a model has been established, it becomes a tool for further scientific exploration and discovery.
Along the way, any given model will be revised, refined, and perhaps discarded. This is the
normal progression of science.

As depicted in figure 1-2, a natural system is encoded into a formal system (the model) by means
of observations and measurements. Inferences are made on the model using the formal rules
(e.g., mathematics). Results are then decoded into predictions on the natural system.

Naua Foma of
SytmSystem inference

Figure 1-2: Schematic of the general modeling relation (after Rosen).

If we wish to study science with the goal of providing a set of advanced simulation tools for
aiding the scientist in his quest, we must first study and understand the modeling relation. We
will show iater that this study must be expanded to include a model of the scientist and his/her
activities as well as a model of the scientific theories and process.

1.2..13.1 Theoretical and Empirical Models

The standard model of science is theoretical in the sense that the model builder relies on a
well-known theory of measurement and observation and uses standard mathematical techniques
to describe and codify the results of the measurements. The next stages are likewise theoretically
based as the scientist attempts to construct a deductive system whose goal is to provide predictions
of behaviors in World 1.
Empirical models may result during the course of a laboratory experiment wherein certain parts

and functions of the natural system under study are replaced by contrivances or held fixed while
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other parts are observed and measured under controlled constraints. This tight interaction between

theory and experiment is where most of today's science takes place.

12.1.3.2 Computational Models

It is only recently that the third type of model became possible. A computational model is a
novel mixture of the theoretical and empirical models. It is theoretical in that it is based on the
formal notions of mathematics and logic, and empirical in that the computation must actually be
carried out in many cases. Here, we must distinguish computation that simulates a system under
study from calculation that obtains a solution to a differential equation, for example. The results
of calculations have been used for centuries prior to the invention of the computer, but complex
simulations of certain systems need the computer to become feasible. After all, the closed-form
or a numerical function as an answer is the exception. Certain simulations are then beyond the
reach of the "standard" modeling techniques of differential equations and can only be carried out
on a suitable simulator (e.g., a digital computer).

An example of a computational model that rarely has a solution obtainable by calculations in the
usual sense is provided by boolean switching networks. Theory shows that limit cycles are to be
expected, but which limit cycles under which initial conditions can only be determined by a
computational model once a certain complexity of the network is surpassed. Such switching
networks can provide a model of genetic behavior during organism growth (the differentiation
process). The operon model, in particular, is amenable to the switching-network description. To
obtain answers to questions of evolutionary behavior requires that the system be simulated since
no known short-cut exists. This point has been formally discussed by Wolfram [1988].

L2.1.4 The Simulated Laboratory

Doing science by computer must ultimately and intimately involve an integrated cybernetic
system designing and conducting actual experiments in a real-world (World 1) laboratory. The
system will be an extension of the human scientist-a cybernetic "graduate student" with instant
access to sophisticated scientific databases, a suite of standard scientific methods, and a repertoire
of laboratory techniques. Such a process requires a sophisticated set of effectors and affectors
that we do not yet possess. The next best thing is to provide a simulated laboratory.

1.2.2 The Scientist - Model Relation

Since we effectively have all three worlds at our disposal, we can look at and think about the
relationship between the scientist and his world of study. This is exactly the system we need to
study and model to achieve our goal of building a tool for doing science by computer. To carry
out such an ambitious program, we will need to model the scientist (no mean task) and the
systems under study (much easier, but certainly non- trivial).

To model the systems under study requires that we must obtain effective models of scientific
models of natural systems. We are necessarily one step removed from the realm of the natural or
physical scientist and must remain aware of that fact in all that follows. To forget will cause us to
confuse our models and constructs with first-order scientific theories, when they are theories of
theories and theories of behavior. In effect, what we are doing is studying relationships that map
World 3 onto World 3, whereas the (first-order) scientist is studying relationships mapping
World I onto World 1 by means of constructs in World 3. This activity is illustrated in figure
1-3, which shows how the scientist builds entities in World 3 from observations (World 2
entities) of World I behaviors.

ThirkAlong Software, Inc. Phase 2 rual Report peg. 1-4



World 2

/ I
-- " /

TheoryK

c World 1 World 3

Figure 1-3: Schematic representation of the entities and relationshis invlved in the discovery process

The only sure guide we have in this undertaking is the successful models constructed by first-order
science. These must be our touchstone to the utility of what we wish to accomplish.

1.2.2.1 Modeling The Scientist

This difficult and fascinating subject is at the core of a following discussion of the discovery
system tools we call The Scholar's Companion (TSC): how to model scientific discovery. Note
that numerous authors have been exploring such ideas over the last decade. Notable among such
undertakings axe studies in qualitative physics [Bobrow, 1985] and simulation of scientific discovery
on specially crafted data sets [Langley, 1987; Thagard, 1988]. The goal of TSC is to provide the
user with a functional model of the scientist-a scientist-computer that can make hypotheses and
perform useful "computer" work such as database manipulation and certain calculations, as well
as constucting and testing reasonable models germane to the problems posed by the human
scientiS-

Thin)'Along software, Inc. Phase 2 Final Report Page 1-5



World 2

/ I

P Theory

Pr...ctin•
Figure 1-4: Abstraction of entities and relationships comprising the scientist and scientific actiities.

Figure 1-4 represents that portion of the scientific discovery process that is to be modeled by
TSC. This shows what The Scholar's Companion needs to model at its core. (The left dashed
arrow represents some portion of scientific observations required to construct a theory or scientific
model. Note that World 1 entities such as the scientist himself or the actual systems under study
are not required for this abstraction.) Previous work, cited above, has concentrated only on the
encoding-decoding relationships (labeled "Theory" and "Prediction" in the figure), and that on
rather limited and contrived data sets. Our discussion in this presentation, based on the mappings
among the three worlds, clearly shows that additional modeling is needed. Not only must some
of the World 2 entities be taken into account, but the interfaces between World I and 2 and
between World 2 and 3 are essential to any successful machine representation of scientific
activity. Classic artificial intelligence (Al) has had some success in modeling perceptions and
thought processes; much of the work discussed in Langley [1987] involves these constructs. The
lower-level World 2 entities and the World 1-World 2 interface remain largely unexplored
areas. As yet, no comprehensive system as depicted in figure 1-4 has been attempted.

1.2.2.2 Modeling The Model

Our concern in the remainder of this section will be with the computational models representing
the natural system under study. We will need to look at the interface between these systems and
the observing system, as well as possible formalisms for constructing the model systems. Figure
1-5 illustrates the relationships between the scientific discovery system and the scientist's model
of the natural system. In the figure, the scientific theory is represented in the computational
system by the Computational Model module and interacts with it by models of the encoding and
decoding processes.

ThinklMong Softuare, Inc. Phase 2 Final .Aport paqg 1-6



iS Interface

Figure 1-5: A modelng view of a computer-based system for noing science.

The relatonships among the model, the theory, and the user are manifested in the interface

between certain computer programs. This interface primarily consists of "measures of performance"
of the computational model and interpretations of these measures analogous to the of affectors
discussed above. An example would be a set of numbers returned to TSC representing a concen-
tration of a certain molecular species that was the subject of the requested model. The effectors
consist of a grammar allowing TSC to specify types of models to be created in the Computational
Model module. This interface is shown in figure 1-5 as the "TSC Interface."

A realization of these ideas is idealized in figure 1-6. Our 02 project has been to develop tools
suggested in figure 1-6, and apply those tools to specific problems.

Environment

TSC Simulator

Figure 1-6: A realization of a toolbox for scientific and engineering discovery.

1.3 TOOLS
We implement the philosophical notions discussed above in a toolbox, introduced above, called

ThinkA.long Software, Inc. Phane 2 Final Report page I-7



The Scholar's Companion (TSC). TSC is being developed to provide scientists and engineers
with modeling, simulation, control, and discovery tools.

1.3.1 Qualitative Modeling

Tool building has been the main thrust of this 02 activity. Most important has been the refinement
of our qualitative modeling tools, called QPD [Wood and Park, 1990]. Modeling, as we shall see,
forms the backbone of most of the materials discovery activities we pursue. We call the internal
structure of a qualitative model an envisionment.

A simple envisionment (discussed in detail in the next chapter) from the polymer curing domain
that is illustrated in figure 1-7. The initial conditions are that a polymer is contained in an
autoclave and heat is applied by the autoclave heater. The polymer eventually begins its condensation
curing reaction at which point the IF-THEN rules surgz;st envistozirng two different outcomes of
the process: a cured component and a burnt component.

Figure 1.7. A sinCle envisionmenr.

Model building provides the opportunity to explore the possible outcomes of a physical pr'OCess
given some initial conditions. Process control discovery then involves finding a process algorithm
which encourages the desirable outcome and discourages the undesirable outcome.t1.3.2 TSCs Exploratory Behaviors

We are able to take advantage of the model-building behaviors by asking "what if" questions.
Such questions are posed in goal-onented statements we give TSC. There are rwc xploratosy
behaviors we are developing and we discuss here. They are case-based reasoning a.• analogy,

Fiurand directed eAolution.

1.3.2.1 Case-based Reasoning and Analogy
Case-based reasoning involves searching a library database of cases similar to the case represented
by the qualitative model TSC is presensy considering. This searsh may find one or several cases
in which poruons of a case may, by analogy, be found to apply to the model present.y being

considered.

1.3.2.2 Directed Evolution

The primary tool of discoveny n our work is an exploratory machine leaning technique we call
directed evolution. We have applied directed evolution in three different ways during this work:

(1) geneuic algorithm mutation to IF-THEN rules used to predict protein structures, (2) geneticalgorithm mutation to isp-ike programs being designed to predict protein structure, and (3)
heuristic mutations to design rules. The general approach to directed evolution is select some
member(s) of a universe of rules or objects in a knowledge tase, clone and mutate, then study
the results.

Thepiomna Sootware. Inc. Phan 2 Fxnal raepotor paqe w -c



1.3.3 Rough Sets

Dexermination of the rel,'ive importance of pieces of information and the refinement of knowledge
to dense, accurate representation is at the core of much Al research. A relatively new approach to
the analysis of large data sets is Rough Set Theory [Ziarko, 1989]. We have implemented a
version of Rough Set Theory in the TSC toolbox, and have begun to apply it to the problem of
protein structure analysis.

1.3.4 Nearest Neighbor Analysis

The study of molecule structures requires the ability to perform pattern recognition on sequences
of components of the structure. Amino acid sequences are found in proteins, and the recognition
of sequences which result in different structures such as helices and beta sheets is germane to the
prediction of protein structures. We have implemented a variant of the nearest neighbor algorithm
in the TSC toolbox, and have tested it on a variety of proteins of known conformation.

1.4 APPLICATIONS - PROTEINS

Nearly all of our tool-building activities in this 02 project have been directed specifically at the
understanding of protein structures. Our task was to select some activity in the materials domain
and apply our tool-building skills to that activity; our sponsors requested that we focus our
efforts on protein structures.

Proteins are the building blocks of life itself, and it turns out these tiny molecules have many
properties that are interesting and potentially useful in applications other than living tissue. Fcr
example, the electro-optical properties of specific protein swactures suggest applications in optical
filters. The study of these properties is of current interest to our sponsors, and th' tool building of
this 02 activity supports the sponsor's work. The overall flow of protein analysis starts with the
analysis of amino acid sequences, predicts the final protein structure, and ultimately designs
proteins with specific desired structures. These structures may be useful in the electro-optical
domain, and they may 4so be useful in the biotechnology domain, as new disease-fighting drugs,
for example.

1.4.1 Prediction

Prediction of the secondary structure of a new sequence is performed by any of a variety of
learning techniques. From the literature. approaches to the prediction of protein secondary structure
have included the genetic algorithm (Linger and Moult, 1993], our own approach [LeClair et al.,
1992]. neural nets [Qian and Sejnowski, 1988], (Holley and Karplus, 1989], and statistical
approaches which include conformational propensity parameters [Chou and Fasman, 1978].

We have explored two different approaches to the genetic algorithm, and have developed tools to
perform studies based on an algorithm known as the nearest neighbor algorithm [Cost and
Salzberg, 1993], [Salzberg and Cost, 1992].

1.4.2 Design

How amiuno acid sequences specify a protein's three-dimensional structure remains unanswered
[Derado, et al., 1989]. One approach to gaining understanding is de novo design of io1el
proteins. This approach has long been useful in designing small molecules. We have extended
our protein study tools to use the process of analogy and analysis of proteins to design an
experimental protein structure.

Thu.nkAlotq $oft1wazmq, Ine. P2•aa. 2 FiraI RI%*rt paq. 1-9



1.5 APPLICATIONS - CRYSTALLOGRAPHY

Synthesis of materials is a very old problem, as is p.rocessing them to produce a tool or. an object
of art. Although the limits of our knowledge about materials has increased tremendously in the
last century, our means for exploring the possibilities of designing mataeials is only in the early
stages of development.

Examples of materials problems of great interest are those associated with specific properties of
biopolymers, semiconductors, and intermetallics. Optical properties are of particular interest for
polymers and semiconductors, and strength and ductility are concerns for intermetallics.

The transmission electron microscope (TEM) is an importart tool associated with the study of
materials properties. We have explored the coupling of our discovery tools to the control of
experiments with a TEM and to automating detection of properties of materials with crystalline
structur•s.
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Chapter 2 Tool Building
The technical approach applied in ThinkAlong's research involves the coupling of computational
tools to problems involving exploration of datasets. The core of our efforts centers around an
artificial intelligence tool we developed in earlier work, in development since the mid-1980s,
called The Scholar's Companion (TSC), as introduced in chapter 1. Its hardware and software
architectures are discussed ti further detail below.

In general, TSC i.. created to serve the user with several behaviors. These include model building
by applying spec&E-c knowledge to some given initial conditions; general purpose encyclopedia
behaviors such as using internal knowledge to answer user queries; exploratory behaviors including
directed evolution, genetic programming, hypothesis formation, and assisting the user in creative
design tasks; and data evaluation tools including rough set analysis and nearest neighbor analysis.

These behaviors are discussed after the introduction to TSC.

2.1 THE SCHOLAR'S COMPANION

2.1.1 Architectural Overview

TSC is constructed as a message-based object-oriented system, the architecture of which is
illustrated in figure 2-1. The main data interaction with the system begins at the environment,
flowing through encod-ers• to a global message list. The knowledge base interacts with the global
messages, deleting old messages and writing new ones. Some of the new messages are decoded
and returned to the environment. This flow of information is an outgrowth of the "expert system"
approach to artificial intelligence. TSC adds a variety of learning technologies to the expert
system approach.

S~Learning

-:---• Environment

Figure 2-1: TSC Architecture.

TSC is intended to operate in networked computational environments, though it is suitable for
stand-alone desktop application as well. The network approach permits application of a variety
of simulation tools and large databases to the discovery process. This is illustrated in figure 2-2.
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Figure 2-2: TSC on a netwo*

Part of Al research centers around schemes for representing in a computer program the knowledge
we carry in our heads, i.e. World 2 models of World 1. Another part of that research looks for
algorithms which can apply the represented knowledge to some task. The following discussion of
TSC's learning behaviors considers knowledge as represented as "actors," their relationships and
states, and behaviors in some physical or chemical process.

TSC supports a knowledge base in a frame format. Frames represent concepts which include
actors, relations, states, rules of behavior and rules which represent physical and chemical processes-
Each frame is similar to a small relational database entry. For example, the following frame
(adapted from [Karp, 1992]) contains much of the data on a particular molecule. It is read by
forming "sentences" from its entries. For example, carbon monoxide belongs to all kingdoms.
We can also see from the last line that carbon monoxide is a compound.

c: carbon-monoxide
disploy-coords-Zd C(-0.77 0.0) Ce.77 0.0))
structure-bonds ((Z 1 3))
structure-atoms (o c)
priority 1
mesh-ids 'D1.1S4.328" "D1.655.498.185" CD002248"
kingdoms all
chemical-formula ((c 1) (o 1))
roots carbon
sources lhcsdb mlmavro
cas-registry-numbers "630-08-0"
molecular-weight 28.01
synonym CO
atom-charges ((2 -1) (1 1))
sub.of compound

2.1.2 The TSC Language: Statements

TSC writes messages for use internally, and for use in communication with the user. The syntax
of a typical TSC message is based on a sentence with a subject, predicate, and truth; a message
can also involve a sentence with a subject, predicate, object, and truth. Variables are words
which begin with an asterisk (*). These sentences are tead as illustrated:

( predicate ( subject ) truth )
e.g. ( ala ( Ox ) true )
( predicate ( subject object ) truth )
eg. ( abuts ( *x 'y ) true )

Actors are regarded as things which occupy space and have mass. Examples of statements TSC
can process about actors include:
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C thermal.ass ( body.01 ) true )
C heat.source ( autoclave.34 )true )
C b-cell ( b-cell.01 ) true )
C teaperature.sensor t 1 ) true )

Typical of the statements TSC can process about relationships include:
( hotter.than ( body.01 body.02 ) true )
( hotter.than ( autoclove.3Z body.01 ) true
C abuts ( body.01 body.OZ ) true )
C inside C t1 body.01 ) true )
C binds C b-cell.01 antigen.04 ) true )

Typical statements TSC can process about stales include:
( increasing C t1 ) true )
( increasing t :2 ) false )

2.1.3 The TSC Knowledge Base Structure: Taxonomy

"ITe entirety of the knowledge base is stored in the form of axonondes. A txonomy contains
information on a group of actors, the relationships they form with each other, and the states in
which they may deteced. A fragment of a taxonomic structure for the domain of immunology is
presented in figure 2-3. Here we illustrate structures related to a particular actwr in immunology,
the B-Cell. This cell may be detected as one of several subspecies, those behaving as activated,
and those behaving as natural killer cells. The B-Cell actor is mentioned in several process rules
and statements (as listed below), so the taxonomy includes this information.

Figure 2-3. A fragment of the B-el taxonoEy.

2.1.4 The TSC Knowledge: Rules

Physical and chemical processes (e.g. nucleation, evaporation, etc.) as well as TSC •behviors(
--- discussed below, e.g. pre~diction, design, etc.) are represented as IF-THE rules. A typical

structural prediction process rulek from our protein study exec-•ise is illustrated here:
c: OBS.1

worth 656
IF actors are ALA and GLU
AND ALA abuts GLU
THEN predict helical structure

A typical process rule from a biomrdical domain (immunology) looks somaeing like:

IFusuad in ar Englike fot fan rG dbility.
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C: ANTIGEN.BINDING. B
LEVEL BASIC
SUB.OF PHYS. PROCESS
INSTANCE.OF RULE
CONTEXT HUMAN. IMMUNOLOGY
IF.ACTORS C C ANTIGEN * *ANTIGEN ) TRUE )

C B-CELL C 'B-CELL ) TRUE ) )
IF.RELATES C C ABUTS C *B-CELL *ANTIGEN ) TRUE ) )
IF.NOT.RELATES C C BINDS ( 'B-CELL *ANTIGEN ) TRUE
THEN.RELATES ( ( BINDS C *B-CELL *ANTIGEN ) TRUE ) )

"This rule says that if you have a B-Celi abutting Antigen, the B-Celi then binds the Antigen.
Firing such rules is the process by which TSC builds a qualitative model of a process. We now
mm our discussion to these models.

2.2 MODEL BUILDING

Knowledge bases, as discussed earlier, include IF-THEN rules which describe physical processes,
and the taxonomic knowledge base which includes information on the actors, their relationships,
and their states. These knowledge base entries are then applied to the construction of a qualitative
model of some aspect of the domain represented by the knowledge base. The specific aspect of
the domain is constrained by an entry supplied by the user, the initial conditions. TSC "fires"
IF-THEN rules which the initial conditions enable, building an envisonment. A stylized
envisionment for the immunology knowledge base looks something like that of figure 2-4.

Figure 2-4: Imirune system enlvisionmenL

iAn envisionment is "grown" by TSC when some initial con~dions are provided Inital conditions
represent statements about the initial actors, their initial relationships, and their staring stares. A
set of initial conditions may be provided by the user, or it may be supplied by TSC as it generates
its own expe.riments. The notion of "growing" an envisionment follows on the observation that
the envisionment is a tree-structured dire cted 8raph, also called a digraph.
Directed graphs consist of nodes connected by arcs, which are represented by the arrows in the
figure, In our parlance, each node is called an episode, and eac.h episode represents the envisioned

new state of affairs in a process. Each episode is the result of a single process rule firing. Notice
that alternate branches of the tree are formed, as illustrated in figure 2-4. Alternate branches
mean that more than one process may occur given the same conditions.
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Qualitative models in TSC provide the structure of theories the TSC uses to explain and to
predict the outcomes of physical processes on given initial conditions. We illustrate this by
discussion of the reasoning process called abducdon, in which hypotheses may be formed from
the qualitative model to explain some observation.

If a small digraph made from the observation of a physical process can be "matched" to an
envisionment we can use abduction to hypothesize that the processes of the envisionment provide
a mechanism to explain the causal relationships. For example, the digraph in figure 2-5 can be
matched to a path in the envisionment in figure 2-4; thus we have reason to suspect that figure
2-4 describes a mechanism explaining figure 2-5.

Figure 2-5: Causal Dgrapih ExarnpW

Abduction in the context of TSC is a process of logic which relates consequences to their
candidate antecedents. That is, if we know that some consequent B follows from antecedent A,
and we observe B, then we can hypothesize that A is true. Specifically, applying abductive
inference, if we know that introduction of antigen into the immune system will lead to antibody
production via a mechanism that includes cytokine production (as in figure 2-4), and we "observe"
causal relationships between introduction of antigen, increasing cytoDkine, and increasing antibodies
(as in figure 2-5), then we hypothesize that the observed causality is explained by the known
mechanism.

Applying this reasoning in a situation where the digraph of observations is not found to match
the envisionment results in an important event in the use of TSC. an expecrzaonfailtre is said to
occur. Since the envisionment both explains and predicts, any time it is unable to explain or
predict observations, the resulting expectation failure causes TSC to begin a set of tasks to deal
with this new event.

Dealing with expectation failures evokes several behaviors in TSC. The initial behavior is to
alert the user, and describe the nature of the expectation failure. Initial TSC behaviors are then
guided by a diagnostic knowledge base which tries to determine if the expectation failure is
caused by, for example, a sensor failure. More advanced behaviors involve TSC's exploration
tools which allow it to conjecture the presence of an unknown (to the program) process which
may be involved in the observations.

Model building involves specification of the observables. These form the initial conditions of an
envisionmeCt. The envisionment then characterizes the linkages between the observables, which
TSC builds by firing process rules. Rule firing involves matching the "IF-side" of an IF-THEN
rule to the current episode (the first one being the initial conditions). When a match is found, the
"THEN-side" of the rule is used to build a new episode. The resulting envisionment is an
expression of the model.

2.3 ENCYCLOPEDIA BEHAVIORS

TSC is designed for interactive, cooperative exploration of some environ-mnent with a user. Two
aspects of the TSC system enable interaction with the user. 1) the program will read knowledge
supplied by the user in a frame format or a "natural language" format, both from a text file, and
2) the program will accept knowledge supplied by the user in the "natural language" format
when the user types the new knowledge in TSC's "conversation" window.
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software which parses sentences ted by the user in the conversation window will accept
either statements (new knowledge) or questions. A user question causes the conversation software
to attempt to generate an answer.

This conversation facility has been used to generate two knowledge bases, but has not been used
in the 02 activity.

2.4 EXPLORATORY BEHAvIORs

2.4.1 Caso-Based Reasoning
2.4.L1 CBR on TSC

Case-based reasoning (CBR) is an outgrowth of artificial intelligence research. The approach
enables machine learning of some environment by storing and indexing the experience provided
in training exercises. This indexing builds "cases" by which the program may, during some later
exercise, notice similarities between the current experience, and prior cases. Mapping a prior
case to the current situation involves reasoning by analogy.

We have implemn.ted a version of CBR in which all of the Brookhaven Database proteins serve
as cases from which a new protein design may be generated. We now contrast our approach to
cotivential CBR techniques.

2.4.1.2 TSC Case-Based Design Approach vs. Conventional AI CBR

While the "dialect" of case-based reasoning (CBR) used to produce the proteins has similarities
to traditional Al-based CBR [Riesbeck and Schank, 1989]; it also has some important difference
The comparisons are presented below. The traditional CBR approach is based on the needs of
powerful reasoning systems used in story understanding, and creative activities such as design
and authorship. The TSC approich is based rather stricdy on the needs of molecule design. Thus.
the TSC code may be considered a specialization of the traditional CBR approach. Traditional Al
CBR is illustrated in figure 2-6, (after (Riesbeck and Schank, 1989]).

M Wonoq Software, I=o. PIase 2 Final Raport pag 2-6



Figure 2-6: Traditonal Case-based Reasoning Algonthm.

-- -2.4 .1 ,.1 SW eisaIn ic

Case library used as knowledge base.

The majority of the knowledge of the protein design system is contained within th case h'trary.
S•=The system doesn't know why a certain sequence of amino acd forms a helix, it jutt knows that

it does. It has a set of examples of helices without ever knowing what a helix is, or how to create
one from scrtatch.

• Solving problems includes searching a case librar for examples.

When the system is asked to design a protein containing certain .tructures, it searches the case
--,.librar'y for similar stuctucres. This is analogous to searching a traditional case library for similar

-plans, or r , or event As etc. The TSC case-based dTesn't need to know how to

create a helix from scratch, because it's seen a helix before (in its case library), and knows
something about what they axe composed of.

-2--.4.1.2 ))lffe ndce

"CNo adaptation of ce caseisalwaysusedexactly as is.
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A traditional CBR system will find a similar case and then adapt it to fit the current goal of the
system. The TSC case-based design system will find a similar case and then plug it in to the
solution without altering the original case at all.

New proteins aren't stored as cases, because they aren't cases.

A traditional CBR system will generate new cases as it goes about its process, and will typically
store them for later use. TSC presently does not generate a new case; it merely combines old
cases in a new order to form a new protein.

No sure near-term way to determine effectiveness of algorithm

Because the testing of the designs using a structure prediction algorithm is limited in its accuracy
to the 50 to 70 percent range, there is no certain near-term way to determine if a design was
successful or not. Therefor:, there can be no immediate adaptation or learning from the system's
failures. If TSC generates an incorrect protein given a certain case library and specification, it
will generate that same incorrect protein every time.

2.4.2 Hypothesis Formation

In the following e.ample, we show, drawing from the biomedical domain, that we can ask TSC
to investigate the prevention of some outcome. TSC explores candidate approaches by forming
conjectures on ways to prevent the outcome, and then presents those conjectures to the user.

Fig u re 2-7 Hyoteualensornn

Antigen Ge

Figure 2-7 llusrates an immune system envisionment in which some antigen (diseae causing

agent) is introduced into the organism. We ask of TSC's exploratory behaviors how to prevent a
particular outcome-immune system failure. The exploratory behaviors derive one or more
conjectures in the form of proposed alternate branches of the envisionment tree structure, as
illustrated in figure 2-8.
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-- " •Antigen

Figure 2-8: New branches on the envisionment.

TSC's hypotheses may include several different approaches to prevent the final outcome. For the
immune example, prophylaxis (prevention of antigen introduction) may be proposed. Another
branch may propose an "antibiotic" to inhibit the action of the antigen. These hypotheses are
generated by TSC in a variety of ways. The first is to examine a database of "cases" which may
be similar to the case represented by the current envisionment. There, the prophylaxis hypotheses
may be found and applied as an alternate branch to the current envisionment. This is an example
of case based reasoning as described above.

TSC may look through its collection of process rules looking for a process which might, by
analogy, be mapped to the existing situation. The classic example of this (drawn from historical
discussions, not from TSC's own experience) is the mapping of a battle strategy (divide the
forces up and attack from different directions) to the problem of reducing or eliminating radiation
burns when radiation therapy is indicated in tumor therapy.

2.4.3 Design
We have developed two different approaches to design, both of which we discussed elsewhere in
this report. The first approach is our application of case-based reasoning to design a new protein
by analogy to a case library of known proteins.

The second approach applies design rules to a "design envisionment" in which the initial conditions
are a "'seed" design, and design rules build an envisionment, always trying to improve the design.
This approach requires that we supply TSC with a simulator which is capable of evaluating each
new design.

2.4.4 Directed Evolution

Directed evolution (DE) is our name 2 for a computational approach to discovery pioneered by
Douglas Lenat in his AM and Eurisko programs [Lenat, 1993]. The approach involves performing
mutations to elements of a lnowledge base and examining the results.

"Ile term is borrowed from molecular biology (Abelson, 1990].
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2.4.4.1 Directed Evolution vs. Genetic Algorithms

One variant of directed evolution is based on "heuristically guided" machine learning. The other
variant is based on random mutation. We have begun to develop both approaches. In the random
mutation variant, TSC applies a machine learning technique adapted from the genetic algorithm
(GA) [Goldberg, 1989]. Recent work has applied the GA to computational chemistry and chemo-
metrics (Lucasius and Kateman, 1989]. Our system extends the GA to function in the traditional
symbolic environments of AL.

John H. Holland seeded the creation of the GA and wrote the seminal works on the subject. (cf
[Holland, 1992], [Holland et al., 1986], [Holland, 1986], (Holland, 1992], (Goldberg, 1989],
(Farmer, Packard, & Pcrelson, 1986], and (Judson & Rabitz, 1992], and (Koza, 1992]). Holland
and his work have been honored by the 1992 MacArthur Prize. His students have evolved the
algorithm to its present level of power and generality. The DE algorithm is, roughly speaking, a
slight generalization of the GA.

The GA serves as a guided optimization system in that, over a number of "generations," it selects
elements and combines them into predictive rules similar to OBS.1 shown on page 3. Rules are
then rated for their predictive accuracy during the learning exercise and successful outcomes are
reinforced. Overall performance improves over time, since successful elements are allowed to
survive through subsequent generations.

The select-combine algorithm mimics evolutionary processes such as crossover, point mutation,
viral infection, and so forth. For example, a pair of "strong" rules (i.e. good predictors) may be
selected as "parents" in a crossover breeding exercise. Actors or relations will be traded between
them such that "child" rules are constructed from parts of each parent

Directed evolution, like a genetic algorithm, is applied to a population of rules to evolve a more
successful population. Success is defined externally, by way of a goal to reach. In contrast to
Darwinian evolution, directed evolution and genetic algoritans employ goals such as finding a
class of objects, e.g., rules, as applied to some task or problem. Evolution in the Darwinian sense
has no such goal.

2.4.4.2 Algorithm

In applying the GA to any proposed activity, one maps the actors, relations, and states of the
domain into classes or "gene pools." In a biochemistry study, actors might include atoms,
substructures (molecule fragments), and entire molecules. Relations might include types of bonds
and various structural features. Properties such as hydrophobicity may also be included. Thus,
candidate descriptors covering topological, geometric, electronic, and physicochemical properties,
and mode of toxic action are available for selection.

Figure 2-9 illustrates the program flow when running the GA. Given a database and an initial set
of rules (typically generated at random), the system exercises rules on data, looping until all rules
have been tried on all data. Following this, all rules are evaluated for their predictive capabilities:
selection is made of successful candidate rules to be "parents" in a breeding exercise. By
applying crossover and a variety of point mutations on individuals, a new body of rules is created
which must "compete" with the prior body of rules. Rules gain or lose worth based on prediction
accuracy following exercises with the data. Rules of higher worth have a higher r robability of
becoming parents in future trials.

This process repeats for many trials. A learning curve results from the accumulated experience of
many cycles of GA evolution. Directed evolution continually seeks to improve the performance
of the predictive rules. In most cases, more cycles of the learning system results in better
predictive performance of the resulting rules.
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Figure 2-9: Flow of Acntivty in Directed Evolution.

Our "Exercise Directed Evolution" block in figure 2-9 applies heuristic guidance to the exercise
of the genetic algorithm. Here, we are interested in "directing" the GA toward rapid improvement
in its discovery of good predictive rules. A periodic evaluation of the various combining/mutating
functions of the GA is conducted by TSC and heuristic rules in the knowledge base direct
changes to the probability of occurrence of each GA function. Heuristic rules offer "suggestions";
the results from a given heuristic rule's firing may not result in anticipated improvement of the
GA performance. The flow chart of figure 2-9 illustrates the cyclic nature of directed evlution:
it is a search for improvements in toxicity prediction. By guiding the evolution, TSC eventually
improves the performance of the GA during learning cycles. This heuristic discovery system is
patterned after the Eurisko program of (Lenat, 1983] and the Hypgene program of (Karp, 1989].

Starting with a Darwinian Evolution approach, implemented as a genetic algorithm, the system
follows the guidance of a knowledge base. This coupling of heuristic guidance to a GA creates
learning curves that achieve desired results in a reasonable amount of time. We present an
example of this coupling later in the Mutation section.

2.4.4.3 Optimization Strategy

Because GAs are a family of iterative search algorithms, and therefore comparable to both Ainear
and non-linear optimization techniques, it is important to understand what distinguishes GAs
from conventional systems.

A universal problem associated with optimization is that, when applied, the methods are typically
over-constrained by the numerous assumptions made to transform a dynamic real-world problem
into a mathematical formalization. In general, optimization techniques have three difficulties: 1)
depending on their search strategy they are sensitive to large or erratic noise in the data, 2) they
are hampered by local performance peaks that may be unrelated to the overall maximum, and 3)
their search strategy uses the slope of the function to select the next step in the search process.
For the more complex problems, the local slope does not provide adequate information about the
location of the maximum. This is particularly the case for nonlinear problems.

These difficulties vary and depend both on the problem and optimization method. The GA would
be subject to these characteristics, but properties of the genetic algorithm mitigate them. For
example, local peaks are escaped by the mutation operator (discussed below). As a consequence,
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a GA is more analogous to complete enumeration than to any of the math model-based optimization
techniques, i.e., a GA is largely a trial and error process involving multiple candidate solutions
instead of a slope-guided process involving a single candidate solution. But in contrast to complete
enumeration, the multiple candidates are only a small subset of the total number of solutions and
they are evaluated in parallel (as a set of solutions).

A GA employs and combines qualitative and quantitative operators encoded as conditions in the
"sevch for a qualitative (i.e., find an instance of, find a class of, or find all) or quantitative goal
(i.e., to maximize or minimize some numeric value). In comparison with other conventional
optimization techniques, a GA has several advantages: 1) GAs encode the parameters which they
have to optimize and base their procedure on the codes-not on the parameters themselves, 2)
GAs work in parallel on a number of search points (potential solutions) and not on a unique
solution, which means that the search method is not local in scope but rather looks globally at the
search space, 3) GAs require from the environment only an objective function measuring the
fitness score of a candidate solution, and 4) both selection and recombination steps (discussed
below) are performed by using probabilistic rules rather than deterministic ones. [Renders &
Norvik, 1992].

As per their biological origins, GAs imply the use of mutation as a fundamental mechanism of
innovative population variation, but instead of the usual genetic material, i.e., DNA in biology,
problems encoded in the form of IF-I-rlEN rules are addressed. In addition to mutation, GAs
typically rely on two additional operators called reproduction and crossover for population variation.
The system discussed here does not employ reproduction, but limits population variation to
crossover and mutation. Components of "if-then" rules (i.e., antecedents and consequents) serve
as the genome (biological domain), and the rules themselves serve as the phenotypes. Thus, a
collection of rules serve as a "gene pool" for crossover and mutation operators. We discuss those
two operators nexL

2.4.4.4 Crossover

Crossover is regarded in the literature as the dominant operator when compared to mutation.
Using crossover, two rules are selected to produce "offspring" by exchanging a portion of their
rules: IF (antecedent) subjects, objects and relations; and/or THEN (consequent) subjects, objects
and relations (analogous to gene splicing). The offspring replace weaker rules in the population.
Crossover serves two complementary functions. First, it provides new points for further testing
within the existing problem "subspaces" (represented by the parent rules). Secondly, it introduces
representative members of "subspaces" not already existing through prior crossover. The DE
variant of crossover alternates the type of selection of parents between randomly selecting
parents and on the basis of strength (cross those rules with the highest predictive accuracy).
Given one pair of parents, two children are produced by the process, Genetic material that
comprises the antecedents (IF clauses of the rules) are spliced and exchanged to make two new
children. The new rules are placed in the voting "pool" of rules.

2.4.45 Mutation

Mutation is a secondary operator in directed evolution, and is applied with very low probability
of occurrence, typically less than a few percent of the time. Its purpose is to alter the encoded
value of a random position (point) on a string. Examples of point mutation are insertion, deletion,
or change of some rule component. In the TSC DE system a selected rule is copied aisd the
mutation operator, selected at random, is applied to that copy. Source of a "nmutant" DNA
element for insertion or change is typically a random member of the rule set. In a "viral"
mutation, a DNA element is selected at random from a source pool outside the title .t.

Mutations may be guided by individual heuristic IF-THEN rules, or they may take the more
Darwinian flavor of random changes. A simple example of a heuristically-guided mutation is
drawn from our work in design; a design rule which has contributed successfully to the design of
a vehicle is selected for mutation. It is then cloned and mutated and the results are then studied.
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A stylized initial rule is:
If you want to improve the performance of the vehicle
And the vehicle includes an aerodynamic structure (e.g. a wing)
Then consider increasing span by 10%

The mutated version of the rule is:
If you wont to improve the performance of the vehicle
And the vehicle includes an aerodynamic structure (e.g. a wing)
Then consider increasing wingspan by 20%

The relaively simple mutation involved increasing tle rate by which this rule applies its "mutations"
to the evolving design. This mutation was suggested by a rule of the form:

If you have a design rule which is more than XX stronger than other rules
Then consider cloning the rule
And mutate the new clone by increasing/decreasing its rate parameter
And post a task to study the new rule's performnnce

Directed evolution involves a hypercycle, that is, the design exploration process is a cyc';c
evolution acting on the product being designed, while the tools of evolution are, themselves,
subject to the forces of evolution.

2.4.5 Genetic Programming

In an approach to directed evolution different from the rule-building discussed above, we evolve
lisp-like programs which perform some task. Our piagrams are intended to predict protein
structure, as discussed in the next chapter. Here, we discuss this approach to genetic programming.
Our implementation of genetic programming is based on Koza [1992]. Genetic programming is
used to modify a population of programs which perform tests on the data. Programs in this study
are constructed of boolean expressions. The terminal values of these expressions are generated
by application-specific primitive functions.

2.4.S.1 Algoritbm
Crea'e an ingial (random) population of progams.

I Execute and evaluate programs to determine fitness.

2. Rank order programs according to frness.

3. Generate a new piulation of programs by applying reproduction, crossover, and mutation to the
best of the old prc -ans.

Go to step 1.

Normally this algorithm chooses the best program to appear in any generation. In our version the
result is the final population of programs with non-zero fimess. These programs will be used in
corcert for recall ana prediction.

The process begins by applying a population of randomly-generated programs to the elements of
a database. Program rnsults are placed in a matrix and evaluated to obmin a measure of each
program's fitness. These fitness values are used in selectng progrums to breed into the vexr
generation. This process is illuslrated in figure 2-10.
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Figure 2-10: Genetic Prograrnrring.

Programs are constructed of boolean operators connecting application-specific primitives. Our
mtnplenientaion constructs programs using Srheme, a dialect of Lisp. This representation is easy

to manipulate and directly executable in the Scheme environment.

An evaluation matrix is created by applying each program to each point in the training data. For

each data point (i), and for each program (j). the program is -executed and the result is stored at

location (ij) in the matrix. Thus each column of the matrix contains the values returned by a

particular program for all the data points, and each row contains the values returned by all

programs, for a particular data poinL

The evaluation matrix is used in evaluating the fitness of programs using rough set theory. We

discuss rough set technology elsewhere in this report.

2.4.5.2 Survival and Reproduction

Because our implementation is searching for a good population of programs rather than a good

-individual program. it is convenient to separate the concepts of survival and reproduction.

2.4.S.2.1 Surmival

We have experimented with three options for survival of programs from one generation to the

nexL

I. Retain a fixed number of the best programs.

2. Calculate the minimum SGF (sigrificance) for all programs and retain anl programs with an SGF

greater than the minimum

3. Retain M. i e programs with SGF > 0. Note that M is a minimal set so t will by definition contain a

diverse population

2.4.5.2.2 Program Reproduction

We have expmmented with two options for production of new programs from one generation to

"the next.
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1. Replace discarded programs

2. Supplement M by a constant nunber of programs. This allows P to increase or decrease
according to the size of the minimal set M. Population size adapts to the problem and with
progress toward a slution.

New programs are created by the genetic operators, crossov-r and mutation.

2.4S.3 Crossover and Mutation

In this study the genetic operators modified only the boolean expressions. Crossover was

implemented by selecting onc sub-expression from each parent and swapping them to produce
two new programs. Mutation wvas implemented by selecting a sub-expression within a single

parent and replacing it with a randomly generated expression. Random replacement by the

mutation operator was the only method implemented for modifying a terminal function.

2A.5.3.1 Pror Crossover

The crossover operator first selects two members of the current population of programs. A

crossover point is selected within each program and the sub-expressions below these points are

swapped to produce two new programs. Figure 2-11 shows two programs with sub-expressions
selected.

A 0h .E
Figure 2-11: Subexpressions selected for crossover in parent programs.

Figure 2-12 shows the two new programs created by the crossover operation.

Fgure 2-12: New programs created by crossover.

2.4.5.•2 Program MuZIWoU

The mutation operator first selects one member of the current population of programs. A mutation

point is selected within the plograw and the sub-expra-ssion below this point is replaced with a

randomly generated z.xpression. Figure 2-13 shows an example of an original program and one

possible result of applying the mutation operator.
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Figure 2-13: Original and new program created by n-utatiorL

2.5 DATA EVALUA7iON TOOLS

2.5.1 Rough Set Evaluation of Genetic Program Fitness
Fitness evaluation in the genetic programming approach requires an objective function with
which to perform the evaluation. As in the Darwinian algorithm, some critic-typically, the
enviroaraent itself in the biological domain-is required to rate the performance of each individual-
In our experimental work, we apply a rough set evaluation tool, based on rough classification
described by Pawlak [1984,1991] and Ziarko [ 1989]. These methods allow the fitness of functions
to be evaluated in a context with other functions. We expect this approach to promote population
diversity by a natural tendency to assign lower fitness to redundant programs. To anticipate the
results, our trials of rough set evaluation were used on small tasks such as developing rules
e-hich identify certain canc-rs or flowers. The method discussed here turns out to be far too
conqute-intensive to be appropriate to protein studies on our workstation-based TSC We do
believe %hat these tools, when ported to a super-computer, will provide useful results.

These propex-ies art patt•cularly important for our applications where we are trying to find a
population of programs that perform w611 :n cnncet This is in contrast to typical genetic
programming applications where the goal is to find a single program which performs well.

2.5.1.1 Definitions

S - (UA.V,f) is an information system consisting of a set of data objects (U), a set of attributes (A), a
set of possible attribtde values (V), ana a function that maps data objects and attributes to
attribute values (I).

U is the set of aW! data objects. In our inses appicaion it is the set of all Iris exam.les in our database.

A is the set of at attributes. In our implemerdation d -s the set of concepts measured or tested by the
attribute programs. The set A also corresponds to the set of all columns in the evaluation matrix.

V is the domain of attribute values. In our irises applickaon it is (setosa. virginica, versicolor. true.
false).

I is the description function mapping UxA-VV. In our implementation it corresponds to the evaluation
matrix.

N is the set of predicted attnbutes or columns of the evaluation matrix. In our application it is a single
column containing the species name for the data objects.

P is the set of p, ed:for attribmes or columns of the ovaluation matrix. These correspond to the set of
programs to be determined.

M is a n•irmal subset of P which retats the full ability of P to discern e;ements of N.
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N' is the set of elementary sets or equivalence classes based on predicted attributes. It corresponds
to the set o; sets of rows which have matching values in all the N columns.

P is the set of elementary sets or equivalence classes based on all predictor attributes. It
corresponds to the set of sets of rows which have matching values in all the P columns.

M'is a set at etemeritary sets or equivalence classes based on a minimal set of predictor attrbibtes. It
corresponds to the set of sets of rows which have matching values in all the M columns.

iM(P)n', is the union of all elementary sets in P' which are subsets of the ith element in N' These are
the lower approximations of the sets in N'

POS(PN) is the union of i(P)n', for all elements n', in N'. This is the subset of U for which P is
sulfficient for discerning membersh,,p in the equivalence classes of N'.

k(P.N) a card(POS(PN)) / card(U)
This is the fraction of the set U for which P is sufficient for disemning membership in the
equivalence classes of N'.

SGF(P.N,p) ( k(P.N)--k(P-pN) ) Ik(PN).

This is the significance value; i.e. the relative change in k(P.N) resulting from deletion of q from
P. SGF has the advantage that it rewards programs for their contribution to recall or prediction in
the context oa all other programs

2.5.1.2 Evaluating Attributes

The sets and measures above are used to determine the significance of members of P for
classifying members of U into the equtvalence classes of N'. One goal is to find a minimal subset
of attributes that retains the capability of all P for discerning elements of N'. Another goal is to
assign a significance value to each attribute. This value will be used in calculating program
fitness for the genetic programming process.

The following method calculates significance factors for each program while determining a
minimal set. Programs with zero significance are not included in the minimal set, MX

Initialize: Ml = P.
For each pk in P:

Calculate SGF(Mk,N,pk)
If SGF(Mk,Npk) 0 0

then Hk+1 = Uk-pk
else Mk+l - Mk

There may be several minimal sets. The order of selecting pk during calculation of M will affect
the final contents of M. We have chosen to select the pk beginning with the lowest-SGF
members of the previous generation. This encourages turnover in the population by allowing an
older program to be replaced by an equivalent set of new programs.

2.5.2 Nearest-Neighbor Pattern Recognition

The technology of pattern recognition wit', the nearest neighbor technique is primarily applied to
our protein structure prediction project. Briefly, a large body of exemplars is created based on a
library of proteins and is stored in computer memory. Each exemplar represents a window of
data %htch slides along the amino acid sequence of any given protein. The windowed data is
combined, in the exemplar, with a prediction of the structure, derived directly from the given
protein. This collection of exemplars is then applied to the prediction of structure when presented
with a window of data from the new protein. The exemplar with a window of data nearest to the
window of data from the new protein "wins" the right to offer its prediction. This prediction
process is repeated for all data windows in the new protein.
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The approach used here is to collect the exemplars from a group of proteins which are not
selected from the design case library. In general, we develop the algorithm by training on a large
collection of proteins, then test the algorithm on a different collection of known proteins. Once
the algorithm has been "tuned," it is next applied to the testing of new proteins.

The TSC code for structure prediction, which is applied to the designed protein, is based on an
algorithm documented in [Cost and Salzberg, 1993], [Salzberg and Cost, 1992]. The program
PEBLS (Parallel Exemplar-based Learning System) is reported to achieve accuracies in prediction
of protein secondary structure as high as 71%. The algorithm is closely related to the memory-based
reasoning approach of [Zhang et al., 1992].

The PEBLS approach (after [Salzberg and Cost, 1992]) as implemented in this work is as
follows: given a sequence of residues from a fixed length window from a protein chain, classify
the central residue in the window as helix, sheet, or coil. The table below (after [Salzberg and
Cost, 1992]) compares the correlation coefficients from PEBLS and a varietyof other algorithms.

AlgorIthm %correct Ca Co Ccou
PEBLS 71.0 0.47 0.45 0.40
Zhang et al. 1992 684 0.47 0.387 0.429
Qian & Sejnowsku 1988 64.3 0.41 0.31 0.41
Holley & Karplus 1989 63.2 0.41 0.32 0.46

The TSC code applies an algorithm patterned after PEBLS, but does not presently include the
weighting scheme used by PEBLS. Our simplified approach requires a single pass through a
training set of 66 to 91 proteins selected for non-intersection of training proteins with the protein
set used for case-based design. During this first pass, tables are constructed that contain the
distances between amino acid values. As explained in [Salzberg and Cost, 1992], distance is
estimated statistically; distance between amino acids is a sum over three classes (helix, sheet.
coil). The sum is based on the number of times residue I was classified into a particular
category, the total number of times that residue occurred, and the number of times residue 2 was
classified into a particular category, and the total number of times that residue occurred. Values
should be similar if they occur with the same relative frequency for all classes.

A different table is built for each position in the data window, Thus, if window length is
specified as, say, 17, then 17 tables are constructed. Exemplars are constructed from each
window presented by the training set. Each exemplar is stored in the form: ((window) pre-
diction) ). An example follows: ( ( ALA PRO LYS... ) A ) where "A" is the
prediction. If there are, say, 500 windows of residue sequence data in a training set, there will be
500 exemplars created. [Cost and Salzberg, 1993] report that the performance of their algorithm
improves with increasing window length to a peak at a length of 19. The TSC code has typically
applied a window length of 17.
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Chapter 3 Applications

3.1 PROMIN STRUCTURE PREDICTION
Our work has focused on prediction of protein strucnues from a given amino acid sequence, and
to design a protein sequence that will yield a given structure. We use our directed evolution and
genetic programming techniques, along with the nearest neighbor analysis. We then use case-based
reasoning to design a protein.

3.1.1 Methodology

Consider the evolution of a set of rules which are successful at predicting the structure of a
protein when given certain information about that protein. The application is quite similar to the
application of a genetic algorithm in chemometrics [Lucasius, 1989], in which prediction of the
conformational analysis of DNA molecules was studied. Unlike Lucasius and Kateman, the gene
information is much broader than just a few parameters such as the order of the nucleotides in
the DNA sequence, bonding distances and bonding angles. The approach taken here acknowledges
the need for many more parameters as suggested by Lozano-Perez in an article by Erickson
[1992] as follows: "We're finding you need more like 100 data points to characterize a molecule
properly." Attributes such as molecular charge and hydrophobicity add dimensionality that is
difficult for humans but simple for computers to consider.

We apply two variants of genetic algorithms in our DE tools: (1) mutations guided by random
selection, and (2) mutations guided by heuristic rules. Both were illustrated above. We then
apply DE to DE itself. This enhancement uses heuristics to notice current performance levels of
predictive rules and alter the hreeding and/or mutaon methods to allow mom successful populations
of rules to "gain a foothold" and begin performing. Once performance achieves a predetermined
level, breeding/nmutation methods are again altered by DE heuristics to either breed mom generalized
or more specialized rules. In both cases, we are building a set of rules which perform prediction.

As noted earlier concerning Darwinian Evolution, typically a GA evolves rules in a dynamic
(continually changing) environment-an environment Holland describes as a generator of
"perpetual novelty" or concept drift. The TSC DE algorithm is also capable of dealing with the
concept of drift; however the protein structure problem is a static environment--an environment
in which the protein training sets do not change with each learning cycle.

Directed evolution develoos a population of rules intended to predict the presence of helical
structures in a protein when given the amino acid sequence. Initially, at system starmp, the DE
randomly produces many general rules for predicting a helix, attempting to fill every (candidate
solution) niche in the environment. When the environment is sufficiently seeded, the DE begins
evaluating those rules. Subsequently, the randomly generated starup rules are bred based on rule
performance. A number of search parameters can be adjusted by the DE rules; changes to these
"knobs" may change the size and performance of the gene pool, and may alter the probability of
any given GA strategy.

A typical protein represented in a TSC-readable form looks like the following frame:
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C: PDB3BSC
name CYTOCHROME.BS
instance, of protein
functionality electron, transport
tertiary.structure small.ss.rich.or.metal.rich-met-

al. rich-up. down. ligand. cages
source bovine.liver
HY.DATA ( SER LYS ALA VAL LYS TYR TYR THR LEU GLU GLU ILE GLN

LYS HIS ASH ASH SER LYS SER THR TRP LEU ILE LEU HIS TYR LYS VAL TYR ASP LEU
THR LYS PHE LEU GLU GLU HIS PRO GLY GLY GLU GLU VAL LEU ARG GLU GLN ALA GLY
GLY ASP ALA THR GLU ASN PHE GLU ASP VAL GLY HIS SER THR ASP ALA ARG GLU LEU
SER LYS THR PHE ILE ILE GLY GLU LEU HIS PRO ASP ASP ARG SER LYS ILE THR LYS
PRO SER GLU SER )

HELIX.POSITION C9 12 )C33 38 ) 44 47 ) 53 60 ) 65 71)
81 86 ) )

SHEET.POSITION CCS 7 ) 21 Z5 ) 27 3Z)C 51 54 )74 ))
TURN.POSITION C 17 1) ( 24 28 )C39 42) 49 52))

3.1.2 Genetic If-Then Rule Generation

The problem is to predict the presence of helical structures in a protein when given its amino
acid sequence as illustrated. One of TSC's methods is to build a population of IF-THEN rules
when given a "genome." The genome is built from three "chromosomes," the working components
of an observer rule. A pair of observer rules follows:

c: OBS.1
worth 686
if.actors C Cala( x ) true)C glu C ) true))
if.relations C C abuts *x *y ) true ) )
then.predict C C helix C window ) true ) )

C: 0OS.Z
worth 560
if.actors C leuC x ) true)C glu Cy )true))
if.relations C C abuts C *x *y ) true ) )
then.predict C C helix C window ) true ) )

The three chromosomes are:

* actors

* relaions

*prediclons

Actors are comprised of the twenty natural amino acids
Alanine Arginine Asparogine Asportate
Cystine
Glutomine Glutamate Glycine
Histidtne
Isoleucine
Leucine Lysine
Methionine
Phenylolonine Praline
Serine
Threonine Tryptophan Tyrosine
Valine

Relations ame primarily structural or spatial in this example:
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"abuts A, B (abuts (A B) true)
abuts-i A*XeB (abuts-i (A B) true)
abuts-2 AeXeY*B (abuts-Z CA B) true)

The two predictions, used as votes by a population of rule are:
C hel•x C window ) true )
C helix window ) false )

An example sequence for the protein ACYLTRANSFERASE (after (Gibbs & Leslie, 1990]) looks like
the following:

MET ASN TYR THR LYS PHE ASP VAL LYS ASH TRP VAL ARG
ARG GLU HIS PHE GLU PHE TYR ARG HIS ARG LEU PRO CYS
GLY PHE SER LEU THR SER LYS ILE ASP ILE THR THR LEU
LYS LYS SER LEU ASP ASP SER ALA TYR LYS PHE TYR PRO
VAL MET ILE TYR LEU ILE ALA GLN ALA VAL ASH GIN PHE
ASP GLU LEU ARG MET ALA ILE LYS ASP ASP GLU LEU ILE
VAL TRP ASP SER VAL ASP PRO GLN PHE THR VAL PHE HIS
GLN GLU THR GLU THR PIHE SER ALA LEU SER CYS PRO TYR
SER SER ASP ILE ASP GLN PHE MET VAL ASH TYR LEU SER
VAL MET GLU ARG TYR LYS SER ASP THR LYS LEU PHE PRO
GLN GLY VAL THR PRO GLU ASH HIS LEU ASH ILE ALA ALA
LEU P TRP VAL ASH PHE ASP SER PIlE ASH LEU ASN VAL
ALA ASN PHE THR ASP TYR PIlE ALA PRO ILE ILE TDR MET
ALA LYS TYR GLN GLN GLU GLY ASP ARG LEU LEU LEU PRO
LEU SER VAL GLN VAL HIS HIS ALA VAL CYS ASP GLY PHE
HIS VAL ALA ARG PHE ILE ASH ARG LEU GLN GLU LEU CYS
ASH SER LYS LEU LYS

Obsenrer rules are exercised on segments of a natural system as read from a data base called
windows of sequence data. During learning, the window is shifted along the data. An example
window of data, with a window size of five amino acids, looks like:

E ala arg gly ala pro ]

TSC encoders write a body of statements about the window:
(ala (ola.i) true) (arg (arg.1) true) (gly (gly.1) true)
(ala (ola.Z) true) (pro (pro.1) true)
(abuts (aol.1 arg.1) true) (abuts-i (ala.1 gly.1) true)
(abuts-2 (ala.1 ala.2) true) (abuts (arg.1 gly.1) true)

All rules are then exercised (allowed to vote) on this encoded window. This voting is repeated as
the window is "slid" along the entire data set. A reward/punishment algorithm-part of the
directed evolution component of TSC-then examines the performance of the individual rules
which cast a vote. Following the "bucket brigade" algorithm of John Holland [Holland, 1986],
those rules which participate in the vote, and which vote correctly, get a reward (their worth is
increased). Thinking of a given rule and the source (parents) of that rule as a "bloodline,"
additional reward is bestowed upon the source of the successful rules.

Once rewards have been passed to appropriate rules, a small decay (reduction of worth) of all
rules is computed. This has the effect of punishing those rules which do not participate in the
vote, or which vote incorrectly. Rules whose worth falls below a specific value are eliminated.

At this point the directed evolution component, with its genetic algorithm, mutates the rule
population and conducts a search for the optimum rule set. For example, using as parents OBS.1
and 0635.Z listed above, "sexual recombinaton" builds a child that looks like the following:
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c: OBS.3
my.source obs.1 obs.2
my.creator crossover.1
worth 2e0
if.actors ( Cleu( *x) true) (alo(*y)true) )
tf.relattons C C abuts O x *y ) true ) )
then.predict ( C helix C window ) true ) )

This "child" rule is added to the population of rules and given a starting worth value. Now,
consider the effec. of a point mutation on the rule OHS.3 to make a new rule OBS. 4.

c: OBS.4
my.source obs.3
my.creator point.mutate.2
worth 200
if.actors C (leu(C x)true) (alo(*y) true)
if.relattons ( C abuts ( *x y ) true ) )
then.predict ( ( helix ( window ) false ) )

This rule is essentially the same rule as its source, OBS.3, except that it votes a differeat way. If
the rule is successful, it will eventually replace its source in the rule population.

To summarize directed evolution, using a biological metaphor, we see that

* The strongest rules get to breed

* Successful rules get fed well

* Parents of successfu. rules get treats

A Airules age

3.1.3 Prediction Program Generation

We turn our discussion from generation of IF-THEN rules capable of predicting the conformation
of a protein from its amino acid sequence, to the generation of lisp programs which are capable
of the same predictions. In this, we use the genetic algorithm to evolve programs. As it turns out,
the approach we explore is vastly too compute-intensive for protein studies. Our preliminary
efforts centered, instead, on the development of the approach, which we discuss now. The
approach has sufficient merit that it should be ported to a super-computer and tested on proteins.

3.1.4 Testing Recall and Prediction

We have tested our implementation with a relatively small database of iris flowers (Fisher's iris
data reproduced in [Salzberg, 1990]). Each entry includes the name of the species and four
values for sepal length, sepal width, petal length, and petal width.

We tested for both recall and prediction. The data was partitioned into two disjoint sets for
training and prediction testing. Recall was tested using a subset of the training data Prediction
was tested using data which was not used in training. Testing was accomplished as follows:

1. Each program in the minimal set, M, is applied to the test data point.

2. The resulting list of values is matched against the corresporning values in each row of the
evaluation matrix. We use an analog of hamming distance to select a matching row for prediction.
We calculate the distance as the sum of SGF(MN.m) for columns m that do not match the
corresponding test value. The row with the minimum distance from the list of test values is
selected. If several rows have the same distance measure then the first of these is arbitrarily
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selected.

3. The attribute values to be recalled or predicted are retrieved from the N columns of the
selected row. Success is measured as the fraction of the test data that is correctly recalled or
predicted.

3.2 PROTEIN DESIGN
Protein design generally refers to de novo approaches for new proteins. The process starts with
first principles and attempts to design model proteins from scratch. Because the design process
starts from scratch, small homology with native sequences is expected in the de novo approach.
The approach critically tests the designer's understanding of protein strcture.

A number of recent experiments have explored variants along the de novo theme, including
[DeGrado, et aL, 1989], [Regan and DeGrado, 1988], [Wendoloski and Salcmne, 1992], [Fedorov,
et aL, 19921, [Hecht, et al., 1990].

For example, the design strategy of [Hecht, et al., 1990] is to use natural structural motifs to
design sequences that are native-like in pattern and composition, are locally non-repetitive, and
are not homologous to any known protein. This is a kind of "design by analogy." The protein
created by this strategy is called 'Felix," a four helix bundle protein. We present a sketch of that
protein later, together with a discassion of an appioach to the re-creation of the secondary
structure of Felix using our TSC system for case-based design, also referred to as design by
analogy. We now discuss that effort.

3.11 Case-Based Protein Design
We have selected a case-based (c.f. [Riesbeck and Shank, 1989]) approach to protein design.
This approach suggests the ability to "learn" directly from the database supplied by nature. The
alternative is de novo design approaches, which require a knowledge base strong in protein
folding first principles. Coupling of the case-based approach with the discovery of de novo
design rules is suggested as an important extension of this work. We apply our nearest neighbor
prediction algorithm to analyze the designed proteins. Our approach to design, analysis, and
evaluation of proteins is diagrammed in figure 3-1.
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Figur 3-1: General TS'C Cas-ae Protein Deign.

In a big picture, our approach is:

Given a hbrl of proteins and a design declaraton:

Search for all candidate structures similar to structures in the desired desig

Find the combinations of structures with a 1oest fit"

Publish the results

The TSC case-based code is a program that will design proteins of a given secondary saucucre,
_ __using a model from case-based reasoning. An overview of this process is depicted in figure 3-2.

• _ __By starting with a database of proteins (a case library) whose structure is known, the system
,- finds, by indexing and analogy, appropriate sequences of amino acids needed to produce desired
- structures. The de~sign process then becomes a process of merely "putting together the pieces."
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Figure 3-2: Architecture for protein design and evaluation

Although the TSC system uses a moderately extensive database of amino acids and their properties,
this database is used only to refine the design process. The system currently uses a simple
template matching process in order to do its first-pass design, and then uses the amino acid
database to select options from that first design. To accomplish this task, the system needs to be
able to derive answers to the following questions:

What structures have I seen next to each other in a protein?

2. What was the size of those structures?

3. What armino acids were involved in creating those structures?

4. What are the structures, neighbors and sizes involved in the protein to be designed?

Furthermore, the system should be able to accommodate proteins that have multiple subunits. A
protein is said to have multiple subunits when it contains two or more disconnected sequences.
The system needs to be able to access all of these sequences, but also to know that they are
physically disconnected. To accomplish these goals, the system searches protein database frames
(database entries), each of which holds several important components. Each protein flrame contains
(at least) the following pieces of information: an ordered list of the amino acids that compose it,
and, for each possible structure, an indication of where (if at all) the structure occurs in this
particular protein.

To more accurately illustrate this, we present an example of a protein database frame her-,
adapted from the Brookhaven PDB. Note the list of amino acids, and the indications of where
helices, sheets, and turns are found.
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C: POB385C
name CYTOCHROME.BS
instance.of protein
functionality electron.transport
tertiary.structure small .ss.rich.or.metal.rich-met-

al. rich-up.down.ligand.cages
source bovine.liver
MY.DATA ( SER LYS ALA VAL LYS TYR TYR THR LEU GLU GLU ILE GLN

LYS HIS ASH ASN SER LYS SER THR TRP LEU ILE LEU HIS TYR LYS VAL TYR ASP LEU
THR LYS PHE LEU GLU GLU HIS PRO GLY GLY GLU GLU VAL LEU ARG GLU GLN ALA GLY
GLY ASP ALA THR GLU ASH PHE GLU ASP VAL GLY HIS SER THR ASP ALA ARG GLU LEU
SER LYS THR PHE ILE ILE GLY GLU LEU HIS PRO ASP ASP ARG SER LYS ILE THR LYS
PRO SER GLU SER )

HELIX.POSITION 9 1Z ) 33 38) 4447) 53 6 ) 65 71)
81 86 ) )

SHEET.POSITION C5 7 ) Z Z5 ) Z7 32) 51 54 )74 8))
TURN.POSITION 17 21) ( Z4 28) ( 39 42) ( 49 SZ ) )

in addition, a target protein is needed; in order to create a new design, TSC needs to have a
design specification. The user creates an experiment fiame which contains the description of the
protein along with several parameters used by the system. The followinj, is an example of an
experimeni frame used in this design exercise.

C: EXPERIMENT.42
INSTANCE.OF EXPERIMENT
WORTH s5e
CONTEXT PROTEIN
DATA.SOURCE PDB.DATA
DATA.FILES ( PD811DS PDBZLTh PDB3HHB PDBZDH8 PDBIFDH P BILDS

PDB1PYP PDB1FCZ POBITGS PDBZCCY PDBZCAZ PDBZCAB PD63SGB PDB1SGT PDBiPPD
P-PDBHNE PDBZSTV PDB1GCR PDBIMBD POB1MBS PDBZCDV PDBICY3 PDB1LZT PDB1FX1
PDB1CC5 )

ACTOR.SOURCE NATURAL.AMINO.ACID
TEST.ATTRIBUTES ( POLARITY rOLECULAR.WEIGHT SIZE.OF.SIDE.CHAIN

SIDE.CHAIN. MUTABILITY HYDROPATHY )
TEST.WEIGHTS (.Z5.10.Z0.10.35)
OVERLAP 1
SIZE 65
Z.STRUCT (S ( 4 15 )(41 49))( H ( 16 8)( 32 4))( T ( 49 54))

31-3 Case-Based Design Algorithm

With all this data in hand, the target protein can be designed. The structure of the case-based
design algorithm is as follows:

1. Indtialize the system by loading the protein database, and analyzing t to produce the inormation
used by the design algornhrns

2. Analyze the target protein to produce the data structures nec-essary for design.

3. For each structure in the target lis. do the following:

a. Search for a known structure(s) that has the same structures both before and after,

and differs in length by fewer than 3 anino adds. It several can be found that are
equatly close in length, store all of them, giving preference to longer structures.

Thj.nkAlonq Software, Inc. Phase 2 Final Report paeg 3-8



b. If rwne can be found with the same neighboring structures, try to find a known
structure that has similar structures both before and after, and that differs in length by
fewer than 3 amino acids. Again, keep all that am equally close. with preference to
longer ones.

C. If non3 can be found with similar neihbors. try to find a known structure of closest
length with any neighbonng structures. Keep all that are equally close, with prefer-
ence to longer ones

d. Get the data for each structure from iOs native protein, including one amino acid on
either side. If there were several possibTl',es. get the data for all of them.

4. At th:s point, we have a list of possible chokces for each structure in the protein. For each possible
,elghboring pair of structures, compare the overlapping amino acids, and determine their
,fifetnce score, as explained in section 2.1.4. Store this data.

5. Pind the combination of possible structures that Itas the lowest total difference, compike the list of
structures into a protein, and fill in tbe s;cts of the new protein frame appropriately.

For the new protein, it may be true that the system could not find an exact match for a given
structure, and resorted to a structure of slightly different length. In the resulting protein frame,
the system notes the position of all structures as they are placed by the design algmithm. These
positions may not be the same as those in the mrge. specification.

In placing structures, the system compares the similarity of the ends of the structure with the
ends of its neighbors. For instance, if the system is trying to place a helix between two random
cofis, it will remember not only the amino acids that compose the helix, but also the first amino
i"d cut of the helix on each end. Then, the lest residue in the helix and the first residue in the
coil from rach grabbed helix are compared with the last residue in the hlUx -nd the first residue
in the coil from each grabbed coil. This comparison is repeated for every junction between
structures, and the overall configuratior with the lowest total difference is selected for the final
design.

For example, consider that we want to design a protein containing a helix that connects to a turn,
and we have helices with the following endings:

... GLY TRP ALA,... VAL CYS VAL,... ALA LEt VAL.... LEU VAL THR,... ARG TDR
GUL

The last amino acid in each group above :" actually the first amino acid of the =urn. We also havc
one rnm, with the following beginning structure: ALA ILE THR..., where the alanine is the last
amino acid of the helix. The system will compare the overlapping region for each possible
combination (TRl-ALA and ALAILE, CYS-ALA and VAL-ILE, LEd-ALA and VAL-ILE, etc.), and
note the difference score for each choice. It will then look at every possible combination of
structures to make up the entire protein, and ,-ten choose ,he struc-ure that has the fewest
differences between neighbors. Consider the fullo Wing illustration of this configuration:

S•-lý4llx -, I -' turn ->

GLY TRIP ALA Pcsa" herix
VAL (YS VAL
ALA LEIJ) VALI
LEU VAL THR
ARG THR GLY

ALA ;.E THIR.. pOmxa• turn

The use of only one extra residue at each end of a structure is arbitrary, awd might be more
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effective were there to be two or more compared. An interesting direction for future work might

be to compare the effectiveness of using only one extra residue with using m-re than one.

To d&termint; the difference score of adjacent structures, the following algorithm is applied.

1. Determine which amino aciW attrilutes (molecular weight, polarity. etm.) wdl be used to detemwn
the difference, and gather their possibe values. Each attribute wil have a 5Is of discrete possible
values. (The atnrutes are supplied by the user, but tue algonthm gathers the values.)

2. Determnae the weight of each attribute as given by the user.
3. For each amino acid in the overlapping region, for each aftrbute under test, calculate the

difference value as shown below

4. Sum the difference for all amino adds in the overlapping region to determine the difference score.

For example, the possible values for molecular weight are: very light, light, medium, heavy, and
very heavy. We interpret these as evenly spaced numerical values ( e.g. I through 5) and define
the individual attribute difference as:

Dist,= = Val1 - Val:D Max - Mir.

We then define the amino acid difference value as:

Distto•--w _ DistamxWeightwr

The particular attributes and weights used in our initial evaluation (which can be seen in the
description of the EPERIMENT.4Z experiment shown on page 8) were chosen "seat-of-the-pants,"
and have no particular theoretical justification. it would be an interesting future project to model
the effects of different choices of these parameters on the accuracy of the resulting design.

Consider this example of the frarm of a designed protein. This example is derived, by design.
from the EXPERIMENT.42 task listed above.

C : CON.I
INSTANCE.OF PROTEIN
SOURCE BRT. CREATE.PRO
SHEET.POSITION 5 C 5 16 ) C 41 48 ) )
HELIX.POSITION ( C 17 29 ) C 3Z 40 ) )
TURN.POSITION C C 49 54 ) )
MY.DATA C ILE PRO GLU TYR ARG GLY SER THR THR GLY THR HIS SER

GLY SER VAL GLY PHE VAL GLY ALA SER TYR VAL PHE ALA LEU MET ASN ASP PIlE LEU
_-WE PRO PRO LYS PRO LYS ASP THR LEU LYS ALA ASN VAL PRO PIlE VAL ASP TRP ARG
GLN LYS GLY PRO PRO ALA SER PRO LYS ALA ASP ALA PRO ILE )

The structures found in CONi can be compared to the specifications in EXPERIMENT.42 (the
contents of 2. STRUCTI "ante that the stuictures are not in exactly the positions intended by the
designer, but they are , TSC operates under the assumption that random coils are the least
important structwre . cause of that, they can be shrunk or expanded to make up for errors

mtro-duc-ed in the positioning of previous structures. This is why the second helix and sheet are in
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the proper position, even though the first helix and sheet were not.

3.3 TEM CONTROL

3.3.1 TEM Control Approach

Thc general architecture of our approach is illustrated in figure 3-3. In this approach, TSC, with
its discovery behaviors and a new knowledge base created for design and contro! of TEM
experiments, is coupled to both a .cope, and to a scope simulator. Work to date has coupled TSC
only to a scope simulator. Future work may complete the coupling to a live scope.

Scope 1
"-: The Controller NcISimulator
Scholar's OrlB

Companion

FN L KS U dri-

Trans- . -U

A talr ~ daw

* AsMW=

TTEM

FScopre 3-3 O ver ew of scope controL

3.3.2 The TSC Combined Analysis/Controller

The generalized approach to our TEM controller involves analysis of crystal paterns yielded by
either a scope or a simulator. Figure 3-4 illustrates that our approach will combine both analytical
algorithms and case-based studies of crystals. We believe that this will enable the TSC system to
more-rapidly and accurately identify crystal structures by considering cases from its experience,
and relying on industry-standard analytical techniques when cases fail to explain a detected
crystal structre.

Figure 3-5 is a flowchart of the analytical approach taken by the crystal analysis routines written
for TSC.
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FigUre 3-4: ApproacheS to Studying CrYStalS.
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Figure 3-5: Fowchart of analysis
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Chapter 4 Results

4.1 TOOLS

4.1.1 Discovey Tools

Sourc= codes for the nearest neighbor pattern recognition and rough su evaluation packages are
included in an appendix to this repor. Source code for the genetic rule builder is also included.

4.1.2 Design

Our directed evolution work with TSC inspired a design activity as a means to develop and
extend the capabilities of the directed evolution approach. It makes sense that design be explored
since all of materials science and engineering involves design. We shall return to materials
design in a discussion of protein results below- for now, we illustrate a different exercise in
design using the TSC directed evolution approach. This project enabled the development of the
directed evolution approach to design.

The task was to design a very fast sailboat [Parký 1993], one with an unconventional configuration
which would maintain contact with the water, and use a wind o hit speeds greater than 60 mils
per hour. To do so, we applied directed evolution to the task of evolving a design, given an iU
design, and we applied directed evolution to the task of evolving the design rules themselves.
This was illustated earlier.

The approach was to use the envisionment building tools to evolve the design-an envisionment
of possible designs grew out of the exercise. Periodically, a mutation rule fires and mutttes a
design rule. A number of design episodes are created, some applying the new rule. All rules are
evaluated according to their contribution to the design, and the best design is studied. The graph
below illustrates one of the designs explored by TSC. The plot shows the relationship between
net forward thrust and boat speed for a 20 mph wind speed. The concave downward curve
satisfies our intuitions that the faster the boat travels, the less surplus thrust it will have to
accelerate. Ideally, one reads the maximum speed as the point where the curve crosses the x-axis.

The curve offers a pair of interesting point. worth ponderng. two discontinuities are noted. Th
upper left-occuring at low speed-is easily explained by the boat lifting a balance ski out of the
water when it is no longer needed to maintain, as sailors would say, an even keel. The second
discontinuity, occuring at much higher speed, is a bit more interesting. In fact, we found this
second point an inspiration for discovery: design rules to keep the boat in the wat. In fac the
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problem of the boat lifting clear of the water remains a partially unsolved problem at this writing,
the effective maximum speed of the boat is therefore the speed at which it tries to fly. The
problem suggests a counter-intuitive solution: the heavier the boax, the faster it can go.

4.2 APPLICATIONS

41.1 Proteins

4.2.L1 Prediction by GA Rule Building

The problem is to predict the presence of helical structures in a protein when given its amino
acid sequence. The DE approach is to build a population of rules when given a "genoaoL." The
"genome is built from three "chroMosos" the working components of an observer rule. A pair
of observer rules ("englishized" for readability) follow-

RULE: 085.1
IF you have the actors: ALU and GLU
AND the relation: ALU abuts GLU
THEN predict a helix
RULE: OBS.2
IF you have the actors: LEU and GLU
AND the relation LEU: abuts GLU
THEN predict a helix

The three chromosomes are: actors, relations, and predictions. Actors are comprised of
the twenty natural amino adds (eg.: Alanine Arginine Asparagine etc.)

Relations are primarily structural or spatial in this example:
abuts-(LEU is followed by ALA)
precedes.1-(LEU is preceded by ALA with one amino acid between them)
precedes.Z-(LEU is preceded by ALU with two amino acids between them)

The types of predictions available are based on the structure to be predcted. Helix, Sheet, and
Turn are: the typical protein structures ,o be prediced.

A TSC experiment begins with the observer rules being exercised on segments of a protein
database. These segments are called windows of data, i.e., a sequence of amino acids. During
learning, the window is shifted along the sequence from start to finish. An example window of
data, with a window size of five (5) amino acids, looks like:

... PlE GLN ThR C ala arg gly ala pro I HIS ILE VAL...

Shifting of the window involves moving the vindow to the right by one amino ad&
... PHE GLN THR ALU E arg gly alo pro his ] ILE VAL...

All rules are exercised (allowed to vote) on each window. Voting is r-epeated as the window is
"slid" along the entire data set. A rtward/punishment algorithm then examines the performance
of the individual rules which cast a vote. Following the "bucket brigade" algorithm of John
Holland (Holland, 1986], those rules which participate in the vote, and which vote correcty, get
a reward (their worth is increased).

Once rewards have been passed to appropriate rules, a small decay (reduction of worth) of all
rules is computed. This has the effect of punishing those rules which do not participate in the
vote, or vote incorrectly. All rides are used for beeding until their worth falls below a specified
value, at which time they am eliminated from the gene pooL

Directed evolution exercises a genetic algorithm on the rule population to conduct a search for
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the optimum rule set. For example, using as parents OBS.1 and 0BS.2 listed above, crossover
builds one child or constructed rule that looks like the following:

RULE: CON.3
IF you have the actors LEU and ALA
AND the relation LEU abuts ALA
THEN predict a helix

This "child" rule is added to the population of rules and given a starting worth value. Using
OBS.3, point mutation may build CON.4:

RULE: CON.4
IF you have the actors LEU and MET
AND the relation LEU abuts MET
THEN prtdict a helix

We hrve developed a test knowledge base comprised of 70 observation rules (random combinations
of actors and relations) and exercised the DE on this knowledge base. Training was conducted
with ten proteins from the Brookhaven Protein Database. Results are illustrated in figure 4-1 but
represent only the initial performance of the DE system, and provide some eamly indication of the
make-up of rules which address the objective of the project. ie.. the discovery of rules which
successfully predict helices in proteins with fair accuracy.
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Figure 4-2 shows two curves, the percentage of helices discovered by the DE (line #1) and the
accuracy with which the rules fired (fine #2'). The DE attempts to find most of the helices before
it attempts to improve fte accuracy of the rules. The graphs also indicates a few missed opportnmities
during the experiment. For example, upon finding fifty percent of the helices, the DE began
refining the rules through "viral" mutation. A lost opportunity was caused by ending the vxperincnt
after five hundred cycles; predictive accuracy was still increasing at a useful rate.

Interestingly, the votes may be expanded to include positive and negative predictions, eg.:
predict helix and predict no heli•. Empircally, because of the large number of "negative"
tining examples, false rules begin to dominate and performance deteriorates, ine., there ae
typically 5 to 10 times as many non-helix as helix windows in a protein file. As a result, we have
learned that FALSE predictions are detrimental to the DE system's perfiordmance, and thus only
TRUE predictions are pursued. Prediction, in this research, is resticted to the helix structure.

The following graph illustrates the generAlly upward slope of accuracy in ou experimental work
with the GA approach to building protein structure prediction rules. As work wound down on
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this project, the slope continued to point upward. Our experience indicates that this is a rather
computational-intensive approach.

351
30

23~

20/

10/

5 s0 15 20

Figure 4-2: Directed Evok;tlon.

4.2.1.2 Prediction by GA Program Building

Testing of the genetic programming approach, coupled to rough set evaluation was conducted
during this 02 exercise. As mentioned before, testing was limited to small database predictions.
Our testing confirmed the abilty of this approach to recall stored patterns and to predict from
unseen patterns. We achieved 100% accuracy on recall and 96% accuracy for prediction. This is
consistent with the 93% to 100% accuracy reported by Salzberg (1990]. Our results for the iris
database are illustrated below. This approach turns out to be sufficiently compute-intensive that
the protein application was not explored ki this project.

Figure 4-3 shows the k(P,N) values obtained during training.

•3"

0.4

0.2

0 20 40 0 s0 100

Figure 4-3: k(P.N) during training.

Figure 4-4 shows results of testing for partte recall during training. This data was obtained by
testing on a subset of the data used for training.
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Figure 4-4: Recail accuracy during training

FIgure 4-5 shows results of testing for predictive ability dining training. This data was obtained

by testing on a subset of the data disjoint flDm that used for training.

That Data

8matim

0 20 40 60 00 100

Figure 4-5: Prediction accuracy during training

Figun., 4-6 shows changes in the size of the rninixnal set, M, during training.

1U1555

8,ratio�

0 20 40 60 80 100

Figure 44: Number of programs in minimal set during training

Our test results suggest there may be two distinct aspects to learning in this approach. The first is
the development of a population of programs sufficient to recall members of the training set. We
see this in Figures 4-3 and 4-4 where k(PN) and the recall accuracy proceed to the maximum
value of 1.0. At this point we might expect learning to stop. However, in a number of trials we
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found that prediction accuracy continued to improve, albeit sometimes erratically.

Looking at Figure 4-5 we see that prediction accuracy continued to increase for some time after
k(P,N) reached its maximum. We suggest a explanation may be found in the size of the minimal
set shown in Figure 4-6. At about the same time as prediction accuracy began its rise to a final
maximum of 96% the size of the minimal set began to decrease from a high of 10 programs to a
range of 6-8 programs. This is not inconsistent with other machine-learning techniques in which
smaller representations tend to have a greater ability to generalize.

The biggest drawback to this approach is the computational cost. Our implementation performed
well on the database of iris flowers, but the computational burden was a significant problem in
preliminary tests on the much larger task of discovering regularities between the primary and
secondary structure of proteins.

4.2.1.3 Prediction by Nearest Neighbor and Protein Design

In a typicil experiment, a protein was designed by the TSC case-based design code. The resulting
design frame from one run, known as CON_3, is:

C: CON..3
namn TESTPR03
instance.of protein
functionality none
source design.pro
HELIX.POSITION C C 10 21 ) C 51 56 ) C 59 66 ) C 71 80 ) )
SHEET.POSITION 2 C Z7 35 ) C 41 46 ) )
MY.DATA C HIS TRP GLY TYR GLY LYS HIS ASM GLY GLU VAL THR CYS

VAL VAL VAL ASP VAL SER HIS GLU PRO SER SER LEU ASP CYS SER LEU GLY PIlE ASH
VAL GLY ASP SER LEU VAL THR PHE THR VAL ALA GLY GLU ALA ASN SER CYS VAL GLY
CYS HIS LEU GLY ASP GLY ASP ASP VAL VAL ALA LYS TYR GLY LEU ASP GLY LEU LYS
PRO LEU ALA GLN SER HIS ALA THR GLY PHE HIS GLY )

In early developmental trials of the nearest neighbor code, a training set of 66 proteins from the
Brookhaven PDB collection was selected, which generated 9,794 exemplars. With a window
length of 17, we ran the nearest neighbor algorithm on the designed protein, and evaluated the
predictions of the nearest neighbor as compared to the design specification. Consider these
results (where overall performance = total # correct predictions + total # predictions available)
from a trial on CON-3 and compare them to results presented this table:

% alpha correctly predicted: 37

% beta correctly predicted: 67
% coil correctly predicted: ___

overall performance: so

0% 25% 50% 75% 100% The output
of the nearest-neighbor structure prediction algonthm is a list comprising the sequence, indicating
whether the amino acid is pan of a helix (A), sheet (B), or coil (C). The trial resulted in the
following predicted structure:

(CCBAA BBBBCCC CCCCCBBBBBBBCC C C CCBBBBBB
C C CAAA A C C CA C CAAAA C C C C C C CAAAAAA)

"The CO._3 protein was intended to look like the following:
(CAAAAAAAAAAAA CCCCCBBBBBBBB CCCCCBBBBB
BC C C CA AAAAA CCAAAAAAAA C C C CAAAA)

The test was then repeated with a training set of 91 proteins (25 additional). The test applied
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15,704 exemplars. The test, on CON_3, yielded these results:

%alpha correctly predicted: l I

%beta correctly predicted: i 47
%coil correctly predicted: 11_11111111111W62

overall performance: ! t

0% 25% 50%- 75% 100%

This trial resulted in the following predicted structure:
( C B A B B B B BA A A A B C C C C B C B B B B A C C C C 8 C C C C C C
CCAAAA CCCC CCA CAA BCCCCBCAAAAAA)

A later trial was generated to involve a "redesign" of a particular de novo protein documented in
the literature. The creators of Felix describe the protein as a de novo antiparallel four-helix
bundle designed for a specific topology (Hecht, et al., 1990]. Its designers intended to choose an
amino acid sequence unrelated to any native sequence, but which will fold into a desired three-
dimensional structure.

We have chosen to closely follow the design specifications of Feli'n, and apply the TSC case-based
design code. Note that our case-based design does not duplicate the specific residue sequence of
Felix, but does duplicate the secondary structure of that protein. Figure 4-7 illustrates the TSC
clone of Felix, which has the same shape as the original Hecht et al. sequence.

The case-based design program created an amino acid sequence and named the protein CON.4T.
Consider the following design frame developed to duplicate the secondary structure of Felix,
with the application of analogy rather than de novo rules:

C: CON_4T
instance.of protein
source bbt.create.pro
HELIX.POSITION (( 1 19 ) ( 2Z 37) 48) ( 63 78))
MY.DATA C PRO ILE LYS TYR LEU GLU PHE ILE SER GLU ALA ILE ILE

HIS VAL LEU HIS SER LYS ASP PHE SER ASP GLY GLU TRP HIS LEU VAL LEU ASN VAL
TRP GLY LYS VAL GLU ASP PHE PRO ILE LYS TYR LEU GLU PHE ILE SER GLU ALA ILE
ILE HIS VAL LEU HIS SER ARG LYS HIS LYS ILE TYR PRO GLY GLN ILE THR SER ASN
MET PHE CYS ALA GLY TYR LEU GLU )

The intended structural configuration is illustrated in figure 4-7, below.
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Figure 4-7: Felix --following [Hecht. et al.. 19901,

The smtctare represented by the TSC-designed sequence was intended to look Mike the following:
(AAAAAAAAAAA C CAAAAAAAAAAAAAAAA C CAAAAAA
AAAAA AAAAAAAA C C CCAAAAAAAA)

The nearest neighbor structure prediction code, trained on 91 proteins from the Brookhaven PDB
collection (none of which are available to the design algorithm), predicted the following structure
from the sequence:

(AAAAAAAAACCCCC CAACAAAAAAACC8CC CAAAAAA
AAAAAAAAAAACAAA CCAAAAACCC )

The final results of the predicuon were:

%alpha correctly predicted: 76
%beta correctly predictea: 10_III
%coil correctly predted: 75

overall perforrance:_ .

0% 25% 50% 75% 100%

The agreement with helix and turn (coil) design is interesting; the results are higher than published
predictions for any protein based strictly on native sequences. There is no agreement on beta
sheet prediction since none were included in the design. and only a single instance of B showed
up in the prediction.

[Zhang et al., 1992j report that the variation in performance of a single algorithm from one test
set to another can be quite large. A fair measure of accuracy of an algorithm is the average of
several different tests. Indeed, the [Salzberg and Cost, 1992] results in the first table reflect a
result averaged over 10 tests. The results reported here are not averaged over a number of tests;
that remains for future work.

Our results illustrated here suggest that accuracy improves slightly by decrtasing the prediction
training set size. To examine this accuracy behavior, a trial was conducted with the original 66
proteins serving as the training set for the nearest neighbor code. The designed protein is CON_4T.
the TSC Felix clone. The prediction improved, and produced the following predicted structare:
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S (AAAAAAAAA CCC CCCAAAAAAAAACCBABCCAAAAA
A A A A A A A A A A A A A A BAC A A A A A CCC)

The prediction made three errors by including "B" beta sheets, but appears to have improved its
alpha helix prediction. Consider the results:

%alpha correctly predicted: ' -0
%beta correctly predicted: 10
%coil correctly predicted: 62

overall performane ------ ____________77_ Further

0% 25% 50% 75% 100%
characterization of this behavior will require a population study of the selected training proteins.
Preliminary indications are ubmU certain training proteins from the additional set of 25 generate
exemplars which may be "nearer" to the testing window than ar exemplars-generated from the
original 66 proteins, but which offer an improper prediction. Factors involved in this prediction
performance include window length, and training set homology. These, and other factors, remain
a topic of continued research. An interesting approach to prediction improvement, as suggested
in section 3.2, is to enable the exemplar weighting scheme in the TSC nearest neighbor code.

The correlation coefficients Ca, Cb, and Ccoil reported by [Salzhberg and Cost, 1992] illustrated
above in Table 1 are computed with an algorithm due to [Mathews, 1975], and may reflect
slightly higher values than those reported here by us. The differences, if any, are the subject of
continued study-, direct comparison of results is problematic since the (Salzberg and Cost, 1992]
results are based on tests conducted on proteins from the Brookhaven database, and our results
are based an tests conducted on proteins designed by analogy to proteins in the Brookhaven
database. In addition, PEBLS applied a weighting factor to the exemplars which was reported to
improve its performance sil-nificantly over the unweighted version; our work has not yet applied
the weighting scheme. Finally, PEBLS includes a post-processing step based on the minimum
sequence length restrictions used by (Holley and Karplus, 1989]. This restricts beta sheets to a
minimum contiguous sequence of two residues, and alpha helix no fewer than four residues. This
is reported to improve PEBLS performance [Cost and Salzberg, 1993].

4.3 TEM
Our results to date on the crystallography task have been limited by budget considerations in the
other tasks. We have built the TEM simulator with our consultant A.G. Jackson, and have
integrated it with a knowledge base for TSC which operates the simulator as though it were a
live TEM. As a 03 activity, we met with an interested scope maker and zxhibited our tool.
Discussions on further development in a cooperative venture with this manufacturer were limited
due to the fact that they do not have a large enough market to justify R&D in this domain. They
did, however, offer to us their entire clientelle by way of their research newsletter. Dr. Jackson
has auth,,ed a paper for that jouwnal.

We now sketch the demonstration, as it has been conducted.

4.3.1 Launching the TEM Controller/Simulator

The following illas-tres the display %%iien the TEM simalator is ioaded.
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4.3.2 Launching TSC

Once the TEM simulator isklunched. TSC itself is launched, yielding this displAy.
r File Edit Format Connection options sisptm iodems 4:06 PM ( D '

Untitled Knwledge aft

untai siwirettlj

4.3.3 Initialize Simulator
With the sim••tor and TSC in memory, the simulator is then initialized by 'SC. This initializA.on
calibrates the simulator to enable further analysis of zones and crystal suuctn- s. Ini aon
involves TSC calculating the zone on each of two different crystal images generated by the
simulator. The first image follows.
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This is the first image requested by TSC.

Find Pattern 1
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NeMt the second image requested by TSC.
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_ith both images analyzed, the TSC TEM contoller is now ready to analyze the crystal furIter.
Itdisplays the zones on a sreoreapluc imae obtained from the two calibration images.ESterna phic (Holder.Cup) MM

-- 3.,

I- I

4,3.4 User Dialog With the TEM Simulator
Following initialization, the user is free to use dialogs and the command-line inteface to request
different images fr'om the simulator. On a live TEM, the same dialogs and command-line references
would cause the scope to produce images. A typical command-line request is:

go to zone [1 -4 1]

This request would cause TSC to respond with an image appropriate to tht znne. The following
images illustrate using the dialog windows to explore a crystal.
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| Initialize Simulator
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w R (1.0 hi 0.00 2 00

-1.0 hi00 2 45.00

Kancel

As mentioned earlier, the simulator has been coded and demonstated, but project requirements
in other-especially the Protein--tasks prevented completion of the TEM controller activity.
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Chapter 5 Summary and Conclusions
The totality of the work performed thus far supports and envisions a unified tool approach to
materials science and engineering. We summarize the architecture of such a system in figure 5-,

Molecule Data

TSC
Molecule
Analysis

Molecule/Material
Case Library Cues Process

-- Design Rules

Rules
Process/

Case ii )
Library Molecule/Ma erial

Figure 5-1: Overail project summary.

To achieve such an architecture, much work remains. We list many of the suggestions for
improvement and further work which have emerged from our researclh. We suspect that a tool
very useful to the materpls ,ields will emerge when this research yields a succssfu 03 activity.

5.1 GENERAL IMPROVEMENTS
Improvements to the TSC case-based design system include:

Ability to have user generated overlap paraneters.

As discussed above, the TSC case-based design system compares adjacent structres by selecting
one additional residue at each end, and makes a judgement about the similarity of the potential
new overlap with the overlap from the original sequence. This choice of only one residue is
arbitrary, and it may prove interesting to vary the amount of overlap used and see how the
accuracy of the final design varies. While this poses a few minor additional computational
problems (such as what to do when a chosen struct-re is so near the end of its native protein that
there aren't enough extra residues to make up the overlap), none of these computational problems
are beyond the capability of TSC.
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- Testing of different parameter values for amino acid comparison.

The method used to make judgements about the similarity of neighboring amino acids is arbitrary.
It might very well be the case that a different method (a different set of attributes and weights, or
possibly an analysis of the molecular structure of the residues) could produce much better
results.

* Ability to generate new cases through adaptation of old cases.

At present, the system finds all the potential residue fragments, compares them, and connects the
least different to form the output protein. There is no provision for modifying the individual
structures in any way to build a better I,, ein. It may be useful to apply a heuristically guided
method for changing the newly created irotein.

- Validation of new proteins and inclusion in case library.

Validating proteins by X-ray crystallography (or other method) and placing the results back into
the case libraries would create an external feedback loop as described above. This, in combination
with the following, may allow the system to eventually discover new details of the first principles
of protein folding.

* Checking a new sequence against library for unwanted structure matches.

The program could check the case library to see if it has incorporated a sequence of amino acids
which is identical to a known example of an unwanted structure. While this would not guarantee
that the protein would form the desired structure, it would reduce the likelihood that the protein
would fold to some other structure.

- Characterize the effects of larger case-based libraries

The case libraries used in the protein design algorithm are at this point a small subset of the
Brookhaven PDB. It is anticipated that providing more cases will improve the performance,
though there may be a trade-off in accuracy in comparison to design time. Further study will be
needed to find the best mix of speed and accuracy.

* Long-term improvements

Beyond each of these immediate improvements to the TSC system, a long-term extension is to
combine case-based design with aspects of de novo design. This would require that the system
discover new protein "first principles" from both its design-pyediction cycles, and from database
wining.

A further exercise would organize the design and the training proteins into a taxonomy as
suggested above. Design experiments may then be conducted by specifying the branch of the
taxonomy to be used in both design and prediction; the set selected for an exercise must then be
partitioned into design and prediction training sets.

Finally, it will be useful to construct a family of designed proteins, characterize them, and apply
appropriate feedback to TSC and to build a library of protein designs exhibiting certain (e.g.
electro-optical) properties. With this feedback, the family of proteins designed may be classified
as accurate or inaccurate, and the details of errors generated noted in the design frames. With this
feedback mechanism, TSC would be able to modify its own memory (akin to traditional dynamic
memory algorithms (Schank. 1982]).

5.2 PREDICTION SYSnTM IMPROVEMENTS
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Improvements to the TSC nearest neighbor prediction system include:

Characterize increasing of prediction database

Currently, only a small subset of the Brookhaven PDB is used as a basis for the prediction
algorithm. Preliminary results have shown that increases in the database size may improve the
accuracy of the nearest neighbor technique in characterizing proteins the system has designed. If
some implementational speedups are introduced to the algorithms, it may be practical to introduce
larger protein databases than are currently used.

Training exemplar weights to improve the prediction performance.

PEBLS [Cost and Salzberg, 1993] applies a weighting scheme to predictions offered by exemplars.
The weights require a second mraining pass through the training proteins to adjust the weights. As
mentioned in section 3.1, [Cost and Salzberg, 1993] report the weighting improves prediction
performance of PEBLS.

When PEBLS selects exemplars for prediction, the distance of the exemplar window from the
testing window is calculated, and that distance is multiplied by the weight value of the particular
exemplar. Smaller weight values imply smaller distance values; the lowest corrected distance
determines the "winning" exemplar. Weights represent a kind of statistical property of the
exemplars. Lower weight in a given exemplar (over the rest of the population) implies that
exemplar is more reliable at formation of valuable predictions. The current implementation
defaults to a weight equal to 1.0 for every exemplar.

The TSC nearest neighbor code presently allows for weight training, but the weighting algorithm
is not enabled for the experiments reported here. It will be useful and interesting to enable the
code and measure changes to prediction performance.

Overall, it is fair to comment that this 02 project evolved over time to emphasize the directed
evolution aspect of protein evaluation, largely to the detriment to the other aspects of this
research originally envisioned. However, the work continues. We see a reasonable 03 extension
into the pedagogical applications of our TEM simulator. We further see a reasonable 03 extension
of our nearest neighbor, rough set, and qualitative modeling tools.
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GENERALI NEAR.NEIGHB.T

to do. consider imnplementg a *me of exemoplsm, perhaps anchored in the AA database such that
you take each A.. in a ,.mrdow and walk the =at. If the =se no !onger supports your next AA.
then you must compare your window to all the REST of the aw exemplars
This shotld cct down on some of the searching needed to compar= exemplars to windows.

dates
05/20)93 jp2' first cut, made from NEARYEIGHB.T to generalize

away from proteins
05121,93 jp2: added weights, other minor changes
05t24)93 jp2: minor fixes to get A eights working properly
06101/93 jp2: added correctness trwalhzers

GLOBALS

"(*flg *excrmplar *window *classification *winrad \'hese should not be global
•tablelist *exesplar.lst *trnin# *test *traamhst *te.hst *self.exmp

cua *cLb CLC *cor.a *cor.b *cor.c *irix )"
&global.ast union to-anchor &globalsist

......._1 0ISC SUPPORT

LIST.REPLACE

descripon: Given a list, a number, and a sx. --turn the lst with that position element
replaced by thz gi,-n sx

ezmple input (ABCDE)3X
example output: (ABXDE)
notes X

c: LIST.REPLACE
instance.of ls'IlfuncC
my.creator bbt
"t.iske list number sx
i.gmve list
arguments *my.lhst *position *new.elemest
my.vars 'pos "new.hst *ma.pos
algorithm (do

(cond
((equal? *posiuon I)

(bindq *newJsst (cons *new.element (rest *mylis ))))
(T

(bindq *newJist ( concat ( conot ( grabi'umn *mydls ( subl position))
(list *aew.elent))

(chpist myhss(addl "posstion))))))
(return new.hist))

c: SUBUNTT OF
subof iroermadon-s!ct

c: HAS.SUBUNITS
LdsArcezof flor,.ftmc
my craor wjb
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Ltzake noriC
i.give list
rsy.vars *proteiniist pronauqne 'list data
algorithm2 ( do

(bindq *protemnbst ( get PROTEIN'SUBS)
(loop.unsl ( null? *pro-enlist ) \forenxtptiein

(do(bindq*pro-nm( first *Protezirist))
(bindq *data (.reverse (get *promnawn MY.DATA)))
(ifA-u ( greater.than? ( length *dam ) I1)

( bindq *list ( consa psoname 'list))
(blixq *proteirtlist ( rest *proteinlist))

SET.USE

description: install an exempler use value in ant exempb~r-the third value

c: SET.USE
instaneef flow~fune
myzeaset jp2
imiae list number
i.give list
arguments exersp %se
my.vars .,Or
algorithmn (tistreplace *exemp, 3 *use)

comment
algorithms (do

(bind 'cot (firt x p))

(bindq exump( ret ret zep)))

(bindq *-emp (rvse(cons *co exemp ))
(retun *esersp)

COttment:

C:GET.USE
insaince-of flow.func
nly.ceator jp2
Litake Ilis
i.gsve number
arguments Cxterp
algorithm ( third 'exersp

comnment:
algorithmn ( second ( reverse 'exemp)

eomnient

INC.USE

desritin: increment an exerspler correct use; value in. an exemplar-lie third value

RiNc-USE
instasice.of flowirinc
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my~erzro jp2
ijtake list
iLgive list
aguments *exezmp
my.vacs *'Ms
algorithm (listrepLace *exemp 3 (addl. (third *exteip)

algorithm (do
(bindq *-rrp (reverse cxemp))
(bindq~use(secod *-ep))
(bir*qus(addl~use))

SE.CO.RRECT

descriptiort: instill an exempler correct use value in an exemplar-dre fourth value

c: SET.CO1RRECr
instanoe.of flowfunc
my.cearo jP2
iWrke list number
i.give list
argumenIS *exernp *cor
algorithm (listeeplace cexemp 4 *cor)

CaOsmen=
algorithm (do

(biudqexep (revere eemp))
(binlq~erernp (restesep))
(bindq %xenp (revers (cons cor xemp)))

c:GET.COmRC-r
instance~of flWWII=
myxresrr jp2
i.take tint
LgiVe numnber
arguments 'esenp
algonthm (fourth lexesnp)

Conrtss
algorithm (first(reverse xetnP))

ccefrrnesi

INC.COIRRECr

descripdo: increm. nuan exempler correct uise value in an exemplar-the fonrth value

c: INC.CORRECT
rnemr=.eof flow.fumc
mvzea'Or jp2
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I.Sve list
argumntsfs Cxtmp
my.varr cor
algonthm (listreplaccexenp 4 (addi (fourth *exemp)))

comment:
algorithm ~ do

(birndq*e-zp(reezeeerP))
(bindq *cor( firs *-emp))
(bindqcor(addl *-c))
(rewrn(sax.orrect (reverte*nep)C&)))

GET.WEIGHT

desaiption: returns weight fr-om an exemplar
weight ftses/#cosrecutses
SMaller better

c: GET.WEIGHfl
instane.of flow.func
myxieator jP2
izake list
Lgive number
arguments *exeip
algorithm (quouent ( thirdl *exerp) (float (fourth *-ep))

SORT.014.WEIGHT

destripuinn sort eierplar tin on ascending weights

CO%04LNT:

c: SORT.ON.WEIGHT
untsanot.of flow.func
nty~ceator jp2
i~rake list
i.give list
arguments lI=

COMM4ENT;

c: INC-ACW1AL
instanot.of flowifuns
mny.areator jp2
Ltak- -no
x.gsve M=n

(setq cua(addl *cLa)))
( tave? IA 7tE)
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c: NC.PREDICTED

rnyxreaL jP2
ilzake symbol
L~ie- none
argumesits PteA \only wherncorret

algouithim (cond ((same?*predA)
(Xeij *cNA (addi *cor~A)

((same? 'pred 13)
(setq *corbl (addi *cvcb)))

______________________~UST SUPPORT

DELETE.ELEMENT

descnptJO Delse the tl=at position 'pos Of I*list returning the fesuIri
numbering begins with 1.

c: DELETE.ELEMENT
instanoe.of flow~fimc
myxm=at wjb
Ltake list number
Lgive list
arguments lis, Pos
my.vas 'tep count
algorithm (do

(ifflue (eqjual? *Pos 0)
(4isphay 'DELMMMLEME. Cannot take 0as Pston alntlg etv)

(bin 'Coont I)
(bMNoq tep tl)
(loop.unb (equal?. *count 'pos)

(bindq *list (rest *list))

(bindq reup (revo*etemp))
(remur (concta 'temp (rest *list)))

INSERT.ELMEN

descipuori: Inisert 'elemetat possuio 'pWof lMist'lsttetuu~g th result;
numbennsg begins vith 1.

cINSERTflENMNT
mstnct~f flow.func
my.em=t vijb
Lu~ke list number sx
I4IVC list
arguments 'ls'oseemn
my.vars 'temp *Coti
algorithm (do

(if-tuue ( equal? 'pot 0)
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(display INSERTELEMIENT: Cannot take 0Oas positins argumaent.ero)

(biulq 'ecount)
(binAqtepnil)
(loopmnal (equal? *c-ut *pos)

(do (bindq te-p (cons (firssit*-)'t*-p))
(bindq *lis(est (- *t) )
(bindq count( addi *count))))

(bin6k temp (con elemenz teip))
(bindq 'temp ( rvae L p))
(rentun(concat *temp *list)

REPLACE.ELEMEN

description: R~eplaces the eementatposmorio *pos oflitst *list wish *element
returnng the result; numbering begin with 1.

c: REPLACE.ELEMENT
iotunie~f flow.func
my~eeit= vjb
Ltake list number sx
igive list

g~uinentS 'list'pos.elc,,mn
my.vars tlep *count
algorithmn (do

(if-lu (equal? 'pos 0)
(display REPLACE.ELEMENT. Cannot take 0as position argument.'errer)

( bindq *coulI
( bindq 'temp ml'
(loopmntil (equal 'cot 'pot)

(do (biadq 'wmp (cons (first'*I=e) tenip))
(buidq 'hst (ret lis))
(bindq *count ( addi *count))))

(blxiiq *tep (cons *element 'Lump))
(bindq 'temp (re-s 't-p))
(reun(conaxrep( rest'list))

ALGOR]THM SUPPORT

COUNT.CLASSES

desuipipon: takes the hus of exemnplars
rypscal exemplar bOoks 'ar- (gly glu pro.-.) l 1)
rennls a list e-g. (2869 1091 576 1202 .38.20 .42)
which =s Total Valpha Nbcia#cosl %alphta %beta %coil

MUST BE MODIP!:ED TO IN~C CLASSES OTHER THAN A. B. and C&Ak &

c: COUNT.CLASSES
instzanc~f flow~fwsc
myzream Pdb
ilake lis \exemplars
isgive 119t
argumen 'list
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my.vams *a~coumt *bx4D= Occoui *length lexcip
2lgorithm (do

(blnt1 a*- 0O
(bindq bxouatO)
(bindq *cxcot= 0)
(bin6q *length (ength *is))
(loop-tmml (Vull? u1st)

(do (binlq*es=ep(firstllst)) \getanexemplar
(if.uue(hsls? xep)

(bidq*, esp ( secoond'exep))) \Nget classification
(cond ((same?exemp'A)

(bindq~a.count(addl *axcmt)))
((same? *espB B)
(bindq~bxount( addi *bcount)))

(T (bindq~ccomn(addlcr-count))))
(bindq*list (rest*list))))

(return (list *length 'a&cosmt 'bcowt *c.coDUt

(quocint'ucott(float 'length))

(quotient *c-.ct( float 'length)))

FOCUS.INCLA.SS

description: Tests to see if fthAA at position *pos (focus) in the Ixocein givent by *pmmnaie
lies in class (A. B. C) suwc Smict values are ALPHA and BETA.
This is the, TRAINIG feedback toutine

c: FOCUSJN.CLASS9
instancedo flow.ped
Ltake symbol symbol inteer
Lgie flag
argumets 'Smust~po mm~.rat pos
my.vas 'trth 'posiumo 'fims
algorithm (do

(bindq-Wuth F)
(con ((same? *==*etALPHA)

\typscal heli position slot val: ((33 38) (53 60) (65 71) (8186))
(bindq 'posdon( va'of'peo-ntne 1ELX.PO'm)))

((smne? OstrueBETA)
\typicalshetposiisbnslt vii:((57) (2125) (2732) (515-4) (74 80))

(bindq'posizon( value.of'pmsotame SHEEr.POSITON)))
(T (bi*6*posi-Qni))) \NOT alphta. NOT beta

(loop.umil (o&?'tsth(mUl? 'posion)) \ for each hellsshee pwition pair
(do (binrl *f-rs ( fmrs *posito) ;

(b*uu~W not? (kmteae~han? Opos ( seconf'fsut)))

(bindq postin(ret posiio))))
(renirn 'tuth))

PARTMTONI)ATA
desciptioe Assigns vtrning and testing datm from 'Ixuteinlist to glcbals tmnI~st and

Itestjist accordling to the values of'wirin# mWi 'tesof.
Jtunttakes a list of jioteins and cuts is into two pans
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c: PARTTON.DATA
unslance.of flow.tunic
flyJMUWC wjb
LiAke lis:
Lgive nows

my.varl 'legth 'tra inC p *tesz-lip 'tep
algorithim (do

(bindq 'length (lengb lproteinlist))
(if-tu (ptawdtuan? (plus *trair# 'tesul) *length)

(display> *Astemapted to partition niore data than eWSWs! error))
(bindq 'rmnz-ltp ( minus 'leo nghtritS))
(bindq 'tesdip (mins( minus 'lngth 'wsz#) 'iin#))
(bindq 'temp(re-re proteilis))

(bindq 'temp ( -rvese'emp))
(bindq 'temp (cliplisr *-Vm *-iin#))
(bindq fep (reere terp))
(setq 'testist(--vese( cliplist'tep 'estls))))

SlIFr.DST

decriptio: Sabas *,distne fromt each of die enmes of each pak in 'pairs

c: SHIFT~DIST
11n:2a1oc-of flow.func
inyxcrec= wib
Linke list number
iLgive list
argumet -pair -distance
my.vars *in *out 'shiftedpts
algorithm (do

(bindq 'sliifted~n; nil)
(loop.until ( null? 'paims

(do ( bisiq *out nil)
( bindq *in ( first *pairs)
( bindq -out ( cons ( minus ( second -in) -distrance) *out)
( bindj *out ( cons (minus ( first*in ) 'distance) *oat)
( bindil *sthitedprs (con *ott *shifedprs)
( binq 'pairs (rest*pairs))

Mr- nreereshifted~prs))

ral RNALPAIRS

descripdo find pairs fromta given 'pairslist vtich are within ctram & umterm

c:11TRNALPAIRS
irssaince.of WlWlI=c
tnyxc=t %lb
ilake number number list
I.give list
agumensis -Ift end -rmend 'pairiJisr

mty--ar *pair .tnepains
algorithm (do
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(bi*d *imen pi nil)
(loop.unt (nuB? *pasirsdi)

(do (bindq~psi(llrspaksiist))
(ifz-ru (36d? (noO (k-sda? (iam *pair) *fted))

(not?.( V .tan?( end pk)Otd )
(bindq *inten4pak( -e *Pui 'inieýais)

(bindq *pakslhet( rest p~z5Jist))

CREATh.SIJUNrr

description: ntakea new concept asasubunitc-fa given coocept

e.g. hetnogdobin bas 4 sub-nk

c: CREATE.SUBUN1T
instancedo flow~fmsc
mycase= wib
Ltake symbol l-ist list numnber list
LV"~ y-W
arguments *prnmna= helices *sheets Oprev-suhslgth *subh~at
my.vazs *con *c.term *n~em *sub befices *subshe
algorithm (do

(binq'-n(ne-aom))
(bindq *Cltm- (addi *aev~subsiength))
(bindq *oItem (plus *P- vsubs length (length *subAfta)))
(bindq -suhhelices (Wens Lprs-c~etm -nwm bhelie) )
(bindq -s hbtlime ( shifLdist-subbelices -peev~bs.lett))
(bind *suhbstets (inseumar 0-s *-ez *sheets))
(bi*d *suhbshncts (Ashikdist *sub-shects jprevmsbsýet))
(stivalue con SUBUNIT.OF *pro==a)
(setvalue, *con MY.DATA *suhbAta)
(sez.value *con U0.1X.POSMTON *subbhelies
(setvalue 'coe SlEET.POSM1OlN 'snhbshes)
(ree=ncon))

ORGANEMPROTEINS

descripocer examnes eah pr te o detenume
whether it has suibunits.
If it does ocept are created for each subunit fromt
sequence, helix and sheer data and
inscrted in place of fteprotein narae in the
jxotein lisL
The protein liW is then partitioned into
tetig and bading data.

NEEDS TO BE RtEPL.ACED WrTHA GENERAL THINGY

c: ORGANtZE.PROTEINS
insunmnof flow.ftin
mymearor jp2
Ltake has
Lefte list
argumnents 'prrceiniis:
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iny.vas pos zemp-proiist *Pro-n *data #subwuts *helicet *sheets
iny.vars *preev-ubslength *subdAta *con
algorithm (do(display> - Organizing roteins7 prinm)

(disply> ProthlLlSLprim )
(bindq *pos I1) \keepr track of position of current protein
(bi*d *teproXis*pvotinlist)
(looP.unl (null? *tep.pro~list) \for each prottein

(do (bizalq pronm e(first*ep.prolist))
(bindq *d-z ( reverse (get *pn,-atn MY.DATA)))
(bindq *#subunits (length *data))
\ this assumnes subunits are in nested lists fromn 'nyda=
(if~true(greater.than? *#lsubunits I) ifrnore than oweSubunit..

(do (bindq prtetn~list( dli.eleentpeueendspos))
(bindq lielies( auie-of *prowiame 0fl.POSfl1N))

(bir& *sheets (vaue~ofto.nAxnSHIEET.P0SMOIN))

(butdq prev~subsJlegth0)
(loop.until (riufll *data) \for each subunit of protein dama

(do (bindq Ostb.dam ( firs; *data)) \get next subunit
(bindq *con ( createsubmistipromnate *heice *Sheets

*p--~sbs.length *stb~data))
\is this smart enough nout on same protein again?
(bindq protein.Uist ( inaertentem *proteiniist *pos Ocoo

(bindq prev-subs.Iength (plus ( length *sub~Ata 'prev-sbsLength)
(bindq *dm (re= *data))))

(bidq *pos (ddI *pos))))
(bindq 'pos (addl *pos))

GET.PROTEINS

description: Gets the list of proteins,
RANDOMIZE them and exarrines each to determtine
whether it has subunits.
If itdoes, coceptsare created for each subunit frmm
seqisenc helix and sheet data and
inserted in place of the protein name in the
pencein list.
The protebi list is then pamnitord into
testing and traiing dama

NEEDS TO BE REPLACED WrMl A GENERAL TI[NrGYY

c: GET.PROTEINS
instance of flow.func
my.acro jp2

i ake none
z.give lis
my.vas *proceuitja
algorithm (do

(binq *proeeinitst (geV PROTEIN'SUBS)

(bindq 'peoteinmlist ( organimeproteins Oproteinist))
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(pwtition.data *'Proteinlist)
(return tiainhIst))

VTAA.SLaTS
decito:Initinlizes the slots

FEA'ltlE.COUNT. ALPIIACOUNT. BETA.COtJNT & COIL.COUNT

ofeachAAto(OO .. 0) where the length Of this list Isgiven by wn-lenigth.

c: MNTAM.LO'fS
instancemof flow.func
nsyxrcrt %%b
Luake number
i.gire none
argumnents -win~lengiLh
iny.vars -count *initial 'AAirst *A.A.
algorithmn (do

(bindq *count 1)
(bindq'initianHi)
(bindq *AAlkat( get 1WJAIRAL.AMNO.ACIDSUBS)
(loop.until (grewe.tha? 'count 'winieiith)

(do( bindq itniual ( cons 0 'inital) )
(bindq coult (addl 'cout))))

(loop.untl (null? *AA~list)
(do(bindq *AA ( first *AAitist))

(seLvalue *AA -FEATURE-COUN?*inmal)
(setvaluc *AA 'ALPHA.COUNT'iial)
(SeCvaue *AASETA-COUNT 'initWa)

(set~value *AA'COIL.COUNT 'iratial)

(bindq *AAJM s( rest 'AA.IMs)))))

C-OUNT.AWS
description: Call INITAA.SLOTS to initalize the

FEATURF-COUNT, ALPHA.COUNT. BErA.COUNT & COILCOUNT

slots of each AA to ( 00 0)
where the length ef this list is given by *wiiiiength.

Then for each AA in ecwh of the protein used for namning

examine The window determined by this AA and $win~rad

1, increment the ith entry of the IEATURE.COUNT slot of the AA in window

Position i.
2. lifthe window is centered onan AA which is pain of aparticuilar dass,

increment the ith entry of the; corresponding slot of the AA in window Poasiton

j and set thie classifcation flag. ( A. B.C for protein)

3. Create an exemplar from the window, the current value of classificalioti and the

exemplar weight ( initialiy set to I ) and place it on *exesplxr~ls;L

c,&: (window classifiction #luse #PcorTec)
((gly glu pro...) B I I)

c: COUNT.AAS
insusice~of flo*.func
my.ereatt JP2 wj
Ltake number
iLgive none
argumnents *wunrad
my.vars 'proteaniist *pron==i *proarry 'proiegth *winiengi 'focus *i
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MY.'Yars po 'disp OAA Ofeaturelist 'list 'temp
\ -flag Oexeznplor.Iist '*5tsnplar *window 'cl~sgtflcadou - GlobSIS whi~ch should be locals

algorithm ( do(display> 'Counting AAS" print)
(setq'ei~zinplarlist nl)
(cond (*mixf

(bsndq 'protein~list (geLpmteins)))
(TF (do(bindq prts5Llist (get 7ROTEIN'SB)

(blndq 'pronin-ist( ssi-cproteflS prvtesn~ls))

(bindq 'winienge ( add (tunes 'wianrd2)))
(iiti.AA510tS *winienigth)
(loop-urvti (cull? 'proteiniist)

(do (bindq Ipoae (frust proteinjs))
(display> .pomsiunv" print) (display 'pro-naine print)

(bindq 'pro-ary (creale-pro~enaiTSy 'pmonsie))

(bindq 'prolegib (&-rYl@ *pro.irry 0))
(bindq *.ocuLs I)
(Ioop.until (greater.tlian? 'focus proinglil) \VoDrewh focus in protein

(do (setq'exemplatflhl)
(~seqowindownil)
(bindq OiI )
(Setq flag F)
(loop.unfll(greater.tiian? 'i windengih) \For acwh element of window

(do (bindq'dmsp(subl (mnus ui *ina)))
(bindq'*pos (plus fbcus'dtsp))
(if~true(and? (greater.thi2?Opos 0)

(not?. (gre~iucr~tlt? 'pos 'pro~length)))

(do (bindq *AA (arraYl@ *peosiray 'pos))
(iftime (and? (equal?Oi I)

(and? (greater.tha? 'flocus *Whim~)
(less.thva? *focus ( addi (minus 'pro~length *winjra)))))

(seiq flagT'))
(if true 'flag

(setq wuindow (cons *AA 'window)))
(bind -feautureist ( value-of *AA 'FEATURE.COUNT))

(sf.tnue (null?'featine~list)
(do (display> *i print)

(display Imaprint)
(display 'fcawue.Iit print)

(bindq 'temp (addi (nth 'feamurlist ( subl 'I)))
\(dssplay'tempp-0lt

(bindq 'feasurelist (replac-e.Cinfeiit feamli.15t 'i 'temuP))
(set~value OAA TAUREECOUNT 'feanirJist)

\(dssplay> CounLAA 4 print)
(cond M(ocus~in~class? 'ALPHA *Pro~name 'focus)

(do (bindq *list ( value~of*AA ALPHA.COUNT))
(bindq'temnp( addl (nth 'list(subl 'i))))
(bindq *list ( replace-cemtlent *list' It *tmp))
(set~value 'AA 'ALPHA.COUNT *list)
(setq 'classificituort'lA)))

((focusin.class? 13ETA Opromialme 'focus)
(do (bindq'115t( value~of'AA META.COUNT))

(bi*d -temp ( addi (nth 'lsst ( subi 'i))))
(bundq 'list (replarcp-eltme~t *list' 'trup))
(set~value 'AA ,BETA.COUNT 'list)
(se q'eassificationml )))

(TF (do (bindq *list (valro IA2Of ILCOUT))
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(bindq 'temp (addi (nth *list ( subi 'i))))
( bindq Ilisa ( repltie-eleinen *list 'i *tenp)
(setvalue 'AA COILCOUNT 'list)
(setq 'classificationCM)))

(bindq It (addi *i)

(if true*flag
(do (setq'exeplar (cons I exemplar))

(setq 'exemplar (cons I 'exeplar))
(setq 'exemplar (cons ' lassification 'exeplar) )\( classificationi #use #correct)
(seq -window (reverse-window))

( sezq 'exeplar (cons 'window 'exeplar))
\( window classification #tuse #Correct)

( stsq 'exetnplar~list (cons *exeplar'exemnplarlisst))
(bidq'*focus (addl *focus)

(bindq 'proteinjist (rs*proteinlist))

\could sort exeplar list on weight

(Sezq 'exemplarlist ( -emos 'exemnplarJLis)
(display> III AA slots set ...*""..I print)
(display "" Exemplars created""..*"' Pri0t
(display> (f iistexcplar.list ) pint)
(display> TI~T EXEMPLARS CREATED,- log)
(display> (flrst'exemplar.list) log)

MAXE.TABLE

description- Given a list of tattos bwld the table 21) array) of the SW-VDM valoies of this list.

c: MAKETADLE
instance.ct flow.ftmc
myxratoc wjb
MtAC list list
LgsVe symbol
arguments 'tatiolist 'labellist
uny.vars 'dim 'table 't $J 'triol 'trto.j 'razio~i 'xato.j 'delta 'temp 'next
algorithm (do

(bindq 'dim (addl (length 'ratio~list)))
(bintkl 'table ( create~array,2 'dim 'dm))
(bindq *j I)
(bindq 'tep 'label~list)
(loop.unzsl(cquafl'*jdim) \fill row 0with labels (AAs)

(do (bindq'net(first'tmp))
(array2! 'table 0 'j 'next)
(bindqt*-p (rest*temnp))
(bindq 'j (addi 'j))))

(binrk It'I)
(bindq 'temp 'labellist)
(loop.until(equal? 'i *dim )fll column 0 withllabels ( A's

(do (bindq'*next (ftrst'temnp))
(arry2! 'table 'i 0 'next )
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(bindq 'temp ( rest 'temp)
(bindq i (addi *i)))

(bindq *11I)
(loop.until (equal? 'i *dim)

(do ( btdq-jlI)
(Iop.-unl (equal? 'j 'dim)

(do (bindq 'tno.i (nth Orauolist (subl 'i)))
(bindq Omo.j (nth 'ratiolist ( subi -j)))
(bindq -delta 0 )
(loop.until (null? *trio.i)

(do (bindq *ratio.i first OtrioAi)
( bindq *raslo.j (first *tro j)
( bLAd *delta ( plus ( abs (minus *rauioi 'raiio.j -) delta)
( bindq 'urio.i ( rest 'mno.i)
( bindq *trio.j ( rest 'tro.j))

(array2! 'table -I ' j *delta j
(bindq 'j addlI 'j))

bzndq 'i ( addI* 'i))
(mtimum-table))

CREATE-TABLES

descriptin For each window position i construct a list of ratio tnos.
The trios are obtained by dividing the ~th element of each
of the stuicture count slots by the ith lekmet of
the-FATURE.COUNT slot for each of fth 20 A~s.
These hats are fthn passed to MAICE.TABLE and fth resulting
handela are returned in a lIst.

c: CREATE.TABLES
insttance~ot flow~func
my.areator wib
i~take number
i give list
arguments 'win.tad
tny.vars 'AAlitst Ifeature 'wuiJength 'temp 'ratio~list 'AA
rny.vass 'num 'dem 'rssio 'trio *tables
algorithm (do

(display> 'Creating tables .-. pruf!
(bindq 'A/list (get 'NATuRALAMlNO.ACID su3s))
(bindq *tables nil)
(bindq -feature 1)
(bindq 'win~length (addi (utims'winrad 2)))
(loop-util (greater.than? *feature 'win length) \for each feature in a window

(do (bindq 'temp AA~list)
(bindq *aio~list nil)
(loop.until (null? 'zemp)

\for each amino acie &&&,&genersliz
(do (bmdq*AA(fust'teinp))

(b:indq *tro nil)
(bindq *denom ( nth ( vahuef'*AA FEATURE.COUNT) (subl 'feature)))

\( display> "denomr" debug ) ( display 'desior debiug)

(bindq 'num (nth ( value~of'AA ALPHA.COUNT) ( subi 'featupre))
\(display> 'nm:debug) (display 'sum debug)
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(cond ((equafl'denomO)

(T (bindq*ratuo (quotient *num (float denom)))
(bindq 'tio(COS ra *-'m ))
(bind*munu (nth (vhrueof 'AA BETA.COUNT) (subl *feature)))

\( display>' "num2:' debug) ( display 'onu debug)

(cond ((equafldenomnO)
(bindq 'ratio 0))

(T (bindq *no (quotient *numn(flnoa!'denont)))))
(bindq 'trio (coOs *ratio *trio))
(bindq*nurn (nth (value~of'AACOELCOtJT) (subl. 'featture)))

\( display:,' 'oum3:* debug) (display *num debug)

(cond ((equsl??'deom0)

(bndq 'raio 0))
(T (bindq *rauoo(quotient *mum(flcat~denm)))))

(buidq *tri ( cam- 'ratio *trio))

\(display-> -trim' debug ) (display 'trio debug)

(bindq 'ratisoliat (cons *trio 'rntiolist)
(bindq*-ep(resmtemp))))

(bindq 'ratiolist(myreves ratio~list))
tbindq *tables (cons ( make.table 'rzdolist *'AAlws) 'tables))
(bindq 'feature (addi 'feature))))

(display> 'Table handles' print) (display (r--er*t'ables) print)

GET.WRNDOW

&-scription: Returns the 'data window centered on *focus wish radius 'winnd. An error
is reported if the requt.strd window extends outside the dais

c: rET.WNDOW
inaunt~oe.f flow.fwsc
MYcreaor wjb
i.take number list niunber
I~givt iMt
arguments 'winarad *data 'focu
rav.vars 'lengd: *teinp
algorithm (do

(bindq lIengih. ( Itr,'tO 'd~za)
(if.trie (1or? ( not? ( greater.tnan? 'fecus 'wtnrad)

(greazer.tlhan? 'focus (minus 'Ieigtl 'winjrad)))
(dsNay 'GET.WINDONY: Reqluested window outsid data" error)

(birill temp (cliplist data(subl. (minus *focus wktAi~ ))))
(biridq *e-p (- rees tesnp))
(bsndq *tamp (clip~list tenmp, (minus *length (plus 'focus *wiinrad))))

DELTAAA

descript-ion: Returns the entsy at row 'AAM and crlunn 4AA; of r~se 'k.
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entry is Iristance between *AAi and *AAj

c: DELTA.AA
izwnm e.of flowifunc
my.creaitr Mjb
iWtke symbol symbol number
Lgs~ve number
argumtents *AJi *AAj Ok
tny.vars *AA-tist i
algorithm (do

(bindq OAAlist (get WA7URALA?,WO.AClt I ll3)
\POSITION retums 0 fX not foundin list.-
(bindq i (position *AAi AA~list))
(bindq~j (poPUsotAAj*AAhlst))
(retutrn (array2@ (nth *table-list (sttbl el:)) *1*

DELTA.WINDOW

descri4uion: Rstinns thte distance between fth givas windows using
Sheg'sntethod with r -1 and weight 1.I

V/hei r=l. yields '=nanltan" distwsie
When r-7. yields 'euclidzan distanoe
Salzberg usts 2 typically, but Inan protein problem

Rip,& ie long window of given length. comsparing "feant=".~ sum up sim d=lt.te

multiply by weights

c: DELTA.WYDOW
znistance.of fiow.flamc
tny.creato wib
i.take list ILiA
i.gra. number
arguments windl *exesnp
rny.vsrs *k *sum *AAi *AAj delta Iwind2
algorithm (do

(birAk *k I)
(bindq surn )
(bindq wmd2 (first exeP)) I'get window from exempar
(loop~until(null? wtnd)

(do (bidqIAAi(fir$SwnldI))
(bindq AAj (first Iwint2))
(bindq *delta (deltaAA *AAi *AAj k)) A.istance between 2 feiture values

\tfr=-2. you would square *dc-ta here -e.1
(bindq Isum (plus I=m *deta))
(bistdq *k(addl k))
(bindq *wid2 (rest *wind2))
(bindq *windI(rest windl ))))

\ now that you have stum, mutiply by Vs times Wy - fth weights
\ au~umcWyisa~vay5 l.G(forlow)**....

\ (display.,' SUM= pritnr) ( display 1&4m print)

\ (display'WTs"Pfnt) (displa S a gtweight exent)prinlt)

(bini
t *sur ( times sttsn (geLwcight cexesp)))

N (display *sum print)
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GET.PRUfICTION

desaipton: Locates the exemplar closest to window and reetrn it
*delambest is the dis=tance mir of the u.osest find - smnallembetr=

exemplats are gotoed as a triple:
e.:(Window clasticasicm #use cmmec)

((giygIupmo..)B~lI) -A-heiix.B=sheetO'ooil

c-. GET.PREDIC!ION
jesnice.of flow.func
my.c==o ip.. wjb
Luke Ist hst
Egive LSt

nienis .wiud" .exePLar
my.vam. deltabest *exemp 'delta *best
algmnhm (do

(bindq -delsmbest 1000)
(kiop~unzl (null? 'exemnplars) \ror each exemplar

(do(bindq 'erp (firs*'xeplar))
(binskq *delta (deltLwinidow 'winodow *exerp)
\delta is adjsted for exemplar weight. if use~weightu9-T
\NOT.: if *delta - 0. exit loop - yoa're dont """"0
(cood ((equal?'deltao)

(do (bir& *best'e*-p)
(bL*d -delmabest -delta)
(bindl exsnplatssnil)))

\kill loop
((less~th? -43=s -delta~best)

\ws-h for bent
(do (bin*l best'exemp)

(bindq 'deltabeas 'delta)))
(Tnil))

(bhndq *exenplars(r- *cxerplmr))))

\( displsp. * BEST: p-it) (display 'bestrdnt)
\(displsy 'deltabest print)

RECALLPREDicT1ON

&saipson Locates the exemplar closest to window and retien it
*'dclta~brs is the diw=nc mearc of the closest find - smdklr=beste
exemplars ar stated as a triple:

e-g.: (winidow cbssifaicatt lute #con=ec)
((gly Stupto.-) B I I A-Ahelbt. 8=slheMt=Omil

C: P.ECAU..PREDIMCTI
Winssaceof rflevfonc
myzemator jpl
hjake list 1is9
i.give figt
arga..lents 'window 'exemnplar
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my.vax -iefla~best -exernp, deim *best

(Iop~nti (,,ujcx.rrpI=r) \For e5'ch eemph'

(t'irdq -deltz (ddtelia.OwitW windOw *ecmp)
\ delta is ad~justted for -rxernpl weigbt. If eewe~ghts-T

(setq *seS-exeibp e*emp))

\rmen -r'el (ff.a=u (not? (equal.?deltI0))

\si"Sr(do (iftuije (Iessdia? dtI='delumbest

\watch, for next best
(do

(bindq*best exeflp))

(biiidq*delta~bestdelta)))) (bindq *exernplars (rest exempl&.,))))

\( display>- *BEST: prntf) (displaylbest prints ) (display *delta~best print)

(return *best)

COU-ECTY.ESULTS

description: Giv, i lsts of;;redieted-ad actualclame
deeMin dfe percent accuracy of alpha. beta, eoll and Overall predkriOO
return diem in a list e~g. ( .52.17 -56 -50)

C: COLLECT.RBSUITS
instariee.of flow.iunc
niy.crector Alb
Leak list list

Mwimreiil -pril edicted
myxvarS frst~actual 1 irsredicted *%=WreLA -%-COMLB *%AeOrrLC *%Ceerct

ny.mars totalA *ocwwA woaL.B 'correB otatL.C coaeetC
algonibin (do

(,,:indq -totalA 0) (bisdq *eoreecLA 0)
(bindq -toWn.B 0) (bindq erct.BL 0)
(blfldq ntoal.CO0) (bindq *corrCsC 0)
(loopxultil ( null? *acuil,

(do (bindq~famxtuacul(fuU~taCGIZ2l))
( bi*d -firstptedieted (fugs *Predicted)
(eceal ((Same? IrmLactuSI'A)

(do (bin wtal.-A(ad~ltowWA))
(ittrue (same? rirsuctul istprdicted)

(bindq 'correcLA ( addl *correct.A ) ))))

((samne? irstActiial 'B)
(do (bindq *toall (addl *tota]))

(lfmerue (sam?*= W tirt uszal Vzpe~cted)
(bindq -correct.B (addl *CW0reeB )))

((stame? tzirsiaual'C)
(do (bin q*ota.C(adPLlaI.WC))

(birndc~ offtcLC (ddl 'corr=etC)))

(T (dispay 'TEST.CLASSES: Bogus aruzl listr er"o))
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( bindq *a-al ( *stactual)
( binclq *predicted -tsspredicted))

(cord ( (peaz.than? OtotalA 0 )
( bindq *%--resA (quotient *coreecA ( float *total.A))

(T(bindq*c--ecAO))) \avoid dividng by 0
(cord ((greazrah=?*toWXL 0)

(bindq * ozrectB ( quotient correctB ( flat *totaLB))
(T(bindq %cossect0) )) \ avoid dvidmg by 0

(cond ((greawe.than?*totaL.C0)
( bindq *%correcC ( quotient *c=-ecC ( flm*oat'aLC))

(T(bindqlcoecCO))) \avoid dividing by 0
(bindq '%c-vet( quoiet (plus (plus *ccercA *corcB ) *cosecsC)

(float ( plus (plus *wtaLA *totLB ) *wWtaC))))
(rem~r (list -%Cos=eA *%CwreciB *%coMLC *9trcm=)))

c. COLLECrnNALRESULTS
instnce~f flow~func
my.creatr 1p2

i-give list
My-vIVS -%avb-%c
algorithmo (do

(coixi ((raerda cLA 0)
(bid *%A ( quti=n *-rA ( flt- *ctA))))

(T(bindq$%AO))) \ivciddividingby0

(TtbL-tdq*%10))) \avoid dividing ty 0
(cood ((g 'ahanm? s.C 0)

(bwnq *%C(qxtstcrC(fottC))
(T(b~i*I%CO))) \avoid dividaig by 0

(teou (list *a %b *c)))

CFECKQASSES

riptiont chec to sco whi-t Owas is in-hm~d - rmom fta class
MUST BE GENFRALIUtD TO OTME CLASSES

C: IMOCCLASSEES
ixassuceoi flwi
rnyx.;- Ila

iymbt. integtr
i~give -yuo
argumates pm . fs
Imy.Yat5 'rzsk
aloorithrn (do(uod(wA(tocus-xn~classALPffi *po fo=o)

\guoeralze &~&&&
(bindq~rsls 'A))

(( f~cusjn~cJass? BETA Io *fo=os
\geeamite &M&&

(bindq~rSlt ')
(T (bh* qrsl 'C)))

(ttren mslt))
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TEST.CLASSES

description: Uses tables. exemplars, and test proteins to coiinuct lists of actual and
predicted classes whzich are used to guem=i test results.
Used fur testing the training set to adjust weights, and for ruungS test set.

MAUST BE GENERALEZE TO OTHER CLASSES

C:TEST.CLASSES
insttsice.of flow~func
iny-creator jp2 Mb
Ltake list list list
Igive list
arguments -tables 'elenplars 'proteins
my.vars 'actutal Opredicted *pro 'pro dais 'pro .lngtli *focus 'window 'resulte exemp
Algorithm (do

(display> -resting Resuilts._" print)
(loop.until (null? 'proteins)

\for each test protein
(do (etq~ctao)(setq'ct~bO)(seeq'ctcO)

(setq 'co.aO) (setq co.b0) (selq 'corzc )
(bkinq *actual nil) \clear thehlst
(bind *predicted nil)
(bindq *pro ( first 'protein))
(display> 'Next Protesim print) (display *oro print)
(display> "Neu Proctin log) (diply 'pro log)
( bindq 4pro~ata ( value~of *pro MYIDATA)
( bknd 'prolength ( length *pro.daa) )
( display> -prolealsnh: 'print ) ( displa Oproleiigt~h print)

(disply - Window Raduso' print) (display ' wi'iura print)
(bindq 'focus (addl -winxssd))
(loopxunail (pe 1ate nw? 'focus (ninus prolengb wiotrad))

\fcr each focus along sequece-
(do (%indq 'acaal (cos(cbeck~class 'pro *focus) 'actual))

(display> "'ocus: print) (disply 'focus print)
\'rtAW grows as this loop runs
\( disply> ýacvriaL print ) (display 'actual print)
(bmns~-, *window tget~window *winrý *prodAt 'focus))
\(dispby> '*wndow:' print) (display 'window print)
(bindq *exerp ( ge~paedrcic 'window *expunplara))
(bindq 'predicted (cons (secood 'u-eso) 'prtdict))
\ NOW: updat globals to keep tauk of Itow we mr doing

(ifinie f-u?(f-^sprcdsttes)(fizstacaal))

\'predicted grows as thzs loop rums
"( display> "predicted' prIM) ( display 'predkiead Pt i7A
(irtob( equal? ( Iou tocus 10 ) 0)

(do (tb*,qrzs3J11(Co~ecUf,;Al1resuks)
( display> * Imeisediase Resultv* pnti=) ( display *;esuld prim)
( dispiay> * lssereslim Results: 4o ) ( display> 'resultslg)

(bindq 'focus (addl *ocus))))
(display> 'Predic*d Prix,) (display 'pro print)
(&Sly> ( _redic edic) pmu )
(display> 'PRA2TEIN LOOKS LMIE THE PCLLOWIN(:'bg)
(display> 'pro log)
(display>* ACTUAL:'log)
(disAa(rovss'awa);og)
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(display>" - EDICTED:"log)
(display> (-ees *prediced ) log)
(bindq*-eults (collecttfinalreults))
(display>' "Fual Resulm' print) (display *re1stu print)
(displayn- "Floa Resulzs* log) (display> *results log)
(bindq *remsul (collecztresiilts (revems *actual) (revems *predicted)))
( display> *List Comsparison Resulia* IoN
(display> '-Wus log)
( bindq *proteins (re-t*proteins))

(eturnn results) )

\(ccllectresults ( rever *actual ) ( revems *predicted))

TAWEIGHTS

dssaiption: Used for testing die traininig wet to adjust weights
IMUST BE GENERALIZED) TO OTHERaCASSE~S

c- RARN.WEIGHTS
instarn.of flOWJsmC
my~ceztr jP2
M~ACe iist 1151 sst
Lgtve list
arvonseras 'shcseembl spsen
nsy.V=r W",,al -predictedps *P-.dt *PAPprolengsls *f-cs *wsow *-ep *ep
:lgoritlim (do

% display> 'Training WeigbLs.. print)
(bindr;exemps nil) \bolds: growing list of eserinplars;
(bvAactualnil)
(binitl ptredicted nil)
(loosusmil (null? *prntias)

\;b ech protein
(do (binilpro(frszprosins))

(display- p:~t ipz rpis
(bindq 'Xo.dm ( ueof~proMY.!DATA))
(Udq proleigth (kmgsls prMa-))
(display> "*Proiegtt: pnne)(dis3ypla trn-g~h prin)

-dissp~y - Window RadL* 'print) (display *wri-ad priat)
(bindq *focus( (add) *winJ.-4 )
(looip.tinril (greaselran? *foc-us (minjs pmroCei&winora))

\for' each focus along seqw=nt
(do Omsdtlactual (chlseklss*rQoýecsl))

(bindq --. ,do- (genwL-dow -. ,.d np.d;%U 'face))
(bindq *ex-rp ( rocafllpredcts 1wisa-w exeiplms

\gaesoarest:neghbor
(bimkI *pruliced (S- sen -='ser))

(biAN&, *-scrp ( iocrsa'ae
,\t display> -RAINED ' prime) (dusniy n.erp print)
(blatq eaemnps (-o le,-T *ex-ips))
(bb*d *1ocuS ( add *-=asr))) 1

Nrensr q 'aaeni ( ea s)),.

THE ALC-ORrrEV
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C: RUNN~EAREST.NIGHBOR
instancaof flowifunc
my.creator jp2 wjb
Leake number number number number symbol
i.give List
arguments *win~radsw urzin *test *ma).viiirtad *w
myvars *rsulls *output *temp
algorithm (do

(dLsplay Ithis repraid?"prnt
(display> -Window Radius= - log) (display> *wiitradtus log)

(-eq~sed2.O) \notused&&&&
(setq~win.rsd~wmixdilis)

(Seq~tst *test)
(seeq ctaO0) ("ci 'ct-b 0) (setq *ct-c 0)
(seeq 'corAO) (setq *co.b 0) ( set *co.c 0)
(loop.unti (greaterti~an? 'wisraid *n%=winxrad)

(do (coqai~as*wiiijT) \Sets globals *MVtest *=list'e l~and 'exMpiularlms
(display> 'Itrainiis log) (display> Ontinuist log)
(displaY> #uaining proteins: " log) (display (length *trinilist) log)
(display> "use weightz: log) (display> *wt log)
(display> "tExernplars -*log) (display ( length 'exemplarlist) log)

(bittd *ouipnt( count-classe 'exmPla~iV t) )
(display>' Exemplars: Tot Uplpha #beta #coil %alpha %beta %coil:- log)
(displayn- *output log)
(display> "ieaistW log) (display> 'test-lis: log)

\flrs we build fth feature, value difference tables

(setq 'table~list ( create~tables -win~rad)
\TRAI1N

\now, we should test them on the training set and set weight
(if.true (same? *wit)

(Set *exemplar~list

\TRAIN WEIGHT
(display> wFxemplar after weight mrining w! log) (display (leigth 'eutemplarlist) log)
\now. we tes them on a tes set
(bindq *results ( -s~lasses * table-dist *extisnplar~list 'test-list))

\(display> '%alpha predicted byrnearest neighbor ' prima) (display (firs 'results) prkint

\(display>"9.alpha predicted by neares neighbor 'log) (display (firs '*esults) log)

\(display> *%beta predicted bywnarest neighbor " prin) (display (seconid 'results) print)

\( dispilay> %beta predicted by nearesi rxighbor~ -lo) (display (second 'resuits) ing)

\(display> %coil predicted by nearest neigbbor~ print) (display ( third 'results) print)

\(dispiay> 'rcoi predicted by nearest neighbo-. 'log) (display (third 'resiits) log)

\( display> '* ovt:2l preicted by ne-Ars Meghbor " print) (display (fourth 'rtnults) print)

\(display>% overall prdat dhynemr-estghW.r'!oS) (display (fourth *resuts)log)

(suil owmxdd (plus 'wmzWe 2)) \incwindowtandus by 2

(setq'seed2.0) \mctsed&&&AS
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\(display> FINAL RESULTS: "print) (display (collcctfiMnLfIts )pnnt)

\(display> "Fmal Results:" log) (display> (COUlCtfinSali Its) log)
(display> ALL DONE_.- print))
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ROUGH.SET.SAK

descrpton: bask Rough Sets modified by Scott King
based on RX-4.TST.T

need to do: rank ordering of atrnbutes
generalize to multiple slot data moving
trim universe length to shortest data list length

to improve: X

PROBLEJMS: X

not= x

CHANGES:
2/09193 first cut. NewCentny 12point TabStopsM, LineWrap=100.
2/10M9 jp2" runmng on car data: generalizations for Browning study; first Browning run done
2n/11/93 jp2. adding rankordering cols

( ALMOST.EQUAL-

description: checks to see if two nwnbers are within some distance of each other
example input 2.52.6.15
eample output: T
notes:

c: ALMOST.EQUAL?
sub.of predicate
i.tak number number number
i.give flag
arguments "numl num2 *eror
algorithm (between? *hum2 ( minus *num I *error )(plus *numl *err))

CALC.BETA

description: check degree of intersect of A in B
examzple input (134)(13467)
example output 06
notes: x

c: CALC.BETA
-instance.of flowprod
-.take list list
L.give number
argumen• setl *se2
my.vara *count Ilegth
algorithm (do (bindq *length (length set2))

(bui& -count 0)
(loop.muil (null? seil) \for every setl member

(do ( if.truc (member? (first *sel ) Sea2)
(bmidq count ( plus *cotm:)))

(bmdq *s-l(restsetl))))
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(retumo (quotient 'coumt *length))

(SORT.COLS ON.WORTH

descripuon: sorn to decending worth- 'bubble SWet

example input: list ofeconcepts
example output: sored list of concepts

notes:made from SORT.ON.WORTH

c: GET.COL WORTH
instance of flow.func
j.take, number symbol
i~sive number
ggur~tts *cot *array
aigoitbin (value~of (array2@ *array 0 'col ) WORTH)

c: SORT.COI.S.ON.WORTH \seems to woek

insunace.of flowlfunc
i.take Est symbol
i give Itst
arguments *list *array
m1y.vars 'templist *moved
algortithml (

do (bindq 'templiss nil)
(bindq'mvedT)
(loop~utsl (not?'nioved)

(do (bindq *moved F)
(loop.tmtil (nilfl? ist)

(do \( display> *fise debug) (display> W"EU'ebug) (display ternplist debug)

(coed ((oqua?(licngtls'15t) 1)
(do (bindq *tcrplist (cons (f= t'lst)'*-.lemP))

(bindq *Iist (rest *list))))

((greater-thark?
(getLcoL~wortb (second *fist) 'arry)

(getcoolwoflb (f=rs 'list) 'arra))
(do (bindte*mphst.(cow (secd*H ) 'tcplz))

(bindci moved T)))

(bindq 'lis; (rest *list)))))))

(bindq'*list(rverse 'temnplist))
(btndq 'Wnmplist nil)))

(retum *list)
\(display> -sosmon.wcrttl >> debug) (display 'lis debug)

COMMENTP.

ALL ARRAY VAI liES ARE SYMBOLIC

ALL ARRAY X&Y VALUES START AT 00
ROW OD is reserved for NAMES

cOMNNT;
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( COMPARE.ROWS?

description, see i curow (for each P col) is same as given row
example input x
example output x
notes: THIS SHOULD ELIMNUATE ANY ROWS

WHICH ALREADY COMPARE -- to save some compute tine
eliminate by simply puing the row number on a list. then check
the list before comparing all the columns in a row

c: COMPARE.ROWS?
instance.of flow.pred

itake number list symbol list
i.give flag
arguments *row *cols *array *gin \given isa given row of P data
my.vars *truth
algorithn (do( bindq *truth T)

(loop.unhsl (or?. (null? *cols)
\for every P col

(wr.t?tn*U))
\or mismatch found

(do (bindqtruxth (same?(array2@ *areyrow(flrst*cols))

(first gsven)))
(bndq *given ( rt *gten))
( bir• *cols ( trest *ools))))

(reiiir*truth))

COUjNT.XYRIME

des-cripaoe collect parteno of rows which look the same based on given set
example input: x
exanple output list of hsts of rows us array which look the same
00 x

c: COUNT.X PUMIE
irstnce.of math func
miake list number symbol
t.gi~e list \ list of ists
rgouiiits "Ios *max.y *array

my.uaS *row *checked *t.sult *tempv*holder *temp,s *xx
aZgoehm (do\( dspbly>"Cl-king X nt)(di play*coLspnt)(display*m-y,y nt)

(bindq *result nil) \holds list of subsets
( bmdq *checked nil )\holds N values that have been counted
( bindq "row *maa.y )
(loop until (equal? row0) \foi every row exceptO

k do\ take specified contents of row
( bindq *temp.v nil)
(bindq xx*cols)
(loop.unul (null? -xx)

\ for evoy P col
\ for this row, make a list of Pcol enries
(do ( bindq *temp.s ( aray2@ *array *row ( firsm 'xx)))

(bindq 'temp.v (cons "temp-s 'rtemp.v))
(bindq *xx (rest *-))))
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\ now have a list (in reverse tirder) of a given row
\ see if it has already been checked
(bindq *temp.v ( rvese *temp.v))
(bjndq'teinpsnhl) \holds subset of rows
(if.uut (not? (member? *tmp.v *fchcked))

(do \not chcked yet. keep track of t
(butdq 'che••d (cons *mp.v *checked))
(bindq *holder 'row )
(loop.until (equal? *holder 0)

\ for every mw above this row, skipping row 0
(do\gather this row

(if.trti

( comparerows?

*holder *cols *array *temp.v)

( bmdq *temp.s

(cons 'holder *reznp.s)) )
(bindq -holder ( subl -holder))))))

(iftrue ( nomull? *temps )
(bindq *result ( cons ( reverse *mps) *result)))

(bindq row (subl *row))))
(return (reverse *result)))

IND.P.PRIME

description: collect partition of rows which look the same based on P (given)
example input x
example output list of lists of rows in array whuch look the same
no'es: P is a list of columns

C: ib.X.PRIME
instance.of math.func
i.take list number symbol
I give list \ Isl of lists
arguments pSet *max.y wrray
algorithm (count.x.Pnme *pset *max.y 'array)

description: collect partition based on N (given)
example input list of cols called N. max#rows in ary, array
example output list of lists of tows in array which have same N value
notes: find all members of N which have the same value

c: N.PRIME
instance of math.func
itake list number symbol
i.give list \ list of lists
arguments *cols *max., *array
algorithm ( counLx.me cols "max.y array )
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LOWERAIND.?

description: collect partition based on subset of N in ind~p prime

example input x
example output list of rows in array
notes: RESULT IS NO LONGER ORDERED

c: LOWER.IND.?
instance.of rnatb~func
ilake list list number \N.RIME subset, IND.P.RIME lhs

Igive Ilas \ list Of rows
argumnents 'n.prime~s *ind~prime *beta
my.vars *result
algorislun (do (bindq'*resuftnsul)

(loopunul (null? *ind.IritnC) \foevesyn-pnime
(do( if.true (greate&.llan?

(calc.beta (firt ind~prime)*'1p-~e-s)
*beta)

(bindq'resut(-cnct( copyjiist (firstind-prime))

'result)))
(bindq 'id.ptiirne (res 'd.pnme))))

\( display> "LOWEIUND(PY" log)
\( display> 'a prime-s log) (display> *result log)
(return result))

POS.P.N

descrmtion: x
examp'%,input x
example -uput
notes: RESULT IS NO LONGER ORDERED

c: POS.P.N
ir~stance of rnatb.iunc
iiake list list number \N.PRlWhIlstN. P.PRI4E list

i give list \ union
arguments 'n prnme 'ind.pnme *beta
iny.vars *result
algorthlu (do (buidq *rru9Anml)

(loop.until (null''n prime)
(do (bindq -result

(iist~union ( lower.indp (firs *nprime) 'nd~prime *beta)
'result))

(btndq 'n.prime (ret n.pntme))))
\( display> 'POS(P.)4)- log) (display> 'result log)
(reUM mrSuLt))

KYPN

description: dependency of Non P
example input: x
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example output x
notes x

W: sy(m symi- sym)
itegcr> float
integer> float fswap
f/ >floaung;

c: FQUOTTMNT
iwst= ncef mathfunc
i.take number number
igive number
forth %%Xf

c: K.P.N
instance.of malthfurc
i.take list list number number
L.gtve number
arguments In prime *ind.prmne -riverse *beta
my.vars *result
algonrthn (do ( bsndq *result 0.0)

(bindq result ( fquotient( length ( pos.p.n *n.prime *indprime *beta))
".uivere))

(return *fsuk))

DO.ROUGH.SE

description: the big rutine
example input x
example output x
notes: x

c: DO.ROUGHSETS
nsMneo" flow.func
i.make hst list number symbol number
igive number \k(pn)
arguments *pse• nset *',uverse *beta
my.vars n.prime md.prmme 'kpn
algonthm (do\(dsplay> DOING ROUGH SETS* print)

\( display> "#UUM#WIDOING ROUGH SETS" log)

\( display> *pset log )
(bindq *n.prime ( n.primne'net *tnivese *array))

\( display> "N'= print) (display *n.pnne print)

\( display> "'W=" log ) ( display> *n.pime log )

(bindq *md.prime ( ind.x.prime *pset "univerw 'array))

\( display> " "ND(Pr="pint) (display "incLprime print)

\( display> "NDY)" log) I display> *ind.prime log)

(bindq *kpn ( k.p.n n.prime 'ind.priue uivemse *beta))

(display> "K(PN)= - peint) (display "kpi pint)
(display> "K(P.)=" log) (display 'kpn log)

(re*m'kpn)
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c: MAKEYLIST
sub.of function
my.creator Sak
iLsake number
Lgive list
arguments 'num
my.vars 'list-'count
algorithm (do (bindq *listfll)

(bmndq -count 1)
(loop.untsl (greater.ttai?. 'coutM 'rium)

(do (bindq -list ( cons 'cOtait *list))
(bindq *count( addi *count))))

(return (reverse *list)))

c: FMIND MSET
instancedo flow.fimc
igake list List list number number number
i-give list
arguments 'pset 'nset *universe 'curepti *beta
\.Cop
my.vars 'pses 'ne.kpsi 'rig
algorithm (do\( display> TIND.MlSET'Prinit)

(!oop.until ( null? 'ccp )
(do (display> *Deleted member* print)

(display ( value~of( frust'cop) my~col )print)
( biridq 'pseip ( delete (value.Of ( frst 'COP) ?AY.COL) (Copy-tist 'pSeti)
(display> ?SE- log) (display> 'pser log)
(bindq 'new~kpf ( dojrougbit 'psetp 'nset'ui-iies 'beta))
(bindq 'rig (quotient ( float (minus 'cuikpri 'new-kpn)) 'cuipo))
(if.tru ( ajzost~equal? 'rig 0.005)

(do (display> "Tos that One away " Print)
(bindq 'pset(delete (value-Of( fist*COP ) MY.COL) 'pset)))

\( display> ?SET" prim) (display 'pset print)
(mray2! 'mrayO (value~of( firs 'COP) 'MY.COL) 'Sig)
( bindq 'COP ( rest 'COP))

(returni'pset))

c: FIND.SIG.VALS
instancedo flow.tunc
iltake list list number symbol number
i.give list \,k(p~n)
arguments 'pset 'nset 'Universe 'array 'ctzrkpn
my.vars 'count 'test 'newJkn 'Sig
algorithm (do ( dssplay> TIND-SIG.VALS Print)

(bindq 'Count *Pset)
(bindq 'test 'pset)
(loop.until (null? *Count)

(do ( display> -Deleted -Wtbe print)
(display ( first -count) print)
(bind 'test (delete ( firSt'*cont (copylis 'pset))
(display 'testprint)
(bindq 'ncwjkpni (dorougbhsets 'test 'uiSet 'univers 'arra))
(bindq 'rig (quotient (float (minus 'cuskpn 'newjkpn)) 'CurkPs))
(army2! 'army 0 (first 'count) 'rig)
(bnd 'coMn( reSt'cOit)))M
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c: SORT&EVAJ~tLESX
insttncejrf flow.func
i~take list Ilat nurmber symbol
Lgive list \k(p~n)
arguments rsrules *nset 'universe *-rY
my.var *Cap *pum *enrkcpn spsMt *new~kn *ig
algorriho (do (display> "SORT&EVAL.RULES* Print)

(bindq'cop'rules)
(display *copprint)
(biniq~pset( make-plist (length 'siles)))
\(display> 'pset.nset. rivmse. arrmy print)

\( display *pset print) (display *nset print) (display *universe print) (display *Wray print)

(bisdq curkrm (dosrougtLSetspurnset'unSP*WZvez'ary))
(if.rrrr ( not? k equal? *curkpn 0) )

(do (bindq 'PSar ( findLini-e *Cop 'pses'narat 'enivers *array 'cmikpn)

\(birdq 'pSet ( frrd0"gv.%L;*p- *- *un'i- *-Catty 'cutdP))

(display> -MNIMAL SEr print) ( display 'pset print) (display 'crrkp print)
(display> -MINTAAL SEr log ) ( display> 'part log )

(display> -Hts K IýN. or log J(display> -cukp log)
(return 'pset))

C'QNhV3T:
BIG CODE THAT NEEDS To BE BROKEN DOWN

(I-IND CORE.SET

descriptiont: an even bigger rourilne
examnple input: x
rztrtple cltrptt x
notes: x

c: FMCORE.SET
in~starrceof flow-funrc
Ltake list list number symbol
iLgive non \k(p;n)
arguments -pset -nset riniverse 'ALMY
my.vars 'crskpn -core 'apset 'plen -xkpn -del -len *Corre 'rnset
algoritltrn (do (display> FTWDING CORE SEt print)

\pSes and nset Xre thse entire universe On first Pass
(bindq -cwrkpn (donugh.Ses #pse '--r 'niers 'arrY))
\ now. onre at a time. prck vbis out of pset
(bindq Ocore nil)
(bindq *pleaO)
(brndq *en (length 'PSCE))
(loop.untrl (equal? 'plen *len)

(do (bindq 'apar ( COPY-list *P-e))
(bindq *del (nth Opset *plea)
\(display> ABOtfrlTO DELETE * print) (display Mdel print)
\(display> *from 'print) (display ';apt print)
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(bindq-xkpn (doxrough~sets
(delete -del 'xpset) 'aset

*umuverm '=arry
\now, tell about this coltinins 'Wczth
(display- "COL- log) (display (-ary2@ *ar-y 0 *del) log)
(display (minus 'casskp Oxkpn) log)
\now save this difference in the frame of the col
\bigger is better!
(tetvalue ( arsy2@ 'array 0 *del ) WORTI{

(Minas 'cudqkp'xkpn~)
\if the col is needed to maintain 'cudgmti. itfs part of core set

(if.t-u (lesstlia? xkpn 'ctskpt5)
(bindq co- (-on *del 'c-r)))

(display> "CORE= 'print) (display 'pent print) (display 'cor print)

(display 'pSet print)

( display> "SORTING CORE SET: " xint)
( bindq Ico= ( sorstcols~on.wortl *core 'arry))
(display *core print)'
( display> *CORE SET=' log) (display> 'core log)
\now, test Core: set
\core set is intersect of all minimum sets
(bindq 'minset 'pset ) \theminmum rdefault set
(iftruc ( notnul? *cmre)

(do (display> -NOW TESTING CORE SET" log)
(bindq 'xk-pn (do~rough-sets 'core 'nset 'universe *array))
(display 'xkpnprint)
(display> *xkpn log)
\ now off to find minitinitin sets
\bUL..
\ if the cor set gets a full k(pn), then the core set is the minset

(cond ((lesmthall? xkps 'udmsp)
(bindq'lmimtin

(findl.min.sets 'pset 'nset 'univers 'array 'core 'cssrkpn))
(T (bindq 'mninset'*core)) )))

(display> WIN SETS= " print) (display 'minset print)

(display> "MIN SET=" log) (display> 'mmnetlog)

COMMENT;
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EVOLVE.T

build a populatioun of pm=eoinaluation rules usingtheGA approach.

(CHOOSE.SET.BY.WORTH

descripnion: Given the ciurrent population, rwcioinly choose a member. weighted by the current worth
value of every member of dhe population

eXImple 4n=u (c-_101 con_=O con-303~
example outpu coa..4242
notes: uses mdjla istead of mndmod to avoid problemn cansed by calling rndmzod with lopg argumenets

c: CHOOSE.SET.BY.WORTH
sib.of function
Lteke list
i.give symbol
arguments *pouladio
my.Vars *my.pop Ototal~val nult *set Oval Othisworth

agrtm (o(blndq Omy.pop *population)
(bindqtotal.valO0)
(bindq-ser nil)
(locp-mitil (null? *myPOP) \@Cw@@ get sotal worth of populationi

(do
(bindq *total~val (Plus Otomla3vl ( value~of(firs Omy pop) WORTH)))
(bindq *my-POP (rest *mnY4po))))

(bindq *nui (int (times (rndilA-) toaL~val)))
\@Ca,@@ choose random value

(bindq val 0)
(ifmue (equal? toeaLval 0) \@ @ if no seas with worth, grabone at random

(bindq *set (-mher popularion)))
(loopumtil (noetull?Osee) \@ @wait til got one

(do
(bindq *this~wOnh (value~of (fis population) VORTH))
(bindq Oal (plus; val OthisL-h))

@@ @add worths till over randomn val
(ifztme ( greare.than? *Val 'Ontm)

(bindq~set(firstrpopulatio)))
(bi*d *population ( rest *populadio))))

(rttzrn*set))

CROSSARtLES

description: Givena rule list. randomly choose two different rules ftorn it. And switch a potibon of their
RHS slots. returnig the new rules stick into the old rule list

exaple input: (conl -on.2 c-n.3.)
example output (ccnji con-.3 coa.4 -.)
notes: does niot change the thenpredict slot - maybe it Could/should? NO

c: CROSS.RULES
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sub.of function
LzAke list
Lgive list
argutnents 'nile.ise
Ity-Vars *fther 'mothe, 'SiZe scrossli *hotder Owlia Oslot *son Odaughter *position
algorithmt (do

(bin6q $Wa-he( member 'sulelist))
(blndq *mother ( memnber Orulelist))
(loop.untl (not? (same? *father'mother))

\@~ get two different rules
(bindq *mother( member Orule lst)))

(delete *mother'rulelist)

\ (bindj 'nieis ( renove~al (list 'nsother~fazler) *ruliist))

(bindq Maughter (newue))
(bindq *size ( valuec((@c ncwcepe) WflIMW.StM))
(bindq 'cross~pt(addl (rndmiod (subi *size))))
(bindq 'wher (addi 'cros.pt))
(bindq 'posW-o 1)
(loop-outil (equal? 'position 'wher)

'@ @ copy up to switch point
(do

(bindq eslot (changeto~symbol 'positin))
(SeLvalue 'son *slot (value~orf'faher *SICK))
(set~value *daughter 'slot (value-of'*mother *slot))
(bindq 'position (addi *p0811km))))

(loop-1unsil (greater-than? 'position *Size)
\@ @ wthafter that

(do
(bindq; eslot (chang,-stoxymbol 'position))
(set~valve *son *slot ( vaueo('mother *sloo))
(se*.value 'daughter *slot (value~f ftatk *slot))
(pod; psition(addl *position))))

(set~value -son TlMLPREDICr(valueof'fither liENYMEICT))
(set~value 'daughter l1ENPREDICr ( va eof-mother THEN.PYEDCI))
(bindq 'rule-Iisl(concat (list' O aughter) 'rule-list))

MUTATE.ONE-RULE

descripton: Given a rule list, randomly choose one rule, mutate it. and ruom the new Utse
eZanple kiput (cou1cn -2 2con..3.)
ezatupleoutput: (conjoo..2coo4..)

c: MUITAEOINEAtULE
T"~o function
Ltae lise
igive lise

pTuments 'rUlelist
nsy.var 'mutwee 'slot 'atuino 'm=se 'nurn 'newxnl 'ti=e
algoithmt (do

(bW4d 'mutm= ( member'niulelist))
(deleft 'mutwe 'ngeleist)
(bin&d 'newzule( newjule))
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(copy.plist 'mumtaee *rsewxrtle)
(bindq 'times (addi (sndinod (quotient(valueof(@cur-cixcept) WINDOW.S.E) 2))))
(loop.unul (equal? 'times 0)

(do
(bindq 'slt( mdjsnod (addi (v atlf(@cur-aocept) 'IDOW.SIEM))))
(cond

((equal? *Slot 0)
(setvalue 'newiule TI{L.PREDICT (creamepredictiva)))

(T
(do

(bind *slot (cbangeuo~syrmbol 'slot))
(bin&d 'aalist nil)
(bindq 'nuns( addi (ramndod9)))
(loop-unzil (equrOam? 0nn)

(do

(biadq 0-un (subi 'Own))))
(md~do

(aetvalne 'newzrue *slot'u=list)
(seavalue *-ewidue 'slot(c-a "A aaiist))l))))

(bindq *times ( subl 'times))))
(biadq 'rule.Iist (cons 'newule 'rule~list)
(rettun mlekur))

CROSSYAXR.SETS

description: Given the current populatoo of ruleseis. choose two sets and cross-breed then. switching rules xamowd
_APIe input (conjL0 con.202co-s303..

eAmnple esseUlf (conjOl con.303)
not= tries to find uset that have differenit taleuss

c: cROSSYAIR.SETS
sub.of function
Ltake list
I~grve list
argumnents 'curr4POP
nsy.vars 'aber *mother 'fatherJoc 'inotherioc *son 'daughter 'fatheruiles 'mnotherrules 'son nsle
iny.vars -daugheuuiles 'thisrale -tries
algorithmn (do

(biadq 'flather ( choosesetby.worth 'curr~pop))
( bindq *otb- (choosesetby.w'orh *c-.pop))
(bindq *tresO0)
(loop.until (or? (not? (saine? (valueof'fathr ESM) (yaltieof'inother BEST)))

(greater.than? 'tries 3)
(do

(bind 'mnodsr ( chw-e-ezby.worth 'crurrpop))
(bindq 'tries (addl 'tries))))

(itfue C guase.zan? 'mres 3)
(do

(bint* tries 0)
(Ioopuntil (or? (not? (same? (va ue.of'faWWWORST) (vuiue~of'usothe WORS)))

(gpeaterib? *tres 3))
(do

(bindq 'inother(caoo-seseiyworth 'esurrpop))
(bindq'tries (addl 'trims))))))

(loop~unti (nof? (Same? *father Onother))
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(bindq *morhe( ChonseLby.woh *-ur.Pop)))
(display> *Crossing"- debug) (display 'father debug)
(display "and debug) (display *mother debug )
(bind 'Modierrules ( copy.list ( alue~of~modier RULE=S)))
(bind 'faWeruls ( copylist( valueof 'father RULE.US)))
(bindq*s- (ne-set))
(bindq'daugbter(ne-e))
(bindq 'scnxrls nil)
(bindq daughter-kuesnil)
(bi* *dwloahe~c (addi (rad~mod ( subi (length Ofatherzniles)))))
(bind 'motherloc ( addi (id~mod ( subi (length *motcerxules )))))
(bindq Oson~rues (coocat (grabfirstn Oftther-rles Ofttherloc)

(clipjlist *11ocherjsules 'motherjloc))
(bindq 'daughterrules (coocat (Stab firstn ' mothler-s 'nsotheroc)

(CHOW M-theXnles 'faterlc))
(seLvalue *son RULE.LIST *sonaules)
(setvaiue 'daughter ItULELUST 'daughterniues)
(seLvalue *son 'ACCURACY UI)
(xesvalue 'dangluer 'ACCURACY nil)
(setvalae 'sm tMVETOR 'CROSSPAIR.SIMS
( setvalue *daugher UCREATM R ROSS.PAMRSETS
(set.value *son OcREATED *cycles)
(setwalue 'daugliter CREATM 'cycles)
(display 't f-r * debug) (display *-o debug)
(display " and'- debug) (display Odaugha debug)
(-sr ( list 'son *daughter )))

MUMMIEONESET

descrition Given the current population of rulle ses choose our and nsuse a percentage of its rules. as
determilned by the expeftente frane

-anmple input (ccw-l0l con..202con-303.)
--nple Output: con..404

c: MUrATEONE-SEIT
sub~of function
Lulke tisn
Lgie symbol
arguments *c-r.Pop
my.vars *mum=te meutation *range 'pecent 'mules 'therules *chance *min
algorithm (do

(bnck *muwee (choose-sestby.wonh *currpop))
(display> 'Muzasng'debug) (display 'muratee debug)
(bindq 'theruls (copylist (valned'moutiee RULEIST)))
(bi* nui rne( get!BREED2MF MUFATERANGE))
(bindq *min (valweofMXEED34&) %ULTATEMEN))
(bWnd 'perceut ( in ( md-emial (first 'rage) (second 'range))))
(bindql 'mules ( quouent (tine- (lnglh 'zhe-nles) 'percent) 100))
(iferuie ( Iessdunm? **Wles *mi)

(bind**rules *min))
(loopmullt (eqWal '#ults 0)

(do
(bindq therules (rnd~do

(croessxules 'thsue)
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(cons ( invent-rule) *fta4or)
\ (deker(mcmbem rethrulcs )* xc~ris)

(bindq '#mlcs (subl *#r.~3.M))
(bindq *mutationl (newiset))
( set-value *mutationl RU LEJ1l tftesues)
(set-value ornmd5oflACCURACY nit)
(set-value *mumuion CREATOR MUTIAE.ONE.SET)
(set~valuc *mutaton CREATED *cycles)
(display .to form "debug) ( display *m~uton debug)
(srewn mutation))

REPRODUCE.ONE.SET

deporqon: Given the curnntpopulation of rule ses Chtoose oie
ezample input: (conj0l con_= conV3.)
example asput: con...l1

c: REPRODUCE.ONE.SET
subtof function
iLtak list
Lgive symbol
arguments *curpop
my.varu -parent Onfles -newmnhles tlisxule cbance
algontirm (do bw *prn c- -ywthCULO )

(display> 'Reproducing ' debug) (display *pwmdebug)
\ (qin*newnflelsdil)
\ (bindq Oules (valmeof'pareffi RULE=S))
\ (bindq'chance(rnd~float))

\ (bindq-rules (reverse -rlets)))
\ (bindq-spot (edMtno(lettgth rules)))
\ (bindq *newjrues ( concat (clep~rs 'rules *Spot) (grabhrst- 'rules *Spot)))
\ (Ioop~until (null? 'rules) \@@@@ scramble ondet of rules for more variety

\ (do \@Ca,@@in cross-bree~dig
(biwk *'hisjule (member rult5))
(bindq 'newniles (cons iNsmule 'newnrles))
(deleie'tlrismte *rules)))

\ (set~valtre 'parert'RU.E.LWS 'rules)
(retrun'*paret

1REPRODUCE.BESTSET

desenption: Cmete acopy of thre best set ever, and returen it
example input:
ezampie output: cor...5454
notes: x

c: REPRODUCE.BESTSE71
sndxo function
ieralm none
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igive symnbol
mny.vams parnt *Mies -newsules *dus~rule

agrtm (o( bundq *parent ( new~set) )
( blnd 'xiies ( valmeofObestetzver'RULWST)
(bindl *newmrules nil)
(loop.until ( null? *rles55

(do
(bindl Othisjrule (mvewxule))
(copry.plist (firs rules) thismd'e)
(bindj *newjrules (cons *thisue~newxntlt$))
(bindq ntles (rest Otles))))

(set~valuc *parentRULE.LIST 'newxntes)
(seavalue -parent'ACCURACY ( valueof'b=qtsLt(-eACCURACY))
(seLvalue *paresCREATOR ( valueof besttemVtr CEATOR))
(seLvalue -parent 'CREATED ( valueod %esiseLever 'CREATED))
(seLvalue *parent'HEULXMA'lr ( value ot~estsetzer 'HEULC.Mb7r))
(seLvaitte *parent'SHEETMA'IT ( valuefotbseL5vc'SHEE'l.MA'f))
(set-value oparn 'RAN.MATI' (v Iue.o~bestset-Cver RAM~MAT))

(setvalue oparen'tO-TAL.MA7T (Wv-uof besum et I AL.MA ))

(seLjt -valu MaUstP C.PRED (V-A Wf'beststever ?ECPRED))
(,evalue -pa= IDI .ACCRACY (vaueof*betmer1 lJ DlJL CCURACY))
(set-value *parent 1EST ( valuetof *besiset-va'$EST))
(set-value oparet'W ORST ( value~oI*beste-eve1'WORST))
(retwn'patant))

REPRODUCE.BEST.WORTH

description: Create a copy of the best worth set ever. and return- is
eumple inpu
eamrple output -5n..454

note= x

c: REPRODUMEBEST.WORTH
sub.of function
Litake none
i.give symbol
iny.vars 'Parent -rules onewaules 'thisxue
algorithm (do

(bindq 'paret(new-A))
(bittdq *tules ( valmof oeswmrh~setever RULEIJST))
(bindq 'new.ruetl5nil)
(loop.unts (null? -rules)

(do
(bindq othissrule ( newmrule))
(copy.pjlist (first *ruls) 'thiss'e)
(bindq -newrules (cows 'thiWxue'newxuies))
(bindq 'rules (rest *rules))))

(set-value *parent 'RULE1I.ST 'newxrules)
(set-value 'parent 'ACCURACY ( Wauecof'*beLwdt-smetver'ACCURACY))

(set-value 'paret 'CREATOR ( valuecof'ObestwottLsetLevet 'CREATOR))

(set-value -parent 'CREATED ( valuecof Obcmtworth~set-evU 'CREATED) )

(set-value 'parent 'HaDLXMATT ( valweof obesL ttxohsLetter I'l.IX.MATT))
(aet-value 'pzrent'SHEET.MATT ( valus-of *best~woralh*Lem 'SHREELMAMI)

(seLvtlue 'parent RAN.mATr ( VWWueof *eSLWh-teLC ttAN3(ATM)

(set-value 'parent I'OAL-mAT ( vaimo .ofbest.wortlLseLevnt 'TTAL.MA'I))

(set-value 'parent 'PERCYRED (vf vaudbmsworthseLevr'PERCYRED))
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(ses~value 'parent 'INDIV.ACCIJRACY (value-of 'besztwoth~set~ever 'INDIV.ACCURACY))
(setyalue 'parenit 'BEST (value-ot betwoltihsetever 'BEST))
(sat~value *parent WORST ( value-of *beSrLWOtLse.$eLVer WORST))
(return *parent))

(EVOLVE.POP

description: Given the current population, eand the best score ever, evolve the population, ressuroeting the
best set ever ( accuracy and/cr worth ) if we seem to be en the wrong track

eznple inpite (con_1.01 con_=20 conJO30.. ) .55
estample output: (con-.101 con...202 con.303 -.)
notes: what should the divine ratervenitsot criteria be?

updates the deadwselist

c: EVOLVE.POP
sub.of functionk
i.tak list umbter number
Lgive list
MVrnts *Currpop * estscor *bestworth
my.vars 'random 'crossover *rpodc *mutate *new.sea 'dcad~sets 'new.pop 'deadXLst *help
algorithm (do

(bindq *random ( value.of7BREED.INfO ARANDOM))
(bindq *crossover ( valuemof'BREED2NFO WCROSSOVER))
(bindq 'reproduce ( valued'B3REED2M4F IREPRODUCE))
(bindq 'mutate ( value~of`13REED.NFO VMIJTATE))
(bindq 'help1'r)
(bindq new.popnil)
(iftrme ( less.than? (quotient 'btst~worth (float *besstworth.ever)) .85,

(do
(bindq *new.pop (con (reproducebest~worth ) *new.pop))
(bindq 'reproduce ( subl 'reproduce))
(bindq 'help7')))

(ifirue (and? (less~tAn? (quotient 'bevs-cor *best~ever) .80) *help)
(do

(bindq 'new.pop (cons ( reproduce~best-set) 'ntw.pop))
(bindq 'reproduc ( subi 'reproduce))))

(loop.until (equal? 'r'ndom 0)
(do

(bindq 'new.pop (cons ( create~new.=e) 'new.pop))
(bindq 'rndom (subi 'random))))

(loop.until (equal? 'crossover 0)
(do

(bindq *new.pop ( concat ( cos.pair-ses *c-r.pop) *new~pop))
(bindq *cosoe (minus 'crossover 2))))

(loop.imul (equal? 'mutate 0)
(do

(bindq 'new.pop (cons (mtutateroneset 'curr~pop) 'new.pop))
(bindq'*mutate (subl 'Oussee))))

(Ioop.unWt (equal? 'reproduce 0)
(do

(bindq *n--se ( reprodu -c-nese 'curr~pop))
(bindq 'curr.pop ( removeall1 (list 'new~set) 'curr.pop))
(bindq 'new.pop (cons Onew~set *new.pop))
(bindq 'reproduc ( subi 'reproduce))))

(bind *dead~sets ( rernove~All (conts *besLwothmseever ( cons *beastectever 'new.pop)'I
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(Value.OCULE.SET SUES)))
(bind vdeadiist(vak2.of'Kfl.MJ D)EAD.SETIUS))

1UvaueMflO'J DEAD.SErJTLI( OisLwfliof .&adsdeLseus))
(bindq *dead~set ( remveill OdeadiistdcdSt)

(do

(bindq sdea.~se (i *etdead-sea))))

(rams 'new.pop))

raunA2long sofLt4ar*, Inc. pmase 2 Final 5PA5 ort page C-8


