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Chapier 1 Objectives

1.1 Overview

We discuss our ongoing experience in the development of tools for research in materials science
and engineering. A measurable quantity of progress has beer: made during this SBIR @2 activity,
but much remains 10 be accomplished before we can say that a “complete” set of materials
discovery tools has been built. In our discussions here, it will be revealed that we have looked at
several important aspects of materials. Key is the notion that we did not restrict our tool building
1o structural materials, but rather we branched out to explore biological materials as well. We
looked also into aspects of design, with design of molecules a target. We see the tools we are
building as being appropriate to the entire materials science and engineering activities, starting
from concept discovery and ending with product manufacturing and support.

This has been and continues to be a three-part project: (1) enhancing generalized discovery tools
on our existing computer platform, (2) building specialized discovery tools, and (3) appiying
generalized and specialized discovery tools to specific materials-related projects including protein
studies and crystallography.

During the work, we have had the opportunity to incorporate some of our other activities,
including studies we have done in biomedical fields using our discovery system. We have also
folded in some of our external work in design. Portions of this cther work are included in this
report because it serves to illustrate key points we wish to make. This report includes portions of
contributions made by our consultants, W.B. Dress and A.G. Jackson.

We begin our report with a review of the philosophical aspects of what we call computational
theory formation. We then present the computer tool that has been extended as part of this work,
the goal of which is to address the issues brought up in the first section. Finally, the three
different applications mentioned above are introduced.

1.2 Discovery
“There is nothing more practical than a good theory.”
Hilbert
1.21 Philosophica! Background: What [s Science?

The ideas we wish to explore and the paths we wish to follow concern the world of scientific
discovery and how such high-level human activities might be first simulated and then aided by
coniputer-based tools. The goal is a tool-building one, having immediate utility for selected
research programs, and long-term benefit for general scientific activities. This may be viewed as
a next-generation “intelligence amplifier” which Ashby hinted at nearly forty years ago [Ashby,
1960).

To clearly present our case, we need to say a few words about science, the task and tools of
science, and its relationship 1o the vast intellectual structure that make up its formal tools and
color how we perceive and think about the world. For example, is the swudy of molecular
structure really the study of molecules? Or is it rather the study of the recorded behavior of
molecales as reported in the literature? Or is it the study of methods successfully used to study
molecules? What level of abstraction do we deal with? When are we doing science and when are
we studying how science is done?

o

i

Cotles
Jjor
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These are not meaningless questions as their answers will determine how we go about finding
new theories, how we go about verifying them, and how ensuing predictions relate to reality and
hence new ideas, methods, and products.

12.1.1 Popper’s Three Worlds
As a point of departure, imagine that reality consists of three distinct worlds as illustrated in

figure 1-1. Following Karl Popper [Popper and Eccles, 1977], we take these worlds to be

1. The world of entities having existence: naturally occurring entties and human artifacts. Examples
include molecules, automobiles, animals, and people.

2. The world of mental states and activities not directly perceptible as entities except by ourselves;
yet we know that they must exist.

3. The world of mental constructs (whether “correct” or not). Here, we find political theories, plans of
action, subjects of contemplation, and scientific theories. .

World 1

(rocks,
scientists,
molecules)

(
philosophies,
theones)

Figure 1-1: Possible relationships among Popper’s three worlds.

Note that this scheme is a convenience for our discourse, and not meant 10 be a philosophical
position to be debated or defended. It merely serves as 2 point of departure. We simply wish to
talk about reality, its reflection in the modeling relation, and the several levels of models needed
to describe that reality. Thus, the view of science as an activity of World 1 entities building
World 3 constructs by means of World 2 activities for elucidating World 1 relationships is the
real subject of our presentation.

We are not going to discuss the couplings between the worlds, except to note that they must
exist.
121.2 Dynamical Systems View

We will assume the sufficiency of the Newtonian Paradigm that generalized forces, coordinates,
and velocites are all that are necessary 10 describe the universe to any degree of accuracy. The
higher derivatives are not needed. Thus, the model is

x=f]x, a i
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where x represents the generalized coordinates (i.c., coordinates and velocities in particle descrip-
tion), oL represents any parameters (e.g., masses), t represents the time parameter, and dot denotes
time derivative. The generalized coordinates are observables of the system and their range
comprises the state space of the system. f is a vector of real-valued functions on the state space,
and any other observable of the system is represented by some f'_ This is the most general
dynamical system that we will consider; 1n fact, this viewpoint may be said to comprise what we
mean by “science.” Note that all of physics (even quantum mechanics), chemistry, and much of
biology fits into this scheme. The proof is the unparalleled success of the scientific method over
the last three centuries and the explosion in activity of the latter half of this one.

The study of dynamical systems then becomes a study of points and trajectories in the state
space. Topology may also be studied when ensembles of state-space points are important (as in
statistical mechanics).

Any of the standard models of science can be cast in the dynamical systems formalism, and the
difference-equation representation can serve as a computationally efficient model of the formal
dynamical system. We will call on this form of dynamical systems modeling exclusively when
we explore the construction of models from collections of finite-state automata.

1213 Doing Science: The Modeling Relation

The mam activity of science is the search for correct and useful models of natural systems. Cnce
a model has been established, it becomes a tool for further scientific exploration and discovery.
Along the way, any given model will be revised, refined, and perhaps discarded. This is the
normal progression of science.

As depicted in figure 1-2, a natural system is encoded into a formal system (the model) by means

of observations and measurements. Inferences are made on the model using the formal rules
(e.g., mathematics). Results are then decoded into predictions on the natural system.

Figure 1-2: Schematic of the general modeling relation (after Rosen).

If we wish to study science with the goal of providing a set of advanced simulation tools for
aiding the scientst in his quest, we must first study and understand the modeling relation. We
will show iater that this study must be expanded to include a model of the scientist and his/her
activities as well as a2 model of the scientific theories and process.

12131 Theoretical and Empirical Models

The standard model of science is theoretical in the sense that the model builder relies on a
well-known theory of measurement and observation and uses standard mathematical techniques
to describe and codify the results of the measurements. The next stages are likewise theoretically
based as the scientist atempts 10 construct a deductive system whose goal is to provide predictions
of behaviors in Werld 1.

Empirical models may result during the course of a laboratory experiment wherein certain parts
and functons of the nawral system under study are replaced by contrivances or held fixed while
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other parts are observed and measured under controlled constraints. This tight interaction between
theory and experiment is where most of today’s science takes place.

12132 Computaticnal Models

It is only recently that the third type of model became possible. A computational mode! is a
novel mixture of the theoretical and empirical models. It is theoretical in that it is based on the
formal notions of mathematics and logic, and empirical in that the computation must actually be
carried out in many cases. Here, we must distinguish computation that simulates a system under
study from calculation that obtains a solution to a differential equasion, for example. The results
of calculations have bezn used for centuries prior to the invention of the computer, but complex
simulations of certain systems need the computer to become feasible. After all, the ciosed-form
or a numerical function as an answer is the exception. Certain simulations are then beyond the
reach of the “standard” modeling techniques of differential equations and can only be carried out
on a suitable simulator (e.g., a digital computer).

An example of a computational model that rarely has a solution obtainable by calculations in the
usual sense is provided by boolean switching networks. Theory shows that limit cycles are to be
expected, but which limit cycles under which inital conditions can only be determined by a
computational model once a certain complexity of the network is surpassed. Such switching
networks can provide a model of genetic behavior during organism growth (the differentiation
process). The operon model, in particular, is amenable to the switching-network description. To
obtain answers to questions of evolutionary behavior requires that the system be simulated since
no known short-cut exists. This point has been formally discussed by Wolfram {1988]).

12,14 The Simulated Laboratory

Doing science by computer must ultimately and intimateiy involve an integrated cybemetic
system designing and conducting actual experiments in a real-world (World 1) laboratory. The
system will be an extension of the human scientist—a cybernetic “graduate student” with instant
access to sophisticated scientific databases, 2 suite of standard scientific methods, and a repertoire
of laboratory techniques. Such a process requires a sophisticated set of effectors and affectors
that we do not yet possess. The next best thing is to provide a simulated laboratory.

122 The Scientist < Modal Relation

Since we effectively have all three worlds at our disposal, we can look at and think about the
relationship between the scientist and his world of study. This is exactly the system we need to
study and model to achieve our goal of building a tool for doing science by computer. To carry
out such an ambitious program, we will need to model the scientst (no mean task) and the
systems under study (much easier, but certainly non- trivial).

To model the systems under study requires that we must obtain effective models of scientific
models of natural systems. We are necessarily one step removed from the realm of the natural or
physical scieatist and must remain aware of that fact in all that follows. To forget will cause us to
confuse our models and constructs with first-order scientific theories, when they are theories of
theories and theories of behavior. In effect, what we are doing is studying reladonships that map
World 3 onto World 3, whereas the (first-order) scientist is studying relationships mapping
World 1 onto World 1 by means of constructs in World 3. This activity is illustrated in figure
1-3, which shows how the scientist builds entities in World 3 from observations (World 2
eatities) of World 1 behaviors.

ThinkAlong Software, Inc. Phase 2 final Report pege 1-4
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Figure 1-3: Schematic representation of the entities and relationships involved in the discovery process

The only sure guide we have in this undertaking is the successful models constructed by first-order
science. These must be our touchstone to the utility of what we wish to accomplish.

1221 Modeling The Scientist

This difficult and fascinating subject is at the core of a following discussion of the discovery
system tools we cail The Scholar’s Companion (TSC): how to mode! scientific discovery. Note
that numerous authors have been exploring such ideas over the last decade. Notable among such
undertakings are studies in qualitative physics {Bobrow, 1985] and simulation of scientific discovery
on specially crafted data sets (Langley, 1987; Thagard, 1988]. The goal of TSC is to provide the
user with a functional modet of the scientdst—a scientist-computer that can make hypotheses and
perform useful “computer” work such as database manipulation and certain calculations, as well
as constructing and testing reasonable models germane to the problems posed by the human
scientist.
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Figure 1-4: Abstraction of entities and relationships comprising the scientist and sclentrfic activities.

Figure 1-4 represents that portion of the scientific discovery process that is to be modeled by
TSC. This shows what The Scholar’s Companion needs to model at its core. (The left dashed
arrow represents some portion of scientific observations required to construct a theory or scientific
model. Note that World 1 entities such as the scientist himself or the actual systems under stady
are not required for this abstraction.) Previous work, cited above, has concentrated only on the
encoding-decoding relationships (labeled “Theory” and “Prediction” in the figure), and that on
rather limited and contrived data sets. Our discussion in this presentation, based on the mappings
among the three worlds, clearly shows that additional modeling is needed. Not only must some
of the World 2 entities be taken into account, but the interfaces between World 1 and 2 and
betwesn World 2 and 3 are essential to any successful machine representation of scientific
activity. Classic ardficial intelligence (AI) has had some success in modeling perceptions and
thought processes; much of the work discussed in Langley [1987] involves these constructs. The
lower-level World 2 entities and the World 1—World 2 interface remain largely unexplored
areas. As yet, no comprehensive system as depicted in figure 1-4 has been attempted.

1222 Modeling The Model

Our concem in the remainder of this section will be with the computational models representing
the natural system under study. We will need to look at the interface between these systems and
the observing system, as well as possible formalisms for constructing the model systems. Figure
1-5 illestrates the relationships between the scientific discovery system and the scientist’s model
of the natural system. In the figure, the scientific theory is represented in the computational
system by the Computational Model module and interacts with it by models of the encoding and
decoding processes.

ThinkAlong Software, Inc. FPhase 2 Final Report page 1-6




TSC Interface

m ional
Scientific O putationa

encoding

Computer
System

Figure 1-5: A modeling view of a computer-based system for doing science.

The relationships among the model, the theory, and the user are manifested ir the interface
between certain computer prograrus. This interface primarily consists of *“‘measures of performance”
of the computational model and interpretations of these measures analogous to the of affectors
discussed above. An example would be 2 set of numbers returned to TSC representing a concen-
tration of a certain molecular species that was the subject of the requested model. The effectors
consist of a grammar allowing TSC to specify types of models to be created in the Computational
Model module. This interface is shown in figure 1-5 as the “TSC Interface.”

A realization of these ideas is idealized in figure 1-6. Our @2 project has been to develop tools
suggested in figure 1-6, and apply those tools to specific problems.

Environment

N

L0 N AW

TSC Simuiator

Figure 1-6: A realization of a toolbox for scientdic and engmneering discovery.

1.3 Toots

We implement the philosophical notions discussed above in a toolbox, introduced above, called
ThinkAlong Sortware, Inc. Phase 2 Final Report page 1-7




The Scholar’s Companion (TSC). TSC is being developed to provide scientists and engineers
with modeling, simulation, control, and discovery tools.

1.3.1 Qualitative Modeling

Tool building has been the main thrust of this @2 activity. Most important has been the refinement
of our qualitative modeling tools, called QPD [(Wood and Park, 1990]. Modeling, as we shall see,
forms the backbone of most of the materials discovery activities we pursue. We call the internal
structure of a qualitative model an envisionment.

A simple envisionment (discussed in detail in the next chapter) from the polymer curing domzin
that is illustrated in figure 1-7. The initial conditions are that a polymer is contained in an
autoclave and heat is applied by the autoclave heater. The polymer eventually begins its condensation
curing reaction at which point the IF-THEN rules suggest envisioning two different outcomes of
the process: a cured component and a burnt component.

Exotherm
Polymer

Figure 1-7. A simple envisionment.

Model building provides the opportunity to explore the possible outcomes of a physical process
given some initial conditions. Process control discovery then involves finding a process algorithm
which encourages the desirable outcome and discourages the undesirable outcome.

1.3.2 TSC’s Exploratory Behaviors

We are able to take advantage of the model-building behaviors by asking “what 1" questions.
Such questions are posed in goal-onented statements we give TSC. There are twe  xploratory
behaviors we are developing and we discuss here. They are case-based reasoning a.:i analogy,
and directed evolution.

1321 Case-based Reasoning and Analogy

Case-based reasoning involves searching a library database of cases similar to the case represented
by the qualitative model TSC is presently considering. This search may find one or several cases
in which poruons of a case may, by analogy, be found to apply to the model presently being
considered.

1.32.2 Directed Evolution

The primary tool of discove.y 1n our work is an exploratory machine learmung technique we call
directed evolution. We have applied directed evolution in three different ways during this work:
(1) genenc algorithm mutation to IF-THEN rules used to predict protein structures, (2) genetic
algonthm mutation to lisp-like programs being designed to predict protein structures, and (3)
heuristic mutations to design rules. The general approach to directed evolution is select some
member(s) of a universe of rules or objects in a knowledge base, clone and mutate, then study
the results.

ThankAlong Software, Inc. Phasas 2 Fanal Report page 1-8




133 Rough Sets

De.ermination of the relative importance of pitces of informatior: and the refinement of knowledge
to dense, accurate representation is at the cor= of much Al research. A relatively new approach to
the analysis of large data sets is Rough Set Theory {Ziarko, 1989). We have implemented a
version of Rough Set Theory in the TSC toolbox, and have begun to apply it to the problem of
protein squcture analysis.

134 Nearest Neighbor Analysis

The study of molecule structures requires the ability to perform pattern recognition on sequences
of components of the structure. Amino acid sequences are found in proteins, and the recognition
of sequences which result in different structures such as helices and beta sheets is germane to the
prediction of protein structures. We have implemented a variant of the nearest neighbor algorithm
in the TSC toolbox, and have tested it on a variety of proteins of known conformation.

1.4 APPLICATIONS — PROTEINS

Nearly all of our tool-building activitics in this @2 project have been directed specifically at the
understanding of protein structures. Our task was 1o select some activity in the materials domain
and apply our tool-building skills to that activity; our sponsecrs requested that we focus our
efforts on protein structures.

Proteins are the building blocks of life itself, and it turns out these tiny molecules have many
properties that are interesting and potentially useful in appiications other than living tissue. For
example, the electro-optical properties of specific protein structures suggest applications in optical
filters. The study of these properties is of current interest to our sponsors, and the tool building of
this (2 activity supports the sponsor’s work. The overall fiow of protein analysis starts with the
analysis of amino acid sequences, predicts the final protein structure, and ultimately designs
proteins with specific desired structures. These structures may be useful in the electro-optical
domain, and they may «iso t¢ useful in the biotechnology domain, as new disease-fighting drugs,
for example.

14.1 Prediction

Prediction of the secondary strucize of a new sequence is performed by any of a variety of
leaming techniques. From the literature. approaches to the prediction of protein secondary structure
have included the genetic algorithm: (Unger and Moult, 1993}, our own approach [LeClair et al.,
1992), neural nets [Qian and Sejnowski, 1988), [Holley and Karplus, 1989), and statistical
approaches which include conformational propensity parameters [Chou and Fasman, 1978).

We have explored two different approaches to the genetic algorithm, and have developed tools to
perform studies based on an zlgorithm known as the nearest neighbor aigorithm {Cost and
Salzberg, 1993], {Salzberg and Cost, 1992).

14.2 Design

How amuno acid sequences specify a protein’s three-dimensional structure remains unanswered
[DeGrado, et al., 1989). One approach o gaining undarstanding is de novo design of 1pcdel
protewns. This approach has long been useful in designing small molecnles. We have extended
our protein study tools to use the process of analogy and analysis of proteins to design an
experimental protein structure.
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1.5 AprpLicATIONS — CRYSTALLOGRAPHY

Synthesis of materials is 2 very old problem, as is processing them to produce a tool or an object
of art. Although the limits of our knowledge about materials has increased tremendously in the
last century, our means for exploring the possibilines of designing materials is only in the early
stages of development.

Examples of mateals problems of great interest are those associated with specific properties of
biopolymers, semiconductors, and intermetallics. Optcal properties are of particular interest for
potymers and semiconductors, and swength and ductility are concerns for intesmetailics.

The ransmission electron microscope (TEM) is an importart tool associated with the study of
materials properiies. We have explored the coupling of cur discovery tools so the control of
experiments with a TEM, and to automating detecuon of properties of materiais with crystalline
StrUCTuses.
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Chapter 2 Tool Building

The technical approach appiied in ThinkAlong's research involves the coupling of computational
tools to problems involving exploration of datasets. The core of our efforts centers around an
artificial intelligence tool we deveioped in earlier work, in development since the mid-1980s,
called The Scholar’s Companion (TSC), s introduced in chapter 1. Its hardware and software
architectures are discussed in further detail below.

In general, TSC iv created to serve the user with several behaviors. These include model building
by applying specific knowledge to some given initial conditions; general purpose encyclopedia
behaviors such as using internal knowledge to answer user queries; exploratory behaviors including
directed evolution, genetic programuming, hypothesis formation, and assisting the user in creative
design tasks; and data evaluation tools including rough set analysis and nearest neighbor analysis.

These behaviors are discussed after the introduction to T3C.

2.1 THE ScHoLar’s CoMPANION

211 Architectural Overview

TSC is constructed as a message-based object-criented system, the architecture of which is
illustrared in figure 2-1. The main data interaction with the system begins at the environment,
flowing through encodis to a glebal message list. The knowledge base interacts with the global
messages, deleting old messages and writing new ongs. Some of the new messages are decoded
and returned to the environment. This flow of information is an outgrowth of the “expert system™
approach to artificial intelligence. TSC adds a variety of izarning technologies to the expert
system approach.

Messages

s o
3 Knowledge 8
S Base Q
< @
“ a

Figure 2-1: TSC Architecture.

TSC is intended to operate in networked computational environments, though it is suitable for
stand-alone desktop application as well. The network approach permits application of a variety
of simulation t00ls and large databases to the discovery process. This is illustrated in figure 2-2.
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Figure 2-2: TSC on a network

Part of Al research centers around schemes for representing in a computer program the knowledge
we carry in our heads, i.e. World 2 models of World 1. Another part of that research looks for
algorithms which can apply the represented knowledge to some task. The following discussion of
TSC’s learning behaviors considers knowledge as represented as “actors,” their relatiorships and
states, and behaviors in some physical or chemical process.

TSC supports a knowledge base in a frame format. Frames represent concepis which include
actors, relations, states, rules of behavior and rules which represent physical and chemical processes.
Each frame is similar to a small relational database entry. For example, the following frame
(adapted from [Karp, 1992)) contains much of the data on a particular molecule. It is read by
forming “sentences” from its entries. For example, carbon monoxide belongs to all kingdoms.
We can also see from the last line that carbon monoxide is a compound.
c: carbon-monoxide
display-coords-2d ((-0.77 0.0) (0.77 0.9))
structure-bonds 21 3y

structure-atoms (e ©)
priority 1
mesh-ids “p1.154.328" “D1.655.498.185™ *“D022248"
kingdoms all
chemical-formula ((c 1) (o 1))
roots carbon
sources lhcsds mimavro
cas-registry-numbers “630-08-0"
molecular-weight 28.01
synonym o
atom-charges 2 -1 @ 1
sub.of compound

21.2 The TSC Language: Statements

TSC writes messages for use internally, and for use in communication with the user. The syntax
of a typical TSC message is based on a seatence with a subject, predicate, and truth; a message
can also involve a sentence with a subject, predicate, object, and wruth. Variables are words
which begin with an asterisk (*). These sentences are read as illustrated:

( predicate ( subject ) truth )

eg. ( ala ( *x ) true )

( predicate ( subject object ) truth)

eg. ( abuts ( *x *y ) true )

Actors are regarded as things which occupy space and have mass. Examples of statements TSC
can process about actors include:
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( thermal.mass ( body.e1 ) true )

( heat.source { autoclave.34 Dtrue )
( b-cell ( b-cell.01 ) true )

( temperature.sensor ( t1 ) true )

Typical of the statements TSC can process about relationships include:
( hotter.than ( body.01 body.82 ) true )
( hotter.than ( autoclave.32 body.01 ) true
( abuts ( body.e1l body.02 ) true )
( inside ( t1 body.01 ) true )
( binds ( b-cell.0L antigen.04 ) true )

Typical statements TSC can process 2bout states include:
( increasing ( t1 ) true )
( increasing ( %2 ) false )

213 The TSC Knowledge Base Structure: Taxonomy

The entirety of the knowledge base is stored in the form of taxonomies. A taxonomy contains
information on a group of aciors, the relationships they form with each other, and the states in
which they may detected. A fragment of a taxonomic structure for the domain of immunclogy is
presented in figure 2-3. Here we iliustrate structures related to a particular actor in immunology,
the B-Cell. This cell may be detected as one of several subspecies, those behaving as activated,
and those behaving as natural killer cells. The B-Cell actor is mentioned in several process rules
and statements (as listed below), so the taxonomy includes this information.

ACTIVATED HELPER T-CELL.
AWTIGEN . INTERNALIZATION.
[ ANT TGER. PRESENTATION. 8]
{ANTIGEN PROCESSING.B]
 B-CELL_ACTIVATTON.1]

Figure 2-3. A fragment of the B-Cell taxonomy.

214 The TSC Knowledge: Rules

Physical and chemical processes (e.g. nucleation, evaporation, etc.) as well as TSC behaviors (
discussed below, e.g. prediction, design, etc.) are represented as IF-THEN rules. A typical
structural prediction process rule’ from our protein study exercise is illustrated here:
¢: 0BS.1

worth 680

IF actors are AtA and GLU

AND ALA abuts GLY

THEN predict helical structure

A typical process rule from a tiomedical domain (immunclogy) looks something like:
'Mivstraed in v English-like format for readability.
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C: ANTIGEN.BINDING.B

LEVEL BASIC
SUB.OF PHYS.PROCESS
INSTANCE.OF RULE
CONTEXT HUMAN ., IMMUNOLOGY
IF.ACTORS ( ( ANTIGEN ( *ANTIGEN ) TRUE )

( B-CELL ( *B-CELL ) TRUE ) )
IF.RELATES ( ( ABUTS ( *B-CELL SANTIGEN ) TRUE ) )
IF.NOT.RELATES ( ( BINDS ( *B-CELL *ANTIGEN ) TRUE ) )
THEN.RELATES ( ( BINDS ( *B-CELL *ANTIGEN ) TRUE ) )

This rule says that if you have a B-Cell abutting Antigen, the B-Cell then binds the Antigen.
Firing such rules is the process by which TSC builds a qualitative model of a process. We now
turn cur discussion to these models.

2.2 MopeL BuiLoing

Knowledge bases, as discussed earlier, include IF-THEN ru'es which describe physical processes,
and the taxonomic knowledge base which includes information on the actors, their relationships,
and their states. These knowledge base entries are then applied to the consuucuon of a qualitative
model of some aspect of the domain represented by the knowledge base. The specific aspect of
the domain is constrained by an entry supplied by the user, the initial conditions. TSC “fires”
IF-THEN rules which the initial conditions enable, building an envisionment. A stylized
eavisionment for the immunology knowledge base looks something like that of figure 2-4.

Figure 2-4: Immune system envisionment.

An envisionment is “grown” by TSC when some initial conditions are provided. Initial conditions
represent statements about the initial actors, their initial relationships, and their starting states. A
set of initial conditions may be provided by the user, or it may be supplied by TSC as it generates
its own experiments. The notion of “growing” an envisionment follows on the observation that
the eavisionment is a tree-structured directed graph, also called a digraph.

Directed graphs consist of nodes connected by arcs, which are represented by the arrows in the
figure, In our parlance, cach node is called an episode, and each episode represents the envisioned
new state of affairs in a process. Each episode is the result of a single process rule firing. Notice
that alternate branches of the tree are formed, as illustrated in figure 2-4. Aliernate branches
mean that more than one process may occur given the same conditions.
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Qualitative models in TSC provide the structure of theories the TSC uses to explain and to
predict the outcomes of physical processes on given initial conditions. We illustrate this by
discussion of the reasoning process called abduction, in which hypotheses may be formed from
the qualitative model to explain sorae observation.

If a small digraph made from the observation of a physical process can be “matched” to an
envisionment we can use abduction to hypothesize that the processes of the envisionment provide
a mechanism 1o explain the causal relationships. For example, the digraph in figure 2-5 can be
matched to 2 path in the envisionment in figure 2-4; thus we have reason to suspect that figure
2-4 describes a2 mechanism explaining figure 2-5.

Artogen | Cytokine Antbodies
introduced ncresses Iincrease

Figure 2-5: Causal Digraph Example

Abduction in the context of TSC is a process of logic which relates consequences to their
candidate antecedents. That is, if we know that some conseguent B follows from antecedent A,
and we observe B, then we can hypothesize that A is true. Specifically, applying abductive
inference, if we know that introduction of antigen into the immune system will lead to antibody
production via a mechanism that includes cytokine production (as in figure 2-4), and we “observe”
causal relationships between introduction of antigen, increasing cytokine, and increasing antibodies
(as in figure 2-5), then we hypothesize that the observed causality is explained by the known
mechanism.

Applying this reasoning in a simation where the digraph of observations is not found to match
the envisionment results in an important event in the use of TSC, an expeciation failure is said to
occur. Since the envisionment both explains and predicts, any time it is unable to explain oc
predict observations, the resulting expectation failure causes TSC to begin a set of tasks to deal
with this new event.

Dealing with expectation failures evokes several behaviors in TSC. The initial behavior is to
alert the user, and describe the nature of the expectation failure. Initial TSC behaviors are then
guided by a diagnostic knowledge base which tries to determine if the expectation failure is
caused by, for example, a sensor failure. More advanced behaviors invoive TSC's exploration
tools which allow it to conjecture the presence of an unknown (to the program) process which
may be involved in the observations.

Model building involves specification of the observables. These form the initial conditions of an
cnvisionmert. The envisionment then characterizes the linkages between the observables, which
TSC builds by firing process rules. Rule firing involves matching the “IF-side” of an IF-THEN
rule to the current episode (the first one being the initial conditions). When a match is found, the
*“THEN-side” of the rule is used to build a new episode. The resulting envisionment is an
expression of the model.

2.3 EncycLopepia Beraviors

TSC is designed for interactive, cooperative exploration of some eavironment with a user. Two
aspects of the TSC system enable interacton with the user: 1) the program will read knowledge
supplied by the user in a frame format or a *natural language” format, both from a text file, and
2) the program will accept knowledge supplied by the user in the “natural language” format
when the user types the new knowiedge in TSC’s “conversation” window.
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The software which parses sentences typed by the user in the conversation window will accept
cither statements (new knowledge) or questions. A user question causes the conversation software
to attempt to generate an answer.

This conversation facility has been used to generate two knowledge bases, but has not been used
in the @2 activity.

24 ExproraTory BeHaviors
244 Case-Based Reasoning
2411 CBRoa TSC

Case-based reasoning (CBR) is an outgrowth of artificial intelligence research. The approach
enables machine leaming of some environment by storing and indexing the experience provided
in training exercises. This indexing builds “cases” by which the program may, during some later
exercise, notice similarities between the current experience, and prior cases. Mapping a prior
case 1o the current situation involves reasoning by analogy.

We have implemented 2 version of CBR in which all of the Brookhaven Database proteins serve
&s cases from which a new protein design may be generated. We now contrast our approach to
convential CBR techniques.

24.12 TSC Case-Based Design Approach vs. Conventional AI CBR

While the “dialect” of case-based reasoning (CBR) used to produce the proteins has similarities
to traditional Ai-based CBR [Riesbeck and Schank, 1989]; it also has some important differences.
The comparisons are presented below. The traditional CBR approach is based on the needs of
powerful reasoning systems used in story understanding, and creative activities such as design
and authorship. The TSC approsch is based rather strictly on the needs of molecule design. Thus,
the TSC code may be considered a specialization of the traditional CBR approach. Traditional Al
CBR is illustrated in figure 2-6, (after [Riesbeck and Schank, 1989)).
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Figure 2-6: Tradtional Case-based Reasoning Aigorthm.

24121 Similarities
. Case library used as knowledge base.

The majority of the knowledge of the protein design system is contained within the case library.
The system doesn’t know why a cerain sequence of amine 2cids forms a helix, it just knows that
it does. It has a get of examples of helices without ever knowing what 2 helix is, or how to create
one from scratch.

. Solving problems includes searching a case library for examples.

When the system is asked to design a protein containing certain structures, it searches the case
library for similar structures. This is analogous to searching a traditional case library for similar
plans, or recipes, or eveats, etc. The TSC case-based design system doesn’t need to know how to
create 2 helix from scratch, because it's seen a helix before (in its case library), and knows
something about what they are composed of.

24122 Differences
. No adaptation of cases—a case is always used exactly as is.
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A wadinonal CBR system will find a similar case and then adapt it to fit the current goal of the
system. The TSC case-based design sysiem will find a similar case and then plug it in to the
solution without altering the original case at all.

. New proteins aren’t stored as cases, because they aren’t cases.

A traditional CBR system will generate new cascs as it goes about its process, and will typically
store them for later use. TSC presently does not generate a new case; it merely combines old
cases in a new order to form a new protein.

. No sure near-term way to determine effectiveness of algorithm

Because the testing of the designs using a structure prediction algorithm is limited in its accuracy
to the 50 to 70 percent range, there is no certain near-term way to determine if a design was
successful or not. Therefors, there can be no immediate adaptation or learning from the systen’s
failures. If TSC generates 2n incorrect protein given a certain case library and specification, it
will generate that same wncorrect protein every time.

242 Hypothesis Formation

In the following example, we show, drawing from the biomedical domain, that we can ask TSC
tc investigate the prevention of some outcome. TSC explores candidate approaches by forming
conjectures on ways to prevent the outcome, and then presents those conjectures to the user.

Figure 2-7 Hypothetical envisionment.

Figure 2-7 illustrates an immune system envisionment in which some antigen (disease causing
agent) 15 inroduced into the organism. We ask of TSC's expioratory behaviors how to prevent a
parncular outcome—immune system failure. The exploratory behaviors derive one or more
conjectures 1n the form of proposed alternate branches of the envisionment tree structure, as
illustrated in figure 2-8.
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Figure 2-8: New branches on the envisionment.

TSC's hypotheses may inciude several different approaches to prevent the final outcome. For the
immune example, prophylaxis (prevention of antigen introduction) may be proposed. Another
branch may propose an “antibiotic” to inhibit the action of the antigen. These hypotheses are
generated by TSC in a variety of ways. The first is to examine a database of “cases” which may
be similar to the case represented by the current envisionment. There, the prophylaxis hypotheses
may be found and applied as an alternate branch to the current envisionment. This is an example
of case based reasoning as described above.

TSC may look through its collection of process rules looking for a process which might, by
analogy, be mapped to the existing situation, The classic example of this (drawn from historical
discussions, rot from TSC's own experience) is the mapping of a barttle strategy (divide the
forces up and attack from different directions) to the problem of reducing or eliminating radiation
burns when radiation therapy is indicated in tumor therapy.

243 Design

‘We have developed two different approaches to design, both of which are discussed elsewhere in
this report. The first approach is our applicaticn of case-based reasoning to design a new protein
by analogy to a case library of known proteins.

The second approach apphies design rules to a “design envisionment” in which the initial conditions
are a “‘seed” design, and design rules buiid an envisionment, always trying to improve the design.
This approach requires that we supply TSC with a simulator which is capable of evaluating each
new design.

244 Directed Evolution

Directed evolution (DE) is our name? for a computational approach to discovery pionesred by
Douglas Lenatin his AM and Eurisko programs [Lenat, 1943]. The approach involves performing
mutations to elements of a knowledge base and examining the results.

The term 15 borrowed from molecular biology [Abelson, 1990}
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244.1 Directed Evolution vs. Genetic Algorithms

One variant of directed evolution is based on “heuristically guided” machine learning. The other
variant is based on random mutation. We have begun to develop both approaches. In the random
mutation variant, TSC applics a machine leamning technique adapted from the genetic algorithm
(GA) {Goldberg, 1989]. Recent work has applied the GA to computational chemsistry and chemo-
metrics [Lucasius and Kateman, 1989]. Qur system extends the GA to function in the traditional
symbolic environments of AL

John H. Holland seeded the creation of the GA and wrote the seminal works on the subject. (cf
[Holland, 1992), {Holland et al., 1986}, {Holland, 1986), (Holland, 1992], (Goldberg, 1989],
(Farmer, Packard, & Perelson, 1986), and (Judsor: & Rabitz, 1992], and (Koza, 1992}). Holland
and his work have been honored by the 1992 MacArthur Prize. His students have evolved the
algorithm to its present level of power and generality. The DE algorithm is, roughly speaking, a
slight generalization of the GA.

The GA serves as a guided optimization system in that, over a number of “generations,” it selects
elements and combines them into predictive rules similar to 08S.1 shown on page 3. Rules are
then rated for their predictive accuracy during the leamning exercise and successful outcomes are
reinforced. Overall performance improves over time, since successful elements are allowed to
survive through subsequent generations.

The select-combine algorithm mimics evolutionary processes such as crossover, point mutation,
viral infection, and so forth. For example, a pair of “strong” rules (i.c. good predictors) may be
selected as “parents” in a crossover breeding exercise. Actors or relations will be traded between
them such that “child” rules are constructed from parts of each parent.

Directed evolution, like a genetic algorithm, is applied to a population of rules to evolve a more
successful population. Success is defined externally, by way of a goal to reach. In contrast to
Darwinian evolution, directed evolution and genetic algorithms employ goals such as finding a
class of objects, ¢.g., rules, as applied to some task or problem. Evolution in the Darwinian sense
has no such goal.

2442 Algorithm

In applying the GA to any proposed activity, onc maps the actors, relations, and states of the
domain into classes or “gene pools.” In a biochemistry study, actors might include atoms,
substructures (molecule fragments), and entire molecules. Relations might include types of bonds
and various structural features. Properties such as hydrophobicity may also be included. Thus,
candidate descriptors covering topoiogicai, geometric, electronic, and physicochemical properties,
and mode of toxic action are available for selection.

Figure 2-9 illustrates the program flow when running the GA. Given a database and an initial set
of rules (typically generated at random), the system exercises rules on data, looping vndil all rules
have been tried on all data. Following this, all rules are evaluated for their predictive capabilities:
selection is made of successful candidate rules to be “parents” in a breeding exercise. By
applying crossover and a variety of point mutations on individuals, a new body of rules is created
which must “compete” with the prior body of rules. Rules gain or lose worth based on prediction
accuracy following exercises with the data. Rules of higher worth have a higher 1 robability of
becoming pareats in future trials.

This process repeats for many trials. A leaming curve results from the accumulated experience of
many cycles of GA evolution. Directed evoludon continually secks to improve the performance
of the predictive rules. In most cases, more cycles of the learning system results in better
predictive performance of the resulting rules.
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Figure 2-9: Flow of Actwvity in Directed Evolution.

Our “Exercise Directed Evolution” biock in figure 2-9 applies heuristic guidance to the exercise
of the genetic algorithm. Here, we are interested in *“directing” the GA roward rapid improvement
in its discovery of good predictive rules. A periodic evaluation of the various combining/mutating
functions of the GA is conducted by TSC and heuristic rules in the knowledge base direct
changes to the probability of occurrence of each GA function. Heuristic rules offer “suggestions™;
the results from a given heuristic rule’s firing may not result in anticipated improvement of the
GA performance. The flow chart of figure 2-9 illustrates the cyclic nature of directed ev-lution:
it is a search for improvements in toxicity predicion. By guiding the evolution, TSC eventually
improves the performance of the GA during leaming cycles. This heuristic discovery system is
patterned after the Eurisko program of [Lenat, 1983] and the Hypgene program of {Karp, 1989].

Starting with a Darwinian Evolution approach, implemented as a genetic algorithm, the system
follows the guidance of a knowledge base. This coupling of heuristic guidance to a GA creates
learning curves that achieve desired results in a reasonable amount of time. We present an
example of this coupling later in the Mutation section.

2443 Optimization Strategy

Because GAs are a family of iterative search algorithms, and therefore comparable to both iinear
and non-linear optimization techniques, it is important to understand what distinguishes GAs
from conventional systems.

A universal problem associated with optimization is that, when applied, the methods are typically
over-constrained by the numerous assumptions made to transform a dynamic real-world problem
into a mathematical formalization. In general, optimization techniques have three difficuldes: 1)
depending on their search strategy they are sensitive to large or ermratic noise in the data, 2) they
are hampered by local performance peaks that may be unrelated to the overall maximum, and 3)
their search strategy uses the slope of the function to select the next step in the search process.
For the more complex problems, the local slope does not provide adequate information about the
location of the maximum. This is particularly the case for noalinear problems.

‘These difficultics vary and depend both on the problem and optimization method. The GA would
be subject to these charactenstics, but properties of the genetic algorithm mitigate them. For
example, local peaks are escaped by the mutation operator (discussed below). As a consequence,
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a GA is more analogous to complete enumeration than to any of the math model-based optimization
techniques, i.e., 2 GA is largely a trial and error process involving muliiple candidate solutions
instead of a slope-guided process involving a single candidate solution. But in contrast to complese
enumeration, the multipie candidates are only a small subset of the total number of solutions and
they are evaluated in parallel (as a set of solutions).

A GA employs and combines qualitative and quantitative operators encoded as conditions in the
search for a qualitative (i.e., find an instance of, find a class of, or find all) or quanttative goal
(i.e., t0 maximize or minimize some numeric value). In comparison with other conventional
optimization techniques, a GA has several advantages: 1) GAs encode the parameters which they
have to optimize and base their procedure on the ccdes—not on the parameters themselves, 2)
GAs work in parallel on a number of search points (potential solutions) and not on a unique
solution, which means that the search method is not local in scope but rather looks globally at the
search space, 3) GAs require from the environment only an objective function measuring the
fimess score of a candidate solution, and 4) both selection and recombination steps (discussed
below) arge9 performed by using probabilistic rules rather than deterministic ones. [Renders &
Norvik, 1992).

As per therr biological origins, GAs imply the use of mutation as a fundamental mechanism of
innovative population variation, but instead of the usual genetic material, i.c., DNA in biology,
problems encoded in the form of IF-THEN rules are addressed. In addition to mutation, GAs
typically rely on two additicnal operators called reproduction and crossover for population variation.
The systera discussed here does nat employ reproduction, but limits populaticn variation to
crossover and mutation. Components of “if-then” rules (i.¢., antecedents and consequents) serve
as the genome (biological domain), and the rules themselves serve as the phenotypes. Thus, a
collection of rules serve as a “gene pool” for crossover and mutation operators. We discuss those
WO operators next.

2444 Crossover

Crossover 1s regarded in the literature as the dominant operator when compared to mutation.
Using crossover, two rules are selected to produce “offspring” by exchanging a portion of their
rules: IF (antecedent) subjects, objects and relations; and/or THEN (consequent) subjects, objects
and relations (analogous to gene splicing). The offspring replace weaker rules in the population.
Crossover serves two complementary functions. First, it provides new points for further testing
within the existing problem “subspaces” (represented by the parent rules). Secondly, it introduces
representauve members of “subspaces” not already existing through prier crossover. The DE
variant of crossover alternates the type of selection of parents between randomly selecting
parents and on the basis of strength (cross those rules with the highest predictive accuracy).
Given one pair of parents, two children are produced by the process. Genetic material that
comprises the antecedents (IF clauses of the rules) are spliced and exchanged to make two new
children. The new rules are placed in the veting “pool” of rules.

2445 Mutation

Mutation is a secondary operator in directed evolution, and is applied with very low probability
of occurrence, typically less than a few percent of the time. Its purpose is to alter the enceded
value of a random position (point) on a string. Examples of point mutation are insertion, deletion,
or change of some rule component. In the TSC DE system a selected rule is copied and the
mutation operator, selected at random, is applied to that copy. Source of a “mutant” DNA
element for insertion or change is typically a random member of the rule set. In a “viral”
mutation, 2 DNA clement is selected at random from a source poo! outside the mile .2t

Mutanons may be guided by indsvidual heuristic IF-THEN rules, cr they may take the more
Darwinian flavor of random changes. A simple example of a heurisdcally-guided mutation is
drawn from our work in design; a design rule which has contributed successfully to the design of
a vehicle is selected for mutation. It is then cloned and mutared and the results are then stdied.
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A stylized initial rule is:
If you want to improve the performance of the vehicle
And the vehicle includes an aerodvnamic structure (e.g. a wing)
Then consider increasing span by 10%

The mutated version of the rule is:
If you want to improve the performance of the vehicle
And the vehicle includes an aerodynamic structure (e.g. a wing)
Then considar increasing wingspan by 29%

The selatively simple mutation involved increasing the rate by which this rule applies its “mutations”
to the evolving design. This mutation was suggested by a rule of the form:
If you have a design rule which is more than XX stronger than other rules
Then consider cloning the rule
And mutate the new clone by increasing/decr:asing its rate parameter
And post a task to study the new rule’s performince

Directed evolution involves a hypercycle, that is, the design exploration process is a cyctic
evoiution acting on the product being designed, while the tools of evolution are, themselves,
subject to the forces of evolution.

245 Genetic Pregramming

In an approach to directed evolution different from the rule-building discussed above, we evolve
lisp-like programs which perform some task. Our programs are intended to predict protein
structure, as discussed in the next chapter. Here, we discuss this approach to genetic programming.
Our implementation of genetic programming is based on Koza [1992). Genetic programming is
used to modify a population of programs which perform tests on the data. Programs in this study
are constructed of boolean expressions. The terminal values of these expressions are generated
by application-specific primitive functicns.
245.1 Algorithm

Creaie an indial (random) population of programs.

1 Execute aid evalyate programs t¢ determine fitness.

2. Rank order programs according to firess.

3. Generate a new population of programs by applying reproduction, crossover, and mutation to the
best of the old pre _-ams.

Go to step 1.

Nermally this algorithm chooses the best program to appear in any generation. In our version the
result is the finai population of programs with 1non-zero finess. These programs will be used in
corcert for recall and prediction.

The process begins by applying a population of randomly-generated programs to the elements of
a database. Program results are placed in a matrix and evaluaed to obtzin a measure of cach
program’s fitness. These fimess values are used in selecnng programs to breed into the nrext
generation. This process is iflustrated in figure 2-10.
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Figure 2-10: Gerelic Programimeng.
Programs are constructed of beolezn operatons connecting applicanon-specific primitives. Our
implementation constructs programs using Scheme, a dialect of Lisp. This representation is easy
to reanipulate and directly executable in the Scheme environment.
An evaluation matrix is created by applying each program to cach point ia the training data. For
each Gata point (i), and for each program (j), tac program is =xecuted and the result is stored at
location (ij) i the matrix. Thus each column of the mamix contains the values retumed by 2
particular program for all the data points, and each row contains the values retumed by all
programs for a particular data point.
The evaluation matrix 15 used in evaluating the fitness of programs using rough set theory. We
discuss rough set technology elsewhere in this report.

24.5.2 Survival and Reproduction

Because our implementation is searching for 2 good population of programs rather than a good
1ndividnal program, it iy convenient to scparate the CONCepts of survival and reproduction.

24.52.1 Survival
We have expenmeated with three options for survival of programs from one generation o the
next.

<. Retain 2 fixed number of the best programs.

2. Calculate the minimum SGF (significance) for all programs and retain af programs wrh an SGF
greater than the mnimum

3. RetanM.te programs with SGF > 0. Note that M is a mnimal set so t will by definton contan a
dgiverse population

24522 Program Reproduction

We have expenmented with two options for production of new programs from one generation lo
the next.
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1. Replace discarded programs
2. Supplement M by a constant number of programs. This allows P to increase or decrease

according to the Size of the minimal set M. Populatior: size adapts to the probiem and with
progress toward a ssiution.

New programs are created by the genetic operators, crossover and mutation.
2453 Crossover and Mutation

In this study the genetic operators modified only the boolean expressions. Crossover was
implemented by selecting ore sub-expression from each parent and swapping them to produce
two new programs. Mutation was implerented by selecting 2 sub-expression within a single
parent and replacing it with a randomly generated expression. Random replacement by the
mutztion operator was the only method implemented for modifying a terminal function.

24531 Program Crossover

The crossover operator first selects two members of the current population of programs. A
crossover point is selected within each program and the sub-expressions below these points are
swapped to produce two new programs. Figure 2-11 shows two programs with sub-expressions
selected.

Figure 2-11: Sub-expressions selected for crossover in parent programs.

Figure 2-12 shows the two new programs created by the crossover operation.

<,

Fiqure 2-52: New programs created by crossover.

24532 Program Musation

The mutation operazer first selects one member of the current population of programs. A mutation
point is selected within the program and the sub-expression below this point is replaced with 2
randomly generated sxpression. Figure 2-13 shows an example of an original program and one
possible result of applying the mutation operator.
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figure 2-13: Original and new program created by mutation.

2.5 Dara EvaLuation TooLs

251 Rough Set Evaluation of Genetic Program Fitness

Fitness evaluation in the genetic programming approach requires an objective function with
which to perform the evaluation. As in the Darwinian algorithm, some critic—typically, the
environmeat itself in the biological domain-—is required to rate the performance of each individual
In our cxperimental work, we apply a rough ser evaluatien tool, based on rough classification
described by Pawlak [1984,1991] and Ziario (1989]. These methods allow the fitness of functions
to be evaluated in a context with other functions. We expect this approach to promote population
diversity by a natural terdency to assign lower fitness to redundant programs. To anticipate the
results, our trials of rough set evaluation were used on small tasks such as developing rules
which identify certain cancers or flowers. The method discussed here turns out to be far o0
conupute-intensive to be appropriate to protein studies on our workstation-based TSC. We do
believe tiat these tools, when ported to a super-computer, will provide useful resuits.

These properiies are particularly important for our applications where we are trying to find a
population of programs that perform well in concert. This is in contrast to typical genetic
programming applications where the goal is to find a singie program which performs well.
2541 Definitions

S = (UAV.f} is an information system consisting of a set of data objects (U), a set of attributes (A), a
set of possible attribute vaiues (V), ana a function that maps data objects and attributes to
attrbute values (f).

U isthe set of a!! data objects. in our inses applicztion it is the set of alf iris examoles in our database.

A isthe set of all attributes. In our implementation ¢ s the set of concepts measured or tested by the
attribute programs. The set A also corresponds to the set of ail columns in the evaluation matrix.

V is the demain of attribute values. In our irises applicazion it is {setosa, virginica, versicolor, true,
false}.

f is the descriphon function mapping UxA-»V. In dur implementation it comresponds 10 the evaluation
matrix.

N is the set of predicted attnbates or columns of the evaluation matrix. In our application it is a single
column containing the species name for the data objects.

P is the set ot predictor attridutes or colutnns of the ovaluation matrix. These correspond to the set of
programs to be determined.

M is a munimal subset of P which reta:ns the full ability of P to discem eiements of N
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N'1s the set of elementary sets or equivalence classes based on predicted attributes. it corresponds
to the set of sets of rows which have matching values in all the N columns.

P* 15 the set of elementary sets or equivaience classes based on all predictor aftributes. it
cofresponds to the set of sets of rows which have matching values in all the P columns.

M'1s a set of efementary sets or equivalerce classes based on a munimal set of predictor attributes. It
corresponds to the set of sets of rows which have matching values in ali the M columns.

ind(P)rv, 1s the umon of all elementary sets in P* which are subsets of the thelementin N' These are
the lower approximations of the sets  N'

PGS(P,N) is the umon of ing(P)n', for alil elements &', 12 N". This 1s the subset of U for which P is
sufficient for disceming membershp in the equivalence classes of N'.

k(P.N) = card(POS(P,N)) / card(U)
This is the fraction of the set U for which P is sufficient for disceming membership in the
equivalence classes of N'.

SGF(P,N,p) = ( k{P.N}—k(P-p,N) ) /k(P.N).
This is the signficance value; 1.e , the relative change ink(P,N) resulting from deletion of p, frem

P. SGF has the advantage that it rewards programs for their contribution to recall or prediction in
the context of all other programs

25.12 Evaluating Attributes

The sets and measures above are used to determine the significance of members of P for
classifying members of U into the equivalence classes of N’. One goal is to find a minimatl subset
of atiributes that retains the capability of all P for discerning elements of N*. Another goal is to
assign a significance value to each auribute. This value will be used in calculating program
fitness for the genetic programming process.

The following method calculates sigmficance factors for each program while determining a
minimal set. Programs with zero significance are not included in the minimal set, M.
Initialize: M1 = P.
For each pk in P:
Calculate SGF(Mk,N,pk)
If SGF(Mk,N,pk) = @
then Nk+1 = Mk-pk
else Mksl = MK

There may he several minimal sets. The order of selecting pk during calculation of M will affect
the final contents of M. We have chosen to select the pk beginning with the lowest-SGF
members of the previous generation. This encourages turnover in the population by allowing an
older program to be replaced by an equivalent set of new programs.

252 Nearest-Neighbor Pattem Recognition

The technology of patiern recognition with the nearest neighbor technique is primarily applied to
our protein structure prediction project. Briefly, a large body of exemplars is created based on a
library of proteins and is stored in computer memory. Each excroplar represents a window of
data which slides along the amino acid sequence of any given protein. The windowed data is
combined, in the exemplar, with a prediction of the structure, derived directly from the given
protein. This collection of exemplars is then applied to the prediction of structure when presented
with a window of data from the new protein. The exemplar with a window of data nearest to the
window of data from the new protein “wins” the right to offer its prediction. This prediction
process is repeated for all data windows in the new protein.
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The approach used here is to collect the exemplars from a group of proteins which are not
selected from the design case library. In general, we develop the algorithm by training on a large
collection of proteins, then test the algorithm on a different collection of known proteins. Once
the algorithm has been “tuned,” it is next applied to the testing of new proteins.

The TSC code for structure prediction, which is applied to the designed protein, is based on an
algorithm documented in [Cost and Salzberg, 1993], [Salzberg and Cost, 1992). The program
PEBLS (Parallel Exemplar-based Learning System) is reported to achieve accuracies in prediction
of protein secondary structure as high as 71%. The algorithm is closely related to the memory-based
reasoning approach of [Zhang et al., 1992].

The PEBLS approach (after [Salzberg and Cost, 1992)) as implemenied in this work is as
follows: given a sequence of residues from a fixed length window from 2 protein chain, classify
the cenrral residue in the window as helix, sheet, or coil. The table below (after [Salzberg and
Cos?, 1992)) compares the correlation coefficients from PEBLS and a varicty of other algorithms.

Algorithm %correct Ca Cp Ceoli
PEBLS 71.0 047 045 040
Zhang et al. 1992 66.4 0.47 0.387 0429
Qian & Sejnowsk: 1988 64.3 041 031 041
Holley & Karplus 1989 63.2 041 032 046

The TSC code applies an algorithm patterned after PEBLS, but does not presently include the
weighting scheme used by PEBLS. Our simplified approach requires a single pass through a
training set of 66 to 91 proteins selected for non-intersection of training proteins with the protein
set used for case-based design. During this first pass, tables are constructed that contain the
distances between amino acid values. As explained in {Salzberg and Cost, 1992]), distance is
estimated statistically; distance between amino acids is a sum over three classes (helix, sheet,
coil). The sum is based on the number of times residue 1 was classified into a particular
category, the total number of times that residue occurred, and the number of times residue 2 was
classified into a particular category, and the total number of tires that residue occurred. Values
should be similar if they occur with the same relative frequency for all classes.

A different table is built for each position in the data window. Thus, if window length is
specified as, say, 17, then 17 tables are constructed. Exemplars are constructed from each
window presented by the maining set. Each exemplar is stored in the form: ((window) pre-
diction) ). An example follows: ( ( ALA PRO LYS... ) A ) where “A” is the
prediction. If there are, say, 500 windows of residue sequence data in a training set, there will be
500 exemplars created. {Cost and Salzberg, 1993] report that the performance of their algorithm
improves with increasing window length to a peak at a length of 19. The TSC code has typically
applied a window length of 17.
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Chapter 3 Applications

3.1 Protein StrucTure PREDICTION

Our work has focused on prediction of protein structures from a given amino acid sequence, and
to design a protein sequence that will yicld a given structure. We usc our directed evolution and
genedc programming techmques, along with the nearest neighbor analysis. We then use case-based
reasoning to design a protein.

314 Methodology

Consider the evolution of a set of rules which are successful at predicting the structure of a
protein when given certain information about that protein. The application is quite similar to the
application of a genetic algorithm in chemometrics [Lucasius, 1989}, in which prediction of the
conformational analysis of DNA molecules was studied. Unlike Lucasius and Kateman, the gene
wnformation is much broader than just a few parameters such as the order of the nucleotides in
the DNA sequence, bonding distances and bonding angles. The approach taken kere acknowledges
the need for many more parameters as suggested by Lozano-Perez in an article by Erickson
{1992} as follows: “We’re finding you need more like 100 data points to characterize a molecule
properly.” Attributes such as molecular charge and hydrophobicity add dimensionality that is
difficult for humans but simple for computers to consider.

We apply two variants of genetic algorithms in our DE tools: (1) muzations guided by random
selection, and (2) mutations guided by heuristic rules. Both were illustrated above. We then
apply DE to DE itself. This enhancement uses heuristics to notice current performance levels of
predictive rules and alter the breeding and/or mutation methods to allow more successful populations
of rules to “gain a footheld” and begin performing. Once performance achieves a predetermined
level, breeding/mutation methods are again altered by DE heuristics w either breed more generalized
or more specialized rules. In both cases, we are building a set of rules which perform prediction.

As noted earlier concemning Darwinian Evolution, typically a GA evolves rules in a dynamic
(comtinuaily changing) environment—an environment Holland describes as a generator of
“perpetual novelty” or concept drift. The TSC DE algorithm is also capable of dealing with the
concept of drift; however the protein structure problem is a static environment—an environment
in which the protein training sets do not change with each leamning cycle.

Directed evolution develons a population of rules intended to predict the presence of helical
structures in a protein when given the amino acid sequence. Initially, at system startup, the DE
randomly produces many general rules for predicting a helix, attempting to fill every (candidate
solution) niche in the environment. When the environment is sufficiently seeded, the DE begins
evaluating those rules. Subsequently, the randomly generated startup rules are bred based on rule
performance. A number of search parameters can be adjusted by the DE rules; changes to these
“knobs” may change the size and performance of the gene pool, and may alter the probability of
any given GA strategy.

A typical protein represented in a TSC-readable form looks like the following frame:
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C: PDB38SC

name CYTOCHROME. BS

instance.of protein

functionality elactron.transport

tertiary.structure small.ss.rich.or.metal.rich-met-
al.rich-up.down.ligand.cages

source bovine.liver

HY.DATA ( SER LYS ALA VAL tYS TYR TYR THR LEU GLU GLU ILE GLN

LYS HIS ASN ASN SER LYS SER THR TRP LEU ILE LEU HIS TYR LYS VAL TYR ASP LEU
THR LYS PHE LEU GLU GLU HIS PRO GLY GLY GLU GLU VAL LEU ARG GLU SLN ALA GLY
GLY ASP ALA THR GLU ASN PHE GLU ASP VAL GLY HIS SER THR ASP ALA ARG GLU LEU
SER LYS THR PHE ILE ILE GLY GLU LEU HIS PRO ASP ASP ARG SER LYS ILE THR LYS
PRO SER GLU SER )

HELIX.POSITION ((912)(3338)(447)(S360)(5N)(

81 86 ) )
SHEET.POSITION ((57)(2125)(72)(5154)(7480))
TURK.POSITION (C1721)C2428)(C3942)(C4952))

31.2 Genetic if-Then Rule Generation

The problem is to predict the presence of helical structures in a protein when given its amino
acid sequence as illustrated. One of TSC’s methods is to build a population of IF-THEN rules
when given a “genome.” The genome is built from three “chromosomes,” the working componeats
of an observer rule. A pair of nbserver rules follows:
c: 0BS.1
worth 686
{f.actors CCala ( *x ) true ) ( glu ( *y ) true ) )
if.relations ( ( abuts ( *x *y ) true ) )
then.predict ( helix ( window ) true ) )
c: 0BS.2
worth

(
56
if.actors C
(
(

0

Cleu ( ®x ) true ) C glu ( %y ) true ) )
C abuts ( *x %y ) true ) )

( helix ( window ) true ) )

if.relations
then.predict

The three chromosomes are:
* actors
« refahons
« predictions
Actors are comprised of the twenty natural amino acids:
Alanine Arginine Asparagine Aspartate
Cystine
Glutamine Glutamate Glycine
Histidine
Isoleucine
Leucine Lysine
Nethionine
Phenylalanine Proline
Serine
Threcnine Tryptophan Tyrosine
Valine

Relations are primarily structural or spatial in this example:
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MET
ARG
GLY
LYS
VAL
ASP
VAL
GLN
SER
VAL
GLN
LEU
ALA
ALA
LEU
KIS
ASN

abuts
abuts-1 AeXeB
abuts-2 AeXeYeB

The two predictions, used as votes by a population of rules, are:
{ nelix ( window ) true )
( helix ( window ) false )

An example sequence for the protein ACYLTRANSFERASE (after [Gibbs & Leslie, 1990]) looks like

the following:

ASN
GLU
PHE
LYS
MET
GLY
TRP
GLY
SER
MET
GLY
PRO
ASN
LYs
SER
VAL
SER

TR
HIS
SER
SER
ILE
LEU
ASP
THR
ASP
GLU
VAL
TRP
PHE
™R
VAL
ALA
LYsS

AeB

THR
PHE
LEV
LEY
TR
ARG
SER
GLU
ILE
ARG
THR
VAL
THR
GLN
GLN
ARG
LEY

LYs
GLU
THR
ASP
LEV
MET
VAL
THR
ASP
TYR
PRO
ASN
ASP
GLN
VAL
PHE
LYs
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(abuts (A B) true)

(cbuts-1 (A B) true)
Cabuts-2 (A B) true)

PHE
PHE
SER
ASP
ILE
ALA
ASP
PHE
SLN
LYs
GLY
PHE
TYR
GLY
HIS
ILE

ASP
TYR
LYs
SER
ALA
ILE
PRO
SER
PHE
SER
ASH
ASP
PHE
GLY
RIS
ASN

VAL
ARG
ILE
AtA
GLN
LYs
GLN
ALA
MET
ASP
HIS
SER
ALA
ASP
ALA
ARG

LYS
HIS
ASP

LEV

ASN
ARG
ILE
LYS
VAL
ASP
THR
SER
ASN
LYs
ASN
ASN

LE
LEU
CYs
GLN

P
LEU
THR
PHE
ASN
GLY
VAL
s
YR
LEY
ILE
LEU
ILe
LEY
Asp
GLU

VAL
PRO
THR
TYR
GLN
LEU
PHE
PRO
LEU
PHE
ALA
ASN
TR
LEU
GLY
LEY

ARG
s
LEY
PRO
PHE
ILE
HIS
TYR
SER
PRO
ALA
VAL
MET
PRO
PHE
CYs
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Observer rules are exercised on segments of a natural system as read from a data base called
windows of sequence data. During leaming, the window is shifted along the data. An example
window of data, with a window size of five amino acids, looks like:

[ ala arg gly ola pro ]

TSC encoders write 2 body of statements about the window:
Cala (ala.1) true) (arg (arg.1) true) (gly (gly.1) true)
(ata (ola.2) true) (pro (pro.1) true)
(abuts (ata.1 arg.1) true) (cbuts-1 (ala.l gly.1) true)
(cbuts-2 (ala.l ala.2) true) (abuts (arg.l gly.1) true)

All rules are then exercised (allowed to vote) on this encoded window. This voting is repeated as
the window is “siid” along the entire data set. A reward/punishment algorittm—part of the
directed evolution component of TSC—then examines the performance of the individual rules
which cast a vote. Following the “buckes: brigade™ algorithm of John Holland {Holland, 1986),
those rules which participate in the vote, and which vote correctly, get a reward (their worth is
increased). Thinking of a given rule and the source (parents) of that rule as a “bloodline,”
additonal reward is bestowed upon the source of the successful rules.

Once rewards have been passed to appropriate rules, a small decay (reduction of worth) of all
rules is computed. This has the effect of punishing those rules which do not participate in the
vote, or which vote incomrectly. Rules whose worth falls below a specific value are eliminated.

At this point the directed evolution component, with its genetic algorithm, mutates the rule
population and conducts a search for the optimum rule set. For example, using as parents 085.1
and 0BS. 2 listed above, “sexual recombination™ builds a child that looks like the following:
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c: 0BS.3

my.source obs.1 obs.2

my.creator crossover.l

worth 260

if.actors C(les ( *x ) true ) ( ala ( *y ) true ) )
if.relations ( ( abuts ( *x *y ) true ) )

then.predict ( C helix ( window ) true ) )

This “child” rule is added to the population of rules and given a starting worth value. Now,
consider the effect of a point mutation on the rule 085. 3 to make a new rule 0BS.4.
c: 085.4

my.source obs.3

my.creator point.mutate.2

vorth 2090

if.actors (Cleu ( *x ) true ) (ala ( ®y ) true } )
if.relations C ( abuts ( *x *y ) true ) )

then.predict € C helix { windom ) false ) )

This rule is essentially the same rule as its source, 0BS.3, except that it votes a differeat way. If
the rule is successful, it will eventually replace its source in the rule population.
To summarize directed evolution, using a biological metaphor, we see that:

« The strongest rules get to breed

« Successtul rules get fed well

»  Parents of successfut rules get treats

e Allrules age

313 Prediction Program Generation

We tum our discussion from gencration of IF-THEN rules capable of predicting the conformation
of a protein from its amino acid sequence, to the generation of lisp programs which are capable
of the same predictions. In this, we ase the genetic algorithm to evolve programs. As it turns out,
the approach we explore is vastly too compute-intensive for protein studies. Qur preliminary
efforts centered, instead, on the development of the approach, which we discuss now. The
approach has sufficient merit that it should be ported to a super-computer and tested on pruieins.

314 Testing Recall and Prediction

We have tested our implementation with a relatively small database of iris flowers (Fisher's iris
data reproduced in [Salzberg, 1990]). Each entry includes the name of the species and four
values for sepal length, sepal width, petal length, and petal width.

We tested for both recall and prediction. The data was partiticned into two disjoint sets for
training and prediction testing. Recall was tested using a subset of the training data. Prediction
was tested using data which was not used in training. Testing was accomplished as follows:

1. Each program in the minimal set, M, is applied to the test data point.

2. The resulting list of values is matched against the correspording values in cach row of the
evaluation matrix. We use an anzlog of hamming distance to select 2 maiching row for prediction.
We calculate the distance as the sum of SGF(M,N;m) for columns m that do not match the
corresponding test value. The row with the minimum distance from the list of test values is
selected. If several rows have the same distance measure then the first of these is arbitrarily
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selected.

3. The attribute values to be recalled or predicted are retrieved from the N columns of the
selected row. Success is measured as the fraction of the test data that is correctly recalled or

predicted.
3.2 Protein Design

Protein design generally refers to de novo approaches for new proteins. The process starts with
first principles and attempts to design model proteins from scratch. Because the design process
starts from scratch, small homology with native sequences is expected in the de novo approach.
‘The approach critically tests the designer’s understanding of protein structure.

A number of recent experiments have explored variants along the de novo theme, including
[DeGrado, et al., 1989], {Regan and DeGrado, 1988), (Wendoloski and Salemme, 1992}, [Fedorov,
etal,, 1992], [Hecht, et al,, 1990).

For example, the design strategy of [Hecht, et al., 1990] is to use natural structural motifs to
design sequences that are native-like in partern and composition, are locally non-repetitive, and
are not homologous to any known protein. This is a kird of “design by analogy.” The protein
created by this strategy is called “Felix,” a four helix bundle protein. We present a sketch of that
protein later, together with a discussion of an approach to the re-creation of the secondary
structure of Felix using our TSC system for case-based design, also referred to as design by
analogy. We now discuss that effort.

321 Case-Based Protein Design

We have selected a case-based (c.f. [Riesbeck and Shank, 1989]) approach to protcin design.
This approach suggests the ability to “leamn” directly from the database supplied by nature. The
alternative is de novo design approaches, which require a knowledge base strong in protein
folding first principles. Coupling of the case-based approach with the discovery of de novo
design rules is suggested as an important extension of this work. We apply our nearest neighbor
prediction algorithm to analyze the designed proteins. Our approach to design, analysis, and
evaluation of proteins is diagrammed in figure 3-1.
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Figure 3-1: General TSC Case-Based Protein Design.

322 Approach

In a big picture, our approach is:
Given a ibrary of proteins and a design declaration:
Search for all candidate structures simifar to structures in the desiced design
Find the combinations of structures with a "best fit®
Publish the resuls
The TSC case-based code is a program that will design proteins of a given secondary structure,
using 2 model from case-based reasoning. An overview of this process is depicted in figure 3-2,
By starting with a database of proteins (a case library) whose structure is known, the system

finds, by indexing and analogy, appropriate sequences of amino acids needed to produce desired :
structures. The design process then becomes a process of merely “putting together the pieces.” I
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{evahistion)

I Descnption of structurs "W ]
Figure 3-2: Architecture for protein design and evaiuation

Although the TSC system uses a moderately extensive database of amino acids and their properties,
this database is used only to refine the design process. The system currently uses a simple
template matching process in order to do its first-pass design, and then uses the amino acid
database to select options from that first design. To accomplish this task, the system needs to be
able to derive answers to the following questions:

1 What structures have | seen next to each other in a protein?

2. What was the size of those structures?

3. What amino acids were involved in creating those structures?

4, What are the structures, neighbors and sizes involved in the protein to be designed?

Furthermore, the system should be able to accommodate proteins that have multiple subunits. A
protein is said to have multiple subunits when it contains two or more disconnected sequences.
The system needs to be able to access all of these sequences, but also to know that they are
physically disconnected. To accomplish these goals, the system searches protein database frames
(database entries), each of which holds several important components. Each protein frame contains
(at least) the following pieces of information: an ordered list of the amino acids that compose it,
and, for each possible structure, an indication of where (if at all) the structure occurs in this
particular protein.

To more accurately illustrate this, we present an example of & protein database frame herz,
adapted from the Brookhaven PDB. Note the list of amino acids, and the indications of where
helices, sheets, and tums are found.
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C: PDB3BSC

name CYTOCHROME.BS

tnstance.of protein

functionality electron.transpoert

tertiary.structure small.ss.rich.or.metal.rich-met~
al.rich-up.down.ligand.cages

source bovine.liver

MY.DATA ( SER LYS ALA VAL LYS TYR TYR THR LEU GLU GLU ILE GLN

LYS HIS ASN ASN SER LYS SER THR TRP LEU ILE LEU HIS TYR LYS VAL TYR ASP LEU
THR LYS PHE LEU GLU GLU HIS PRO GLY GLY GLU GLU VAL LEU ARG GLU GLN ALA GLY
GLY ASP ALA THR GLU ASN PHE GLU ASP VAL GLY HIS SER THR ASP ALA ARG GLU LEU
SER LYS THR PHE ILE ILE GLY GLU LEU HIS PRO ASP ASP ARG SER LYS ILE THR LYS
PRO SER GLU SER )

HELIX.POSITION ((912) (3338)(4447)(5360)(C6571)(

818 ) )
SHEET.POSITION CCS57)C2125)(2732)(5154)(C748))

TURN.POSITION (C1722)C2428)(3942)(4952))

n addition, a target protein is needed; in order to create a new design, TSC needs to have a
design specification. The user creates an experiment frame which contains the description of the
protein along with several parameters used by the system. The following, is an example of an
experiment frame used in this design exercise.

C: EXPERIMENT.42

INSTANCE.OF EXPERXMENT

WORTH see

CONTEXT PROTEIN

DATA.SOURCE PDB.DATA

DATA.FILES ( PDB1HDS PDBZLTH POB3HHB PUBZDHB PDBiFDH PCBILDE

PDB1PYP PDBIFC2 PDBITGS PDB2CCY PUDR2CAZ PDBZCAB PDB3SGB PDB1SGT PDB1PFD
PDBIHNE PDB2STV PDBIGCR PDBIMBD POBIMBS PUB2CDV PDB1CY3 PDBILZT PDBIFX1

PDBLCCS )
ACTOR.SOURCE NATURAL.AMINO.ACID
TEST.ATTRIBUTES  { POLARITY NOLECULAR.WEIGHT SIZE.OF.SIDE.CHAIN
SIDE.CHAIN.MUTABILITY HYDROPATHY )
TEST.NEIGHTS (.25.10.20.10.35 )
OVERLAP 1
SIZE 65
2.STRUCT G415 (N ))(H(I6B)(RVLYI(T(HN)

323 Case-Based Design Algorithm

With all this data in hand, the target protein can be designed. The structure of the case-based
design algorithm is as follows:
1. Intialize the system by loading the protein database, and analyzing & to produce the mformation
used by the design algonthms
2. Analyze the target protein to produce the data structures necessary for design.
3. Foi each structure in the target liet, do the following:
a. Search for a known structure(s) that has the same structures both bsfore and after,
and differs in length by fewer than 3 amino acids. if several can be found that are
equally close in length, store all of them, giving preference 1o longer structures.
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b. If rune can be found with the same neighborting structures, try to find a krown
structure that has simiar structures both before and after, and that differs in length by
tewer than 3 amino acids. Again, keep ali that are equally close, with preference to
ionger ones.

c. It nona czn be found with similar neighbors, try to find a inown structure of closest
length with any neighbonng structures. Keep all that are equally close, with prefer-
ence to fonger ones

d. Get the data for each structure from s native protein, including one amino acki on
either side. !f there were several possibilities. get the data for ak of them.

4. Atthis point, we have a list of possible choices for cach structure in the protein. For each possible
ngighbioring pair of structures, compars the overlagping amino acids, and determine their
ditfecance score, as explained in secticn 2.1.4. Store this data.

5. Find the combination of possible structures that tias the lowast total difference, compila the tist of
structures inte & protein, and fill in tire siets of the new protein frame appropriately.

For the new protein, it may be true that the system could not find an exact match for a given
sieucture, and resorted to a structure of slightly different length. In the resulting protein frame,
the system notes the position of all structures as they are piaced by the design algorithm. These
positions may not he the same as thosc in the arge specification.

In placing structures, the system compares the similarity of the ends of the structure with the
ends of its neighbors. For instance, if the sysiem is trying to place a helix between two random
coiis, it will remember not only the amino acids that compose t:¢ helix, but also the first amino
ezid cut of the helix on each end. Then, the lost residue in the helix and the first residue in the
coil from ¢ach grabbed helix are compared with the last residue in the bzlix 2ad the first residue
in the coil from each grabbed coil. This comiparison is repeated for every junction between
structures, and the overall configuration with the lowest tozal difference is selected for the final
design.

For example, consider that we want to design a protein containing a helix that connects to a tum,
and we have helices with the following endings:
. GLY YRP ALA,... VAL CY3 VAL,... AUA LEU VAL,... LEG VAL THR,... ARG THR
GLY

Tae last amino acid in cach group above -3 actually the first amiro acid of the wurn. We also kave
one tum, with the following beginning structure: ALA ILE THR..., where the alanine is the last
amino acid of the helix. The system will compare the overlapping region for each possible
combination (TRP-ALA and ALA-ILE, CYS-ALA and VAL-ILE, LEU-ALA and YAL-ILE, eic.), and
note the difference score for each choice. It will then look at every possible combination of
structures to make up the entire protein, and wien choose the structure that has the fewest
ifferences between neighbors. Consider the fuilo wing iliustration of this configuration:

<hellx > | < turn >

GLY TRP ALA passible hefix
. VAL QYS VAL -
. ALA LEY VAL -

. LEU VAL THR M
ARG THR GLY :

—

ALA  LE THR.. passidia turn

The use of only one extra residue at each end of 2 structure is arbitrary, aad might be more
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effective were there to be two or more compared. An interesting direction for future work might
be to compare the effectiveness of using only one extra residue with using more than one.

To dutermine the diffsrence score of adjacent structures, the following algorithm is applied:

1. Determine winch amuno acid aftributes (molecular weight, polarity, etr.j will be used to determine
the dilference, and gather their passitle values. Each aftnbte will hava a st of discrete possible
vakies. (The attridutes are supplied by the user, but the algonthm gathers the values. )

2. Determine the weight of each atinbute as given by the user.

3. For each amino acid in the overlapping region, for each attribute under test, catculate the
difference value as shown below

4. Sumthe diference for al ameno acids in the overlapping region to determine the diference score.
For example, the possible values for molecular weight are: very light, light, medium, heavy, and

very heavy. We interpret these as evenly spaced namerical values ( .. 1 through 5) and define
the individual attribute difference as:

- |
Distyy = M
Max - Min

We then define the amino acid difference vaiue as:

Distg= 3, DistynXWeightae

ainuutes

The particular atributes and weights vsed in our initial evaluation (which can be seen in the
description of the EXPERIMENT .42 experiment shown on page 8) were chosen “seat-of-the-pants,”
and have no particular theoretical justification. It would be an interesting future projact to model
the effects of different choices of these parameters on the accuracy of the resulting design.

Consicer this example of the fraine of a designed pretein. This example is derived, by design,
from the EXPERIMENT . 42 task listed above.

C: CON_L
INSTANCE.OF PROTEIN
SOURCE BBT.CREATE.PRO

SHEET.POSITION (516 ) (4148))

HELIX.POSITION ((3729) (324))

TURN.POSITION (49 %))

NY.DATA ( ILE PRO GLU TYR ARG GLY SER THR THR GLY THR HIS SER
GLY SER VAL GLY PHE VAL GLY ALA SER TYR VAL PHE ALA LEU MET ASN ASP PHE LEU
PHE PRO PRO LYS PRO LYS ASP THR LEU LYS ALA ASN VAL PRO PHE VAL ASP TRP ARG
GLN LYS GLY PRO PRO ALA SER PRO LYS ALA ASP ALA PRO ILE )

The structures found in CON_1 can be compared to the specifications in EXPERIMENT.42 (the
contents of 2.STRUCTY Nate that the structures are not in exactly the positions intended by the
designer, but they are .. TSC operates under the assumption that random: coils are the least
mmportant sructures . . ¢ause of that, they can be shrunk or expanded to make up for errors
mtroduced 1n the positioning of previous structures. This is why the second helix and sheet are in
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the proper position, even though the first helix and sheet were not.

3.3 TE# 4 ContrROL

331 TEM Contrel Approach

The general architecture of oar approach is illustrated in figure 3-3. In this approach, TSC, with
its discovery behaviors and a new knowledge base created for design and contro! of TEM
experiments, is coupled to both a scope, and 1o a scope simulator. Work to date has coupled TSC
only to a scope simulator. Futire work may complete the coupling to a live scope.

q The Scope | TEM
=S ccholar's Controller — Simulator
Companion Display i

] -
o e

Trans »
h';:"' ﬁ‘—. raw data

S o @ | ww | TEM

][ TEM .
28 Serial
Driver

raw data

Figure 3-3: Overview of scope control.

332 The TSC Combined Analysis/Controller

The gencralized approach to our TEM controlier involves analysis of crystal patterns yielded by
either a scope or a simulator. Figure 3-4 illustrates that our approach will combine both analytical
algorithms and case-based studies of crystals. We believe that this will enable the TSC system to
more-rapidly and accurately identify erystal structures by considering cases from its experiesce,
and relying on industry-standard analytical techniques when cases fail to explain a detected
crystal structure.

Figure 3-5 is a flowchart of the analytical approach taken by the crystal analysis routines written
for TSC.
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Figure 3-4: Approaches to studying crystais.
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Figure 3-5: Flowchart of analysis
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Chapter 4 Resulits

4.1 TooLs

411 Discovery Tools

Source codes for the nearest neighbor pattern recognition and rough sct evaluation packages are
included in an appendix to this repert. Source code for the genetic rule builder is also included.

412 Design

Our directed evolution work with TSC inspired a desizn activity as a means to develop and
extend the capabilities of the directed evolution approach. It makes sense that design be explored
since all of materials science and engineering 1nvolves design. We shall return to materials
design in a discussion of protein resulis below; for now, we illustrate a different exercise in
design using the TSC directed evolution approach. This project enabled the development of the
directed evolution approach to design.

The task was to design a very fast sailboat [Park, 1993}, one with an unconventional ccnfi%mnm
which would maintain contact with the water, and use a wind o hit speeds greater than 60 miles
per hour. To do so, we applied directed volution to the task of evolving a design, given an initial
design, and we gglied directzd evolution to the task of evolving the design rules themselves.
This was illustrated earlier.

The approach was to use the envisionment building tools to evolve the design—an eavisionment
of possible designs grew out of the exercise. Periodically, 2 mutation rule fires and mutzstes a
design ruie. A number of design episodes are created, some applying the new rule. Alj rules are
evaluated according to their coatribution to the design, and the best design is studied. The graph
below illustrates one of the designs explored by TSC. The plot shows the relationship between
net forward thrust and boat speed for a2 20 mph wind speed. The concave downward curve
satisfies our intuitions that the faster the boat travels, the less surplus thrust it will have to

accelerate. Ideally, one reads the maximum speed as the point where the curve crosses the x-axis.

I E AR RYERE]

-

N

N

N AR

TEES T SRATE

The curve offers a pair of interesting points worth pondesing. two discontinuities are noted. The
upper left—occuring at low speed—is easily explained by the boat lifting & balance ski out of the
water when it is no longer needed to maintain, as sailors would say, an even keel. The second
discontinuity, occuring at much higher speed, is a bit more interesting. In fact, we found this
second point an inspiration for discovery: design rules 20 keep the boat in the water. Ie fact, the
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problem of the boat lifting clear of the water remains 2 partially unsolved problem at this writing;
the effective maximum speed of the boat is therefore the speed at which it tries to fly. The
problem suggests a counter-intuitive solution: the heavier the boa, the faster it can go.

42 AppLICATIONS
421 Proteins
4211 Prediction by GA Rule Building

The problem is :opredxctthcpmeeof.:chmmcnm in a protein when gwenxtsammo
acid sequence, The DE approach is to build a population of rules when given a “genome.” The
genome is built from three “chromosomes,” the working components of an observer rule. A pair
of observer rules (“englishized” for readability) fol.ow

RULE: 0BS.1

IF you have the actors: ALA and GLU

AND the relation: ALA abuts GLU

THEN predict a helix

RULE: 0BS.2

IF you have the actors: LEU ond GLY

AND the relation LEU: abuts GLU

THEN predict a helix

The three chromosomes are: actors, relations, and predictions. Actors are comprised of
the twenty natural amino acids (e.g.: Alanine Arginine Asparagine etc.)

Relations are primarily structural or spatial in this example:
abuts-(LEL is followed by ALA)
precedes.1-(LEU is preceded by ALA with one omino acid between them)
precedes.2-(LEU is preceded by ALA with two omino acids Detween ihem)

The types of predictions available are based on the structure to be predicted. Helix, Sheet, and
Turm are the typical protein structures ¢ be predicted.

A TSC experiment begins with the observer rules being exercised on segments of a protein
database. These segments are calied windows of data, i.e., a sequence of amino acids. During
leaming, the window is shifted along the sequence from start to finish. An example window of
data, with a window size of five (5) amino acids, looks like:

. PHE GLN THR [ cla arg gly ala pro J HIS ILE VAL...

Shifting of the window involves moving the window to the right by one amino 2cid:
. PHE GLN THR ALA [ arg gly cla pro his } ILE VAL...

All rules are exercised (allowed to vote) on each window. Voting is repeated as the window is
“slid” along the entire data set. A reward/punishment algerithm then examines the performance
of the individual rules which cast a vote. Following the “bucket brigade” algorithm of John
Holland {Holland, 1986], those rules which participate in the vote, and which vote correctly, get
a reward (their worth is increased).

Once rewards have been passed to appropriate rules, a small decay (reduction of worth) of all
rules is computed. This has the effect of punishing those rules which do not participate in the
voie, of vote incorrectly. All rules are used for breeding until their worth falls below a specified
valye, at which time they are eliminated from the gene pool.

Directed evolution exercises a genetc algorithm on the rule populstion to conduct a search for
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the optiroum rule set. For example, using as parents 0BS.1 and 08S.2 listed above, crossover
builds one child or constructed rule that looks like the following:
RULE: CON.3
IF you have the actors LEU and ALA
AND the relation LEU abuts ALA
THEN predict a helix

This “child” rule is added to the population of rules and given a starting worth value. Using
OBS.3, point mutation may build CON.4:

RULE: CON.4

IF you have the actors LEU and MET

AND the relation LEU abuts NET

THEM predict a helix

We hzve developed a test knowledge base comprised of 70 observation rules (random combinations
of actors and relations) and exercised the DE on this knowledge base. Training was conducted
with ten proteins from the Brookhaven Protein Database. Results are illustrated in figure 4-1 but
represent only the initial performance of the DE system, and provide some early indication of the
make-up of rules which address the objective of the project, i.e., the discovery of rules which
successfully predict helices in proteins with fair accuracy.
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Figure 4-1: System Performance (trial K8) 11 Sep 92.
Legend:
error of osmission- X of helices with no prediction,
(162%= no errors-value of line #1)
error of commission- % of correct predictions,
(160X = no errors-value of line #2 )

Figure 4-2 shows two curves, the percentage of helices discovered by the DE (line #1) and the
accuracy with which the rules fired (line #2). The DE anemps to find most of the helices before
nanunpsmunymﬂwmmcyofmenﬂ&mmhsﬂsomdnwufcwmmdoppmm
during the experiment. For example, upon finding fifty percent of the helices, the DE began
refining the rules through “viral” mutation. A lost opportunity was caused by ending the experiment
after five hundred cycles; predictive accuracy was still increasing at a useful rate.

Interestingly, the votes may be expanded to include positive and negative predictions, ¢.g.:
predict helix and predict no helix. Empirically, because of the large number of “negative™
training examples, false rules begin to dominate and performance deteriorates, i.c., there are
typically 5 to 10 times as many non-helix as helix windows in a protein file. As a result, we have
leamed that FALSE predictions are detrimental to the DE system’s performance, and thus only
TRUE predictions are pursued. Prediction, in this rescarch, is restricted to the helix structure,

The fcllowing graph illustrates the generally upward slope of accuracy in our experimental work
with the GA approach to building protein structure prediction rules. As work wound down oz
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this project, the slope continued to point upward. Qur experience indicates that this is a rather
computational-intensive approach.

33
30
23
20

13
10

s

s 10 15 29
Figure 4-2: Directed Evolution,
42.1.2 Prediction by GA Program Building

Testing of the genetic programming approach, coupled to rough set evaluaton was coaducted
during this @2 exercise. As mentioned before, testing was limited to small database predictions.
Qur testing confirmed the abilty of this approach to recall stored patterns and to predict from
unseen patterns. We achieved 100% accuracy on recall and 96% accuracy for prediction. This is
consistent with the 93% to 100% accuracy reported by Salzberg [1990). Our results for the iris
database are illustrated below. This approach tums out to be sufficiently compute-intensive that
the protein application was not explored in this project.

Figure 4-3 shows the k(P,N) values obtained during training.

b s |
1

0.8
0.6
0.4

0.2
¢ 22 40 (2] 830 100

Figure 4-3: k{P.N) during traning.

Figure 4-4 shows results of testing for pattem recall during training. This data was obtained by
testing on a subset of the data used for training.
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Fiqure 4-4: Recall accuracy during training
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Figure 4-5 shows results of testing for predictive ability during training. This ¢ata was obtained
by testing on a subset of the data disjoint from that used for training,
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Figure 4-5: Prediction accuracy during training

Figure 4-6 shows changes in the size of the minimal set, M, during trairing.
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Figure 4-6: Number of programs i minimal set during training

Our test results suggest there may be two distinct aspects to leaming in this approach. The first is
the development of a population of programs sufficient to recall members of the training set, We
se¢ this in Figures 4-3 and 4-4 where k(P,N) and the recall accuracy procesd to the maximum
value of 1.0. At this point we might expect leamning to stop. However, in a number of trials we
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found that prediction accuracy continued to improve, albeit sometimes erratically.

Looking at Figure 4-5 we see that prediction accuracy continued to increase for some time after
k(P,N) reached its maximum. We suggest a explanation may be found in the size of the minimal
set shown in Figure 4-6. At about the same time as prediction accuracy began its rise to a final
maximum of 96% the size of the minimal set began to decrease from a high of 10 programs o a
range of 6-8 programs. This is not inconsistent with other machine-leaming techniques in which
smaller representations tend to have a greater ability to generalize.

The biggest drawback to this approach is the computational cost. Our implementation performed
well on the database of iris flowers, but the computational burden was a significant problem in
preliminary tests on the much larger task of discovering regularities between the primary and
secondary structure of proteins.

4.2.13 Prediction by Nearest Neighbor and Protein Design

In a typical experiment, 2 protein was designed by the TSC case-based design code. The resulting
design frame from one run, known as CON_3, is:

C: CON.3
name TESTPRO3
instance.of protein
functionality none
source design.pro

HELIX.POSITION ( (1021 ) ( S156 ) ( 5966 ) ( 71 80 ) )

SHEET.POSITION  ( ( 27 35 ) ( 41 46 ) )

MY.DATA ( HIS TRP GLY TYR GLY LYS HIS ASN GLY GLL VAL THR CYS
VAL VAL VAL ASP VAL SER HIS GLU PRO SER SER LEU ASP CYS SER LEU GLY PHE ASN
VAL GLY ASP SER LEU VAL THR PHE THR VAL ALA GLY GLU ALA ASN SER CYS VAL GLY
CYS HIS LEU GLY ASP GLY ASP ASP VAL VAL ALA LYS TYR GLY LEU ASP GLY LEU LYS
PRO LEU ALA GLN SER HIS ALA THR GLY PHE HIS GLY )

In early developmental trials of the nearest neighbor code, a training set of 66 proteins from the
Brookhaven PDB collection was selected, which generated 9,794 exemplars. With a window
length of 17, we ran the nearest neighbor algorithm on the designed protein, and evaluated the
predictions of the nearest neighbor as compared to the design specification. Consider these
results (where overall performance = total # comrect predictions + total # predictions available)
from a trial on CON_3 and compare them to results presented this table:

% alpha correctly predicted: Jummmmaiuaa 37 |
% beta correctly predicted: e ——— 7

9% coil correctly predicted: M 57

overall performance:

lr-rx[--rx,..-y LERS Jamt e 4

0% 25% 50% 75% 100% The output
of the nearest-neighbor structure prediction algonthm is a list comprising the sequence, indicating
whether the amino zcid is part of a helix (A), sheet (B), or coil (C). The trial resuited in the

following predicted structure:
(CCBAABBBBCCCCCCCCBBBBBBBCCCCCCBBBBBE
CCCAAAACCCACCAAAACCCCCCCAAAAAAR)

‘The CON_3 protein was intended to look like the following:
(CAAAAAAAAAAAACCCC(BBBBBBBB BCcccccessBe
BCCCCAAAAAACCAAARAARAAACCCCARAARN)

The test was then repeated with a training set of 91 proteins (25 additional). The test applied
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15,704 exemplars. The test, on CON_3, yiclded these results:

%alpha correctly predicted: Sewmmssnmm— 40 °
%beta correctly predicted: NEGC——————-——— 47
%coil correctly predicted: I emmm——rnm—————— 2

overall performance: _Sewmsmasesm—": 48

[RNE St T St St § t=t=—t=+

i
i
3
1

T
0% 25% 50%.- 75%  100%

This trial resulted in the following predicted structure
(CBABBBBBAAAABCCCCCBBBBBBBACCCCBCCCCCC
CCAAAACCCCCCACAABCCCCBCAAAAAAN)

A later trial was generated to involve a “redesign” of a particular de novo protein documented in
the literature. The creators of Felix describe the protein as a de novo antiparallel four-helix
bundle designed for a specific topology {Hecht, et al., 1990]. Its designers intended to choose an
amino acid sequence unrelated to any native sequance, but which will fold into a desired three-
dimensional structure.

‘We have chosen to closely follow the design specifications of Feli%, and apply the TSC case-based
design code. Note that our case-based design does not duplicate the specific residue sequence of
Felix, but does duplicate the secondary structure of that protein. Figure 4-7 illustrates the TSC
clone of Felix, which has the same shape as the original Hecht et al. sequence.

The case-based design program created an amino acid sequence and named the protein CON_4T.
Consider the following design frame developed to duplicate the secondary structure of Felix,
with the application of analogy rather than de novo rules:

C: CON_4T
instance.of protein
source bbt.create.pro
HELIX.POSITION CC119)(C237)(C4058)(6378))
MY .DATA ( PRO ILE LYS TYR LEU GLU PHE ILE SER GLU ALA ILE ILE

HIS VAL LEU HIS SER LYS ASP PHE SER ASP GLY GLU TRP HIS LEU VAL LEU ASN VAL
TRP GLY LYS VAL GLU ASP PHE PRO ILE LYS TYR LEU GLU PHE ILE SER GLU ALA ILE
ILE HIS VAL LEU HIS SER ARG LYS HIS LYS ILE TYR PRO GLY GLN TLE THR SER ASN
MET PHE CYS ALA GLY TYR LEU GLU )

The intended structural configuration is illustrated in figure 4-7, below.
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Figure 4-7: Felix —following [Hezht, et al.. 1990},

The structure represented by the TSC-decigned sequence was intended to look like the following:
CAAAAAAAAARAACSCARLAARMARAMRMAAARAAARAAMNMCCAARALNA
AAAAAAAAAAAAACCCCAAAAAAAA)

The nearest neighbor structure prediction code, trained on 91 proteins from the Brookhaven PDB
collection (none of which are available to the design algorithm), predicied the following structure
from the sequence:

CAAAAAAAAACCCCCCAACAAMLAAAACCBCCCAARAAAML
AAAAAAAAMARACAAACCAAAANACCC)
Tt:e finel results of the predicnon were:

%alpha correctly predicted: NuEm—s———————_—— 76
9%beta correctly predicted: } 0 | ] :
%coil correctly predicted; IUINEINCAISSSANININ 75

overall performance; AEmemmwimem—_—-m—"1T0___

0% 25%  SC%  75%  100%

The agreement with helix and tn (coil) design is interesting; the results are higher than published
predictions for any protein based strictly on native sequences. There is no agreement on beta
sheet prediction since none were included in the design. and only a single instance of B showed
up in the prediction,

[Zhang ct al., 1992) report that the variation in performance of a single algorithm from one test
set to another can be quite large. A fair measure of accuracy of an algorithm is the average of
several different tests, Indeed, the {Salzberg and Cost, 1992] results in the first table reflecs a
result averaged over 10 tests. The results reported here are not averaged over a number of tests;
that remains for future work.

Qur results illustrated here suggest that accuracy improves slightly by decreasing the prediction
waining set size. To examine this accuracy behavier, 2 trial was conducted with the original 68
proteins serving as the training set for the nearest neighbor code. The designed protein is CON_4T,
the TSC Felix clene. The prediction improved, and produced the following predicted structure:
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(CAAAAAAAAACCCCCCAAAAAMARAANCCBABCCAAAAANR
AAAAAAAAAAAAAABAC AAAAACCC)

The predicticn made three errors by ircluding “B” beta sheets, but appears to have improved its
alpha he)ix prediction. Consider the results:

%alpha correctly predicted: mh-* 80
%beta correctly predicted: 10 1 |
%coil correctly predicted; IR €2

1 B e e [
overali performance: e e 7+ Further

0% 25%  S50%  75%  100%
characterization of this behavior will require a population study of the selected training proteins.
Preliminaty indications are wat certain training proteins from the additional set of 25 generate
exemplars which may be “nearer” to the testing window than are exemplars generated from the
original 66 proteins, but which offer an improper prediction. Factors involved in this pmdxcuon
performance include window length, and training set homology. These, and other factors, remain
a topic of continued research. An interesting approach to prediction improvement, as suggested
in section 3.2, is to enable the exemplar weighting scheme in the TSC nearest neighbor code.

The correlation coefficients Ca, Cb, and Ceoil reported by [Salzberg and Cost, 1992] illustrated
above in Table 1 are computed with an algorithm due to [Mathews, 1975}, and may reflect
slightly higher values than those reported here by us. The differences, if any, are the subject of
continued study; direct comparison of results is problematic since the [Salzberg and Cost, 1992}
results are based on tests conducted on protsins from the Brookhaven database, and our 1esults
are based an tests conducted on proteins designed by analogy to proteins in the Brookhaven
darabase. In addition, PEBLS applied a weighting factor to the exemplars which was reported to
improve its performance sijnificantly over the unweighted version; our work has not yet applied
the weighting scheme. Finally, PEBLS includes a post-processing step based on the minimum
sequence length restrictions used by [Holley and Karplus, 1989). This restricts beta sheets to a
minimum contiguous sequence of two residues, and alpha helix no fewer than four residues. This
is reported to improve PEBLS performance [Cost and Salzberg, 1993].

4.3 TEM

Qur results to date on the crystallography task huve been limited by budget considerations in the
other tasks. We have built the TEM simulator with our consultant A.G. Jackson, and have
integrated it with a knowledge base for TSC which operates the simulator as though it were 2
live TEM. As a @3 activity, we met with an interested scope maker and =xhibited our tool.
Discussions on further development in a cooperative venture with this manufacturer were liraited
due to the fact that they do not have a large enough market 10 justify R&D in this domain. They
did, however, offer to us their entire clientelle by way of their research newsletter. Dr. Jackson
tas authored a paper for that joumnal.

We now sketch the demonstration, as it has been conducted.

431 Launching the TEM Controller/Simulator
The following illastrates the display wien the TEM simalator is ioaded.
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43.2 Launching TSC

Once the TEM simulator is launched, TSC itself is launched, yiclding this display.
" & file Edit Formst Conneclion Opllions System (Windows 406PM D ’_l‘_
Untitisd Knewiedqc Bess

wnitiatize sisuletar,

433 Initialize Simulator

With the simulator and TSC in memory, the simulator is then initialized by TSC. This initiclization
calibrates the simulator to enable further analysis of zones and crystai structures. Initiaiization
involves TSC calculating the zone on each of two different crystal images generated by the
simulator. The first image follows.

ThinkAleng Software, Inc. Phase 2 Final Regort page 4-11




Diffraction Pattern ESSablE

boider sl b0 TE )

S @

Y Y Y L

Next, the second image requested by TSC.
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With both images analyzed, the TSC TEM controller is now ready 10 analyze the crystal further.
It displays the zoneson a stueo%-p:hic image obtained from the two calibration images.

Stereographic (Nalder,Cup)

3

434 User Dialog With the TEM Simulator
Following initialization, the user is free to use dialogs and the command-line interface to request
different imazes from the simulator. On a live TEM, the same dialogs and command-line references
would cause the scope to produce images. A typical command-Jine requast is:

go to zone [1 -4 1]

This request would cause TSC to respond with an image appropriate to that zone. The following
images illustrate using the dialog windows to explore a crystal.
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As mentioned earlier, the simulator has been coded and demonstrated, but project requirements
in other—especially the Protein—tasks prevented completion of the TEM controller activity.
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Chapter 5 Summary and Conclusions

The wtality of the work verformed thes far supports and envisions a unified tool approzch to
materials science and engineering. We summarize the architecture of such & cystem in figure 5-1,

" Molecule/Material
[tibases P

TsC
Moiecuie
Analysis

HMolecule/Material g
Case Library g
Process
Molecule/Material

Case
Figure 5-1: Overail project summary.

Library
To achieve such an architecture, much work remains. We list many of the suggestions for
improvement and further work which have emerged from our research. We suspect that a tool
very useful to the materinly Hields will emerge when this research yields a successful @3 activity.

5.1 GEeNeRAL IMPROVEMENTS
Improvements to the TSC case-based design system include:
. Ability 1o have user gencrated overlap parameters.

As discussed above, the TSC case-based design system compares adjacent structures by sclecting
one additional residue st each end, and makes 2 judgement about the similarity of the potential
new overlap with the overlap from the original sequence. This choice of only one residue is
arbitrary, and it may prove interesting to vary the amount of overlap used and se¢ bow the
accuracy of the final design varies. While this peses a few minor additional computational
problems (such as what to do when a chosen structare is 50 near the end of its native protein that
there aren't enough extra residues to make up the overlap), none of these computational pmblems
are beyond the capability of TSC.
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. Testing of different parameter values for amino acid comparison.

The method used to make judgements about the similarity of neighboring amino acids is arbitrary.
Tt might very well be the case that a different method (a different set of attributes and weights, or
possibly an analysis of the molecular structure of the residues) could produce much better
results.

. Ability to generate new cases through adaptation of old cases.

At present, the system finds all the potential residue fragments, compares them, and connects the
least different to form the output protein. There is no provision for modifying the individual
structures in any way to build a better .siein. It may be useful to apply a heuristically guided
method for changing the newly created yrotein.

. Validation of new proteins and inclusion in case library.

Validating proteins by X-ray crystallography (or other method) and placing the results back into
the case libraries would create an external feedback loop as described above, This, in combination
with the following, may allow the system to eventually discover new details of the first principles
of protein folding.

. Checking a new sequence against library for unwanted structure matches.

The program couid check the case library to see if it has incorporated a sequence of amino acids
which is identical to a known example of an unwanted structure. While this would not guarantee
that the protein would form the desired structure, it would reduce the likelihood that the protein
would fold to scme other strzcrure.

. Characterize the effects of larger case-based libraries

The case litraries used in the protein design algorithm are at this point a small subset of the
Brookhaven PDB. It is anticipated that providing more cases will improve the performance,
though there may be a trade-off in accuracy in comparison to design time. Further study will be
needed to find the best mix of speed and accuracy.

. Long-term improvements

Beyond each of these immediate improvements to the TSC system, a long-term extension is to
combine case-based design with aspects of de novo design. Thic would require that the system
discover new protein “first principles™ from both its design-prediction cycles, and from database
mining.

A further exercise would organize the design and the training proteins into a taxonomy as
suggested above. Design experiments may then be conducted by specifying the branch of the
taxonomy to be used in both design and prediction; the set selected for an exercise must then be
partitioned into design and prediction training sets.

Finally, it will be useful to construct a family of designed proteins, characterize them, and apply
appropriate feedback to TSC and to build a library of protein desigas exhibiting certain (e.g.
clectro-optical) properties. With this feedback, the family of proteins designed may be classified
as accurate or inaccurate, and the details of errors generated noted in the design frames. With this
feedback mechanism, TSC would be able to modify its own memory (akin to traditional dynamic
memory algorithms (Schank, 1982]).

52 Prepiction System IMpPROVEMENTS
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Improvements to the TSC nearest neighbor prediction system include:
. Characterize increasing of prediction database

Currently, only a small subset of the Brookhaven PDB is used as a basis for the prediction
algorithm. Preliminary results have shown that increases in the database size may improve the
accuracy of the nearest neighbor technique in characterizing proteins the system has designed. If
some implementational speedups are introduced to the algorithms, it may be practical to introduce
larger protein databases than are currently used.

. Training exemplar weights to improve the prediction performance.

PEBLS [Costand Salzbcrg. 1993] applies a weighting scheme to predictions offered by exemplars.
The weights require a second training pass through the training proteins to adjust the weights. As
mentioned in section 3.1, {Cost and Salzberg, 1993] report the weighting i xmpmvcs prediction
performance of PEBLS.

When PEBLS selects exemplars for prediction, the distance of the exemplar window from the
testing window is calculated, and that distance is multiplied by the weight value of the particular
exemplar. Smaller weight values imply smaller distance values; the lowest corrected distance
determines the “winning™ exemplar. Weights represent a kind of statistical propenty of the
exemplars. Lower weight in a given exemplar (over the rest of the population) implies that
exemplar is more reliable at formation of valuable predictions. The current implementation
defaults to a weight equal to 1.0 for every exemplar.

The TSC nearest neighbor code presently allows for weight raining, but the weighting algorithm
is not enabled for the experiments reported here. It will be useful and interesting to enable the
code and measure changes 1o prediction performance.

Overall, it is fair to comment that this @2 project evolved over time to emphasize the directed
evolution aspect of protzin evaluation, largely to the detriment to the other aspects of this
rescarch originally envisioned. However, the work continues. We see a reasonable @3 extension
into the pedagogical applications of our TEM simulator. We further see a reasonable @3 extension
of our nearest neighbor, rough set, and qualitative modeling tools.
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GENERALIZED.NEAR.NEiGHB.T

10do. consider implementing a “trec” of exemplars, perhaps anchored in the AA database such that

you

take each A 1n a wvindow and walk the tree. If the tree no longer supposts your next AA,

then you must compare your window to all the REST of the tree exemplars
Thus should cot down on some of the searching needed 1o compare exemplars to windows.

dates
05/20/93

0512193

05/24/93

06/01/52
}

\

Jp2° first cut, made from NEARNEIGHB.T to generalize
away from proteins

jp2: added weaghts, other minor changes

jp2: minor fixes to get w eights working properly

Jp2: added correctness totalizers

GLOBALS

*( *flog *exemplar *window *classification *winrad \'These should not be gloval
Suble list *exempiar.list *train# *test¥ *tramn.hist *testhst *self.exemp
“cta *ctb *cLc *cor.a *cor.b *cor.c *mix )"
&global 2ist union w-anchor &global.list

MISC SUPPORT

{ LISTREPLACE

descnpuon:

Given a list, 2 number, and a sx, ~:tun the hist with that position element
replaced by the given sx

exzmple npur (ABCDE)3X
example output: (ABXDE)

noies”

X

c: LISTREPLACE

instance.of
\  my.creator
1take
igive
arguments
my.vars
algonithm

hst.func
bbt
list number sx
list
*my.hst *position *new.clement
*pos *new.hist *max.pos
(do
(cond
( (equal? *pesiton 1)
( bindg *new.list ( cons *new.clement ( rest *mylist) ) ))
(T
( bindq *new list { concat { concat { grab.first.n *my.hst ( subl *position ) )
(list “new.clement ) )
(cbplist *my.lisz (add1 *position })})))
( resum *new.list) )

¢ SUBUNITOF
subof information.sict

¢ HAS.SUBUNITS

stance.of
my <reator

flovr.func
wib
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itake nonc

igive list
my.vars *protein.hist *pro.name "list *data
algonthm  (do
( bindg *protean.hst ( get PROTEIN 'SUBS ))
(Ioop.until { null? *proten.list ) \for each protein
( 6o( bindq *pro.name ( first *proteindist))
( bindq *data ( reverse ( get *proname MY.DATA)))
(1f.true ( greater.than? (length *data) i)
(bindq *hst ( cons *pro.name *hst ) ) )
( bingq *protein.list ( rest *proteirlist})))
(rem *list ) )
{
SET.USE

des7xiption: install an exempler use value in an exemplar-the thizd value

¢ SETUSE
instance.of flow.func
my.creator P2
izake list number
igive Lst
arguments *exemn *use
my.vars *cor
algonthm ( listreplace *exemp 3 *use )

comment:
algonthm (do
( bindq *exemp ( reverse *exemp ) )
( bindq *cor ( first *exemp ) )
{ bindg *exemp (rest (rest *exemp)) )
( bindq *cxemp ( cons *use *examp))
( bindg *exemp (reverss ( cons *cor *exemp )))

{remum *exemp ) )
commeat;
¢ GET.USE
wnstance.of flow.fenc
my.crealos 2
iwake st
1gwve number

arguments *exemp
algeathm ( third *exemp )

comment:
algorithm (second ( reverse *exemp ))
commeni;

{

INC.USE

desenpl:on: increment an exempler correct use valoe in an exemplar—the thurd value
¢ INCUSE

instance.of flow.func
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Y.CTeer 5p2

itake list

igive list

arguments *exemp

my.vass -

algorithm ( listreplace *exemp 3 ( 2dd1 (turd *exemp ) ))

commen;:
algorithm (do
( bindg *exemp ( reverse *exemp ) )
( bindg *use ( second *excmp ))
( bindq *use (addl *use))
{ return ( set.use ( reverse *exemp ) *use ) ) )
comment;

{

SET.CORRECT

description: install an exempler comrect use value in an exemplar--the fourth valve

¢: SET.CORRECT

instance.of flow.func

my.creator m

itake list number

igive list

arguments *exemp *cor

algodithm (listreplace *exemp 4 *cor)
comment:

algenthm (do

( bindq *exenp (reverse *exemp ) )
(bindg *exemp (rest*exemp))
( bindg *exemp ( reverse ( cons *cor *exemp)))
(retum *exemp ) )
comment;

¢: GET.CORRECT

instance.of flow.func
my.cresioe i
itake hist
Lgive number
arguments *exemp
algonthm ( fourth *exemp )
comment:
algorithm ( first { reverse "exemp ) )
comment;
{
INC.CORRECT

descniption:  increment an exempler corret use value in an exemplar—the fourth value

c: INC.CORRECT
inzance.of flow.func
my.creare m2
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Ltake List

Lgive List

argumeats *exemp

my.vars *ccr

algonthm ( listreplace *exemp 4 (addl ( fourth *exemp)))

comment:
algorithm {do
(bindg *exemp ( reverse *exemp ) )
( bindg *cor ( first *exemp ) }
(bindq *cor (addl *cor) )
(remum ( setcomect ( reverse ®exemp) *cor)))
comment;

(

GET.WEIGHT

description:  returns weight from an exemplar
weight = #uses/#correctuses
smaller = better

¢: GET.WEIGHT
instance.of flow.func
my.creatot jp2
itake list
igive number
arguments *exemp
algorithm (quouwt(mird'mp)(ﬂoaz(founh‘mp)))

SORT.ON.WEIGHT

: sort lar List on ding weigh

4 r

)
COMMENT:

¢: SORT.ON.WEIGHT
instance.of flow.func

my.creator m
i.ake hist
igive list

arguments *hy

COMMENT;
¢: INC.ACTUAL
instance.of flow.func
my.creator m
itake sysadol
1.give oA
argume’ @ b
algemshm eond {(same? *xt'A)
{ seq *cta (add} *ca}))
{{sene?*2ctB)
(5o "eeb{addl vatb)))

(£ (325 *ac{addl *aac) )))

ThankAlong Sofresro, Ins. Fhase 2 Final Report

paaa A€




¢: INCPREDICTED
instetice.of flow.func
my.creator jr2
iake symbol
igive none
arguments *pred \only when correct
algorithm (cond ((same?*pred’A)
{se1q *cor.a (add1 *cor2)) )
((same? *pred B)
( setq *coch { addl *corcb)))
(T (setq *core (addl *ecrc))))

\ LIST SUPPORT

DELETEELEMENT

descnption: Deletes the element at position *pos of List *list returning the sesulr.
numbering begins with 1.

c: D]

instance.of fiow.func

my.creatot wjb

Ltake list number

Lgive list

arguments *list *pos

my.vars *temp *count

algorithm (do

(ifare (equal? *pes 0)

(sasplay "DELETE ELEMENT: Canrrt take 0 as position argument.”erTor )
)

( bindq *count 1)
(binag *temp nil )
( loop.unzl ( equal? *count *pos)
(do {bindq *temp ( cons ( firs1*hst) *2en:p))
( bindq *list ( rest *list))
( bindq *count ( &ddl *count ) }V)
( bindg *emp ( reverse *tzmp ))
( resurn  concat *temp (rest *list)) ) )

INSERT.ELEMENT

descxipuon; Insert *element at position *pos of hist *List returning the result
numbenng begins wath 1.

¢ INSERTELEMENT
wsance.of flow.func
my.creator wib
1take list number sx
Lgive list
arguments *list *pos “element
my.vars  “temp *count
algorithm (do

(if.troe (equal? *pos0)
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( dasplay “INSERT.ELEMENT: Cannot take 0 25 positicn argument.zsroc )

)
{ bindg *count 1)
(bindq *temp il )
(loop.until ( equal? *count *pos )
(do (bindq *temp ( cons { first *bist ) *temp ) )
(bindq *list (rest *let) )
( bindq *count { 3dd1 *count ) )))
( bindq *temp (cons *clement *temp ) )
( bindg *temp ( reverse *temp ) )
(reumn ( concat *temp *list ) ) )

REPLACE.ELEMENT

description: Replaces the el *pos of List *list with *element
reumungther&suh.numbmngbegmswxml

REPLACEELEMENT
nstance.of flow.func
my.creator wib
itake list number sx
igive list
arguments *list *pos *clement
my.vars *emp *count
algenthm (do

(iftroe (equal? *pos 0)

( display "REPLACE.ELEMENT: Cannot take 0 as pesition argument."esror )

)
(bindq *count 1)
(bindq *temp nul V
( loop.untl ( equal? *count *pos )
(do (bindg *temp (cons ( first *kst ) *temp) )
(bindg *hst (rest *hist))
{ bindq *count (addl *count))))
(bindq *temp ( cons *element *iemp } )
(bindq *1emp (reverse *temp ) }
(remm (concat *temp (rest *list) )) )

ALGORITHM SUPPORT

COUNT.CLASSES

description: takes the hist of exemplars
typucal exemplar tooks like: ((gly glupro...)B11)
returns a list e.g. ( 2869 1091 576 1202 38 .20 42)
which 15: Totat #alpha #beta #coil Falpha Fbeta %coil
MUST BE MODIFIED TO INC CLASSES OTHER THAN A, B, and C &8 & &84 &

COUNT.CLASSES

instance.of flow.func
my.creator wib

itake 1t \exeroplars
igive list

aguments *lisy
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my.vars *a.count *b.count *c.count *length *exemp
dgorithm (do
( bindg *a.count 0)
(bindg *b.count 0)
{bindq *ccounz 0)
(bindq *length (length *list) )
(loop.untal ( null? *hst )
{do (bindq *exemp ( first *list ) ) \get an exemplar
{if.troe ( hst? *exemp)
( bindq *exemp ( second *exemp)))  \ get classfication
(cond ((same? *exemp’A)
( bindq *a.count ( add1 *a.count)))
((same? *exemp'B)
( bindq *b.count { add1 *b.eount ) ) )
(T (bindg *c.count ( add1 *c.count))))
(bindq *list (rest*list))))
( retumn ( list *length *a.count *b.count *c.count
( quouent *acount ( float *length ) )
( quonent *b.count ( float *length ) )
{ quotient *c.count ( float *length })))))

FOCUS.IN.CLASS?

description: Tests 1o see if the AA at position *pos (focus) in the protein given by *pro.name
lies in class (A, B, C) *struct. Struct values are ALPHA and BETA.
This is the TRAINING feedback routine.

arguments  *struct *pro.name *pos
my.vars *tnuth *posion *first
aigosithm  (do
(bindq *truth F)
(cond ((same? *struct ‘ALPHA )
\typacal helix position slot 7al: ((3338)(5360)(6571)(8186))
( bindq *position ( vaive.of *pro.name HELIX POSITION ) ))
({ same? *sruct BETA )
\typical sheet position slot val: ((57)(2125)(2732)(5154)(7480))
( bindq *pasition { value.of *pro.name "SHEET POSITION ) ) )
(T (bindq *posivonnil))) \NOT alpha, NOT beta
(loop.until (or? *truth (null? *posiwon ) )  \for each helix/sheet position pair
(o bindq *first  first *posution ) ;
(bindq *truth (and? (not? (less.than? *pos ( fost *first) ) )
( not? ( greser.than? *pos ( second *first) ) )))
( bindg *posinon (rest *posiwon ) } ) )
( rezurn *tuth ) )

PARTITION.DATA

description:  Assigns baining and testing data from *protein.list 10 glcbals *tram List and
*testlise according to the values of *wairs? and *tesi¥.
Just takes a list of proteins and cuts 1t into two pans

ThinkAlong Software, Inc. Fhasc 2 Final Report page A-1




:  PARTITION.DATA

*protein.list
my.vars *length *rain clip *testclip *temp
algorithm  (do
(bindq *length (lengrh *proteinlist) )
(iftrue ( greaterthan? (plus *train# *tesoh ) *length )
( display> *Attempied to parntion more data than exists!® error) )
(bindq *train.clip ( minus *kagth *twain# } )
( bindq *testclip { minus ( minue *length *testh ) *traind ) )
( bindq *temp ( reverse *proteinlhist ) )
( se1q *wrain list ( reverse ( clipist *temp *trainclip ) ) )
(bindq *temp ( reverse *temp) )
(bindq *temp (cliplist *temp *tramn# ) )
(bindq *temp (reverse *1emp ) )
(se1q *testlist ( reverse ( clip.list *temp *testclip) }))

SHIFT.DIST
description: Subtracts *distance from each of the entries of each pair in *paurs.

. SHIFT.DIST

wstance.of flow.func
my.creator wib
inke list number
igive list
arguments *pairs *distance
my.vars *in *out *shifted prs
algorithm  (do
(bindq *shifted.prs ml )
(loop.untii ( nuli? *pairs )
(do (bindg *out nil )
(bindq *in ( first *pairs ) )
( bindq *out ( cons ( minus ( second *in ) *distance ) *out ) }
( bindq *out ( cons ( mmnus ( first *in ) *distance ) *out))
( bindq *shifted.prs ( cons *out *shifted.prs ) )
(bindq *pairs (rest *pairs }) ))
( retam ( reverse *shifted prs)) )

INTERNAL.PAIRS
description: find pawrs from a given *pairs tist which are within c.tenm & nterm

: INTERNAL.PAIRS
instance.of flow.fuac
my.creatoe wib
itake namber number fist
Lgive £

arguments *Ift.end *rt.end *pairslist
my.vars *pair *mterm.pairs
algorthm  (do
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(bindq “intern.pairs nil )
(loop.unt! ( null? *parrs.list )
(do (bindg *pair { first *pairs.list) )
(iftroe (and?  (not? (less.than? ( frst *pair) *lftend ) )
(not? ( greater.than? ( second *pair ) *rtend ) ))
( bindq *intem.pairs { cons *pair *intem.pairs ) ) )

(bindq *pairs.ist (rest *peirslist) }))

(retum (reverse *intern.pairs 3 ) )

CREATESUBUNIT
description: make a new concefk as a subunit of a given concept
€.g. hemoglobin has 4 sobunits

CREATESURUNIT
instance.of flow.func
my.creatoe wib
itake symbol List list number list
Lgive symbol
arguments *pro.name *helices *sheets *prev.subslength *sub.data
my.vars *con *c.term *n.term *sub.helices *sub.sheets
algorithm  (do
(bindg *cnn{newatom))
( bindq *c.erm ( addl *peev.subs.length ) )
(bindg *n.term ( plus *prev.subslength ( length *sub.data)) )
( bindg *sub helices ( internal.pairs *c.term *naerm *helices ) )
( bindq *sub helices ( shiftdist *sub.belices *prev.subslength ) )
( bindq *sub.sheets ( internal pairs *c.term *n.term *sheets ) )
{ bindq *sub.sheets ( shiftdist *sub.sheets *prev.subs.length ) )
( setvalue *con 'SUBUNIT.OF *proname )
( seLvalue *con ‘MY.DATA *sub.data)
( setvalue *con "HELIX POSITION *subhelices )
( set.valoe *con 'SHEET POSITION *sub.sheets )}
(reezm*con ) )

ORGANIZE PROTEINS

descripuon: examines each protein 10 determine

whether it has subunits.
1f it does, concepts are created for each subunut from
sequence, helix and sheet data and
inserted in place of the protein name in the
protein list.
The protein list is then partitioned into
tesung and trandng data.

NEEDS TO BE REPLACED WITH A GENERAL THINGY

:  ORGANIZE PROTEINS

instance.of flow.func
my.creator 2

inake it

igive list
arguments *protein lis
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my.vars *pos *temp.pro.dist *pro.name *data *#subunits *helices *sheets
my.vars *prev.subs.length *sub.daa *con
algorithm  (do (display> * Organizing Protcins” priat)

( dusplay> *protein.ist print )
{bindq *pos 1) \keeps track of position of current protein
( bindq *temp.pro.list *protein list )
(loop.unul (ncll? *temp.pro.ist ) \for each protein

(do (bindq *pro.name ( first *temp.prodist) )
( bindq *data ( reverse ( get *pro.name ‘MY.DATA )))
( bindg *#subunits (length *datz })
\ this assumes subunits are in nested lists from ‘my.data
( if.true ( greater.than? *#subunits 1) \if more than one subunit ...
(do (bindq *protein.list ( delete.clement *protein list *pos ) )
( bindq *helices ( value.of *pro.name 'HELIX POSITION ) )

( bindq *sheets ( value.of *pro.name ‘SHEET.FOSITION } )

( bindq *prev.subslength 0)
(loop.until ( ruli? *data) \for each subunit of protein data
(do (bindq *sub.data ( first *data ) )\ get next subunit
( bindq *con ( create subumnit *pro.rame *helices *sheets

*prev.subs.length *sub.data ) )
\is this smart encugh not to count same protein again?
( bindq *protein.list ( insert elerent *protein.dist *pos *con ))
( bindq *prev.subslength ( plus ( length *sub.data ) *prev.subslength ) )
(bindq *data (rest*data))))
(bindg *pos (dd1 *pos))))
(bindq *pos (add1 *pos ))
(bindq *temp pro.list ( rest *temp.prolist) }))
( return *proteindist) )

f
GETPROTEINS

description: Gets the list of proteins,

RANDOMIZES them and examines cach to determine
whether it has subunits.
1t it does, concepts are created for each subunit from
sequence, helix 2nd sheet data and
inserted in place of the protein name in the
protein list.
The protein list is then partitioned into
testing and training data.

NEEDS TO BE REPLACED WITH A GENERAL THINGY

¢: GETPROTEINS
instance.of flow.func
my.creator R
iaeke nons
i.give list
my.vars *proceindist
algodthm  (do
( bindq *protein.list ( get PROTEIN "SUBS ))
( vindq "protein.list ( randomize.list *protein.list ) )
( bindg "protein.list ( organize proteins *prokeinlist ) )
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( partiion.data *protain.list)
( retam *trainlist ) )

INIT.AA.SLOTS
descripbion: Ininalizes the slots
FEATURE.COUNT, ALPHA COUNT, BETA.COUNT & COIL.COUNT
of each AA10(00...0) where the leagth of this list 1s given by *win.length.

¢: INIT.AASLOTS

instance.of flow.func
my.creatoe wjb
i.take number
igive none

arguments *win.length
my.vars *count *imtial *AA.ist *AA
algonthm  (do
(bindq *count 1)
( bindq ¥initia} nil )
(bindg *AAList ( get NATURAL.AMINO.ACID ‘SUBS })
(loop.until ( greater.than? *count swin.length )
( do( bindq *minal ( cons 0 *1mtial ) )
( bindq *count ( add1 *count))))
(loopunnl (nall? *AAlist)
(do(bindq *AA (first *AAlist))
(setvaluc *AA FEATURE.COUNT *1nual )
( seLvalue *AA "ALPHA.COUNT *ininal )
( set.value *AA 'BETA.COUNT *initial )
{ setvalue *AA "COIL.COUNT *imtal )
(bindq *AAList (rest *AASL)))))

COUNT.AA'S
descripuon: Call INIT.AASLOTS o ininalize the
FEATURE.COUNT, ALPHA.COUNT, BETA.COUNT & COIL.COUNT
slotsof each AA10(00-.0)
where the length of thus list is given by *winlength.
Then for 2ach AA 1n each of the proteins used for training
examine the window determined by this AA and swinsad:
1. Incressent the th entry of the FEATURE.COUNT slot of ihe AA in window
posiuoa i.
Llfmewuubwisomwredmmehichxspmofapamcularchss.
ummtunithuyofmccm-mpondingslotofmruinwindowposmon
i and set the classificauon flag. ( A, B, C for proteins)
3. Create an exemplar from the window, the curreat value of classification and the
exemplar wesght  initialily set o 1) and place it on *exemplardist
g ( window classification #use #comect )
((glyglupro...) B11}

¢: COUNT.AAS
instance.of flow.func
my.creator 2 Wi
1.5ake number
igive none

arguments *win.rad
my.vars *protean.list *pro.name *pro-aTay *pro.dength *winlength *focus *1
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myvars  *Dos Ydisp *AA *feature list *hist *temp
\ *flag *exemplar.list *exemplar swindow *classification - Globals which should be locais
algonthm  (do (display> Counting AAs” print)
(se1q *exemplardistrul )
(cond (*mix
(bandq *protein list ( getproteins } ) )
(T (do(bin&q'pmwn.ﬁst(gu?ROTEn‘l‘SUBS))
(Mwm(mmmm‘mmm))
( setq *train Jist *proteinlist))))
(bindq *winlength (add1 (umes *winrad2)))
{imtAA.slots *winlengih)
( loop.unti! ( pull? *proteinfist)
(do (bindq *pro.name ( first *proteinist) )
(display> "*pro.name:" print ) ( display *proiame pnnt)
( bindq *prosmray ( create.proteinamay *pro.name ) )
( bindg *pro.length (amayl@ *proamsy 0))
(bindq *focus 1)
(loop.until ( greater.than? *focus ¢prodength ) \ For each focus i protem ...
(do (seiq *exemplar nl)
( sexq *window nil )
(bindq*i1)
(setg*flagF)
(lmmﬁl(w.ﬂm?'i'win.lmgﬂx) \ For each clement of window
{do (bindq'd:sp(subl(minus‘i'winnd)))
( bindq *pos (plus *focus *disp))
(iftrue (and?  (gresterthan? *pos0)
(not? ( grester.than? *pos *prodength ) ) )
(do (bindq *AA (amayl@ *proamy *pos))
(iftroe (and? (equal?®il)
(and? ( greate.than? *focus *win.rad)
(lss.tlzan?'focus(addl(minns'pro.lmgth'win.nd)))))

setq *window ( cons *AA *window ) ))
(bindq *feature.list ( value.of *AA FEATURE.COUNT))
(1ftrue (null? *featre.list)
(do (display> ®i print)
( display *aa print)
( display *featrelist print)

N
(bindg *temp (add1 ( nth *featre.list (subl *i))))
\(dusplay *temp pant )
( bindq *feaure.fist replace.clemens sfeane list *i *temp) )
( set.value *AA FEATURE.COUNT *feature.list)
\(display> * Count.AA 4* print)
(cond (( focusin.class? "ALPHA *pro.name *focus )
(do (bindg *list ( value.of *AA 'ALPHACOUNT))
(bindq 2temp ( a6d1 (nth *hist (subl *i))))
(bindq *list ( replace.clement *list *1 *temp )]
( set.value *AA "ALPHA.COUNT *list)
( setq *clagsification'A) ))
( ( focusinclass? BETA *pro.name *focus )
(do ( bindq *lst ( value.of *AA ‘BETA.COUNT ))
(bindq *temp (add1 (nth *bist (subl *1)}))
( bndq *list { replace.element *list *i *temp ) )
( setvalue "AA 'BETA.COUNT *list)
( setq *classification B)))
(T (do(bindq‘ﬁsx(vnhw.of'AA’Cou.COUNT))
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( bindq *temp ( add1 ( nth *list (subl *i}))))
( bindg *list ( replace eiement *list *i *temp ) )
( set.value *AA 'COIL.COUNT *iist )

(setg *classification ‘C ) ) ) )

)}
(bindq *1 (addl *i))

))
(if wue *flag
(do (setq *exemplar (cons 1 *exemplar) )
( setq *exemplar ( cons 1 *exemplar ) )
( se1q *exemplar ( cons *classification *2xemplar ) )\ ( classificanon #use #correct )
( setq *window ( reverse *window ) )

( serq *exemplar (cons *window *exemplar ) )
\( window classification #use #correct )
( setq *exemplar.list ( cons *exemplar *exemplar.list) ) ))
(bindq *focus (add1 *focus))

))
( bindg *protein.list ( rest *protein.hist))))
\couid sort exemplar list cn weight ...

{ setq *exemplar.list ( reverse *exemplar.list ) )
(diwhp M S22 ET 212 ] AA slom m SOBUEREROR" pm()
(d@hp "seReS Exempm m SEREBEST" ml)
( dusplay> ( first *exemplar.list ) print )
(display> "FIRST EXEMPLARS CREATED:" log )
( display> ( first *exemplar.list ) log)
)

MAKE.TABLE

description* Given a list of rattos build the tabls ( 2D array ) of the SW-VDM values of this list

c¢: MAKETABLE
instance.of flow.func
my.creator wijb
Liake bist list
Lgwe symbol
arguments *ratio.hist *labeldist
my.vars *dim *table *1 *j *trio.i *tno.j *ratio.i *rauo.j *deita *temp *next
algorithm  (do
(bindq *dim (addi ( length *rano.list) ))
( bindq *table ( create.array2 *dim *dim ) )
(bindq *j 1)
( bindg *temp *labellist )
(loop.until (equal? *j *dem ) \fill row O with iabels ( AA's)
(do (bindg *next ( first *iemp ) )
( array2! *table 0 *j *next)
(bindq *temp (rest *temp ) )
(bindg *j (add1%))))
(binig*11)
(bindq *temp *label.list )
(loop.untif ( equal? *i *dim )\ il column 0 wiih labels ( AA's )
{do (bindq *next ( first *temnp) )
( array2! *table *i 0 *next)
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(bindq *temp (rest *temp ) )
(bindg *: (addl *1))))
(bindg*11)
(loop.untt ( equal? *i *dim )
(do (bindg*)1)
(loop.unul { equal? *j *dim )
(do (tindq *tno.i { nth *rano.dist (subl *1)))
(bindq *tri0.j ( nth *ratic.list ( subl *j)))
(bindq *delta 0)
(loop.untit ( nult? *trio.i)
( do ( bindq *ratio.i ( first *trio.i ))
(bindq *ratio.j ( first *wioj})
( bindq *delta ( plus ( abs ( munus *ratio.i *ratioj ) ) *delta ) )
(bindg *trio.i (rest *tnc.1) )
(bindq *wmio.j (rest *trio.) })})
( amay2! *uble *i *} *delta
(bindq *) (add1%)))))
(bindq *1 (add1 *i))))
(retumn *wable) )

CREATE.TABLES

description: For each window position 1 construct a list of ratio mos.
The tnes are obtamed by dividing the :th element of each
of the structure count slots by the ith element of
the FEATURE.COUNT slot for each of the 20 AA’s,
These lists are then passed to MAKE.TABLE and the resulting

handels are retumed in a list.
}
c¢: CREATE.TABLES
instance.of flow.func
my.creator wijb
rtake number
i give hst

arguments *win.rad
my.vars *AA st *feature *win length *temp *ratioist *AA
ty.vars *aum *denom *rauo *no *tables
algonthm  (do
( display> "Creanng tables ... print”
(bindq *AA list ( get NATURAL.AMINO.ACID 'SUBS ))
(bindq *tables ml
{ bindq *feature 1)
{ bindg *win.leagth (add] (umes *winrad2)))
( loop.unul ( greater.than? *featere *winldength)  \for cach feature in a wandow
(do (bindg *1emp *AA.list)
( bindq *ratioist nil }
( loop.until ( null? *temp )
\for cach amino acie &&&&gencralize
(do (bindq *AA (first *temp))
(bindq *tno nil )
(bindq *denom ( uth ( valuc.of *AA FEATURE.COUNT ) (subl *feanwe)))
\(display> "*denom*" debug ) ( display *denom debeg )

{bindq *num ( nth ( value.of *AA ALPHA.COUNT ) ( subi *feature ) ))
\(display> "*numl:" debug ) ( display *num debug )
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(cond ((equal? *denom0)
(bindy *12800))
{T (bindg *rano ( quotient *num ( float *denom ) })))
( bindq *tno { coas *rato *m0 ) )
( bindq *num ( nth ( value.of *AA BETA.COUNT ) (subl *feature ) ))
\ (display> "*num?2:" debug ) ( display *num debug )

(cond ((equal? *deaom0)
(bindq *ratic 0) )
(T (bindq *rano ( quotient *num ( floai *denom ) )) ) )
( bindq *trio ( cons *ratio *trio ) )
( bindg *num ( nth ( value.of *AA COIL.COUNT ) ( subl *featuze } } )
\(display> "*num3:" debug ) { display *num debug )

(cond ({(equsl? *denom0)
(bindg *ratio 0) )
{T (bindg *rano ( quotient *num (ficat *denom )))))
( biridq *trio { cons *ratio *trio ) )
\(display> "*trio:" debug ) ( display *tno debug )

( bindg *ratio.dist ( cons *trio *ratolist } )

(bindq *temp (7est *temp ) ) ) )
( bindq *ratio.dust ( reverze *ratiodist ) )
( bindq *tables ( cons { make.table *ratiolist *AA list ) *tables })
( bindg *feature ( add1 *feature ) ) )}
(display> "Table handies:® print ) { display  reverse *1ables ) print)
{ return (reverse *tablzs ) ) )

GET.WINDOW

dascription; Returns the *data window centered on *focus with radius *winsad. An error
15 reported if the requested window extends outside the datz.

c: GET.WINDOW

unstance.of flow.func
my.creasoe wib
Ltake number List number
LRV hist
anguments *wiarrad *data *focus
mv.vars *length *temp
algontim  (Jo
(bindq *length { 1znoth *dota ) )

( if.troe { or? ( nox? ( greater.than? *focus *wingad ))
( greaientian? *focus ( minus *leugtn *winsad }))
( dirpiay "GET.WINDOW: Requested window outside datat” error )
3

( bindg *temp ( clip.lzst *data ( subi ( minus *focus *winrad ) )))

(bindg *:emp { reverss *temp ) )

(bindq *tzmp { elip.hist *temp ( manus *length ( plus *focus *winrad))) )
(retum (revert *temp ) ) )

DELTA.AA
description: Returns the entry at row *AA: and ctluma *AAr of thle *k.
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exmyxsl?mmebe:wm'AAxmd'Mj

c¢: DELTA.AA
nstance.of {low.func
my.creator wib
itake symbol symbol number
Lgive number

arguments *AAI *AAj *k
my.vars *AAlist*i ¢
algonthm  (do
( bindq *AA list  get NATURALAMINO.ACID 3Ums))
\POSITION retums 0 1f X not found in hist ...
(bindq *i (posinon *AAi *AAlist))
(bindq %} (poswer *AAj *AAlst))
( return (amay2@ ( nth *table.list ( subl *%))*1%)))

DELTA.WINDOW

description: Returns the d b the give windows using
Salzberg's method withr=1 angd weight= L
When r=1, yields “manhattan” distarce
When r=2, yields “evclidian™ distance
Sabberg uses 2 typically, but I an proiein problem
Rippie slong window of given length, companng “feateres"; sum up similanties, then
multply by weights

¢: DELTA.WINDOW
mstance.of flow.func
my.creator wib
1take Lust fiss
1give number
arguments *windl *exemp
my.vars *k *sum *AAs *AAj *delta *wind2
algonthm  (do
(bindg*k 1)
(bindq *sum 0)
(bindq *wind2 ( first *exemp)) get window from cxemplar
(loop.until ( null? *windl )
(do (bindq *AAi( first*windl))
(bindq *AA) ( first *wina2 ) }
( bindg *delta (delta AA *AA *AAj*k)) \distance between 2 feature vaiues
\1fr=2. you would square *daha here yesonnse
( bindq *sum ( plus *sum *delta))
(bindq *k (add1 *k))
( bindq *wind2 ( rest *wind2) )
( bindg *wind1 ( rest *windl })))
\ now that y