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INTRODUCTION

The main theme of the present Grant was the noninvasive spectral analysis of

ultrasonic fields where nonlinear properties of the medium of propagation cause

initially sinusoidal ultrasonic waves to become distorted and thus exhibit more

than one frequency component in the sound field.

There are a number of cases where such "finite amplitude effects" - as

opposed to infinitesimally small amplitudes of the signal where nonlinearities

can be neglected- occur. All of them are related to high amplitude waves propa-

gating in water; the most common ones are:

High amplitude continuous wave bounded beams,

Ultrasonic pulses,

Focused ultrasonic beams.

The work performed consisted primarily of theoretical and experimental

analyses of the spectral contents of these three sound fields and, secondarily,

of the investigation of reflection, transmission, and reradiat ion phenomena when

such fields encounter liquid/solid interfaces, like solid plates immersed in

water.

The theoretical analysis was concerned with two topics. The first was the

computation model of the changes in the harmonic contents and the pressure

profile of the sound signal as a function of travel distance.

(a) In the case of line focused ultrasound the theoretical sound pressure

field predictions were based on a numerical solution of a differential equation

describing nonlinear effects, the Khokhlov-Zabolotskaya-Kuznetsov equation. A

method was found to greatly enhance the om~putational effectiveness of the

numerical solution.

(b) In the case of pulsed ultrasound, the important factors were found to

be the Fourier series, whose lowest frequency component is the pulse repetition

rate, and the changes in that frequency spectrum due to nonlinear processes as

the signal progresses.



The second general theoretical topic was concerned with the calculation of

the acousto-optic interaction of pulsed ultrasound and monochromatic light. This

interaction produces a distinctive diffraction pattern where the light intensity

in the many diffraction orders is determined by the frequency spectrum of the

signal. The various aspects of these two theoretical approaches will be dis-

cussed in later sections of this report.

The experimental analysis was done by using acousto-optic techniques to

probe the sound fields. The advantage here is the fact that the sound field is

not being disturbed by the measurement since no material object, like a hydro-

phone, needs to be placed in the sound field. Both diffraction order analysis

and Schlieren techniques were used to verify theoretical predictions and in some

cases to establish the basis for further theoretical considerations.

This report is structured according to the outline given above. The sec-

tions are separated and are preceded by individual Summary Pages. The Appendices

contain listings of computational codes and/or reprints of papers which have a

bearing on the main themes.
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Sumary Page I

This section was prepared by Dr. Thomas Neighbors who has done the computational

approach to the calculation of pressure profile in a line-focused ultrasonic

beam. The experimental results presented in this section were obtained by

Herbert Ruf. Both these authors were partially supported by the present Grant;

Dr. Neighbors for a very short time as Research Associate Professor, and Dr. Ruf

for most of the duration of the Grant as graduate student and later as post-

doctoral fellow.

This section is entitled "Line Focused Transducers - Equations and Field

Determinations." The KZK equation is stated and then used to apply to line-

focused sound sources. The needed mathematical operations are indicated so the

equation can be written in normalized terms.

After the focused beam boundary conditions are enumerated, the KZK equation

Fourier decomposition for line focused sources is performed. The main problem

is the solution of an infinite set of coupled nonlinear equations. The key steps

to do this in an efficient yet reliable way are listed and the numerical solu-

tions are discussed, concentrating on the validity of the idea of accepting

"floating" boundary conditions, the flexible allocation of harmonic terms, and

lastly, the convergence of the solution.

This is followed by the listing of results for concrete examples of line-

focused beams, giving the initial conditions at the source. This is compared

with experimental results, where the experiments are performed making use of

acousto-optic methods.

This section closes with a statement of the predicted changes in the focal

length of the transducer when the pressure is increased.
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Line Focus Equation Derivation

1.0 Introduction

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) parabolic equation is generally used

to account for nonlinearity, diffraction and attenuation in a directive, finite-amplitude sound

beam'. The KZK equation is given by:

OPP_-CO V2P b tlýP P o- 2  1
&-&1 2 2poCo3 -' 3 2p 0 "&!2

where

ce = isentropic speed of sound,

PA = fluid density,

= coefficient of nonlinearity,

t = retarded time (t -zWe),

t = time,

z = on-axis distance,

P = pressure,

V1  = transverse Laplican, and

b = thermo-viscous loss term.

Originally Eq. 1 was derived without thermo-viscous losses by Kbokhlov and

Zabolotskaya. The adaption to include dissipation is due to Kuznetsov. A recent re-

derivation2 has shown that Eq. 1 accounts for nonlinearity, diffraction and absorption to an
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equal order of magnitude. The V1
2P term corresponds to diffraction effects. In deriving

Eq. 1 a well collimated beam is assumed, e.g. ka >> I with k = w/c1 and with a = the

source radius.

The following sections outline the approach used in applying the KZK equation to

a line focused radiator. Section 2 starts by outlining the modifications in the parabolic

equation necessary for its initial application to the line focused radiator. Section 3 briefly

outlines the change in the boundary conditions necessary when the KZK equation is used

for a focused source. This is followed in section 4 by the Fourier series expansion of the

modified KZK equation which results in an infinite set of coupled nonlinear differential

equations for the pressure spectral terms. Section 5 takes the coupled nonlinear differential

equations and discusses the computational efficiency enhancement techniques which allow

their numerical solution on a desk top computer.

2.0 KZK Equation For Line Focused Source

For a geometry which considers only the y z plane with z the propagation direction

and y perpendicular to z, the transverse gradient can be replaced with 4y. This approach

assumes that to first order the variations in the x direction can be ignored.

2  C0o _2  b P b (2)

aZa 2 a2 2poc' 3  2poco'

If the retarded time is replaced by a normalized retarded time, i.e. r = ot', then at'

o el/w and equation (2) can be rewritten as

2



(.)alp C ap b W.1 a p p WI o0 p2 (3)
20y 2 2po 3'o 2poo 3&2

The geometry used in applying the KZK equation to focused sound propagation is

in Figure 1. The acoustic field originates at a concave source, of transverse diameter 2a,

and propagates in the z direction towards the geometric focus which is nominally located

at the source radius of curvature d.

d

2 aL

Figure 1. Line Focused Radiator Dimensions

To simplify equation (3), renormalize the on-axis distance, z, to the radius of

curvature of the line focus radiator, d, with the new distance parameter being a = z/d.

(o) _p c0o P_ b e' 2P_ pW2 P2(4)

d auaf 2 O8y2 2p0c0' W?' 2p0 3 &2

Equation (4) can be reduced even further by normalizing the transverse coordinate

to the radiator's transverse radius a. as shown in Figure 1. With the new transverse

coordinate r = y/a, equation (4) becomes.

3



) iaf Co0 aP bw a-p pW2a Op2

-2a2 &2 2poC3' 2p0c3 C2

A.t this point, we can convert to a normalized pressure by dividing P by the on-axis

peak pressure at the surface of the line focused radiator, P0, e.g. p = P/P0-

wap 0 -4 _2 coo02pb (6)
d ao&a j2 &.:2 2pCo3 &r3 2poco3 at2

Multiply by d/oip0 and we have

alp cod pb•p_ _ud p2d i)pod 2p2 (7)
2oaT 2a& 2 2poco3 & 3 2poco3 &e2

Equation (7) can be simplified by using the standard definitions of the Rayleigh

distance, Zo, and the discontinuity distanceid given in equations (8) and (9).

wa2

o co (8)

and
3

Equation (10) is the result of the substitution.
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~32p dO~pb~i~3~p -2p 2o-2p d c-O _ d(10)
aaod 4o ar2 2p c03 &3 2JC &r2

Identifying the last set of constants as a, the thermal viscous loss coefficient and

making the substitution shown below for ad yields equation (12).

d= 2(11)
2po0 o

Then we have the line focus KZK equation in normalized terms.

d A d d_ pd (12)
aoar 4z&ar2  aT3 2I, a 2

3.0 Focused Beam Boundary Conditions

To effect a solution of Eq. 12 it is necessary to specify the initial pressure distribution

p(y,z,t) at z = 0. The standard approach for specifying the initial condition uses the quasi-

optical approximation which modifies the amplitude and phase of the pressure distribution

in the xy plane at z = 0 to produce the amplitude and phase distribution that would occur

at the surface of the concave source. Figures 2a and 2b illustrate the phase and amplitude

adjustment, respectively. The phase adjustment shown in Figure 2a is k-dx where k = 2v/A

and dx is the distance that would have to be propagated from the xy plane to the curved

surface.

The amplitude correction requires a bit more explanation as shown in Fig 2b. Since

the initial pressure distribution in each elementary radial segment along the y axis, dy, over

5



the interval 10,a] represents the pressure on a segment of the curved surface, the required

increase in the normalized pressure at z = 0 is given by D • dO/dy. As shown in Figs. 2a

and 2b, 0 is the angle measured from the z axis and D is the source radius of curvature.

Y

\",dx = propgation distance adjustment y(z-O) -1

I '~ 'K dy
=radius of curvatureII dO\

geometric geometric
focus focus

di = (D + ) - D

(a) Phase Correction (b) Amplitude Correction

Figure 2. Initial Pressure Phase and Amplitude Adjustment

4.0 KZK equation Fourier decomposition for line focused source

Since a general analytic solution of the KZK equation has not been found to date3,

the equation is usually solved by a number of approximations and numerical techniques.

The approach used here has been adapted from the numerical solution initially developed

by Aanonsen4, enhanced by Hart and Hamilton5, and revised by Neighbors and Bjorno.

The numerical approach allows solutions within a range of assumptions which are not too

restrictive.

Assume the initial pressure at or = 0 can be represented as a periodic function of the

form

6



P--=I P.ea' (13)

am-•

with

P. fpr~e ft-A(14)
-s

Now if we substitute Eq. 13 into Eq. 12 we have the following set of coupled

nonlinear differential equations in terms of the Fourier components:

2d
S~(15)

To convert Eq 15 into a set of coupled partial differential equations in terms of p.

requires a transformation of the right hand side of Eq 15. First, let k = n + m, then we

have

L p.ep.emE Ppk-e*

Rotating the indices and letting k -- n and n - k yields

j ~fpd i [yýPhP}Ia1/0 (17)
N. -W M.-- j.f

The products of ei" now become an infinite set of coupled partial differential

7



equations for p. of the form

jlp. j)d cPp..P (18)

Since the initial pressure is real, p. = p*. where the * denotes the complex

conjugate. Using this property and manipulating the summation indices yields equation (19)

which is an infinite set of coupled partial differential equations for the Fourier amplitude

coefficients p..

JnP3a 4zda•'•2P.~ n) d----)2•i P-P .12•A t•- (19)

ce4zo &2  ~ 21 ka I

The standard approach for solving the infinite set of coupled nonlinear equations

truncates the infinite spectral series, linearizes the equations, and applies a numerical finite

difference scheme. The key steps in this solution are discussed next.

As a first step, write p. as its real and imaginary parts,

p,=h,-ji, (20)

where

jP(z)cos(wr)dr (21)
-3

and

8



94=- fp)sin(n-r)dr. (2

-3g

Substituting Eq. 22 into Eq. 19, and separating real and imaginary parts yields the

infinite set of coupled partial differential equations for kh and g, given in Eq. 23 and 24.

-a2g
- + _ 0 9, +adn 2h,

ao 4n;o ,r&2  (23)

dn r- -1
dn[•(gh._'h~g.,-) -2 (h g.,S(h~s_-Id,_)

219, k -2o2

0 - -+adn~g

au 4 nzO ar (22)

21 -2 ) (hkhk-.gg
d ~k-4-1

Given an axi-symmetric source, with time history such as sin-, the coupled differential

equations describe the growth of harmonics due to nonlinearity and the modification of the

sound field due to diffraction effects. Since the fundamental frequency corresponds to n

= 1, the attenuation of these harmonics is determined by an' which is equivalent to a

square law attenuation term. The solutions can be adjusted to account for non-square law

attenuation terms by replacing nW by ns where g is the attenuation power law.

5.0 KZK Equation Numerical Solution

As discussed earlier, since no closed form solution exits for the KZK equation the

usual approach is a numerical solution. The general approach consists of transforming Eqs.

23 and 24 into a series of linearized difference equations which can be solved using standard

9



numerical techniques' Since ihe specific numerical solution is discussed in detail in a

number of references, this section first focuses on the unique enhancements in

computational efficiency that are implemented in current work - the dynamic allocation of

harmonic terms in during the computation and the use of a floating boundary condition

which increases computational throughput while avoiding some of the artificial boundary

problems discussed at the 12'k ISNA7 and second discusses the convergence of the

numerical solution.

5.1 "Floating" or Expanding Boundary Condition

A traditional problem in finite difference calculations is the initial selection of the

outer mesh size for the calculation. This is important since the pressure front expands

radially as the sound propagates. The improper selection of the outer boundary of the

calculational mesh can result in one of two of the possible outcomes:

"* The creation of an artificial rigid boundary which creates an

spurious reflections as the signal propagates. These reflections

in turn "poison" the answer.

"* An excessively slow calculation due to a large mesh size. The

calculation rate is inversely proportional to the number of

transverse mesh points in the finite difference calculation.

A simplistic approach can be used to prevent the inclusion of an artificial boundary

and at improve computational efficiency. This approach is shown symbolically in Figure 3.

When the pressure fundamental frequency spectral amplitude magnitude at the third point

before the edge of the boundary, A[n-3], exceeds a pre-specified threshold value two

additional computational cells are added to the calculation. The expanding pressure front

does not reach the rigid edge of the boundary. By expanding the boundary when required

the calculation time can be reduced by as much as a factor of two, depending on the problem.

10



If A[n-2] > Threshold
Then Add 2 Cells

Transducer "r on Direction

rZ

Figure 3. "Floating" boundary condition numerical technique

An example of the effectiveness of this technique is shown in Figure 4. In this

instanced. a line focused transducer with a 300 aperture angle is located at z = 0. The

boundary at the start of the calculations was initially set to be 10% larger than the

transducer physical boundary and the calculational threshold was varied between L.0x10'

and 1.0x10l2 . For the lowest threshold value the computational boundary expands by about

a factor of 10 when propagating from the face of the transducer to 40% beyond the

geometric focus. As the threshold for expanding the boundary is reduced the boundary

expands at a faster rate, e.g. for a threshold of 1.OxlO12 the boundary has expanded an order

of magnitude at a normalized distance 70% beyond the face of the transducer. Allowing the

boundary condition to "float' increases the computational efficiency by a factor of two. A

relatively simple and effective technique for improving computational efficiency.

A natural question is "how much error is introduced by this approximation?' This

can be addressed by examining the normalized pressure amplitude for the propagating

sound field over the range from z = 0.4 to 1.4 at a transverse location lined up with the

edge of the transducer, e.g 1.0 in Figure 4. These results are shown in Table 1 for four

threshold values - 1.0xl0 4 , 1.0xl0 4 , 1.0x104 , and 1.Oxl 04°. Once the threshold is decreased

to - 1.OxJ•O there is essentially no difference in the numerical result.

11
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Figure 4. "Floating" boundary condition expansion

Table I - Boundary Threshold Impact On Precision

THRESHOLDZ 1004 1.0 . 1.0.0

0.4 0.038769598 0.038769408 0.038769406 0.0387A9408
0.5 0.027677476 0.027674503 0.027674592 0.027674592
0.0 0.038084044 0.038083162 0.038063161 0.038063181
0.7 0.043991060 0.043995829 0.04399M561 0.043998i1
0.8 0.011198936 0.011194064 0.0111340685. 0.011194065
0.9 0.039476048 0.039474818 -0.030474820 .0.069474820
1.0 0.063521380 0.063523095 0.063523093 0.063523003
1.1 0.057549026 0.057547647 0.0575764 0.057547643
1.2 0.030258185 0.030259337 0.030259324 0.060259324
1.3 0.073250350 0.073248796 0.073248786 0.073246786
1.4 0.110690431 0.110684937 0.110684927 0.110684927?

12



5.2 Dynamic Allocation Of Harmonic Terms

The classic problem encountered in the numerical solution of nonlinear equations

using a Fourier representation is the large number of harmonic terms that are required due

to harmonic growth. If two few terra- are used in the Fourier series which represents the

solution, a truncation error occurs in last few terms which start to grow in magnitude

abnormally. As this truncation error continues to increase it begins to affect the preceding

terms. Eventually, the truncation error distorts the solution. Generally, to avoid this

problem a number of alternatives are available, such as:

"• increase the number of harmonics to push the truncation error

further out,

"* size the number of harmonics to the precision required and

increase the attenuation of higher harmonics to compensate, or

"* use either of the preceding and filter the output by discarding

a number of higher harmonic terms where the truncation error

is obvious.

In using any of these approaches, a sufficient number of harmonics has to be

retained to provide the basic precision required in the output. In general regardless of the

approach used, the computational efficiency is proportional to the number of harmonics

squared.

A simple computational solution is available consistent with the physics of the

process. The basic algorithm is shown symbolically in Figure 3. At the beginning of the

computation a minimum number of harmonics are allowed in the computation. All

harmonic terms are initialized to zero. At each longitudinal step in the computation, the

magnitude of the last harmonic is checked, if it is above a preset threshold another

harmonic term is added.

13
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Figure 3. Dynamic harmonic allocation process.

The threshold is selected as a fraction of the normalized peak initial pressure

amplitude. The impact of different threshold choices is shown in Tables 2, 3. and 4. At the

beginning of the calculation the maximum number of harmonic terms is set to four. Table

3 is the on-axis amplitude spectra at z = 0.4 when the threshold is varied from 1.0x10' to

1.0xl0I2. The amplitude spectra magnitude displayed to four significant figures. N is the

number of the spectral term with 1 corresponding to the fundamental frequency, 2 the first

harmonic, etc.. Powers of ten in the table are designated by E±xx which represents 10-.

In Table 2 changing the threshold over the range 1.0xl04 to 1.Ox1(" has virtually

no impact on the magnitude of the fundamental and the first three harmonics, at least to

four significant figures. The additional harmonic terms generated when the threshold is set

to 1.0xl0" or less appear to have no impact on the magnitude of the fundamental and the

first three harmonics. However, at this point the pulse has only propagated 40% of the

distance to the geometric focal point and very little harmonic generation has taken place.

A better perspective can be obtained by examining the spectra at z = 0.9 which is just

before the geometric focus. This comparison is shown in Table 3 below. Again, to five

14



significant figures, the magnitude of the fundamental and the first four harmonics appears

is unaffected by threshold values below I.Oxi0-O.

Table 2. On-axis spectra at z = 0.4

THRESHOLD

n 10"* 10"* 10.4 10"6 1042
i 1.0935E+00 1.0935E+00 1.0935E+00 1.0935E+00 1.0935E+00
2 4.7449E-03 4.7449E-03 4.7449E-03 4.7449E-03 4.7449E-03
3 2.8661E-05 2.8661E-05 2.8661E-05 2.8661E-05 2.0568E-07
4 2.0568E-07 2.0568E-07 2.0567E-07 2.0567E-07 2.0568E-07
5 1.5917E-09 1.6205E-09 1.6207E-09
6 1.3132E-11 1.3559E-11
7 1.1274E-13

Table 3. On-axis spectra at z = 0.9

THRESHOLD
n 10"" 10-4 10.4 10-10 10"11
1 1.7435E+00 1.7435E+00 1.7435E+00 1.7435E00 1.7435E+00
2 1.9786E-02 1.9786E-02 1.9786E-02 1.9786E-02 1.9786E-02
3 3.2627E-04 3.2627E-04 3.2627E-04 3.2627E-04 3.2627E-04
4 6.3104E-06 6.3097E-O 6.3093E-06 6.3093E-08 6.3093E-06
5 1.1583E-07 1.3336E-07 1.3339E-07 1.3339E-07
6 2.8353E-09 2.9856E-09 2.9860E-09
7 6.8332E-11 6.9557E-11
0 1.6588E -12
9 1.8266E-14

A last check on the impact of the threshold magnitude is shown in Table 4 which lists the

on-axis amplitude spectra 40% beyond the geometric focus (z = 1.4). Again, for a threshold

between 1.0x%10 and 1.0x:10 there is no significant impact on harmonic magnitude.

15



Table 4. On-axis spectra at z = 1.4

THRESHOLD
n 10.4 I0"6 10"4t 10"16 10"18

1 1.2942E+00 1.2942E+00 1.2942E+00 1.2942E+00 1.2942E+00
2 2.1359E-02 2.1359E-02 2.1359E-02 2.1359E-02 2.135KE-02
3 5.3937E-04 5.3937E-04 5.3937E-04 5.3937E-04 5.3937E-04
4 1.6275E-05 1.6269E-05 1.6269E-05 1.6269E-05 1.6269E-05
5 5.4167E-07 5.4018E-07 5.4017E-07 5.4017E-07
6 1.9115E-08 1.9043E-08 1.90431E-08
7 5.7185E-10 7.0054E-10 6.9950E-10
8 2.7133E-11 2.6488E-11
9 1.0397E-12
10 2.8673EA-15

5.3 Numerical Solution Convergence

To assure that the numerical solution converges the transverse and longitudinal step

size are reduced until the change in the numerical solution is insignificant. Figure 4 shows

the on-axis normalized peak pressure amplitude as a function of the radial step size used

in finite difference solution of the KZK equation.

In this calculation the phase of the initial pressure is corrected using a quasi-optical

approximation. As dr decreases from a normalized value of 2% of the transverse radius (dr

= 0.02) to 1% (dr = 0.01) the peak pressure profile changes dramatically. However, as the

mesh size decreases the solution essentially converges, at least to a visual inspection. The

rate of convergence is shown in Table 5 which contains the value of dr, and the magnitude

of the on-axis pressure fundamental, 2", and 3 d harmonics. As dr decreases the harmonics

converge to their asymptotic values. By the time that dr = 0.004 the location of the

predicted focal point has changed and the magnitude of each harmonic has converged to

a point that the jitter is on the order of a few parts per thousand.
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Figure 4. On-axis normalized peak pressure convergence

Table 5. Solution convergence at predicted focal point.

drz An() An(2) An(3
0.0200 7.4247E-0001 1.1469E40000 1.9391E-002... 2.8168E-0004
0.0100 8.25OOE-O001 1.7510E+0000 1.8301E-09OX •ZZ 71582E-O@4
0.0075 8.5439E-0001 1.7532E40000 1.S421E-0002-, 2.8030E-0004
0.0050 8. SOOOE-0001 1.752SE*0000 1.8312E-0002 2.7693E-0004
0.0040 8.$439E-0001 1.7529E40000 1.8354E-0002 2.7822E-0004
0.0030 8.S439E-0001 1.7532E+0000 1.1368E-0002 2.78660E-0004
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To obtain a better approximation for the pressure in the focal region an amplitude

shading can be applied as discussed in Section 4. The calculated on axis peak pressure

using both phase and amplitude shading is compared in Figure 5 to the calculated peak

pressure using only phase shading. The difference for the 30* aperture is only a few

percent in peak amplitude at the focal point and the location of the calculated focal point

does not change as a result of amplitude shading.

Geometric
Focal Point

2.0-

Amplitude & Phase Shading

GAIN Pm

GAIN itL Phase Shading

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Normalized Distance

Figure 5. Amplitude and phase shading comparison

6.0 KZK Line focus equation numerical predictions

This section presents the predicted pressure profile for the experimental

configuration. The inputs for the solution are summarized in section 6.1. The predicted

peak pressure profile on and off the symmetry axis are shown in Section 6.2. The change

in the pressure time history due to non-linear effects is shown in Section 6.3 when the peak

initial pressure across the aperture is changed by an order of magnitude.
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6.1 Initial conditions

The normalized initial peak pressure profile at the face of the transducer is shown

in Figure 6. The line focus transducer enclosed aperture is approxdmately 3W.

0.8 ----------------------------

0.6 ---------------------------- _

0.4 ------------ ------ ---------- ______ a

0.2 -------------- ------------

Y/a 0 ----------------------------

-0.2 ------------ ------------

-0.4 ------ ----------------

-0.6 ----------------------

-0.8 ----------------------

-1 1- - - - -
0.00 0.50 1.00 1.50

Normalized Pressure 300 Line Focus Transducer

Figure 6. Initial pressure profile at transducer face.

The peak pressure at the face of the transducer is approximately 58.05 kPa. The transducer

radius of curvature is 0.04445 m with a transverse radius of 0.01151 m. The input driving

frequency is 1.0667 MHz. The transducer is in water with: density, 9.98 Kg/m'; velocity,

1492 m/s; and B/A, 5.5. The calculations were performed with the thresholding for the

floating boundary and the dynamic harmonic allocation set to 10'. The transverse step size

was set to 4.0x10"'.

6.2 Peak Pressure Profile - 58.05 kPa source

A three dimensional plot of the pressure profile is shown in Figure 7. The vertical (y) axis

is the peak pressure normalized to the initial peak pressure at the face of the transducer.
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The horizontal (x) axis is the range from the transducer symmetry axis. The z axis is the

normalized distance along the direction of propagation.

yX

2•.0

0.4

1.4

Figure 7. Peak pressure profile transverse to the propagation direction.

Individual peak pressure profile segments are shown in Figure 8 for as the normalized

distance increased from z = 0.4 to z = 1.3. This shows the grown in the on-axis pressure

as the geometric focus is approached and the subsequent decrease in intensity after the

geometric focus.
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Since the peak pressure is predicted to occur at z - 0.86, Figure 9 illustrates the grown in

peak pressure through the region z = 0.8 through z = 0.92.

Gait "ins

0.00 O.M:H

Nonnallod Of-A1xis Dist&&** Normalied Offr-Axis Distase
Cala Gala

s 0.65 a3 04n3

S.. 0. ... 0:4' 0.

Morlsaile4 Off-Ails Distanee 1or"alted .0ff-Azxs
Gain cats

- .� ..0.0.40. . ..... o$o

OmaM, llod 0ff-Als Wostan"e Mormalid Off-Axis -liten.

Figur 9. Transverse pressure profile around focal point

6.3 Predicted Impact of Increased Pressure

When the initial pressure is increased the growth in higher harmonics is accelerated.

The change in the pressure time history for initial pressures of 58.05 kPa and 508.5 kPa is

shown in Figure 10. The time domain wave shape is becoming asymmetric which is
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characteristic of the growth in higher harmonics, e.g. 5 significant harmonics at 58.05 kPa

and 10 significant harmonics at 580.05 kPa. At the same time there is a slight shift in the

location of the predicted focal, as shown in Figure 11.

580.5 kPa
2.0

2.0. 58.05 kPa

1.0

Gain
0.0

-2.0, ,

Time

Figure 10. Distortion in time-domain waveform due to harmonic growth.

Z=O.9
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G~i. • i580.05 k•a
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1.0-

fro'1

0.0100,,I I I r ,iii , {rr i

0.0 0.5 1.0
Normalized Distance

Figure II. Shift in predicted focal point due to increased pressure.
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Summary Page II

This section contains a condensed version of the theory developed in the

previous section; it was presented by Dr. Neighbors at the 1993 International

Symposium on Nonlinear Acoustics in Norway.

Also contained in this section is a condensed version of a paper presented

by Dr. Ruf at the 1993 Ultrasonics International Conference in Austria. It

details the interpretation of the pressure distribution within a focused sound

field by making use of the acousto-optic Schlieren image produced by this field

and the use of a CCD detector to map this field. The Schlieren image evaluation

and the conventional pinducer field mapping techniques were compared and the

field distortion due to the presence of the pinducer probe were noted.



C FOCUSED ULTRASOUND IMAGING

Thomas H. Neighbors, Herbert J. Ruf, and Walter G. Mayer
Ultrasonics Research Laboratory, Physics Department

Georgetown University, Washington, D.C. 20057-0995 USA

ABSTRACT

Today. focused sound field measurements typically involve needle or membrane
type transducers stepped across the sound field. This time consuming process
is limited by probe linearity, effective aperture size, and experimental
alignment. In the past, Schhieren imaging has provided an effective.
qualitative technique for examining a sound pressure field. This paper extends
the Schlieren technique to provide quantitative measurements of the entire
focused sound pressure field without in-situ disruptions. Theoretical sound
pressure field predictions for a line focused system are made based on a
numerical solution of the Khokhlov-Zabolotskaya-Kuznetov parabolic
equation. Enhancements in computational effectiveness of the numerical
solution are discussed and key features of the experimental setup outlined.
The theoretical predictions are compared with experimental measurements
made with the extended Schlieren technique.

(
1. Introduction

Since Raman-Nath' theory was published 60 years ago, acousto-optic
techniques have been used for non-interactively measuring sound pressure
fields. The diverse applications have ranged from the examination of harmonic
growth2 to sound pressure field reconstruction using tomography techniques.
Schlieren imaging as developed by Hiedemann3 et al has been used extensively
to image the entire sound field through photographic images.

The propagating sound pressure for a line focused radiator is predicted
using the Khokhov-Zabolotskaya-Kuznetsov (KZK) parabolic equation.
Enhancements in the numerical solution are outlined and the experimental
setup for the enhanced Schlieren technique summarized. Predicted and
measured on- and off-axis pressure profiles are then compared.

2 Line Focused KZK Equation

The KZK parabolic equation, Eq. (1), is used to describe the propagation
of a directive fimite amplitude sound beam including nonlinearity, diffraction

S(" and attenuation". P is the sound pressure; z is the on-axis distance; V is the



retarded time (t - 2/c.), with c0 the isentropic speed of sound; V, is the
transverse Laplacian; Po is the fluid density; and p is the coefficient of
nonlinearity.

821 -O CV'2p b _!t_ 3 &811 (1)
aZ&r 2 2pdc03&W3  2p0 A r

The V,2P term corresponds to diffraction effects. In Eq. (1) a well collimated
beam is assumed, e.g. ka >> 1 with k = Gvc 0 and a = the source radius.

For a line source, which considers only the yz plane and ignores yx plane
variations, the transverse Laplacian can be replaced with S'y. Eq. (2) is the
line source KZK equation. It has been simplified by replacing the retarded
time by a normalized retarded time, i.e. i = wt; the pressure Pby a normalized
pressure p = P/p., where p0 is the initial on-axis peak pressure; manipulating
a few terms; and using standard definitions of the Rayleigh distance, z.,
discontinuity distance, !d, and the thermal viscous loss coefficient a,

-p _ d ±p - adp d= p2  (2)

ao& 4Zo r2  &3 21d &•2

If p is expanded as a Fourier series as indicated in Eq. (3) where p. is the
complex Fourier coefficient, Eq. (2) becomes the series of coupled partial
differential equations for the Fourier amplitude coefficients, shown in Eq. (4).

P ; PapC (3)

AP. d O dqnI -.- adjn)3p4 p p..-, 2 pj p;-. (4)

Since the fundamental frequency corresponds to n = 1, harmonic
attenuation is determined by an2 . To account for non-square-law attenuation
replace n2 by n" where g is the attenuation rate.

Since a general analytic solution of the KZK equation has not been
found to date, Eq. (4) is usually solved by numerical techniques. The approach
used here has been adapted from the numerical solution initially developed by
Aanonsen', enhanced by Hart and Hamilton6 , and revised by Neighbors and
Bjorne'. Computational efficiency is enhanced by floating the transverse

I-



"(" boundary condition and dynamically allocating harmonic terms.

A tradit.onal problem in finite differen,:e calculations is the calculation's
outer mesh size. The simple approach shown in Figure I prevents the
inclusion of an artificial boundary and improves computational efficiency.
When the pressure fundamental frequency magnitude at the third point before
the edge of the boundary, A[n-2], exceeds a pre-specified threshold value,
additional cells are added. This causes the boundary to move as the pressure
increases near the boundary. This approach prevents artificial reflections at
the numerical boundary and the calculation time is reduced by up to a factor
of two, depending on the problem.

The second problem encountered in the numerical solution of nonlinear
equations is the large number of harmonic terms required due to harmonic

/
4--

( Thtio Add a Cobt

Trans•jc - Po..agb Om eclm

Figure 1. "Floating" transverse boundary condition.

growth. In general, computational efficiency is proportional to the number of
harmonics squared. A simple solution is available consistent with the physics
of the process. At the beginning of the computation, a minimum number of
harmonics are included. At each longitudinal step in the calculation, the last
harmonic's magnitude is checked. If it is above a preset threshold, another
harmonic is added. This improves the computational efficiency by several
factors without any loss in numerical precision or stability.

3. Enhanced Schhieren Imaging

Figure 2 illustrates the experimental setup8 . Light from a 20 mW, He-
Ne Laser is incident on a short focal length lens which has its focal point at



LBO•" 84. LASE

Figure 2. Z-configuration Schlieren image system

tbe spherical mirror's focal point (4 in). Thus the reflection from the mirror
is collimated. When the beam passes trough a water tank containing the line
focus transducer, it is diffracted by the focused sound field. The light is
focused by the second spherical mirror into a diffrection pattern on the Fourier
plane. By blocking all but the positive and negative frst diffraction orders at
the Fourier plane, the sound field image contained is incident on the Charge
Coupled Device (CCD) array at the image plane. The mal~nitude of the
pressure to first order is given by the light intensity, l, = J5 (u) where u =

2np.JAt is the Raman-Nath parameter with pi the maximum variation in the
index of refraction caused by the pressure, L the width of the sound beam, and
). the light wavelength. The CCD detector used in the pxperixment is a
Fairchild Weston Systems model CCD181, which has 2592 active elements in
a linear array with a dynamic range of 7500:1 relative to rms noise. The line
focused transducers were constructed by Channel Industries of PZT-4 with a
thickness of 0.625 cm and a radius of curvature of 4.445 cm. During the series
of experiments conducted three aperture angles of 300, 601°, and 900 were used.

4. Comparison Between "Theory And Experiment

The peak pressure profile at the face of the 300 aperture transducer is
shown in Figure 3 normalized to the on-axis pressure at the transducer face
which was 77.31 kPa. The transducer radius of curvature is 4.445 cm with a
transverse radius of 1.151 cm. The input driving frequency is 1.1 MHz and the
tank was filled with water. The numerical values of the density, isentropic

(
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Figure 3. Initial pressure profile at transducer face.

velocity, and W/A of water were taken as 9.98 kg/mr, 1492 mVs, and 5.5,
(" respectively.
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Figure 4. On-axis peak pressure experimental vs predicted profiles.



To predict the on- and off-axis pressure using the line source KZK
approximation, the amplitude and phase at the transducer face were adjusted
using a quasi-optical approximation. The calculations were performed with i he
threshold for the floating boundary and harmonic allocation set to 10' and a
transverse step size of 4.0x10'. Figure 4 is a comparison of the predicted and
measured on-axis sound pressure for a 60.19 kPa and 77.31 kPa sources. The
dashed line is the theoretical prediction using the line focus KZK equation.
The solid line is the experimental result measured using the extended
Schlieren techrique. The difference between the predicted and measured focal
point is approximately 4% and the variation in peak pressure is between 10%
(60.19 kPa source) and 1% (77.31 kPa source). In both cases the quantative
agreement between theory and experiment is relatively good.

5. Acknowledgements

This work was supported by the U.S. Office of Naval Research and by
the Scientific Affairs Division, NATO.

6. References

1. C. V. Raman, Proc. Ind. Acad. Sci. 11 (1935) 406.

2. W. G. Mayer and T. H. Neighbors, Ultrasonics 25 (1987) 83.

3. E. Hiedemann, Ultraschallforschung. (Walter De Gruyer & Co,
Berlin, 1939).

4. N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zabolotskaya,
Nonlinear Theory of Sound Beams, (AIP, New York, 1987).

5. S. I. Aanonsen, Numerical computation of the nea-field ofea rmite
amplitude sound beam, (Rep. No. 73, Department of Mathematics,
University of Bergen, Bergen, 1983).

6. T. S. Hart and M. F. Hamilton, JASA 84 (1988) 1488.

7. T. H. Neighbors and L. Bjorne, A study of the KZK equation,
(Rep. No. 13, LIA, Technical University of Denmark, Lyngby,
1988).

8. H. J. Ruf, An acousto-optic investigation of focused untrasonic
fields, (Dissertation, Georgetown University, Washington, 1991).



Acousto-Optic Measurement of Pressure Profiles in Ultrasonic
Fields

Herbert J. Ruf

Physics Department, Georgetown University, Washington, DC 20057

A Charge-Coupled Device (CCD) detector is used in a Schlieren
imaging system to determine pressure profiles in an ultrasonic
field. The ultrasonic field studied is from a 1.10 Mhz line focus
transducer in water, operated in the Raman-Nath regime. The
Schlieren images are made using only the first diffraction orders.
Comparison of pressure profiles made with a conventional PVDF needle
hydrophone are used to demonstrate the usefulness of the Schlieren
imaging technique.

I N'rRODUCT ION

Schlieren imaging has been used for decades to produce photographs of ultra-
sonic fields and to investigate ultrasonic propagation through studies of the
diffraction patterns produced. Schlieren systems have been utilized by Haran
(1] to measure the total acoustic power in an ultrasonic beau and by Reibold
[2] to determine the pressure distribution in an ultrasonic field. The work
reported here demonstrates a method by which the axial pressure profile of a
line focus transducer can be measured. Advantages of this method lie in the
spatial resolution of the optical detector and in the fact that no mechanical
scanning is necessary.

THEORETICAL CONS I DERATIONS

In a Schlieren imaging system a collimated beam of light passes through a
region of varying refractive index. The portion of the light which is scat-
tered by the variation in refractive index forms an image of the index varia-
tions. In this paper the index variations are caused by the pressure gradient
induced in water by an ultrasonic field. The interaction of a progressive,
sinusoidal ultrasonic wave with a light beam of normal incidence was first
discussed by Raman and Nath [3]. The pressure gradient behaves as a phase
grating which produces a diffraction pattern where the intensity of light in
the nth order is given by

I+a = J82(0). (1)

in is the nth-order Bessel function and v is the Raman-Nath parameter, which
is proportional to pressure. If only the light from the !nth diffraction
orders is allowed to pass a spatial filter to form an image, then the light



intensity at each point of the image is proportional to It a in eq. (1).
Thus, in principle, given an image of an ultrasonic field, one can determine
the pressure field from which this image arose.

Since v is proportional to the pressure produced by an ultrasonic trans-
ducer, and the pressure is proportional to the excitation voltage applied to
the transducer, V, the image intensity is a function of V. By varying V, and
recording the intensity of any point in the Schlieren image as a function of
V. data will be acquired which will allow a determination of the v value at
this point, and therefore the pressure.

EXPERI.-NT

A Schlieren imaging system in a Z-configuration [41 consisting of a He-Ne
laser, a spherical mirror of 4m focal length as the focusing element, and a
spatial filter consisting of two rectangular slits which allows the ±1 dif-
fraction orders to pass, were used for this experiment. The optical detector
used in the image plane was a 2592-element, Fairchild linear CCD array, with
a lOnm distance between pixel centers. The active area of the CCD array is
2.54 cm and the Schlieren system was constructed so as to allow a 8.2 cm
region to be imaged by the CCD, resulting in a distance between pixels of
63iAi.

The ultrasonic sources were constructed with PZT-4A line focus crystals,
with a radius of curvature of 4.445 cm and a nominal resonant frequency of 330
kHz, the transducers were operated at the third harmonic at a frequency of
1.08 MHz. Two transducers were used, the first with a 30" arc and the second
with 60' arc. The Raman-Nath theory assumes a uniform acoustic field in the
direction of light propagation. This is not possible with a circular aperture
transducer, so line focus transducers were utilized giving a rectangular
cross-section to the acoustic field. The focused beau allowed for accurate
placement of the CCD array and of the needle hydrophones used for a conven-
tional pressure measurement comparison. Data were acquired over a range of 10
to 250 mv excitation voltage, nominally amplified by 50 dB, in 5 mV steps, all
acquisition was done by computer with a data acquisition time of 0.16 ms per
voltage step, all data were acquired within 20 minutes. Voltage was applied
for short durations at each step to limit heat generation by the transducers
and to reduce ultrasonic streaming.

ANALYSIS

A typical Intensity vs. V curve is shown in Fig. 1. Note that the intensity
values are the raw intensity values as measured from the CCD. Modeling these
data values with the expression,

I = C1 1
2 (C2V + C3), (2)

one may utilize a curve fitting procedure to determine the constants Cp, C2,
and C,. From these data the argument of the Bessel function, 9, can be calcu-
lated. Pressure can then be calculated from u using the relationship

P = (0.65u)/L, (3)

where P is pressure, L is the acoustic beam width that the light traverses.



The constant 0.65 in eq. (3) comes from an expression derived by Willard [5]
which depends on the frequencies of the light and the sound beam, as well as
the refractive index of the medium, water in this case. The beam width was
found by scanning the transducer along the direction of light propagation with
a needle hydrophone. The product of the ratio of the average to peak pres-
sure, with the transducer crystal width, yields L. These beau scans are shown
in Figs. 2 and 3 and demonstrate that there is no more than 2' of beau spread.

RESULTS AND CONCLUSIONS

Figures 4 and 5 compare the pressure profiles generated by the above procedure
with profiles generated using a needle hydrophone in a scanning tank. Dis-
crepancies between the optical and conventional profiles can be attributed to
two causes, 1) there is a certain amount of uncertainty in the conventional
scans due to possible uncertainty in the calibration of the hydrophones, and
2) Fig. 6 shows the effect of the presence of the hydrophone on the acoustic
field, resulting in elevated pressure values. There is also a periodic struc-
ture visible in the conventional data, in particular for the 300 transducer,
which is caused by standing waves between the transducer and the hydrophone.

Pressure profiles of line focus transducers were obtained using a nonin-
vasive optical technique and compared with pressure profiles obtained with
conventional hydrophone measurements. A pressure artifact, on the order of
5%, caused by the presence of the conventional hydrophone was demonstrated for
measurements made in the focal region. Otherwise overall agreement between
the two methods was found to be good.
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Sutary Page III

This section deals with the various advantages acousto-optic methods offer

for the investigation of sound fields, particularly sound fields which are

characterized by high amplitude and pulsed regimes. The main thrust of the

present grant was the investigation of focused ultrasound; however, one has to

realize that there are great differences between focused continuous waves and

pulsed waves, particularly, as far as the mathematical description of the events

is concerned.

Therefore, an investigation was undertaken to examine the possibilities

of using an optical analysis of finite-amplitude ultrasonic pulses, and the

feasibility of a spectral resolution of such pulses, using light diffraction by

ultrasound.

This section contains reprints of two papers dealing with this topic; the

author of the first paper, Dr. John Wolf, was supported by the Grant at the time.

He is now a scientist at the Naval Research Laboratory in Washington, DC.
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Spectral Filtering of Finite Amplitude Ultrasonic Pulses
by Plates. An Investigation Using Light Diffraction

J. W Wolf, T. H. Neighbors, Ill, W G. Mayer

Department of Physics, Georgetown University. Washington

dell verwendet. das auf der Burgersschen Gleichung zur
Spectrl Filtering of Fiite Amplitude Ultrasonic Beschreibung von Schallwellen endlicher Amplitude in
Pule by Plates. AN Investiatio. Usilng Light einem nichtlinearen Medium beruht. Die Theorien der
Diffraction Reflexion und Transmission von Ultraschallstrahlen an
SinmaM Platten in einer Flilssigkeit werden auf gepulste Strahlen
Finite amplitude ultrasonic pulses, reflected and trans- angewandt und in die Modelle fuir das Pulsspektrum. die
mitted from a brass plate, are optically examined lmpulsausbreitung und die Lichtbeugung eingebaut.
using fight diffraction produced by the ultrasonic sig- Durch Beispiele wird die selektive Filterung der Grund-
nal. Pulse Fourier spectra are derived which, when frequenz und der Harmonischen des Impulses durch An-
used for input to a light diffraction model, provide regung von Lamb- und Rayleighwellen in der Platte de-
quantitative agreement between experiment and the- monstriert.
ory. The spectra are used in a propagation model
based on Burgers' equation which describes finite am- Etude, par la diffraction de [a iuin•re,
plitude acoustic waves in a nonlinear medium. Theo- du filtrage spectral d'impulsions ultrasonores
ries of ultrasonic beam reflection and transmission d'ampfitude finie par des plaques solides
from plates immersed in a liquid are applied to pulsed Sommaire
beams and incorporated into the pulse spectrum, On a examine optiquement la lumi~re diffract& par le
propagation, and light diffraction models. Examples Ona examine optique tlanlmie par le
are presented which illustrate selective filtering of signal ultrasonore reflechi ou transmis par une plaque deharmnicfreuenc copo- laiton insonee par des impulsions acoustiques d'ampli-
pulse fundamental and harmonic frequency compo- tudes finies. Parallelement on a calcul6 les spectres de
nents by Lamb and Rayleigh mode excitation in a Fourier pour les impulsions et on les a utilises comme
plate. signaux d'entr&e dans un mod&le de diffraction acous-

tique de la lumi&e. obtenant ainsi un accord quantitatif
Spektrale Filterung von Ultraschallimpulsen entre calculs et experiences. Le mod&e propagatif utilise

endlicher Amplitude durch Platten, eine repose sur I'6quation de Burgers d&rivant la propaga-

Untersuchung mit Hilfe der Lichtbeugung tion d'ondes acoustiques d'amplitude finie dans un mi-
lieu non lineaire. Puis on a applique A des faisceaux

Zusammenfassung pulses les theories connues de la reflexion et de la trans-
Es werden Ultraschallimpulse endlicher Amplitude, die mission d'un faisceau d'ultrasons par une plaque immer-
von einer Messingplatte reflektiert und transmittiert wer- gee dans un liquide et on les a incorporees dans des
den mit Hilfe der vom Ultraschall hervorgerufenen Licht- modules composites englobant spectres d'impulsions,
beugung optisch untersucht. Hierzu werden Fourier- propagations et diffraction de la lumifre. Enfin on pre-
spektren von Impulsen abgeleitet, die, als Eingangsgr6l3e sente des exemples illustrant le filtrage sdlectif des com-
fiir ein Lichtbeugungsmodell benutzt eine quantitative posantes spectrales fondamentales et harmoniques des
Obereinstimmung zwischen Experiment und Theorie er- impulsions par les modes de Lamb et de Rayleigh excites
geben. Diese Spektren werden in emnem Ausbreitungsmo- dans ]a plaque.

Introduction Raman-Nath diffraction was successfully used to
probe continuous wave (CW) finite amplitude ultra-

Light diffraction has been used effectively as a tool for sonic beams [41. Ten years later the basic Raman-Nath
in-situ measurements of ultrasonic fields since the phe- theory was generalized to account for light sources
nomenon was first observed by Lucas and Biquard [11 with Gaussian intensity distributions [5] and the con-
and Debye and Sears [21, and explained by the Raman sideration of pulsed rather than CW ultrasound [6].
and Nath [31 theory in the 1930's. By the late 1950's, Motivated by experimental observations in the early

1980's [7], Raman-Nath diffraction theory was extend-

Received 30 May 1989, ed to account for arbitrary pulsed ultrasonic wave-
accepted 31 December 1989. forms [8].

Dr. J. W Wolf, T. H. Neighbors, III, Prof. W G. Mayer, Recently an experimental apparatus was developed
Ultrasonics Research Laboratory, Department of Physics, using a long optical path with which one can examine
Georgetown University, Washington. D.C. 20057 USA. a large variety of ultrasonic pulses [9]. The apparatus
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is first used to characterize transducer frequency re- distribution of the light diffraction pattern produced
sponse to CW excitation. The empirical results are by these pulses.
used with a computer algorithm to construct a model The sections that follow: (1) describe the experimen-
of pulse Fourier spectra as a function of pulse dura- tal apparatus; (2) summarize the relevant aspects of
tion, repetition and centre frequencies. The technique pulse modeling and light diffraction by pulsed ultra-
adequately models pulses at the transducer element in sound; (3) look at a model of high amplitude pulse
the liquid. Mayer and Neighbors (101 combined the propagation in nonlinear media; (4) review the theory
pulse light diffraction theory with a model of acoustic of pulse reflection and transmission from plates, (5)
wave propagation in nonlinear media [11]. In their demonstrate the use of the pulse propagation and
paper, they suggested the use of light diffraction for reflection models; and (6) provide observations of
estimating the magnitude of harmonic distortion in spectral filtering in experimental light diffrac!ion pat-
finite amplitude ultrasonic pulses. The distortion ap- terns. A more detailed description of the experimental
pears as asymmetries in theoretical pulse light diffrac- apparatus, procedures and theoretical models used for
tion pattern intensity distributions. The optical sys- this study can be found in the references [8-13].
tem was used to examine finite amplitude pulse
harmonic growth yielding results that agreed with the-
oretical predictions [12]. These preliminary studies Experimental apparatus
[9, 12] have shown the utility of the diffraction appara-
tus for characterizing ultrasonic pulses and examining The light diffraction apparatus can resolve light dif-
changes in the pulse spectrum due to medium nonlin- fraction patterns produced by pulses with repetition
earities. frequencies as low as 40 kHz [9]. The system uses

The present paper is concerned with the optical cylindrical lenses which produce a light beam of lin-
analysis of pulsed ultrasonic beams before and after ear cross section that interacts with a slice of the ultra-
reflection and transmission from a solid plate im- sonic beam along its symmetry axis. A transducer of
mersed in the liquid medium. A satisfactory theoreti- 2.2 cm diameter produces the ultrasonic beam which
cal description of ultrasonic beam reflection from is intersected normally by the light beam within a
plates was provided by Pitts, Plona and Mayer [13] water tank. The resulting diffraction pattern is mea-
where they analyzed the plane wave reflection coeffi- sured by a photomultiplier tube light detector. The
cient and revealed the conditions necessary for an signal input to the ultrasonic transducer is driven
ultrasonic beam to generate vibrational modes in the from the amplified output of a pulse function genera-
plate. tor. A computer operated data acquisition system

Assume a monochromatic ultrasonic beam is inci- controls the light detector and pulse function genera-
dent at some angle upon a plate while its amplitude tor.
is continuously monitored at a fixed location beyond
the reflecting surface and along the beam axis. If the
incidence angle is changed to a mode critical angle, Pulse model and light diffraction theory
measurement would show a decrease in the beam am-
plitude because part of the beam energy would no A model of ultrasonic pulse spectra at the source in
longer be geometrically reflected from the plate. If the the liquid is based on a measured ultrasonic amplitude
incident beam was polychromatic, such as a train of transfer as a function of frequency, r, (f); for this
ultrasonic pulses consisting of a discrete frequency study from a nominal 1 MHz transducer [9]. In the
spectrum, a measurement of the reflected beam would pulse mode, the function generator introduces ideal
show an amplitude decrease in those pulse frequency signals to the transducer which are characterized by
components that individually satisfy the conditions of pulse centre and repetition frequencies, f, and fp,
plate mode conversion. Correspondingly, a trans- respectively, and burst number, which is related to
mitted pulse train will contain those amplitude terms pulse duration. Theoretical pulse spectra are con-
that originated from the incident pulse spectrum and structed from a discrete convolution of the electronic
were removed from the reflected spectrum by mode signal amplitude spectrum with T, (f). The resulting
conversion. The plate acts as a frequency filter. From spectrum is used as input to the light diffraction
this description, it is obvious that, for a particular model and is expressed as a Fourier sine expansion
plate, the frequency spectra of the reflected and trans-
mitted pulse may be significantly different from the v (x, t) = v Y a. sin [n (wop t - kp x) + 0.], (1)
incident pulse Fourier spectrum. If monitored with a n=O

light beam, changes in pulse amplitude spectra could where co = 2 rtfp, kp = 2rt/ýP, ;.p = the pulse wave-
be directly measured from changes in the intensity length in the medium and v, the Raman-Nath param-
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eter [31, is proportional to the pulse peak amplitude.
The a. and (P. are, respectively, the amplitude and
phase of the nIh Fourier component of the pulse. The / A:
light intensity distribution as a function of diffraction
angle 9 is given by 181

1(9) = Y Im[sin(ksin3 - mkp)/(ksin.3 - mkp)]2 , i-i

(2) [ r 1

where: F.,=

12 2... exp [ir, (m) 0, + ... + r. 0. +..]2

V

r, (m) = m- 2r 2 - ... - nr. -

k = 2 ic/;., v. = v a., und J, is the Bessel function of Fig. 1. Geometry of the pulse-plate interaction.
order r. Eq. (2) represents a diffraction pattern which
exhibits distinct maxima when nent along the liquid-plate interface, with k, the inci-

sin 9, = + 2/. (3) dent wave number in the liquid. Pitts et al. [131 define

the plane wave reflection coefficient

Model of nonlinear pulse propagation R (Q = N/[F. FJ, (5)

with the definitions:

The pulse propagation theory is based on a modified Fý = [k.2 - 2 kO]2 [I - cos P1/sin P
form of Burgers' equation to describe acoustic wave

distortion due to medium nonlinearities. The model + 4 ký , Xd [1 - cos Q]/sin Q + i L k• xd/x,

expresses the incremental change of the nth harmonic F, = [k' - 2 k ]2 [1 + cos P]/sin P
component of the pulse particle velocity, U., by [111

+ 4k•Xd [1 + cos Q]/sin Q - i Q ks Xd/X,

U,,(x + dx) = U.(x) + (iP O/c2)[xJUJU._• N = [k - 2k] 4 + 16k4XX2 _-

+ 18[k2 -2k21 2 k2 XXd[l -cosPcosQ]/[sinPsinQ].+ S" n Uj U *_. ] - Lt2 U.1 dx (4) X
j:,+ J n d () = ko [(Co/C,)2 

- sin 2 0ji, Xd = ko [(Co/Cd) 2 
- sin2 Oi],

where: dx is the incremental distance, = 1 + (B/2 A) k = k0 cos i, P = DXd, Q = Dx, and e = e (liquid)/
the medium nonlinearity parameter, c the sound ve- o (solid), the ratio of the medium densities. The values
locity, a the medium attenuation coefficient and * in- c. and c, are the shear and compressional wave veloc-

dicates the complex conjugate. The use of this model ities of sound in the solid, respectively. The plane wave

will be demonstrated in a different section of this pa- transmission coefficient is given [13] by:
per. T(kQ)= f2iL k xd/x} {[k,2 - 2k ]2/sinP

+ 4 k2x. xd/sin Q}/[Fa F]. (6)

Theoretical pulse reflection and transmission With measured values for c, C,. Cd, g (liquid) and
from a plate Q (solid), the two coefficients reduce to functions of

f= c/2ntko, D and ei. Since the frequency, f, and
The geometry of the pulse-plate interaction is illus- plate thickness, D, are coupled in the expressions,
trated in Fig. 1. Within a liquid, an ultrasonic pulse is R (k.) and T(k.) reduce to functions of fD and ei.
incident at an angle ei upon a solid plate of thickness The subscripts, a and s, of the functions F in eqs. (5)
D. To describe the interaction, the monochromatic and (6) refer to the antisymmetric and symmetric vi-
formulism is applied to pulses by multiplying each of brational modes of the plate as defined in the refer-
the incident pulse spectral components by the appro- ences [14]. When either F, = 0 or F, = 0, the functions
priate reflection or transmission coefficient. The coeffi- R (kQ) and T(kQ) produce so-called pole-zero pairs
cients, R (k.) and T(k.), respectively, are complex which define the conditions giving rise to Lamb mode
functions of k. = k, sin 0i, the wave vector compo- conversion of the incident beam energy [131.
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Table I. Measured characteristics for %,ater.

C = 1.0 g Cm
3

80c = 1487.9 m s O"= 22 C) [15]
B A = 52 [16]
3E= '.j2 1'=2.5xl0- "Nps 2 m [17]

40' Table If. Measured characteristics for brass.

CL) =8.5gcm
3

-S c' -.2240.0 m s [181
2u" ca = 4781.0 m S18]

A, S- S2 A2 53 A3  A4

0 2 3 H2 M Fig. 2 shows a set of velocity dispersion curves of
fo -plate modes as a function of critical angles of inci-

dence and the product fD, calculated with the mea-

Fig. 2. Set of velocity dispersion curves for a brass plate in sured values listed in Table 11 for a brass plate im-
water with characteristic values listed in Tables I and If. mersed in water. The curves represent the solutions of

E, = 0 or F. = 0 for real k. and are labeled A,. S,. A,.
etc., to distinguish the antisymmetric and symmetric

1 0.4 plate modes of vibration. These curves serve as a guide

0 j ,for selective filtering of frequencies in pulse spectra.

/ 1': :' I:A sample run

-L .For demonstration, a theoretical pulse train is con-

. (structed with an initial peak amplitude uO = 3.0 cm/s,
[o = 2.0 MHz, f. = 125.0 kHz, and an exponential

SL. .... ,rise and decay time of 0.85 lIs. The pulse travels within
* the propagation model a distance of x = 50 cm in wa-

l. ter using medium parameters listed in Table I. The top

0 two sets of graphs in Fig. 3 show the normalized time

E L a, history and amplitude spectrum of the initial (a) and
propagated (b) pulse where one sees a significant

V" .(4 -amount of harmonic growth.The pulse is now assumed incident at e• = 30'

0 .i .upon a brass plate of thickness D = 1.69 mm. The
04 pulse centre frequency and plate thickness provide an

1* 0 fD value of 3.38 MHz mm which places the pulse
fundamental frequencies across the A, plate mode,
(see Fig. 2). Fig. 3 shows the resulting reflected (c) and

*' transmitted (d) pulse time histories and amplitude
I spectra. The incident pulse is highly distorted by re-

. .. flection since several frequency terms have been fil-

0s 8 0 0 tered from its spectrum including harmonics filtered by
Time - n - other plates modes, S2, A2, etc. Frequency terms from

the incident pulse spectrum which were filtered from

Fig. 3. Time history and Fourier amplitude spectrum of a the reflected wave appear in the transmitted pulse
pulse with f, = 2.0 MHz, fp = 125.0 kHz, exponential rise spectrum.
and decay time of 0.85 gs and u, = 3.0 cm/s: a) prior to prop- The dispersion curves of Fig. 2 indicate that the Ao
agation; b) after propagating 50 cm in water with medium
values listed in Table 1; c) reflected from a brass plate with
D = 1.69 cm at a Lamb mode critical angle of ej = 30"; and frequency bandpass for the plate. Fig. 4 illustrates the
d) transmitted from the plate. reflected (top) and transmitted (bottom) pulse result-
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beams is illustrated in Fig. 5 for the case of pulses ta)
1 ,. reflected and (bN transmitted from the plate. Once the

pulse-plate configuration is chosen, the data acquisi-
0 ,tion system digitizes the light diffraction pattern pro-

duced by the acoustooptic interaction.
Fig. 6 presents experimental light diffraction pat-

0 terns (left) and those predicted by the combined pulse
0.4 spectrum, propagation, reflection and light diffraction

_a, models (right). The initial pulse was produced b, a

nominal 1 MHz source and was modeled using r,11
0 T ¢ ..... and the values , = 132.2 kHz, Jo = 0.925 MHz. burst

number 2, output amplitude u =3.56cm s and

-1 0 . v = 1.45. The first light pattern set was produced by
the finite amplitude pulse. travelling 40 cm without

0ls 8 0 40 plate interaction. The difference in intensity between
Time n the second set of positive and negative satellite diffrac-

tion orders, +13', I114 and I+_,, (f= 1.719, 1.851
Fig. 4. Time history and Fourier amplitude spectrum of the and 1.983 MHz), is due to propagation-induced har-
finite amplitude pulse of Fig. 3 b reflected (top) and transmit- monic generatinn. It is this light intensity asymmetry
ted (bottom) from a brass plate at a Rayleigh mode critical from which one can estimate the level of harmonic
angle of 9 = 45

distortion in finite amplitude pulses [10. 12]. For
the other three light pattern sets, a brass plate was
mounted 11.5 cm from the source so that ultrasonic

Source a pulses are reflected from the plate into the light inter-
.- te action region while a total travel distance of 40 cm

"A •is maintained, (see Fig. 5 a). The plate thickness,
D 3.16 mm, and the pulse centre frequency,

Source 6 1 = 925.4 kHz yield an J'D = 2.923 MHz • mm. The

L -n Ream - light diffraction patterns result from incident angles of

ULtrosonic Bear, mi = 25-, 28", and 32- where the dominant pulse spec-
tral terms pass through the brass by excitation of the

plate's A, Lamb mode (see Fig. 2). Each pattern indi-
cates that a different spectral term has been filtered
from the incident pulse spectrum.

Fig. 5. Ultrasonic beam configuration for the two cases of Compare the top set of light patterns in Fig. 6 to the

beam reflection (Source a) and transmission (Source b) from bom the For set o 25g, reflectin in toduce

a plate. bottom three. For i• = 25°, reflection introduces an
intensity decrease in the I±6 diffraction orders which
corresponds to the n = 6 spectral term of the pulse

ing from the theoretical pulse of Fig. 3 incident upon (f = 793.2 kHz). Looking toward diffraction orders
the brass plate at 0. = 45ý' which excites a Rayleigh corresponding to pulse harmonics, one sees the I±13
type plate mode [131. The reflected pulse spectrum has has decreased to below the measurement threshold of
a greater percentage content of higher harmonics than the apparatus because a large contribution to its in-
the incident pulse. The transmitted pulse spectrum tensity is I_+6. The remaining orders, 114 and I+ 15
indicates that almost all higher harmonics within the continue to show asymmetry with respect to I, indi-
incident spectrum have been filtered by the plate. The cating harmonics are still present in the pulse spec-
transmitted pulse time history shows little indication, trum. The orders centred about 1o, that is 1±1, de-
except for dissipative losses, of finite amplitude distor- crease since the largest contribution to their intensity
tion and, essentially, only the initial pulse frequencies comes from the pulse spectral terms that were re-
are present. moved by the plate.

Since it has a positive slope, the A1 mode passes
upward through the pulse spectrum as the incident

Observation of spectral filtering by light diffraction angle is increased. In the pattern set for 0, = 280, the
light order corresponding to the pulse centre frequen-

The actual orientation of the ultrasonic source, plate, cy, 1, 7 (f = 925.4 kHz), has dropped almost an order
and light beam in the water tank for analysis of pulsed of magnitude in intensity causing the I ± 13, I±14 and
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1 '5 to decrease below the apparatus measurement wave (interacting with the plate only part of the time)
threshold. The remaining i , diffraction orders in the into a quasi-continuous wave. Through mode coner-
measured pattern, are caused by slit diffraction within sion, the plate continues ringing after the incident
the optical apparatus. In the set for 0, = 32. the n = 8 beam is not longer exciting it. thereby broadening the
pulse spectral term has been filtered by the plate, re- pulse train almost into a CW beam.
moving the ],, If = 1.058 MHz) and the 1 - 15 orders The apparatus was also used to illustrate selective
from the diffraction pattern, filtering of harmonics generated by finite amplitude

Fig. 7 compares the measured light patterns of ultrasound propagation as was done theoretically in
Fig. 6 produced by the reflected pulses (left) to mena- the sample run. Fig. 8 presents two measured diffrac-
sured patterns produced by the incident pulse trans- tion patterns produced by a transmitted pulsed beam.
mitted through the same plate at corresponding ei originally incident on the brass plate at a critical Ray-
(right), (see Fig. 5 b). In each of the three cases, the leigh mode angle of e, = 45 . The resulting light pat-
patterns indicate that spectral terms filtered by plate terns indicate that the fundamental spectral compo-
reflection appear in the transmitted pulse spectrum. nents of the pulse were transmitted through the plate.
The second light pattern set shows the transmitted In the top graph of Fig. 8, the intensity asymmetry of
spectrum describes an almost monochromatic ultra- the I + 13, 14 , and I, diffraction orders indicates
sonic beam where the plate has transformed a pulsed the presence of harmonics which result from the pulse

propagating an additional 28.2 cm beyond the plate to
the light beam.

To demonstrate harmonic filtering, the brass plate
was positioned closer to the light beam while keeping

1 the total pulse propagation distance the same. In the
bottom diffraction pattern of Fig. 8, one can see the

01 0.1 diffraction orders are symmetrical with respect to 1,

0.01 001" ti t,

ib _.1LL 1 0.01 6'IJ._

o 1- o i7 • i 1i

G012 O:1

4~.0 00 01 .2

iIi I

1 i

o0.11 01 I 01 01

0.010 1001 00 U

.1 . 001 0001 . . 0001 1

ii. o.o:, I i I i __ _ oooi ao

.01- 0.01 1 10 0 0.01 0001

001 001 001

-21 01z

0.00 1 0 MH -0 -0 0 1 0 0.001 OO1 0001
-2 - M z 2 -2 1 0 1 0-2 -1 0 'tMHz _2-0 -10 0 10 20

Frequency - Diffraction Order F •reuency ------ 0,ffroction Order

Fig. 6. Measured (left) and modelled (right) light diffraction Fig. 7. Measured light diffraction patterns produced by the
patterns produced by a finite amplitude pulse with total pulse-plate configuration of Fig. 6. The left patterns are of the
propagation x = 40 cm. The top pattern set is of the pulse reflected pulse and the right are of the transmitted pulse.
without a plate (a) and the others are reflected from a brass ei = 25 (a). 28 (b) and 32 (c).
plate at position x = 11.5 cm, with ej = 25' (b), 28 (c) and
32- (d).
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trum, propagation and light diffraction models. The

1 .complete model predicts pulsed ultrasonic beam spec-
tral filtering by plates immersed in liquids. which was
then verified experimentally with the light diffraction
apparatus. By examining its dispersion curve, it has
been shown that a solid plate can be used to filter

0.1 •selected frequencies of a pulse spectrum, such as indi-
I' vidual components or whole regions of the spectrum.

The results demonstrate the application of light dif-
I jfraction to analysis of ultrasonic pulses and their

.- interaction with both the propagation medium and
solid materials within it. The technique has the advan-

SItage of performing an effective spectral analysis of an
ultrasonic beam with a minimum of signal processing

0.001_ and virtually no measurable distortion of the ultra-
0.001 - -! sonic field.
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Optical analysis of finite-amplitude ultrasonic pulses
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Finite-amplitude pulses are examined acousto-optically using a newly developed light-
diffraction apparatus. Based on an optical analysis of ultrasonic transducer response to
continuous-wave excitation at and near the fundamental frequency, pulse Fourier spectra are
derived for input to a light-diffraction model, providing quantitative agreement between
experiment and theory. The diffraction theory predicts that a light-diffraction pattern
produced by a harmonically distorted acoustic pulse train will exhibit asymmetry in the
intensity distribution with respect to the zero order. To simulate harmonic distortion, pulse
frequency spectra are used for input to a computational model that is based on the Burgers'
equation for propagation of finite-amplitude acoustic waves in a nonlinear medium. The
spectrum, propagation, and light-diffraction models give a complete description of light
diffraction by finite-amplitude pulses and provide good agreement with experimentally
obtained diffraction patterns.

PACS numbers: 43.25.Zx

INTRODUCTION theory. The experimental observations provide an indirect

Since initial experimental observations of light diffrac- noninteractive technique for observing growth and decay of

tion by ultrasonic waves"' and the subsequent thcoictical harmonic components. Previous experimental observations

explanation of these observations by Raman and Nath' in by Zankel and Hiedemann," in examining the diffrac- ion

the 193s., light diffraction has been an effective tool for in patterns produced by initially monochromatic, finite ampli-

situ measurements of ultrasonic fields. In the late 1950s, Ra- tude ultrasound (for example, cw beams), showed that the

man-Nath diffraction was successfully used for the optical generation of harmonics ir the ultrasonic field produced an

probing of finite-amplitude continuous-wave propagation, asymmetry about the central diffraction order. The current

providing direct measurements of harmonic components.' experimental observations show the same trends for pulses

In the late 1960s the basic Raman-Nath theory was gen- and demonstrate the practical application of light diffraction

eralized to account for light sources with Gaussian intensity to analysis of ultrasonic pulsed fields in nonlinear media.

distributions' and the consideration of pulsed rather than The sections that follow (I) outline the experimental
monochromatic ultrasound.' Initial experimental observa- setup; (2) describe the procedure used to characterize the
mionoceromatc opulse prior to any significant effects of propagation based on
tions were made of light-diffraction patterns using pulsed transducer output characteristics and summarize the rel-

ultrasound,' and based on these observations, the Raman- evant aspects of pulsed ultrasound diffraction theory; and

Nath diffraction theory has been genei alized by Neighbors (3) introduce the finite-amplitude-pulse characteristics into

Inand thrp Mayer toaaccount foriarbitray utraosoc wavtef , this theory and illustrate the experimental observation of
In another paper, Mayer and Neighbors" proposed a tech- harmonic growth in finite-amplitude pulse propagation. A
nique for estimating harmonic generation in finfe-ampli- detailed description of the experimental apparatus and the
tude ultrasonic pulses by examining their light-diffraction pulsed ultrasound diffraction theory can be found in the ref-
patterns. erences.8 '_

Recently, an experimental apparatus has been devel-
oped using a long optical path which allows one to examine a
broad range of ultrasonic pulse waveforms. The results ob- I. EXPERIMENTAL APPARATUS

tained have validated the generalization of the Raman-Nath Figure 1 is a drawing of the light-diffraction apparatus
theory to arbitrary pulse shapes." The apparatus first ana- that uses He-Ne laser light with A = 632.8 nm and accom-
lyzes transducer response to continuous-wave-mode excita- modates a light beam with an object-to-image plane distance
tion (cw) that is used to predict the structure of pulse Four- of 7 m and width of 9 cm. A cylindrical lens diverges the
ier spectra as a function of their duration, repetition, and light beam in one dimension only, allowing all the laser light
center frequencies. The technique provides a quantitative to pass through the acoustic beam, ensuring proper normali-
agreement of the pulse diffraction theory with actual diffrac- zation of a diffraction pattern. The acousto-optic interaction
tion patterns. takes place within a channel of 4.5-cm width, bounded by

This paper presents a comparison of experimental dif- glass windows, allowing the light beam to intersect normal
"fraction patterns produced by finite-amplitude ultrasonic to the ultrasonic beam within the interaction vessel. The
"pulses with the predictions of pulsed ultrasound diffraction transducer is an air-backed mounted PZT crystal of 2.5 cm

in diameter. It is driven from the output of an rf power am-

"Permanent address: Falcon Associates, 6862 Elm St., McLean. VA 22101. plifier that receives an input signal from a computer-con-
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Spherical Mirror pattern at the screen with an order separation of 12 cm.
PhoS,.tec,, Light-intensity measurements are performed with a

- Photodetector

photomultiplier tube detector positioned at the screen. A
3omputer-controlled data-acquisition system rotates a flat

mirror, passing a diffraction pattern across a slit that opens
Laser onto the detector tube element. Possible random system

K fluctuations can influence the acquisition of data during a
"L 't. single pass of a light pattern. Therefore, the computer scans a

Cylindrical ,, single pattern three to five times, averages, normalizes to the
Lens

tn peak light intensity, and stores the data in a disk file. The one
Obje,-t computer fully manages experimental input, procedure, and
Planej output, which consists of digitized diffraction patterns.

nInage
Plan. ii . II. INITIAL PULSE ANALYSIS

The optical system is first used to model ultrasonic
pulses prior to any significant harmonic distortion by non-
linear propagation.'"t The construction of pulse spectra is
based on an empirical model of transducer response to cwIn texcitation. The data-acquisition system is programmed to

Flat Mirror

StMiosend monochromatic signals to the transducer, which results
Sph-ewal Mirr.r in Raman-Nath diffraction patterns. The experimental sys-

tem digitizes light patterns of m diffraction orders and con-
verts their relative intensities 1,, into values of the Raman-

FIG. I. Schematic of experimental system, approximately to scale. Nath parameter v by the expression'

I, = [j (V)]-2(1

where J,, is the Bessel function of order m. The value of v is
trolled pulse function generator. Acoustic absorbing rubber proportional to the acoustic output amplitude of the trans-
is placed at the end of the channel to prevent reflections, ducer, that is its response. While keeping amplitude of the
permitting only progressive ultrasonic waves to interact electronic signal input to the transducer constant, the data-
with the light. Beyond the interaction vessel a second cylin- acquisition and control system increments the frequency f
drical lens collimates the diffracted light emerging from the and determines v(f) across the nominal bandwidth of the
image plane into separate beams. The resolution of the sys- transducer. The resulting transducer amplitude response as
tem is such that a cw beam of 1 MHz produces a diffraction a normalized function off is shown in Fig. 2.

The function generator introduces ideal electronic sig-
nals to the transducer system that are characterized by burst
number (a positive integer describing pulse width), and

1.0 _pulse center and repetition frequenciesfo andf,, respective-
V _ ly. Figure 3(a) illustrates the ideal pulse time history along

with its Fourier amplitude spectrum forfo = 0.988 MHz,f,
S0.8 = 66.0 kHz, and burst number 5.

A model of the pulse train at the source within the liquid
is-constructed by a discrete convolution of the ideal pulse

0.6 amplitude spectrum with the transfer function of Fig. 2.

Since light diffraction by cw ultrasonic beams yields no in-

S0.4 formation relating to pulse-phase spectra, the convolved am-
plitude spectrum is combined with the original ideal phase

spectrum, which assumes that no phase distortion is intro-
,0. duced to the amplitude spectrum by the transducer system.
o.2- The resulting pulse time history and convolved amplitude

spectrum are shown in Fig. 3(b).
The validity of the pulse model is demonstrated by using

it for input to the light-diffraction model' and comparing the
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 predicted diffraction pattern to the measured diffraction

Frequency (MHz) pattern produced by the actual pulse train in the liquid. For
the theoretical prediction by the model, v is now considered

FIG. 2. Optically measured response function of a nominal I-MHz trans- proportional to the pulse peak amplitude. The input for the
ducer, normalized to the peak output amplitude, model is expressed as a Fourier sine expansion:
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where w, = 26rfp, kp = 2 bu/rt p, andp = the pulse length in

the medium. The a,, and r i,, are, respectively, the amplitude

and phase of the nth Fourier component of the pulse. The III. NONLINEAR PULSE PROPAGATION

farfield light intensity distribution as a function of diffrac- Mayer and Neighbors' calculate nonlinear propagationtion angle 0 is given by of pulses with a model presented by Haran and Cook.pe

I(() I ,sin(ainO-mkp)± (•) Based on Burgers'equation, the modeldescribes wave pro-

I ) 1,,- . . . . . 3

S (k sin 0 - mkp) file distortion as the pulse propagates along the x direction,
with k iu Tra, including arbitrary frequency-dependent attenuation and

harmonic generation. The one-dimensional Burgers' equa-
tion expresses the diffaerential change of the nth harmonic

I,= I cc ~ �" J'(,. ... J,,(v,)'" component of the particle velocity U:

2 dx - - -M , (7)
where c is the small signal-sound velocity, r = t - (x/c) is
the retarded time, a the medium attenuation coefficient, and

v, =va., and r, (m) = m - 2r2 -.... nr, - .= 1 + (B /2A ) is the nonlinearity parameter. Expanding
Equation (3) represents a set of discrete diffraction or- U in a Taylor series and combining terms up to first order

ders each with an individual distribution described by the with Eq. (7), Cook and Haran derive
[sin XI/X] 2 term which is maximum when [.L6W

sinm = +m2/,;. (5) U. (x+dx) = U" (x) + [(-2j ,UnUý-J

For small pulse amplitudes, Eq. (4) reduces to I f 1, and ,ud (
I(va,)2. + n UJ.U )an 2U] dx. (8)

I± n C--4j-n+jI

Equations (5) and (6) relate the dominant terms of the Equation (8) gives the incremental change of an acoustic
* pulse amplitude spectrum directly to individual diffraction wave's spectral components, where dx is the incremental

orders. For values ofv < 2, Eq. (6) provides a direct estimate distance and * refers to the complex conjugate.
of a, from the measured intensity I,. Figure 4 shows the As input, the propagation model is given a pulse spec-

' digitized pattern and resulting prediction of the pulse spec- trum, modeled with an exponential rise and decay, along
trum and light-diffraction models where good agreement is with a set of medium constants and initial conditions. The
seen in all parts of the light pattern, pulse hasfo = 2.0 MHzf, = 125.0 kHz, and a rise and de-
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0 0 o 4 TABLE 11. Measured characteristics for water.

- c = 1487.9 rn/s (T = 22' C)
I B/A 5.2"

a = aT, a' 2.5 .10 " Nps'/m'

00 'H. Medwin, 1. Acoust. Soc. Am. 58. 1318 (1975).

0 . 'H A Kashkooh, P. J. Dolan, Jr., and C. W. Smith, J. Acoust. Soc. Am. 82.

2086 (1987).
I ,J. M. M. Pinkerton, Nature 160, 128 (1947).

0 pulse. Zankel and Hiedemann reference an expression'2 that
- , ,relates u, to v and the width of the ultrasonic beam, D. From

Schlieren images, a D is estimated and provides u,, = 3.12
V 'cm/s for the pulse shown in Fig. 3. The optical beam, of 9-cm

0 .-. ............ - width, is assumed to sample the ultrasonic field at x = 4.5

,; cm, the distance from the transducer face to the midpoint of

0.o the sound path through the light-ultrasound interaction re-
,I ,_5 gio n .

[ 014 The Schlieren method of estimating D is acceptable near

0 ' [ " .,- the ultrasonic source, but elsewhere is not accurate due to
. ,beam divergence. However, the beamwidth is considered by

-t . tage P to the transducer system. These two points are sum-

marized in the relation
[oso ioa u,--rl, (9)

0 kS 0 64 Uo 9
where r is an experimental constant determined from initial
conditions.

FIG. 5. A finite amplitude pulse off,, = 2 MHz,f, = 125 kHz, and an expo- As an example, the pulse of Fig. 3 is propagated while

nential rise and decay time of 0.85 /is. Medium parameters are a ý af
2
, keeping v constant for x > 4.5 cm. Appropriate values of u,,

a' = 1.9 x 10 '4 Np s"/m, B/A = 5.5, c = 1492 m/s, and initial amplitude

u. = 3 cm/s. are extrapolated from initial pulse parameters using Eq. (9)
and listed in Table I. The medium constants used for water
are given in Table II. The pulse spectrum and the values of
Tables I and II are used for input to the propagation model.

cay time of 0.85 /ts. The medium constants used for this The predicted pulse amplitude spectrum shown in Fig. 6
example are B/1A = 5.5, c = 1492 m/s, and a quadratic fre- illustrates the expected harmonic growth at 10, 20, 30, and
quency dependent attenuation, a = af 2, where a' 40 cm from the transducer.
= 1.9 X 10 - t14 Np s2/m. The initial condition consists of a 3 The level of harmonic distortion shown in Fig. 6 is small

cm/s peak particle velocity u,. Figure 5 illustrates the model compared to the example of Fig. 5 since the total propaga-

output, with the pulse time history and amplitude spectrum, tion distance is smaller. This low level of distortion presents

normalized to uo, at four points of propagation. This illus- no problem for this investigation due to the diffraction pat-

trates the expected harmonic generation and the associated tern's extreme sensitivity to pulse shape. The propagated

shock-front formation in each cycle of the pulse. Also indi- pulse spectra are used for input to the diffraction model for

cated is the overall decrease of the pulse amplitude by at- comparison to actual light patterns.

tenuation. Experimental pulse propagation is performed with the

To compare the model to an actual case of pulse propa- optical system by positioning the transducer, within the in-

gation, an initial particle velocity uo must be assigned to the teraction vessel, at selected distances away from the axis of
the collimated light beam. Once the transducer is fixed at the
desired distance, the data-acquisition system performs the
experiment and stores the resulting digitized diffraction pat-

TABLE I. Peak amplitude values for the pulse of Fig. 3 extrapolated from tern. The measured patterns and the diffraction model out-
known parameters at x = 4.5 cm using Eq. (9). put are shown in Fig. 7.

x (cm) (b (mV) v U. (cm/s) Analogous to the results of Zankel and Hiedemann4 for
cw ultrasonic beams, the asymmetry of the diffraction orders

4.5 81.6 1.60 3.12 about I, can be seen in both the measured and modeled pulse
10.0 69.6 1.35 2.25 light patterns. The growth of the first set of pulse harmonics
20.0 76.4 1.35 2.46 is indicated in the diffraction orders about 12 MHz (128),

30.0 88.4 1.35 2.85
40.0 101.9 1.35 3.29 which, due to a phase shift, appears as a decrease in the

___ diffraction orders about I L 2 MHz (1- 28 ).
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0.5 X TABLE Ill. Peak amplitude values for a pulse of f, = 122.0 kHz,

0.987 MHz, and burst number 3.

r x (cm) P (mV) 1, u0 (cm/s)

40.0 73.4 0.81 1.80
40.0 100.0 1.11 2.46
40.0 126.7 1.41 3.12

0.0 .... .. ..

0.5
- l

As another example, a pulse of different spectral contcnt
M' is propagated and analyzed optically. The pulse is sampled

repeatedly at x = 40 cm; however, in this case the initial
amplitude Uo is varied. Since the same ultrasonic source is

0.0 . used, a pulse spectrum is generated using the response curve
0o. 5 :.0u of Fig. 2, but with valuesfp = 122.0 kHz,f, = 0.987 MHz,

and burst number 3. The constants of Table II are used with
values for Uo and v summarized in Table Ill.

I0 , The combined output of the propagation and diffraction
I! models are compared to measured light patterns in Fig. 8.

The harmonic distortion increases with initial pulse ampli-
0.0 tude as predicted by theory. This set of diffraction patterns
o.s illustrates the decrease of the original amplitude terms due

x : ,ic ,.to the transfer of their energy to the first set of pulse harmon-
ics. Both examples illustrate good agreement between mea-
surement and theory, as well as the sensitivity of optical
analysis to even subtle harmonic distortions of pulsed ultra-

I sonic fields.
0.0 . . . . J • . . . . . .0o 10o 0t :o 40 IV. CONCLUSIONS

D The results presented here demonstrate the applicability
of light diffraction to an analysis of ultrasonic pulses in a

FIG. 6. Pulse spectrum of Fig. 3 at four stages of propagation for u,, and onlinea dium. th the pulse id b

medium constants as listed in Tables I and 11. nonlinear medium. With the pulse modeling provided by
preliminary diffraction studies, a pulse spectrum has been
constructed for input to the propagation model of Haran and

I
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FIG. 7. Measured (left) and modeled (right) light-diffraction patterns pro- FIG. 8. Measured (left) and modeled (right) light-diffraction patterns for
duced by the pulsed beam spectra of Fig. 6 each with v = 1.35. medium constants and pulse values as listed in Tables 11 and 111.
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