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Preface

1t is probably true quite generally that in the history of human thinking
the most fruitful developments frequently take place at those points
where two different lines of thought meet. Hence, if they actually meet,
that is, if they are at least so much related to each other that a real
interaction can take place, then one may hope that new and interesting
developments may follow.

Werner Heisenberg

This volume contains papers presented at the July 1991 NATO Advanced
Study Institute Probabilistic and Stochastic Methods in Analysis with Appli-
cations. The conference was held at the beautiful Il Ciocco resort near Lucca,
in the glorious Tuscany region of northern ltaly. The dynamic interaction
between world-renowned scientists from the usually disparate communities
of pure mathematicians and applied scientists, which occurred at our 1989
ASI, Fourier Analysis and its Applications, continued at this meeting.

Probability has been an important part of mathematics for more than
three centuries. Moreover, its importance has grown in recent decades with
continuing increases in computational power. Faster and more powerful dig-
ital computers, now readily available to almost all scientists, have enabled
them to use probabilistic and stochastic techniques to attack real-world prob-
lems not considered feasible only a few years ago. This approach has been
used in such engineering areas as: speech and image processing, including
the recent approaches employing wavelets, geophysical exploration, radar,
sonar, etc.—and was a major focus of our ASI.

Among the papers to be found herein on these subjects are three ex-
ceptionally clear expositions on wavelets, frames, and their applications by
John Benedetto, Stéphane Jaffard, and Stéphane Mallat; an illuminating de-
scription of holography and other image processing techniques by Walter
Schempp; and interesting works on sampling theory and methods by Charly
Grochenig, Bill Heller, Christian Houdré, Keh-Shin Lii, and Tapan Sarkar.

Part of the conference was devoted to the connections between proba-
bility and partial differential equations, an area of extremely active current
research. The reader will see how these fields have united, yielding new
insight into known analytic facts, such as probabilistic representations of
solutions to elliptic and parabolic PDE’s.  Furthermore, this unification is
providing both new and simplified approaches to classical problems in prob-
ability, such as the PDE method for large deviation problems. Highlights
of this section of the proceedings are in-depth introductions to stochastic
optimal control and filtering theory—both new research fields of particular

vii
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interest for applications, presented by two recognized experts, Piermarco
Cannarsa and Gopinath Kallianpur.

Another part of the conference dealt with the application of probabilis-
tic techniques to mathematical analysis. The lovely paper by Jean-Pierre
Kahane, a true pioneer in this field, is a standout among the many wonder-
ful works in this volume. Babar Saffari, describing the use of probability
methods in Fourier analysis, presents a very complex subject with excep-
tional clarity.

Finally, there are several papers which are difficult to categorize but
a joy to read. Two such are Gavin Brown’s clear explanation of normal
numbers and dynamical systems, and Don Newman’s thought-provoking
foray into those aspects of probability which have a protound intluence upon
our daily lives.

The cooperation of many individuals and organizations was required
in order to make the conference the success that it was. The financial sponsors
are listed on the ‘Acknowledgements’ page. In addition, I wish to express
my sincere appreciation to my assistants, Marcia and jennifer Byrnes and
Nicole Conte, for their invaluable aid. I am also graieful to Kathryn Ha
greaves and Karl Berry, our TgXnicians, for the:r superiative work ¢n »ff
printed and emailed aspects of the conference, trom the initial application
to this volume Their extraordinary ctfort in Tp¥ing these proceedinga, -
sulting in one of the few NATO proceedings whoere all papers are identioe’
typeset, deserves special acclamation. Finally, my hearttelt thankes to the li
Ciocco staft, especially Bruno Giannasy and Alberte safiredini, for oftering
an ideal setting, not to mention the magniticend meals, that prometed i
productive interaction between the participants ot tie vonierence. Ail o e
above. the other speakers, and the remaining conterves. made it possibie 1or
our Advanced Study Institute, and this volume, to tultili the stated NATC
objectives ot disseminating advanced knowledge ancd o tering interanoe !
scientific contacts.

December 25, 1991 O A R AN I SR TN
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Wavelets and analysis of partial differential equations

Stéphane Jaftard

CERMA,

Ecole Nationale des Ponts et Chaussées

La Courtine, 93167 Noisy-le-grand  France
sj@antigone.enpc.fr

£

& We describe the main properties of decompositions in orthonormal bases
of wavelets. We then apply them to the theoretical and numerical study of
some partial differential equations.

1. Introduction

In the seventies and the eighties, alternative methods to Fourier analysis
appeared independenily in many fields of science and technology. Let us
mention oil detection, analysis of speech, quantum mechanics, image analy-
sis, analysis of turbulent flows, multigrid methods, the theory of interpola-
tion between functional spaces, the propagation of singularities of nonlinear
partial differential equations PDE’s, etc.

Wavelets comprise a mathematical tool which lies behind these new
methods. We have two purposes in this paper. We give a survey of the
construction of wavelets and related orthonormal bases, and we also show
how certain specific properties of wavelets make them an important tool
in the theoretical and numerical study of PDE’s. We also give at the end a
large bibliography.

2. Localization in the phase space

The mathematical evolution that led to wavelets and related constructions
can be interpreted as the construction of successive bases of functions with
the following aim: the decomposition on these bases yields the sharpest
possible information on the time and frequency behavior of the analysed
signal or function.

Such constructions are important in signal analysis (a recording of
speech or music clearly contains localized parts which have a specific fre-
quency), in quantum mechanics (to study probability waves) or in the study
of partial differential operators.

3
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The first step was obtained by the Fourier series. The two main draw-
backs of Fourier analysis are that it is not local and that it is difficult to use
when dealing with other spaces than L2 or the Sobolev spaces H*.

The problem of having a stable decomposition for other spaces than L.
led Alfred Haar to the so-called Haar system constructed as follows.

Let ¢ be the characteristic function of [0, 1/2), and { = d(x)—p(x—1/2).
The collection of all the ¥; « (j € Z, k £ Z), defined by

Vi (x) = 2129 (2x — k)

forms an orthonormal basis of L2(R), and the decomposition makes sense
also in the [V spaces. The drawback is that the decomposition on this system
does not give sharp frequency information, since the function y» does not
have a good frequency localization. Wavelets provide a way to avoid this.
Before describing the constructions of wavelet and wavelet-type bases,
let us give some general results on “doubly-localized” orthonormal bases.
T. Steger proved [3] that L2 does not admit a basis of the following form

ibix

filx) = e *g;(x — a;)

where the a; would be such that sup || g ||c< oo, for an ¢ > 0, where
oy 2= [0+ Tata) 2 e [(1+ €20 Fate 1 e

The optimal result was obtained by J. Bourgain who found a basis where this
estimate holds with € = 0 (see [3]).

Actually, if we accept to mix in the same function positive and negative
frequencies of the same value, this obstruction no more stands, and there
exists an orthonormal basis of L?(R) of the following form (see [9])

w@,u(X] = Cb(x - n-)
Winlx) = V2&(x - 3)cos(2nlx)if L £0,1 + n e 2Z
= V2¢(x ~ §)sin(27n0x)if L £0,L+n € 2Z + 1,
where ¢ and ¢ have exponential decay.
The fact that we do not try to separate positive and negative frequencies
of the same amplitude means, in the signal analysis terminology, that we
study the real signal, and not the corresponding analytical signal.

Independently, H. Malvar (see [25]) obtained a basis of the following
similar form

Uk, =w(x — Usin[n(k + 3)(x - U],

where w is compactly supported.
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R. Coifman and Y. Meyer generalized this construction into the com-
pletely adaptative form that follows (see {4})

U1 = \/L%wl(x]sin [ﬂ(k + %)X [ Ql}
1
where q, is an increasing sequence of real numbers such that a; — +co when
| = +ooand a; — —oo when | — —o0; L| = a1 — a; and wy is compactly
supported, essentially on the interval [ai, ai, 1.
More precisely, let €| satisfy a; + €; < a;,1 — €1, 1. Then one chooses
wy such that

= 05 wif{x) €1,

= wi(x) =lon[ag +€,ai1— €l

» wi(x) = 0 outside [ay —er,ai, 1 + €141,

o if x ¢ [ay - €, ar+€], wi(x) =wi_y(2a; ~x)and wf(x)+w{;1(x) =]

Notice that in order to compute the coefficients of a function on such
a basis, we need to perform a pointwise multiplication, and then to com-
pute Fourier coefficients. Clearly, the whole decomposition is obtained in
O(Nlog(N}) operations. ‘

We have here a huge collection of orthonormal bases, roughly speaking,
as many as the possible partitions of 9 by segments of arbitrary length. This
richness will be used for data compression: for a given signal, we want to
determine a basis on which the signal has the “smallest” decomposition. For
that, we need an algorithm which allows us to go easily from one basis to
another. Let us describe the following recipe due to V. Wickerhauser ([S]).

Let A be the space spanned by the (u (}cz (which are the functions
corresponding to a given window). The space A = A U A, has exactly
the same structure as a space A.,, with a window between a; and a;, », and
a function w which is

wit) = \ﬂv—fﬂl—ﬁhw%,,ﬁ

Hence, we can replace two adjacent windows by a larger one without chang-
ing anything else.

The algorithm of representation of a function is the following: for a
given f, we start by its decomposition using small windows all of the same
width, and we merge two such windows, when there is an advantage in
doing so. We iterate this procedure as long as needed, and obtain at the end
a segmentation adapted to the signal. We still have to choose a criterion for
deciding when we merge two windows together. The one chosen is given
by a kind of “entropy minimization”.
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(

Suppose we have a familly of orthonormal bases ei‘"" (t). For each «

the signal f is decomposed on the corresponding orthonormal basis by

flt) =Y ci*ef™ (1)
i
and we want to minimize the entropy

Ele) — _ Z lcga)

)]

2
log

(o)
o

At each step, we calculate the entropy for the two windows and for the large
one, and we merge the windows if the corresponding entropy decreases.

3. Construction of wavelets and wavelet packets

3.1. Multiresolution analysis

We shall now describe another collection of bases, which are a generalization
of the classical wavelets, and will also supply a family of orthonormal bases
for which the same entropy minimization algorithms are used. But let us
first recall the construction of wavelets by a multiresolution analysis and the
fast wavelet decomposition, both introduced by S. Mallat (see [24]). We shall
stick to the dimension 1 for the sake of simplicity. A multiresolution analysis
is an increasing sequence (V;);cz of closed subspaces of [.2 such that

= 1V =1{0]

« JVjis densein L?

e f(x) € Vi & f(2x) € Vi! 1

e flx) e Vo fix+1)e Vo

« There is a function g in Vo such that the g(x — k)kez form a Riesz basis
of Vo.

We also require g to be smooth and well localized.

A simple example of multiresolution analysis is obtained by taking for
V; the space of continuous and piecewise linear functions on the intervals
k279, (k + 1)277], j,k € Z. A possible choice for g is the “hat” function,
which is the function of V, taking the value 1 for x = 0 and vanishing at the
other integers. It is easy to orthonormalise the set g(x — k) by choosing

(&) = 9(8) (Y lgle+ 2kn)lz)~‘/2

Then, the ¢(x — k) form an orthonormal basis of V.
Define Wj as the orthogonal complement of V;in V;,,. One imme-
diately checks that the W; are mutually orthogonal, and their direct sum is
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equal to L2. By a similar procedure which led to the construction of ¢, we

can obtain a function 1y such that the {(x — k) form an orthonormal basis of

W.. Since the Wj are obtained from each other by dilation, and are mutually

orthogonal, the functions 2i/24(2)x ~ k) form an orthonormal basis of L%(3).
Let us now come back to the orthogonal decomposition

vo=v_,@w_,. (3.1)

We have two orthonormal bases of V,: the first one is the vZ{{(2x—k}, k € Z,
and the second one is the union of the ¢{x — k) and ¥ (x — k).

The existence of two bases implies the existence of an isometry mapping
the coordinates in the first basis on the coordinates in the second basis. Let
us describe more precisely this isometry. Let h, and gi be

hy = %J o(x/2)é(x — k)dx

Qk———i

Let f € Vo and let us write its decomposition on the two bases of Vo given
by (3.1).

fix) =) _clolx—k)

! jw(x/zub(x- K)dx.

and, similarly
dl =25 ) chok-n
k

Suppose now that a signal is given by a sequence of discrete values ¢. We can
consider that it is the coefficients of a function of Vo on the ¢(x—k). Theisom-
etry transforming the sequence cﬁ into (CL, d,‘() can be written F = (Fo,Fy)
where Fo and Fy are commuting with even translations: they are discrete
convolutions where we only keep each other term. In the terminology of
signal analysis, Fo and F are said to be quadrature mirror filters. This notion

Wavelets and analysis of partial differential equations '}
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x }

has been introduced in 1977 by D. Esteban and C. Galand for improving the
quality of digital transmission of sound. Iterating | j | —1 times the filter Fo
and then applying once the filter Fy, we obtain the coefficients on the ;i
for j € 0. Each level requires only a discrete convolution. This algorithm
constitutes the fast wavelet transform (see [24]). Of course the decision to
apply Fo n times and F, once is rather arbitrary, and we could decide to ran-
domly apply Fo and Fy a certain number of times. This idea leads to wavelet
packets which are a family of orthonormal bases of L% corresponding to all
the “admissible” ways of applying these filters.

Let us come back to our initial problem of finding bases well localized
in phase space. The adaptative Fourier windows and the wavelet packets do
not give a satisfactory answer to this problem. Itis therefore remarkable that,
though they do not have this type of localization, they provide very efficient
data compression algorithms. But the problem of finding an adaptative
algorithm which gives good localization in phase space is still open (by
good, we mean comparable to the localization of any of the commonly
used wavelet bases). Because of this lack of localization, up to now only
the “classical wavelets” have been used to study operators and PDE’s, and
therefore, only these bases will appear in the following.

4. Analysis of partial differential equations

4.1. Wavelet method for elliptic problems

Consider an elliptic problem, such as the Poisson problem, on a bounded
domain. Let us first recall some properties of its resolution by Galerkin
methods based on finite elements or of finite differences.

One of the main difficulties in these methods is that, once the prob-
lem has been properly discretized, one has to solve a system which is ill-
conditioned. Typically, for a second order elliptic problem in two dimen-
sions, one obtains a matrix M such that

k = [[MI[ IM™1| = O(1/h?%)

where h is the size of the discretization (see [28]). Such ill-conditioning has
two drawbacks; itleads to numerical instabilities and to slow convergence for
iterative resolution algorithms. In order to avoid this problem, one usually
uses a preconditioning, which amounts to finding an easily invertible matrix
D such that D-'MD~! (or D~'M, depending on the method used) will
have a better condition number «. For the example we considered, the
usual preconditioning methods on general domains (SSOR or DKR on a
conjugate gradient method, for instance) make « become O(1/h). We shall
give a wavelet method for which « = O(1) (see[13]). This result requires
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the construction of wavelets adapted to the domain € (see [17]); they are an
orthonormal basis of L2(Q) composed of functions ;i (i > 0) such that

| 3%W; k(x) [< C27%2" 2 exp(~y2' | x k27 ))

for | a |[< 2m — 2, and a positive y.

The decay estimates show that {s; « and its partial derivatives are es-
sentially centered around k2~/ with a width 277. In the following, wavelets
will be indexed by A = k273,

Actually, though these wavelets are not the same as in the case O = R",
they are “almost” the same; that is, numerically, only the wavelets that are
close to the boundary are modified. Thus, we can essentially keep the fast
decomposition algorithms, with only small modifications near the boundary.

Let us now describe the method of resolution for the Poisson equation.
It is performed by a standard Galerkin method, keeping all the wavelets
up to a frequency Jo. If we solve a Laplacian on a domain with Dirichlet
boundary conditions, we have to invert a matrix

(Maa) = ({(Tda | TUa)).

We now renormalize the wavelets for the Sobolev H' norm, that is we
consider that the functions on which the problem is discretized are the

Yy = 27,
The condition number of the corresponding matrix is then bounded inde-
pendently of the size discretization h = 2~'*. Thus, a conjugate gradient

method will converge in a bounded number of steps, no matter how precise
we require the solution to be. We shall explain this result in the next part
by comparing it with multigrid algorithms. Let us also mention that, if we
use smooth wavelets, the order of accuracy of the method is extremely good
since it is driven by the local regularity of the problem (as opposed to spectral
methods, for instance).

4.2. Wavelet and multigrid algorithms

A conjugate gradient method converges slowly when the condition number
is large. Actually, the convergence is rather fast on the subspaces corre-
sponding to the largest eigenvalues, but slow for the small eigenvalues. For
an elliptic problem, small eigenvalues are associated to smooth, slowly oscil-
lating functions (i.e., to wavelets indexed by a small j), and large eigenvalues
to high frequency functions (i.e., to wavelets indexed by a large j).

Roughly speaking, in a multigrid method, one starts by making a
few steps of conjugate gradient, until the high frequency component of
the solution is well approximated; the error is then a comparatively low
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frequency function, which can thus be accurately calculated on a grid with
a double-size mesh. The resolution on the larger grid is performed again by
the same method, and one iterates this procedure. The part of the solution
which has frequencies around 2! is thus calculated on the grid of size 271
This is precisely what is performed on the wavelet method we described.
The splitting on functions defined on meshes of differentsizes (which is done
in multigrid algorithms) is also performed by the wavelet decomposition.
The essential difference is the following: it is the decomposition on wavelets
and the recomposition which is iterative (by the fast algorithms described
in section 2.2), but the resolution is just done once by a conjugate gradient.
Actually, when the function is written in its wavelet decomposition

f= ZZ Cialix,
ik

each block 3, C;.«Wj.« has its frequencies around 2, so that the purpose
of the renormalisation that we make (multiply the terms of this block by
277) is to bring all the eigenvalues ot the matrix M close together so that a
conjugate gradient will converge fast. The multigrid method just works the
other way round: the iterative decomposition according to the frequencies
is performed during the resolution.

4.3. Analysis of singular operators

Let us mention a recent extension of the ideas developed in Section 4.1 to
obtain estimates of the Green function of some singular elliptic operators
(see [12)). Consider the following operator

Alu) = -V{aVu) +u

where the function a is positive, smooth, but may vanish. Suppose further-
more that a has a zero of order larger than 2 where it vanishes. Then the
following estimates on the Green function of A and its derivatives hold

C
| x —y |n-2tlalripl sup| fa(x)aly),ix —y |2)'

This is obtained, as in the case of elliptic operators, by showing that A
and A~ are “almost diagonal” in a wavelet basis.

| 029%G(x,y) i<

Xy

5. Nonlinear evolution equations

The numerical study of nonlinear evolution equations is a field where
wavelets should be very useful. The solutions of these equations often
have singularities which then propagate (even when the initial value is
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smooth). The local analysis of the regularity performed by wavelets and
their properties of local approximation (see [16, 15]) can give ground to a
justification of this hope. Several numerical experiments have been done
for the one-dimensional Burgers equation (see for instance [11, 21, 22]). A
recent extension to Korteweg de Vries equation has also been implemented
([18]). Consider the following Burgers equation to which is added a small
viscosity term

The methods used all consist of a finite difference discretization in time and
a wavelet decomposition in space. A possible scheme is the following

2
Unbl _un +u“aun :ea Un‘
At ox 9x?
where U, represents the solution at the time nAt. Here the nonlinear term
is treated explicitely, but the viscosity term appears implicitely. Knowing
U, by its wavelets coefficients, we want to calculate U, ;. In order to
compute the wavelet coefficients of the nonlinear term U, 9(%“, we can either
compute the values of U, and %s on a regular grid (using the Fast Wavelet
Transform) or try to obtain more or less explicit formulas for the wavelet
coefficients of such products (this last issue is now studied). The choice of
an implicit algorithm obliges us to compute {Id — eAté‘l:T ) of a function
given by its wavelet decomposition. This is performed by computing once
for all

(ld - eAtgax—Iy)ﬁl (Bj k) =06j..

Since this computation is rather costly, it doesn’t allow for changing the time
scale At during the calculation. An explicit scheme using different time
scales is being studied by Bacry, Mallat and Papanicolaou at the Courant
Institute. These methods give the solution with a very good accuracy, espe-
cially near the shock where the oscillations are small and very well localized.
Adaptative schemes with a iocal refinement around the shock are studied.
The tracking of the shock is very easy since it takes place where the large
wavelet coefficients are.
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2 A wavelet basis is an orthonormal basis for L= ™, the space of square-
integrable functions on the real line, of the form fg. . .-, where g.._ ¢

27 7g 2"t krand gisasingle fixed function, the wavelet. Each multireso-
Iution analvsis for L0 determines such a basis. To find ¢ muitiresolution
analysis, one can begin with a dilation equation t t Seor 2 kN
the solution 1 (the scaling function) satisfies certain requirements, then a
multiresolution analvsis and hence a wavelet basis will follow  This pa
per surveyvs methods of achieving this goal  Two separate problems are
involved: first, solving a general dilation equation to ind a scaling tune-
tion, and second, determining when such a scaling function will generate
a multiresolution analysis. We present two methods tor solving dilation
equations, one based on the use of the Fourier transform and one operating
in the time domain utilizing linear algebra. The second method character-
izes all continuous, imteprable scaling functions. We also present methods
of determining when a multiresolution analvsis will follow from the scaling
tunction. We discuss simple conditions o1, the coetficients . which are
“almost” sufficient to ensure the existence of a wavelet basis, in particular,
thev do ensure that (g, .2 18 a tight frame, and we present more com-
plicated necessary and sufficient conditions for the generation of a multires-
olution analysis. The results presented are due mamnly to Cohen, Colella,
Daubechies, Heil, Lagarias, Lawton, Mallat, and Mever, although several of
the results have been independently investigated by other groups imclud-
ing Berger, Cavaretta, Dahmen, Deslauriers, Dubuc, Dy, Eirola, Gregory,
Levin, Micchelli, Prautzsch, and Wang

1. Introduction

The Haar system is the classical example of an affine, or wavelet, orthonor-
mal basis for the space L 4[?R) of square-integrable functions on the real line.

t We thank David Colella of The MITRE Corporation, MclLean, Virgima, for his
collaboration on ~ome of the results reported in this paper. and for his review of this
document.
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It consists of a set of translations and dilations of a single function, the i laar
wavelet W(t) = X012 — Xy 2.1, where Xy is the characteristic function
of the set E. Precisely, the Haar system has the form ' 'n oo, where
Uar (t) == 2™ 212"t k). Such a simply-generated orthonorinal basis is
verv appealing; however, the fact that the Haar wavelet is discontinuous
severely limits the usefulness of the Haar system in applications. Recently,
examp\e> of other, smooth wavelets which generate affine orthonorma: *ases

have been given, the first bv Mever [28]. Meyer’s example is an intiiicly
differentiable function which has a compactly supported Fourier transtorn
Additional examples have been given by Lemarié [26] and Battle (11 (k-titnes
differentiable with exponential decay), Daubechies [12] (k-times diiteren-
tiable with compact support), and others. Such smooth wavelets are Detter
suited to applications than the Haar wavelet; for example, thev have heon
used in speech compression [8, 7].

Soon after Meyer’s initial example, Mallat and Mever proved that voch
multiresolution analysis for L*(R) determines a wavelet basis (27 1™
of the wavelet bases mentioned above are determined bv an appropriate
multiresolution nalysis {although not all wavelet bases are assocra vtk
multiresolution analyses). A multiresolution analysis { V. fhis denio 6o

a sequence of subspaces 'V, nog of | 2("W) such that

Ve Z Viuogtoralln,

V= .0,

) V. is densein [ “1™), and

3 RtV Vo e M2t VL,

“d b —
~ o~

together with a function ¢ = Vo such that the codection of intece o
lates of £, it - XV - farms an orthonormal basis tor Voo Goven w0

multiresolution analvsi> we have f = Vo = Voo As b =ei20 0000 L
orthonormal basis for V', there must therefore exist scalars st i
r{ty cht{it k1. R
he &

This is reterred to as e anduced) dilation equation, and s soiud” 9
the scaling function. 1t can be proved that it we define the wavelet

alth Y i When w2t K

kES

{where N is as defined below), then g will generate an orthonormal basis for
L (M) of the form WOnkin ke ol cf. Section 4. From [1.2), it tollows that proper-
ties of the wavelet g such as continuity, differentiability, etc., are determined
by the corresponding properties of the scaling tunction f
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Remark 1.1. For the Haar system,
Ve = (h: his constant on each interval{k, k + 1)1,

the induced dilation equation is f(t) = f(2t) + (2t — 1) (i.e, c¢ = ¢y = |
and all other ¢, == 0), the scaling function is f = X0 71, and the wavelet is the
Haar wavelet gt} = P (t) = f(2t) — (2t — 1).

To tind wavelet bases for L2(R), it suffices to construct multiresolution
analvses. One method of achieving this is the following. Choose a set of
coetficients ¢y, and solve the corresponding dilation equation (1.1) for the
scaling runction f. If f is orthogonal to each of its integer translates then

~

define V¢ to be the span of the integer translates of f and define V. forn .. I
as the appropriate dilation of V¢ (ie, Vi = spanifaiec). If 7V, = 0
and if V., is dense in L#[R) then ('V,, ", f} is a multiresolution analysis, and
therefore the wavelet g defined by {1.2) will generate an affine orthonormal
basis for [<(M). If this is the case then we say that the coefficients ¢, have
determined the multiresolution analysis [V, rl.

There are obviously two separate difficulties in this app-oach, namety,

1) solving a given dilation equation to find a scaling function, and

2) determining conditions under which a multiresolution analvsis will
follow from such a scaling function, i.e., conditions under which 1 will
be orthogonal to its integer translates, etc.

We survey results on these two problems in this paper. A shorter survey,
which also includes a discussion of the application of wavelets to fast siynal
processing algorithms, is {33].

The first problem, that of solving a general dilation equation, is not
restricted in application to waveiet theory. In particular, dilation equations
play a role in spline theorv, interpolation and subdivision methods, and
smooth curve generation [2, 4, 5, 17, 20, 19, 29, 30]. Although we tocus
in this paper on resulis by roups invoived in wavelet research (including
Cohen, Colella, Daubechies, Heil, Lagarias, [awton, Mailat, and Mever),
many of the same or related results have been independently obtained by
sroups involved in these other areas (including Berger, Cavaretta, Dabmen,
Deslauriers, Dubuc, Dyn, Eirola, Gregory, Levin, Micchelli, Prautzsch, and
Wang). In some cases, results by these other groups were obtained earlier or
are more complete than the ones we discuss.

In Sections 2 and 3 we consider two methods of solving general dilation
equations. The methods in Section 2 are based on the use of the Fourier
transform. We prove results due to Daubechies and Lagarias showing that
every dilation equation has a solution in the sense of distributions .nd
that integrable solutions, if they cxist, are unique up to multiplication by a
constant. We then present results of Daubechies and Mallat which show
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when integrable solutions to dilation equations will exist, and resuits of
Colella and Heil showing when they will not (these results do not completely
characterize those dilation equations which have integrable solutions).

In Section 3 we present a time-domain based method for solving certain
dilation equations, due to Daubechies and Lagarias, which utilizes linear
algebra. This method produces continuous, integrable scaling functions if
appropriate conditions hold. Colella and Heil have proved that this method
characterizes those dilation equations which have continuous, integrable
solutions.

In Section 4 we consider the second problem. We show that if the
coefficients {c).} determine a multiresolution analysis then necessarily

ZCZK:ZCZKHZ] (1.3)
[N k

and

ch Cri21 = 200, forevery le 2, (1.4)
Kk

where d;; is the Kronecker delta, i.e., d;; = 1if i = j and 0 otherwise. We then
prove a result due to Lawton which shows that (1.3) and (1.4} are “almost”
sufficient to generate a wavelet orthonormal basis. In particular, Lawton
kas proved that if (1.3} and (1.4) are satisfied then {g,\}n.1c2 will be a tight
frame, i.e., the reconstruction property

h=) (howlgn forall he [2(R) (1.5)

n.k

will be satisfied, although !ank!n kez need not be an orthogonal set. (The
general theory of frames was developed by Duffin and Schaeffer in [18]
in connection with nonharmonic Fourier series. The connection between
frames and wavelet theory is surveyed in [23], and researched in depth in
(13].) We also discuss more complicated conditions, independently derived
by Lawton and Cohen, which are both necessary and sufficient to ensure
that a multiresolution analysis, and therefore a wavelet orthonormal basis,
is generated. Lawton has proved that almost all choices of coefficients (c !
which satisfy (1.3) and (1.4) also satisfy these conditions for orthogonality.

For simplicity of presentation, we assume throughout this paper that
coefficients |cy | are given which arereal with only ¢, ..., cn nonzero, i.e., we
consider only Daubechies-type wavelets). In Sections 2 and 3, we assume in
addition that (1.3) is satisfied. These conditions are not necessary for many
of the proofs, and many of the results in which they are necessary can be
modified for more general situations. The fact that the coefficients {c, | are
real implies that the scaling function f will be real-valued.
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Given these restrictions, the Haar system is of course the only example
with N = 1. It can be shown that multiresolution analyses can be produced
only when N is odd. We will use the case N = 3 to illustrate many of
the results in this paper. For this case, assumption (1.3) reduces to the
statement co + ¢y = ¢y +¢3 = 1, i.e., the collection of four-coefficient dilation
equations with the given restrictions is a two-parameter family. We select the
independent parameters to be ¢o and c3, and represent this collection of four-
coefficient dilation equations as the (co,c3)-plane. Figure 1.1 shows several
geometrical objects in the (co,c3)-plane. The following results regarding
these geometrical objects are discussed in this paper.

1) There are no integrable solutions to dilation equations corresponding
to points on or outside the ellipse, with the single exception of the point
(1,1).

2) There do exist integrable solutions to dilation equations corresponding
to points on and inside the circle, and inside the shaded region.

3} There are continuous, integrable solutions to dilation equations in a
large portion of the triangle, and no continuous, integrable solutions
outside the triangle.

4) There are differentiable, integrable solutions to dilation equations on
the solid portion of the dashed line.

5) Each point on the circle, with the single exception of the point (1,1},
determines a multiresolution analysis and therefore a wavelet basis for
L?(R). We refer to this circle as the circle of orthogonality.

Throughout this paper, L"(R) will denote the Lebesgue space of p-
integrable functions on the real line, with norm {|f|},, = ([ if(t)|? dt)‘ " for
1 < p < ooand ||f|« = esssupif(t)]. The inner product of functions f, g
is (f,g) = [f(t) g(t) dt. The Fourier transform of an integrable function f
is f(y) = j’f(t) eivt dt. Integrals with unspecified limits are over the entire
real line.

2. Fourier methods

By considering the Fourier transform of the dilation equation, we can prove
that every dilation equatiori has a solution in the sense of distributions.
Consideration of the smoothness and decay of the Fourier transforms of
these distributions can indicate whether or not these distributions are given
by functions on the real line. We assume throughout this section that (1.3)
is satisfied.

Some notation is required to adequately describe distributions. We let
S(R) denote the Schwartz space of infinitely differentiable, rapidly decreas-
ing functions on the real line, and let §'(R) denote its topological dual, the
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Figure 1.1: Circle of orthogonality, ellipse, line, triangle, and shaded
region.

space of tempered distributions. For functions ¢ we define the translation
operator T,@(t} = @(t — a) and the dilation operator D o(t) = ¢fat).
Translation and dilation of a distribution v < S'(R) is defined bv duality, i.e,
Tev, @) = (v,T_q9) and (D,v,@) = a~ v, D, 1 ). With this notation,
the dilation equation (1.1) has the form £ = 3 ¢, D, T f. Thaiefore, we say
that v & S$'(R) is a scaling distribution if

v=3Y aD;Tw,
k

e, if (v,p) =3 e (DaThv, @) for all ¢ € S(R). By taking Fourier trans-
forms, we therefore have that v is a scaling distribution if and only if

Dyv =meov,
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where mo(y) = (1/2) 3 ci €'*Y. If it is the case that Vv is a function on R then
this is equivalent to

V(2y) = mol(y)vIY) forae. vy e R (2.1)

Assume now that ¥ is a continuous function on R.  Then we
can iterate (2.1), obtaining (formally) v(y) = ¥(y/2™) [} moly/2’) —
¥(0) T17 moly/2}). Daubechies established that this infinite product
converges, and proved with Lagarias the following result, cf. [12, 15].

Theorem 2.1.

1) Ply) = [17° mo(y/2') converges uniformly on compact sets to a con-
tinuous function which has polynomial growth at infinity.

2) Define f to be the tempered distribution such that f = P. Then f(2y) =
mo(y) f(y) for all v, so fis a scaling distribution. The support of f is
contained in [0, N].

3) If vis another scaling distribution such that v is a function on R which
is continuous at zero then v = v(0) f.

4) If a nonzero integrable solution to (1.1) exists then it is f, up to multi-
plication by a constant, and [ f(t)dt = 1.

We call the distribution f defined in Theorem 2.1 the canonical scaling
distribution. Other solutions to the dilation equation are given in [15], and
certain classes of solutions are characterized in [11].

The proof of Theorem 2.1 requires only that 3~ ¢, = 2; if this is not the
case then a canonical solution of the dilation equation can still be defined,
but the uniqueness results of Theorem 2.1 will not hold. Even with the
assumption J_ ¢y = 2, uniqueness in function spaces other than L'{R) may
not hold. For example, the Hilbert transform Hv of any solution v of a
dilation equation is also a solution of the same dilation equation. Since H
maps L") into L"(R) for 1 < p < oo, uniqueness cannot hold in any of
these spaces. Additional uniqueness criteria and methods of generating new
solutions to dilation equations from known solutions are given in [11}].

Existence of an integrable solution of a dilation equation is not guaran-
teed. The following, from [11], is an easily checkable necessary condition for
the existence of such solutions, based on the fact that the Fourier transtorm
of an integrable solution must decay at infinity.

Theorem 2.2. Given x € [0, 271). Assume that the set
Ix mod 2m,2x mod 27, ...,2" " 'x mod 27

is invariant mod 2m under multiplication by 2. If

n-1}

I Ime2'x)i 21 and mol27'x) £#0  forallj = |
i1
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then the canonical scaling distribution is not an integrable function, and
therefore there do not exist any integrable solutions to (1.1).

Remark 2.3. Consider the case N = 3. The set {2nt/3,4n/3} is invariant
mod 27 under multiplication by 2, and jmo{(27/3) mo{47/3)1 = 1 for all
(co,c3) on and outside the ellipse shown in Figure 1.1. The additional
hypotheses of Theorem 2.2 are also satisfied for all but countably many of
these points, and therefore for almost no point on or outside the ellipse can
an integrable solution to the corresponding dilation equation exist. All but
one of the countably many remaining points are also eliminated when the
3-cycle {2n/7,4n/7,8m/7} is checked in addition [11]. The remaining single
point is (1, 1); the integrable solution to the dilation equation corresponding
to this pointis f = (1/3)X| 3.

Theorem 2.2 deals with non-existence of integrable solutions by estab-
lishing conditions under which the Fourier transform P = f of the canonical
scaling distribution f will not decay at infinity. Alternatively, by imposing
sufficient decay on f we can obtain f € LZ(R), and therefore f € L'(R)
since f has compact support. This is made precise in the next theorem, due
to Daubechies [12]. The notation used in the theorem is as follows. Since
2mo(n) = T (—N*ck = ¥ cax — 3 c2xs1 = 0, we can factor a term of the
form 1 + e" from mo(y). If the zero at 7t has multiplicity at least L then

mo(y) = ((1 + ¢'Y)/2)L Q(y), and therefore
oo . L o

ity = [T motv/2 = (572) [T Qu/2)
i1

i1

Theorem 2.4.

1) If |Qllac < 247'/2 then the canonical scaling distribution f is an inte-
grable function.

2) If||Qllc < 21" then the canonical scaling distribution f is a continu-
ous, integrable function.

Proof. We prove only the first statement.

Set M{y) = I’[‘,"’ Q(y/2)); this is a continuous function. Define R =
IIM - X -1 1)ll; then since M(2y} = Q(y) M(y) we have [M - X|_n 2njl €
IQIIX R, whence IM(y)| < Cly['8:IQll= for some constant C. Therefore,

siny/Z)"“

f 1sC’<
iyl /2
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where p = 2L - 1 ~ 2log, ||Ql|e and C’ is another constant. Since p > 0,
((siny/2)/(y/2))"'7 is integrable, and therefore f € [2(R). Hence f €
L%(R), and therefore f is integrable since it has compact support.

Remark 2.5. For N = 3, the multiplicity L is one except for those points on
the dashed line shown in Figure 1.1; for those points, L = 2.

The region of points {co, c3) for which the hypotheses of the first part of
Theorem 2.4 is satisfied with L = 1is the shaded region shown in Figure 1.1,
i.e., integrable scaling functions exist for all points in this region [11] (see
also Remark 2.7 for an additional region).

No points in the {co, c3)-plane satisfy the second part of Theorem 2.4
withL = 1. ForL = 2,i.e,, c3 = 1/2—co, Theorem 2.4 implies that continuous
solutions exist for —1/4 < co < 3/4. Thisresult is inferior to the one obtained
in Section 3, where it is shown that continuous scaling functions occur on
this line precisely when —1/2 < ¢o < 1, and in fact are differentiable if
0 < cp < 1/2 (i.e., on the solid portion of the line shown in Figure 1.1).
Moreover, it is shown in Section 3 that continuous scaling functions occur
over a large region of the {co.c3)-plane, including the regions shown in
Figures 3.1-3.6.

Eirola has taken a different (but still Fourier-based) approach in [21].
He obtains conditions under which scaling functions will be continuous and
estimates for the Sovolev exponent of continuity for these scaling functions.
In Section 3 we discuss a time-domain method for obtainirg esiimates for
the Holder exponent of continuity of scaling functions.

We end this section with an adaptation of an existence result due to
Mallat [27]; part of the proof we give is due to Lawton {24].

Theorem 2.6. If
Imoly)i% + Imoly + )12 €1 for all vy,

then the canonical scaling distribution is an integrable function.

Proof. Set

Un(Y) = Xj_gnm2nm (v) - [T moly). (2.2)
i

By Theorem 2.1, u, converges uniformly on compact sets to the Fourier



transform of the canonical scaling distribution f. Now,
2" n 2
lunll3 = J_M Hmo (%)[ dy
i
2" n 2 2rmn n
[ @+ [ ()
2 Y\ P Y NI vy
=J, (e G me (G <) TTmo (3)] o

= [[n-113,

and, by a similar argument, |ju1]|3 = 2n. Therefore {u,,] is contained in the
ball in L2(R) of radius v27t and therefore has a weak* accumulation point.
Since un{y) — f{y) pointwise, this accumulation point must be f, whence
f € LZ(R). Since f has compact support, it is therefore integrable as well. Wl

Remark 2.7. For N = 3, equation {2.2) is satisfied for all points (co,cz] on
and inside the circle shown in Figure 1.1. Therefore, there exist integrable
solutions for all dilation equations corresponding to such points. By the
remark following Theorem 2.4, integrable solutions also exist for points in
the shaded region in Figure 1.1. The union of these two regions does not
exhaust the set of four-coefficient dilation equations which have integrable
solutions, cf. [11].

3. Matrix methods

In [16], Daubechies and Lagarias proved sufficient conditions under which
a dilation equation has a continuous, integrable solution (or, more gener-
ally, an integrable and n-times differentiable solution). In particular, they
proved that if the joint spectral radius p(1olv, Tilv) of two N » N matrices
To, 11 (whose entries contain only the coefficients {c}) restricted to a certain
N -- 1 dimensional subspace V is less than one then the canonical scaling
distribution f is a continuous and integrable function, and, moreover, is
Hoélder continuous with Holder exponent o > - log, p(Talv, Thly ). We out-
line this result in this section. In [10], this result is extended to a necessary
and sufficient condition; in particular, it is shown there that the canonical
scaling distribution f is a continuous and integrable function if and only if
plTolw, Tilw) < 1, where W is an appropriate subspace of V, and that in
this case o = —logz p(Tolw. Thlw). Itis conjectured in [10] that W = V in
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general, except for a set of coefficients of measure zero, and it is proved in [9]
that p(Tolw, Thlw) = p{Tolv, Thlv) for all choices of coefficients with N < 3.
We assume throughout this section that (1.3) is satisfied.
Given the coefficients cy}, define the N x N matrices Tp and Ty by
{To)ii = c2i—j—1 and (T1)y; = c2i—. For example, for N = 3 we have

co 0 0 c1 co O
To=1]c2 ¢ co and Ti=1fcy ¢c2 ¢1 .
0 c3 C2 0 0 C3
For x < {0, 1], x # 1/2, define
Tx = 2x, 0<x<«<1/2,
Tl -1, 12<x<T,

ie, if x = .d1d,dz... is the binary decimal expansion of x then 1x =
.dzds.... Although t(1/2) is not uniquely defined, this ambiguity will not
pose any problems in the analysis.

We say that a function f is Holder continuous if there exist constants
K, « such that [f{x] — f(y}| < Kix —yl* for all x, y £ R. The largest such
exponent « is the Holder exponent and the corresponding smallest constant
K is the Holder constant.

The relationship between the dilation equation (1.1} and the matrices
Te, Ty is given in the following result from [16].

Proposition 3.1.

1) Assume f is a continuous and integrable scaling function. Define the
vector-valued function v(x) for x = 0, I by

fix)
fix + 1
vix) ) . (13.1)
flx + N 1)
Then v is continuous on [0, 1" and satisties
vil0) = v (1) =0,

vi 1 {0) v fori=1... N-1,
vix) = Ty,vltx) forx = .didy... < [0, 1], x £ 1/2,

v(1/2) = Tov(1) = Tyv(0), (3.2)
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where v;(x) is the ith component of v(x). Moreover, if f is Holder
continuous with Holder exponent « then the same is true of v.

2) Assume v is a continuous vector-valued function on [0, 1] satisfying
(3.2). Define the function f by

< >
f(x):{o, x <0orx = N, 3.3)

vilx), i—-1<x<ii=1,....N.

Then f is a continuous and integrable scaling function. Moreover, if
v is Holder continuous with Holder exponent « then the same is true
of f.

The fundamental theorem on the existence of continuous, integrable
scaling functions is the following result from [16]. The notation used in the
theorem is as follows. Let V denote the subspace

V=lueRVN:uy+ - +un =0,

and let M be the (N1} - (N—~T}matrix My; = ¢2i ;- Apointx = .dy...d,, =
[0, 1] with a finite binary decimal expansion is called a dyadicpoint.

Theorem 3.2. Fix any norm | - |/ on RN, and assume there exist constants
C >0and 0 < A < 1such that

g Ta v < CA™ 13.4)

for every choice of dy,...,d\n < 0,17 and every m > (. Then the following
statements are true.

1) 1lis asimple eigenvalue of Ty, Ty, and M.

2) M has a right eigenvector (ay,.... an 1) for the eigenvalue 1 such
thatay + -+ an.g = 1.
3) Setv(0) = (0.a1.....an. 11t and define v(x) for x - .dy...dw ~ 0,1
by
vid) - Ty, oo Tq, vI0). 13.5)
Thenvyix) + - +vN(x) - I forevery such x.

4) vis bounded on the set of dyadic points in 10, 1.

5) vis Holder continuous on the set of dyadic points in {0, 1] with Haolder
exponent a = log, A, and has a unique continuous extension to [0, 11
which is Holder continuous with the same exponent «.

6) v satisfies {3.2), and therefore the function f defined by (3.3} is a con-
tinuous, integrable scaling function and is Holder continuous with
exponent .

R
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Proof. Full details of the proof can be found in [16]; we sketch some selected
points below.

1) follows from the fact that V has dimension N — 1 in RN, and that M
is a submatrix of both To and T;.

2) follows from 1) and the fact that (1,..., 1) is a left eigenvector for M
for the eigenvalue 1.
3) Since (1,...,1) is a common left eigenvector for To and T, for the

eigenvalue 1,

vilx) + - +unix) = (1,..., 1) v(x)
=(...,0)Tq,--Tq,v(0)
=(1,...,1)v(0)
=1.
5) Choose any dyadic x = dy...dx € [0,1] and assume y > x is also

dyadic. If 27™7' < y—x < 2™ with m > k then x = .dy...d, and
y=.d1...dmdmi1...dm,; for somej. From 3), v(t™y) — v(0) € V, s0

viy) =vix)ll = ITa, - Ta, (v(t™y) = v(0))]]
< HTay - Ta, v IiHiviT™y) = v(0)]]
<2LCAM
=2L CAA—I (2—~n\~| )——logr A
S2LCA y — xI™ o822,
where L = sup{||lv(t)}| : dyadict < [0,1]] < oo by 4). Thus v is Holder
continuous from the right on the set of dyadic points in [0, 1] with Holder
exponent « > —log, A. A similar proof establishes Holder continuity from
the left.
6) Given x = .d; ...dm dyadic, we have v(x) = Tq,(Tq, - Tq, v(0)) =
T4, v(Tx). By continuity, this holds for all x € [0,1]. W

Examples of norms on RN are [[ull, = (" + - + [uni®)' " for

1 < p <ooand jlufie = max{luil,...,lunl}.
Condition (3.4) is most easily analyzed in a spectral form, as follows.
The joint spectral radius of a set of N « N matrices {A¢,..., A, is the

straightforward generalization of the usual spectral radius of a single matrix,
namely,

plAo. ..., An) = lim sup A,

m—oc

Am = max }”Ad. e Ag ™
Loan
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The joint spectral radius was first introduced by Rota and Strang [32]. Recent
articles are [3, 14].

Lemma 3.3.

1) For every A > p(Ag,..., A, there exists a constant C > 0 such that
Am < CA™ for every m.

2) If there exist C, A > 0 such that A]} < CA™ for every m then
p(AO----‘An) < A

It follows from Lemma 3.3 that {3.4) is equivalent to p{Tolv, Tyiv) < 1
(however, p(Tov, T1iv] = 1is not equivalent to A% < C for every m).

The joint spectral radius can be difficult to compute, except in special
cases. For a single matrix A, p(A} is simply the usual spectral radius of A
and is therefore the largest of the absolute values of the eigenvalues of A.
This is not true in general, i.e., if we define

Om = max  plAg, - Ag, )
dogio, o nl
then plAc,. .., Ay) = 07 = max;plAc), ..., plA, ). However, we do have

the following, cf. [16].

Lemma 3.4.
D on < plAs, ..., Anl A forevery m.
2} plAo....,Aulis independent of the choice of basis, ie, if B is any
invertible matrix then p(BAsB~'... . BA,B ') = plAc..... Al
3) If there exists an invertible matrix B such that BA:B~',....BA, B !
are all simultanecusly svmmetric, then plAs, ... A, = oy,

Berger and Wang have proved that p(Ac,....A,)  limsup v, and
therefore ptAg,.... An) -supoy, 3.

We return now to consideration of the matrices Ty, T1. Since V has di-
mension N -1, an appropriate change of basis gives p{ Toiv, Ti'v) - ptSe. S,
where Se, Sy are (N - 1)« [N - 1) matrices (not necessarily unigue).

Remark 3.5. For N = 3 we can set

. Co 0 l-¢co-¢ ¢
Se - ( ¢ and S, = ¢ : S
cy | Co Cy Q C3

cf. [9). The shaded area in Figure 3.1 shows the set SS of points [ce, c3)
for which S¢ and S can be simultaneously symmetrized with p(S0,51) <«
1. Continuous, integrable scaling functions therefore exist for all points in
this region.
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N

11 N
-1.51
_2.;

Figure 3.1: Region S$ where simultaneous symmetrization is possi-
ble and leads to continuous scaling functions (shaded area).

In the regions where simultaneous symmetrization is not possible,
Lemma 5.4 can be used to estimate the joint spectral radius.

Remark 3.6. Set N = 3, and let C, , be the set of points fco. st sudi
that p(S¢,.S1) « Awm < 1 with the choice of normy - - .. By Theorem 32
continuous, integrable scaling functions exist for all points in anv .,
Figures 3.2-3.4 show C,, ) for several choices of p, i.e., the sets obtained by
considering the matrices So, Sy directly (since Ay - max' 50, 'Sy 00).

Figure 3.5 shows the region (. obtained by considering, for cach
point {co, 1), the Euclidean space norm | - ||, of all 65536 possible products
Sa, -+ S4,. of Sp and S of length 16.

The union of the regions shown in Figures 3.2-3.5, plus the region 55
shown in Figure 3.1, is shown in Figure 3.6. Continuous, integrable scaling
functions therefore exist for all points in the shaded area in Figure 3.6. By
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-1.5¢

51

T

Figure 3.2: The set C; 1 {(shaded area).

Remark 3.10, there are no continuous, integrable scaling functions on or
outside the solid boundary shown in Figure 3.6.

Note that half of the circle of orthogonality lies inside the shaded area
in Figure 3.6, and half lies outside the solid line. Therefore there exist many
wavelet bases with N = 3 for which the wavelet is continuous, ¢f. Figures
3.7 and 38.

For large m, direct computatior. of A, is impractical. The following
algorithm can be used to select a subset of matrices which can be used to
estimate p(Ao,..., An) [10], cf. [18].

Proposition 3.7. Given p > plAo,..., AL,). For each of the matrices
Ao, ..., A, in turn, implement the following recursion.

e Given a product P = Ay, - Ag,,. If |[P||"/™ < p then xeep P as a
building block. Otherwise, repeat this step with each of the products
PAq,...,PA,in turn.

w }
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-1.51

24

Figure 3.3: The set C, 1 (shaded area).

Label the resulting set of building blocks Py, ..., Py, and let m, be the length
of the product P;. Then the following statements hold.

1) Thereis anr > Osuch thatif P = Ay, -~ Ag, is any product of the
matrices Ao,... Ay, then P = P, ... P; R where R is some product of
at most r of the matrices Ao, ..., Al

2) plAa, ... An) S max{|[Pylld ™ Pt me

This algorithm can be used to significantly shorten the time required
to estimate a joint spectral radius.

Remark 3.8. For N = 3 and (co,c3) = (.6, -.2), for which simultaneous
symmetrization is not possible, we compute (using the norm |} - |1} Ay = .737
and Ay; = .682. The computation of Ay; required the calculation of 8192
matrix products; however, the algorithm given in Proposition 3.7 equals
this estimate after only 94 matrix product computations. A deeper search,
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ol

“

Figure 3.4: The set C . (shaded area).

with a maximum matrix product length of 73, required only 14156 ma-
trix product computations and resulted in the estimate p(Sc,S1) < .661.
Even if A73 could be computed it would not improve this estimate, e.g.,
153515415158451517815428,5328, 1} 7" = 663. These computations, and
the significance of the point (co.c3) = (.6,~.2), are explained in detail in
[9]; note, however, that the Holder exponent of continuity for the scal-
ing function determined by the coefficients (co.c3} = (.6, -.2] is at least
—log, .661 ~ .598, and therefore this scaling function is smoother than the
standard four-coefficent example, the Daubechies scaling function D, which
is determined by the coefficients (co,c3) = ((1 + v/3)/4,(1 — /3)/4), and
whose Holder exponent of continuity is approximately .550. These two scal-
ing functions are shown in Figures 3.7 and 3.8. Each of these two choices of
coefficients lies on the circle of orthogonality and determines a multiresolu-
tion analysis for LZ(R).

Theorern 3.2 is extended to a necessary and sufficient condition in [10].

}
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Figure 3.5: The set C; 1, (shaded area).

We briefly indicate now the method used to obtain the converse result. Given
an N « N matrix A and an eigenvalue A of A, set Uy = {u ¢ CN A - =
0 torsome k > 0j. By standard Jordan decomposition techniques we
can write €V = U, + W, where W is a unique A-invariant subspace of C".
Given v € €N we say that v has a component in U, if v = u + w where
u€ Uy, we W,and u # 0. The following result is from {10].

Theorem 3.9. Assume v is a continuous vector-valued function on [0, 1]
such that (3.2) holds, and let T = Ty4,--- T4, be any fixed product of the
matrices To, Ty. Let x € {0, 1] be that point whose binary decimal expansion
is x = .d] ...d.“d| ...dm o If

. 1) Ais an eigenvalue of T|y, and
2) thereis some z € [0, 1] such that v(x) — v(z) has a component in U,,

then |A] < 1 and the Holder exponent of continuity of v is at most
- log, IAI'/™.

| |
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Figure 3.6: Union of the sets $S, C1,1, C2,1, C= 1, and C; 5 (shaded
area); boundary of the set E 14 (solid line).

Since p(Tolv, Tilv) = sup 0w is the supremum of the absolute val-
ues of the eigenvalues of every (Tq, - Ta, v, it follows that if the hy-
potheses of Theorem 3.9 are satisfied for each product 1 = Ta, - T4, then
p(Tolv, Tilv) < 1 with 0w < 1 for all m, and the Holder exponent of v satis-
fies a < —log, p(Tolv, Talv). Therefore, if the hypotheses of Theorem 3.9 are
satisfied for each product T = Tq, --- Tq,, then Theorem 3.9 is the converse
to Theorem 3.2, except for the possibility of one special case, namely,

sUp o =1 and Om < 1 for all m.
m

. It is unknown whether this special case can actually occur. It is proven in
[9] that the hypotheses of Theorem 3.9 are always satisfied if N < 3and it is
conjectured in [10] that they are always satisfied in general except for a set
of coefficients of measure zero. Methods for determining the validity of the
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0.5 , . : ~
0 0.5 1 1.5 2 25 3

Figure 3.7: Scaling function corresponding to {co,c3) = {.6,—~.2).

' ) 05 ! 1.5 2 2.5 3

Figure 3.8: Daubechies scaling function Dy.
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hypotheses of Theorem 3.9 for any specific choice of coefficients are given
in [10].

Remark 3.10. Set N = 3 and define E, = {(co,c3): 0 = 1). By Theorem
3.6, no dilation equation determined by a point in E,, can have a continuous,
integrable solution. The set E is precisely the boundary and exterior of the
triangle shown in Figure 1.1. The solid line in Figure 3.6 shows a numerical
approximation of the boundary of E 1 [9]. By previous remarks, continuous,
integrable scaling functions do exist in the shaded region in Figure 3.6.

The results of this section can be extended from consideration of con-
tinuous solutions to n-times differentiable solutions. If f is such a solution
then its derivatives fli! satisfy the dilation equations

i) =Y 2ecf2t k).
k

Therefore the vector (f'''(1),... 7' (N - 1))tis a right eigenvector for the
matrix M for the eigenvalue 277. As Misan (N — 1) » (N — 1) matrix, f can
therefore possess at most N — 2 derivatives. This can always be achieved for
an appropriate choice of cocfficients [16].

The following modification of Theorem 3.2 for the case of higher deriva-
tives is from [16].

Theorem 3.11. Assume that the coefficients {ci| satisfy the sum rules
S{-1*k'cy, =0forj =0,...,n DefineV, =uec RV :eu=207=
0,....n}, where ¢; = (1',2 ... N} If p(Toly,,Tiiv, ) < 27" then there
exists an n-times differentiable solution f to (1.1}, and the n-th derivative
™ of f is Holder continuous with exponent « = —log, 2" p(Tolv, . Triv, ).

Remark 3.12. For the case N = 3, differentiable solutions can exist only on
the solid portion of the line shown in Figure 1.1. None of these solutions can
be twice differentiable. In particular, for N = 3, no wavelet which generates
an affine orthonormal basis can be differentiable since wavelets must be
derived from points lying inside of the circle of orthogonality.

4. Orthogonality

In this section we consider the relationship between the choice of coefficents
{cy) and frame or basis properties of the associated wavelet. We assume N
is odd in this section.

We require the following lemmas. C.(R) denotes the space of all con-
tinuous functions on R which have compact support. The proof of the first
lemma can be found in [27].

36 }
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Lemma 4.1. If ({Vy}, ) is a multiresolution analysis then [ f(t)dt = 1.

Lemma 4.2. If (1.3) holds then the canonical scaling function f satisfies
Y flt—k)=1ae.

Proof. Set 8o = X[ 1) and 6(t) = }_ cx 85-1(2t — k). Since 8 is continuous,
8(0) = 1, and 8;(2y) = mol(y)6;_1(y), it follows that 8; — f weakly in
L%(M), ie., (8;,h) — (f,h) forall h € L?(R). Note that 5 0o(t — k) = 1 a.e;
by induction, the same is true of 8;, and hence of f. ]

Next, we establish necessary conditions on the coefficients [cy | in order
that a multiresolution analysis exist.

Proposition 4.3. If the coefficients {c\ } determine a multiresolution analysis
then (1.3) and {1.4) hold. The converse is not true.

Proof. Integrating both sides of the dilation equation implies that 3 ¢y = 2,
since J'f(t] dt is nonzero by Lemma 4.1. Since f is orthogonal to its integer
translates,

2501 =2 Jf(t)f(t +1)dt

=2) ¢k jf(Zt—j)fut +2L-- k) dt

ik
= Z Ck Cki 21,
k

so (1.4) holds. This, combined with the fact 3_ ¢y = 2, implies (1.3).

To see that (1.3) and (1.4) are not sufficient, consider the coefficient
choice co = 1, ¢; = -+ = cno1 = 0, cn = 1. These coefficients satisfy
{1.3) and (1.4), yet the canonical scaling function f = (1/N)X;s . is not
orthogonal to its integer translates if N > 1. 1

Remark 4.4. For N = 3, the set of points in the (co,c3)-plane which satisfy
both (1.3)and (1.4) is precisely the circle of orthogonality shown in Figure 1.1.

Equations (1.3) and (1.4) are equivalent to

mo(0} =1 and ma(n) =0 (4.1
and

Ima(y)? + Imaly + > =1 forall . (4.2)

Equation (4.2) implies that, in signal processing terms, mo(y) and mo(y + 7)
form a quadrature mirror filter pair. Such filter pairs induce fast digital signal

Methods of solving dilation equations '}
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processing algorithms, e.g., subband coding. Daubechies has characterized
those trigonometric polynomials mo which satisfy (4.1) and (4.2) in {12].

Although (1.3) and (1.4) are not sufficient to ensure that {cy} will gen-
erate a multiresolution analysis (and therefore that {gnkjn,kez will be an
orthonormal basis), Lawton has proven that (1.3) and (1.4) are sufficient to
ensure that the sequence {gn«}n,kez will satisfy the reconstruction property
(1.5) of an orthonormal basis. Such a sequence is called a tight frame. (1.5)
alone does not imply that {gnx n.kez is an orthogonal sequence or a basis,
i.e, in general the summation in (1.5} is not unique. See [18] or [23] for
exposition on frames and their properties.

The following theorem and proof are from [24].

Theorem 4.5. If the coefficients {cy} satisfy (1.3) and (1.4) then {gnx}n rez is
a tight frame for L2(R).

Proof. We proceed in four steps.

1) From (4.2} and Theorems 2.6 and 2.1, the canonical scaling distribu-
tion f is an integrable function with support contained in [0, N] and satisfies
[flt)dt =1.

2) Define the operator Py, : L?(%R) — L?(R) by

Puh =Y (R fue) fa. (4.3)
k

We claim that P,, - [asn — +ocoand P, = 0as n = —oo, where [ is the
identity operator on L%(%R).

First, however, we show that the operators {P,,} are uniformly bounded
in norm. Since supp(fnx) C Inx = [k/2", (k + N)/2"], with n fixed each
set supp(fni) can intersect at most N other supp(fn;). Therefore, for any
scalars [ay ],

Z Qkfnk
k

1.2
< N! Z(Zmuznf"kné)
2 k
1.2
NV (T la) (4.4)
k

e.g., [22, Prop. 2.4.10]. Therefore,
12
ol < N2 (Xt fan)i?) (4.5)
k

Now, foreachr = 0,...,N — |, the sequence {f,,(in 4 r1}1€2 is an orthogonal
collection of functions since their supports are disjoint. Therefore, by Bessel's

3%}
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inequality, 3" I(h, foinen)l? < JhlI3 13, Combining this with (4.5) we
obtain ||[Pyhll2 < N||f[|3 ||h]l2, and therefore sup ||Pn]j2 < N|ifl|3 < co.

Because the operators [P} are uniformly bounded in norm, to prove
P,h — hasn — +oo for all h € L2{R) it suffices to consider h in a dense

subset of L#(R), say h € C.(R). For such an h, since 5, fni(t) = 2" % ae.
(Lemma 4.2), we can write
5 12
dt)

I = Puhilz = U
12
< N2 (Z 127" 2 h(t) = (h, fui)) nmmﬁ) (4.6)
k

1°2
<N 2 (Tady)
k

where we have used (4.4) again and where

5272 — (h fad) ()
k

Ank = sup 127" Zh(t) — (h, fadl.

teln

To see that Y a2, — Oasn — +oo, define

S L&l

Bnk = sup |h{s) —h(t) and hy == Z BRI X1, ..
K

Note that ha(t) — 0 pointwise as n — +oo since h £ C.(R). Further,
Buk € PBroand I,,x T Lo forall k, so H“ < ho forn = 0. As fu\ is clearly
integrable, it follows from the Lebesgue Dominated Convergence Theorem
that fﬁ,‘(t)dt -~ 0as n — +oo. Now, since J'fnk(t)dt =2"" 2 (Lemma
4.1), we have for t € [, that

>
<

2772 h(t) — (h, fax)l =

J (h(t) = Rls)) s fs) ds
Inx !

([ mer-nintas) (| haisitas)
AU Ly

< I3 B2, an..\(s)ds.

Therefore, 5_, a2, < [Ifli} [hn(s)ds — 0as n — +oo, which, combined
with (4.6), implies that P,h — hin LZ(R)asn — +oo.

A similar proof shows that P,h -+ 0as n — —oo.

3) Define the operator F, : L2(:R) — L*(R) by

Fah =) (h,gnk)gnk.
k
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We claim then that F, = P,y — Py for each n € 2. Using the dilation
equation (1.1) and the definition {1.2) we compute

Puh+ Foh= 3 (h(t),27/2F(2"t — k))2"/2f(2"t — k)
k

+) (h{t),2"2g(2"t — Kk))2" 2g(2"t — k)

N

=2" Y (hlt)ep 2™ Tt 2k~ p))eg f(2M Tt - 2k - q)

K.p.q

+2" Z (R{t), (=1 en_pf2M Tt = 2k —p))

k.pq
(=N¥cn_qf(2™ 't = 2k —q)

=2" Y {hlthlepcy + (=17 Yenpenog 12" T = 2k — p)

p.g.k
«<f(2"t Tt — 2k — q)

1 .
-2 2 D (e etz + (1 engyanen - )
i

k

. /rh“)‘z!nt 11 Zf(znb 't‘"]')>2“” 1i ‘Zf(znolt . U

= ZC(iJNh.f'na Nitfmanin
il

where
.. ] 4
Ci. b = 2Z(Ci et T Yensanen o).
%

It suffices, therefore, to show that C(j,1) = 5;;. Note that by making the

change of index m = -k +j+ 1 - (N- 1)/2 (recall N is odd) in the second
summation, we obtain

< n: 1 i
C(2i,21) - 3 ZCCZi BINSINP I 2 chi—lm 11021 -2m i

m
‘Z
= 3 C2j-k C21-k
2&74

= dj1,

because of hypothesis (1.4). Similar calculations show that C(2j,21 + 1) =
C(2j +1,20) - Oand C(2j + 1,20 + 1) = &;1, as desired.
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4) From steps 2) and 3), 3~ Fn = limy 4 (Pw — P, ) = L. That s, for
heL2(R), h=Y Foh =3 (N dnk) gnk, whence {guin ket is a tight
frame. B

Corollary to 4.5. The coefficients !ci | determine a multiresolution analysis
if and only if

1) (1.3) and (1.4) are satis{ied, and
2) fis orthogonal to each of its integer translates.

In this case, {gnt !n.Le2 is an orthonormal basis for LZ(Mm).

Proof. Because of Proposition 4.3 we need only prove that if 1) and 2)
hold then |cx; determines a multiresolution analysis. From (1.4} and the
orthogonality of the integer translates of f,

I ;%:J )‘Zdt—ZC,ckJ t~1)f(2t"k?dt*ZZ(i*'-

Therefore [f(t - k),ic2 is an orthonormal set and hence is an orthonormal
basis for Vo = span{f(t — k)l cz. Defining Vi, = span!f,i ico, we have
V., < V.1 because fis a scaling function. The operator P,, defined by {4.3]
is then the orthogonal projection of L#(R) onto V... Since P,, — Casn + o
we have 7V, == 0], and similarly 'V, is dense in L2 since Py o [ as
n — +oo. Thus ('V,.}, f)is a multiresolution analysis.

To prove that g in.keg is an orthonormal basis, note that from {1.2],
(1.4), and the orthogonality of the integer translates of f,

b " . . . ] ]
ol =Y (=1 M eneny er D2 Rdt - z;“t = 1.

ik

from the theorem, we know that 'gn. 'n v, ¢ 18 a tight frame, so for m, i - 2
fixed,

2
b= ||9mi“2
g"\, q"'l)’

A\
<gm1. \gmi‘gnk>gnk)
n.k

Z gm)‘an

n.k

Thus (gmi gnk) = dmn djk, i.€,, IGnn in.ne o fOorms an orthonormal set. This,
combined with the tight frame property, implies that {gniin e is an or-
thonormal basis. B
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Lawton and Cohen have independently established necessary and suf-
ficient conditions under which f will be orthogonal to its integer translates.
Lawton’s formulation is the following (24, 25]. (% denotes the space of all
square-summable sequences.

Theorem 4.6. Define the operator G : {2 — ¢2 by

1
(Ga)lzzizkc;ckag“iq\ for acf?.

Then the coefficients {c\ ] determine a multiresolution analysis if and only if

1) (1.3)and (1.4) are satisfied, and
2) o1 is the only eigenvector for G for the eigenvalue 1.

Proof. Note that d¢; is an eigenvector for G for the eigenvalue 1 because
of (1.4), and the sequence a defined by a; = [f(t}f(t + l)dt is also an
eigenvector for G for the eigenvalue 1 since

(GQ)[

il

—;Zcick Jf(t)f(t—21+i—k)dt
ik
;J(ZC' f(t—j)) <ch f(t — 21 —~k)> dt
] 8
1 St t
zf'(z) (3 9)e

= Qp.

i

Therefore, if 5oy is the only eigenvector for G for the eigenvalue 1 then
a; = ¢ d¢y for some constant ¢, so f is orthogonal to its integer translates. The
converse of this statement is proved in [25]. The proof is therefore complete
by the corollary to Theorem 4.5, I

Lawton has proved. using a result of Pollen [31], that except for a
set of measure zero, coefficients which satisfy {1.3) and (1.1} also satisfy
the condition that d.; be the only eigenvector for G for the eigenvalue 1.
Therefore almost all choices of coefficients satisfying (1.3} and (1.4) will
determine a multiresolution analysis.

Cohen’s formulation, which has been shown to be equivalent to Law-
ton’s, is the following [6], cf. [25].

Theorem 4.7. The coefficients 'ci | determine a multiresolution analysis if
and only if

1) (1.3)and (1.4) are satisfied, and _
2) there exists a y & [-7n/2, n/2] such that f{y + 2kn) = 0 for every k € Z.
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Remark 4.8. For N = 3, the set of points satisfying (1.3) and (1.4) is the circle
shown in Figure 1.1. Of these, every point with the single exception of the
point {1, 1) does determine a multiresolution analysis [11].
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g
& Most signal information is carried by irregular structures and transient
phenomena. The mathematical characterization of singularities with Lip-
schitz exponents is reviewed. We explain the theorems that estimate local
Lipschitz exponents of functions, from the evolution across scales of their
wavelet transform. We then prove that the local maxima of a wavelet
transform detect the locations of irregular structures and provide numerical
procedures to compute their Lipschitz exponents. The wavelet transforms
of singularities with fast oscillations have a different behavior that we studv
separately. The local frequency of the oscillations are measured from the
wavelet transform local maxima. It has been shown numerically that one
and two-dimensional signals can be reconstructed, with a good approxima-
tion, from the local maxima of their wavelet transform {16]. As an appli-
cation, we develop an algorithm that removes white noise from signals, by
analyzing the evolution of the wavelet transform maxima across scales.
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1. Introduction

Singularities and irregular structures often carry the most important infor-
mation in signals. In images, the discontinuities of the intensity provide the
locations of the object contours, which are particularly meaningful for recog-
nition purposes. For many other types of signals, from electro-cardiograms
to radar signals, the interesting information is given by transient phenomena
such as peaks. In physics, it is also important to study irregular structures to
infer properties about the underlying physical phenomena (17, 2, 1]. Until
recently, the Fourier transform was the main mathematical tool for analvz-
ing singularities. The Fourier transform is global and provides a description
of the overall regularity of signals, but it is not well adapted for finding
the location and the spatial distribution of singularities. This was a major
motivation for studying the wavelet transform in mathematics {20] and in
applied domains [11]. By decomposing signals into elementary building
blocks that are well localized both in space and frequency, the wavelet trans-
form can characterize the local regularity of signals. The wavelet transtorm
and its main properties are briefly introduced in Section 2. In mathematics,
the local regularity of a function is often measured with Lipschitz exponents.
Section 3 is a tutorial review on Lipschitz exponents and their characteriza-
tion with the Fourier transform and the wavelet transform. We explain the
basic theorems that relate local Lipschitz exponents to the evolution across
scales of the wavelet transform vatues. In practice, these theorems do not
provide simple and direct strategies for detecting, and characterizing singu-
larities in signals. The following sections show that the wavelet transform
local maxima give an efficient approach for studying these singularities.
The detection of singularities with multiscale transforms has been stud-
ied not only in mathematics but also in signal processing. In Section 4, we
explain the relation between the multiscale edge detection algorithms used
in computer vision and the approach of Grossmann {10] based on the phase
of the wavelet transform. The detection of wavelet transform local max-
ima is strongly motivated by these techniques. Section 5 is a mathematical
analysis of the local maxima properties. We prove that local maxima detect
all singularities and that local Lipschitz exponents can often be measured
from their evolution across scales. We derive practical algorithms to ana-
lyze isolated or non-isolated singularities in signals. Numerical examples
illustrate the mathematical results. The wavelet transform has a different
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behavior when singularities have fast oscillations. This particular case is
studied separately. The local frequency of the oscillations can be measured
from the points where the wavelet transform is locally maximum both along
the scale and spatial variables. This approach is closely related to the work
of Escudie and Torresani [9] for measuring the modulation law of asymptotic
signals [8].

Another important issue is to understand whether one can reconstruct
a signal from the local maxima of its wavelet transform. If it is possible, it
allows us to process a signal’s singularities by modifying the local maxima
of its wavelet transform and then reconstruct the corresponding function.
We review the most recent results of Meyer [21] on this completeness is-
sue and describe a numerical algorithm developed by Zhong and one of
us [16], which closely reconstructs a signal from the wavelet local maxima.
One application is the removal of white noise from signals. In such prob-
lems, we often have some prior information on the differences between the
signal singularities and the noise singularities. We describe an algorithm
that differentiates the signal components from the noise, by selecting the
wavelet transform local maxima that correspond to the signal singularities.
After removing the local maxima of the noise fluctuations, we reconstruct a
“denoised” signal.

1.1. Notation

« LP{R) denotes the Hilbert space of measurable, functions such that

e
J 1f(x)” dx < +o00.

—

The norm of f € L?(R) is given by

)12 = J if(x)i% dx.
We denote the convolution of two functions f € L4(R) and g < L2(R)
by

SRR Y

fvglx) 'J flu)g(x ~ u)du.

e

The-Fourier transform of a function f(x) is written f(w) and defined by

flw) = J b fix)e™ ¥ dx.

—oC

For any runction f(x), f.(x) denotes the dilation of f(x) by the s.ale
factor s:

folx) = Lf(x/s).
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2. Continuous wavelet transform

This section reviews the main properties of the wavelet transform. The for-
malism of the continuous wavelet transform was first introduced by Morlet
and Grossmann [11]). Let {(x) be a complex valued function. The function
P(x) is said to be a wavelet if and only if its Fourier transform ¥ (w) satisfies

J‘w [ (w)P? r [ (w)p?

S dw =
o w Jwl

dw = Cy < +0o. (2.1)

This condition implies that

oo
J Y(u)du =0.
Let ¥ (x) = 1y (x/s) be the dilation of {(x) by the scale factor s. The wavelet
transform of a function f € L2(9R) is defined by

Wi(s,x) = f xPg{x). (2.2}

The Fourier transform of Wf{s,x) with respect to the x variable is simply
given by

Wis, @) = flw)(sw). (2.3)

The wavelet transform can easily be extended to tempered distributions,
which is useful for the scope of this paper. For a thorough presentation of
the theory of distributions, the reader might want to consult the book of
Treves [26]. If f(x) is a tempered distribution of order n and if the wavelet
WP(x) is n times continuously differentiable, then the wavelet transform of
f(x] give by (2.2) is well defined. For example, a Dirac 8(x} is a tempered
distribution of order 0 and Wa(s, x) = U (x), if P{x)} is continuous.

One can prove [11] that the wavelet transform is invertible and f(x} is
recovered with the formula

t b
fix) = .;LJ J Wils, u)bu - x) du?s, (2.4)
Cy Jo - ’
where Y ;(x} denotes the complex conjugate of Y« (x). The wavelet transform
Wif(s,x) is a function of the scale s and the spatial position x. The plane
defined by the ordered pair of variables (s, x) is called the scale-space plane
(27]. An arbitrary function F(s,x) is not a priori the wavelet transform of
some function f{x). One can prove that F(s,x) is a wavelet transform if and
only if it satisfies the reproducing kernel equation

o

Flso,xo) = [

=
J Fs, x)K{s0,s,%0,x) dx 45, (2.5)
Jo -

S0}
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with

] +o0 B

K(so, 5, x0,x) = E‘J el — X [x0 ~ u) du. (2.6)
¥ J—oo

The reproducing kernel K(so,s,xo,x} expresses the intrinsic redundancy

between the value of the wavelet transform at (s, x) and its value at (so, x0).

3. Characterization of local regularity with the wavelet transform

As mentioned in the introduction, a remarkable property of the wavelet
transform is its ability to characterize the local regularity of a function. In
mathematics, the local regularity of functions is often measured with Lips-
chitz exponents.

Definition 3.1.

= Let n be a positive integer and n < « < n+ 1. A function f(x) is said
to be Lipschitz a, at xo, if and only if there exists two constants A and
ho > 0, and a polynomial P, (x) of order n such that for h < ho

[f(xo + h) — Pr(h)l < AlRI®. (3.1)

« The function f(x) is uniformly Lipschitz « over the interval |a, b{if and
only if there exists a constant A such that for any xo € la, b[ there exists
a polynomial of order n, P (x), such that equation (3.1} is satisfied for
any xo + h € ]a, b[.

» We call Lipschitz regularity of f(x) at xo the sup of all values « such
that f(x) is Lipschitz « at xo.

» We say that a function is singular at xo if it is not Lipschitz 1 at xo.

A function f(x} which is continuously differentiable at a point is Lips-
chitz 1 at this point. If the derivative of f(x) is bounded but discontinuous
at xo, f(x) is still Lipschitz 1 at xo and following Definition 3.1 we consider
that f(x) is not singular at xo. One can easily prove that if f(x} is Lipschitz «,
for « > n, then f(x) is n times differentiable at xo and the polynomial P, (h)
is the first n + 1 terms of the Taylor series of f(x) at xo. For n = 0, we
have Pn(h) = f(xo). The Lipschitz regularity o, gives an indication of the
differentiability of f(x) but it is more precise. If the Lipschitz regularity «o of
f(x) satisfies n < ap < n+ 1, then we know that f(x) is n times differentiable
at xo but its n'h derivative is a distribution which is singular at xo, and xo
characterizes this singularity.

One can prove that if f(x) is Lipschitz « then its primitive g(x) is
Lipschitz o + 1. However, it is not true that if a function is Lipschitz « at
a point xp, then its derivative is Lipschitz « — 1 at the same point. This is
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due to oscillatory phenomena that are further studied in Section 5.3. On the
opposite, one can prove that if « is not an integer and « > 1, a function
is uniformly Lipschitz « on an interval ]a, b{ if and only if its derivative is
uniformly Lipschitz « — 1 on the same interval. This property enables us
to define negative uniform Lipschitz exponents for tempered distributions.
Integer Lipschitz exponents have a different behavior that is not studied in
this article. Itis necessary to define properly the notion of negative Lipschitz
exponents for tempered distributions because they are often encountered in
numerical computations.

Definition 3.2. Let f(x) be a tempered distribution of finite order. Let a be
a non-integer real number and [q, b} an interval of R. The distribution f(x)
is said to be uniformly Lipschitz o on ]a, bl if and only if its primitive is
uniformly Lipschitz & + 1 on ]a, bl.

For example, the second order primitive of a Dirac is a function which
is piece-wise linear in the neighborhood x = 0. This function is uniformly
Lipschitz 1 in the neighborhood of 0 and thus uniformly Lipschitz o for & < 1.
As a consequence of Definition 3.2, we can see that a Dirac is uniformly
Lipschitz « for a < —1 in the neighborhood of 0. Since Definition 3.2 is not
valid for integer Lipschitz exponents, it does not allow us to conclude that a
Dirac is Lipschitz —1 at 0 but we can derive that its Lipschitz regularity (see
Definition 3.1) is —1 in the neighborhood of 0. Definition 3.2 is global because
uniform Lipschitz exponents are defined over intervals but not at points. Iis
possible to make a local extension of Lipschitz exponents to negative values
through the microlocalization theory of Bony (5, 15], but these sophisticated
results go beyond the scope of this article. For isolated singularities, one can
define pointwise Lipschitz exponents through Definition 3.2. We shall say
that a distribution f(x) has an isolated singularity Lipschitz o at x¢ if and
only if f(x) is uniformly Lipschitz « over an interval |a, b{, with xo « la, bi,
and f(x) is uniformly Lipschitz 1 over any sub-interval of ]a, bl that does not
include xo. For example, a Dirac centered at 0 has an isolated singularity at
x = 0 whose Lipschitz regularity is —1.

A classical tool for measuring the Lipschitz regularity of a function
f(x) is to look at the asymptotic decay of its Fourier transform f(w). One
can prove that a bounded function f(x) is uniformly Lipschitz o over ‘R if it
satisfies:

t o0
J Flw) {1 + lwl®) dw < +oo. (3.2)
This condition is sufficient but not necessary. It gives a global regularity
condition over the whole real line but one cannot derive whether the function
is locally more regular at a particular point xo. This is because the Fourier
transform uniocalizes ths information along the spatial variable x. The
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Fourier transform is therefore not well adapted to measure the local Lipschitz
regularity of functions.

If the wavelet has compact support, the value of Wf(s,x¢) depends
upon the values of f(x) on a neighborhood of xo of size proportional to
the scale s. At fine scales, it provides localized information on f(x). The
following theorems relate the asymptotic decay of the wavelet transform at
small scales to the local Lipschitz regularity. We suppose that the wavelet
P (x) is continuously differentiable and that it has compact support although
this last condition is not strictly necessary. The first theorem is a well known
result and a proof can be found in {13].

Theorem 3.3. Let f(x) € L?(R) and [a, b] be an interval of R. Let 0 < a < 1.
The function f(x) is uniformly Lipschitz « over any interval la + €,b — €[,
with b —a > € > 0,if and only if there exists a constant A, such that for any
x € la +¢,b ~ €[ and any scale s > 0,

[Wf(s,x)| < Acs®. (3.3)

If f(x) € L2(R), for any scale so > 0, by applying the Cauchy-Schwarz
inequality, we can easily prove that the function |[Wf(s, x)|is bounded over
the domain s > so. Hence, (3.3) is really a condition on the asymptotic decay
of [Wf(s, x)|when the scale s goes to zero. The sufficient condition (3.2) based
on the Fourier transform implies that |f(w)| has a decay “faster” than 1/w*.
Equation (3.2) is similar if one considers the scale s as locally “equivalent”
to 1/w. However, in contrast to the Fourier transform condition, {3.3) is a
necessary and sufficient condition and is localized on intervals and not over
the whole real line.

In order to extend Theorem 3.3 to Lipschitz exponents « larger than
1, we must impose that the wavelet Y (x) has enough vanishing moments.
A wavelet {s(x) is said to have n vanishing moments if and only if for all
positive integers k < n, it satisfies

1 oo
J x*Plx}dx = 0. {3.4)

If the wavelet P(x) has n vanishing moments, then Theorem 3.3 remains
valid for any non-integer value o such that 0 < & < n. Let us see how this
extension works, in order to understand the impact of vanishing moments.
Since W({x) has compact support P(w)is n times continuously differentiable,
and one can derive from (3.4) that ¥(w) has a zero of order n at w = 0. For
any integer p < n, u}(w) can be factored into

V(W) = ([iw)PP(w). (3.5)
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In the spatial domain we have

dry’(x)
P(x) = Ik (3.6)
and the function P '(x) satisfies the wavelet admissibility condition (2.1).
The pt* derivative of any function f(x) is well defined in the sense of distri-

butions. Hence,

dav

W(s,x) = £+ bulx) =

(f* sPP)(x) = 5P (%: * wl) (x). (3.7)

The wavelet transform of f(x) with respect to the wavelet {)(x) is thus equal
to the wavelet transform of its ptt derivative, computed with the wavelet
¥'(x), and multiplied by sP. Let p be an integer such that 0 < « —p < 1.
The function f(x} is uniformly Lipschitz « on aninterval |q, b[, if and only if
d’f g uniformly Lipschitz @ — p on the same interval. Since 0 < & —p < 1,
Theorem 3.3 applies to the wavelet transform of 4 defined with respect to
the wavelet ¥!. Theorem 3.3 shows that g;: is uniformly Lipschitz a — p
over intervals Ja + €,b — el if and only if we can find constants A, > 0 such
that forx € la+¢€,b — ¢,

dx?

dvf

ax_"- *L]);(X)% <A s,

Equation (3.7) proves that this is true if and only if
[Wo(s,x)| < A st. (3.8)

Equation (3.8) extends Theorem 3.3 for « < n. If ¥(x) has n vanishing
moments but not n + 1, then the decay of [Wf(s, x)| does not tell us anything
about Lipschitz exponents for « > n. For example, the function f(x) = sin(x)
is uniformly Lipschitz + oo on any interval, butif (x) has exactly n vanishing
moments one can easily prove that the asymptotic decay of {Wf(s,x)| is
equivalent to s™ on any interval. This decay does not allow us to derive
anything on the regularity of the n + 1% derivative of sin(x). For & < 0 and
a ¢ Z,(3.3) of Theorem 3.3 remains valid to characterize uniform Lipschitz
exponents. In this case, we do not need to impose more than one vanishing
moment on the wavelet Y (x). The proof can easily be derived from the
statement of Definition 3.2.

For integer Lipschitz exponents «, (3.3) is necessary but not sufficient to
prove that a function f(x) is uniformly Lipschitz « over intervals Ja+¢,b—el.
If o = 1 and the wavelet has at least two vanishing moments, the class of
functions that satisfy (3.3), for any x € R, is called the Zygmund class.
This class of functions is larger than the set of functions that are uniformly
Lipschitz 1. For example, x log(x) belongs to the Zygmund class although

s1 }
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it is not Lipschitz 1 at x = 0. The reader is referred to Meyer’s book (20] for
more detailed explanations on the Zygmund class.

Theorem 3.3 gives a characterization of the Lipschitz regularity over
intervals but not at a point. The second theorem proved by Jaffard (14]
shows that one can also estimate the Lipschitz regularity of f(x) precisely
at a point xo. The theorem gives a necessary condition and a sufficient
condition but not a necessary and sufficient condition. We suppose that
Y(x) has n vanishing moments, is n times continuously differentiable, and
has compact support. Similar theorems on point-wise derivability have also
been proved by Holschneider and Tchamitchian [13].

Theorem 3.4. Let nbe a positive integer and o < n. Let f(x) € LZ{R). If f(x)
is Lipschitz a at xo , then there exists a constant A such that fo- all points x
in a neighborhood of x¢ and any scale s,

IWf(s,x)] < Als™ +x ~x0|%). (3.9)

Conversely, let & < n be anon-integer value. The function f{x} is Lipschitz «
at xo, if the two following conditions hold.

1) There exists € > 0 and a constant A such that for all points x in a
neighborhood of xc and any scale s

IWf(s,x)] < As®. (3.10)

2) There exists a constant B such that for all points x in a neighborhood
of xp and any scale s

IWf(s,x)1 < B(s“-}-—"i—;—ﬁ—lt—). {3.11)
[log Ix — xall

As a result of Theorem 3.3, we know that (3.10) implies that f(x) is
uniformly Lipschitz € in some neighborhood of xo. The value € can be
arbitrarily small. To interpret (3.9) and (3.11), let us define in the scale-space
the cone of points (s, x) that satisfy

Ix —xol < s.

For (s,x} inside this cone, (3.9) and (3.11) imply that when s goes to zero,
[Wf(s, x)| = O(s*). Below this cone, the value of |Wf(s, x}| is controlled by the
distance of x with respect to xo, but the necessary and sufficient conditions
have different upper bounds. Equation (3.11) means that for (s,x) below
the cone,

_ Ix —xol*
Wils.x)i =0 (Iloglx — %ol I) '




{ Mallat, Hwang so }

The behavior of the wavelet transform inside a cone pointing to x¢, and
below this cone, are two components that must often be treated separately.

Theorems 3.3 and 3.4 prove that the wavelet transform is particularly
well adapted to estimate the local regularity of functions. For example,
Holschneider and Tchamitchian [13] used a similar result to analyze the
differentiability of the Riemann-Weierstrass function. As mentioned in the
introduction, we often want to detect and characterize the irregular parts of
signals. Many interesting physical processes yield irregular structures that
are currently being studied [2]. A well known example is the turbulence
for high Reynolds numbers where there is still no comprehensive theory to
understand the nature and repartition of irregular structures [4]. In signal
processing, singularities often carry most of the signal information. In nu-
merical experiments, it is however difficult to apply directly Theorems 3.3
and 3.4 in order to detect singularities and to characterize their Lipschitz ex-
ponents. Indeed, these theorems impose to measure the decay of [Wf(s, x)'
in a whole two-dimensional neighborhood of xq in the scale-space (s.x],
which requires a lot of computation. The next section reviews briefly the
different techniques that have been used to numerically detect singularities
with a wavelet transform. We then explain how singular points are related
to the wavelet transform local maxima.

4. Detection and measurement of singularities

The measurement of the wavelet transform decay, in a whole neighborhood
of a point x, in the scale space (s, x), is numerically expensive. One technique
that is often used in numerical applications, is to only compute the decay
of (Wf(s,x]i at a fixed abscissa x = xo. This means that we measure the
evolution of the wavelet transform along the vertical line that points to x¢ in
the scale space (s, x). Although this appreach can provide a good estimate
of the local Lipschitz exponent in many cases, let us explain through a
simple counterexample why it cannot be used reliably. We suppose that the
wavelet P{x) is symmetrical with respect to 0 and has compact support. Let
fix) = O for x < xo and f{x) = 1 for x = xo. We can derive that Wf(s,x} =
x{{x = xp)/s), where x{x} is the primitive of ${x} with compact support.
Since (x) is symmetrical, x(x] is antisymmetrical and hence x{0} = 0. We
thus derive that forany s » 0, Wf(s,xo) = 0. Since x{x) has compact support,
forany x # xo, there exists a scale s, > Osuch thatif s < s, then Wf{s, x) = 0.
This proves that along each vertical line in the scale-space plane, the wavelet
transform is uniformly zero for scales small enough. If we estimate the local
Lipschitz exponents from the decay of the wavelet transform along vertical
lines, it “looks like” the function f(x) has no singularity although it does
have a discontinuity at xo. The mistake comes from the fact that we did
not measure the decay of the wavelet transform inside a two-dimensional
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neighborhood of xo, as is required by theorems 3.3 and 3.4. Similar counter-
examples are encountered in many usual signals. The function sin(1/x) is
another type of counter-example which is studied in Section 5.3.

In his pioneering work on wavelets, Grossmann [10] gives an approach
to detect singularities with a wavelet which is a Hardy function. A Hardy
function g(x) is a complex function whose Fourier transform satisfies

glw) =0 for w < 0. (4.1)

Let f € L2(R) and Wf(s,x) be the complex wavelet transform built with a
Hardy wavelet. For a fixed scale s, (2.3) implies that the Fourier transform
WH(s, w) is also zero at negative frequencies, so it is also a Hardy function.
Let ¢(s,x) and p(s,x) be respectively the argument and modulus of the
complex number Wf(s,x). The argument ¢(s,x) is also called the phase of
the wavelet transform. Grossmann [10] indicates that in the neighborhood
of an isolated singularity located at xo, the lines in the scale-space (s,x)
where the phase ¢ (s, x) remains constant, converge to the abscissa xo, when
the scale s goes to 0. One can use this observation to detect singularities,
but the phase ¢(s,x) is not sufficient to measure their Lipschitz regularity.
Moreover, the value of ®{s, x) is unstable when the modulus p{s, x} is close to
zero. It is thus necessary to combine the modulus and the phase information
to characterize the different singularities, but no effective method has been
derived yet.

In computer vision, it is extremely important to detect the edges that
appear in images, and many researchers (25, 27, 18, 19, 6] have developed
techniques based on multiscale transforms. These multiscale transforms
are equivalent to a wavelet transform but have been studied before the
development of the wavelet formalism. Let us call a smoothing function
any real function 8(x) such that 8(x} = O(1/(1 + x?)} and whose Fourier
transform satisfies 6(0) # 0. Theintegral of a smoothing function is therefore
nonzero. A smoothing function can be viewed as the impulse response of a
low-pass filter. An important example often used in computer vision is the
Gaussian function. Let 8.(x) = 1/s8(x/s). Edges at the scale s are defined as
local sharp variation points of f(x) smoothed by 0(x). Let us explain haw
to detect these edges with a wavelet transform. Let ' (x) and Y4(x) be the
two wavelets defined by

1iy) = 98(x) 20y . 478(x)
Yl{x) = I and VY (x) = Tl (4.2)

The wavelet transforms defined with respect to each of these wavelets are
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given by:
W'f(s,x) = fx ¥l (x) and W?Z(s,x) = f+WZ(x). (4.3)
1 s sdf, _ _d~ 44
Wi(s,x) =f ( Ix )(X)—sdx(f*es)(X) (4.4
and
d?e d?
2 _ 2479 29 c.a.
W<f(s,x) = f* (s ) ) (x)=s dxz(f 8:)(x). {4.5)

The wavelet transforms W 'f(s, x} and W4f(s, x) are proportional to, respec-
tively, the first and second derivative of f{x) smoothed by 8(x). For a fixed
scale s, the local extrema of W'f(s,x) along the x variable correspond to
the zero-crossings of W2f(s, x) and to the inflection points of f + 95(x) (see
Figure 4.1).

If the wavelet Y2{x) is continuously differentiable, the wavelet trans-
form WZf(s,x) is a differentiable surface in the scale-space plane. Hence.
the zero-crossings of W2f(s, x) define a set of smooth curves that often look
like fingerprints [27]. Let us prove that one can define a particular Hardy
wavelet such that the phase of the wavelet transform remains constant or
changes sign along these fingerprints.

Let 3 (x) be the Hilbert transform of Y2 (x)and Y*(x) = P2 (x) +ip*{x).
The wavelet Y*(x) is a Hardy wavelet. Let W*f(s,x) = f + Yr}(x). The real
part of W*f(s,x) is equal to W2f(s,x). Hence, the phase ¢ (s, x) is equal to
n/2 or —n/2 if and only if W2f(s,x) = 0. Since W*f(s,x} is a continuous
function, the phase ¢{s, x) cannot jump from n/2 to —-7/2 along a connected
line in the scale space, unless the modulus is equal to 0. If the modulus of
W4f(s,x)is equal to 0, the phase is not defined and it can change sign at these
points. Similarly to lines of constant phase, the zero-crossings “fingerprints”
indicate the locations of sharp variation points and singularities but do not
characterize their Lipschitz regularity. We need more information about the
decay of IWZf(s,x)|, in the neighborhood of these zero-crossings lines.

Detecting the zcro-crossings of W2f(s,x) or the local extrema of
W 'f(s,x) are similar procedures but the local extrema approach has several
important advantages. An inflection point of f « 9.(x) can either be a
maximum or a minimum of the absolute value of its first derivative. As in
the abscissa xo and x; of Figure 4.1, the local maxima of the absolute value
of the first derivative are sharp variation points of f « 9,(x} whereas the
minima correspond to slow variations (abscissa xy ). These two types of
inflection points can be distinguished by looking whether an extremum of
[W'f(s,x)| is a maximum or a minimum but they cannot be differentiated
from the zero-crossings of W2f(s,x). For edge or singularity detection,
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we are only interested in the local maxima of |W'f(s,x)|. When detecting
the local maxima of [W'f(s,x)|, we can also keep the value of the wavelet
transform at the corresponding location. With the results of theorems 3.3
and 3.4, we prove in the next section that the values of these local maxima
often characterize the Lipschitz exponents of the signal irregularities.

fx)

Figure 4.1: The extrema of Wf(s,x) and the zero-crossings of
WZf(s,x) are the the inflection points of f x 8.(x). The points of
abscissa xo and x; are sharp variations of f  8.(x) and are local
maxima of W 'f(s, x)|. The local minimum of |W 'f(s, x )i in x; is also
an inflection point but it is a slow variation point.

5. Wavelet transform local maxima

5.1. General properties

By supposing that the wavelet {(x) is the first derivative of a smoothing
function, we impose that {(x) has only one vanishing moment. In general,
we do not want to impose only one vanishing moment because, as explained
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in Section 3, then we cannot estimate Lipschitz exponents larger than 1. In
this section, we study the mathematical properties of the wavelet local max-
ima and explain how to measure Lipschitz exponents. Let us first precisely
define what we mean by local maximum.

Definition 5.1. Let Wit(s, x) be the wavelet transform of a function f{x).

, W
« We call local extremum, any point (se.xo) such that 2%2 2% has a

zero-crossing at x = xo, when x varies.

« We call local maximum, any point (s¢,xe) such that Wif{se.xd =
IWt(s0. xo )l when x belongs to either a right or the left neighborhood
of xo, and Wf(sa.x)! € [Wf(sp, xo )l when x belongs to the other side of
the neighborhood of xo.

« We call maxima line, any connected curve in the scale space (s, x| along
which all points are local maxima.

A local maximum {so, xo ) of the wavelet transform is strictly maximum
either on the right or the left side of the xo. To speak of local maximum of
the wavelet transform is an abuse of language since we really mean a local
maxima of the wavelet transform modulus, but it simplifies the explanations.
The first theorem proves that if the wavelet transform has no maximum in a
neighborhood, then the funciion is uniformly Lipschitz &, for « - n.

Theorem 5.2. Let n be a strictly positive integer. Let (X} be a wavelet
with compact support, n vanishing moments and n times continuously
differentiable. Let f(x) < L'{'a, bl).

« If there exists a scale so > Osuch that forall scales s < scand .- ab .
Wils.x) has no local maxima, then for any ¢ = 0and & - & fixiis
unitormly Lipschitz xonla + ¢.b ¢

s If Y(x) is the n'" derivative ot a smoothing function, then f{xi is uni-
formly Lipschitz n on any suchinterval la + ¢, b - <™.

The proof of this theorem is in Appendix A. In the following, we sup-
pose that ¥(x) is the n™ derivative of a smoothing function. In this case
we can prove that the function is locally Lipschitz a for the integer value
a - n because the wavelet P(x) has no more than n vanishing moments.
Theorem 5.2 implies that on the intervals la + €, b -- ¢l, f(x) has no singu-
larity. Indeed, singularities were defined as points where the function is
not Lipschitz 1. Let us define the closure of the wavelet transform maxima
of f(x) as the set of points xo such that for any ¢ > O and scale s¢ >~ O,
there exists a wavelet transform local maxima at a point (s, xy) that satisfy
Ix} - xol < € and sy < so. This closure 1s the set of points on the real line that
are arbitrarily close to some local maxima in the scale-space (s, x}.
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Corollary to 5.2. "'he closure of the set of points where f(x) is not Lipschitz n
is included in the closure of the wavelet transform maxima of f(x).

This corollary is a straightforward implication of Theorem 5.2. It proves
that all singularities of f(x) can be located by following the maxima lines
when the scale goes to zero. It is however not true that the closure of the
points where f(x) is not Lipschitz n is equal to the closure of the wavelet
transform maxima. Equation (5.10) proves for example that if {(x) is anti-
symmetrical then for f(x) = sin(x), all the points pmr, p € Z, belong to the
closure of the wavelet local maxima, although sin(x) is infinitely continu-
ously differentiable at these points. Let us now study how to use the value of
the wavelet transform maxima in order to estimate the Lipschitz regularity of
f(x) at the points that belong to the closure of the wavelet transform maxima.

5.2. Non-oscillating singularities

In this section, we study the characterization of singularities when locally the
function has no oscillations. The next section explains the potential impact
of oscillations. We suppose that the wavelet {»(x) has compact support, is
n times continuously differentiable and is the n'* derivative of a smoothing
function. The following theorem characterizes a particular class of isolated
singularities from the behavior of the wavelet transform local maxima.

Theorem 5.3. Let f(x} be a tempered distribution whose wavelet transform
is well defined over la, bl and let xo < la,bl. We suppose that there exists
a scale s¢ > 0 and a constant C such that for x £ Ta, bl and s < s¢, all the
maxima of Wf(s, x) belong to a cone defined by

ix = xpl € Cs. (5.1}

Then, at all points x1 < Ta,b{, xy # x¢, f(x] is uniformly Lipschitz n in
a neighborhood of x;. Let @ < n be a non-integer. The function f(x) is
Lipschitz o at xe if and only if there exists a constant A such that each local
maxima (s, x) in the cone defined by (5.1] satisfies

IWTf(s, x)i < As®. (5.2)

The proof of this theorem is given in Appendix B. Equation (5.2) is
equivalent to

log (Wf(s,x)I < log(A) + alog(s). (5.3)

If the wavelet transform maxima satisfy the cone distribution imposed by
Theorem 5.3, (5.3) proves that the Lipschitz regularity at x¢ is the maximum
slope of straight lines that remain above log [Wf(s, x)|, on a logarithmic scale.

Characterization of singularities }
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The fact that all local maxima remain in a cone that points to x¢ implies that
f(x) is Lipschitz n at all points x € la,bl, # xo. Figures 5.2a through 5.2e
show the wavelet transform of a function with isolated singularities that
verify the cone localization hypothesis. To compute this wavelet transform
we used a wavelet with only 1 vanishing moment. The graphs of U (x) and

its primitive 8(x) are shown in Figures 5.1a and 5.1b. The Fourier transform
of Y(x)is

o [sin(w/4))*
Plw) =iw <~Tu74_—) . (5.4)

This wavelet belongs to a class for which the wavelet transform can be
computed with a fast aigorithm [28].

y(x)

E & £ €

<

Lt gt
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Figure 5.1a: Graph a wavelet {(x) with compact support and one
vanishing moment. It is a quadratic spline.

In numerical computations, the input function is not known at all ab-
scissa x but is characterized by a uniform sampling which approximates f(x)
at a resolution that depends upon the sampling interval {16]. These samples
are generally the result of a low-pass filtering of f(x) followed by a uniform
sampling. If we suppose for normalization purpose that the resolution is 1,
then we can compute the wavelet transform of f(x) only at scales larger than
1. When a function is approximated at a finite resolution, strictly speaking, it
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Figure 5.1b: Graph of the primitive 8(x) with compact support.
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Figure 5.2a: In the left neighborhood of the abscissa 0.16, the signal
locally behaves like 1 + (0.16 — x)®2 whereas in the right neigh-
borhood it behaves like 1 + (x — 0.16)°¢. At the abscissa 0.44 the
signal has a discrete Dirac (Lipschitz regularity equal to —1). At0.7,
the Lipschitz regularity is 1.5 and at the abscissa 0.88 the signal is
discontinuous.

is not meaningful to speak about singularities, discontinuities and Lipschitz
exponents. This is illustrated by the fact that we cannot compute the asymp-
totic decay of the wavelet transform amplitude since we cannot compute the
wavelet transform at scales smaller than 1. In practice, we still want to use the
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Figure 5.2b: Wavelet transform between the scales 1 and 28 com-
puted with the wavelet shown in Figure 5.1a. The finer scales are at
the top and the scale varies linearly along the vertical. Black, grey
and white pointsindicate that the wavelet transform has respectively
negative, zero and positive values.

S &

i

Figure 5.2c: Each black point indicates the position of a local maxi-
mum in the wavelet transform shown in Figure 5.2b The singularity
of the derivative cannot be detected at the abscissa 0.7 because the
wavelet has only one vanishing moment.

mathematical tools that describe singularities, even though we are limited
by the resolution of measurements. Suppose that the approximation of f(x)
at the resolution 1is given by a set of samples (fn Jnez with f, = 0forn < ng
and fn = 1 for n > ny, like at the abscissa 0.88 of Figure 5.2a. We would
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Figure 5.2d: Local maxima of the wavelet transform of the signal in
Figure 5.2a, computed with a wavelet with two vanishing moments.
The number of maxima line increases. The singularity of the deriva-
tive at 0.7 can now be detected from the decay of the wavelet local
maxima.

like to say that at the resolution 1, f{x) behaves as if it has a discontinuity at
n = no although it is possible that f(x) is continuous at no but has a sharp
transition at that point which is not visible at the resolution 1. The charac-
terization of singularities from the decay of the wavelet transform enables
us to give a precise meaning to this discontinuity at the resolution 1. Since
we cannot measure the asymptotic decay of the wavelet transform when the
scale goes to 0, we measure the decay of the wavelet transform up to the
finer scale available. The Lipschitz exponents are computed by finding the
coefficient o such that As* approximates at best the decay of [Wf(s, x){ over
a given range of scales larger than 1 (see Figure 5.2b). With this approach,
we can use Lipschitz exponents to characterize the irregularities of discrete
signals. In Figure 5.2b, the discontinuity appears clearly from the fact that
[Wf(s,x)| remains approximatively constant over a large range of scales, in
the neighborhood of the abscissa 0.88. Negative Lipschitz exponents corre-
spond to sharp irregularities where the wavelet transform modulus increases
at fine scales. A sequence (f,),ez with f, = 0for n # ng, and f,, = 1,
can be viewed as the approximation of a Dirac at the resolution 1. At the
abscissa 0.44, the signal of Figure 5.2a has such a discrete Dirac. The wavelet
transform maxima increase proportionally to s~' over a large range of scales,
in the corresponding neighborhood. In the rest of this paper, we suppose
that all numerical experiments are performed on functions approximated at
the resolution 1 and we consider that the decay of the wavelet transform
at scales larger than 1 characterize the Lipschitz exponent of the function

Characterization of singularities }
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Figure 5.2e: Decay of log, |Wf(s,x)| as a function of log,(s) along
the two maxima lines that converge to the point of abscissa 0.16,
computed with the wavelet of Figure 5.1a. The two different slopes
show that the f(x) has a different singular behavior in the left and
right neighborhood of 0.16 and we can distinguish the two exponents
0.2and 0.6.

up to the resolution 1. Fast algorithms to compute the wavelet transform
are described in [16, 12]. We shall not worry anymore about the opposition
between asymptotic measurements and finite resolution.

The local maxima of the wavelet transform of Figure 5.2b are shown
in Figure 5.2c. The black lines indicate the position of the local maxima in
the scale-space. Figure 5.2e gives the value of log, [Wf(s,x)| as a function
of log,(s) along each of the two maxima line that converge to the point of
abscissa 0.16, between the scales 2' and 28. It is interesting to observe that
at fine scales, the slopes of these two maxima lines are different and are
approximatively equal to 0.2 and 0.6. This shows that f(x) behaves like a
function Lipschitz 0.2 in its left neighborhood and a function Lipschitz 0.6 in
its right neighborhood. The Lipschitz regularity of f(x) at 0.16 is 0.2 which
is the smallest slope of the two maxima lines.

At this point one might wonder how to choose the number of vanish-
ing moments to analyze a particular class of signals. If we want to estimate
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the Lipschitz exponents up to a maximum value n, we know that we need a
wavelet with at least n vanishing moments. In Figure 5.2¢, there is one max-
ima line converging to the abscissa 0.7 along which the decay of log/Wf(s, x}|
is proportional to log(s). The signal was built from a function whose deriva-
tive is singular but this cannot be detected from the slope of log [Wf(s,x)|
because the wavelet has only one vanishing moment. Figure 5.2d shows the
maxima line obtained from a wavelet which has two vanishing moments.
The decay of the wavelet transform along the two maxima lines that converge
to the abscissa 0.7 indicates that f(x) is Lipschitz 1.5 at this location. Using
wavelets with more vanishing moments has the advantage of being able to
measure the Lipschitz regularity up to a higher order but it also increases the
number of maxima lines as can be observed by comparing Figure 5.2¢c and
Figure 5.2d. Let us prove this last observation. A wavelet y(x) with n + 1
vanishings moment is the derivative of a wavelet 1'(x) with n vanishing
moments. Similarly to {4.4), we obtain

WH(s,x) :si(f*w;)(x) :siW‘f(s,x). (5.5)
dx ox

The wavelet transform of f(x) defined with respect to Y(x) is proportional
to the derivative of the wavelet transform of f(x) with respect to ¥ '(x).
Hence, the number of local maxima of |Wf(s,x)| is always larger than the
number of local maxima of [W'f(s,x)|. The number of maxima at a given
scale often increases linearly with the number of moments of the wavelet.
In order to minimize the amount of computations, we want to have the
minimum number of maxima necessary to detect the interesting irregular
behavior of the signal. This means that we must choose a wavelet with
as few vanishing moments as possible but with enough moments to detect
the Lipschitz exponents of highest order that we are interested in. Another
related property thatinfluences the number of local maxima is the number of
oscillations of the wavelet ¥{x). For most types of singularities, the number
of maxima lines converging to the singularity depends upon the number of
local extrema of the wavelet itself. A Dirac 5(x) gives a simple verification
of this property since Wb(s,x) = 1/sP(x/s). A wavelet with n vanishing
moments has at least n + 1 local maxima. In numerical computations, it
is better to choose a wavelet with exactly n + 1 local maxima. In image
processing, we often want to detect discontinuities and peaks which have
Lipschitz exponents smaller than 1. It is therefore sufficicnt to use a wavelet
with only one vanishing moment. In signals obtained from turbulent fluids,
interesting structures have a Lipschitz exponent between 0 and 2 [3]. We thus
need a wavelet with two vanishing moments to analyze turbulent structures.

Let us suppose that the wavelet ¥ (x) has a symmetrical support equal
to [-K, K]. We call the cone of influence of x¢ in the scale-space plane the set

Characterization of singularities }
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of points (s, x) that satisfy
Ix — xol < Ks.

It is the set of point (s,x) for which Wf(s,x) is influenced by the value of
f(x) at xo. In order to characterize the regularity of f(x) at a point xp, one
might think that it is sufficient to measure the decay of the wavelet transform
within the cone of influence of xo. Theorem 3.4 proves that this is wrong in
general and that one must also measure the decay of the wavelet transform
below this cone of influence. This is due to oscillations that can create a
singularity at xo. The next theorem shows tha. if we suppose that f(x) has
no such oscillations, then the regularity of f{x) at a point xo is characterized
by the behavior of its wavelet transform along any line that belongs to a
cone strictly smaller than the cone of influence. Section 5.3 explains why
this property is wrong when f(x) oscillates too much. In the following we
suppose that Y({x) is a wavelet which is n times continuously differentiable,
has a support equal to [—K, K], and is equal to the n* derivative of a function
8{x). We also impose that 8(x) is strictly positive on the interval | - K, K[.

Theorem 5.4. Let xo € R, f(x) € LZ(R). We suppose that there exists an
interval la, b[, with xo € |a,b{, and a scale so > 0 such that the wavelet
transform Wf(s,x) has a constant sign for s < se and x € la,b{. Let us
also suppose that there exists a constant B and € > 0 such that for all points
x € la, b[ and any scale s

(Wf(s,x}| < Bs*. (5.6)

Let x = X(s) be a curve in the scale space (s,x) such that [xo0 — X(s)| € Cs,
with C < K. It there exists a constant A such that for any scale s < sy, the
wavelet transform satisfies

[Wf(s,X(s))l < AsY with0<y<n, (5.7)
then f(x) is Lipschitz « at xo, for any a < .

The proof of this theorem is in Appendix C. One can easily prove
that the sign constraint over the wavelet transform of f(x) is equivalent to
imposing that the n'* derivative of f(x) is a distribution whose restriction to
la, bl has a constant sign. Theorem 5.4 shows that the regularity of f(x) is
controlled by the behaviour of its wavelet transform in the cone of influence,
if its n'™ derivative does not have an oscillatory behavior that accelerates in
the neighborhood of xo. A similar theorem can be obtained if we suppose
that the n'* derivative of f(x) has a constant sign over |a, xo[ and ]xo, b] but
changes sign at xo. This means that in the neighborhood of xo, Wf(s,x) has
only one zero-crossing at any fixed scale s which is small enough. When s
goes to zero, the zero-crossing curve converges to the abscissa xo. In this case,
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we need to control the decay of the wavelet transform along two lines that
remain respectively in the left and the right part of the cone of influence of xo.

From Theorem 5.4, one can compute the Lipschitz regularity of non-
isolated singularities from the behavior of the wavelet transform maxima.
We test whether the . ravelet transform has a constant sign in the neighbor-
hood of x¢ by testing, the sign of the wavelet transform local maxima. It is
also sufficient to verify (5.6} along the lines of maxima in the neighborhood
of xo. The Lipschitz regularity of f(x) at xo is computed from the decay of
the wavelet transform along one line of maxima that converges towards xq.
Let us emphasize again that if at each scale the wavelet transform has only
one zero-crossing in a neighborhood of xo, Theorem 5.4 can be extended
by measuring the decay of the wavelet transform along two curves that are
respectively in the left and the right parts of the cone of influence of xo.

A “devil staircase” is an interesting example to illustrate the application
of Theorem 5.4 to the detection of non-isolated singularities. The derivative
of a devil staircase is a Cantor measure. For the devil staircase shown in
Figure 5.4a, the Cantor measure is built recursively as follow. For p =0,
the support of the measure o is the interval [0,1], and it has a uniform
density equal to 1 on [0, 1]. The measure u, is defined by subdividing each
domain where u,_y has a uniform density equal to a constant ¢ > 0, into
three domains whose respective sizes are 1/5, 2/5 and 2/5. The density of
the measure i, is equal to 0 in the central part, to ¢/3 in the first part and
to 2¢/3 in last part (see Figure 5.3). One can verify that J’g upldx) = 1. The
limit measure u, obtained with this iterative process is a Cantor measure.
The devil staircase is defined by:

x
f(x) :J Moo (dX).
QO

Figure 5.4a shows the graph of a devil staircase and Figure 5.4b its wavelet
transform computed with the wavelet of Figure 5.1a. For a devil staircase,
we can prove that the maxima lines converge exactly to the points where the
function f(x) is singular. There is no maxima line that converges to a point
where the function is not singular.

Proof. By definition, the set of points where .ne maxima lines converge is
the closure of the wavelet transform maxima, and the Corollary to 5.2 proves
that it includes the closure of the points where f(x) is singular. For a devil
staircase, the support of the points where f(x) is singular is equal to the
support of the Cantor measure, which is a closed set. It is thus equal to its
closure. For any point xo outside this closed set, we can find a neighborhood
Ixo ~ €,x0 + €[ which does not intersect the support of po(x). On this open
interval, f(x) is constant so for s small enough and x € |xo — €/2,%0 + €/21,
Wif(s,x)is equal to zero. The point xo therefore cannot belong to the closure
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of the wavelet transform maxima. This proves that the closure of the wavelet
transform maxima is included in the singular support of f(x). Since the
opposite is also true, it implies that both sets are equal. [

For the particular devil staircase that we defined, the Lipschitz regu-
larity of each singular point depends upon the location of the point. One
can prove [3] that at all locations, Lipschitz exponent o satisfies

log(2/3) o< log(1/3)

log(2/5) = = log(1/5)

Hence, (5.6) of Theorem 5.4 is verified for ¢ < log(2/3)/log(2/5). Since a
devil staircase is monotonically increasing and our wavelet is the derivative
of a positive function, the wavelet transform remains positive. Theorem 5.4
proves that the local Lipschitz regularity of f(x) at any singular point can be
estimated from the decay of the wavelet transform along the maxima line that
converges to that point. Figure 5.4cshows the position of the maxima lines in
the scale-space. The renormalization properties of the Cantor set appear as
renormalization properties of the graph of maxima lines. Muzy, Bacry and
Arneodo [23] have shown that one can precisely compute the singularity
spectrum f(a) of multifractal signals from the evolution across scales of the
wavelet transform local maxima. These results are particularly interesting
for studying irregular physical phenomena such as turbulences [23].

1/5 2/5

Figure 5.3: Recursive operation for building a multifractal Cantor
measure. The Cantor measure is obtained at the limit of this iterative
procedure.

5.3. Singularities with fast oscillations

If the function f(x) is osciilating quickly in the neighborhood of xo, then one
cannot characterize the Lipschitz regularity of f(x) from the behavior of its
wavelet transform in the cone of influence of xo. We say that a function f{x)
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Figure 5.4a: Devil staircase.

Figure 5.4b: Wavelet transform of the devil staircase computed with
the wavelet of Figure 5.1a. Black and white points indicate respec-
tively that the wavelet transform is zero or strictly positive.

has fast oscillations at x, if and only if there exists « > 0 such that f(x} is not
Lipschitz a at xo but its primitive is Lipschitz a + 1 at xo. This situation occurs
when f(x} is a function which oscillates very quickly and whose singularity
behavior at xo is dominated by these oscillations. The integral of f(x) av-
erages f(x) so the oscillations are attenuated and the Lipschitz exponent at
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Figure 5.4¢: Local maxima of the wavelet transform shown in Fig-
ure 5.4b.

xo increases by more than 1. Singularities with such an oscillatory behavior
have been thoroughly studied in mathematics [29]. A classical example is
the function f(x) = sin(1/x) in the neighborhood of x = 0. This function is
not continuous at 0 but is bounded in the neighborhood of 0 so its Lipschitz
regularity is equal to 0 at x = 0. Let g(x) be a primitive of sin{1/x), one
can easily prove that |g(x) — g{0)| = O(x?) in the neighborhood of x = 0,
so g(x) is Lipschitz 2 at this point. By computing the primitive of f(x), we
increase the Lipschitz exponent by 2 because the oscillations of sin(1/x) are
attenuated by the averaging effect.

Let f(x) be a function with fast oscillations at xo and let g(x) be its
primitive. Let ' (x) be the derivative of y(x). Since g(x) is Lipschit7 o + 1,
the necessary condition (3.9) of Theorem 3.4 implies that in a neighborhood
of xo, the wavelet transform defined with respect to P! (x) satisfies

W'g(s,x)I S A(s' T+ x —xoltt). (5.8)
Similarly to (4.4) we can prove that

Wg(s,x) = g« by(x) = s(f x w)(x) = sWf(s,x).
We thus derive that

Wf(s,x)| € A(s* + tix—xol''). (5.9)
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This equation proves that although f{x) is not Lipschitz «, in the cone of
influence of xo [Wf(s,x)| = O(s). The fact that f{x) is not Lipschitz a cannot
be detected from the decay of [Wf(s,x)| inside the cone of influence of x,,
but by looking at its decay below the cone of influence, as a function ot
Ix — xol. Since f(x) is not Lipschitz «, the necessary condition (3.9) implies
that for (s x) below the cone of influence of xo, the wavelet transform does
not satisfy [Wf(s,x)| = O(]x — xo{* ). When a function has fast oscillations, its
worst singular behavior at a point xo is observed below the cone of influence
of x¢ in the scale-space plane.

Let us study in more detail the case of f(x) = sin(1/x). Since the
primitive is Lipschitz 2, we can take @ = 1. Equation (5.9) implies that in
the cone of influence of 0, the wavelet transform satisfies |Wf(s, x)| = O{s).
Figure 5.4e shows the wavelet transform of sin(1/x). It has a high amplitude
along a curve in the scale space (s, x} which reaches (0,0} below the cone ot
influence of 0. It is along this path in the scale-space that the singular part
of f(x) reaches 0. Let us interpret this curve and prove that it is a parabola.
Through this analysis we derive a procedure to estimate locally the size of
the oscillations of f(x).

The function f(x) = sin{1/x) can be written f{x) = sin{w.x), where
w, = 1,/%% can be viewed as an “instantaneous” frequency. Let us compute
the wavelet transform of a sinusoidal wave of constant frequency we. It
we suppose that the wavelet Y(x} is antisymmetrical, as it is the case in our
numerical computations, from (2.3) we derive that the wavelet transform of
h{x) -= sin{wex) satisfies

IWhis, x}l = :‘cos((vox)NJ(son. (5.10)

For a symmetrical wavelet, the cosine is replace by a sine in the right-hand
side of this equation. For a fixed abscissa x, the decay of ‘Wh(s, x}: as a
function of s is proportional to the decay of [Wiswe)l. If i) reaches its
maxima at w = w,,, then for x fixed, IWh(s, x|Jlis maximum at so = Wy, . Wo.
The scale where [Wh(s, x)i is maximum is inversely proportional to the fre-
quency of the sinusoidal wave. The value of Wh{s, x)depends on the values
of hix) in a neighborhood of size proportional to the scale s, so the fre-
quency measurement is local. Since f(x) = sin{]/x) has an instantaneous
frequency w, - 1,2, for a fixed abscissa x, [Wf(s,x)|is globally maximum
for s ~ €m/wy = emx?. This is why we see in Figure 5.4e that the wavelct
transform has a maximum amplitude along a parabola that converges to
the abscissa 0 in the scale-space. This “instantaneous” frequency measure-
ment is based on an idea that has been developed previously by Escudie
and Torresani [9] for measuring the modulation law of asymptotic signals.
The results of Escudie and Torresani have also been refined by Delprat et
al. [8], who explain how to precisely extract the amplitude and frequency
modulation laws from a complex wavelet transform.

Characterization of singularities }
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Let us now study the behavior of the wavelet transform maxima. The
inflection points of f(x) are located at x = 1/(nn), for n € Z. Since the
wavelet P {x) has only one vanishing moment, all the maxima lines converge
toward the points x = 1/(nn). Since f(x] is continuously differentiable in
the neighborhood of 1/(nm), the wavelet transform along a maxima line
converging to 1/{nn) satisfies

We(s,x)| < Ans. (5.11)

The derivative of f{x) at 1/{nn) is equal to (-1)"* 'n? so one can derive
that A, = O(n?). ltis interesting to observe that along all maxima lines
in the neighborhood of 0, the wavelet transform decays propartionally to
the scale s although f(x) is discontinuous in 0. This singularity in 0 can
however be detected because the constants A, grow to +co when we get
closer to 0. Figure 5.4f displays the local maxima of the wavelet transform
of sin(1/x). In the neighborhood of 0, at fine scales, the maxima line have a
different geometry in the scale space (s, x) due to the aliasing when sampling
sin{1/x], for numerical computations. Let us now introduce the general
maxima points and explain how they are related to the size of the oscillations
of 1(x).

- M\WM‘W\[\/\/\
1 T T T 1

Figure 5.4d: Graph of sin(1/x1.

Definition 5.5. We call general maximum of Wit(s,x) a point ts¢, xo 1 where
Wf(s, x), has a strict local maximum within a two-dimensional neighbor-
hood in the scale-space plane (s, x).

Clearly, a general maxima point belongs to a local maxima line as de-
fined by Detinition 5.1. General maxima are points where Wf{s x} reaches
a local maximum when the variables (s, x) vary along a maxima line. Equa-
tion (5.10) proves that the maxima lines of the wavelet transform of sin{wex)
are vertical lines in the scale-space plane [s.x) givenby x - no forn. It
nplawl has one global maxima, for w .- 0, at W, and no other local maxima,
then (5 10} implies that there is only one general maximum along each max-
ima line and it appears at the scale s¢ - @ ‘we. A wavelet equal to the n'™
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Figure 5.4e: Wavelet transform of sin(1/x). The amplitude is n.axi-
mum along a parabola in the scale-space that converges to {0,0) in

7

Figure 5.4f: Local maxima of the wavelet transform.

X

LK ot

derivative of a Gaussian has such a property. If ip(w)| has several local max-
ima, for w > 0, there are several general maxima along each maxima line but
the one where |Wf(s, x)! has the highest value is at the scale so = w,,/wo.
One can thus recover the frequency wo from the location of this general max-
ima. Figure 5.4g displays the sub-part of each maxima line that is below the
general maxima of maximum amplitude. In the scale-space, these general
maxima belong to a parabola whose equation is approximatively given by
s = wm/wyx = Ax?. This equation is only an approximation because the
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Figure 5.4g: The maxima line are displayed from the scale where is
located the largest general maxima. The extremity of each maxima
line indicates the position of a general maxima point and it belongs
to a parabola in the scale-space (s, x).

frequency wy varies locally. A finer analysis of this type of property can be
found in the work of Delprat et al. [8]. If f(x) is locally equal to the sum of
several sinusoidal waves whose frequency are well apart, so that they can be
discriminated by U(sw) when s varies (see (5.10)), then we can measure the
frequency of each of these sinusoidal waves from the scales of the general
maxima that they produce. The efficiency of this method depends on how
concentrated is the support of W(w). Here, we are limited by the uncertainty
principle, which requires that {:(x) cannot have its energy well concentrated
both in the spatial ard frequency domains. To distinguish spectral lines that
are too close, it is necessary to use more sophisticated methods as described
by Delprat et al. [8].

Let us now give a spatial domain interpretation of this frequency mea-
surement. We show that if the wavelet {)(x) has orly one vanishing moment,
the general maxima points provide measurements of the local oscillations
even if the function is not locally similar to a sinusoidal wave. If ¥(x] is the
derivative of a smoothing function 8(x), (4.41 proves that

Wi(s,x) = s gL (f + 9,)(x),

dx

hence

[
Wf(s,x):J d,;%i)e(’f_,:_u) du. (5.12)

-

If locally f(x) has a simple oscillation like in Figure 5.5, %"—"’ has a constant

sign between the two top points x; and x; of the oscillation. The point
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(so,xo0)is a general maximum if the supportof 8({xo — x}/so) covers as much

as possible the positive part of d;‘x"), without paying the cost of covering a
domain where % is too negative. This means that the distance between

the two top points of the oscillation is of the order of the size of the support
of 8(x) multiplied by the scale s¢:

X2 — X %KS(\. (5]3)

This spatial domain interpretation shows that even if the function is not lo-
cally similar to a sinusoidal wave, the size of the oscillation is approximately
proportional to the scale so of the general maxima point. If the wavelet {)(x)
has more than one vanishing moment, this spatial interpretation is not valid.

fx)

\V .
x1l %2

X=X

L
df (x) __2
dx ’o“ ~~\\
x0-Ks0 o xO0+KsO
Y, WP 7™ ~ . N
Nt

Figure 5.5: We suppose that the wavelet is the first derivative of a
smoothing function 8(x). The point (s, o) is a general maxima of
the wavelet transform of f(x) if the function 9,,(x — x¢) covers a
domain as large as possible where the function f{x) has a positive
derivative.
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With (5.9), we saw that if a function f(x) has fast oscillations in the
neighborhood of xo, then the regularity at xo depends upon the behavior of
WfH(s,x) below the cone of influence of xo. To estimate this behavior, one
approach is to measure the decay of [Wf(s,x)| at the general maxima points
that are below the cone of influence of xo, when we converge towards xo.
Indeed, these general maxima points characterize the size of the oscillations
of f(x) and they give an upper bound for the value of the wavelet transform
along each maxima line. Theorem 3.4 proves that f(x) is Lipschitz x at x¢
only if IWf(s, x)] = Of|x — x0|¢) below the cone of influence. Hence, f(x) can
be Lipschitz « at a point x¢ only if the general maxima point (s;, x; ) below
the cone of influence of xo satisfies

WHE(si, xi )l = O (Ixi — xol®). (5.14)

This necessary condition gives an upper bound on the Lipschitz exponents
at xo. For f(x) = sin(1/x), (5.14) is satistied only for « = 0. We thus detect
the discontinuity at x = 0 from the values of the general maxima points.
In most situations, the general maxima points must be used in conjunction
with the local maxima lines in order to estimate the decay of 'Wf(s, x)! inside
and below the cone of influence of xo.

6. Completeness of the wavelet maxima

We proved that the singularities of a function can be detected from the
wavelet transform local maxima. One might wonder whether the positions
and the values of the wavelet transform maxima provide a complete and
stable representation of f(x). The reconstruction of a function from the local
maxima of its wavelet transform has been studied numerically by Zhong
and one of us [16]. Local maxima are detected only along a dyadic se-
quence of scales (2');.. 2 to obtain efficient numerical implementations. The
reconstruction algorithm recovers signals with a relative precision approx-
imatively equal to 1072, The remaining error is mostly concentrated in
the highest frequencies. More recently Meyer [22] proved that the wavelet
transform local maxima do not provide a complete signal representation.
He constructed different functions whose wavelet transform have the same
local maxima at all scales. However, these functions mostly differ at high
frequencies and their relative L2(R) distance is of the same order as the
precision of the numerical reconstruction algorithm. This seems to indi-
cate that the wavelet transform local maxima is “complete” modulo a small
high frequency error that remains to be identified mathematically. This sec-
tion reviews briefly the properties of a dyadic wavelet transform as well
as the algorithm that approximates a functions from local maxima. Sec-
tion 7 describes an application to the suppression of white noise with a local
estimation of Lipschitz exponents.

7%}
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We call dyadic wavelet transform the sequence of functions of the
variable x

(WF(2),x))jez. (6.1)
Equation (2.3) implies that the Fourier transform of Wf(2!,x) is given by
W12 w) = p2iw)f(w). (6.2)

The function f(x, can be reconstructed from its wavelet transform and the
reconstruction is stable [7, 16] if and only if there exists two constants A > 0
and B > O such that

t o0
A < }___ (2 w)® <B. (6.3)

) =

Let us denote by [IWF(21,x)|| the L2(R) norm of the function Wf(2}, x) along
the variable x. As a consequence of (6.3), by applying the Parseval theorem,
one can prove that a dyadic wavelet transform has finite energy

AR < Y IWHZ, ) < B, (6.:4)

Po-x

This means that (Wf(2',x)})jcz belongs to the Hilbert space 14(L°) of se-
quences of functions (g;j(x))jc¢ that satisfy

Y gt < +oo.

i -

Similarly to the continuous wavelet transform, the dyadic wavelet transform
is overcomplete. This means that any sequence {gj{x)};cz is not a priori the
dyadic wavelet transform of some function f ¢ [2{%®). The space V of all
dyadic wavelet transforms of functions in L(R) is strictly included in 12(L?).
An orthogonal projection from 12(L2) onto V is defined by a reproducing
kernel equation similar to {2.5) [16].

If the wavelet satisfies the condition {6.3), the Lipschitz regularity of
a function is also characterized by the decay across scales of the wavelet
transform at the scales {2');cz. Theorems 3.3 and 3.4 remain valid if we
restrict the scale to the sequence (2')jcz [14]. We can thus characterize the
regularity of a function from the behavior of the wavelet transform local
maxima at the dyadic scales. The results and theorems of Section 5 are valid
if we restrict the scale parameter s to (2')jc. Figure 6.1b is the dyadic
wavelet transform of the signal in Figure 6.1a, computed with the wavelet
shown in Figure 5.1a. The finer scale is limited by the resolution of the
original discrete signal. We also stop the decomposition at a finite largest
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fx

Figure 6.1a: Original signal.

scale. In Figure 6.1b, the largest scale is 2°. The information provided by the
dyadic wavelet transform at scales larger than 2 is given by one function
[16], shown at the bottom. It carries the lower frequencies of f{x). Figure 6.1c¢
displays the local maxima of the wavelet transform. Each Dirac indicates
the position and value of Wf(2' x) at a maxima location.

wf (2! .x) L T

Wf (22.3) 4 Y

wf (2°.x) A v

Wf (24 1) — ~7

Wf (2°.2) < ~
WF (2°.2) "

Figure 6.1b: Wavelet transform computed up to the scale 2°.

Figure 6.1b gives the remaining low-frequencies at scales larger than 2°.
Since the wavelet is the first derivative of a smoothing function, the
wavelet transform maxima are located where the signal has sharp transitions.
They provide an adaptive description of the signal information. The more
irregularities in the signal, the more wavelet maxima. Let us now study

%0 }
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Figure 6.1c: Local maxima of the wavelet transform. At each scale,
each Dirac indicates the position and value of a wavelet transtorm
local maximum. We also keep the remaining low-frequency infor-
mation shown at the bottom.

Figure 6.1d: Signal reconstructed from the wavelet transtorm local
maxima shown in Figure 6.1c.

the completeness of this local maxima representation and briefly explain the
reconstruction algorithm introduced by Zhong and one of us [16]. We want
to characterize the set S of all possible wavelet transforms that have exactly
the same local maxima as the wavelet transform of f(x). The representation
is complete if and only if the set S is reduced to the wavelet transform of
f(x). Clearly S is included in the space V of all dyadic wavelet transtorms.
The set S is also included in the set I' of all sequences of functions {g;(x}};ez
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in 12(L2) such that for each integer j, the local maxima of g;(x) occur at the
same locations and have the same values as the local maxima of Wf(2!, x).
For each j € Z, we require that g;{x) belongs to the space H'(:) of functions
one-time differentiable in the sense of Sobolev so that their local maxima are
well defined. This other constraint is justified if the wavelet Y(x) & H'(R)
since it implies that WH(2},x) € H(R). Itis easy to verify that

rnvs=Ss,

If the representation is not complete, then the set S is not reduced to the
wavelet transform of f(x). One can still recover a good approximation
of this wavelet transform if the size of S is “small”. The reconstruction
algorithm is based on alternative projections on the set I' and the Hilbert
space V. We begin with an initial sequence of functions (g;(x}};ez arbitrarily
chosen and then project successively this initial sequence on V and I, as
illustrated by Figure 6.2. If the discrete signal has a total of N samples, the
computational complexity of the projections on V and I"is O(Nlog N) [16].
The convergence of the alternative projection algorithm to the intersection
of I and V is not proved. However, in all our numerical experiments, the
algorithm does converge fast. The root mean-square error to signal ratio of
the reconstructed signal is of the order of 5 x 1074 after 20 iterations on the
projection operators [16]. Figure 6.1d is an example of signal reconstructed
with 20 iterations. The differences with the original function are not visible
on the graph. ' we increase the number of iterations, the reconstruction
error decrease out reaches a limit which is of the order of 1072, This
limitation of precision is due to the non-completeness of the local maxima
representation. Meyer proved recently {22] that for some particular functions
f(x), one can find high frequency perturbations e(x) such that Wf(2' x) and
W(f + €)(2}, x) have the same local maxima at all scales 2'. This means that
the solution set S is not reduced to the wavelet transform of f{x). However,
the numerical experiments as well as the mathematical counter-examples
seem to indicate that S is small. A precise mathematical characterization
of the set S remains to be done. Once we recover a wavelet transform that
belongs to S, we reconstruct the corresponding signal by applying the inverse
wavelet transform operator. From a practical point of view, the numerical
precision of this reconstruction algorithm is sufficient for a large class of
signal processing applications. The next section describes an application
to denoising.

7. Signal denoising based on wavslet maxima in one dimension

The properties of a signal can be modified by processing its wavelet trans-
form maxima and then reconstructing the corresponding function. We de-
scribe an application to denoising based on a local estimation of the signal

%2 }
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initial point

4

solution V

Figure 6.2: The reconstruction of the wavelet transform of f(x} is
done with alternative projections on the set I' that expresses the
constraints on the local maxima and on the space V of all dyadic
wavelet transforms. The wavelet transform of f(x) is included in the
intersection I'and V.

singularities. The most classical technique to remove white noise from a
signal is to convolve the signal with a Gaussian filter. For a large class of
important signals, the energy of the white noise dominates the signal at high
frequencies whereas the energy of the signal dominates the noise at low fre-
quencies. The Gaussian low-pass filtering attenuates the high frequencies
and keeps the low frequencies. As a consequence, a large portion of the noise
is removed but the sharp variations of the original signal are smoothed. The
fact that most of the signal energy is concentrated in low-frequencies often
indicates that most of the singularities have Lipschitz exponent that are pos-
itive. Our denoising algorithm discriminates the signal and the noise with a
local analysis of the singularity types.

Let us first describe the properties of the wavelet transform of white
noise. lLet n(x} be a real white noise random process and Wn(s, x) be its
wavelet transform. We denote by E(X) the expected value of a random
variable X. We suppose that the wavelet \(x) is real. Grossmann et al. [10]
have shown that the decay of E(IWn(s, x)1?) is proportional to 1/s. Indeed,

wn(s, x)? :J J niun{v)p{x -- ug,[x — v)dudv.
Since n(x) is a white noise, Z(n{u)n(v)) = d(u ~ v), hence

[ W) [
Euwms.xnz)vj J Blu -~ VIUL(x -~ Wibalx — v)du dv.

— o~
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We thus derive that

2
E(IWn(s,x)I?) = @ (7.0

At a given scale s, the wavelet transform Wn(s,x} is a random pro-
cess in x. If we suppose that the white noise n{x) is Gaussian white noise
then Wn(s, x) is also a Gaussian process. From this property, we prove in
Appendix D that at a scale s, the density of local maxima of the wavelet
transform is

A

= -l (7.2
A !

1
g N
where " (x] is the n™ derivative of Y(x) and A a constant between .3
and 1. The density of local maxima is inversely proportional to the scale s.
The realization of white noise is a distribution which is almost everywhere
singular. One can prove that the singularities of Gaussian white noise are
Lipschitz 1/2. Figure 7.1a is a signal obtained by adding Gaussian white
noise of variance 1 to the signal of Figure 6.1a. Figure 7.1b shows its dvadic
wavelet transform.

ﬁ"-r‘v'vvl-'r'l'vuvl‘ﬁv-l

Figure 7.1a: Signal of Figure 6.1a to which we added Gaussian white
noise of variance 1.

Let us suppose that the original signal has isolated singularities whose
Lipschitz regularities are positive. Since the noise creates singularities whose
Lipschitz regularity is negative, we can discriminate the local maxima cre-
ated by the white noise from the ones produced by the signal, by looking at
the evolution of their amplitude across scales. If the local maxima have an
amplitude which increases when the scale decreases, it indicates that the cor-
responding singularities have negative Lipschitz exponents. These maxima
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Figure 7.1b: Wavelet transform computed up to the scale 2*.
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Figure 7.1c: Local maxima of the wavelet transform. At coarser
scales the maxima of the signal discontinuities dominate the maxima
of the white noise.

are mostly dominated by the white noise and thus are removed. At the lo-
cations where the signal has singularities with positive Lipschitz exponents,
the noises adds singularities with nega. ve Lipschitz exponents. Mathe-
matically, the sum is a signal whose singularities have negative L. schitz
exponents. However, if the signal dominates the noise at low frequencies,
wherever the signal is singular, at coarse scales the amplitude of the local
maxima is mostly influenced by the signal variations. Since the signal sin-
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gularities have positive Lipschitz exponents, at coarse scales the amplitude
of the corresponding maxima do not increase when the scale decreases. This
can be observed in the neighborhood of the discontinuities of the noisy signal
shown in Figures 7.1a through 7.1c.

In order to evaluate the behavior of the wavelet maxima across scales,
we need to make a correspondence between the maxima that appear at
different scales 2i. We say that a maxima at a scale 2 propagates to another
maxima at the coarser scale 2 * ! if both maxima belong to the same maxima
line in the scale space (s,x). Equation (7.2) proves that for a white noise,
on average, the number of maxima decreases by a factor 2 when the scale
increases by 2. Half of the maxima do not propagate from the scale 2
to the scale 2'''. In order to find which maxima propagate to the next
scale, one should compute the wavelet transform on a dense sequence of
scales. However, with a simple ad-hoc algorithm one can still try to find
which maxima propagate to the next scale, by looking at their value and
position with respect to other maxima at the next scale. The propagation
algorithm supposes that the maxima that propagate from a scale 2’ to a
coarser scale 21'" are the ones which locally have the largest amplitude
and which have a location which is close to a maxima at the scale 2', whose
amplitude has the same sign. Such an ad-hoc algorithm is not exact but saves
computations since we do not need to compute the wavelet transform at any
other scale. The denoising algorithm removes all maxima whose amplitude
increase on average when the scale decreases, or which do not propagate
at larger scales. These are the local maxima that are mostly intluenced by
the noise fluctuations. Figure 7.3a shows the local maxima that are kept by
the denoising algorithm. As expected, these local maxima correspond to the
signal discontinuities. The position and amplitude of the remaining local
maxima is affected by the white noise components in the corresponding
neighborhood. The white noise introduces more distortions at tine scales
because the signal to noise ratio is smaller. The maxima selection algorithm
is based on an analysis of singularity types and thus cannot be used to
discriminate the low-frequency sinusoidal components of the signal from
the white noise. Hence, we do not try to select local maxima below the scale
2%, and keep both the signal and the noise components below this scale. This
non-linear filtering algorithm, like a Gaussian smoothing, does not modifv
the lowest frequencies but it removes selectively the fine scales components
depending upon the local singularity types.

After the maxima selection, we reconstruct a “denovised” signal with
the alternative projection algorithm previously described. A priori, there is
no guarantee that there exists a function whose wavelet transform has local
maxima that correspond exactly to the maxima that we selected. This means
that the set I' that characterizes the maxima constraints might not intersect
the space V of all wavelet transforms (see Figure 7.2). The reconstruction

&6}
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algorithm thus does not converge but if we stop after enough iterations (20
in practice), we reconstruct a sequence of functions which is close to I" and
V. The function shown in Figure 7.3b was obtained after 20 such iterations.
As can be observed, the two discontinuities of the original function are still
perfectly sharp. The overshoot is due to the white noise components that
modified the values and positions of the original local maxima, at these loca-
tions. In the smooth signal variations, we can see the remaining components
of the white noise that have been kept at scales larger than 2*. This simple
algorithm shows the feasibility to discriminate a signal from its noise with
an analysis of the local maxima behavior across scales. Better strategies for
selecting the maxima can certainly be developed depending upon the appli-
cations. This denoising procedure does not require that the noise is white but
only that its singularities have Lipschitz exponents that can be differentiated
from the signal singularities.

initial point
®

Pv

\Y

Figure 7.2: After a modification of the local maxima, in general there
is no wavelet transform whose local maxima are exactly equal to the
one that we selected. Hence, the set T that carries the constraints on
local maxima does not intersect the space V of all dvadic wavelet
transforms. The algorithm reconstructs a sequence of functions that
is close to Mand V.

8. Conclusion

We proved that the wavelet transform local maxima detect all the singular
ities of a function and we described strategies to measure their Lipschitz
regularity. This mathematical study provides algorithms for characterizing
singularities of irregular signals such as the multifractal structures observed
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Figure 7.3a: Local maxima kept by the denoising algorithm.

Figure 7.3b: Signal reconstructed from the local maxima shown in
Figure 7.3a. The overshoot at the discontinuity locations is due to
the modification of the maxima amplitude by the white noise.

in physics [23]. Oscillations can also be measured from the general maxima
of the wavelet transform, with a technique similar to the approach of Escudie
ana Torresani [9].

From a numerical point of view, it is possible to reconstruct a close
approximation of a signal from the local maxima of its wavelet transform.
We studied an application to signal denoising. The prior information on the
regularity of a signal versus the local properties of the noise are expressed
through constraints on the behavior of the wavelet transform local maxima.
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fx

Figure 7.3c: Original signal.

The local maxima model has been extended to two dimensions in order
to detect edges in images [16]. As in one dimension, images can be recon-
structed from the wavelet transform local maxima. This representation of
images with multiscale edges has applications in pattern recognition as well
as compact image coding. An algorithm that selects the important edges for
building a compact image code is described in [16].
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A. Proof of Theorem 5.2
We prove Theorem 5.2 by proving by induction the following proposition.

Proposition A.1  ((P,,)). Let(x) be a wavelet that can be written (x) =
d“;‘f');"“f where ¢(x) is a continuous function of compact support. Let f(x]
be a function and we suppose that for any € = 0, there exists a constant K,

~nch that at all scales s

bt
J Ifrdedx)dx € K. {A.T)

a -4

If Wf(s,x) has no maxima for x € la, b[ and s < so, then for any € > 0, there
exists a constant A, such that forany x & Ja + €,b — ¢l and s < s,

le{S.X” < An,nsn- (AZ)
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If we modify f(x) by multiplying it by the indicator function of [a, b},
we do not modify its regularity on any interval {a + €,b — ¢]. We shall thus
suppose that f(x} = 0 for x ¢ [a,b]. Let us first prove that (A.1] is satisfied.
Since f{x) € L'{{a,b]) and f(x) = Ofor x ¢ [a,b],

b

b { oo
J xf*wx)ldxsj lf(X)ldXJ (b4 (x][ dx.

Qa a

With a change of variable in the integral we obtain

[ - t oo
j . ()l dx = j b(x) dx.
Hence, f: if + d.(x}l dx is bounded by a constant independent of the scale s,
as in (A.1). In order to prove the proposition {P,,) for n = 1, we introduce a
lemma.

Lemma A.2. Let [c,d] be an interval of . Let K be a positive constant. Let
alx) be a function which satisfies

d
J lg{x)fdx < K, (A.3)

¢

and such that [d‘fi‘\"'[ has no local maxima on [c,dl. Let B > O with p <

{d — ¢)/4. There exists two constants B and Cg such that

vx e [c+ B.d - Bi, la(x} < Bg (A.4]
and

wxales Bod Bl (UM< Ca (A5)

The constants By and C only depends upon 3, d - ¢ and K.

We denote g'(x) = i‘j{"—’. Although quite simple, this proof is long
because it includes many sub-cases. We prove (A.4) and then (A5). In the
following, we only consider the values of g(x} over the interval (¢, dl. We
first have two cases. Since |g'(x)} has no local maximum, either g'{x) has a

constant sign or g'(x) is monotonic.

1) If we suppose that g'[x) has a constant sign then g(x} is monotonic.
Equation (A.3) yields

ci d
J ig{x)idx < K and J fg{x)ldx < K. {A.6)
3 d-f
Since, g(x) is monotonic on [c, dl, these integral constraints imply that
lolc + Bl < % and lofd - B) < K. (A7)
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To prove (A.7) one must distinguish several cases. For example if
g'(x) is positive and g(x) remains positive, the second integral of (A.6)
implies that Ig(d — B)| < K/PB and since [g(c + B) < |g(d — B)I (A.7)is
valid. The other cases are treated similarly. Since g(x) is monotonic,
la(x)l € Max(lg(c + 8)l,lg(d — 8)}), hence (A.4) is satisfied for By > %
Let us suppose that g’(x) is monotonic, for example that it decreases.
The function g{x) is concave. The same proof is valid for a convex
function.

a) We first suppose that g(x) does not change signon lc + 3.d - 3[.

i) If g(x) is negative, since it is concave |g{x}i < Max(ig{c +
B, lg(d—B)l), forx € Jc + B,d — B[. Since ¢g'(x) is monoton-
ically decreasing, either it is positive at all points of [c. ¢ + B3]
or it is negative at all points of [c + 8, d]. We know that g{x]
remains negative and

ctp d
J ig{x)ldx < K, J lg(x)ldx < K.
At

(9

We can thus derive that
lglc + Bl € Max (Ed_d"_ﬁ) .

Since § < (b — c¢}/4, we obtain [g{c + ) < K/f3. Similarly

we can prove that |g{d — )| < K/f. Hence |gix}i < K/j3.
ii) If g(x) remains positive, there exists e € [c + 3,d — 3] such

that g(x) < gle) for all x € Jc+B,d—Bl. Since g(x) is

concave, one can derive that

d—pB o~
J o(x)dx 3 Aelld—c—28)
ctf 2
Since B < (d - ¢)/4, we obtain g(e) < 4K/(d - ¢). Hence
lg{x)] < 4K/{d —c).

b) Let us now suppose that g(x) changes of sign over [c + 3,d - BI.
Either both g(c+ ) and g{d — 3) are negative or only one of them
is negative. We only consider the case where both are negative.
The other case can be treated with the same approach. Since g(x)
is concave, it has two zero-crossings at the locations z¢ and zi,
2o < z7. For x € le+ B,2z0l Ulz1,d — BI, g(x) is negative and
lg(x)| < Max(lg(c + B)l,Ig(d — B)]). Over [c,c + Bland [d — B,d]
a(x) is monotonic. With the same argumentas in 1), we prove that

lo{c +B) < K/B and lg{d - B) < K/B.
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For x € [z0,21], glx} > 0 and there exists e C lzo,z1] such that
glx) < gle) for x ¢ |za,21[. We must prove that g(e) is bounded.
Since gix) is concave over {zo, 211, one can derive that

K > j "alx)dx > 95—”";—"9—) (A.8)
2o

Let us suppose that g{e) > K/f3. Let l(x) be the affine function

which crosses 0 at the abscissa zo, and is equal to gle) at the

abscissa e. Before the abscissa zo, l{x} is negative and l{x} > g{x)

because g{x) is concave. Hence, |l{c + B < |glc + Bl < K/3. We

know that

[Le+B) _zo—c-B
el e-zo

Since ll{c + B)} < K/B and l(e) = gle) = K/2, we obtain

e—20 220 -C— .

With the same argument applied between on the second zero-
crossing z1 and d — 3, we can also prove that

zy—e=2d-p - z.
Adding these two equations yields

d—C‘—ZB d-c¢
— > " >
Z) 2o 2 3 = 3 .

If we insert this equation into {A.8), we obtain

(e) < _g.*i

e s g

Hence, gle) < Max{8K/(d - ¢),K/B). This last case finishes
the proof of (A.4) of Lemma A.2 for a constant By such that
Bs 2 Max(8K/({d - ¢}, k/B).

Let us now prove that g'(x) is bounded. Since |g'(x)| has no maxima on
theinterval {c + 3/2,d — 3/2], we know that |g'(x)] < max(|g'{c + B)},]g'(d -
B for x « [c + B,d — B]. Let us suppose for example that lg'(c + B)| >
[9’(d — B)I. Then, {g'(x}| is monotonically decreasing on [c + 3/2,¢ + 3] and
g'(x) does not change sign over this interval. Hence,

lg'(c + B < 2

3 = —%Ig(c +B/2) —glc + B € %Ba 2

ct P
j ¢'(x) dx
ctp/2
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Since |g'(x)} < Max(lg'{c + B)l,lg'(d — B)I) for x € [c + B,d — i, we derive
that |g'{x)} is bounded by a constant C which only depends upon 3, b — ¢
and K.

Lemma A.3. Let {c, d] be an interval of R. Let K be a positive constant. Let
g{x) be a function which satisfies

d
J 1a(x)] dx < K,

¢

and such that 'djf",("” has no local maxima on [c,d]l. Let 3 > 0 with 3 <

{d — c}/4. There exists a constant Dy that only depends upon §, d - ¢ and
K, such that

yxeic+p.d-Bl, 14N < Dg. (A9)
The proof of this lemma is mostly the same as that for Lemma A.2 and
we leave it to the reader.
Let us now prove that the proposition (Py) is true for n = 1. Since

P(x) = d‘gi’”, we derive that

WH(s.x) = s (F + de)(x),
dx

Our induction hypothesis supposes that a{x) = f « ¢ (x) satisfies (A.3) of
Lemma A2 forc =a+e¢/2and d = b — ¢/2. The result of this lemma for
B =e€/2and s < so yields

Wies, x)l € sC .

This concludes the proof of (A.2) for n = 1. The proof of (P} forn - 2is

based on Lemma A 3. Since ¥(x) = ¢ ;f;{‘—', we derive that

dZ
Wif(s, x) = Sza’{z’(f « oo x).

We can apply the result of Lemma A3 to g(x) = f « ¢.(x), with 3 = €/2,
c=a+¢/2andd = b —€e/2. Equation (A.9) yields

IWf(s,x)l < s?D, 3.

which finishes to proof of (P, ) forn - 2.
Let us now prove that if (P} is true, forn = 2, then (P,,, ) is also true.
Let ¥(x) be a wavelet with n + | vanishing moments and f(x} a function

that satisfies (A.8). The wavelet Y(x} can be written (x) = d):x(:] where the
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df[x

wavelet x(x) has n vanishing moments. Let be the derivative of f(x)

in the sense of distributions,

Wf(s‘x):—-s%*xs(x). [A.10)

dflx!

In order to apply our induction hypothesis (P} to with respect to the
wavelet x(x), we need provehat to for any € > 0, there exists a constant K,
such that at all scales s

b

df

J %(T-*(bs(x) dx < K. {A 1T
at¢ X !

Since the wavelet (x) has more than two vanishing moments, the proposi-

tion (P;), that we just proved, implies that forany € > 0,if x = la + e, b - ¢

Wf(s,x)l < s°A 2.

From Theorem 3.3 we derive that f(x) is uniformly Lipschitz « on the in-
tervals Ja + €,b — ¢f, for any x < 2. Hence, % is uniformly bounded
on any such interval. One can then easily derive that the condition {A.11)
is satisfied. Let now apply the induction hypothesis (P,,) to d(”\" with re-
spect to the wavelet x(x). There exists a constant A, ,, such that for any
x € la+ ¢, b~ ¢land s < s,

f |
‘g; * Xs(x) < A""Sn.

Equation (A.10) implies that
Wils,x)l s Aas™

This finishes the proof of (P, , ).

By applying Theorem 3.3 to the statement (P, ), we derive that the
function f(x) is Lipschitz « for any « < n. For « = n, Theorem 3.3 does not
apply because it is an integer Lipschitz exponent.

Letus now prove that (A.2} implies that f(x) is Lipschitz nif the wavelet
Y (x) can be written

Bix) - 4O (A12)
dx

where 8(x) is a smoothing function. Let "d”“’" be the n'* derivative of f(x)
in the sense of distributions. Similarly to (A.10), (A.12) yields

Wrf(s,x) =s

g * 05(x].
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Equation (A.2) of the proposition (P, ) implies that for any € > 0 there exists
a constant A, ,, such thatforany x - la + €,b - €/ and s < so

dnt )
EXF * es(x){[ S A‘\n~
Since the integral of 8(x) is nonzero, this equation implies that ;"' is a

function which is bounded by A, ,, over the interval Ja + €. b - ¢.. Hence
f{x) is uniformly Lipschitz n over the interval la + ¢, b — ¢l.

B. Proof of Theorem 5.3

We first derive from Theorem 5.2 that f(x] is Lipschitz n at all points different
than xo. Let x; € la,xol. For s < se, IWf(s,x)| has maxima only in a
cone pointing to xo. Hence, for € > 0 such that a ~ ¢ < xo - ¢, there
exists s, such that for s < s, and x = la + ¢/2,x0 — ¢/21, 'Wf{s,x) has no
maxima. From Theorem 52 we derive that f(x) is uniformly Lipschitz n
in la + e,xp — ¢]. From this result we easily derive that f(x) is uniformly
Lipschitz n in a neighborhood of any point x1 € }a,xo!. The same proof is
valid for x) € Jxo, bf.

Let us now prove that the Lipschitz regularity at x, is characterized by
the decay of the wavelet transform local maxima. Let xy « la, %o and x7
Ixo. b, We proved that f(x) is uniformly Lipschitz n in the neighborhood
of x; and x;. The necessary condition of Theorem 3.3 is valid for integer
Lipschitz exponents and it implies that there exists o such that for s -« so,

IWf(s,x1)l € Ays™ and  [Wf(s x;)l < Azs™. (B.1)

For x € |x1,x,[ and s < so, the value of |Wf{s,x)| is smaller or equal to the
maximum value among [Wf(s,xy)l, [Wf(s,x;)| and the wavelet transform
modulus at all the local maxima that occur at the same scale inside the cone
pointing to xo. Theorem 5.3 supposes that all these local maxima have an
amplitude smaller than As®. Since o < n, we derive from (B.1) that there
exists a constant B such that if x € }x;,x;[ and s < so,

IWf(s, x)| < Bs“*.

Since xo & |x1,x,[, Theorem 3.3 implies that f(x) is Lipschitz a at xo.

Characterization of singularities '}
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C. Proof of Theorem 5.4

In order to applv Theorem 3.4, we want to prove that there exists a scale sy
and € > Osuch thatif s < sy and x «© Ixp - ¢, x¢ + €F,

Wis, x) < BlsY + x - xp'Y). (C.n

We prove this by showing separately that there exists two constants By and
B, such that

Wi(s, x) «« Bys?, (C.21
when {s, <1 is in the cone of influence of xp and
Wils . xi < Box  xp, IR

when [s,x}] is below the cone of influence of xo. Once {C.11 is proved,
Theorem 5.4 is a simple consequence of Theorem 3.4, for & - y. For o v,
we cannot apply Theorem 3.4 because we are missing the logarithmic term.
Theorem 5.4 supposes that Wf(s, x] has a constant sign in a neighborhcod of
xo, and we shall suppose that it is positive. For s < sqand iXis) - xo - Co,
we have

Wils X(shi < AsY. QR
We first prove (C.2)and then [C.3)for¢ - (K Clspand sy L (K Cise.

The wavelet Ui is the n'™ derivative of a positive function d{x! of
support equal to K, Kj and which is strictly positive on - K, K:. Hence,

Wils,x)  s"(f ™ <0 )0xd 0, C.H

where £ " (x) is the n'™ derivative of f(x) in the sense of distributions. The
function 9(x) is a positive function with a strictly positive integral. Since
(C.5) s valid at all scales s - sg, it implies that £ {x] - Oforx - a.b,
(positive in the sense of distributions). Equation (C.5) can be rewritten

Wils, x| s""J t»<‘q-f‘>r‘ " (u) du.

Let {s,x) be a point in the cone of influence of x¢, 1x - xo: & Ks. The support
of 8((x - uj/s)isincluded in fxo  2Ks, xo + 2Ks! s0

xp b 2K

Wi(s, x)  s" '[ 8(‘ “)f‘" {u)du. (C.6)
S

o 2K«

Let M - max, ¢k 0{x). Since O{x) is continuous and strictly positive
over | K,K[, there exists A - O such that

Vx o[- K- Ci/20(K ¢ C)/720,0(x) > AM.
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Let s’ = 4Ks/{K - C). Weknow that Ixo —X{s')] € Cs". Foru < {x¢ —2Ks, xo +
2Ksl, we derive that |(X(s') — u}/s" < (K + C)/2 and therefore
X(s') —uw

vu e 'xp — 2Ks, xo + 2Ks], 8 ( v > > AM.

Mand f'™"™'(x) 2 0,

xo t 2Ks '
R X(s') —
< I/AJ 8(—(i2—~g>f('”(u)du.

xg—2Ks
Equation (C.6) yields

. 1= X(s'") - i
Wie(s, x) < S”_]XJ 8(~—§-~)—£) " (u) du

= AWI(s, X(s). (C.7)

We suppose that (C.4) holds so

WL X(s) € ALY = A0 s

We thus derive from (C.7) that

Wils,x) < BysY  with By — S8 (C.8)

Let us now prove that if (s, x} is below the cone of influence of x, Wi{s, x) «
Bylx - xoi?.

b

9 (‘B) U (u)du
- S

Lets; = Ix — xpl/K. Since [x, s) is below the cone of influence of xp. x - xo! =
Ks,s0 s < s,. Thesupportof d{(x ul‘s}is thusincluded in ‘x¢ - 2Ksz e i
2Ks,! so

W”S"() — Sn—l J

Y
Xolehes X-u

We{s, x) = s""'J 6( )1‘””(\L\du. (C.9)
xg - 2Ks, s

Let us now define s, = 4Ks,/(K - C). With the same argument as tor {C.7},
we can prove that

Wf(s,x) € FWIT[s), X(s})). (C.10)
Equation {C.4) implies
WiHsh X(sh)) < Alsh)Y - (ME I xolY, (Can

By inserting (C.11}in {C.10) we obtain
Wils,x) < Bolx - xolY  with By - ;¥ (C.12)

One can verify that both (C.8) and (C.12) are valid for x € Ixp - €, %0 + €l
and s < sywithe - (K- Clspands) - (K- Clso.
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D. White noise wavelet transform

It is well known [24] that the density of zero-crossings of a differentiable
Gaussian process whose autocorrelation is R(7) is

[Ri21(0)

V R0 (D.1)

where RI"' (1) is the n" derivative of R(t). If the process is twice differen-
tiable, the density of local extrema is equal to the density of zero-crossings
of the derivative of the process. The autocorrelation of the derivative is
~R!%'(1). Hence, the density of extrema is

F-R*0)

[ D.2

\ Tr“R{Z'(O) { )
The autocorrelation of the Gaussian process Wn(s, x) is defined by

Riti - E{Wnls, x + TIWn(s,x))

E [ J n{uin{vipx + 1 - uP(x - v)dudv.

Since n(x) is white noise, Ein{u)n(v)) = 3(u — v) and we obtain

RiT) [ Pt W fu) du. (D.3)
From this equation, we can prove that R'(0) = jj!2'][4/s> and R™Z'(0) ~

St set From (D.2), we derive that the density of extrema of the process
Wn(s, x}is

2t

st T (D.4)

At least half of these local extrema are local maxima of Wn({s,x])l. The
number of local maxima depends upon the proportion of local extrema and
zero-crossings of Wn(s, x). Equations {D.1) and (D.3) prove that the density
of zero-crossings of Wn(s,x) is |[W'""||/{sn||¥]j). The proportion of local
extrema and zero-crossings of Wn(s,x) is independent of the scale, which
proves that the density of local maxima of |Wn(s, x)|is
[N
N T S5
I 0]
where A is a constant between 0.5 and 1 that depends only on [[Wi], [y}
and 2.
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g Regular and irregular sampling theorems are proved using frames of ex-
ponentials, Gabor frames, and nonharmonic Fourier series. These include
the Shannon sampling theorem, the Yao-Thomas irregular sampling theo-
rem, and a result dual to the Yao-Thomas theorem. An irregular sampling
algorithm is presented that allows much more general sampling lattices.
These ideas are then applied to the Gabardo-Walker uniqueness theorem to
obtain a corresponding representation theorem.

1. Classical sampling theory using frames

Ordinary Fourier series in [ 2[- 5%, 551, T > 0, that is expansions using expo-
nentials of the form {e2™"7¥} have been used in mathematics, engineering,
and science for years. Here we give several applications of nonharmonic
Fourier series, that is expansions using exponentials of the form [e2™' ¥}
where the regular sequence of real numbers [n T} has been replaced by the
irregular sequence [t,,]. The difficulty with applying nonharmonic Fourier
series is that they are not orthonormal bases and so the nonharmonic Fourier
series must be interpreted carefully. The concept of a frame provides this
interpretation.

Definition/Proposition 1.1. A sequence (g} © H, a separable Hilbert space,
is a frame if there exists constants A, B > 0 such that

vheH, Alh2< Y i(hgn)? < BIR|%

t The work presented here is a short exposition of joint work with John Benedetto, whose
patience, friendship, and teachings have left a deep and positive mark on me. I would also like
to thank Hans Feichtinger and Christian Houdré for insights, discussions, and preprints on the
topics discussed herein.
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The constant A (resp. B) is called the lower (resp. upper) frame bound.
If {gn)is a frame, then we have the reconstruction formulas

vheH, h=) (hS"gn)gn
n

and

VhFH, h=Z<h,gn>SW1gn
where the frame operator S is given by

Sh= (hgn)on.
If{g,)is aframein H, then {S~'g, |is also a frame in H called the dual frame.
Proof. See (4,9,3]. B

Example 1.2.

1) Orthonormal bases in Hilbert spaces are frames with the reconstruction
formulas being the orthonormal basis decomposition and the frame
operator being the identity.

2) The exponentials [E,, = e~2™"Y] where |t,} satisfies

tn —nT]| £Ll<

ENTR—

is a frame for L%[— 5%, 5% (see Example 1.9). More generally, see Defi-
nition 2.1 and Theorems 2.2 and 2.3.

Remark 1.3. Duffin and Schaeffer invented the concept of a frame to deal
with questions about spanning properties of sets of exponentials. That is,
they were interested in whether a collection of exponentials {E, |, B\, =
e Imitny n e 7, generated by a sequence of real or complex numbers |ty ]
was complete in L?[-Q,0Q], Q > 0—i.e., whether each function in L2[—Q, Q]
can be approximated arbitrarily closely by a linear combination of exponen-
tials taken from the collection. Much work has been done on this and related
questions as the interested reader may investigate by consulting [2, 17, 15,
20]. For our purposes completeness is not enough; we want to decompose
functions as sums of exponentials or other functions. The reconstruction
formulas permit this and represent, until the work on wavelets and related
topics, a neglected aspect of the work of Duffin and Schaeffer. These formu-
las are at the heart of the sampling work which follows.
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Definition/Proposition 1.4. A function f is Q-bandlimited, Q > 0, i.e,
f € PWq, if f € LZ(R) with suppf C [~Q,Q], where f is the Fourier
transform f(y) = [ f(t)e~2™¥ dt. The Q-bandlimited functions are entire
functions of exponential type (2 and conversely, i.e., there exists a constant
A such that

Vz €€, [f{z)] < Ae2mQlizl,

Theorem 1.5 (Shannon). Let T,Q > 0 for which 0 < Q < 5%. Then

VEePWq, f(t)=T)Y f(nT)d:(t - nT) inl?®R),
neg
where f(nT)is the value of f at nT € R, where d; is the ¥ dilation of the
Dirichlet (or “sinc”) function
sint

dit) = —-.

and where d z (t — nT)is the translation

sin F{t ~nT)

dﬂf(t_nT) - nt{t — nT)

The convergence is in L2{R) and uniform over R.

Proof. Consider the frame of exponentials in L%/~ 5, %] given by
[e=27inTY] 2. We know this collection is a frame as, upon normaliza-
tion, it is an orthonormal basis in L?(— ., 571 The frame operator is the
constant multiplier 1 as

v h € LZ{“—‘ _]‘ S(h) _ Z(H(C}‘e—ZﬂinTL)e—Zﬂin‘[y

n

I1

f Z(h(c)‘vTe—-ann'lL)v/fe—an'!y

1.
= _h.
T

Hence both reconstruction formulas reduce to

fly) = T3 (flo),em2mintd) oy em2minTvy (), (1.1)

T
where 1(7'7) is 1 on {—217-, 7'1-) and 0 elsewhere. The characteristic function
1) is necessary as (1.1)is an expansion in L?[— 4%, 5%, which we view as
a subspace of L2(R). Applying the inverse Fourier transform and evaluating
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the coefficients produces the desired expansion with L2({R) convergence. The
uniform convergence can be verified by an advanced calculus argument. [

Remark 1.6.

1) The coefficients are the function values at the points [nT}.cz, hence
the name “sampling formula.” Note that the sampling lattice {nT)
generated the frame of exponentials {e 2" 7Y}, . in L[, &)

2) The decomposing functions are tanslates of a single s%-bandlimited
function, dz (t), the dilated sinc function.

3) The poor decay of the sinc function can be overcome by using an over-
sampling argument that smooths out the discontinuities of 1, + ,. This
is accomplished by multlplymg both sides of (1.1) by a functlon §¢€
C> (M) withsupp $ C [— 21 ,ZT] and with §(y) = 1forally € [-Q,Q].

4) Clearly one need not invoke the concept of a frame of exponentials
in the proof above as the exponentials upon normalization, form an
orthonormal basis for L*[~+%, 771 The point is that the proof above
is generalizable to a class of irregular sampling lattices, {t,,} instead of
{nT}, where [t,,] is a sequence of real numbers. By doing this, we will
be able to reproduce the classical irregular sampling formula of Yao
and Thomas, obtain a new dual result, and finally produce an irregular
sampling algorithm for sampling lattices with great generality. To
accomplish this we will need a few more facts about frames.

Definition/Proposition 1.7 ([4]). A frame in a separable Hilbert space
is exact if it ceases to be a frame upon the removal of any one element.
Orthonormal bases are exact frames, but it can be shown that the union of
two orthonormal bases is a frame that is not exact. Several less elementary
examples are given in Example 1.9.

Definition/Proposition 1.8 ([4]). Let {gn] be an exact frame in a separa-
ble Hilbert space H. Then the frame {g,.) and the dual frame {S~ Tgn! are
biorthonormal, i.e.,

<9m.5-'9n> = 6vnn

where 5,,,, = 1 if m = n and zero otherwise.

The point of this definition/ proposition is that one can, in certain cases,
explicitly construct the sequence orthonormal to {g.}, that is the dual frame
{S7'gn}, by methods other than an involved analysis of the inverse frame op-
erator S~'. For certain collections of exponentials this can be accomplished
by using Lagrange interpolation theory and function theory. This is done in

104 }
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the next example. For convenience weletE, = e 2mitaY n ¢ 2, wherevyis
in (—%, 751 or in R, depending on the context.

Example 1.9.

1) (Kadec-Levinson) If {t, ] satisfies

T
—_ < —_
[tvl nT[ ~ I—- < 4

then {E,.] is an exact frame for L?[—5%, 5% ] with dual frame (h, =
S~'E., ) given by

Vi e ey Tt
hn[t)—rn(t)—r,(t—————“)(t~tn)

where

r(t):(t—to)ﬁ(l—rt—><l~ti).
n.1 > —-n Y n.,

See [20, 15, 12].

2) It can be shown [10, Section 5.3] that any finite modification of an exact
frame of exponentials is also an exact frame—i.e., replacing any finite
number of exponentials with exponentials at other points not already
contained in the collection also produces an exact frame.

We now apply these ideas to obtain the Yao-Thomas irregular sampling
theorem [19], which is the first expansion below, and a dual result.

Theorem 1.10. Assume !t satisfies the Kadec-Levinson condition
T
[tn_nTls L<-.
4
Then

VEePWa, flt)=) flty)ralt)

and

VEEPWo, f(t) =) (fira)dglt - ta)

where {1} is as defined above. Both series converge uniformly to f on R as
well as in L2(R).
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Proof. By the first assertion of Example 1.9 and the reconstruction formulas
we have

Ve PWn, fly)=) (fLE.) i haly)

n

and

ViePWo, fly)=3) (f.ha) B (y).
Applying the inversion formula to both expansions and the Parseval relation
to the coefficients in the second, we obtain the L?{R) convergent sums of
the theorem. The uniform convergence follows as in {19] or by using an
advanced calculus argument. Wl

Remark 1.11.

1) The first expansion in the previous theorem is the Yao-Thomas irreg-
ular sampling formula [19]. Yao and Thomas derived their sampling
formula using the Lagrange interpolation work of Levinson [15, Chap-
ter 4] and Levin [14, p. 198], providing an interpretation of it in terms of
engineering considerations. However, the second expansion cannot be
obtained directly from interpolation considerations and hence appears
to be new. )

2) Both of the expansions above can be produced using the idea of a Riesz
basis of exponentials, as exact frames are Riesz bases and conversely.
This approach is described in [10] (see also [20]).

3) The Kadec-Levinson condition and the other examples given above are
restrictive and, as such, we seek sampling formulas for a wider class
of sampling lattices {t,,}. So far we have employed orthonormal bases
and Riesz bases (exact frames) of exponentials. By a basis we mean a
collection in a Banach space by which every element of the space can be
written uniquely as a (possibly infinite) linear combination of elements
from the collection. One could ask whether it is possible to obtain sam-
pling formulas employing bases of exponentials that are not Riesz bases
or orthonormal bases. According to Young [20, p. 197], no example has
yet been found of a basis of exponentials for L?[—5y, 55] that 1s not a
Riesz basis. There are, however, examples of collections of exponentials
which are complete and minimal but which are not known to be bases
of exponentials [20, p. 126]. By minimal we mean a collection in which
each element is not contained in the closed span of the other elements
of the collection. A basis is necessarily minimal and complete but a
minimal, complete set need not be a basis {10, Section 4.2]. Sampling
formulas for these collections can be produced using Gram-Schmidt
orthogonalization. This is discussed in [10, Section 4.2].
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4) The expansions for f given in the proof can be multiplied by func-
tions § € CZ(R) with supp s C [— 5%, 77) and with §(y) = 1 for all
vy € [-Q,Q], as described in Remark 1.6 (3). Upon inversion this
gives (s = r,}(t) and s(t — t,), respectively, in the expansions of the
previous theorem.

2. Modern sampling theory using frames

To take advantage of the full power of frames, we drop the requirement
in the previous theorem that the frame be exact. Doing so creates two
obstacles. The first is whether there are any sequences which generate
frames of exponentials for L?{—%, 7%1, T > 0, which are not exact. The
second relates to the analysis of the inverse frame operator S™'. In the
previous theorem, we used the biorthonormality relation described in the
proposition. This relation is not true if the frame is not exact. Hence we
must find a realization of the inverse frame operator that is both useful and
applies to frames which are not necessarily exact.

To answer the first question we describe the work of Duffin and Scha-
effer and the work of Jaffard on this topic.

Definition 2.1, A sequence {t,,}is uniformly discrete if there exists a constant
d such that

Yn#Em, |ty —tmi=d>0.
A sequence {t,,} is uniformly dense if it is uniformly discrete and there

exist constants A, [ > 0 such that

n
v _—
nez, Ity AI

The constant A is called the uniform density for such sequences.

L.

/AN

Theorem 2.2 ([4]). If {t,] has uniform density A > 0, then {E, | is a frame
for L2(—Q, Q] where 0 < 2Q < A and where B, = e 2™ Y, n e 2.

Theorem 2.3 ([11]). The sequence {t.} generates a frame of exponentials
for L2(1) where lis an interval if and only if it can be written as the finite union
of uniformly discrete subsequences at least one of which is uniformly dense.
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Remark 2.4.

1)

2)

3)

4)

While not explicitly indicated in Jaffard’s theorem, there is a relation-
ship between the length of I and the uniform density of all uniformly
dense subsequences of [t} [11].

The completeness radius of a sequence [t} is the supremum over all
non-negative real numbers Q such that {E, } is complete in L°[-Q, Q].
This concept has a long history as the reader can investigate in [2, 13,
15, 16, 17]. The result of Jaffard above arose in his investigation of the
concept of the frame radius, that is the supremum over all non-negative
real numbers Q such that {E,, }is a frame in [2{—Q, Q].

The Duffin-Schaeffer and Jaffard theorems give the answer to the first
question asked above. If we choose a sequence {t,| that is the union
of a uniformly dense subsequence with a uniform density A > 2Q,
and a finite number of uniformly discrete subsequences, then [E. | is
a frame for L2[—Q, Q]. This gives a sufficiently rich class of sequerces
for us to investigate the existence of an irregular sampling algorithm
employing them.

Uniformly discrete sequences generate upper frame bounds for sets
of exponentials. Uniformly dense sequences generate upper frame
bounds, as they are uniformly discrete, but also lower frame bounds.
For the frame {E,, } mentioned in the previous remark, explicit esti-
mates for the upper frame bound always exists. Using the work of
Plancherel and Pélya [20, pp. 93-98] one can show [10, Section 4.3} that
for any uniformly discrete set (t,,,, the upper frame bound B for the set
of exponentials (E, ] in L?[-Q, Q] exists and satisfies

(elﬂild _ ])

S Thrga
where d > 0 is the minimum separation between sequence points [ty .
If {t ] is the union of a finite number of uniformly discrete subsequences
th, (8, ..., 1tX), then the upper frame bound for the exponentials
(Eq,}in L2[-Q,Qlis thesum By + B, +...+ B, where By, .. By satisfy
an estimate of the form given above for each of the uniformly discrete

subsequences {t!], {t2], .. itk

Uniformly dense sequences [t | impose lower frame bounds on
the corresponding set of exponentials {E,, } as well as upper frame
bounds. (Recall that uniformly dense sequences are also uniformly
discrete.) The lower frame bounds are also additive in the case that
the sequence {t,] is composed of a finite number of uniformly dense
subsequences. However, the lower frame bound is highly dependent
on the distribution of the points and the density of the uniformly dense
set. No simple relationship is known for the lower frame bound of
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a uniformly dense set, as is the case for the upper frame bound for a
uniformly discrete set. However, in certain useful cases explicit lower
bounds can be given, as will be described latter (see Remark 3.3 (3)).

5) Note that in the definition of a uniformly dense set, the value of L
could be any positive number. As such, it is possible to have large
gaps in the sampling lattice—i.e., places where the distance between
consecutive lattice points {t.} is large—by taking the value of L large
enough. This is an advantage of the frame approach as compared
to other approaches to irregular sampling (see the work of Karlheinz
Grochenig [7] in this volume).

To deal with the second problem associated with applying non-exact
frames of exponentials to sampling problems—the problem of analyzing the
inverse frame operator—we need the following fact about the trame oper-
ator. This proposition represents the Neumann expansion for the inverse
frame operator.

Proposition 2.5 ({4, 3D. If {g,.] < H, a separable Hilbert space, is a frame
with frame bounds A < B, then

YheH, S"(h)zii[l—i]k(m.

AtRB
k0

t 28 || B-A
n-—-l<-=cn
i A+ B AR

Lemma 2.6. Let T,Q > 0 for which0 < Q < 2% Let [t,,! generate a frame of
i ( ) 2 1 1
exponentials (Ey, | for L[~ 5, 351 Then

v fePW,, flt)= Z(ﬂS"(El“))(ﬁ,d;(t - ty)

n

where the series converges uniformly on R to f and in L?(R), and where
the coefficients can be approximated by (infinite) linear combinations of the
sample values by taking truncations of the Neumann series for S~' given by

en = (1S ](l-,\]>(}l_],

: 1
f,L(" .
k0 (+5)

2 25
= <[' T

Proof. Applying the appropriate reconstruction formula to the frame of
exponentials {E; | we have

VEePWn,  fly) =3 (FSTUEL 4 By (v).

n
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The first conclusion follows by applying the inversion formula to this, while
the uniform convergence follows by either an advanced calculus argument or
asin [19]. The second conclusion is an application of the previous proposition
and the fact that S~ is self-adjoint. W

The lemma appears to have nothing to do with sampling as the sample
values do not appear in the expansion given above. However, when we
analyze the coefficients {c.} by truncating the coefficient expansions, we see
that the sample values of f appear. This produces the following algorithm.

Algorithm 2.7. We obtain an irregular sampling algorithm by truncating the
Neumann expansion for the coefficients at various places. For example, if
we take the k = 0 term only, we have

2

m(f»Et..,)(gT,

2
—f{tal.
AR

&

Cn

il

Note that if t, = nT,n < 2, then A = B = 1, and so ¢y & Tf(nT),
as we would expect from the Shannon sampling theorem (Theorem 1.5). In
fact, if we truncate after any value of kfort,, =nT,ne Z, with A =B - 1'
then the approximation to the coefficients is exactly %y f(to) - Jf[nT). s0
we can conclude that ¢, = Tf{nT)in this case.

If we keep only the k = 0and k == | terms, we have

K1

. (2 sy \
Cn = f(tn) (/\QH) \S“)-[—l,\/;,‘_v;

A+ R

4 2 z : .
= ;\".’H*“n) - (A“"H) ‘Z““-Elu.>[ILri(EtnnElv«.>x:-'Tv

=it () X gt )

m

Again, if to, = nl,n e Z, then A =B = 11 and, since Tdz(tn — twm) = dmn
in this case, we have

Cn = 2Tf(NT) - Tf(nT) = Tf(nT)

as we claimed above.

Remark 2.8.

1) As we take larger and larger values of k, we observe that the computa-
tion of the approximations to the coefficients falls into a pattern that is
suitable for programming on a computer.
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2) We can obtain versions of this algorithm with sampling kernels hav-
ing more rapid decay than dz by multiplying both sides of the ex-
pansion in the proof of Lemma 2.6 by a function § < Cf(‘ji) with
supp § C [, 771 and with §(y) = 1 forall y € [-Q,Q), as described
in Remark 1.6 (3).

3) We have truncation error estimates for both the coefficient expansions
and the sampling expansion. See [10, Sections 4.3].

4} One could also consider using the other reconstruction formula in the
proof of Lemma 2.6, as the two reconstruction formulas produced two
different sampling formulas when we assumed the Kadec-Levinson
condition (Theorem 1.10). When using the Neumann expansion, the
two reconstruction formulas do in fact produce the same sampling
formula. This can be shown by an induction argument. See [10, Theo-
rem 4.3.1].

5) The sampling theory presented above can be reproduced using Ga-
bor frames (also called Weyl-Heisenberg, or weighted Fourier, frames).
Gabor frames are frames for the separable Hilbert space [ 2[R} com-
posed of elements of the form FefTIMdY gty — na) g m. o where a, b
are real numbers such that ab = 1and ¢ « [3(M) If a, band g

satisfy certain additional assumptions, then the collection above will

be a frame for [2(R) (see {9]). As indicated in [1] and [ 1. Chapters

2 and 3], one can generalize this construction to allow irregular se-

quences [t to take the place of the regular lattice mb . The central

ingredient needed to accomplish this is that 'e?™* ¥ be a frame of
exponentials for L2/—Q,Q}, Q > 0. The Shannon theorem, the Yao-

Thomas theorem and its dual, and the irregular sampling algorithm

can all be reproduced using Gabor frames. The chief advantage of this

appproach is that while the coefficients ¢, in the irregular sampling
algorithm above contain the slowly decaying factors dilty — tm), the
coefficients in the Gabor frame construction can have more rapidly de-
caying factors s{ty -- ;) where s is a function of the type mentioned
in (2) above with the additional assumption that s -~ 0on (- 55, 5 ).

This allows for more rapid convergence of the coefficient expansions

and hence better numerical performance.

3. Application

As an application of these ideas, we prove the following theorem of Gabardo
[6] and Walker [18] in all except the extreme case. As a bonus, we obtain a
sampling theorem for entire functions of exponential type Q.

Theorem 3.1 (Gabardo-Walker). Let f € L2(R) with suppf < [-Q,Q],
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Q > 0. Assume f(t,) = 0V n € Z where {t,,| is a sequence of real numbers
satisfying

D th <tnyu
2) limyaxtn =00 and  limy..on tn = —00;
3) sup,caitnir - tal=B <o

If 20B < 1, then f vanishes identically.

Proof (G-W). If f # 0, then Bernstein’s inequality {20, pp. 84, 86-87] gives
N2 < 2RO .
On the other hand, by Wirtinger s inequality [8, p. 184], (5, p. 47],

ta. ‘t St 1 ta o

. R i1 . 2
[ Arerdde . St [ TR dt
Ju, e RIS

< e de.

k]

e

Bl “‘n~l
Ji,

since f{t. ) - ¢ v n Hence

AN |
iy de - l YIS dt
.L( ;t
B [‘ Yo
IS 3 ‘f,(( =t
© 2 Z B

t.
e

Combining these two inequalities, we have

L B¢ P
' fit)-dt =« — [ Ay dt
Jx T Iw

B*12n0))? o
- T T © dt.
s I

If 208 < 1, this last series of inequalities is impossible. Hence, © - 0. I

«

Alternate proof (For 2QB < 1only). Let O » Qsuch thatB .- ' -
2:). We show that the sequence [t contains a subsequence t., that
generates a frame of exponentials for | 2.0y, 04, and hence for L4~ Q, Q)
as well.

To begin, pick € > 0 small enough so that B < 57 Pick symmetric

intervals around ;% ¥ nof length Ei’)":T( — & > B with 3 > Osmall. Since
]

Sup(tnol -ty =B < Zd; +€

neg
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each interval centered around a multiple of 57— must contain at least one

tn. Discard all elements except one of the sequence {t,,] in each symmetric
interval, and discard all elements that fall between the intervals. Label
the element remaining in the interval centered at 2‘0%? by tn,. Then the
subsequence [t,, }of {t,}isa uniformly dense sequence with uniform density
20y + e—i.e., {tn, | satisfies |tn, —~tn, | = b >0fork # mand

1
)..()] + €

the =yl S =35
. ZQ1+€" 2

i L]

Hence, by the theorem of Duftin and Schaeffer (Theorem 2.2), the collection
of exponentials {t, ; is a frame for 12[--04,04). So, by applying Algorithm
2.7, we obtain a sampling expansion for entire functions of expenential tvpe
Q employing the sample values [f(t., 1. W

Counterexample 3.2. We show by example that if we let 2QB =- 1, then there
exist sequences that do nof contain a subsequence which generates a frame
of exponentials. Consider the sequunce defined by t, = 715 forn < 0and

=~
nt b
ot Et i for n » 0 odd
th .
n = 1 1 -~
5 v 2‘ o tor n » 0 even

for 3 ~ 0. Consider the following observations:

1) Observe that the positively indexed terms are clustered together in
pairs — an oddly indexed term and its following evenly indexed term.
The two elements of each pair get infinitely close together as n -+ o as
they differ by %2, where n is even. Hence if this sequence does contain
a uniformly dense subsequence, a subsequence which, by definition,
is also uniformly discrete, then only a finite number of terms of this
subsequence can be taken from both elements of these pairs. So fer
n - O large enough, then at most one element can come from each of
these pairs in any uniformly dense subsequence.

2) Note that if a subsequence is uniformly dense, the subsequence can
grow no faster or slower than 1 since, from the defintion of a uniformly
dense sequence,

n

n
A [ < ft"\‘f'[\' f[

for some [ = 0.
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We claim that we can not select a uniformly dense subsequence from [ty
as we can not find a suitable density for this subsequence that satisfies the
growth condition (2). This is because any subsequence that obeys observa-
tion (1) will grow faster than the sequence {577 } for € 2 0 by virtue of the

755 factor added to the terms and by the unboundedness of the sequence

5. %.5..... However, any uniformly dense subsequence will grow slower
than 5.3, for ¢ > 0since t,,y — ty =B = 5 forneven. [
Remark 3 3.

1) In the alternate proof for 20B < 1, we selected a subsequence [t | of
‘tn such that t,, | generated a frame of exponentials for L2[—Q,, Q1.
By applying the algorithm, we obtain formulas enabling us to recon-
struct the function f from its sample values at the points [ty . (The
remaining points of the sequence [t} not in the subsequence !t | can
be discarded, or, if they can be partitioned into a finite number of uni-
formly discrete subsequences, they can be incorporated into the frame
of exponentials generated by ‘t,,, ') So we have obtained a represen-
tation theorem corresponding to the uniqueness theorem in the case
208 - 1.

2) Note also that the work of Jaffard and Duffin and Schaetfer allow us
to produce frames of exponentials, and hence unigueness and repre-
sentation theorems, for sequences which do not satisfy the restriction
200B - 1. In particular, since in the definition of uniformly dense
sequences L can be any positive number, we can generate uniformly
dense sequences with large gaps—i.e., for which the distance between
certain consecutive points is larger than ;. Hence we can extend
the Gabardo-Walker Theorem to irregular sampling lattices that do not

satisty all of the restricuions of the hypotheses of that theorem:.

3) Itcanbe shown [10, Corollary 4.4.4] that the lower frame bound for the
frame of exponentials in 1 4[- (3, Q] generated in the alternate proof

is 1T (Gee also Remark 2.4 (4).)

4) For another approach to irregular sampling, see the paper by Karlheinz
Crochenig [7] in this volume. The method described there, and in the
joint papers with Hans Feichtinger listed in the references of that paper,
applies in a wide variety of function spaces on various groups. This is
to be contrasted with the method described here which applies only in
2R, n L
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4. Notation

The Fourier transform f of f € L'{R) is defined as
fly) = [femira,

where “ [ designates integration over the real line R; f is defined on R (= R)
and fV is the inverse Fourier transform of f. The Fourier transform is defined
on L%(R), and, for fixed Q > 0,

PW(, = f € LY (®):suppf € [-Q,Q1},

where supp f is the support of f. Functions that are in the space PW(, are
called Q-bandlimited.

Besides the LV (R)-spaces , we deal with the space C™(R) of infinitely
differentiable functions anc :ts subspace C°(%R) whose elements have com-
pact support.

“3"" designates summation over the whole discrete group in question,
e.g., over Z where Z is the group of integers. The function 15 is the character-
istic function of S C R, |S|is the Lebesgue measure of S, and 1,,, = 1)_(, ;-
The function 8y is defined as 0 if m # n and as 1 if m = n. The dilation
fy of the function fis fo(t) = Af(At). Finally, the exponential function bt is
E. (t) — e*Zﬂi(H'
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g Kolmogorov’'s fundamental paper on stationary sequences (1941) played
a major role in important problems dealing with stochastic processes. His
results are reviewed here in the context of their relations with three topics
in harmonic analysis. The topics are weighted Fourier transform norm
inequalities, stationary frames, and Wiener-Plancherel formulas.

Kolmogorov’s prediction theory lead to weighted Hilbert transform
inequalities which, in turn, are characterized by A ,-weights. These weights
identify a special collection of weighted Fourier transform inequalities, in-
cluding results of Hardy, Littlewood, and Paley. The extension to more
general Fourier transform inequalities leads to restriction theorems and un-
certainty principle inequalities.

Stationary frames establish a conceptual distinction between wavelets
and coherent states. They are developed from Kolmogorov’s spectral char-
acterization of minimal sequences.

Wiener-Plancherel formulas are used in the spectral estimation asso-
ciated with the mathematical setting of both Kolmogorov’s and Wiener's
prediction theories.

t Supported in part by NSF Contract DMS-9002420 and the MITRE Corporation.

I would like to thank Professor Pesi Masani for providing me with a handwritten
translation of Kolmogorov’s paper [39] (given to him by Professor Kallianpur), as well as
for his fascinating, wise comments on this topic. Even more, he has been an inspiration
through the years with his first-rate contribution to mathematics, his high-minded intellectual
independence, and his profound and thoroughly honest sense of scholarship.

I would also like to thank Professor Christian Houdré for directing me to [37], and for
many insightful observations on this material.

117

S. Byrnes et al. (eds.), Probabilistic and Stochastic Methods in Analysis, with Applications, 117-161.
1

J.
© 1992 Kiuwer Academic Publishers. Printed in the Netherlands.




{ Benedetto 118 }

1. Introduction > 118

2. Kolmogorov and stationary sequences -+>119

3. Weighted Fourier transform norm inequalities »»» 130
4. Stationary frames o> 137

5. The spherical Wiener-Plancherel formula oo 147

6. Notation ess 167

7. Bibliography vee 157

1. Introduction

Fifty years ago, in 1941, Kolmogorov published his monumental paper, Sta-
tionary sequences in Hilbert space [39]. As Cramér pointed out [17, p. 532],

“The fundamental importance of this work by Kolmogorov lies in
the fact that he showed how the abstract theory of Hilbert space (as
well, of course, as of other types of spaces) could be applied to the
theory of random variables and stochastic processes.”

Moreover, in {39] and its sequel Interpolation and extrapolation of stationary
random sequences (1941), Kolmogorov introduced the basic concepts of
deterministic and purely nondeterministic stationary sequences, and posed
and solved the primary problems in

A: Prediction theory
B: Spectral theory of minimal stationary sequences.

The setting for these two areas is based on the
C. Wiener-Khinchin theorem.

From the point of view of stationarity, the wonderful and influential ideas
formulated in [39} are now standard fare in probability theory, and to some
extent they have been played-out, especially in the (multivariate) discrete
semi-infinite prediction theoretic case, e.g., [43], [47], [53, Volume 111, in-
cluding the updates by Masani (pp.276-306), Salehi (pp.307-338), Muhly
(pp- 339-370), and Kallianpur (pp. 402-424)], cf. {20]. There is still a great
deal to be done in the case of stationary fields, e.g., [15], [37], and Section 4.2.

Our goal in Sections 3-5 is to describe recent results from three topics of
modern harmonic analysis which are in the intellectual lineage of the above
items A, B, and C, respectively. A will lead to the topic of weighted Fourier
transform norm inequalities, B to a topic in wavelet and coherent-states
theory, and C to multidimensional Wiener-Plancherel theorems.

Section 2 is devoted to a commentary on parts of [39], and we have re-
sisted the temptation to record much subsequent related material on stochas-
tic processes and prediction theory. We have lectured on the relation between
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prediction theory and weighted Fourier transform norm inequalities since
the early 1980’s: and most of the material in Section 3 is taken from those
lectures. Section 4 records some of the preliminary ideas being used in our
current work on stationary frames. Section 5 rounds out our view of the
type of harmonic analysis affected by [39]; the format in Section 5 is just to
state our recent published results [6).

Besides the usual notation in analysis as found in the books by
Hormander {35], Schwartz [49], and Stein and Weiss [50], we shall use the
conventions and notation described at the end of the paper.

2. Kolmogorov and stationary sequences

2.1. The Wiener-Khinchin theorem

Definition 2.1. A sequence {x(n) : n € Z} in a complex Hilbert space H is
stationary if the inner product

R(n) = Ryx(n) = {(x(n + k), x(k)), nez,

isindependent of k. Ry is the autocorrelation of x. Two stationary sequences
{x(n)} and {y(n)} are stationarily correlated if the inner product,

Ryy(n) = (x(n + k), y(k)}, ne g,
is independent of k. Clearly,

VTUE Z, Rxg(n) Zixg(“n)-

Theorem 2.2 (Wiener-Khinchin).

1} Given a stationary sequence {x(n)} C H, thereis p € M, {T) for which
Rxx = nY. pis the power spectrum of x, ct. Definition 5.9.

2) Given u € M, (X), there is a stationary sequence !x{n})} for which
Rux = V.

Remark 2.3.

1) Item1of Theorem2.2isimmediatesince R,y is positive definite, thereby
allowing us to apply Herglotz’s theorem.

2) For Item 2 of Theorem 2.2, we first note that p¥ = Ris positive definite.
For the case of stationary stochastic processes x, e.g., [45], the problem
is to construct x for which R, = R. This was done by Khinchin (1934)
on R, by Wold (1938) on Z, and in a more general setting on both

Stationary frames and spectral estimation }
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R and Z by Cramér (1940) [16, p.224]; the method is standard, e.g.,
[20, pp.62-63 and pp.72-73], [46, pp-221-222], and the constructed
process is Gaussian. In fact, in this Gaussian case there is a natural
bijection between M, (%) (or Mb+(§%)) and stationary Gaussian pro-
cesses subjected to a mild technical constraint. The argument in [20]
uses the Kolmogorov extension theorem found in his classical book
(1933). This should be compared with Kolmogorov's abstract “Hermi-
tian extension” method [39, Lemma 1 and Lemma 2], which he used
to prove Item 2 of Theorem 2.2 and its generalization for stationarily
correlated sequences, viz., [39, Theorems 4, 5, and 6]. A footnote in [16,
p.221] as well as a reference in [39] indicate that both Cramér and Kol-
mogorov were aware of the other’s similar results, which were proved
by different methods and resulted in more generality in [39].

3) Wiener'’s contribution (1930) to the Wiener-Khinchin theorem was for-
mulated in nonprobabilistic terms, cf. [27]; and lead to the constructive
Wiener-Wintner theorem (1939) on R. Bass and Bertrandias made sig-
nificant contributions to this result; and recently my student, R. Kerby,
and I have proven the Wiener-Wintner theorem in ®4. One basic con-
struction is given in [2] and two others, which are quite ingenious, are
contained in [38].

Our result is

Theorem 2.4 (Wiener-Wintner). Given it € My, (RY), there is a con-
structible function x & Lioc ™ (98¢} such that, for all t,

. . 1 _

IR(t) = 111_r'n\ BT L(m )x(t +u)xX(u)du {2.1)
and

Rit) = u¥it).

The ordinary point function R in (2.1) and its probabilistic counter-
part R,, defined by a stationary stochastic process x(t, a), are essentially
equivalent in correlation ergodic processes, e.g., [45]; the role of Theorem 2.4
in spectral estimation is discussed in [2], (5, Section 5], and Section 5.4 of
this paper. Given x ¢ Lioc ' (M4) and R defined by (2.1); the converse of
Theorem 2.4 is immediate by Bochner’s theorem.

2.2. The fundamental isometry and structure theorems

In his work of 1941, as well as in an earlier Comptes Rendus note (1939),
Kolmogorov solved the problem of predicting the future from the whole past,
cf. Item 1 of Remark 2.10. The following elementary observation plays a role
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in this solution by transferring a large class of statistical prediction problems
into problems of trigonometric approximation in weighted Lebesgue spaces.

Theorem 2.5. Given a stationary sequence {x(n)} C H, with power spectrum
w. Let H(x) =5p{x(n}}. The mapping,

Z:14(3) - H(x),

defined linearly on sp{e?™"¥} by Z(e?™"Y) = x(n), extends to a linear
isometric isomorphism, cf. {39, Lemma 4 and its proof in terms of the spectral
representation of the shift operator U].

Proof. Since i is @ bounded Radon measure we have that e2™"Y ¢ L2 (T )
For finite sums p(y) = ¥ cne?™™ € L2(T)and x = § cnx(n) € H(x)
compute

IPll2u = | Y ene?™n :u = mZ“ CmCnhY(m - 1)
— Z_cmcnR(m n) = Zcmfn x{m —n + k), x(k))
= Z Can x(m] x{n) > = <Z Cnx(n), Z L“X(Tl)>

m.,n

—HZC xn)1| = fixl|Z,.

and so Z is an isometry on sp{ez’““Y}.

Next we see that 5ple?™"Y] = L2(T). In fact, for a given € > 0
and f € (l’) there is a continuous functlon g on T and a trigonometric
polynomlal p such that

If —gllzn <€/2 and g —pl« <
ZH 1”1

Consequently,

(f =pll2n <3 +lla—vlz2u

(i) [pewm) e

Thus, by general considerations, Z is a linear isometry from Lfl('I) onto a
dense subspace of H(x). In particular, Z is injective. Finally, taking y € H(x)
and using the Cauchy sequences, {yn! C H(x}and [Z7 'y, C L2 (%), where

limyn =y and lim Z~ 'y, = f, itis easy to check that Zf = y; and soZisa
surjection onto H(x). B

Nofm

<

N
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The verification in the proof of Theorem 2.5, that 5pie?™"Y} = L4(%),
also works for stationary functions,

x: M4 9 H, (2.2)

i.e., functions (2.2) for which (x(t + s), x(s)} is independent of s. In fact, we
take g € C.{R9), with supp g contained in a cube Q, and choose p1 instead
of p. Another elementary proof that

sple?™ Y 1t e R} = LE(RY),

where the power spectrum p, = p is an element of My, (R4), utilizes the
Hahn-Banach theorem instead of the Weierstrass approximation theorem.
In this case, the argument is completed by the uniqueness theorem for the
Fourier transform.

The structure of bounded measures on R (or %) is given by

Theorem 2.6. Each p € My {R) can be written in the form
u="Tfac + HUs = fac + Hse + U4,

where fo. € L'(R), W, is the singular partof y, us € My {R) is dﬂesignated
the continuous singular part of p, and pgq = 3} d,6, € My(R), where
> ldy! < oo. Further,

w=F,
the distributional derivative of a function of bounded variation (BV), and

F=Fac+Fe+ ) dyHy,

where F . € BV is locally absolutely continuous, F,. € BV is a continuous
function whose ordinary derivative vanishes a.e., and H, is the Heaviside
function with jump at y. Finally,

FI

o= faen Pl = e (Z dyHy)' =3 dyoy.

under distributional differentiation.

2.3. The Wold decomposition and deterministic sequences

Definition 2.7.
1) Given a nonzero stationary sequence {x(n)] C H. Besides the notation

H{x} = 5p{x(n}} = H(x, 00},

}
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defined in Theorem 2.5 and which does not depend on stationarity, we
now define the closed subspaces,

vn, H(x,n) =5p{x(k): k < n}
and
H(x, —o0) = NH(x,n).
Clearly,
n, H(x, —oo} C H(x,n) € H(x, oo).
» !x(n)} is deterministic if
H(x, —o0) = H(x, 00);
= Ix(n)]} is nondeterministic if
H(x, —oo) # H{x,00);
e [x(n)} is purely nondeterministic if
H(x, —o0) = {0] ( # H(x, o0} ).
In 1941, Kolmogorov was aware of the Wold decomposition (1938),
whereas Wiener, in his independent development of prediction theory
was not, e.g., [44, p. 193]. Because of the role of Wold‘s resuilt in [39],
we state the Wold decomposition, which, notwithstanding its origins,
is a theorem about operators on a Hilbert space and nondeterministic
sequences from Kolmogorov’s point of view.
Let {x{n)} be a nondeterministic stationary sequence with shift
operator U = U, on H(x, o0) defined by U(x(n)) = x(n + 1) on {x{n)].

Then there are stationary sequences {u{n)} and [v(n}}, and a unique
decomposition,

vn, x{n} = u(n) +v(n),
such that

a) lu(n)}is purely nondeterministic and {v(n)} is deterministic,
b) vn, H(u,n) JH(v,n) C H{x,n),

¢) H{u,o00) 1 H(v,00),

d) ¥n, v(n) is the projection of {x(n)} onto H(x, —co).
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3) Given the hypotheses of the Wold decomposition in Item 2. Since
Ix(n)} is nondeterministic, H(x,0) # H(x,1). There is an essen-
tially unique unit vector z{1) € H(x, 1) such that z{1) L H(x,0} and
spiz(1), H(x,0}} = H(x, 1). Noting that U extends to a unitary operator
on H(x, oo0) and that U~} is the adjoint operator, we define

vk e Z, z{k} = U Y(z(1)).
By U’s definition it is easy to check that {z(k)} is orthonormal and that
vk € Z, z(k) L H{x,k —1). (2.3}

Writing the Fourier expansion of x(1) with respect to {z(k}} we compute

x(1) =3 cuzll = k) +v(1), (24)
koo
noting that ¢, = (x{1),z(1 - k)) = 0for k < Oby (2.3). We have [c =
12(Z) and can verify that v(1} € H(x,~oco0). Applying the operator
ur-'to (2.4) we have

v, xin)= ) cnozlk) +v(n),
K -

and, in particular, the purely nondeterministic sequence [u(n)' is a
particular moving average, viz.,

vn,  u(n) = Z Cnorz(k). (2.5)

k ~x

The Wold decomposition is equivalent to the power spectral decom-
position of i, into its absolutely continuous and singular parts. For ex-
ample, if logfa. € L'(T), where u, = fqc + g, cf. Theorem 2.6, then
fu(n)} corresponds to f,. and [v(n)! corresponds to g, cf. Theorem 2.8.
iflog fu. ¢ L'(%), where ji, = f, 4 u,, then {v(n)! corresponds to all of 1.
This material is well-traveled and there are many points of view, e.g., [20,
Chapter 4], (27, pp. 259-261], [42, pp. 62ff], (46, pp. 755-759]. We shall exposit
Kolmogorov’s original formulation from [39, Sections 8-10], which he points
out is “more unfamiliar (than Sections 1-7) and seems to be really new.”
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2.4. Spectral characterizations of deterministic sequences

Theorem 2.8. [39, Theorem 22] Given a stationary sequence {x(n)} € H
with power spectrum p. [x(n)} is purely nondeterministic if and only if
p="fq € L(T)and

log fac € L'(%).

(In particular, p > Oa.e.and suppu = %)

One of the features of such a result is that, when we know the autocor-
relation of a process (which is often experimentally available), we can char-
acterize t..e prediction theoretic properties of the underlying process. There
are analegous results for related filter problems, e.g., [3, Theorem 1V.2.1] and
the thesis [55] of my student, G. Yang.

Theorem 2.9. [39, Theorem 23] Given a stationary sequence {x{n)} < H with
power spectrum p = fg. + .

1) If foc = 0 on a set of positive Lebesgue measure then {x(n); is deter-
ministic.

2) If fae > Oa.e.and log fo. # L'(T) then [x(n)} is deterministic.

3) If fac > Oae. and logfac € L'(T) then 'x(n)! is nondeterministic,
cf. [tem 2.

Remark 2.10.

1) Using the definition of a deterministic stationary sequence as well as
the isometric isomorphism in Theorem 2.5, we can rewrite Theorem 2.9
in terms of trigonometric approximation as follows:

Given y = fo. + us € M (T).

5ple?™kY ik < 0V = L2(7) (2.6)
if and only if
log fac & L'(%). (2.7)

Kolmogorov's proof was a consequence of the Szegd alternative, and
there is an elementary presentation of this proof in [1, pp.261-263].
The completeness statement (2.6) is the analytic formulation of the
prediction theoretic statement, concerning prediction of the future from
the whole past, which we made prior to Theorem 2.5. The result can
first be proved for u = f,, and the “reduction” from arbitrary p to f,,
uses the F. and M. Riesz Theorem.
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The analogous result for p € My, (9}) and Lf‘(‘ﬁ) is due to Krein
(1945). In thig case, "k < 0” is replaced by “t < 0” in (2.6), “T" is
replaced by “R”, and (2.7) is replaced by the condition,

llog fac(y)l ,
J 1+ y2 dv =

2) Therelation of Theorem 2.9 (as written in Item 1) to Wiener’s Tauberian
theorem, Beurling’s spectral analysis, the Denjoy-Carleman theorem
on quasi-analytic classes, and Harry Pollard’s solution (1955) of the
Bernstein approximation problem is discussed in [4]. Pollard’s basic
lemma on entire functions of exponential type was used by (his student)
de Branges to prove uniqueness criteria in the spirit of work by the
Rieszes, Levinson, and Beurling-Malliavin {4]. A deep, novel, and
applicable distributional analysis of this latter body of work is due to
my student, J.-P. Gabardo {25, 22, 24].

2.5. Spectral properties of minimal sequences

The final notion, which we wish to discuss and that was introduced by
Kolmogorov in [39], is the following:

Definition 2.11.
1) Given a sequence |x(n); < H and define the closed subspace,
Hix,n) = 5pix(k) : k #nl.
ix(n)) is minimal if
vn, x(n) & H(x,n). (2.8)

In the case of stochastic processes, minimal sequences are “those
for which the random function at any time (t = n) is outside the closed
subspace spanned by the past and future functions of the process” [43,
pp. 141-142].

2) If {x(n}}is a stationary sequence then either H{x,n} = H(x, 00} forall n
or H{x,n) € H(x, oo)forall n. For example, suppose H(x, n} = H{x, o)
and m # n. If H(x, m) # H(x, oco) then

Yk #£0,  (x(m),x(m+k)) =0,
so that by stationarity,

vk £ 0, (x(n),x(n +k)) = 0. (2.9
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By hypothesis, (2.9) implies that x(n) = 0, a contradiction. Thus, for
stationary sequences, the criterion (2.8) for minimality can be replaced
by the condition,

H(x,0) # H(x, co). (2.10)

3) Minimality not only plays a natural role in prediction theory, but is an
essential aspect of Kothe's theorem (1936) characterizing Riesz bases.
Koéthe's theorem and its role in irregular sampling constitute recent
results with my student, W. Heller [11].

Theorem 2.12. [39, Theorem 24] Given a stationary sequence 'x{n)} = H,
with power spectrum i = f,. + . {x{n)] is minimal if and only if

fod € L'(T),

cf. the multivariate version 2 — H% in [43, Theorem 2.8], [47].

Theorem 2.12 has had important modifications (even in the case 2. — H)
dve to Masani [43] and Rozanov [47], e.g., Theorem 2.17; and these have
stimulated and affected our observations in Section 4 concerning topic B.

Definition 2.13.

1) Given a separable complex Hilbert space H. Two sequences (x(n)),
fy{n), < H are biorthonormal if

Ym,n, (/X(m).u(n‘\? -:’SH\Jl'

2) Given a sequence (x(n); € H. An Hahn-Banach argument shows that
there is a sequence [u(n), = H so that [x(n)), (y(n)! are biorthonormal if
and only if (xIn)) is minimal. Furthermore, ly(n) is uniquely determined

if and only if (x(n)} is not only minimal in H but also Spix(n); = H.

Using the fact stated in Item 2 of Definition 2.1 we can make the fol-
lowing definition.

Definition 2.14.

1) Given a minimal, complete sequence {x(n)} C H, and let {x(n)}, {y(n))
be biorthonormal. {x(n); is a Bessel sequence if the Bessel map,
B:H - 14(2)

- (2.11)
x 3 H{x,y(n)),




-

{ Benedetto 12%
is a well-defined linear map. {x(n))] is a Hilbert sequence if

Yic(n)) € 12(2), Ix. € Hsuch that
vn,  cn) = (x,y(n).

Clearly, a Bessel sequence is a Hilbert sequence if and only if the Bessel
map B is surjective.

2) If {x(n)}is a Bessel sequence then, by the uniform boundedness prin-
ciple, there is a constant B > 0 such that

vxe Y I(xym)i < BYxI (2.12)
Thus, the map B in (2.11) is not only well-defined and linear but aléo
continuous.

If {x(r.); < His a minimal, complete sequence, and x{n};, ly(n}’ Z H
are biorthonormal then it is not necessarily true that 5p{y(n}; = H; an old
example of Kaczmarz and Steinhaus (1935) provides a counterexample, e.g.,
[34, pp. 19-20]. On the other hand, Masani [43] and Rozanov [47) have used
Theorem 2.5 to observe the following lemma.

Lemma 2.15. Given a stationary, minimal, complete sequence |x(n), Z H,
and let {x(n)}, 'y(n}, be biorthonormal. Then spiy(n}; = H.

Theorem 2.16. Given a stationary, minimal, complete sequence (x(n]] -~ H,
and let [x(n);, 'y(n); be biorthonormal. Assume [x(n)] is both a Bessel
sequence and a Hilbert sequence. Then there are constants A, B > Osuch that

vie H, o AR < ) Iixoyingl < Bjx|IL (2.13)

Conversely, if (2.13} holds, then {x(n); is both a Bessel sequence and a Hilbert
sequence.

Proof.

1) Thesecond inequality of (2.13) is clear since {x(n)} is a Bessel sequence,
eg., (2.12).

To verify the first inequality of (2.13), first note that the Bessel
map B is injective by Lemma 2.15. Since {x(n]} is a Hilbert sequence,
the Bessel map B is surjective, so that, by the open mapping theorem,
B~':12(2) — H, is continuous. This yields the first inequality.

2) For the converse, the second inequality of (2.13) implies {x(n}] is a
Bessel sequence.
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Since {x(n)} is a Bessel sequence, the Bessel map B has a well-
defined continuous adjoint, B* : 12(Z) — H. Clearly,

(4,B"¢) = (By,c) = ) (y,u(n))e(n)
=(y,)_c(n)y(n)).

Thus, for any ¢ € [3(2), B*c = ¥ c¢(n)y(n) = x € H; and, by
the biorthonormality, c{n) = (x,y(n)). Therefore, {x(n)! is also a
Hilbert sequence.

Condition {2.13)in Theorem 2.16 defines [y(n )} as a frame, cf. Section 4.

Theorem 2.17 ([47]). Given a stationary, minimal, complete sequence
{x(n)} € H, with power spectrum u = f,..

1) [x(n)}is a Bessel sequence if and only if f;! € L=(%).
2) [x(n)}is a Hilbert sequence if and only if fo. € L™(T).

Rozanov’s Theorem 2.17 and Masani’s related contributions utilize
Theorem 2.5. This result, and similar ones by these authors, were proved in
the multivariate case, Z — H¢, e.g., [53, Volume Il1]. There are significant
problems in the multivariable case, Z¢ — H, ¢f. Section 4.2.

Remark 2.18. As we have mentioned, prediction theory leads to our for-
mulation of Section 3. At the end of Section 3 we shall discuss the role
of the uncertainty principle inequalities in the context of weighted Fourier
transform norm inequalities. With this in mind, we close this section with
an intriguing observation by Norbert Wiener [54, p. 9].

“The prediction of the future of a message is done by some sort of
operator on its past, whether this operator is realized by a scheme
of mathematical computation, ar by a mechanical or electrical ap-
paratus. In this connection, we found that the ideal prediction
mechanisms which we had at first contemplated were beset by
two types of error, of a roughly antagonistic nature. While the
prediction apparatus which we at first designed could be made to
anticipate an extremely smooth curve to any desired degree of ap-
proximation, this refinement of behavior was always attained at the
cost of an increasing sensitivity. The better the apparatus was for
smooth waves, the more it would be set into oscillation by small de-
partures from smoothness, and the longer it would be before such
oscillation would die out. Thus the good prediction of a smooth
wave seems to require a more delicate and sensitive apparatus than
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the best possible prediction of a rough curve, and the choice of the
particular apparatus to be used in a specific case was dependent
on the statistical nature of the phenomenon to be predicted. This
interacting pair of types of error seemed to have something in com-
mon with the contrasting problems of the measure of position and
of momentum to be found in the Heisenberg quantum mechanics,
as described according to his Principle of Uncertainty.”

3. Weighted Fourier transform norm inequalities

3.1. Prediction theory and weighted Hilbert transform norm inequalities

Kolmogorov’s conception and characterization of deterministic sequences
lead to a new prediction problem formulated by Helson and Szegé (1960)
[33]. We shall describe this problem, its relation to the material in Section 2,
and the role of the Hilbert transform. In light of Theorem 2.5, we shall deal
with trigonometric approximation in L2(%).

Notation 3.1. Given p = f . + us € M, {T), we define the following sub-
spaces of L2 (%):
Po = sp{ez"““' 1k <0},
P =sple’™ Y k< -1,
and
F= sp{ez"‘“‘y tk>1)
“P” is for “past” and “F” is for “future.”

The results about deterministic and minimal sequences from Theorems
2.8,2.9, and 2.12 in Section 2 are the consequences of the following formulas
developed by Szeg6 and Kolmogorov, respectively.

Formulas 3.2,
ian 1+ p(y)iPduly) = exp (J logfuc(y)dy>: (3.1)
PeEP g T
—1
inf [ 14 v+ atniRauty) = (| fatnar) 32)
aer IT T

Rem_ark 3.3. If log fac ¢ L'(T) then the right side of (3.1) vanishes and so
1 € P;in fact, P = LZ(X). Similarly, if f7! ¢ L' (%) then the right side of (3.2)
vanishes andso 1 € (PU J).

130 }
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In the converse direction, these formulas show that “if f,. is not too
small,” i.e., if the right-sides of (3.1) and (3.2) are positive, “then the expo-
nentials possess a certain kind of independence” [33, p. 108]. Intuitively, this
means, for example, that P # T in the case that the elements of P are lin-
early “independent” of J, i.e., the nondeterministic case. Geometrically, this
signifies that P and 7 are at a positive angle « to each other in the sense that

P = cosx

(3.3)
=sup{l(p,a)l:p € P,q € Fand ||pli2,, llallzn < 11 < 1.

The definition (3.3) is the natural Hilbert space generalization of angle from
the Euclidean case, where the law of cosines is used to evaluate an angle «
between two lines (subspaces) through the origin. Clearly, in this case, if
a = 0 then the two lines are the same. It is in this spirit that we would have
the deterministic result, P = F, when « = 0 in (3.3).

Helson and Szego noted that the notion of independence defined by the
condition, p < 1, is stronger that the independence defined by Kolmogorov’s
nondeterminism [33, p. 109], and discovered the following remarkable role
for the Hilbert transform in prediction theory when dealing with positive
angles between subspaces.

Theorem 3.4. (33, Theorem 2, pp.129-130] Given u = fq. € L' (T), and

define the conjugate functionp(y) = =i ¥ . P[nl (sgnn) e?™"Y for every

trigonometric polynomial 3 .. pnle2™ . Thereis p € (0, 1) such that
VpePandge T,

RQI p(¥)e2™Y q(Y)fac (Y)dy| < ollpllzullall 2y
T

if and only if there is C > 0 such that
P2 < Clipll2.u (3.4)

for all trigonometric polynomials p. Equivalently, Po and 3 are at a pos-
itive angle in Lﬁ(‘?() if and only if (3.4) holds for every real trigonometric
polynomial p.

Remark 3.5. If f is a trigonometric series, }_ an ™Y with conjugate series
f, then

o0
f+if =ap + ZZ anpe?™iny
)

is a series of analytic type. If f € L2(T) then f € L2(%) and f + if € H2(X).
The famous theorem of Marcel Riesz (1927) asserts

vie LP(T),  ifly < Cllflly, (3.5)

Stationary frames and spectral estimation }
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where p > 1, cf. (3.4). Kolmogorov (1925) proved the L!(%)-version of (3.5):

3C > Osuch that ¥f € L'(%) and VA > 0,

> » (3.6)
Hy cIf(¥)E > A} < CA i,

i.e., fis of weak L'-type if f € L'(%). Note that the constant C in (3.6) is
independent of f.

Definition 3.6.

1) The Hilbert transform of f € L?(R) is the conjugate function f defined
by the formula

(A)V(y) = ~ilsgny)fY(y).

2) Since sgny = 2H(y) — 1 (H = Heaviside function) and since the distri-
butional Fourier transform of Z1pv (1) is 2H(y) ~ 1, then

. 1
f(t) = PV (%) * f(t).

Thus, prediction problems are intimately related to weighted Hilbert
transform norm inequalities.

3.2. A,,-weights, the Hilbert transform,
and the fundamental theorem of calculus

Definition 3.7. For each f € Lo ' (R), the Hardy-Littlewood (1930) maximal

function Mf is defined as

vt € R, (Mf){t) =supl
rei Ml

j Iflu)ldu,
I

where | ranges over the nontrivial compact intervals containing t. The
extension to B¢ was made and used by Wiener (1939) in work on the er-
godic theorem.
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Theorem 3.8.

1) If f € L'(R) then Mf is of weak L'-type, i.e., there is a constant C > 0
such that
vfe U'{R)and YA > 0
it (M) () > A}l < CAT Ty

Note that the constant C in (3.7} is independent of f.
2) If1 <p € ooandf e LP(R) then Mf € LP(R), and there is a constant
C = Cp > Osuch that

vie LP(R),  IMfll, < Colflly

(Hardy-Littlewood, 1930).
3) If f € L'(R) then

(3.7)

R
ltxér‘\ i L f(u)du = f(t)a.e.

where for a given t, the measures of the compact intervals I tend to 0
(Lebesgue, 1910).

Remark 3.9. In Theorem 3.8, Item 3 is a corollary of Item 1. Item 3 is that
direction of the fundamental theorem of the calculus which asserts that

“Do J = Identity,” (3.8)

where “D” is the differentiation operator and j is the integration operator;
and so Item 1 of Theorem 3.8 can be viewed as a quantitative version of (3.8).
Of course, we also know that

z J oD = Identity” (3.9)

More precisely, for compact intervals, F is absolutely continuous on [a, b} if
and only if

t

3f € L'{a, b] such that Vt € [a,b), F(t) — F(a) =J flu)du.

a

Definition 3.10. Given 1 < p < oo and a Borel measurable functionv > Qa.e.
v is an Ap-weight A, -weight, written v € A,,, if there is a constant C > 0
such that

VI(compact interval),

1 1 “V/lp-1) )P—,
(“l J( v(t)dt) (“' Lv(t) dt <C.




{ Benedetto

For example, v(t) = t|* € A, if -1 <a<p—1.
The A, condition is precisely what is needed to prove a weighted
version of Item 2 of Theorem 3.8.

Theorem 3.11 (Muckenhoupt, 1972). Given 1 < p < oo and a Borel
measurable function v > 0a.e. There is a constant C > 0 such that

Ve LT(R),  [IMfilpy < Clifllpv
if and only if
veE A,

The relation between the material of this subsection and Section 3.1 is
made by the following result.

Theorem 3.12 (Hunt, Muckenhoupt, Wheeden, 1973). Given 1 < p < oo
and a Borel measurable function v > 0a.e. Thereis a constant C > Osuch that

vieLP(®),  IIfllpy < Clifllp
if and only if
VE A

Besides the original papers, [26] provides an excellent treatment of The-
orems 3.11 and 3.12, as well as subsequent related developments concerning
A, and maximal and singular integral operators.

3.3. A,-weights and weighted Fourier transform norm inequalities

We have seen how prediction theory leads to weighted Hilbert transform
norm inequalities and A, weights, with an accompanying theme dealing
with the fundamental theorem of calculus.

The following result illustrates how Fourier transform inequalities
come into the picture.

Theorem 3.13. [10] Given 1 < p < g € p' < oo and an even, non-negative,
Borel measurable function v, which is nondecreasing on (0,00). There is a
constant C > 0 such that

Vf € C®(R),

. N L310)
(J Ty G) dy) sc(f 'f“”p““’d‘)

134 }
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if and only if
V% € Al + (fr Ve

cf. {5, Section 2.2.2] for a d-dimensional version.

Remark 3.14.

1) Depending on v, the quantitative expression for f is not transparent in
the case f ¢ LY (R)\L'(R) N LY (R), e.g., [5], [8], and recent work with
my student, J. Lakey [41].

2) If p = q = 2then {3.10) becomes

1fllp11) < Cliflzager: (3.11)

If we define the Kelvin operator,
1./1
(Kf)ly) = L (—) .
Y \Y
then (3.11) becomes

IKfif2,v < Cliflfz,0.

There is a corresponding inequality in terms of K for the general case
(3.10). Harmonicity in ®? is invariant under any conformal mapping.
This fact is not valid in 84, d > 2, and Kelvin transformations are used
to provide the invariance of harmonicity in these higher dimensions as
well as ®? (W. Thomson, Lord Kelvin, 1847).

Example 3.15.
1) If p =gandv = 1then (3.10) is the Hardy, Littlewood, Paley theorem
(1931),
R /p
(f!f(YH"IYI"‘Zdy) < Clifllps (3.12)

originally proved for Fourier series.
2) If g =p' and v = 1 then (3.10) is the Hausdorff-Young (1923), Titch-
marsh theorem (1924),

(1fllp < Cliffln. (3.13)

Hausdorff-Young proved {3.13) for Fourier series, and Titchmarsh
proved it for Fourier transforms.
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3) Ifv(t) = 1t|*, 0 € « < p — 1, then (3.10) is Pitt’s theorem (1937),

1/p

/9
(Jl?(y)lqul““dy) $C(J|f(t)|"|tl°‘dt) , (3.14)

where 8 = 3(a +1) + 1 —q. The result was originally proved for
Fourier series. If p = q and a = 0 then {3.14) reduces to {3.12). If
q=7p"and « = 0 then 3 = 0 and (3.14) reduces to (3.13).

4) The result in Item 1 was first proved by Hardy and Littlewood, but
in the same year Paley proved it for uniformly bounded orthonormal
systems. Paley’s ideas are significant and deal with rearrangements,
cf. J.E. Littlewood, “On a theorem of Paley,” JLMS, 29(1954), 387-395.
Salem and Zygmund proved (3.12) for p = 1 when the given Fourier
series is of analytic type (BAMS, 55(1949), 851-859).

3.4. Weighted Fourier transform norm inequalities
and the uncertainty principle

Our path from prediction theory lead us in Section 3.3 to A, weights which
characterize special weighted Fourier transform norm inequalities. The next
step is to see what is involved in establishing general weighted Fourier
transform norm inequalities.

H. Heinig and [ proved the following result during the summer of
1982 here in Toscana (as well as in North America). Similar results were
being proved during the same period by Muckenhoupt and by Jurkat
and Sampson.

Theorem 3.16 ([9]). Given 1 < p € g < oo and two even, non-negative,
Borel measurable functions u and v, which are nonincreasing and nonde-
creasing, respectively, on (0, c0). There is a constant C = C(K) > 0 such that

VEECER) [Ifllg. < Cllfllpy (3.15)

if and only if

1/s V/q s 1/p’
sup (J u(y)dy) (J v(t)-*"/"dt) =K < oo. (3.16)
s >0

0 0
Remark 3.17.

1) Naturally, from general considerations, (3.15) allows us to define f for
each f € LY (R), with the same caveat to which we alluded in [tem 1 of
Remark 3.14.
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2)

3)
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Our proof of the necessary conditions for (3.15), viz., the implication
that (3.15) implies (3.16), does not require monotonicity.

Given our present point of view of tracing mathematical paths from
Kolmogorov’s seminal work, we should point out that Theorem 3.16
was used in our proof of Theorem 3.13.

Qualitatively, the condition (3.16) is in the spirit of the uncer-
tainty principle. In the early 1980s, Heinig and I verified an elementary
weighted Heisenberg inequality by means of Theorem 3.16. In a re-
cent NATO ASI, we developed a full theory of uncertainty principle
inequalities, taking into account significant work of others, working
in the context of weighted Fourier transform norm inequalities, and
utilizing wavelets and coherent states [5].

Theorem 3.16 is just the starting point for weighted Fourier trans-
form norm inequalities. The theory has been highly developed in the
past decade by many harmonic analysts, and is naturally akin to the
topic of restriction theorems where geometry plays such a critical role.
The goal is to characterize norm inequalities such as (3.15) both effec-
tively and computationally, and for the most general class of weights.
Our most recent contribution [8] deals with effective criteria, i.e., no
rearrangements, and measure weights; it also contains references to
recent contributions by others, cf. [41].

4. Stationary frames

4.1. The theory of frames

Definition 4.1.

1

2)

A sequence {x(n)] in Hilbert space H is a frame if there exist A,B > 0
such that

2
vyeH,  Afylf < ) [(u.x(n)]” < Blull,

where (, ) is the inner product on H and the normof y € His |ly| =
{y,u)'/2. A and B are the frame bounds, and a frame {x(n)} is tight if
A = B. A frame {x{n}} is exact if it is no longer a frame when any one
of its elements is removed. Clearly, if [x(n)} is an orthonormal basis of
H then it is a tight exact frame with A =B = 1.

The frame operator of the frame x(n})} is the function S : H — H
defined as Sy = 3 (y,x(n))x(n).
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The theory of frames is due to Duffin and Schaeffer [19] in 1952. Expo-
sitions include the book by Young [56] and the article by my students C. Heil
and D. Walnut (29]; the former is presented in the context of nonharmonic
Fourier series and the latter in the setting of wavelet theory.

Theorem 4.2. Let {x(n)} C H be a frame with frame bounds A and B.

1) Sis a topological isomorphism with inverse S=! : H — H. {(S™'x)(n)}
is a frame with frame bounds B~' and A~', and

YyeH, y= Z (y, (87" %)) x(n)
=3 (y,x(n) (S~ 'x)(n).

The first expansion is the frame expansion and the second is the dual
frame expansion.

2) If [x(n)jis tight, [[x(n)]| = 1 forall n,and A = B = 1, then {x(n}] is an
orthonormal basis of H.

3) If Ix(n)!is exact, then {x(n)) and {{S~'x)(n)} are biorthonormal, i.e.,

Ym,n, (x{m), (S7"x)(n)) = Smn.

Remark 4.3. We comment on Item 2 because it is surprisingly useful and
because of a stronger result by Vitali (1921) [51}.
To prove Item 2 we first use tightness and A = 1 to write,

[x(mifi? = fix(mii* + 3 [(x(m).x(n))]

nsm

and obtain that {x(n)} is orthonormatl since each {|x{n)}| = 1. To conclude the
proof we then invoke the well-known result: if {x(n}; € H is orthonormal
then it is an orthonormal basis of H if and only if

VyeH,  Julif =Y [y.xing)|

In 1921, Vitali proved that an orthonormal sequence !g.} C L*[a, bl is
complete, and so {gn] is an orthonormal basis, if and only if

2

t
vVt € [a,bl, J gnl(uw)du| =t-—a. (4.1

For the case H = L[q, bl, Vitali’s result is stronger than Item 2 since (4.1) is
tightness with A = 1 for functions f =1, 4.
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Definition 4.4. Let H be a complex separable Hilbert space. A sequence
{x(n)} € H is a Schauder basis or basis of H is each y € H has a unique
decomposition y = }_ cq(y)x(n). A basis {x(n}} is an unconditional basis if
3C such that VF € Z, where card F < oo, and
VYbn,cn € G, where n € Fand bl < icnl,

Z bax(n) Z cnx(n)

nekr net

£C

An unconditional basis {x(n)} is bounded if
JA,B > Osuch that vn, A < {[x(n)]| < B.

Separable Hilbert spaces have orthonormal bases, and orthonormal
bases are bounded unconditional bases.

Kothe (1936) proved the implication, Item 2 implies Item 3, of the fol-
lowing theorem. The implication, Item 3 implies Item 2, is straightforward;
and the equivalence of Item 1 and Item 3 is found in [56, pp. 188-189].

Theorem 4.5. Let H be a complex separable Hilbert space and let {x(n})} C H
be a given sequence. The following are equivalent:

1) {x(n)!is an exact frame for H;

2) Ix{n)!is a bounded unconditional basis of H;

3) {x(n)} is a Riesz basis, i.e., there is an orthonormal basis [u(n)) and
a topological isomorphism T : H — H such that (Tx)(n} = u(n] for
each n.

Theorem 4.6. Let H be a separable Hilbert space and let ;x(n), < H be a
frame. {x(n)} is an exact frame <3 [x(n)] is a minimal sequence.

Proof.

=>  Since {x(n)}is exact we have that {x(n)}, {{S~"x){n)} are biorthonormal
(19}, cf. [29, p. 637]. By ltem 2 of Definition 2.13b, {x(n)} is minimal.

&= Since {x{n)} is minimal then

vp,  x(p) 5pix(n):n #p) (4.2)

To prove {x(n)} is an exact frame we must show that each {x(n) : n # p|
is not a frame. If any {x(n) : n # p] were a frame, then by Theorem 4.2
x(p) = Zn/r, cnx(n), and this fails by (4.2). B

Corollary 4.7. Given a stationary, minimal, complete sequence x : Z — H.
Then {x(n}] is both a Bessel sequence and a Hilbert sequence if and only if
{x{n)] is a bounded unconditional basis.

Stationary frames and spectral estimation }
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Proof. Bessel-Hilbert sequences are frames by Theorem 2.16. Thus, {x(n}}
is a bounded unconditional basis by Theorems 4.5 and 4.6. The converse is
immediate by Theorems 2.16 and 4.5. 1

Example 4.8. Given g € L?(®9)and a = (a1,...,aq), b = (by,...,bg) €
R4, Assume each a;, by > 0. Define the translation and modulation maps,

Tnaf(t) = f(t —na) and Enpf(t) = 2™ MPE(1),

respectively, where m,n € 29, f € L#(R®¢), na = (n1as,...,ngaq), and
mb = (m;by,..., mgbq). The Weyl-Heisenberg system (¢ m n : m.n € 24
is defined by

d)m‘n = Emanug.

cf. [11, Definition 2.6] for a generalization. If {¢m ) is a frame for L2(md) it
is called a Weyl-Heisenberg or Gabor frame (of coherent states).

Remark 4.9. Given g € L?(R¢) and a,b > 0 for which ab = 1. If {py ]
is a frame then it is an exact frame, cf. Theorem 4.5. This remarkable fact (for
ab = 1) can be proved using properties of the Zak transform, which we
now define.

Definition/Property 4.10.

1) Given a = (ay,....aq) € RY, with each a; > 0. The Zak transform of
f € Lioc ' {M9) is formally defined as

Gf{x,w) = a%? Z fixa+ka)e?™ "W, (x,w) e T9T4, (4.3)
e
where multiplication is component-wise and a¢'? - Hai' 2. lts his-
tory has been traced to Gauss, from whence the “G” in (4.3); and in
recent times there have been independent formulations by Auslander-
Tolimieri, Brezin-Weil, and, of course, Zak, cf. [36].
2) Formally, Gf is quasi periodic in the sense that

Gf(x + n,w) = e~ 27in “Gix,w)and G(x,w + n) = G{x,w)
for (x,w) € T4 x T4 and n € 2.

The proof of Theorem 4.11 is straightforward, beginning with an ele-
mentary calculation verifying that

vfe C2(RY), 1GfllLz(ga xgay = [Ifll2.
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Theorem 4.11. G : L?(R?) - L%(T¢ x T¢) is a unitary map.

Given a,b € RY with each a;,bx > 0. If g € L2 (M%) and ab = 1, ie,
ajbj = 1foreachj =1,...,d, then

G(EmbTnag)(x,w) = Em{x)En(w)Gglx,w)

(4.4}
= Emon(x,w)Galx,w), (x,w)e T4 <74,

Note that {E,, ! is an orthonormal basis of L?(T¢ x T9). By isolating Gg
(from G(E\bTnag)) when considering {¢,, n), it is clear that (4.4), in con-
junction with Theorem 4.11 plays a role in the following result. This result
(Theorem 4.12) has had partial formulations in the coherent states literature
for many years, and seems to go back to the analysis of von Neumann found
in [52, pp. 405¢£.], <f. [18), {28, Proposition 7.3.4], {29, Theorem 4.3.3], [36].

Theorem 4.12. Given g ¢ [2(®¢) and a,b € RY with each a;, by > 0.
Assume ab = 1 and consider the Weyl-Heisenberg system [ v | (defined
in Example 4.8).

1) {dm . is complete in L2(R4) if and only it Gg # Oa.e.

2) {¢m.n)isminimaland completein L2(R¢)ifand onlyif 1/Gg € L*(T¢ »
'Id ).

3) ®um.n is an orthonormal basis of L?(M4) if and only if {Gg! = 1a.e.

4) (G on)is aframe for L2(®?) with frame bounds A and B if and only if

A<IGgP<B ae.
In this case, (¢ m n, is an exact frame.
Item 1 of Theorem 4.12 should be compared with Corollary 4.7 and

Section 4.3, where we note that !¢, », is stationary in the case ab - 1.

Example 4.13. Given {» 1 2{M). The wavelet system [y, o mnel 2l s
defined as

wm‘n(t) = 2'“'211)(2"\{ - nj.

If {dwm.n is aframe for L2{R} it is called a wavelet frarm:

4.2. Multidimensional analogues of classical analysis problems

The extension of the Kolmogorov or Szego or Wiener prediction theory to
multidimensional domains is a natural problem, and has been and is being
pursued, e.g., [15, 37]. Chiang’s work [15] precedes the well-known contri-
bution of Helson and Lowdenslager. There has been a proliferation of results
dealing with specific topics and diverse levels of abstraction. (For example,
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{20, Preface] provides references for Markovian properties in this setting.)
From the mathematical point of view, the work of Helson and Lowdenslager
[31, 32, 30] is preeminent. One can reasonably argue its central position in the
development of abstract analysis for a generation, and its influence on such
topics as locally compact abelian groups, Dirichlet algebras, von Neumann
algebras, and HP-theory, e.g., [53, Volume lII, pp. 347ff.] for what now are
classical (or at least standard) references. With all of this, there are still basic
multidimensional prediction problems.

Our goal in this section is to exhibit a little bit of the multidimensional
evolution of one particular classical problem, which played a role in [39]. At
the very least, it gives us the opportunity to advertise two recent and deep
contributions by Benedicks [12] and Gabardo (23]. Our slightly broader
goal in Section 4 is to suggest an interleaving of technology between the
theories of frames and prediction, with the hope of bringing new techniques
to bear on the problems in each area. Our method will become apparent in
Section 4.3.

The role of the F. and M. Riesz theorem in one of Kolmogorov’s spectral
characterizations, viz., {39, Theorem 23}, was discussed in Remark 2.10.

Theorem 4.14 (F. and M. Riesz, 1916). Given u ¢ M(T) and assume
({n) = 0foralln < 0. Then u = fq, ie, ne L)

Three years after Kolmogorov’s paper [39], Bochner published the tol-
lowing result.

Theorem 4.15 (Bochner, 1944). Given p « M(T?) and assume [t vanishes
outside a sector S = 27 of opening as < 7. Then u € L'(T?). (Precisely, S is
a closed sector of |<.)

Bochner’s work was not only an inspiration for Helson and Low-
denslager’s program, in which they generalized Szego's theorem dramati-
cally, but in [31] they proved a generalization of the F. and M. Riesz Theorem
of which Theorem4.15is a corollary, e.g., [48, Chapter 8], a book where many
of us began. Instead of the duality between T and Z, the setting in [31] is the
duality between a compact connected abelian group I" and its discrete dual
group G in the case G is ordered, e.g., [48, pp. 193-194] for the definition of
ordered group.

Ordered groups also arise in the theory of Cohr almost periodic func-
tions, e.g., 53, Volume 111, pp. 347-348].
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4.3. Stationary frames

Definition/Remark 4.16.

1) A sequence {x(n):n € 24} in a complex Hilbert space H is stationary
if the inner product,

R(m) = Rex(m) = (x(m + k), x(k)), me Z9,

is independent of k € 29, i.e.,
Ym,n € 24, (x(m),x(n)) = (x{m —n),x(0)).

Thus, {x(n)} is stationary if the function s : 2¢ x 24 — €, defined as
s(m,n) = (x(m},x(n)),

has the form s(m,n) = s{m —n). In this case, Rx(m — n) = s{m —
n), and Ryx(m) = s(m —0) = s(m,0) = (x{m),x(0)). Ry is the
autocorrelation of x and is a positive definite function on the group Z4.
u =R, € M, (34) is the power spectrum of x.

2) The analogue of Theorem 2.5 is valid for stationary sequences x : 24 —
H, where H(x) =3p/x(n) : n € 29} the mapping

Z:LA(TY) = Hix),

defined linearly on sple?™i" Y} by Z(e?™"'Y) = x(n), extends to a linear
isometric isomorphism.

3) A stationary sequence {x(n) : n € 24 ¢ H is a stationary frame if
'x{n):n e 24} is a frame in H.

Example 4.17.

1) Given g € L#(R4) and a,b € R* with each a;j, b, > 0. Consider the
Weyl-Heisenberg system [« : m,n € 29}, where

¢)m.n = EmbTuug-

Ifab = 1, ie, ajb; = Vforeach i = V,....d, then the sequence x :
24 < 29 o L4(MY), defined by x(m,n) = dm.n, is a stationary sequence.
In fact,

(d’m,n‘d’p.q) = Jelni( ('“_'”bg(t - na)@(t —qa)dt

- Jelni{uouui [n\—p]bg(u —(n— q)a)'g'(u)du
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d
_ J elnit»(m—l"bexp {Zniz qj(m; -—m)ﬂibi}

i1
xg{u—(n—qglajg(u)du

- JQZHixL‘(vn—l’\bg(u - (n - gla)g{u)du

= (¢m«~yv,n~q;g> = <¢m—p,n—q‘¢0‘0>»

and this is the desired stationarity. Of course, the positive defititeness
follows from general considerations, viz.,

> CmnCpaR{(mm) - (p.q))

m.on)
woat

= Z Cm,nEp‘q (d’m.n ' (bl"(l)

rmong
rLqr

i

Z (Cm,n(i)m.n ' Cp,q‘bu,q>

Pon

rog
= < Z Cm,nd)m.n» Z Cp.qd»)p‘q> > 0.
(m,n} (P

Thus, RN = e M, (T9).
In the case of Item 1,

R(m,n) = Jez’““ " (Thag(u)) Gluldu,
Clearly, R(m, n)i < {lgll{z (pu, for (m,n) € 29 « 24,
Also, foreachn & 29, (T,,0)@ € L"{R4), and so

n, lim [R{m,n}} =0

|ml—a

by the Riemann-Lebesgue lemma. Here, thinking in terms of locally
compact avelian groups, lim,,;., . r(m) = Oindicates that forall ¢ > 0,
there is a finite set K C 24 such that

Ym e Z9\K, [r{m)] < €.

Further, by Parseval’s theorem,

R(m.n) = Jrl""“ﬂ'vgm (T_mbd)™ ()dy;
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and so, as above,

vm, lim [R{m,n}|=0.

Inl—=eocc

Example 4.18. Given ¢ ¢ L2{%R) and the wavelet system {Y'm n). We com-
pute the following

(Wrmom s Ppg) = 2 jw(Z'"t~n)$(z"t—q)dt

a3 Jw (277" (u+a) = n) b(w)2 " du

m_p

=2"r" Jw (2™ 7Pu—(n—2"""q)) Ylu)du.

Thus, {$m | is not a stationary sequence since n —2™~"q # n — q unless
m=np.

Besides Example 4.17, there is another relationship between Weyl-
Heisenberg systems and power spectra which we first proved in the AMS
series, Contemporary Mathematics, 91(1989), pp. 9-27.

Theorem 4.19. Given g € L™ (). Define the (analogue) Weyl-Heisenberg
system,

Puwnlt) = EuTyglt) = e?™ gt —x),

{x,w) e M « R, and the L‘-WeyI—Heisenberg transform,
vie L' (M),  W(f)x.w) :me&wn)dt.

Assume g has a continuous autocorrelation,

1 1
Yt € R, R(t) = lim —J _g(t+u)§(u)du

Tl—-’ac ZT -1

with R(0) > 0; and let {p,} C L'(R) have the property that {pY| C L'(R) is
an [ '-approximate identity. Then

Vf € Ll(m), nh—ron ”f“fn”l =0,

where

1 1 ("
falt) = gy Jim 7 ”_Twrf)(x.w)daw.x(t)pn(w)dxdw.

Stationary frames and spectral estimation }
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Remark 4.20. If g = 1 then the L'-Weyl-Heisenberg transform is the ordinary
Fourier transform; and Theorem 4.19 is the usual L'-inversion theorem for
the Fourier transform.

The autocorrelation defined in Theorem 4.19 corresponds to the auto-
correlation defined for stationary sequences in the case of correlation ergodic
processes. Also, it is possible to substitute other modes of convergence in
the definition of autocorrelation and still obtain Theorem 4.19.

Point of view. Given the stationary sequence
x:29%x 249 4 Ll(md),

where x(m, ) = ¢, n forsome g € L2(R9) and ab = 1; and suppose
H(x) = L*(]),

where H(x) = spix(m,n) : (m,n) € 24 x Z4}. If pis the power spectrum of
x then

Z:L2(34 x 7Y -5 L3(RY
is a unitary map, as is the Zak transform,
G:L2(MY) - L334 x 79,
and the induced map,
GoZ:L3(x%~ T9) - 14T » 39).
In this last case,
GoZ(Emn)(x,w) = Em nix, w)Gglx, w),

cf. (4.4). Note that u > 0 is a periodic measure on R¢ » R¢, and Gf is
quasi-periodic on R4 x R4 for each f € L2(RY).

The general problem we pose is to analyze and compare the periodic
measure u and quasi-periodic function Gg vis a vis obtaining results in mul-
tidimensional prediction theory and the decomposition theory for coherent
states, e.g., Theorem 4.12.

In one direction it is natural to establish the role of u in formulating
criteria for expansions such as those given in Theorem 4.12, in the case
the Zak transform of g is more intractable than p. In the other direction, we
envisage incorporating the Zak transform of g in obtaining “spectral” charac-
terizations of deterministic properties of various complete Weyl-Heisenberg
systems indexed by g € L#(R4). There are partial results, and, assuming
further progress can be made, these will appear elsewhere.
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5. The spherical Wiener-Plancherel formula

5.1. Wiener-Plancherel formulas

What exactly is a Wiener-Plancherel formula? Given a function ¢ defined
on R®¢ having Fourier transform ¢ defined on ®%(= ®4). Suppose the
distribution ¢ is intractable, as is likely for poorly behaved ¢. Let s be
an operable integral of ¢, i.e., suppose that s is a well-behaved function
and that Ls = ¢, distributionally, for some differential operator L. Wiener’s
idea was to deal with a computable function s instead of the more esoteric
distribution ¢, and to relate the quadratic behavior of ¢ and s. In particular,
for the spherical casc dealing with balls B(O,R) = {t € R/¢:|t| < R} having
volumes |B(0, R)|, a Wiener-Plancherel formula has the form

1 2 .
lim ———J (t)i"dt = Q{s}),
R—00 |B(0,R)I BlO.R]|¢ )’ Q
where Q{s) is an explicit quadratic expression and Q, s and L are interde-
pendent, cf. (5.1} for the exact formula. In Wiener’s original result (d = 1),
Ls can be correctly formulated as a first distributional derivative of s, and

OO
Q) = tim 52 [ 15l + N = sty = A)Pay.

The Plancherel formula allows one to define the Fourier transform of
a square-integral function f, and, at certain levels of abstraction, it is con-
sidered as characterizing what is meant by an harmonic analysis of f. On
the other hand, for most applications in R4, the Plancherel formula assumes
the workaday role of an effective tool used to obtain quantitative results.
It is this latter role we envisage for Wiener-Plancherel formulas in the non-
square-integrable case. After all, distribution theory (in ) gives the proper
definition of the Fourier transform of tempered distributions. The real issue
is to obtain quantitative results for problems where an harmonic analysis of
a non-square-integrable function is desired. A host of such problems comes
under the heading of an harmonic (spectral) analysis of signals contain-
ing non-square-integrable noise and /or random components, whether it be
speech recognition, image processing, geophysical modeling, or turbulence
in fluid mechanics. Such problems can be attacked by Beurling’s profound
theory of spectral synthesis, as well as by the extensive multifaceted theory of
time series, e.g., [46]. Beurling’s spectral synthesis does not deal with energy
and power considerations, i.e., quadratic criteria, and time series relies on
a stochastic point of view. Our goal is to implement Wiener-Plancherel for-
mulas to address the above-mentioned group of problems. These formulas
are well-suited to deal with energy and power; and they provide an analytic
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device which should dovetail with spectral estimation methods (from time
series) developed since Kolmogorov’s and Wiener’s time.

In Formula 5.1, we shall state our spherical Wiener-Plancherel formula,
viz., (5.1}, without going into any detail concerning hypotheses and motiva-
tion. We feel that the technicalities and hypotheses are sufficiently complex
to warrant a displayed version at the outset. The relation between (5.1) and
the Wiener-Khinchin theorem, as mentioned in Section 2, becomes apparent
in Section 5.4.

Formula 5.1. The spherical Wiener-Plancherel formula is
lim J b{t)I2dt
R0 |B(O,R)| B(O.R)

iy Sl (2m)
AL Wq-.1A%k—d

(5.1
JtDAskw)izdy‘

of. Theorem 5.6 for a precise statement of hypotheses for the validity of (5.1).
The function sy is the Wiener s-function,

sk = & * Eq, (5.2)

where A*Ey = 8, wq-1 is the surface area of the unit sphere Z4..1, ¢(d, k)"
is the L'-norm of a special function related to the Fourier transform of the
restriction of surface measure o04-1to L4, e.g., Example 5.4,

Dask = sx — Mask,

and M, is the spherical mean-value operator defined by

Masuly) = j suly + A0)dag_1(9).
Ia s

Wq-1
The integer k is related to the dimension d, and there must be control of the
quadratic means of ¢ over spheres in order to verify {5.1). The operator L
described above is the iterated Laplacian A.

Remark 5.2

1) In previous work with my students G. Benke and W. Evans [7], we
proved a rectilinear version of (5.1). The rectilinear result is easier
to prove than the spherical one, although by no means elementary.
Also, in the case of “rectilinear geometry” the operator L is the hyper-
bolic operator

L=a;az...ad;
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whereas, the “spherical geometry” of (5.1) gives rise to the elliptic
operator L = A*. This remark indicates there is a range of Wiener-
Plancherel formulas according to the number of degrees of freedom
available in various convergence criteria.

2) Itis natural to expect significant differences between the rectilinear and
spherical cases.

The analogous situation with the convergence problem for mul-
tiple Fourier series makes this point clear. There are several natural
rectilinear convergence criteria for multiple Fourier series, and there
exist positive results in some cases. For example, using the Carleson-
Hunt theorem for d = 1, C. Fefferman [21] (1971) proved that

lim ame?™ ™ = p(t),a.e. 5.3

R m Egﬁid [ !
for ¢ € LP(R9/24), 1 < p < oo, where P C RY is a d-dimensional
polygon. The rectilinear convergence we used in [7] is analogous to the
so-called “restricted rectangular” convergence criterion in the theory of
multiple Fourier series; this criterion is different from thatof (5.3). If the
polygonal convergence of (5.3) is replaced by spherical convergence,
then it is not known whether all the elements of 12(R¢/24), d > 1,
have a Fourier series representation pointwise a.e.. There are negative
results if p < 2. The problem of multiple Fourier series with spherical
convergence criteria is closely related to deep problems associated with
Bochner-Riesz multipliers. There are some positive results, and we
close this discussion with one such theorem due to Carbery and F.
Soria (1988): if d > 2, « > 0,2 < p < 2d/(d — 1), and ¢ is an element
of the Sobolev spacr T DR} then

lim J d(Y)e?™ Y dy = dt),ae.
B(Q,R)Y

R—00

Example 5.3. A formula such as (5.1} established a mapping between spaces
of functions. For example, if the left side of (5.1) is finite then ||$||pz ma, <
oo, where BZ(R4) consists of functions having bounded quadratic means
over spheres. There is a hierarchy of Besicovich spaces B(p,q) of which
B2 = B(2, 00). For the rightside of (5.1) the corresponding hierarchy V(p,q)
is related to Besov spaces. In the case d = 1, the mappings B(2,1) — V(2,1)
and B(2,00) — V(2, 00), established by Wiener’s original Wiener-Plancherel
formula, are topological isomorphisms. The first mapping is a consequence
of an important result by Beurling [13], coupled with an extraordinarily
clever insight of my student C. Heil [28]. The second mapping is due to
Chen and Lau [14). Taking d > 1and using the rectilinear Wiener-Plancherel
formula in [7], Heil also proved that the mapping B(2,q) — V(2,q)is a
topological isomorphism for 1 < g < co.
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5.2. The spherical Wiener-Plancherel formula

As mentioned in Formula 5.1, we need the following example in the basic
formula (5.1) and in Theorem 5.6.

Example 5.4. For each dimension d > 2, we utilize the function,

d-2 2
_dk—aq__2m (l)hﬂ‘ (31)
Ki(r) =71 (] oo \7 Jas2 - .

where k = 0is an integer, r > 0, and | is a Bessel function of the first kind.

Definition/Remark 5.5.

1) The space B2{R9) of functions having bounded quadratic means over
spheres is the set of all functions ¢ € Lioc2(R9) tor which

12
_ 1 2 -~ [
Idll2ma, —iliio’ (ﬁlB(o,R)( L(o,m [p(t)] dt) < 00. (5.4)

BZ(:4) is a Banach space with norm defined by (5.4).
2) Given ¢ € LIOCZ(ER‘*). The spherical average of ¢ is the function @
defined as

O(r) =

[
&)

J b(r0)2dog_1(8), >0, (
Wwyq-1 Sa-1

3) Abasic property of spherical averages, and one that is relevant for com-
parison with the classical and rectangular Wiener-Plancherel formulas
[7], is that

® € L™ implies ¢ € B¢(RY). (5.6)
The verification of (5.6) is immediate:

1
[B(O,R)|

R
2gp = 24 J 410 (r)d
Jmo.kald)(t)l t BOR) ). T (r)dr

Plloo

<= _ - 1RY = O} <.
dIB(O,R)de 1 DIl

4) Clearly B2(R)\L®(R4) # 0. In fact, we can choose a continuous
radial element ¢ € L2(R¢) for which lim,_,.|$(T)| = co. This function
also shows that the converse of (5.6) fails since ®(r) = [¢(r)i2. Further,
this observation shows that, for the class of radial continuous functions,
® € L= if and only if ¢ € L®(R4).
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The following result is our spherical Wiener-Plancherel formula.
Wiener’s Tauberian theorem (for the multiplicative group of reals) plays an
essential role in its proof.

Theorem 5.6. [6] Given ¢ € Lioc2(M9), which is bounded in a neighborhood
of the origin, and an integer k for which 4(k - 1) < d < 4k and d > 2k
(d > 4(k — 1) implies d > 2k for k > 2.) Assume the spherical average @
of ¢ is an element of L. Then sy = (¢EY)" € §'(R?), and the spherical
Wiener-Plancherel formula (5.1) is valid in the sense that if the left side exists
then the right side exists and they are equal. The constant c(d, k) in (5.1) has
the explicit representation,

oo

cld, k)™! =J Kk(r)(-j;.

0

Another technical ingredient in the proof of Theorem 5.6 is stated sep-
arately below as Theorem 5.7 because of its use in Example 5.4.

5.3. The Laplacian and spherical mean value operator

Theorem 5.7. Given g € L(M9), a € €, and f € §'(R?}. Assume f satisfies
the following conditions: f¥ < 8'(%) is a Borel measurable function,

3R > 0, such that f¥ € Lio2(B(0,R) ),
and

1tV (1) € Lioc2(RY).
Then f — My f € L2(RY) and

fig — ff — Maf)j2

2n (5.7

Visy gV _
g’ (t) — «f (t;(l "

(N el P (zmtm)

d-1 2

Proof.
1) Thehypothesis, it|?fV (t) € Lioc2(RY), implies that f¥ € Lo 2(R\(0).)
In fact, if K € R4 is compact and 0 ¢ K then

4
J IfY(t)2dt :J |—tlglf‘/(t)lzdt < CJ 1t14FY (1)12dt < oo.
K x It K

If we did not assume f" to be a Borel measurable function then it
could contain terms of the form 385.

Stationary frames and spectral estimation }
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2) We now prove
¥ (£)8a(t)
(5.8
= fY(t) (1 1 utm*%—zld,z(zmtp\)) € L*(®r9). )
Wa—1 T
Since fV(t) € L2(B(0,R)") and
sup [t/~4" 2], -2 (27t]A)? < C sup 117472 (2nt]A) "
ftizrR EY
S C)\ SUP |t|—d” § CAR——(HI
It =R
it is sufficient for (5.8) to dominate
Vi 27I g2 2
= £ 1) (1 — AT e (27t (5.9)
B(O,R) Wy d

This integral is

J% OR fv
1 f
—1 27(“')\) }

2n 27)tIA ad
. A : = -
e ( ) e

| 3 21112021k i
:J g 2T E g TR
ok Wa—r = kN5 + k) |

1

]
1
!

Thus, by Minkowski’s inequality, we have

L2 IBO.R1

V(¢ __d 2[_"“')‘)21
wd 1 KN+ k)

"< ﬁ(l
7|

k

—

d) o (ma "
b e Y (O M L2 o
<2 kzl k”_(g +k)“ LIBIORN

" 2n <zmm)““2' o
Vg - 1 2 rds/2)

and this is finite since [t|2fV{t) € L, (9% ). As a consequence, (5.8)

is valid.
3) Distributionally, we have

Vi e 8IRY),  (fYOD) = (FYONN D).
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The left hand side is

ffv(t)(e@)(t)dt - va(t)(em)w(t))dt BETERIST

=f(y)<f(l— : Je*““"dod_l(e))w(t)e—z"“'Ydt)
Wq—1 Taoa

— f(y) (bty)

- ! J (Jw(t)e—lﬂit-(yﬂ\eldt> dO’d_1(9)>
Wd-t Jg,

= () = Mah)™ = F(h)™ = (MXF))™ = (f — Maf) ).

ThUS, f— ]\T)\f = (fvd;\)’\.

Since VO, & LZ(R4) we know that (fV0,)" € L4(MY), and,
hence, that f — Maf & L%(R4). (5.7) is a consequence of the
Plancherel theorem.

The operator (on the function f),
~5 (F = My,
corresponds to the Laplacian in ¢ in the same way the difference operator,

Z—I)\(T—Af - TAf), (5.10)

corresponds to the ordinary derivative in R, cf. {7] for the rectangular gen-
eralization of (5.10) to R4 and Item 1 of Remark 5.2 for the corresponding
differential operator. Wiener made the following calculation for the case
d = 3[53, Volume IlI, pp. 718-727] (1927).

“Theorem” 5.8. Given f « §'(R¢) for which Af ¢ L?(R4} and Y is Borel
measurable. Then

. 2d
lim |Af — (—p) (f — Maf)

A0

=0, (5.11})
2

“Proof”. Since Af is a convolution of f ¢ 8(R%) and a distribution
having compact support, the exchange formula is valid and AfV(t) =
~4n2|t|2fV(t) € 8'(®%). The hypothesis, Af € L(R9), allows us to
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conclude that —4r?(t(2fV(t] € L?(M94). In particular, the hypotheses of
Theorem 5.7 are satisfied and so we have

'Af— (—§9) (f — Maf)

2
v 2d [ 2rftAAl |
= ||f (t)()\2 {1 — (5.12)

2n

wdl

|
2

Using the series representation of ], the right side of (5.12) becomes

v, .2d 2 znltp\) \
F Az{[“ oy 7 (B0 (g)]

2(mitA)2
.-

s znmxffz (i) )
wd_](lu)\) ( 3 (r( ”>] (5.13)
B g Yl |
wa—1 & K+ k[
\/ (-(ﬂ}t )
“Zdr< ) f AZZ ki ( ?\

where we use the fact, I'(9/42 + 1) = 9/,I7(d/5), to eliminate the k = 1 term.
The right side of (5.13) formally tends to 0 as A tends to O since k 2 2

(1A~ T (zmnx)})

)

5.4. Multidimensional spectral estimation
Definition 5.9. Given ¢ < L, *(RY) and define

VR>0, Pgglt)= ot + x1b(x)dx.

1
[B(0, R} JH((‘.R.
Suppose that there is a continuous positive definite function Py, for which
limg_, Pyx = Py in the o(M(914), C.(M¢)) topology, where M(RY) is
the space of measures on RY. Then Py, ¢ L™ (RY) is the autocorrelation of
¢, and the positive measure ji4, = Py is the power spectrum of ¢, cf. the
Wiener-Khinchin theorem (Theorem 2.2).
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Remark 5.10.

1) Depending on the particular problem, the weak topology in Defini-
tion 5.9 can be replaced by various other convergence criteria, including
pointwise convergence.

2) Given ¢ € Lu,cz(%“) with power spectrum pg, and assume there is an
increasing function i(R) on (0, co) for which SUP|y i« lb(t)] < i(R) and
limg_ « 1(R)?/R = 0. Then we can prove that

v € Co(RY), (5.14)

im —1 Ve dlt)2dt = | W (y)12
o |B(0,R)1L(o.k». e ot dt—JN’m' Aol

[2, Section 5].

If we take Y = & in {5.14) then the left side of (5.14) is the arithmetic
mean on the left side of our Wiener-Plancherel formula (5.1). Given ¢ <
l.lm»z(‘ﬁ“ ) and combining the formulas (5.1) and (5.14), it is then reasonable
to expect that

cld, k) (2m)* s _,

AT TLI:TA‘—L:T[D\SU = He (5.15)
in some weak topology. In this same spirit we provide the following calcu-
lation which Wiener made for the case d = 1[53, Volume II, pp.219-223]
(1930).

Formula calculation 5.11. Given ¢ < Lh.‘z(‘.ﬂ“) with autocorrelation Py..
For t € B¢,

cfd, k){2m)* - o
am W ')\—‘{'fz_‘TJ!DASk('YHZe‘ Y Ydy = Pg(t). {5.16)

“Proof”.

1) A direct calculation gives

1 .
P = li I
olt) = Jim s J'Hg.(:iﬂ)(b(x)dx
LT . 2
= 2™ BT J,‘,{O’.‘f,“ Fx)+ bl

—1d{t + x) - G + Ud(t +x) + id(x)|?
=it +x) - ip(t)?} dt

1
- 'li“(l - Ky +iK3 — iKy ).
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2) Let ¥(x) = &t + x) + cd(x), where |c] = 1; and write s, (8)(y) =
(BE}Z)’\{y), so that si(¢) = s«. By the Wiener-Plancherel formula we
compute the following

1
lim —J W (x)12dx
R—00 ‘B(O,R)l B(0,R) u( )
c{d, k)(2m)**
m

R CH S YTy J [Dask(voed){y) + Dasled)(y)* dy

. cld, k)(2m)*k
= lim

AT o AT J!D)\Sx(Tﬂ‘b)(Y) — 2D s )y

+ (c+ et Y)D,\Sk(d))(Y)iz dy

4k
ZF 4 lim S4:KI27)

2 i 12
Aa(‘WJIDASk(¢)(y)| 4 enityi? gy,

(5.18)
where the “error” t is estimated by
cld, h)(2ms
Aa0 g AT _
¢ e (5.19)

. J-D\smw)m - ednil YD\SI\((bHY”: dy.

Under naturai hvpotheses, and implementing Theorem 5.7 we
can show that the limit in {5.19) vanishes, i.e., E = Q.
3) We now combine the right side of (5.17) and (5.18) with t = 0, for the
four cases ¢ = 1, ti Thus,
1 cld, k) 2m)*

Polth - g lim =i d ‘[J[)\SK(Y)V
SR ve v tedy) - (20 ((y)- ey

FHZ Hiely) eyl -U2 ie ((y) ¢ dedy))dy,
where e, [y;  ¢?™' Y. Combining terms, we obtain (5.16).

Formally, (5.15) and (5.16) are compatible. If we are given data ¢y ona
set S, these formulas lead us to consider multidimensional spectral estimators
molded from expressions of the form

cld, k)(2n)*

ik [Pales e B (5.20)
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Instead of continuing this section with a quodlibetic discussion of spec-
tral estimation, we shall refer t. the classical spectral estimation algorithms
and results on evolutionary spectra for nonstationary processes, e.g., [46,
Chapter 11].

6. Notation

Let G be a locally compact abelian group with dual group T', e.g., G = R¢
and T = R4, where ®¢ = R4 is d-dimensional Euclidean space, or G =
T = R/Z and T = Z, the group of integers. My(I"), resp., M, ('}, is the
space of bounded, resp., positive, Radon measures on I'; and My, (') =
Mp(F) N M, (T). LE(RY) is the weighted LP-space defined by its norm,
ifllpy = (JIfPdu)V/", where 1 < p < oo, p € M(T), and integration
isover [.

The Fourier transform of f € L'(R®4) is f(y) = [ f(t)e~ 2™ Ydt, where
integration is over ®¢4; and "V designates the inverse Fourier transform of
€ My(T).

If S C G then|S|is its Haar measure and 15 is the characteristic function
of S. dmynis if m = nand 0if m # n. Finally, if X is contained in a
topological vector space H then spX is the linear span of X in H, and 5pX is
its closure in H.
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g
g The theory of iterated fuzzy set systems, IFZS, was introduced by Cabrelli

et al. in [4]. They showed that by combining the idea of representing an
image as a fuzzy set with the theory of iterated function systems, it is possible
to generate images with grey or colour levels as attractors of IFZS. The
purpose of this paper is to show that the class of attractors of IFZS is dense
in the class of images, i.e., each image can be approximated with the desired
accuracy. A brief review of the main concepts of IFZS is presented first.

1. Introduction

We first want to present an overview of the theory of iterated fuzzy set
systems (IFZS). Since a complete development of the theory can be found
in [4], we are going to omit most of the proofs. We then show that the set
of images that can be obtained using this approach, is dense in the set of
all images.

The notion of self-similarity and its generalizations’, has found a nat-
ural frame in the theory of iterated function systems (IFS): self-similar sets
became attractors of certain systems of maps {10, 1, 8]. The generalization
of the concept of self-similarity to a more general class of maps—other than
similarities, introduced more flexibility in the model, widening the class of
sets that have the property to be expressed as smaller copies of themselves.

' A subset S of an arbitrary set X, is said to be self-similar (in the wide sense) if
there exist a finite number of maps f, ..., fn, fi : X — XsuchthatS =, ., fi(S)
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On the other hand, the use of IFS enabled the construction of self-similar sets
of fractional dimensions, and therefore this theory has found wide applica-
tions in computer graphics to generate fractal images on computers (see for
example [3, 13]). The ergodicity involved in the process is another advantage
that this method provides in image generation and representation, see {7].

One of the major applications of IFS theory in image processing, is in
data compression: huge amounts of data can be squeezed into a few number
of parameters. Two questions naturally arise:

= Which kind of images can be represented through this model, or, how
big is the class of images that can be represented through IFS?

= [s there an efficient algorithm or method to find that representation?

Regarding the first question, in the case that the maps are contractive
but not necessarily similarities, it has been shown [9] that this class is dense
in the class of compact sets. In image processing language this means, that
to any object in a black and white image, one can associate an IFS code. This
result shows that the so-called inverse problem for fractals and other sets,
that is to find the IFS code associated with any given black and white image,
has at least one solution. It is well known however, that in most of the cases
the solution that can be constructed from the proof of the theorem does not
yield good compression rate. It is a very difficult problem to find an efficient
IFS code for a given black and white image. Some results in that direction
for the one dimensional case can be found in [2, 5, 16].

In the case of images with grey-levels, the [FS theory provides us with
a class of measures that are generated by adding a probability vector to
each IFS code. The ergodicity allows one to generate this measure through
a random iterative algorithm. This approach however, seems to have two
weak points: first, the relation between the parameters and the resulting
measure is not straightforward, and this then becomes a serious difficulty
for the inverse problem. Secondly, the class of measures that can be obtained
through IFS, seems not to be as wide as desirable. The question of how
big this class of measures is in relation to a suitable space of measures (here
suitable refers to images) seems to be still open.

The IFZS approach to grey-level images considers images as functions
rather than measures, and hereby tends to avoid these problems. In that
direction, Theorem 3.1 of this paper shows that the class of images that can
be generated using IFZS is dense in the class of images, i.e., given a grey-lev-l
image, we prove that for a given ¢ there exists an IFZS whose attractor is
closer than ¢ to that image.

164 }



{ 165

Density of fuzzy attractors }

2. The iterated fuzzy set systems (IFZS)

2.1. Iterated function systems (IFS)

s Let us briefly recall the basic notions of IFS. Given a compact metric space
(X, d) with distance d, let us consider N contraction mappings w; : X — X.
The metric space X, together with the N contraction mappings is referred
to as an Iterated Function System (IFS) and denoted by {X,w}. Usually, in
applications, X is a compact subset of R".

If H(X) denotes the set of all nonempty closed subsets of X, we can
define N set-valued mnaps w; : H(X) — H(X), by wi(S) = {wi(x) : x € S},
e.g. the image of S under the transformation wy, for all S € H(X). If h is the
Hausdorff distance in H(X):

h(A,B) := max{D(A,B),D(B,A)} (2.1)
where
D(A,B) = itelg ;21; d(x,y) (2.2)

then (3(X), h) is a compact metric space, and Ww; are contraction mappings
of H(X). The map W : H(X) — H(X) defined by:

N
W(S) = | JWilS), VSeH(X) (2.3)
i- 1

is also a contraction on H{X). Therefore it possesses an unique fixed point
(or invariant set) A, called the attractor of the IFS;

N
A=W(A) =] wilA). (24)
i-1

This shows that A is self-similar with respect to wy,...,wy. This property
is sometimes referred to as the self-tiling property of IFS attractors, meaning
that A can be built with smaller copies of itself. As well, the name attractor
is justified by the following property:

h{(W"(§),A)— 0 asn — oo, VS € H(X). (2.5)

2.2, Fuzzy sets as generalization of sets

The notion of fuzzy sets introduced by Zadeh in 1965 [17], has been widely
used in different contexts. We want to use it here in the sense of a general-
ization of the concept of set: If X is an arbitrary (non empty) set, a fuzzy set
(in X) is a function u with domain X and values in [0, 1], i.e., u: X — [0, 1].
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In particular, if S is an ordinary subset of X, its characteristic function xs
is a fuzzy set. To relate this concept with images, we think of a digitized
picture as a set of pixels, each of which has associated a grey-level; the value
1 representing black or the foreground, the value 0 representing white or the
background. The value u(x) then corresponds to the grey-level of the pixel
x. If the image is black and white, we only have two values: 0 or 1, and
therefore we can represent it by a characteristic function, or a “set.”

If F(X) denotes the class of all fuzzy sets in a metric space (X, d}, i.e.,
all functions u : X — [0, 1], we are going to restrict ourselves to a subclass
F*(X) ¢ F(X): namely, u € F*(X) if and only if:

1) ue I(X),
2) wuis uppersemicontinuous {u.s.c) on (X, d),
3) wuis normal, thatis u(xe) = 1 for some xo € X.

These properties yield the following results:

a: For each 0 < a < 1, the a—level set, defined as u]® := Ix ¢ X :
u(x) = o] is a nonempty compact subset of X,

b: The closure of {x € X : u(x) > 0}, denoted by [ul®, is also a nonempty
compact subset of X.

Note that the characteristic function of a closed set is in 3™ (X). We also want
to point out here that the level sets of the fuzzy set u completely characterize
u, i.e, knowing u{x),vx ¢ X, is equivalent to knowing [uj®,0 < o < 1.

By the above properties, [ul* ¢ H(X),0 € a < 1. We now introduce
the metric d« on J*{X} (see [6]), which has been used in many applications
of fuzzy set theory [11, 12, 15]:

dx (u,v) = sup 'h{{ul™ {vI®)] vu,v e T°(X). (2.6

(AR N |
Here h is the Hausdorff metric introduced in (2.1). The metric space
(F*(X),d~ ) is complete. This space represents the generalization of the
space (H(X),h) to fuzzy sets.

At this point we want to incorporate the [FS theory into the fuzzy set
frame. Therefore, we first use the extension principle for fuzzy sets [18, 14]
in order to extend the set-valued maps w; defined in Section 2.1 to maps
between fuzzy sets, i.e., we want to define a map from J* (X} to " (X) which
is equal to w; (with the earlier mentioned identification) when its domain is
restricted to the characteristic function of a set. Therefore we define for each
u © F3*{X) and each subset B of X,

u(B) :=supluly): y € B}, if B#0

u(¥) :=0, (2.7}

166}
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which implies, in particular, u{{x}) = u{x) ateach x € X.
Foreach wi,i=1,2,...,N, and each x € X we now define

i (x) == U(w ({x}), (2.8)

where, of course, w; ! ({x}) = 0 if x ¢ w(X). If u € F*(X), then each of these
functions d; : X — [0, 1] is a fuzzy set in 3*(X) (see {4]).

In fuzzy set theory, the union of two fuzzy sets u,v is usually defined as
the fuzzy set sup(u,v). We could then generalize the contraction mapping
W given by equation {2.3) to a map w : 7*(X) — F*(X) defined by:

w(u)(x) = sup ui(x), for each u € F*(X). (2.9)
1<igN

In [4] it is shown that this is a contraction mapping on 3*(X) with the d.-
metric. Therefore it has a unique fuzzy attractoru* € 3*(X), e.g., w({u*) = u*.
[t turns out however, that this fuzzy attractor is the characteristic function
of the attractor of the IFS {X,wj]. This means that the direct generalization
of the IFS theory to Fuzzy Sets, does not provide us with a bigger class of
attractors. We will see in the next section, how this class can be enlarged
without losing the contractivity of the map w.

2.3. Modification of the grey-levels of the attractor

In order to gain more generality with the fuzzy set model, the “grey-level
maps” are introduced. To each ui(x) defined in (2.8), a grey-level map
@i : [0, 1] — [0, 1] is associated, in order to modify the values of u;, that is
the grey-levels.

Now the supremum of (2.9} is taken over the functions u; modificd by
the functions @i; e.g.,

u— sup @;ou;. (2.10)
T<isN
In other words, an operator T, : 7°(X} » F*(X) is introduced:
(Tsu)(x) == sup{@i{ur(x))...., @n(un(x])}
=sup/@(u(wi ' (x))), ... on(@wg (x))) (2.11)

In order for the operator T, to be well defined, the grey-level functions ¢;
have to satisfy certain conditions, namely: fori=1,2,... N,

1) ¢i:[0,11— [0, 1] is non-decreasing,

2) i is right continuous on [0, 1),

3) @;{0) =0,and

4) foratleastoneij e {1,2,... N}, @;(1) =1
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The fact that @; are non-decreasing and right continuous, guarantees the
uppersemicontinuity of @;ou for any uin 3*(X), moreover they are necessary
and sufficient conditions [4]. Property 3) is a natural assumption in the
consideration of grey level functions: if the grey level of a point (pixel) x € X
is zero (the pixel is in the background), then it should remain zero after being
acted upon by the ¢; maps.

The set of maps ® = {¢;,i = 1,2,..., N}, satisfying the above condi-
tions, together with the N contraction maps w;i (which then yield u;) form
the Iterated Fuzzy Set System (IFZS) denoted {X,w, ®}.

In [4] it is shown that the operator T, as defined in (2.11) is indeed a
contraction mapping on (3*(X), ds ), i.e., T, maps F*(X) into itself and there
exists an s, 0 < s < 1, such that

deo (Tsu, Tev) < s doc(u,v) Vu,ve F(X). (2.12)

Therefore, by the Contraction Mapping Principle, T, possesses an unique
fixed point u*, that is:

Tu* =u”. (2.13)

This implies that there exists a unique solution to the functional equation in
the unknown u € 3*(X),
u(x) = supler(ulwy ' (x))), @2 (alwy ' (xW),..., 214)

en(Twy' (x)],

for all x € X. The fuzzy set solution, u*, will be called the atfor or
fuzzy attractor of the IFZS, since it follows from the Contraction Mapping
Principle that

doe ((Ts)"'v,u") — 0 asn — oo, ¥v € F*(X). (2.15)

It is easy to find examples showing that these fuzzy attractors are not
longer only characteristic functions of closed sets. Hence, using IFZS, the
class of images that can be obtained using IFS has been widened. In section
Section 3, we show in fact that any image can be obtained (up to an ¢) as a
fuzzy attractor of an IFZS. Note that in the case that all @; are the identity
maps, the operator T, reduces to the one defined in equation (2.91.

2.4. Properties of the fuzzy attractors

It is worth mentioning several properties of the fuzzy attractors. The proofs
can be found in [4].

Property 2.1. If A ¢ H(X) is the attractor of the IFS {X,w}, and u* € F*(X)
denotes the fuzzy attractor of the IFZS {X, w, @}, then support(u*) C A, that
is, u*]® C A.

m\r«m
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This means, that using the grey-level maps, we are able to modify
the support of our attractor, allowing for example a rough approximation
through the wy, and then a “fine-tuning” using the @;. This property may
be used for applications, if we want to find the [FZS code for an image. Note
that support(u*) is exactly equal to A, in the following two cases:

s Forallie {1,2,...,N},@i(1) =1, then u* = xa.

= Forall i € {1,2,...,N}, @; are increasing at 0 (i.e., ¢7'{0) = {0)). In-
deed, in this case [u*]® = |, wi(lgiou*1®) = UY |, wilA) = W(A) =
A.

We should also point out that in the case that ¢;{0} > O for one j «
1,2,...,N}, this inclusion is not longer true.

Property 2.2. The level sets of the fuzzy attractor satisfy a generalized self-
tiling condition:

N
1 = | willgiou'l®), 0 < 1. (2.16)
vl

This condition is a consequence of the property of the operator T.:
N

Mul® = U willpioul®), Ve = I (X)  (seel4]). (2.17)
i1

This property is interesting, since it shows that the fuzzy attractor is no longer
self-similar, in the sense, that it is no longer the union of smaller copies of
itself, but rather a union of modified copies of itself. The modification is given
by the grey-level maps.

Property 2.3 (IFZS Collage Theorem). Let u ¢ §*{X) and suppose that
there exists an IFZS {X,w, ®! so that

dolu, T.u) < ¢, (218}
where the operator T, is defined by (2.11}. Then

3
doo(u,u*) < =—, (2.19)
1 -5
whereu® = T u* is the invariant fuzzy set of the IFZS, and s is the maximum
contraction factor of the w;.

This means that if the w; are very contractive (i.e, s is very small),
every fuzzy set that remains relatively unchanged after the application of
the operator T, is close to the fuzzy attractor.

This property, a direct consequence of the contractivity of T, is (as for
IFS) very useful for the inverse probiem.
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3. Density of fuzzy attractors

In this section we will show that the class of fuzzy attractors is dense in
F*(X) with the d..- metric. In other words, given a fuzzy set u in J*(X),
and ¢ > 0, we can always find a natural number N, N contraction mappings
w; : X — X, and N grey-level maps ¢; : [0,1] - 7 {0, 1}, such that the fuzzy
attractor u* of the associated IFZS !X, w, @] satisfies: do(u,u*) < &. We
therefore have the following:

Theorem 3.1. If X © " is compact and (F*(X), d~ ) is defined as abave,
then the class

D= u" < TX):u" is attractor of some IFZS on X.}

is dense in (T*(X),d~ ).

Proof.
Let ¢ > 0 and u £ F*(X). The idea of the proof is to find N ¢ M,
w={wp,...,ownsand @ = @y, ..., @n, such that:

1) supc; « 3 (c; is the contractivity factor of vy);
2) d.(Teu,u) < 5, where T is the operator associated to [ X, w, @,

Then, using the [FZS collage theorem (Property 2.3} from 1) and 2) we have:

- - \‘: ‘ . -
dx(u.u ’<~z<‘ﬁ'7z>

where u”* is the attractor of the IFZS !X, w, @, ie, Tu  —u*. B

Let us now find w and @, such that 1) and 2) are satistied: Let N = M,
and xi,...,xn bean § -netof wl® ie., [u® = Y | Bi, where B, = Bix;, {),
are the open balls of radius j centered at x,.

Let wi : X -3 X, wi(X) < By, 1 = 1,...,N be contraction mappings
with contraction factor ¢, with ¢; < % Choose now oo = 0 and o; =
Sup, v u(x).

Then for 0 < a < 1 wehave [u]® < {J . . Bi

We now choose g, non-decreasing, right continuous, such that ¢ (x) ¢
ai, Yx = [0,1], and @i{1) = a,, 1 = I|,...,N. For example, the stepfunctions
XiX|a..1; Satisfy these conditions.

Then

7R adag
“,_ua - )
o ] { /I S O

But using condition {2.17}, we have

N
Tal® = Jwilloiou®) = [ willpioul*).
il

RS2V
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Now, if the d-dilatation D{S) of a nonempty closed set S is DL (S} =
x < X d(x,S) < 8, 8 >0, wecan observe that for 0 < o 4 |

e U B, o D, (iu'™) (3.1
itas o)
and
wi(S) 7 By DL wilS)
for 1< 1:0 N, %S closed subset of X, (3.2
We then have:
Tau™ U B D,tur
LYo
u L B Dol
Using the above equations, we then obtain
R Tau o u ) NI L3
and hence
d.iTau - 3

4. Conclusions

The IEZS model represents a ditterentand promising approach to themverse
problem tor fractal construction and image encoding  The mtroduction ot
the grev-level maps allows one to enlarge the class of attractors. We prove
that this class s densen 77 X4, the space ot uppersemicontinuous normal
tunctions, a space which is large enough tor image representation Again,
the proot of the density does not give an efficient algorihm to tind the
appropriate code, but it provides a theoretical justification for the tuzzy
set approach

We believe, that we mught be alile to relay several conditions ot the
model presented here, in order to efficiently solve the inverse problem We
have experimental results comtorting our intuition
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The present redaction is mainly an account of a joint work [6] with
G. Brown, from the University of New South Wales, and G. Michon,
from Dijon University. The multifractal formalism is described, and a
setting in which it holds is given, as well as the Michon construction of
Gibbs measures.

1. Introduction: the multifractal formalism

i1y
v n

Let v, be an increasing sequence of positive integers. The interval [;,ilf‘
is denoted by I, ;. Let 11 be a probability measure on [0, 1{. Set

Talg) = *log],vn 108 Z “(In‘i)q
0<javy,
where 5 means that the summation runs over the indices j such that
uw(lh;) # 0, and suppose that T(q) = limy, ., < Tn{q) exists for every g in
a certain interval 4 of R.
On the other hand, let us define [, (x) to be the interval of the family

Thilae ;. v, wWhich contains the point x of 10,1, and set, for & > 0,
ln
Eq = {x & [0,1] lim logulln(x)) a}.
n—oc log v,

Then the multifractal formalism, as asserted in various works {11, 12,
13], and proved [1, 2, 5, 9, 17] to hold in various contexts, says that the
Hausdorff dimension of E, can be computed in the following way:

dimE, = inf(axg — T(q)]. (1.1
qed

In the case where 7 is differentiable at a point qo and a« = t'(q¢), we have
dimt, = ago — T(qo).
175

5. Byrnes et ul. teds.}, Probabilistic and Stochastic Methods in Analysis, with Applications. 175-186.
1
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This article is organized as follows. In the next section, the setting is
enlarged in order to deal with families of partitions the elements of which
can have different lengths. Without any assumption on the measure, it is
shown that the right hand side of {1.1) is always an upper bound for dim E,.
Moreover, the result is a bit stronger, in the sense that we can deal with the
Tricot (packing) dimension instead of Hausdorff’s. We can also majorize the
dimension of a larger set than E,.

The third section is devoted to getting lower bounds for dimensions
once the existence of Gibbs measures is assumed.

In the fourth section, Michon’s proof of the existence of Gibbs measures
for homogeneous trees is given.

2. Upper bounds for dimensions

Let {{In j)1<i< vain-o De a sequence of partitions of [0, 1] by intervals, semi-
open to the right. These partitions need not be nested. 1If x £ [0, 1], [,,{x}
stands for the interval of the family {I..;l1¢;<v. which contains The
length of an interval ] is denoted by |JI. We suppose that, for any x = {0, 17,
lim, _, « [In(x)} = 0.

We consider two indices dim and Dim which are defined as Hausdorff
and Tricot dimensions are, but by only considering coverings and packings
by intervals in the family {1, i1 <jav., oo Anaccount of several notions
of dimension is given in the appendix.

We are given a probability measure uon [0, 11 and a sequence ‘A, '
of positive integers such that 3_, exp(--nA,,) < o forany n = 0.

We define the following quantities:

] M ] = u
Calxy) = ‘A: log Z Un“n‘i)\ ':[v1,i] :

T<j< v,

x

and

Clx,y) = limsupC,(x,y)

n-»

where 3" means that the summation runs over the j'ssuch that i, (1 1 = Q.

We suppose that C(x,y) is not constantly equal to 0 or oo (this imposes
the growth of the sequence [A,)), and set ) = {ix,y) = ‘H:i(‘(x‘y) < O}
Since C is a convex function, non-decreasing as a function of x, and non-
increasing as a function of y, there exists a concave and non-decreasing
function @ from M to R such that the interior of Q is identical to the set
{{x,y) = ‘.R"fy < @(x —0)}. Of course, taking the limit to the left only mat-
ters at the left end of the interval 4 on which ¢ is finite. Besides, we assume
that 0 € d and, for the sake of simplicity, that ¢ is differentiable on this in-
terval (the complete discussion, in the case where it is not so, is given in [6]).
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In the case described in the introduction, where all the intervals of the
partition {I, ;}1<j<v, have the same length, A, = v, and the limit exists,
we have @(x) = t{x + 1), where Tis the function defined in the introduction.

Set f(a) = inf [x(x + 1) — @(x)].

On the other hand, we consider the following sets

log pu(In(x))

B {X‘E lllmS pmga}
log u(ln(x))

B {XE[O ”' nfm—gcx}

Vg = {xé [0, 1] fliminfw p> cx}
log |1 (x)]

V;:{xe{o,l[llimsupl—?%%% ch}

We then have the following resuit.
Theorem 2.1.

1) For any &, we have DimB}, < —¢(—1)and DimV; < —@(-1).
2) If x < @'(~1), then Dim B, € f{a) and dim B}, < fla).
3) Ifx 2 @'(—1), then DimV, < f(a) and dim V} < f(a).

Proof. Let us for instance consider the second case (x < ¢'( -1)), and set
Bg(n):{tF[O ”‘H([nt” ”n(t“ }
We then have

By = ﬂ U () Baln.

a- Pt monoom
Fixx < B < @'(—1 )andb > 1(3), and choose t > Osuchthat C{- 1+, -0+
Bt) < 0. Then
| - S P
2 Ml = )
[T SR idem

Y ull ) LT
i
g eXp)\nC"( ] + t| ‘5 + '-X)t)
Therefore
Z Z 1y 5/% < 0o,
R RO N PR
So, if {1;} is a packing of (), ., Ba(n) by intervals from generations larger
than m, we have Y |I;|° < oo. Therefore A ()
pendix) and Dim B, < 8. Finally Dim B, < f(a).
The other cases are handled in a similar way. W

Ba(n}) < 3 (cf. ap-

n.>m
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2.1. An alternate definition of ¢

Consider the following quantity:
Kixy)=lim sup 5 p(l;)*"'[5|7.
e-packing

“ » function K is convex, so the set Q = {K = 0] is also convex. More-
over, if K(a, b) is finite, then K(a+t,y—u) = Ofor positive t and u. Therefore,
there exists a concave and non-decreasing function ¢ from 3 to R such that

Q= {(x,y)|y < @(x - 0}}.
As previously, set f(a) = infy (a(x + 1) — ¢(x)). In these conditions,
we have the following result.

Theorem 2.2.

1) If x < @'(~1), then Dim B, < f(a).
2) If x> @'(—1), then DimV, < fla).

Proof. In the first case (x < @'(—1}), if & > f{«) the straight half line of slope

o stemming from the point (-1, —§) intersects Q). In other terms, there exists
a positive number t such that (=1 +1t, -5+ at) € Q. There exists ¢ > 0 such
that, for any e-packing {I;} . of [0, 1] by elements of the family {I.,;}
we have ¥, u(1;)* G 7Y < 1

As in the preceding section, we write

B.= [) N U Baln.

a<Ba@{—1) m2l nzm

LI

Therefore, if n is such that sup; [In ;| € ¢ if « < B < @'(-1), and if
{1;}, is an ¢-packing of the set Bs(n), we have

Yo=Y e
< Z““i)r--lmn“il-(aamn <1
So, DimBg(n) £ %, and DimB, < f(a).
The second case is handled in the same way. 1
Remark 2.3. We could also have defined K(x,y) to be:
. : xt -y
liminf ) (1) ;)

where the inf is taken over the ¢-coverings |} of [0, 1] by elements of the
family {1, ;) ;. The function K may be no longer convex, but the boundary
of {K = 0} is still defined by a non-decreasing function ¢ from R to R. If f is
defined as above, then a similar conclusion holds by replacing Dim by dim.
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3. Lower bounds for dimensions

The notations are the same as in the previous section. If u and v are two
functions, the relation u ~ v means that there exists a positive constant K
such that K~ 'u € v < Ku.

Theorem 3.1. Let 0 € R and suppose that ¢'(9) exists and that there is

a measure pe such that pe(ln ;) = u(In_,-)e”|In‘5|““’(9‘. Then we have
dim E‘{)'(el = f((p'(e]).

The measure (g, in analogy with statistical mechanics, is called a Gibbs
measure.

Proof. Consider the following quantities

- 1 . x -
Colxy) = 5=log 3 wlln ;) {ln ™ hta(ls ;)
n j

and
(‘f(x‘y) = lim supfn(x.y).

We have
~ ] * i —u--
C“fx.ylr-—»rlogE WL ) N el
n

and
Clx,y) <0 & Clx +8,y + (8)) ~ 0.
Therefore
{C < 0}0 ={(x,yljy < @lx+08)— @(d)}.
|
Lemma 3.2. As n goes to infinity, l%,:(Tl(‘T‘t.H y @' (8) for pg-almost every t.

Proof. If x < ¢'(8) then there exists t »> 0 such that C(t, at) < Q. Then

o {tlullnlth) > (01"} = 3 welln)
frlln b n g
- Z ]['\.i|a‘![n.ilga'}-le(ln_j)
idem

< Z P«([n,j)ll[n,ilgatue([n,i)
i

= expAnCanlt, at).

Multifractal measures }
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(this inequality is a large deviation type result [7], as well as the analogous
one in the proof of the theorem concerning upper bounds). Therefore

log n(In(t))
S { T <} <

so0, lim inf %‘({% > afor pug-almost t. The upper limitis treated similarly.
We can now complete the proof of the theorem. It results from the
above lemma first that ug(E, (g,) = 1 and secondly, taking into account the

properties of pg, that

log o (In(t))
log |1 ()]
for pg-almost t. Therefore, due to the Billingsley-Kinney-Pitcher theorem,

we have dim E,. (g, = f(@'(8)). The equality then results from the previous
section. N

= (8 + 1o'(8) — @(0)

As a consequence, the Hausdorff or Tricot dimensions of all the sets
Ea, Ba, Vo, B, and V7, are equal to f(a} under the same conditions. This
generalizes some results of Besicovitch [3], Eggleston [10], and Volkman [28]
on the dimension of sets defined in terms of frequency of digits. This also
accounts for some results in [9] and some work on ‘cookie-cutters’ {1, 5).

4. Existence of Gibbs measures

In this section we suppose that the sequence { ([ ji1<j<~. |, ., Of partitions
has the following properties: each element of the (n + 1)-st partition is
contained in one element of the n-th one, and each element of the n-th
partition is split into a fixed number p of elements of the (n : 1}-st one.
Obviously, this imposes v, = ™. We are going to use another indexation
of the intervals {1, ;}: the .ervals !I, ;| will be denoted by I;,;,, with
0 € 1y,1i2 < p, insuch a way that [;,;, < [;,; and so on.

Let A be the set of words over the alphabet [0,1,...,+ — 1]. The
concatenation, just denoted by juxtaposition, endows A with a semigroup
structure. The empty word, which is the unit, is denoted by ¢. The set
of words of length n is denoted by A,; it indexes the elements of the n-th
partition. If a ¢ A, instead of writing u(l,) we shall simply write u(al. In
these conditions, for every a € A, we have Zo; p. p Hlab) = ula).

We suppose that u is quasi-Bernoulli, i.e., there exists a positive number
M such that, for any a and b in A, we have M~ "u(a)ulb) < wlab) <
Mufa)u(b).

We also define a mapping | from A to R: l(a) = |[o]. We assume that |
is almost multiplicative, i.e., there exists a positive constant L such that, for
any aand b in A, we have | aN(b) < Uab) < L l{a)l(b).
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Under these conditions, G. Michon [21, 22] proved that the ‘free energy’
exists and that there are Gibbs measures. We are going now to give his proof.

Proposition 4.1. For every x and y in R, the ratio

| - x+t1
~log > Ua)™¥ula)

a€Ay

has a limit, denoted by C(x, y), as n goes to infinity.

Proof. By replacing { by |7¥1¥, it is enough to consider the case x =0, y =
—~1. Set

!
Z“ = Z l(Q)Ll(Cl) ,and Cn = Hloglzn)

acA,,

We have

B ab) u(ab)
—Z{ Ua)ula) Z ub)m“b‘“‘b"

Therefore, we have llog Z,n v — log Zyw - log Zy| < log(ML). It results that
C, has a limit C as n goes to infinity. Moreover, we have :(,, - (. <
LiogML. B

Let us notice that if we set 1,(b) = l{ab)/[{a), (for a and b in A), we
have L7 21, (bjlalc) € lalbe) € LLa(b)la(c) for g, b, and ¢ in A. Similarly
for 1.

Forany ain A, and sin R, set ,Zn -} . £ ba(B) g (), and

Zu(S) = uZnei“\ (‘1]’
n Q0

It results from the above remark that, for any n and for any a, we have
K ' Zn € oZn < K, Zn, with K = L M. Therefore lim,, .. .]‘ log o 2y
does not depend on a and is equal to what we called C in the proof of the
above proposxtlon Moreover, | 10;, aln - Clw 2 ZlogKand K 2expnC <
alny < K2 expnC for any n. SO the series (4 I) converg_,es for s > C. From
these last inequalities it results also that

K ? ) K?

f~: Z(,{S] < B

1 explC s "1 explC - s)

Theorem 4.2. For every x and y in 2R, there exist a constant ¢ and a measure
ky.y such that, for any ain A,,, we have

C—ll(a’* Y] Ll((])x' 1 CfnCH‘U' < “\‘\4(0) < cllal” y 11‘(1)“‘ nCiny)
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Proof. As previously, it is enough to consider the case x = 0,y = - 1.

Let us denote by L, the following mapping from [0, 1] to R: {,,(t)
[l (t}]. Let us define a family of functions from [0, 11 to R ' in the following
way @, = lo+Llie +1e 7?5+ ... Obviously, wehave [ @. du = Z_(s). This
allows us to define the family P = ¥+ 1 (s > ) of probability measures
on {0, 11.

If a € Ay, we denote by a; (0 < j < n) the word formed by the i first
letters of a. In these conditions, we have, denoting P_(1,, i simply by P,

Z (s}P.(a) ~ ula) Z Ha,)e ™ - § Z Labiwich, e e

L

[AREE R b b

In other terms

uial VARES
Poal = .- - Z Ha,te ™ - Ualutare ™ .
Z(s) ‘ Los!
Greon
When s goes to infinity, P, has a weak limit point y at lrast. But, we
know that, as s goes to infinity, so does Z, ts1 and that the ratio 7, 's. /| <
stays between K “Tand K. This means that we have, fora - 4.,

» vial

K - < = K:.

“liatulate U
|

Remark 4.3. The case of Riess products [8] is not handled by this proot.

5. Example

One of the paradigms of mutitractality 1s the mubtinomial measures of which
we give a generalization in this section..

Let X be the simplex (xy.ooo v xp - o0 0 Lox, - Odor
i-VooopL (D Consider a sequence jmy, Lo Ofelements of X2 X
We assume thal this sequence has a continuous measure of repartition &
This means that there exists a continuous probability measure & on the space
X - Xsuchthat, forany openset U X - X the boundary of which is of zero
L-measure, we have

lim ]# eommy ) e U = &,

NN
Moreover we assume that the boundary of X - Xis of zero é-measure.

As in the section concerning the construction of Gibbs measures,
we consider subintervals of [0,17 indexed by words over the alphabet
0. .op -1 00 - 10,1, and thelengthof Ty, (. isly,y il w.
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Define a measure pon [0, 1{ in the following way:

ulley xad = [T min-

I€isn
1t can be verified that we have

o . -
R - T RS L | S

:J log 3 (ul''viY) delu,v).
XxX

Iskyp

So we have an explicit expression for C(x,y). On the other hand, it

. . X1 M
we keep the same 1, but if m, is replaced by Z—l—ml—vl— (where to
LR 3 nok Sk

exponentiate a vector means to exponentiate each of its components) and
perform a similar construction, we get a measure v, ,, which is the Gibbs
measure corresponding to (x, y). Therefore in this situation the multifractal
formalism holds.

6. Appendix: Hausdorff and Tricot dimensions

6.1. Hausdorff dimension

Let E be a subset of [0, 1T and « a positive number. Set

H i 1. 1% < . o
Halt) = Ex%lnf{z.m B U }
If Ho(E) < nothen 3 > o = Hp(E) = 0. So there is a cutoff xe such that

o< ap = HalE) w00 and  « > ap > Halb) = Q.

This number e is, by defirition, the Hausdorff dimension of T.

Another dimensional index is of wide use. Let N, (£) be the minimum
number of elements of coverirgs of by intervals of lengths less than ¢,
and set

AlL) = lim sup ngN’f_([').
a0 log ¢

This index has been considered by many authors and bears several
names: Bouligand-Minkowski dimension, entropy dimension, logarithmic
index, box dimension ... In fact these indices differ in a general metric
space. Obviously we have dim b < A(E).

The following observation gives a way of getting a lower bound for
the Hausdorff dimension: if there exists a measure u satisfying a Holder
condition of order « (i.e., w(I) < C{l|™ for every interval 1} and such that
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w(E) > 0, then dimE > «. Indeed if {I;} is a covering of E by intervals,
we have

O<mE)< ) wh)<Cy |
wich proves the above assertion. In fact a refinement of this argument gives

the following lemma due to Kinney and Pitcher and, in a more general form,
to Billingsley [4].

Lemma 6.1. Let 1 be a probability measure. If

u(E)y >0 and E {t[lim inflog—“l”) > a}
Nt log i

then dimt > a.

6.2. Tricot dimension

An ¢-packing of t is a collection of mutually disjoint intervals intersecting
E. The following property of box dimension can be found in [26]:
A(L)

= inf {a ; h'\m\sup (LG L being an e-packing of k£, = ’0}
|

- sup {a Hlimsup 3 i7" 1L being an ¢-packing of ] - (
£ 0
One drawback of the box dimension is that it does not distinguish a set from
its closure. For instance, it assigns O to the dimension of the rationals. This
led Tricot [26, 25] to introduce the following concept:

Dimtb - inf{supAHni;[ ) Ul.\}

Obviously dim | = Dim E. A related notion has been introduced by Sullivan
[24]. Anaccountof this notion of dimension and of connected outer measures
can be found in [27].

The index Dim has the same regularity properties as Hausdorff dimen-
sion: if £ 7 Fthen DimE < DimF, and, if Uis the union of a sequence 't
of sets, then Dim b - sup, Dim t,,

7. Final remarks

There are many developments which we are not going to discuss about
multifractals, in particular concerning further interpretations [15, 16, 18, 19,
20] of the function f(a) especially when it assumes negative values.
In a recent work Muzy et al. [23] have adapted this formalism to handle
another situation by replacing indicator functions of intervals by wavelets.
Finally, the thermodynamical formalism has been used to study har-
monic measures [14].
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to the Radon transformi
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8 We investigate the relationship between the Radon transform and cer-
tain phase space localization functions, namely the continuous Gabor and
wavelet transforms. We derive inversion formulas for the Radon transtorm
based on the Gabor and wavelet transform. Some of these formulas give a
direct reconstruction of tor of AT “t from the Radon transform data. Others
~how how the Gabor and wavelet transforms of 1or A’ =1 can be recovered
directly from the Radon transform data. We suggest wavs in which these
formulas can lead to ethicient reconstruction algorithms and can be applied
to noise reduction in reconstructed images.

1. Introduction

The Radon transtorm is a mathematical tool which is used to describe an
image {(which may be thought of as a function of several, typically two, vari-
ables) in terms of intensity averages over lines or hyperplanes in several di-
rections. Typically such averages can be easily measured while the function
itself is inaccessible. In computerized tomography (CT) scanners, for exam-
ple, one wishes to determine the tissue density function in a cross-section of
the human body from non-invasive measurements. The basic problem is the
accurate recovery of the unknown function or at least relevant features of
the unknown function in a stable fashion and requiring the fewest possible
measurements. In addition to medical applications, the Radon transform
has also been used in astronomy, electron microscopy, optics, geophysics [7).
The Radon transform has recently been proposed as the basis of a recovery
instrument for space plasmas, and in determining the chemical composition
of flames [23].

t This paper 1s a report of joint work being undertaken by the author together with Carlos
Berenstein of the University of Maryland.
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Given a function f defined on ¢, its Radon transform, Rf consists
of the average of f over all hyperplanes in 4. For example, the Radon
transform in the plane (d = 2) would consist of the integrals over all lines
of a function defined in the plane. In planar imaging, these averages can
be found by measuring the attenuation of a beam passing through a two
dimensional slice of the body. In some applications, one also needs to
consider integration over k-planes in /9. For instance, when d = 3, NMR
scanners can be modelled in terms of the hyperplane Radon transform, but
emission tomography leads naturally to integration on straight lines. This is
usually called the X-ray transform. For simplicity, the rest of the discussion
in this paper will be about the hvperplane transform. In this case, the
hyperplane averages of f are organized as follows.

Rofls) = | fls0-+ u)dy
[ EY
where 8 € 4 'and s ¢ R.
The adjoint of the Radon transform is commonly referred to as the
backprojection operator and is defined as follows. For a function h defined
on S4-' .« R,

Rh(x) ;J h(d.x - 8)dd

S
with x & R4,

In even dimensions, the Radon transform is non-local in the sense
that the recovery of f(x) requires knowledge of the integrals of f over all
hyperplanes. By contrast in odd dimensions recovery of f(x) requires only
the integrals of f over hyperplanes passing through a neighborhood of x. This
is an important consideration in medical imaging as one wants to expose the
patient to as little radiation as possible.

An approach which tries to preserve locality in even dimensions has
recently been proposed in [9]. This involves the recovery of Af where
A = 1/2n{-A)" 2 where A is the Laplacian. In even dimensions, it is pos-
sible to recover Af(x) from integrals of f on hyperplanes passing through
a neighborhood of x. Since A acts as a differentiation operator, the image
Af tends to highlight edges in f(x), i.e., regions of sharp changes in tissue
density, and also to reveal more clearly details such as small blood vessels.
This approach is known as local tomography or Lambda tomography [18, 9].

The Gabor transform, a variant of which is known as the short-time
Fourier transform, was introduced in 1946 by D. Gabor [13] as a tool in
communication theory. It and its variants have long been used by engineers
in digital signal processing applications. More recently, the Gabor transform
has been used as a tool in image analysis, compression, and segmentation
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[6, 22]. The transform compares a given signal to shifts and modulations of
a fixed window function, g, that is, to

Ox.e(t) = 2™ENTX) g(t —x), (1.1)

In this way, the transform gives a time-frequency picture of the signal. Gabar
used a Gaussian as a window in order to achieve the best possible joint
localization in time and frequency. With the short-time Fourier transform, a
box function is used as a window. Discrete versions of the Gabor transform,
known as frames [8], exist which permit stable and efficient expansions and
reconstruction of functions [4]. However, such developments are necessarily
overcomplete [1, 2]. Recently an orthonormal basis closely related to {frames
of Gabor functions has been discovered [5]. Such bases are known as Wilson
bases and consist of linear combinations of pairs of Gabor functions. The
Wilson basis functions are real valued, and their close relation to Gabor
functions permits easy computation.

The wavelet transform, introduced in [16] has been an increasingly
popular tool for signal and image analysis. The transform compares a signal
to shifts and dilates of a fixed function, the mother wavelet 1, that is, to

Yablt) =a 4 Yt - b)/a) (1.2)

with a € ®Rand b € R9. As a time-frequency localization operator, the
wavelet transform is fundamentally different from the Gabor transform. By
using dilations the wavelet transform can achieve arbitrary fine time local-
ization while still giving a complete representation of the signal. Remarkable
wavelet orthonormal bases have been constructed consisting of smooth and
rapidly decaying (even compactly supported) functions. The expansion and
reconstruction of a signal in such a basis is very efficient numerically, and in
fact is faster than the FFT.

In this paper, we investigate some of the connections between the
Gabor and wavelet transforms and the Radon transform. We will derive
inversion formulas for the Radon transform based on the Gabor and wavelet
transforms. One type is a direct inversion formula based on the development
of Ref(s) for each 0 in a series of the form

Rﬂf‘s) = chl.vn(e)hmnlfs) “3)
n.m

where the h, ,, can be a collection of Gabor functions, a Wilson basis, or
a wavelet basis. In the case of Gabor or Wilson functions, the advantage
lies in the fact that the basis functions are known explicitly so there are no
problems of interpolation in the reconstruction scheme. In the wavelet case,
the basis functions do not in general admit a closed form analytic expres-
sion, so numerical approximations must be used. In this case, however, the
computation of the coefficients is extremely fast.
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Another type of inversion formula presented here is based on the
method of filtered backprojection which is essentially an implementation
of the formula (see Proposition 2.4)

K+ f =R (k » Rf) Ry

where R* k = K [19]. The idea is to compute (1.4) for functions K which
approximate the d-function. Such K are often reterred to as “point-spread
functions.” Since both the Gabor and wavelet transforms can be realized as
convolution operators, it seems natural to ask whetber one can recover these
transforms directly from the Radon transform data. In the Gabor case, the
kernels K are modulated Gaussians and in the wavelet case are dilates of a
fixed mother wavelet. In Sections 2 and 3, formulas are derived which in
some cases allow the recovery of the Gabor and wavelet transforms directly
from the one-dimensional transforms applied to the data Ryt for each o.

In both cases, the formulas are local in odd dimensions and in even
dimensions Af can be recovered in a local fashion. Also, the formulas allow
the selective recovery of f or Af at certain frequencies (the Gabor case) or at
certain resolutions (the wavelet case). This feature can be usetul in the noise
reduction of tomographic images [21].

In this paper we use the following notations. We denote by M4, d
dimensional Euclidean space and by M4 its dual space. The fourier trans-
form in R4 is defined by f(&) = [, e? M fix) dx whenever 1 is integrable
and as an appropriate limit when it is not. We denote by SI9] the space
of infinitely differentiable functions which, with all of their derivati, 25, de-
cay faster than any polynomial. This space is commonly refered to as the
Schwartz space.

We begin with a review of the definition and some basic properties of
the Radon transtorm.

2. The Radon transform

2.1. Definitions and preliminaries

Definition 2.1. Given f ~ S{R), we define the Radon transform, Rf of { by
Rf{8,s}) = Raf(s) — [01 t{sd+ yldy

where 8 « S4 ' ¢« W, |

Definition 2.2. Given h a bounded continuous function on R, we define for
each 0= S4=1 the operator R by

RER(x) = h(x - 8).




{ 19 Applications of Gabor and wavelet expansions to the Radon transform '}

For hbounded on $¢~" x R, we define the operator R* by

R*h(x) :J h(8,x - 9).
Sd 1

Note that given f € S(R4) and h € S(R), we have that

J Rof(s)h(s)ds = J
R

R

J f(s® i y)dyhis)ds
9L

:J fix)hi{x-9)dx :J
nd

R

f(x) REh(x) dx.
d

Also, for f € S(MY), and h < S(S*~ " . R), integrating the above over
S4-1 gives

[ J Rf(e‘s]h(e‘s)dsdB:J f(x) R*hix) dx.
Jsd 1w

®d

In this sense, R and R* are the formal adjoints of Re and R.
We now collect some basic properties of the Radon transtorm whose
proofs can be found in any standard text on the subject, e.g., {19].

Proposition 2.3, Let f, g € S(R). Then for ae, 9 and s,
Rg(f * Q](S) = Rgf * Rgg(S)
where the convolution on the left is in M and that on the right is in R.

Proof. Suppose that f, g = S(RY).
Re(f*g)(s)rj [ flt)alsg +y —t)dtdy

9+ Jma

_—J J fto + t') [ glls - ™0 +y tHdydt'dr
n Jot Jo

,J Rof(TIRgg(s — T)dT == Ref * Raals).
n

a

Proposition 2.4. Let f ¢ S(RY), g« [ ~(R). Then foreach o < $¢ 1,
(RGg) « f = Ri(a « Rof) (2.1

where the convolution on the left is in ¢ and that on the right is in ®.
If g ¢ 1=({ST=! . M), then

R*q+ f = R¥(g + Rf). (2.2)
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Proof. Assume that f € S{®9). For 8 € $¢- fixed, let t = 19 + t' and
x = s8 + x'. Then

J glt-9)f(x —t)dt = J J glt)fi{s —1)0 + (x' —t'))drdt’
R 8+ Jn
:J g(T)J flls—71)8 + (x' —t'))dt' dv
R oL
:J g(TIRef(s — 1) ds = g = Ref(x - 8).
N

This proves (2.1). Integrating the above formula over 8 ¢ S4-! gives
(2.2)for f ¢ S(M4). N

2.2. Inversion of the Radon transform

Proposition 2.5 (The Fourier Slice Theorem). Let f - S(RY). Then for
BesSd ! ye®,

(Rof)™M(y) = f(y9). (2.3)

Proof.

J Rofls)e 9™y dg = J
N

J flsO +y)e ™Y dy ds
N Jor

N J flx) e 2™ YO 4y — f(ya).
7{1

Corollary to 2.5 (Fourier inversion). Let f ¢ §{"84). Then
f(x) :J f (R f)N (1) @2™x O1nipd 1 gr gy, (2.4)
ERLUEN

where S~ denotes the upper-half sphere in R¢.

Proof. Writing the standard Fourier inversion formula
flx) = Jf(&)ez""‘ L
in polar coordinates and using (2.3) gives

f{x) :J J '(Ref)/\(r)elﬂi(x 8ired=-1 4549
§d 1

[\l

:J J (Rof) (r) 2™ X017 5|9~ " dr dg
s

-0

}
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since (R_of)(r) = (Rgf)™(—r). W

Definition 2.6. Let f ¢ S(R!), « € R. Then we define the Riesz potential
operator, 1% by (I°f)N&) = |&]7%f(&).

If « = =2, then I* = ~1/(2n)2A, and A is the Laplacian. If « = -1,
we refer to 7' as the Lambda operator, A, which is important in local
tomography. Note that Af = 1/27t (-A)'/2f, see [9, 18, 19, 7].

Proposition 2.7. Let f € S(RY), x < n. Then

1
f= Er“R”[‘“ VAR, (2.5)

Proof. See [19]. B
Corollary to 2.7. If « = O then

1) if diseven,

1

f=— RIHAITRsf
2(2mi)d-2 A
2) if dis odd,
1
f= R TIRyS
2(2mi)a-1 9 Ro

where H is the Hilbert transform on R, i.e,, for y ¢ R,
1

HAMy) = -—oly)f 26
(Hf) {y) chm (v) (2.6)
(o is the signum function) and 8, means differentiation with respect to s.
If x = ~1and dis even,
1
f=1""= . ——_R*3IR,f. .
Af =17 = e R AlR (2.7)

Proof. For d even, d - 1 is odd, so for any h ¢ S(R),
],—(lh(s) - J |.Y|d—| H(Y)clﬂiys‘ ds
o)

= I/(Zm'.)"’ ZJ oly)/2mi (Zﬂiy)da' ﬁ(y)ezmys ds
n

= 1/(2m)4"2Had ~ Th(s).
Taking h(s) = Rof{s) gives 1) and 2).
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Similarly for d odd,
['"4his) = 1/(2ni)4~ T3¢ Th(s).
Taking h{s) = Ref(s) gives (2.7). W

3. Radon transform inversion based on the Gabor transform

3.1. Background and preliminaries on the Gabor transform

Definition 3.1. We define the following operators. Given a function h
defined on R¢,

1) By h{t) = e2™¥h{t), y = MY,
2) T.hit) = hit —x), x € ®Y,
3) Duhit) =h,(t) =u~ 4 ?h{t/a), a > 0.

Given f < S(%RY), and h a real-valued even function on R4 with (hi, -
1, we define for x ¢ M% and & = RY,

hyg(t) = e2ME N x).
The Gabor transform of 1 with respect to h is defined by
W ) (x 8 = [ flulhyely)ldy — Eghe f(x). (3.1
INE

In what follows we will in general take the analyzing function h to
be the Gaussian or a scaled version of the Gaussian. Therefore we define
a{x) = e ™ for x + M4 We use the same notation for the Gaussian in
different dimensions. The dimension will always be clear from the context.

The following facts are readily proved (4, 17].
Proposition 3.2.

[ J W), £ dxdi J L) de. (3.2)
Jovs I R

W) (X, L) [ J W R £ e &
N S
W R) (x| 8- &) dx dE (3.3)
f(t) [ [ W R ) (xR g (t) dx dé (3.4)
Jora Jora
(3.2) means that W'¢" js an isometry on L%. Thatis, ¥'" is an injection

from L4(R*) into [2(RY . M4) and is invertible on its range. The inver-
sion formula (3.4) is valid as written when f has sufficient smoothness and
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decay. Otherwise the integral on the right must be interpreted as an ap-
propriate limit. This inversion formula is formatly analogous to the Fourrer
inversion formula.

We now give a brief expaosition of some of the sampling and interpola-
tion properties of the Gabor transtorm which will be useful later on. Details
and proofs may be found in the cited references.

The reproducing formula (3.3) characterizes the range of the map W 4
It shows that this range is very small and hence that ¥'¢'f contains a lot of
redundant information about f. This fact has been exploited in [10. 11} to
show thatin fact t .- S{R4} is completely recoverable from any sufticientlv
dense sampling of its Gabor transform. This has also been shown in other
contexts for regular lattices {4, 17, 20]. The necessary density ot the lattice
depends only on the analyzing function h and not on 1. For example, it
is known that when h is the Gaussian, then any - §93 can be recov-
ered completely from the samples W 4 (g f1im 2, my with nom - 20 in the
following sense [4, 5].

Proposition 3.3. Given £ SiM9), there is a function a with exponential
decav in time and frequency such that

fix) - E E Y4 grin 2 mia, o o
e I L

where the sum converges absolutely and unitormiy.

v

Proposition 3.3 savs in particular that the collection "ty 1, 20 is a
frame for the Fréchet space St [14, 12]. In tact, g and g are very close in
many senses (in particular, in the I ' and | * sense) and

fix) =~ Z Z Y g filn, 2, mig, Jomixd [3.61

e 7 mel

is a good approximation.

In the case I, even more can be said. In [5], it has been recently
shown that the collection

hew alx ny, n. 2

ht‘.'l ) \Z(QH Jom ¢t { ')"”gn .Z‘vn)\ ( - O‘I‘, n: :
is a non-orthogonal basis for [4(M) and an unconditional basis for S${9}
(see also [12, 15, 20]). This basis can be rewritten in the following more
convenient way.

hew  glx  mj, n.e <
hen - V2alx  n/2)cos(2méx) £ tneven;n 2

Ren - - i\/'Zg(x - n/2)sin(2nix) {+nodd;ne 2
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As before,

T(X) = Z Z <f.h(,n> hé‘.n(x)

¢ Oneg

is a good approximation. The advantage of such a basis is that a real-valued
function f is developed as a series of real-valued functions. Also, its close
relation to the Gabor functions allows for easy computation.

3.2. Inversion formulas

Proposition 3.4. Let A > 0 and let the collection of functions g} ' be
defined by

A 2 ~
ol =aax oA ). nez

afw v2aalx AT in 2icosi2mA! fxp (s nevem;n - 2
Gen — V2aAx A Il 2)sin(2aN Yex) £+nodd;n L

Then g}, 'is an unconditional basis for ${R). Moreover,

A . oo~
Qo n Fov 2t ERREPE ne o«
q,\.,, PN 2E sy s g e T ) {+neven;n. 2
g’z;\.” Viav2by ooy oTy spg 1 40 2pad { - nodd;n- T

Proof. The first part is merely a dilation of the Wilson basis defined previ-
ously. The second part is an easy computation. [

Proposition 3.5 (Inversion with Wilson bases). let f . S[RY), and
suppose that for each v §4-1,

w

Raflsh ) ) crn(®ia), is) (3.7)

£ Oned
Then

D If dis even,

flx) l/(zm)“zzj CenlOHAY 10} (x 0)dd (3.8)
£ Oned s '

and

Af(x) = 1/(2mi)® Z Z J cen(9)3%7  (x 0)do (3.9)

cd
¢ Onel?Sh

196 }
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2) Ifdisodd,

=1/2ni)4 ‘Z ZJ cen (03979} Ix-0)do (3.10)

¢ Oneld

Proof. Note first that since the sum in (3.7) converges absolutely and uni-
formly and in L2,

Rof)Mr1 =Y % conl®)al, (r). (3.1

{ Onel

By (2.4], we have

f(x) = J [ (Raf)™(ryed™ I ripd=T 4p do

DN

¢ Onsl

~ 1 (2mids Z Z [ Cen(0) j O'(Y\'Zﬂ'ig',\‘"{rl
! ~

t Onel

el “"’{Zﬂir)" Vdrdo

=12 ZZJ ConlOIHAY Tad xa)do.
1

€ Oneg

~
Cen(0) J gt (rr e @i 1 g g
5‘_: ' -

This proves (3.81, and {3.10) follows similarly.
To prove (3.9], note that

/\f(\(] ‘ s ff{_) 2k \d(‘_,
J l T(Rg )/\(r)CL..“[\(‘ v d 'drdt)

J j (Rof) “(r)ed™ ¥ 97 rddrdo,

The result now follows just as in the proof of (3.8). B

Lemma 3.6. Let &< M4 A > Q. Then

Ro(Eggal(s) = AV 2 7 It emh Ttk ey, o (). (3.12)
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Proof. With & (&L - 010 - &, we have

s}

1 v i 1y PR
} Lgﬂ\‘-,\'d + Uidy ,\d _J oot s (AN Y d‘:)
(3] 3}
(,h’r\ {9 S e TAN ,\d 2 C_':'\i_ U 1\ o LJAU
R
TR TRE A DR W B
3\ e 8 ¢ 1 ¢ A .
Observing that & &7 08 M= completes the proot. B
Proposition 3.7.
Y tordeven,
| f ! LR
i R A )
. 202t
‘ RE I G401 s
¢! H(“1 l; RICANRY gy da
N b
where H denotes the FHhilbert transtorm, see 260,
2y bor dodd,
l \
Peavnr I,\1 ¢ ¢
2121
EANLEI 1
YT At g d.

Proof. Both ta) and (b) tollow trom the inversion formulas in the corollary

to Proposition 2.7 and tfrom [ emma 3.6 |

Corollary to 3.7. For d even

Al aving

e At havv ) do

Proposition 3.8 (Filtered backprojection). lLet 1. S
D It dis even,

| IS TURNTIE

Y i &) 227019 A
{27 ‘

A

A
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™ EYTHIY YEy aan ¢ Reflx 01 dO
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Applications of Gabor und wavelet expansions to the Radon transform '}

If d is odd,

1 .
(d} < f )\I,Z —7nth &
Y5 gasf)(x, &) ﬁZM(ZTIi)d“' €

J' e™ ESCAd-TE L 0y L Ref(x - 9)dO
s

Proof. By Proposition 3.7,

) ¥ 2 2
Eean = A' Zem™ TETRE (@™ TR0V IR 0, )(x).

By Proposition 2.4,

Wi gaif)(x, &) = Eggn » f(x)

b

— Al 2emmA Vier”

J e RO dE e Ry f(x - 91 do.

St

From this the result follows. B

Corollary to 3.8.
1) If diseven,
q,ld [ /\T)/\ () . 1 . /\] lL‘ ay g
AR 22
d
Zaaj e™ RO T gyt ad g LRy x 0,8 0] dY
" g
1 "\ -
where & = ({)(2mi)'.
2) Ifdisodd,
Y g flx, 6] - LY 2o-my e’
e 2(2ni)d T

d- )
Y Je’“ N gy (241 TigaiRefl(x 9, & - 0) dO

i ¢ gd )

where «; - ("; " (2ni).
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Proof. Both (a) and (b) follow by the same argument as in Proposition 3.8
together with an application of Leibnitz’s rule. B

4. Radon inversion based on the wavelet transform

4.1. Background and preliminaries on the wavelet transform

Definition 4.1. Given g a real-valued, square-integrable radial function on
R¢ which satisfies

PO

J 1Go(s)12/s ds < oo (4.1)
0
(where g(&) = go (1)), we define the wavelet transform of f by

O g f)(u,v) :J flt)e "4 2g(e™ t —v)dt = f+ Deugle™v) (4.2)

R

where u < Rand v £ B9 Any function satisfying (4.1) is called admissible.
As with the Gabor transform, the following are easily proved [16].

Proposition 4.2.

J J I(I)‘d'(g:f)hL.szdudv:J< fgo(s)lz/sdsJ Ifl)2dt.  (4.3)
NI IR ¢ R

(D““(g;f)(u,\') :J J @I(l‘(g;f)(ul‘w)
R

R 4D
O'YV(gig)u—u,\v - e TN )du' dv. (4.4)
f(t):J J O g f)lu,vie *4 Y gle Mt —vidudv. (4.5)
R Jm

When d = 1, it is possible to construct compactly supported, dif-
ferentiable functions ¥ such that the collection {2} 2y {2'x — k}}j 1cz is an
orthonormal basis for L2(R). Computing the expansion of a given f in this
basis is extremely fast numerically [3].

4.2. Inversion formulas

Proposition 4.3 (Inversion with wavelets). Let f ¢ S(R), and suppose
that for each 8 € S4-1,

Refls) =3 3 cinl®)Wixls) (4.6)

e ke
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where U; 1(s) = 2172y (2s — k). Then

1) If diseven,

f(x) = 1/(2mi)d—2 J \ G (B)HIY " w(x-8)dO (4.7)
sd !

e ke

and

Af(x) = 1/(2ni) j ik (8)0% ;1 (x - 9)dd (4.8)
: s4 !

JET KET

2) Ifdisodd,
f(x) =1/(2ni)4=" 3~ ZJ ¢in(0)38 7 i(x-0)de  (4.9)
jezheg Vst
Proof. This follows exactly as in Proposition 3.5. Wi

Lemma 4.4. Rg(D..g)(s) = e*' 412D . Rag(s).

Proof.
e—ud’ZJ g(e_"(56+y))dy:e'“d ‘ZJ g(C'uSe+C> “y))dg
el i

- Cud Ze—uj g(e‘“se—ky))dy
gL

= e 4=1"2D (Reg(s).

Proposition 4.5. For g € S(R9),

Deuglx) = I/Ze_“‘d_""ZJ‘ Deu ' 9Rgg(x - 8} d8.

gd
Proof. Note first that for any h € S(R), « € R,

1Deuhix) = 1= (Dech) ) 277" dy

= e/? L lyl~*h(e“y) e?™Y* dy

~ eaue—u/’ZJ 'yl—aﬁ(y)ebﬁv(c‘ Yx} d.Y
R

= e*"“D,ul*h(x).
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Thus,

Deuglx) = 1/2R*I'"9RD,. g(x)
= 1/2e* 4N/ IRF 14D Rg(x)
=1/2e 4" 2R* D 11 4Rg(x)

=l/2e_“‘d_"'2f Deul'"9Rog(x - 9) do.
§a 1

Lemma 4.6. Let g ¢ S(R) be real-valued and admissible. Then for any
integer i > 0, d.g is admissible. Also, if g ¢ ${R¢) is a radial function such
that Rag{s) = g{s) forall 8 € $4-', then g is admissible.

Proof.

J i(alg)/‘(y)lz/ydy:(Zni)ZiJ YP1gy ) fy dy
Q Q

= (a1 [y Mgt by < oo
N
since g = S(R).
Since ¢ is radial, so is ()" and by the Fourier slice theorem,
(ME) = (NI EAEN = (Re 10N IED = &),
Thus, g is admissible since gis. Wl

Proposition 4.7. Let f ¢ S(RY), let g < S{M4) be an admissible radial
function, and let g £ S{R) be such that Reqls) = gls] forall 9 = §¢° .

1) If diseven,
O V(gifluv) =

] ,
s ] O A g Rar v 01 a0
s

and
O'VGAfHu V) =
]

me“”‘d; * Jsd | m(“(a:lg'.Rgf)(u,\y .9) de.

2) If disodd,

' O (g f)u,v) =

1
’z"(ZF“i)d—"C"”_(MJ QM (34" giRef)(u, v - 8) dO.
sd 1
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5. Conclusions

We have seen how the Gabor and wavelet transforms relate to the Radon
transform. We have derived inversion formulas for the Radon transform
based on Gabor and wavelet expansions either by a direct method, or by
filtered backprojection. The second approach gives directly the Gabor or
wavelet transform of f from knowledge of the one-dimensional transform of
Raf for each 4.

The idea of using localizing transforms to invert the Radon transform
may prove practical for the following reasons.

1) Discretization properties of the continuous parameter Gabor and
wavelet transforms are well understood. Recovery of a signal from
sparse and even irregular samples of its Gabor or wavelet transform
have been studied in [11, 10, 20]. Moreover, an interpolation theory
exists for the Gabor or wavelet transform which allows recovery of
the continuous parameter transform from its samples at a regular
or irregular lattice. This kind of built-in interpolation may enhance
numerical stability.

2) Fast numerical algorithms exist for computing the Gabor and wavelet
expansions of signals.

3) Thespatial localization properties of the Gabor and wavelet transforms
suggest efficiency in the odd dimension case and also for local tomog-
raphy in the plane. The formulas for inversion of the Radon transtorm
in both the Gabor and wavelet case are local in odd dimensions, and in
even dimensions Af can be recovered in a local fashion.

4) Theinversion formulas allowing the recovery of the Gabor and wavelet
transforms directly from the Radon transform data allow the selective
recovery of f or Af at certain frequencies (the Gabor case) or at certain
resolutions (the wavelet case). This feature can be useful in the noise
reduction of tomographic images [21].
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& Those dvnamical systems generated by integer matrices operating on
multidimensional tori are useful general exemplars. In particular, Bill
Moran and I have recently explored notions ot dependence between pairs
of such systems.

It is well known that if the m x minteger matrix A is nonsingular and
has no roots of unity as eigenvalues, then {A7} is uniformly distributed for
almost all vectors x on the m-torus (x is A-normab).

We have proved that given two such matrices A and B which com-
mute, A-normality coincides with B-normality if and only if A" = B for
some positive integers r and s. This confirms a longstanding number theory
conjecture of Wolfgang Schmidt.

1. Introduction

Let me say at the outset that the main new result which eventually [ will
sketch is joint work with William Moran [2]. That, in turn, traces back
through ideas of Schmidt {8, 9, 10], and Cassels [3], to a problem of Steinhaus
which can be presented as pure number theory. It will, | hope, add interest
to emphasize the connexion with ergodic theory and dynamical systems.

The dynamical systems in question have discrete time and are deter-
mined by the action of an n » n integer matrix T on the n-dimensional torus
T = R®"/Z". From an initial vector x in T the system evolves along the
orbit (T*x) as time k = 1,2, ... varies.

The simplest example occurs when n = 1 and the operator T is multi-
plication by 2. We may think of the initial vector x being in ]0,1] and having
binary expansion x = ¥~ ; xk27*, or x = -x;x2x; - - - The evolution of the
system amounts to shifting along the tail of the expansion of x. As we all
know, this simple system illustrates some of the basic notions associated
with chaos theory. In particular we may obviously choose x to exhibit cycles
of arbitrary length, yet for almost all x the orbit is “randomly” distributed

207

J. S. Byrnes et al. (eds.), Probabilistic and Stochastic Methods in Analysis, with Applications, 207-216.
© 1992 Kluwer Academic Publishers. Printed in the Netherlands.




{ Brown

over T. This butterfly effect relates even to time averages, since, for almost
all x and every continuous real-valued function f on X, we know that

K
. k

1.1
lim Kkglf(z x) dem‘ (1.1

K—aoo

where m is Haar measure on 7. In other words, x is normal in base 2.

That famous result of Borel [1] (in view of its place of publication,
not inappropriate for a workshop on [talian soil!), has been extended to the
multidimensional case by Rokhlin [7], and Cigler {4]. In fact we say that
(T*x)is uniformly distributed if, for all real-valued continuous f on ",

K
. 1 .
lmj X E f{T x) :dem. {1.2)

k1

where m is now Haar measure on T". We then say that x is T~ normal
Moreover we call the matrix T ergodic if m almost all x are T-normal. It
turns out that T is ergodic if and only if T is invertible and has no root of
unity as an eigenvalue.

The problem of Steinhaus, solved by Cassels, is: “Do there exist num-
bers normal to base 2 but not normal to base 327 Schmidt {9] proved the
definitive one-dimensional result. For integer bases s, t, ali numbers normal
to base s are normal to base t if and only if s¢ = t® for integers a, b. (Oth-
erwise there are uncountably many numbers not normal to either one of the
bases and normal to the other)

Cigler [4] proved that if the ergodic matrices S, 1 are rationally depen-
dent in the sense that $¢ = TP, then S-normality and T-normality coincide.
We are thus tempted to say that the dynamical systems generated by ergodic
matrices S, T are dependent if S-normality and T-normality coincide. s it
too much to hope that dependence implies rational dependence? In fact
Schmidt conjectured this in [10] and proved by a tour de force that the result
holds under the additional hypotheses that (i) ST = IS and that (ii) every
eigenvalue of S has modulus strictly greater than one. It is hypothesis (ii)
which Moran and I have removed so we have ihe result for all commuting
systems. (It is interesting to 1.0te that dependence implies rational depen-
dence when S, T are assumed to be automorphisms of ‘T4, This nice result of
Sigmund [11] is much simpler—and essentially disjoint because commuting
cutomorphisms are automatically rationally dependent).

2. Schmidt’s result in one dimension

Let us fix integer bases s, t. Maxfield’s result that s-normality and t- normal-
ity coincide when s = t? is not difficult. Accordingly let us assume that s, t

08}
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are rationally independent. We seek to establish the existence of numbers
which are s-normal but not t-normal.

We know how to tinker with a base t expansion to prevent normality
and, intuitively, we feel this should not affect the base s expansion of such
numbers. More precisely we may choose a probability measure . with
respect to which almost all numbers fail to be t-normal (e.g., if t = 3 we may
take a uniform mass over the Cantor middle third set) and we may hope
that p almost all numbers are s-normal. In view of Weyl’s criterion we may
even expect to achieve that last step by estimating Fourier transforms. This
recipe is very much the one used by both Cassels and Schmidt. Because they
manipulated the base t expansion their measure 1 is generically of infinite
convolution type.

In a sequence of papers [2, 5, 6], Charles Pearce, Moran and | explored
the possibility of choosing instead a Riesz product for . It turns out that
there are significant technical gains although our first efforts were more than
somewhat clumsy. Here, with the benefit of hindsight, is a cleaner version.

Choose

K
= lim 1+ cos 2t} - m,
W= lim J—[lt

where m is Haar measure on I.  Then u is a probability measure
whose Fourier transform vanishes off words of the torm ¥ ¢ LR with
¢, < 0001 Also

Y et -TI(3)

Note, in particular, that

[

= |
X Zexp(zmt"x) 3 (nae.
Mo

Comparison with (1.1) or (1.2} with f{x) - exp(2nix} shows that p almost
all numbers are not t-normal.
Next we claim (following the lines of Davenport, Erdos and Leveque):

Proposition 2.1. Suppose that, for all r,

N k-1

iN“ZZ[u' (rs* -rs')
n 1 K i

1

< 00 (2.1

then u almost all numbers are s-normal.

Normal numbers and dynamical systems }
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Proof. In view of Weyl's criterion (i.e., (1.2) with n = 1 and f(x) =
exp(2mirx)) it suffices to prove that, for all nonzero integers r,

N
% Z exp(2nirs*x) - 0 (na.e.) 2.2
K1

Because | exp(27tiy)| = 1,itis in fact enough to show (2.2} along some mildly
lacunary increasing sequence N = Nj.Infact provided that N;j, 1 < (1+¢)N;,
we find

‘ 1 N I M ;
;Q Zexp(me x)— M kZexp(];urs x) ‘ < e,

whenever N; < N.M < Ny, 1.
Observe also that (2.1) gives

N 2
Z NT HN”’ Zexp(?.nirskx\;’ dulx] < 20
1 I k1

Choose M;.; = [(1 + €)M;!, then

y

M, - M;) . N
Z ( — —wa— Mﬁw{nM““[%’l\ Zexp(Zmre \) dulx) < »o

[N

| 2

ZJ\ Zexp(Zmrs )l dulx) < o,
’

i [N

for some suitable increasing (N;) and the result follows. W

It remains to establish (2.1). This we achieve crudely by counting the
number of possible nonzero Fourier coefficients, i.e., by counting solutions
of the equations

r(s* ~s') = Zen‘ € €10, +1, (2.3)
i1
In fact let Gn be the number of k < N such that for some j with 0 < j <

—log N and some €, equation {2.3) holds. In view of Proposition 2.1 it
suffices to check that

ZN‘ZGN < 00. (2.4)
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This is because

Nk
ZN'{Z_Ziu(rs" v Z'\' YING~ - Nlog N
[ I |

To check (2411 we use the independence of st and Alan Baker's lamous
estimate that there is a constant C so that

nlogs — mlogti » C MY 2o
whenever @ < maxt o, mei - NL We canreplace sot by s ot0 without loss
of generality and therefore can assume that minjs te - C7)

3

Lemma 2.2. If {2.31 holds with ¢, Tthen =% £ belongs to a tmon ot

most 3N discs of radius OFC <M 1 ving in some fined disc.
" j | [ -
Proof. <% 7 ¢ H1 o< M L :' €t i The second term ot the
productis T+ OC 5™ 5 The third term canbe written (with e i plac
of ¢ ' as
. 1
N e N .
: R T
L YRS 1 ey DI
C 1 -~ ,
N
.
1. ot (|~i "'\R)
v 1
where
. r N }
R - v ) h R
sy fs
[ L v

In view of the lemma and inequality 2.5 none ot the dises can contam
. . TR

more than one element. Tt follows that G~ does not exceed N 7 and 200

is established. B

3. N dimensions—underlying method

Following Schmidt we consider a somewhat wider class of matrices, the
almost mteger matrices. These are 1o+ ninvertible matrices with rational
entries and all of whose eigenvalues are algebraic integers. Such a matrivis
ergodic if and only no eigenvalue is a root of unity and it is these so-called
almost ergodic matricesthat we use. Schmidt proved in [10] that tor every
almost ergodic matrix 1 there exists an integer d (the denominator of 1) such
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to
ta

that dT" is integral for all n
Riesz products of the form

1,2,... This makes it possible to consider

K
L= lim 1 + cos 2T ¥x) - m,
! Kal‘kl_lll 7 )

where m is Haar measure on T" and « is an integer vector multiplied
by the denominator of T. Of course this makes sense only if there is a
substitute for the lacunarity familiar in the one-dimensional case. We require
dissociateness in the sense that equations

K
Y el =0 (e 0,41, 42))
v

cannot arise unless all ¢; = 0. Because T-normality and 7"-normality co-
incide we are at liberty to replace T by some suitable power to achieve
dissociateness. The appropriate result is the next lemma.

Lemma 3.1. Let T be almost ergodic. Then there is a positive integer p such
that (aT™") is dissociate for all o = 0in Q™.

Proof. If every eigenvalue of | had modulus one then Dirichlet’s theorem
would force some raot of unity to be an eigenvalue in contradiction of ergod-
icity Accordingly we may replace T by T to ensure that some eigenvalue
Ap of T has modulus greater than, say, 5. (The integral nature of dT" rules
out the possibility that all eigenvalues are inside the unit circle).

Assume then that ;A1 > 5 and Ay is an eigenvalue of T, First we decom-
pose 1 over the rationals into a direct sum of matrices whose characteristic
polynomials are of the form q(x)* where g is a monic irreducible over 1.
At least one component of x in this decomposition will be nonzero and the
entries of  remain rational. Replacing T by a suitable component matrix
we can assume that the characteristic polynomial of T is a power of an irre-
ducible. Next we consider T as alinear operator on €" and decompose €™ as
a direct sum of subspaces, Vi ker (A - T} as Aranges over the eigenvalues
of T. The decomposition can be achieved over the splitting field of g and
the automorphism group of this field will permute the components of «,
leaving a unchanged since it is rational. Thus the component of a in each
of these subspaces is nonzero. We may replace T and a by their components
on the subspace Vi, and we choose s to be the largest integer such that
B - afAy -- T)> # 0. Now any equation

ZC((X" =0

leads to the equation

Zc‘a()\l S S
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which is

Y eAp=0

and that forces €; = 0. W

Matters are now arranged so that analogues of the one-dimensional
case may be employed. In particular it is straightforward to see that u
almost all vectors in T" are not T-normal. The challenge is to prove that u
almost all vectors are S-normal and this boils down to counting solutions of
matrix Diophantine equations of the form

Mim gt
pSh - RS- Z EmaT™ (em # 10, +1") (3.1

mo 1

4. Irreducible case

For a workshop such as this it is inappropriate to plough through the tech-
nical details of the proof so let me discuss the simplest case, that in which
the algebra A(S. 1) generated by S, 1 is irreducible. That forms the basis for
an induction proof of the general case and the reader is referred to [2] for the
full details.

We assume then that Q" has no invariant subspace for the algebra
A(S.T)and that for each o in Q" there exists 3 in Q" with 3 N-2GN(B) =
o, where Gn (31 is the number k < N such that for some j with 0 < § <
Kk -logNand some €y, ¢2,€3,...,€x 5, (e < 10, +10)

MOk
BSh BS Yl
o]
Let us suppose further that for any eigenvalues A of § and p of T with
A" 2 p™ and max{im",in"} « N then

n'log A - m'log p! > ¢ W8N

and (as a consequence of replacing S, T by suitable powers) that any eigen-
value of S or I with modulus .- 1 has, in fact, modulus .» C*.

Lemma 4.1. Under the prevailing conditions there exists an n - n.matrix U
over 1 such that if t s is the number of all k for which

Mik i

uish sy - Z ™ (4.1}

m 1

forsome0 < j< k logNand ey < 10, t 11then ¥ N2ty = oo. Moreover
U belongs to A(S, T).
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Proof. We know that for each x # 0in Q" there exists some {3 in Q7 such
that

M(k.j)
BISh =S = Y emal™, (4.2)

m:. 1

ror infinitely many pairs (k, i) corresponding to k in Gx{3). Choose a cyclic
vector oo for A(S,T) and let 3o be the corresponding vector as in (4.2},
Multiply both sides of (4.2) by an arbitrary element of A{S, T} to see that
(4.2) does indeed establish a linear correspondence which we can express
in the form 3 = «U. Evidently U belongs to the algebra generated by §
and T. R

Lemma 4.2, Let A # (be an irreducible commutative subalgebra of M(Q" ).
There is a finite field extension F of 2 and a field isomorphism . A4 - T
such that, for each A in A, P{A) is an eigenvalue of A. Moreover. given
some fixed S in A and as eigenvalue A, of S, we may choose (S} = AL.

Proof. If A - A and ker A # 0 then ker A would be a proper invariant
subspace of A. Accordingly each A in A is invertible and .+ is a field which
i5 isomorphic to a finite extension F of Q" under some map § : A+ F.
We know from the Cavley-Hamilton theorem that A satisfies its own char-
acteristic equation and therefore {{A) is an eigenvalue of A. The minimal
polynomial m_ of any nonzero S in  is irreducible and so the Galois group
acts transitively on the roots of that polvnomial. It follows that, given A we
may indeed choose (S) AL B

Proposition 4.3. Under the conditions of this section there are integers p, g
such that S* T4

Proof. We apply the last lemma to choose Y 0 A(S, 1)+ Fsuch that ($)
C2. Now evaluate both sides of (4.1} under § to obtain an analogue of
(2.3) with (U} in place of v, W(S) in place of s, Y(TVin place of t. The
one-dimensional methods of the previous section force

PISI - P(T)", for some p, q,

and we deduce that

ST
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5. Forwards and sideways

The Riesz product technology makes it possible almost to separate the linear
algebra from the Fourier analysis and number theory. That is why Moran
and 1 have been able to push Schmidt’s methods much further. We have also
made further progress in the non-commutative case but that work is still in
preparation and is still far from resolving the “big” conjecture.

Absolutely fundamental throughout the work is the possibility of rais-
ing S, T to suitable powers without affecting normality. This is very much
a feature of the (almost) integral nature of the matrices. Even in the one-
dimensional case there are difficult questions concerning non-integer bases.
For example, is 2 normal to base 2?

In a forthcoming series of papers Berend, Moran, Pollington and myself
will demonstrate several new results on normality to non-integer bases. For
example we show how to construct generic examples of 8 such that normality
to base 9 does not imply normality to base 9" and normality to base 0oV does
not imply normality to base 8. Moran, Pollington and | can also show, for
example, that every number normal to base /10 is necessarily normal to
base 10 but we believe that the converse fails. Riesz products play a key role
there also.
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& This paper will contrast two wavelet-based image analysis techniques,
one fundamentally non-linear and the other essentially linear, to process
tmages arising from different physical sources and requiring fundamentally
different processing outcomes. The intent is to emphasize the flexibility
inherent in image processing algorithms even given the constraint that the
initial feature extraction process is a wavelet analysis. (It should be noted
that current physiological data from mammalian visual centers indicate
that a Gabor-like wavelet analysis is one of the first steps in animal visual
processing; in humans this becomes an exquisitely flexible, adaptable and
programmable process, to match the specific visual task required.)

We will first describe a non-linear system to locate specific key land-
marks on VLSI chip photomicrographs. These landmarks, easily visible
to a human observer, are not extractable by any linear spatial filtering
technique or any thresholding technique. However, if a series of Gabor
correlation planes (using appropriately selected size, frequency and orien-
tation parameters) are computed, it is possible merely by selecting the max
or min value for each pixel in the registered set of planes to produce an
“image” which clearly shows the desired landmarks. This is a non-linear

217

. Byrnes et al. (eds.). Probabilistic and Stochastic Methods in Analysis, with Applications, 217-231.
992 Kiuwer Academic Publishers. Printed in the Netherlands.




{ Suter, Kabrisky, Rogers, Fretheim, Ruck, Mucller 28}

rule-based system selection “filter” following the essentially linear process
of Gabhor correlation.

In a second case, we will show that actual infrared images can be
filtered to select items of specific sizes and texture by a linear summation of
Gabor correlation planes followed by a simple threshold rule.

The purpose of this work is to demonstrate that Gabor features seem
to be intrinsically useful for image processing provided that flexibility in the
use of its fruits is adopted by the system designer.

1. introduction

This paper will describe two image segmenters specifically adapted to dis-
tinctly different types of images. Both, however, are based on an initial
Gabor wavelet decomposition of their images and differ from each other
only in their post-Gabor-processing details [4]. The fact that the images are
derived from totally different sources and yet are both usefully processed by
a wavelet analyzer suggests to us that this may be a broadly useful technique.
We also note that the initial processing of images in the vertebrate brain stem
and in the mammalian visual cortex also includes a close approximation to a
Gabor wavelet decomposition of the scene being viewed by the animal, and
are thus further encouraged to explore the consequences of Gabor decompo-
sition of images. The first segmenter described is for photomicrographs of
VLSI chips obtained for the purpose of reverse-engineering and circuit ver-
ification of the chips. The second segmenter is designed to locate potentia!
targets in a FLIR image. Finally, we will conclude with an appendix outlining
some Gabor-like processes now known to occur in animal visual systems.

2. VLSI chip image processing

Figure B.1 shows a typical photomicrograph of a portion of a VLSI cir-
cuit. Thisis a 512 x 480 array of pixels derived from a TV camera image.
VLSI circuits are built up from a small repertoire of standardized circuit
elements such as resistors, transistors, flip-flops, switches, etc, which are
connected by straight metal conductors. Layers of the circuits are intercon-
nected on the chip by vias or contacts which are round or toroidally shaped
elements. Deriving the electrical circuit from such a photograph is a good
candidate for automation because the chips consist of a very large number
of iterated, stereotyped arrangements of a small set of possible elements.
Frequently, thousands or even millions of each element can be found in
currently used chips.

The first elements we chose to find are the round vias or contacts. Note
that while these are visible in Figure B.1 to a human observer, it is virtually
impossible to extract them with the usual image processing techniques. They
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can be extracted, however, with a Gabor-wavelet-based process. The process
begins by performing a two dimensional correlation between the image and
an appropriate two dimensional Gabor wavelet. We use the term “Gabor
filtering” or “Gabor transformation” for this operation [3, 2]. This process is
described in the appendix of this paper.

Gabor transforms of the images are computed directly in the spatial
domain. Several factors make this method attractive. The image size is
512 x 480 pixels so that high speed two-dimensional array processors are
available, and spatial correlation allows control of the decimation of the
scene. With this technique, the Gabor transform is defined as the dot product
of the Gabor wavelet and the image at each point on the image.

The quality of images obtained from the chips varies among the dif-
ferent chips and regions of the same chip. Therefore, the images are first
preprocessed so the Gabor filtering has the best chance to discriminate the
contacts. We generally use a special normalization technique to do this pre-
processing. The average brightness of a neighborhood of pixels around a
selected center pixel is computed and the brightness of the center pixel is
subtracted from this average. The resultis then multiplied by 2 and added to
127, the middle of the total 0-255 brightness range in the system [7]. The ef-
fect is edge enhancement with a normalized, constant average background.
Contacts, which typically appear as small bright regions surrounded by dark
rings, are emphasized. This local computation technique is similar to some
of the normalization processes performed by the vertebrate visual system
(11]. Figure B.2 shows the results of this process applied to Figure B.1.

Pixel intensity values can range from 0-255 in our eight bit system:
full black to full white. In some images, however, a histogram of pixel
values shows the total intensity range to be very narrow. Linear contrast
enhancement can be performed to spread the variations of image intensity
over the full range available to the image system [5]. This allows easier
visual examination of the image.

After this preprocessing, several Gabor transforms are taken of the
image. The required Gabor wavelet parameters which must be specified are
orientation, Gaussian envelope amplitude and width, sinusoidal modulation
frequency and wave type (sine or cosine). Since this application uses spatial
domain correlation, a decimation factor can also be specified.

Gabor filters respond strongly to linear features oriented parallel to
the filter’s principal axis. The strength of their response is also dependent
on the relative size of the object and its components or texture compared
to the modulation pitch of the Gabor wavelet. Figure B.3 is an example
of correlating a Gabor pattern with a 45° orientation with the image in
Figure B.2. The majority of features on the VLSI circuits are the metal
connective “wires” and are horizontal and vertical; the vias and the contacts
appear as circular features. Therefore, we used a set of Gabor filters with
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rotations of 20, 45, 70, 110, 135, and 160 degrees. Orientations of 0 and 90
degrees and their multiples were avoided in order to suppress the wires
and help enhance the circular elements. Not all rotations were required for
all images.

The angles chosen cause the Gabor filters to respond strongly to the
edges of the contacts and the corners of other features, but not to many of
the other chip features. The Gaussian width and the sinusoidal modulation
of the wavelets are chosen to match the expected contact size in the scene.
This reduces the response of the filters to many corners and other distractors.
When the set of Gabor filters of varied rotation is applied to the scene and
combined correctly, the response of the contacts dominates the resulting
feature set.

The transformed scenes are combined by a localized non-linear thresh-
olding operation. In the Gabor-transformed scenes, the pixel values are
limited to {—127 to 127}. Each input image will produce a set of intermediate
transformed images which depend upon the rotation of the Gabor filters.
For each pixel in the combined image, the pixels with the same (x,y) coor-
dinates in each of the transformed images are individually examined. The
pixel with the greatest absolute value is used for the feature set (and the sign
is preserved). This technique selects the extreme values and assumes they
contain the most information. Once the feature set is assembled the pixel
values are shifted to range from 0 to 255. Figure B.4 shows the result of this
process. The pixel array shown in Figure B.4 is then thresholded to select the
maximum 5-10% pixels. Figure B.5 shows the superposition of Figure B.1,
the original image, with these maximum pixels derived from thresholding
Figure B.4. Each of the bright spots is a potential location for a via or contact.
In typical scenes, the highlighted pixels represent only a few percent of the
original 512 x 480 array (see Table 2.1).

Chip  Scene Contacts Contacts  Area
Present Detected Covered

A 1 27 27 8.0%
A 2 45 45 7.2%
B 1 42 42 6.4%
B 2 54 54 8.3%
C 1 23 23 3.6%
C 2 1 1 0.5%
C 3 24 24 14.6%

Table 2.1: Segmentation results.

To determine which of the highlighted pixels actually represent vias or
contacts, a video subimage from the original (or enhanced original) scene,
about the same size as the vias or contacts, is extracted and correlated with
a nominal template of the desired element. In this research, correlation

20 }
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was usually performed by a trained neural net (connected in the back-
propagation mode) [8].

By limiting the number of such locations to be searched to a small
number of the 512 x 480 possible locations in the original image, the pro-
cessing time is greatly reduced. Many fewer false positives result and in our
experience, virtually all (96%) of the targeted forms are located.

In a sense the nonlinear Gabor analysis serves as an initial selector filter
for points in an image which have a high likelihood of containing the sought
image. Thus, the expensive correlation scheme to determine if the target
image is actually at some location need be carried out only at a few locations
in the scene. This type behavior seems to occur also in animal visual systems
where actual eye motion consists of a sequence of jumps (saccades) driven
by image content.

3. Segmentation of FLIR images

The second application discussed in this paper is the segmentation of po-
tential targets in forward looking infrared (FLIR) images. The motivation
is similar to that in the previous application. Given an image with a large
number of pixels, is there some easy way to locate the coordinates of the
most likely locations of targets prior to performing complex target analysis
and identification procedures?

Figure B.6 shows a representative FLIR image. [t was subsequently
processed by correlating it with Gabor wavelets using four wavelet orien-
tations: 0°; 45°; 90°; 135°. The pitch and orientation of the Gabor wavelet
modulation is important for these images. A Gabor wavelet can be con-
sidered to be an anisotropic spatial filter and Gabor transformation is an
approximation to spatially filtering an image.

Therefore, it is important to estimate the spatial frequency contact of
the targets of interest and select Gabor filtering frequencies to highlight these
frequencies. In the case of scenes containing targets, approximate range is
frequently known as is the approximate size of the targets. Therefore, it is
possible to estimnate the angular extent of potential targets and hence select
the appropriate Gabor wavelets for image plane processing. If not, then the
images can be processed with a range of Gabor frequencies and then post-
processed with extra-image information to analyze potential target sites.

The example in Figure B.7 shows the result of applying appropriate
Gabor wavelet functions. Figure B.7 has had only one non-linear opera-
tion, namely the final thresholding of a new image created by simple addi-
tion of corresponding pixels in the four Gabor filtered images created from
Figure B.6.

Figure B.8 shows the same image after Gabor filtering with sine rather
than cosine modulation. Notice this is an effective edge finder without




{ Suter, Kabrisky, Rogers, Fretheim, Ruck, Mueller

the disadvantage of many derivative type edge finders, in that there is no
enhancement of high spatial frequency noise. This is because the spatial
frequency components of a Gabor wavelet are grouped about a narrow band
of frequencies so that a Gabor-filter is actually an anisotropic band pass filter.
This filter can be tuned to type of edge of interest as shown in Figure B.8.
This image is also the result of final thresholding of the linear summation of
four Gaber filtered images.

4, Bibliography

[1} Marianna Clark and Alan C. Bovik. Texture discrimination using a
model of visual cortex. In Proceedings of the IEEE International Meeting
on Cybernetics and Society, pages 1425-1430, 1986.

[2] John G. Daugman. Uncertainty relation for resolution in space, spa-
tial frequency, and orientation optimized by two-dimensional visual
cortical filters. J. Optical Society of America A, 2:1160-1169, July 1985.

{3] John G. Daugman. Complete discrete 2-d Gabor transforms by neural
networks for image analysis and compression. IEEE Trans. Acoustics,
Speech, Signal Processing, 36:1169-1179, July 1988.

{4] Dennis Gabor. Theory of communication. J. of IEE, 93:429-457, 1946.

[S] William B. Green. Digital Image Processing. Van Nostrand Reinhold
Company, New York, 1983.

(6] Judson P. Jones and Larry A. Palmer. An evaluation of the two-
dimensional Gabor filter model of simple receptive fields in cat striate
cortex. J. Neurophysiology, 58:1233-1258, December 1987.

[7] Laurence Lambert. Evaluation and enhancement of the AFIT au-
tonomous face recognition machine. Master’s thesis, School of Engi-
neering, Air Force Institute of Technology (AU), December 1987.

[8] R. Lippman. An introduction to computing with neural nets. [EEE
Trans. Acoustics, Speech, Signal Processing, 4:4-22, April 1987.

[9] Steven L. Polyak. The Vertebrate Visual System. Chicago, 1957.

[10] M. R. Turner. Texture discrimination by Gabor functions. Biological
Cybernetics, 55:71-82, 1986.

[11] Frank S. Werblin. The control of sensitivity in the retina. Scientific
American, 228:70-79, January 1973.

22}

I, -



i

223 Lincar and non-linear decomposition of images using Gabor wavelets '}

A. Gabor-like processes in animal visual systems

The basic data input channels in the mammalian visual systems are well
known [9]. See Figure B9. There are three basic processing centers. The
first of these is the retina, a five layer system in which the optical image is
coded so that it may be transmitted through neuron channels to the brain.
The retina performs local contrast and average intensity normalization, color
coding, motion detection, spatial and dynamic range data compression, the
first stage of log Z mapping of the two-dimensional retinal image, and then
transmits local differential brightness data of points in the image compared
to a local circular surround of image data.

These data are mapped in a six layer system in the brain stem (lateral
geniculate nucleus (LGN)). Individual neurons can be instrumented in LGN
by means of micro-electrodes, and it is here that we see that many of these
neurons seem to view the world as though they were Gabor-like filters
[6]. The visual data are then retransmitted in the form of a log Z map of the
optical image to the primary visual center (V1) in the cortex and it is here that
humans are first aware of visual data. Needless to say, instrumented cells in
V1 respond as though they are components of two-dimensional Gabor-like
filters. Therefore, one concludes that the apparent world is in fact the real
world viewed through a set of spatially distributed Gabor-like filters. These
can obviously serve as texture and edge detectors for animals like us, as well
as pattern recognition machines.

Several researchers have proposed models for the mammalian visual
system which are based on Gabor’s work (see [2, pp. 1164-5] and {6]). The
idea that the human visual system optimizes the available information in
both the spatial and spatial frequency domains makes intuitive sense {1,
p- 1426). A model of the visual system which uses Gabor filters may help
resolve the long-running debate over whether the cortical (brain) cells in-
volved in vision perform as local feature detectors in the spatial domain or
spatial frequency components of a Fourier-like decomposition [2, p. 1160]
or both.

Daugman modified Gabor’s one-dimensional time-frequency “sig-
nals” into two-dimensional spatial filters. The filters consist of a two-
dimensional sinusoid (grating pattern) multiplied by a two-dimensional
Gaussian envelope. These filters were also shown to have optimal joint
resolution in the spatial and frequency domains [2, pp.1162-4]. Daug-
man’s two-dimensional Gabor filter is a product of a two-dimensional
sinusoid and a two-dimensional Gaussian envelope. The general form of
the two-dimensional Gabor filter family in the space domain is:

T(x,u) = expl-(xI +y2}/2(a? + B?)Isin[-2m(Upx + Vpy) — W] (A.1)

where (x,,y, ) are coordinates for the Gaussian, « and {3 are the Gaussian
decay terms, Uy, and V, express the modulation, and ¥ controls the phase
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of the two-dimensional sine-wave. The resulting waveform is shown in
Figure B.10.

One example of a visual system model is given by Jones and Palmer [6,
pp. 1233-58]. The hypothesis in their paper is that the visual fields in a typical
mammalian (cat) visual (brain) cells behave as though they were linear filters
having the functional form of the two-dimensional Gabor filters. Jones
and Palmer obtained the two-dimensional spatial response and temporal
responses of 36 instrumented cells from cat cortices. They used a simplex
algorithm to find Gabor filters which best fit the response profiles in a least-
squared-error sense. The error between the spatial response profiles and
their corresponding two-dimensional Gabor filters were then calculated.

The study shc wved that 33 of 36 spatial responses and 34 of 36 temporal
responses showed no statistical difference from a Gabor filter. The authors
concluded that the Gabor filter has appeared to evolve as an optimal strategy
for sampling images simultaneously in the two-dimensional spatial and
spatial frequency domains [6, p. 1233]. The brain visual system, however,
is not necessarily a linear system, so it is possible that Jones” and Palmer’s
data may be a consequence of the specific and simple test stimuli applied to
the cells rather than a general and robust description of the visual system.
Nonetheless, their results strongly suggest that Gabor filtered images are part
of the computational routines used by vertebrate animals to segment images.

Other authors have focused on texture discrimination, which requires
simultaneous measurement in both space and frequency domains [10, p. 71].
Turner approaches the texture discrimination problem from the aspect of
information representation [10, p.72] If an image is represented as single-
valued pixels, global texture information is not specitically demonstrated,
but if a global Fourier transform is used, local texture information is missing.
Turner therefore developed a set of spatially localized Gabor filters and used
them to segment textural features. His filters were circularly symmetric
and non-self-similar, that is the Gaussian envelope had fixed size but the
frequency of the modulated sinusoid was allowed to vary [10, p. 74].
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B. Figures

Figure B.1: Typical photomicrograph of a portion of a VLSI chip.

Figure B.6: Typical FLIR image showing a tank, APC, target board
and truck.
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Figure B.2: Result of preprocessing the image in Figure B.1.
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Figure B.3: The result of correlating (“Gabor transforming”) the
image in Figure B.2 with a two-dimensional Gabor pattern. Note
that the image is printed on a 512 x 512 pixe! space and that the
Gabor patterns are 34 - 34 pixels; the pitch of the modulation is 17
pixels per cycle and is phased as a sine modulation (to provide edge
enhancement). The orientation is 45°.
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Figure B.4: Result of performing the non-linear min-max pixel se-
lection procedure on Gabor filtered versions of Figure B.1. There
were six of these images resulting from Gabor filtering at 207, 457,
70°,110°,135°, and 160°.
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Figure B.5: Superposition of Figure B.1 with the maximum/
minimum points thresholded from Figure B.4. Note that these
points lie primarily on vias or contacts. They represent only a few
percent of the original 512 - 480 array of pixels.

e

Figure B.7: The result of adding four (cosine) Gabor filtered images
derived from Figure B.6 with subsequent thresholding.
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Figure B.8: Same as Figure B.7 but with sine Gabor filtering.
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Figure B.9: Basic input data channels in the mammalian visual

system.
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Figure B.10: Two-dimensional Gabor functions.
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g
ﬁ'—i Several, hopefully useful, observations concerning the topic in the title
are discussed: (1) It is noted that the axiom of intersection 1s not essential in
the definition of a multiresolution analysis. (ii) Several conditions, which
are often easily verifiable, are given for scaling sequences which implv that
such sequences generate scaling functions whose supports give rise to non-
overlapping tilings of R".

1. Introduction

The point of this lecture is to communicate several observations which may
be useful to investigators and other individuals who work with multireso-
lution analyses. These observations concern two topics: one pertains to the
axiom list for a multiresolution analysis and the other has to do with the
characterization of certain scaling functions.

Recall that a multiresolution analysis is a sequence 5Vi';, - of closed
subspaces of LZ("") which enjoy certain properties, see (1, 2, 3, 8, 9]. One
of the properties is the following;:

() Vi=0,. (.
i Z

Property (1.1} is often a nuisance lo verify. For instance see {5, 7]. The
reason for this may be the notion that the property depends intrinsically on
the specific example. Fortunately this is not the case.

In this lecture we show that property (1.1} is a consequence of the other
properties enjoyed by multiresolution analyses. Thus its appearance in the
definition is unnecessary and redundant.

t Partially supported by a grant from the Air Force Office of Scientific Research, AFOSR-
90-311.
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Another topic we will touch upon here concerns multiresclution anal-
yses whose scaling functions are characteristic functions. This matter was
recently studied in [3, 4]. The characterization of scaling sequences which
give rise to such scaling functions is an important problem in these studies.
Here we give several conditions which imply that a given sequence has the
desired properties and which arerelatively easy to verify for many examples.

2. On axioms for a multiresolution analysis

2.1. The main observation

Suppose A is a linear transformation on M. We say that A s an aceeptable
dilation for T" if it satisfies the following properties:

» Aleaves 2" invariant.

» All the eigenvalues A; of A satisfy A;! == i.
These properties imply that g = ' det Alis an integer whichis > 2. In what

~n

follows we will always assume that A is an acceptable dilation for T

Proposition 2.1. Suppose [V;', .~ is a sequence of close subspaces of L R™)
which enjovs the following properties:

s f{x)isin Vjif and only if f{Ax])isin Vi, 1.
= There is a function ¢ in Vo such that \@(x -- k) .o is a complete
orthonormal system for Vo.

If P;f denates the orthogonal projection of f into V, then

Nim {[Psff =0 (2.1
) —x

forall fin [ 4(Mm").

Note that (2.1} implies

(V=0 (2.2)
€2
Since the properties enjoyed by the sequence of subspaces in Proposition 2.1

are also enjoyed by all multiresolution analyses, see [1, 2, 3, 8, 9], we may
make the following conclusion:

Corollary to 2.1. If {V;}, 7 is a multiresolution analysis then property (2.2)
is a consequence of the other properties enjoyed by [V;j. 5.

REER
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2.2. Details
Proposition 2.1 is an easy consequence of the formula for the Fourier trans-
form of P;f:
Pif(e) = 3 {f1e - 2mBIkIGTBTE— 27k) } @(B7E) 12.3)
xeZ"”

where B = A* is the adjoint of A. Here g denotes the Fourier transform of g
which, for an integrable function, is defined by

g(8) = j e tg(x)dx

and distributionally otherwise.
In what follows we will use the notation

per;(g(&)) = Y gl&—2nB'k).
keZ"
With this notation (2.3) may be re-expressed as
PyF(£) = per, (f(E)(BTTENO(BTE),

To see (2.1), use Plancherel’s formula, formula (2.3}, and the fact that
P; is an orthogonal projection to write

IPf112 = (P;f,f)

- —‘(z;)n Jw per, (f(£)@(B-18))p(BTI&)f(&) d& (2.4)

Observe that
per, (f(£)@(B-TE)) < Iper, (If(£)1)) 2iper;(l(B'&)iH)}" 2
and since
per, (igp(B7 &) =1,
by virtue of the fact that [@(x — k)}, .7~ is a complete orthonormal system
for L(R"), we may conclude that
P < s [ Perfal RN 2a 2oL (25)

where g = [det B )

Observe that per,(q’|f{£)|*) is essentially an approximating Riemann
sum ror [ggn |f(& — 27m)|2dn. Hence if f is continuous with compact support
thenif j < 0,
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per;(q'f(£)14) < C (2.6)

where C is a constant which depends on f butnot oni. Thus, in view of [2.5)
and (2.6), for such f we may write

IPiri? < CJ‘X“ a7 2B LA (2.7)

whenever j € 0, where C is a constant independent of i. Now, if f vanishes
in a neighborhood of the origin say [&: 8] < ¢}, we may write

[ a7 “Q(BTTEIf(E)AE < ;ff:;'[ g lQBTEde T (2.8
SR Jigt e

foyan

and note that, since [@{&) s in LT {R"), the integral involving ¢ on the rigit
hand side of (2.8) goes to zero as | — —oo. Thus from (2.7) and (2.8} we
may conclude that (2.1} holds for all 1 such that f is continuous, compactly
supported, and vanishes in a neighborhood of the origin. Since such 1 are
dense in LZ(M") and Pyl < 1, we may make the stronger conclusion that
(2.1) holds for all fin LZ(R").

3. Tiles and scaling functions

3.1. Background

Suppose A is an acceptable dilation for 2" and X is a collection of distinct
an

representatives of Z" /AZ". Recall that the number of elements in K is q,
where q = idet A/, and that

"= kAR
ke

where the terms in this union are pairwise disjoint.

Let
Q=ixeR":ix=) Ak ki« K. (3.1)
71
The set Q satisfies the following properties:
AQ~ (Jik i1 Qi (3.2)
KEK

U k+Qi=a, (3.3
keZ"

kg + Q}ﬂ{kz QI ~ 0 whenever ky, k; € Kand k; #ky.  (3.4)
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Here, S ~ T means that [T\S| = [S\T| = 0 where S| denotes the Lebesgue
measure of S. If Q enjoys

k+Q()Q~0 forallkin2™\0}, {3.5)

which may be stronger than {3.4), then the characteristic function of Q is a
scaling function for a multiresolution analysis.

In a recent paper [3] the authors studied such scaling functions and
gave several conditions which are equivalent to (3.5). Unfortunately, in
many interesting examples, none of these conditions may be particularly
convenient to test. On the other hand, most of the time one is only interested
in sufficient conditions on A and X to ensure that the set Q satisfies (3.5). In
what follows we give several such sufficient conditions which, in appropriate
cases, are relatively easy to verify.

3.2. Main results

To avoid unpleasant technical complications in what follows we always
assume that X contains 0.
For any nonnegative integer N let

N
AKN = ):A"x. (3.6)

io
Thus AXn is a finite subset of 2" consisting of ¢™ ' ' sums k of the form
N
k= Z A'k; (3.7}
) ¢

where the k;’s are in X. Let

AK. = U AXKn (3.8)
N ¢
and let
DAK . = AK, —AK.. (3.9)

In ather words every element in AKX is a finite sum of the form {3.7) fo
some N and every element k in ‘DAK . is of the form

k=ky -k {3.10)

where ki and k; are in AX,. We are now ready to state the promised
conditions.
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Proposition 3.1. If DAK . = X" then Q satisfies (3.5).
Let b = max!{kl : k € K} where |k| denotes the Euclidean norm of k, let

a~! =sup{|A7"x|| : xCR" and |x| =1,

andlet B =k € 2" : |k < 2ab/(a — 1)}. In terms of this notatien we may
state the following:

Proposition 3.2. If B © DAX.. then Q satisties (3.5).

Sometimes it is possible to obtain an estimate of {Q}, the measure of Q.
In such a case the fullowing may be useful:

Proposition 3.3. If !Q] < 2 then Q satisfies {3.5).

3.3. Examples

We apply the above results to some of the examples considered in (3] where
they where handled by verifiving Cohen’s condition.

Example 3.4.
letn=1A =3 and 'K =:0,1,5. Thena =3, b =5 and B - k:
k< 5. Since 0.1 7 Kand DAK = ~DAK ., it suffices to check that 2,

3and 4arein DAK (. Theidentities 2 -5 -3-1,3 - 5-Land 1 5 1
imply that 2, 3 and 4 are in DAK | so that we may apply Proposition 3.2 Lo
conclude that the corresponding Q satisfies [3.5).

Example 3.5.
Letn -2,

SRR N RN
A:(] I)' and \{K;)(O)}

In this case a v 2and b - 1. 1tis not difficult to verify that B DebN
Hence the corresponding Q satisties {3.5] by virtue of Proposition 3.2,
et 2,

20 - 0) AN 1)1
] J . . (3.
Ay y) e x 1<0(‘<0>‘(])‘( DIl
In this case it is quite transparent that DAN = 2% 50 that Proposition 3.1
can be applied directly to conclude that the corresponding Q satisties (3.5},

Example 3.6.
letn -- 2,

3 0
Ae(o3)
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and let X be the set whose elements are the columns of

01 2001 2 2 4
00012212 4)°

To see that DAX .. = Z? it suffices to show that

(1)

is in DAX ... But this is clear since

1\ _[2\ (1
1) \1) \o
Hence Proposition 3.1 can be applied directly to conclude that the corre-

sponding Q satisfies {3.5).

Remark 3.7. Numerical results corresponding to some of the above examples
easily imply that Q! < 1. For instance, in example {3.11) it is clear that Q is
contained in a triangle of area 3/2. Hence in this case Proposition 3.3 can be
applied to conclude that Q satisfies (3.5).

Example 3.8.
Letn =2,

A= (f ) > ‘
let ¢ be the set whose elements are the columns of
(’ 00 0 1 1 )
o v 212
let K, be the set whose elements are the columns of

<OOOII)
o121 -1y

and let )X ; be the set whose elements are the columns of

( 0 0 01V 1
0 -4 2 1 -1}
The corresponding tiles are plotted in Figure 3.1, Figure 3.2, Figure 3.3.

Property {3.5) can be verified by applying Proposition 3.1, Proposition 3.2,
or Proposition 3.3.



{ Madych 240}

Ok

N

02 0 02 na X3 i ! 12 [ 16

va T T Ty Taa Tae ok i KR

Figure 3.2: Tile generaied by :K; in Example 3.8.

3.4, Details
Proof (of Proposition 3.1). Recall that (3.4) says that

ke + Q) ikz + Qi >0 (3.12)
whenever k; and k; are in AKX and k; # k;. Hence

Alkr + Q) Al +Q) ~ 0 (3.13)
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Figure 3.3: Tile generated by K3 in Example 3.8.

for such ki. In view of (3.2) we may write
Alki +Q) = Ak + |k +Q
ketk

Since the union in the right hand side of the above identity is taken over
pairwise disjoint sets, we may conclude that this identity together with
{3.13) imply (3.12) whenever k1 and k; are in AX,. By induction it is clear
that (3.12) is valid whenever k; and X, are in Ay for any non-negative
integer N. In other words, since k « DAK | canbe expressed ask Kk ko
with k) and k; in AKXy for some N we may conclude the following:

Lemma 3.9. If k <« DAK, and k # 0 then
k+Q()Q~
This implies the desired result.

Proof (of Proposition 3.2). If B, = [x ¢ R" : |x| < 7| then a routine
estimate shows that Q C B, wheneverr 2> ab/(a - 1). Since

k+Be)[]Br ~

whenever k| = 2r, we may conclude that in order to show that Q satisfies
{3.5) for all k in 2" it suffices to check that Q satisfies (3.5) for all k in B.
This, of course, is the case when B © DAK... B
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Proof (of Proposition 3.3). The result is a transparent consequence of
Theorem 2 in {3]. We recall some of the details. In what follows x. denotes
the characteristic function of the set S.

Let Qn. N =0,1,2,..., be the sequence of sets defined as follows:

« Qo = I[-1/2,1/2"
= QN jUkEfKA-1(k+QN_1)‘ N = I,Z,...

Then the characteristic functions of Qn satisfy

* ZLEZ" Xoylx =k} = lae.
» for all functions ¢ which are continuous and bounded on ‘R"

. 1
B}l—I}L J[\R X0« Ix)ix)dx — E@ J'Ji" xo(x)elx)dx

The last two items imply that
1
o Y xolx-kKl =1 ae (3.14)
e

Since 1 « Q. « oc and the sum in (3.14) is integer-valued for all x, we may
conclude the following:

Lemma 3.10. !Q is equal to a positive integer.

Hence the estimate |Qj < 2 implies that

Q‘, - 1. (3.15)

Since (3.15) is equivalent to {3.5), see Lemma 1 in 3], the argument is
complete. W

4. Miscellaneous remarks

The observations leading to Proposition 2.1 were made while | was prepar-
ing a draft of [6] and was confronted with the task of verifying (1.1} for a
particularly unpleasant example. A review of the literature indicates that
the general idea however is at least implicit in earlier work on the subject.
For example, a variant of (2.1) may be found in [2].

Some of the observations which eventually led to Proposition 3.1 and
Proposition 3.2 were made during a discussion with Stuart Nelson who
provided significant input. Wayne Lawton kindly provided me with a copy
of [4], discussed some of the material therein, and brought Lemma 3.10 lo
my attention via a different argument.
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Innovations and entropy rate with applications
in factorization, spectral estimation, and prediction

Athanasios Papoulis

Polytechnic University

Department of Electrical Engineering
Route 110

Farmingdale, NY 11735 USA

b

g

2 The concept of innovations is introduced as the base of the orthonormal
representation of a random process and the result is used to simplify the
estimation of the spectrum of an ARMA process. The ARMA model is con-
ceptually justified in terms of the principle of maximum entropy generalized
in the context of entropy rate.

1. Factorization and innovations

In the following, we present a number of fundamental concepts related to
the orthonormal representation of stochastic processes and we illustrate the
results with a variety of topics of theoretical and applied interest. The paper
is mostly tutorial. To make it self-contained, we review briefly the early
concepts [7].

A discrete-time stochastic process is a sequence x, or x'n} of random
variables (RVs) defined for every integer n. We shall assume that it is a real
stationary process with zero mean. The autocorrelation R[m} of x[n} is the
expected value of the product x[n + m]xim|:

Rim] = ElxIn + mlx[nl (1.1)

The power spectrum S(e'™) of x[n] is the discrete Fourier transform (DFT)
of Rfm}:

) > ) 1 (™ .
w — —1muw — Jimcwe y
S(e™) .“Z.x Rimle Rim] = 5 J_nsuu)e dw (1.2
The process x[nlis called white noise if the RVs x[n] and x[n + m] are uncor-
related for every m # 0, that is, if

R[m]:Plez{g' 2;8 .
S(e') =P
247
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Systems A linear time-invariant system is an operator assigning to a given
process x[n] (input) the process (output)

yml= Y xfn—Kkh[kl = x[n] + hin] (1.4)

k- —oo

Thus, y[n] is the discrete convolution of x[n] with the delta response hin] of
the system.
The z-transform

H(z) = Z hinjz™™ (1.5)

n -

of hin] is the system function.

With Ryy [m] = E{x[n+mly(n]jand Ry, [m] = E{y[n+mly[n]}, it follows
from (1.4) that

Rxg[m] = Ryx * h[—m] Ryg = ny [m] * h[m] (1.6)
Sxyl(z) = Sxx(z]H(1/2) Syy(z) = SxylzlH(2) '

1.1. Spectral factorization

A function L(z) is called minimum phase if it and its inverse I'(z) = 1/L(z)
are analytic for |z| < I

Lzl =Y Unlz™  Tlz)= Y yinlz™ 1.7)

n ¢ n ¢

If S(e'*} is the spectrum of a regular process x[n| satisfying the Paley-Wiener
condition [4]

J' n S(' ) dw < oo (18)

then we can find a minimum-phase function L(z) such that
S(z) = L{z}L(1/z) (1.9)

The determination of the function L{z) is simple if the given spectrum
S(z) is rational: S{z) = A(z)/B(z). We factor the polynomials A(z) and
B(z) and form the polynomials N(z) and D(z) using only the roots |z'| < 1
(Fejer-Riesz theorem)
Alz) N N(z)N(1/2) N(z)

S(z) = B(z) - D(z)D(1/2) L(z) = Dz) (1.10)
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Example 1.1. We wish to factor the spectrum

. 5 —4cos w 5—-2(z+z"")
jwy _ _
S = 0 6cosw P T T3 )
Clearly,
__2(2—]/2)(2—2) _22—]
S(Z) = m hence L(Z) = 3——2 S

1.1.1. Innovations

From (1.6) and (1.9} it follows that if x[n] is the input to the system I'(z)
(Figure 1.1) the spectrum S;;(z) of the resulting output i/n] is white noise:

Siilz) =S(2)M(2)T(1/z) =1 RyIm} = 3[m] (1.11)
The process i[n] so formed is called the innovations of x{nl. Thus,

G 1 ‘

m=0

il ~ s STl
iln] = kzoy[klg[n k] Efiln + mliln]] {O‘ m £ 0 (1.12)
Y1) +*T(s) (1) esL(s5)
I (s): whitening filter

x (1) i(r) x(t} L(s): innovations filter

Figure 1.1: Whitening and innovations filter.

Cascading the system I'(z) (whitening filter) with its inverse 1 (z) (innova-
tions filter) as in Figure 1.1, we conclude that the resulting output equals
x[n]. This shows that x[n] is the output of the filter L{z) with input i[n]:

dinl = 3 Uklifn - k] (1.13)
k 0

We have thus shown that a regular process x[n] is linearly equivalent
to a white noise process i[n] in the sense that each can be expressed linearly
in terms of the other and its past, as in (1.12} and (1.13). This is the extension
of the Gram-Schmidt orthonormalization to stochastic processes. We give
next several applications.
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’ 2. Linear prediction

Linear prediction is the LMS estimation of the present value x[n] of a stochas-
tic process by a linear function of its past values. The result is a direct ap-
plication of the projection theorem in Hilbert space. In terms of RVs this
theorem can be phrased as follows:

We wish to estimate an RV x,, in terms of n RVs, x,,...,x, (data). The
desired estimate is the sum

goéa15,+~~+a“gn {2.1)
Our objective is to determine the constants a; so as to minimize the MS value

P=Elxo %% (2.2)
of the estimation error x, — X,. Clearly, P is minimum if

oP

é?i:"E”Z‘o—(alZ‘l+“'+an¥u”’5i}:o t=1....n (2.3)

This yields a system of n equations expressing the unknowns a; in terms of
the second order moments E{x;x;! of the n + 1 RVs x,,....x

od Bag it Aen 0

The system (2.3} can be written in the following form:
Elex;} =0 i=1....n and ¢ =x,-x, [2.4)

This result, known as the orthogonality principle, states that P is minimum
if the estimation error ¢ is orthogonal to the data x;.
Note that

BElexol =0 P =El{xe — Xolxo) (2.5}

2.1, The Yule-Walker equations

Now we consider the problem of estimating the present value xin} of a
stochastic process in terms of its N most recent past values x[n -- kKl. Qur
estimate is the sum

N
xnfnl =Y anyxin - K] (2.6)
k1

as in (2.1). This is the output of the FIR (finite impulse response) filter

1

' Hn(z) =anaz '+ +annz”M (2.7)

with input x[n]. To find the coefficients an i, we apply (2.5}. This yields

E{(x[n] — xyMm)xin—m]} =0 m=1,..N (2.8)
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Hence,

N
anxRm—k=Rm] m=1,.. N (2.9.1)
k=1

The above is a system of N equations (Yule-Walker) and its solution yields
the N unknowns an .

With an,x so determined, the resulting LMS error Py equals (see (2.5)
and (2.6))

N
Pn =RI0] - ) anxRIK (29.2)
k=1

2.1.1. Levinson’s algorithm

To solve the system (2.9) directly, we must invert the matrix of its coefficients
(covariance matrix). This is a Toeplitz matrix whose inversion can be simpli-
fied. Next we present a simple recursive method (Levinson’s algorithm [3])
yielding the N + 1 unknowns Py and an k. Following the standard notation,
we set Kn = an n. It follows from (2.9) that
R[]
=——=K Py =R[0] - RM 2.10

Q=g =N 1 =RI[0] — a1 1R[1] (2.10)
Suppose that we have determined the N — 1 coefficients an_1,x and the
corresponding LMS error Py ;. It can be shown that [6]

N—1

PnoiKn =RINI— 3 an_1 «RIN = K] (2.01.1)
k-1

an.ny = KN ank =an-1x—Knan—in-k TSk EN-1 (211.2)
Pn = (1 —K&)Pn-a (2.11.3)

The first equation yields Ky; the second is used to find the N parameters
an k; the third equation determines Py. The iteration starts with (2.10).

Note that [Kni < 1 because Py > 0. Thus, Py is a decreasing sequence
of numbers tending to a positive limit P.

2.2. The Wiener filter

As N — oo, the FIR predictor of x[n] tends to the predictor

xfnl =3 hikixin-k  H(z)= ) hinjz™" (2.12)
k1 n 1
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and, (2.9) tends to the infinite system (Wiener-Hopf equations)

Y hikRm -k =Rm| m>1 (2.13.0)

k=1

P+ ) hlkRIK] = R(0] (2.13.2)
k=1

involving the unknowns h(k] and P. We shall solve the system (2.13) indi-
rectly using innovations. From the linear equivalence of the process x[n} and
its innovations i[n] it follows that the predictor x[n] of x[n] can be written as
the response of a linear filter H;(z) with input i[n]:

gl =Y hilklin -kl Hiz) =) hinl (2.14)
k-1 n-1

To find h;[k], we apply the orthogonality principle (2.4):

E{(y[n}-—}_—_hi[k]i[n—k]) j[nhml} = m>1 (2.15)

k=1
Since (see (1.12) and (1.13))

Eixnlin —ml} = m]  Eliln-kin-ml} =8m -kl
(2.15) yields

hifm] = Um]  %m] =} Lklifn -kl (2.16)
k1
This shows that the estimate x[n] of x[n) is the response of the filter

Hilz) = ) 1Kklz™ = L(z) - L] (2.17)
ko1
to the input i[n].
To complete the specification of the Wiener filter H(z) it suffices to
express i[n] in terms of x[n]. The process i[n] is the response of the whitening
filter 1/L(z) to the input x[n]. Cascading with H:{z) we obtain Figure 2.1

10 t H(2)=1 (]
—— =~
x{n] ] N - x|n) L(2)

L(2) {n]

£ [n]

Figure 2.1: One-step predictor.
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Example 2.1. Suppose that x[n] is the process of Example 1.1. In this case,

2z-1 .
L(z) = 2 1[0] = z]l_’l‘go L(z) =2/3
=
Hzl = 5= &l = 33— 11+ afn— 1)

2.2.1. The Kolmogoroff-Szego MS error formula
From (2.16) and (1.13) it follows that the estimation error equals

eln] = xn] — xMn] = 0li{n]
And since E{i2 (n]} = 1, this yields
P = E{e?[n]) = 12(0] (2.18)

We shall express this error directly in terms of the power spectrum §( ew) =
[L(e’*}1? of x[n]. The function InL(z) is analytic for |z| > 1. From this it
follows that {1}

In 12[0] = lJ In|L(e'*}? dw
27 ) _
hence

pzexp{-;;J lnS(ei“')dw} (2.19)

3. Spectral estimation

A process x[n| is called ARMA (autoregressive-moving average) if its spec-
trum S(z) is rational as in (1.10):

bo+biz7'+...+bmz™  N(z)

S(2) = Hz)t{1/z) Lz} = T+ayz-t+...+anz™N D(z)

(3.1}

In this case, x[n] satisfies the recursion equation
x[nl+aixin =1 +...+anxn—NJ] = boi[n]l +...+ bmiln - M] (3.2)

where i[n] is its innovations. We shall determine the N + M + | parameters
a; and by of L(z) in terms of the first N + M + 1 values R[0],...,R[M + N] of
the autocorrelation R[m] of x[n].

The process x{n — mj is linearly dependent on i[n — m] and its past;
furthermore i[n] is white noise with E{i*[n]} = 1. Multiplying (3.2) by
x[n — m] and taking expected values, we conclude that

Rim]+ ayRfm ~ 1 + ...+ anRIm -N} =0 m>M (3.3)
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Setting m = M +1,...,M + N, we obtain a system of N equations. Its
solution yields the N unknowns ay. To complete the specification of L(z) we
need to find its numerator N(z).
AR processes  1f M = 0, then x[n] is an autoregressive process and

bo

L(z) = Do) bo =lim,_,o L(z) (3.4)

In this case (see (3.2))
x(nl+aixn—1+-- -+ anx[n — N] = beiln] (3.5)

and (3.3)isreduced to the Yule-Walker equations (2.9.1} if weset an ,x = —ax.
Solving, we obtain D(z). To determine the constant by, we multiply (3.5)
by i[nl] and take expected values. This yields E{x[n]iln]} = boE{iZ(n]} = bo.
Muitiplying (3.5) by x[n] and using the above, we obtain

Rim]+aiRm -1+ - +anR[m =N] = by (3.6)

This completes the determination of L(z).
MA processes  If N = 0, then x[n] is the moving average of its innovations:

x(n] = boiml + .- + bmiln — M] (3.7)
L(z) =bo+biz7' +-- -+ bpyz™ (3.8)

In this case (see {3.3)), R[m] = 0 for m > M, hence, 5(z) can be expressed
directly in terms of R[m]:

M 2

S(e*)= 3 RimD(e”’™*) =|L(e)))* =
m —-M

M
m=0

Thus to find L(z), it suffices to factor the function S(z) as in (1.9). This
method involves the determination of the roots of S(z). We discuss later a
method that avoids factorization.

ARMA processes  Suppose, finally, that x[n] is an ARMA process as in (3.1}
As we have shown, the denominator D(z) can be determined from (3.6) in
terms of the N values R[M + 1],...,R[M + N] values of R[m]. With ax so
determined, we form the process [2]

yml =xnl+aixm -1+ +anxin—NI (3.9)

This is the left side of (3.2). Clearly, g[n] is the response of a system with
input x[n] and system function D(z). Hence,

Syy = Sxx(2)D(2)D(1/2) = N(z)N(1/z) (3.10)
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From the above it follows that N(z) is the innovations filter of yl'n] and it
shows that gin} is an MA process. To find N{z), it suffices, therefore, to find
the autocorrelation of y[n] and proceed as in the MA case. Clearly,
N
Diz)D(1/z) = )  plmlz™™ (3.11)
m —-M

To determine p[m], we form the product on the left and equate coefficients.
This yields

N
plmj = Z Qy_may for jm| < N and 0 otherwise.
k m
Convolving with the inverse R[m! of S,«(z), we obtain

N
Ryy = Z Rim — kiplk] for jm; £ M and 0 otherwise, (3.12)
k —N
The determination of an ARMA spectrum involves thus the following steps:

1) We find the constants a solving the system {3.3).
2) We compute R, {m] from {3.12).
3) We factor the corresponding spectrum.

M
Suulzl = Y Ryyfmlz™™ = N{z)N(1/z]
m -M
Note that the system (3.3) cannot be solved with Levinson’s algorithm be-
cause it holds only form >M 2 2.

4. Entropy rate

Given a partition A of a probability space S, consisting of N events A, we
form the sum

N
HIA) = =3 pilnipid pi = P(A) (4.1)
il
This sum is by definition the entropy of the partition A. Sincepy +--- +px = |
and p; = 0, it follows that
0 < HIA)<InN
The maximum is reached if py = ... = pn = 1/N and the minimum if
pr = 1 for some r. This justifies the use of the entropy as a measure of
uncertainty about the occurrence of the events A in a single trial: if p, = 1,
then our uncertainty is zero because, almost certainty, only the event A,
will occur. If p; = 1/N, our uncertainty is maximum. We give next an
empirical interpretation of the concept of entropy. Our objective, however,
is a method of estimating the spectrum of a process based on the principle
of maximum entropy.
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4.1. Typical sequences

In the space Sy, of repeated trials, we form the event

B = {A; occurs n; times in a specific order) (4.2)
The probability of this event equals

P(B)=py'...pR° {4.3)

If we perform the underlying physical experiment n times and the event A;
occurs n times, then, almost certainly

Pi = ni/n (4.4)
provided that n is sufficiently large. In the space S, there are N™ sequences
of the form (4.2). From (4.4) it follows that almost certainly, the elements
t € T of the subset

T ={A; occurs n; >~ np; times in a specific order ; (4.5)

of B occur. These elements will be called typical sequences.
With n; >~ npy, {4.3) yields

P(t) ~ pl L pRPN = et enpninbn o gAY (4.6)

Thus, all typical sequences have the same probability. Denoting by n, the
total number of such sequences, we conclude from (4.6} that

nP{t)~P(T)~ ne = e"HA) (4.7}

If the events A are not equally likely, then H(A) < In N; hence, for
large n, nH{A) <« nin N. From this it follows that

ne < C“l“N =N"

Thus, the number of typical sequences is much smaller than the number N"
of all possible sequences even though almost certainly, only typical sequences
will occur because the probability P{T) of their union T is almost one. This
property of typical sequences is important in coding theory (8] and it gives
an empirical interpretation of the principle of maximum entropy.
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4.2. Entropy of RVs

Suppose that x is a discrete-type RV taking the values x; with probability p;.
The events A; form a partition A, of S. The entropy of this partition is by
definition the entropy H(x) of the RV x:

Hix) = H(Ax) == ) pilnpi (4.8)

From this it follows that
H(x) = —E{In f(x)} (4.9)

where f(x) is a function equal to p; for x = x; and 0 elsewhere. Extending
(4.9) to continuous-type RVs, we defined the entropy of an RV x similarly:

H{x) = —ElInf(x)} = —J | Inf{x)dx (4.10)

-

where f(x) is the density of x.
Example 4.1. If x is a normal RV with zero mean and variance o2 then

1 Xz lrs , v
=3 =Inov2n+1/2 =lnovine

H{x) = -E<In —— — =
() {no In 202

Example 4.2. If f(x) = ce”“* for X > 0 and O otherwise then E{cx} = 1, hence
H(x}) = —E{lnc - cx} = ~Inc+ 1

The conditional entropy of y assuming x is by definition
Hiylx! = ~E{In f(ylx)} = —ﬂ f(x,y)In f(ylx) dx dy (4.11)

This is the measure of uncertainty about y assuming that x has been observed.
The entropy of a random vector X = [x,,...,x,] and the conditional
entropyof Y =[y,....,y _lassuming X are defined similarly:

H(X) = —E{nf(X)]  H(YIX]) = —Eiln f(Y|X}} (4.12)
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4.3. Entropy rate

The m-th order entropy of a stochastic process x, is the entropy of
H{Xp Xnots-+-+sXn_my1) Of a block of m consecutive samples x, _;.
k = 1,....,mof x,,. The ratio H(x,,,..., X, _m,1)/M is the average un-

certainty per sample in a block of m consecutive samples. The limit

1
H{x) = lim —H(x,,....x

4.13)
mox M -HAH\) ( ]J
is the entropy rate of the process x,,.

It can be shown that [7}

Hix) = lm HOG Y g X ) EREY

M

Thus H(x) is the uncertainty about the present of x,, assuming that its entire
past is observed.
If x,, is a normal process, then

__ PorT } -

Hix} =In v 2me « — [ InS{e'"Vdw 1.15)
27 ).

Note finally that if x,, is the input to a linear system with system function

L{z}, then the entropy rate H{y) if the resulting output u equals

1 (7 .
Hiyf = Hix| + - { In e dw (4. 1e!

For normal processes, this follows readily from (4.151 because S, te'
Se(e! i {e’) < The proof of the general case is more difticult [3].

4.4. The principle of maximum entropy

Consider a partition A consisting of N events A, as in (4.1). Suppose that
we know nothing about the probabilities p; of these events. The maximum
entropy (ME) principle states that in this case, the unknowns p, must be such
as to maximize the entropy H{A)of A. Since py 4+ -+ + Pn - 1, thisleads to
the conclusion that the events A; must be equally likely. If prior information
about the probabilities p; is available, then p, must be such as to maximize
H{A) subject to the constraints resulting from the prior information.

Example 4.3. We are given a die and we wish to estimate the probability p; of
its faces. In the absence of any prior information, we conclude that p; = 1,6.
Suppose, however, that the probability that leven| shows equals 0.4. In this
case, the constants p; are such as to maximize the sum - pyInp;  pylnp,
subject to the conditions

Pr+p2ztotpe=1 pr+pstpe =04
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This yields
P2=Pa=Ps=2/15 pr1=p3=ps=1/5

The empirical justification of the ME principle can be expressed in
terms of the concept of typical sequences: the unknown constants p; must
be such as to maximize the number n, of the sequences formed with the
elements A; of the partition A that are likely to occur (see (4.7)).

4.4.1. Constraints as expected values

We shall use the ME principle to estimate the density f(x) of an RV x under
the assumption that the expected values n; of n known functions gi{x) of x
are given:

o0
Elostll = | oitafcide=ni  i=1..n (4.17)
—~00
In this case, our problem is to find a positive function f(x) of unit area such
as to maximize the integral

H{x) =—J f(x)In f{x) dx (4.18)
subject to the constraints (4.17). It is easy to show that the solution to this
problem is an exponential:

1
f(x) = zeXP{—Mgu(x) — o= Angn(x)] (4.19)
where
Z——-J expi—=A1g1(x) — - = Angn(x))dx (4.20)

The n parameters A; are determined from (4.17).

Example 4.4. Estimate the density f{x} of a positive RV x with known mean.
In this problem, n =1

gix) =x Elx}=n f(x)=0 forx<O
and (4.19) yields

] Ax

— - _ 1
f(x)——’ze )\—;Z+n
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Example 4.5. Estimate f(x) if E{x?} = m,. With g(x) = x?, (4.19) yields

1 2 1 1
f(x) = —e~ M = — Z=
(x) Ze Zmz Zﬂmz

f

Thus, if the second moment of an RV is known, then its ME density is normal
with zero mean.

The preceding results can be readily extended to random vectors.

4.4.2. Spectral estimation

Using the ME principle, we shall estimate the power spectrum S(z) of a
stochastic process x,, under the assumption that the first 2N + 1 values

Rim} = Elx Iml <N {(4.21)

1
n¥n: ms

of its autocorrelation are known. This problem was solved in Section 3
under the assumption that S(z) is rational (see (3.1}). In the following, we
make no prior assumptions. We show that, under the given constraints,
the ME principle leads to the conclusion that the process x,, is normal and
autoregressive.

In this problem, the constraints (4.21) are second order moments. From
this it follows as in Example 4.5 that x,, is a normal process and its entropy
rate equals (see (4.15)).

m
H(x) =InVv2ne + 2_]7;J InS(e’*) dw (4.22)
The maximization of the entropy of x,, of any order is equivalent to the
maximation of its entropy rate H{x). Hence, to solve our problem, it suffices
to maximize the integral in (4.22) subject to the constraints (4.21). Since

oy~ S sme 05 ]
Ste)= 3 Rimle™ OR[ml ~ S(eiw)

m  —oc

—jmw

we conclude differentiating {4.22) that H(x) is maximum if

doH 1 J" 1

—_ = —— —imw = N 4.
SRl = 27 ) S dw=0 |m|> (4.23)

This shows that the Fourier series coefficients of the function 1/S(e') are 0
for im| > N, hence, 1/S({e'%)is a trigonometric polynomial:

] A 4
_S(—é’—‘;j = Z cme—""‘” (424)
m 1

To complete the estimation of S(z), it suffices to determine the coefficients
¢n. We can do so, using Levinson’s algorithm as in Section 3.
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Z

& The Method of Cauchy has been used to extrapolate a desired parameter
over a broad range of frequencies. This information is generated using some
information ahout the parameter over a narrow band of frequencies or at
some discrete frequency points.

The approach is to assume that the parameler, as a function of fre-
quency, is a ratio of two polynomials. The problem is to determine the order
of the polynomials and the coefficients that define them.

This method can be coded as a standalone program or incorporated
as part of a larger program. This technique has yielded accurate results
while in use in conjunction with a Method of Moments program and as a
independent program in filter “nalysis.

1. Introduction

In a host of problems in electromagnetics, itis necessary to obtain information
about a system over a broad range of frequencies. In most cases it is not
possible to evaluate the desired parameter in closed form. The sixties saw
the development of the Method of Moments to overcome this difficulty. It
was shown that the Method of Moments generated remarkably accurate
solutions for a broad class of problems. The later years saw this method
being refined into a popular algorithm in electromagnetics research.
The Method of Moments is an approximation technique, which con-
' verts interactions of complicated bodies into a set of smaller, easily solvable

t We would like to acknowledge the support of Scientific Atlanta for their partial support
for the completion of this project.
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interactions. This method finds its major advantage in the widespread use
of the computer. But its major drawback lies in that for broadband analysis
the program has to be run at many frequency points. In a large system the
execution time may be as long as days. Also the memory requirements in
large systems can be too much for many available computer systems. Hence
the time required to generate currents over a broad spectrum of frequencies
may be prohibitive. In the laboratory it is not always possible to make accu-
rate broadband measurements. This problem is especially severe in the case
of measuring the transfer function of a filter in the stop band. In some cases
the signal to noise ratio is too low to be confident about the measurements
of filter characteristics.

These drawbacks in current methods have created a need for a tech-
nique that would gcnerate the required information without using too much
time and still yield accurate results. One possible technique is the Method
of Cauchy. The approach is to approximate the currents as a function of a
frequency. The function chosen is a ratio of two polynomials. The problem
therefore reduces to the determination of the order of the polynomials and
the coefficients therein. With the polynomial coefficients at hand, one can
evaluate the currents at an arbitrary number of frequency points.

A successful application of this method would result in saving signifi-
cant amounts of program execution time.

2. The Cauchy Method

Let us represent the current as a ratio of two polynomials. Hence the current
(H), as a function of frequency (s), is
Als)

H(s) = B9 (2.1)
The numerator polynomial is of order P and the denominator of order Q.
Hence we have P + Q + 2 unknown coefficients. Cauchy’s problem is: given
H"(sj)forj=1,...,Jandn=1,...,N;, to find P, Q, A(s) and B(s).

We need the values of the current and its N; derivatives at frequency
points s;,i =1,...,].

The solution for the coefficients is unique if the total number of samples
is equal to the total number of unknown coefficients P + Q + 2, i.e.,

J
N=Y (Nj+1)=P+Q+2 (2.2)
i1
From (2.1)
Als) = H(s)B(s) (2.3)
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Differentiating the above equation n times results in the binomial expansion,

n
A (s;) =D "CHM I (s5)Bi(s;) (2.4)
i-:0
where "C; = (n—_“l'),—‘ Consider A(s) = ¥ ¢ ,axs*and B(s) = ¥ o bisk.
Equation (2.4) can be rewritten as

P Q
Z Ajnxag = Z Bj.n.kbk (2.5)
k=0 k=0
where
k! {k—m)

Ajnik = (k—n)'si u(k = n), (2.6)
n -

Bink =) "CH™ Y (s5)ulk - 1), (2.7)
i-0

i=1,...,],andn=0,1,...,N;, and u(k) = 0for k < 0 and 1 otherwise.

Define
A= {Ai.n.O‘Ai.n.l‘---uAi.n,P} (2.8)
B = [Bino.Bint . Bino) (2.9)

The order of matrix Ais N x (P + 1) and that of B is Nx(Q + 1).

[a] = [ac,ar,az,...,ap] (2.10)
bl = [bo, by, by,...,bol" (2.11)

Then, equation (2.5) becomes
[Al - B] [E] =0 (2.12)

Now one can do a singular value decomposition of the matrix [A| — B]. This
results in the equation:

[unznvr*l[:]] ~0 (2.13)

The matrices Uand V are unitary matrices and I is a diagonal matrix with the
singular values of [A|—B] as its entries. Given the number of nonzero singular
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entries, we can estimate the order of the two polynomials. Given these better
estimates of the polynomial orders one can recalculate the matrices A and B.
Now one can rewrite the above equation as:

(Al - B] [2] =0 (2.14)
One solution is to choose the eigenvector corresponding to the minimum
eigenvalue. Since the eigenvalues are in general complex, the minimum is
defined as the one with the lowest absolute value.

In a computer realization of the Cauchy method, this technique could
lead to errors since we may have multiple zero eigenvalues which show up as
being only close to zero. The desired solution would be a linear combination
of the eigenvectors corresponding to these near zero eigenvalues. This is
specially true in the applications to filter analysis because the orders of the
filters are important. Choosing the orders of the numerator and denominator
polynomials as high values can lead to errors. One way of getting around this
problem is to assume that ap = 1.0. Now equaiion (2.12} can be written as

(A} - B [‘;‘ = Ao (2.15)

where A is the matrix A without its first column, a; is the column vector
of numerator coefficients other than the ao and Ag is the first column of
matrix A.

Now one does a singular value decomposition of the matrix {A| - Bi
The resulting equation is:

[UHZHV”I[(:} =—-Aq (2.16)

where I is the diagonal matrix with entries the singular values of the matrix
[A;] — B]. Now the solution can be written as

[“b'} = IVIIZTUMA, (2.17)

Hence we now have the coefficients of the polynomials at hand. We can now
approximate the current at any frequency of interest. Any parameter we are
interested in can be evaluated from the current.

It must be pointed out that the Cauchy method can be used for the
extrapolation of a function with respect to any variable. In electromagnetics,
frequency is often the variable of interest.

266 }
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3. Interfacing with the Method of Moments

The usefulness of the above method is the ease with which it can be incorpo-
rated into a Method of Moments program. The Method of Moments results
in a equation of the form

V1= [Z]{1] (3.1

Differentiating the above equation with respect to frequency results in a
binomial expansion

VI’ = (21 + [Z)1) (3.2)
= =27V - 1Z)'[1] (3.3)
V)" =12)"[1) + 2{2)' [0 + (2" (3.4)
30" =217 v - 202111 - (21" (1] (3.5)
In general,
V" = incilzl““m‘ (3.6)
P
>0 =(z" MMEnci[z]"“m‘ (3.7)

i=1

In the above equations, [V]!™ is the vector with each element of [V] differ-
entiated with respect to frequency n times. Similarly [Z]'™ is the matrix
generated by differentiating each element of the Z-matrix with respect to
frequency n times.

Hence, using a Method of Moments program, we can generate all
the information needed to apply the Cauchy Method. Each element in the
solution [I] matrix can be treated as our function H{s). Given the function
and its derivatives at some frequency points, one can evaluate the function
at many more points.

4. The method in filter analysis

The Cauchy method can also be used in analysis of filters over broad fre-
quency ranges. This is particularly useful in generating the stop band re-
sponse given the pass band response and some stop band information. Also
one can produce the pass band response given some stop band information
and a little of the pass band response. A filter response is a ratio of two poly-
nomials and hence lends itself easily for application in a Cauchy program.

Generation of accurate broadband information from narrowband data }
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5. Results

5.1. With the Method of Moments

To test the Cauchy method, the RCS of a sphere was plotted over a wide
frequency band. A program to calculate the RCS of an arbitrarily shaped
body using triangular patching was used. It was modified to calculate the
derivatives of currents as well. This information was used in the Cauchy
subroutine. Also the same program was used to calculate the RCS without
the Cauchy method. The RCS of a sphere was plotted as a function of §,
where a is the radius of the sphere.

The points chosen for the Method of Muments program were between
A = 0.8m and A = 1.4m at intervals of 0.1 m Using the above method,
currents at 300 frequency points in this range were evaluated.

The major saving arising from the Cauchy Method is in execution time.
The time taken for the above extrapolation, as compared to the time taken to
evaluate the RCS at ten frequency points in the same range is shown below.
The program was executed on a VA Xstation 3100.

Method of Moments at 10 points: 3 hr 38 min 57.69 sec
Cauchy Method:  1hr 50 min 06.12 sec.

Of the time taken for the Cauchy program to execute, 1 hr31 min45.14 sec
was taken by the Method of Moments program to evaluate the current and its
four derivatives at three frequency points. The time taken for the evaluation
of currents at 300 frequency points was just 18 min 20.98 sec.

Figure A.1 shows the results from the Method of Cauchy and the
Method of Moments program. As can be seen from the figure, the ap-
proximation is very accurate over this broad frequency range.

5.2, In filter analysis

Another application of the Cauchy method is in filter analysis. A filter
transfer function was measured using a network analyzer. A few of these
points were chosen as inputs to a Cauchy program. Two different cases
were tested. One was the generation of the pass band response using stop
band information. The other was the reverse, i.e., the generation of the stop
band response using the pass band information. In each case a little of the
unknown band response was required. As seen from Figures A.3 and A.4
the interpolation and extrapolation was extremely accurate.
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{ Sarkar, Adve 270 }

Su
04

~10 4

-20 4

T r T T T T T T T T T T Ty T TTrrTrTrTrTrrTY

3 4 [} [} 7 8 2

FREQUENCY IN GHZ
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g
g Infinitely divisible probability density functions on the half-line t = 0
form a convolution semigroup on t = 0, as they describe stochastic pro-
cesses with stationary, non-negative, independent increments. A subclass
‘D of such densities are C™ functions on the whole t-line when extended
by zero for t < 0. Such functions may be viewed as physically realizable,
causal, C™ approximations to the Dirac 8-function, with further positivity
properties. The use of such probe waveforms for system identification is
particularly advantageous in transient wave propagation problems, where
the system’s impulse response is typically highly singular. An ill-posed de-
convolution problem must be solved to recover the system’s response; the
semigroup and positivity properties of the input probe enable this decon-
volution problem to be implemented as a Cauchy problem for a diffusion
equation. This approach allows the analyst to monitor the gradual and
systematic development of sharp singularities in the presence of noise. One
important context where this theory applies is ultrasonic flaw detection in
nondestructive evaluation.

Perturbations of the originally designed pulse shape, due to ampli-
fiers, transducers, and other interfacing devices, may destrov infinite di-
visibility and lead to waveforms with large negative oscillations. A much
wider class of probe waveforms can be constructed, the class B, with D ¢ B,
that includes such waveforms. Moreover, if the perturbed pulse lies in B,
a simple linear transformation of the noisy output data can be found that
reduces the perturbed deconvolution problem to one with a class D kernel.
The search for this transformation is accomplished in the Fourier domain,
by comparing the perturbed pulse with the originally designed pulse. The
practical significance of this observation lies in enabling the experimentalist
to correct for unintended effects of interfacing black boxes and recover a
tractable deconvolution problem. The procedure is illustrated with a nu-
merical experiment.
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1. Introduction

Determination of the impulse response of a linear time invariant system is
an important objective in many areas of system identification. Frequently,
the system’s complexity together with incomplete knowledge of its phys-
ical characteristics preclude an analytical calculation, [4]. In other cases,
the impulse response is needed to infer unknown inhomogeneities or other
properties of the system. One such example, [5], is the use of impulse
responses for flaw size estimation and characterization in ultrasonic non-
destructive evaluation of materials. In such contexts, the impulse response
may be obtained experimentally by pulsing the system with a physically
realizable, smooth approximation to the Dirac 3-function. The present syn-
opsis focuses on analytical considerations underlying the choice of probing
pulse and its impact on the subsequent deconvolution problem. A detailed
discussion, with further references to applications, is given in [2] and [3].

In one idealized experiment, an impulse of force d(t] is applied at a
point x on the surface of an infinite elastic plate; the output displacement
response at some other point y, not necessarily on the same side of the plate
as x, is cailed the dvnamic Green’s function glx, u. t). Non-dispersive elastic
wave propagation between the source and receiver causes glx,y.t} to bea
highly singular function of t for fixed x,u. Sharp features, including jumps,
cusps, spikes, and the like, signal the arrivals of various reflected waves, and
characterize the object in the test configuration x,y. However, if a smooth
pulse waveform, p(t}, is applied at x, the output response at y is given by

t
bitl - (r - qgift) = J Pl alx,y. tidT, to= O aRE

R
Such convolution severely distorts and blurs the sharp features in gtt:, and
bit) cannot be used to identifv the medium in that important singularities
may have been smoothed out. An dll-posed deconvolution problem must
be caretully solved to reconstruct gitf, given pit}and the measured noisy
output by, {t]in lieu of b(t). Moreover, a priort smoothness constraints on aiti
cannot be used to stabilize the inversion in the presence of noise. Weaker
constraints, such as an a priori bound, M, on the 12 norm of aft1, together
with an estimate, ¢, for the 1< norm " b b, Y, must suffice. The noise to
signal ratio ar ¢/M -+ 1, used as an adjustable regularization parameter
in {3.4} below, is the only a priori constraint in our deconvolution procedure
As a consequence, although the | 2 error in the reconstructed g(t) tends to
zero as ¢ | O, there is no information on the rate of convergence, [7], and
error bounds in terms of the estimated noise levelin by (1, are not possible




{ 275

Infinite divisibility and the identification of singular waveforms }
2. Infinitely divisible probe pulses

A way of compensating for the lack of an error bound on g(t) lies in perform-
ing the deconvolution in slow motion. Here, the notion of infinite divisibility
plays a key role. We consider smooth pulses p(t) satisfying

p(t) € C=; plt) =0, t<0 p(t) 20, t>0 J plt)dt =1. (2.1)
0
Such pulses represent one-sided (or causal) probability density functions.
Infinite divisibility of p(t) requires the following additional property: for
every positive integer m, there exists a one-sided density q.m(t) satisfying
(2.1), such that p{t) is the m-fold convolution of q, (t) with itself, i.e.,

plt) = {dmt)}™™ (2.2)

For large m, dm(t) is a narrow pulse concentrated near t = 0, and
gm(t) approaches 5(t) as m T co. The inverse Gaussian pulse p(a,t), 0 >0,
defined by

o.e—c" /4t
plo,t) = ————, t >0, (2.3)
VAamt3
is an example of {2.1) for which g, (t) can be written down explicitly; we
have q.,{t) = p(og/m,t). The pulse s(0,t), for o > 0, given by

eo—te—oz ‘4t
vt

is also infinitely divisible, has much the same shape as (2.3), but the mt"
convolution root of s(c,t) is not s{a/m,t). Although relatively few C™
infinitely divisible densities can be writen down explicitly, a rich variety of
such functions exists, as the convolution of any two causal infinitely divisible
densities is again causal and infinitely divisible. While (2.3) and (2.4) are
unimodal pulses (see Figure A.1}), quite complicated multimodal pulses can
be created by convolving {2.3) or (2.4) with discrete Poisson densities. All
such pulses belong to the class D defined as follows: A one-sided infinitely
divisible density p(t) € D if and only if there exist positive constants, A, ¢, 3,
with A 2 1, and p < 1, such that

slo,t) = t =0, (2.4)

V2mIp(e)i < Aemd” (2.5
Here,

) ] x .

f(&) = FIf(t) = —[ f(t)e & dt, 2.6

(&) ) Tl (t)e (2.6)
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denotes the Fourier transform of f(t). Thus, (2.3} and (2.4) respectively
satisfy

Vaniplo, &) = e~ a=g/V2, (2.7)
and
e=¢ Te—tore ML < Hmis(o,8)] < eCe ot (2.8)

Note that infinite divisibility of p(t) implies that [p(&)| > O for all real &, See,
e.g. [6, p. 557].

3. Deconvolution of class D probes

We now consider (1.1) when p(t) € D. If the exact data b(t) were known,
solving for g(t) would be equivalent to finding u{0.t) in the following
Cauchy problem:

ou/dx = Pu, x>0,t>0,
u{x,0) =0, x 20,

u(l, t) = b(t), t 20, (3.1

where P is a linear pseudo-differential operator in the t variable determined
by the input probe p(t), and given by

(Pulix,t) = 5" fulx, &) loglv2Zm(&) } (3.2)
Indeed, Fourier analysis of (3.1) gives
ux,t) =7 {VaImpr b}, 0<x < e, (3.3)

which reduces to g(t) at x = 0. Infinite divisibility of p(t) ensures that
(3.2) is well-defined, while [2.5) gives the Cauchy problem (3.1) a parabolic
character. The evolution of u(x,t) as x decreases from x = 1to x = 0 is
termed continuous deconvolution, and represents the progressive undoing
of smoothing caused by diffusion.

In the presence of noise, b, (t) replaces b(t) on the left side of (1.1), and
a direct inversion is not feasible in that error amplification overwhelms the
reconstruction process. However, Tikhonov regularization of the ill-posed
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Cauchy problem (3.1) leads to the following approximation for u(x,t) on
0<x<gl, t20

(3.4)

o | VIR )2 (£)
”(“”“3{ P+ (w22 [

Here, w = ¢/M « 1 is the L% noise to signal ratio. For small fixed x > 0,
v(x, t) is a smooth approximation to the singular signal g(t) and represents
a partial deconvolution. One has the following ‘log-convex’ error bound,
which, apart from a factor of 2, is the best possible in the L2 norm,

[ wlx, ) = vix,-) i< 2M'7%ex, 0<x<U, (3.5}

The parabolic nature of (3.1) can be exploited, [2], to obtain L™ error bounds
for the partial deconvolution and its time derivatives at any fixed x > 0,
in terms of €, M, A, ¢, and 3. All of these estimates degenerate at x =
However, for small €, one can validate the sharp singularities in the total
deconvolution v(0,t), by observing their early genesis at some x > 0 and
following their systematic development as x | 0.

An effective computational algorithm for obtaining the evolution of
v(x,t} as x | O has been developed {2]. The algorithm is based on the
Poisson summation formula and is implemented in Laplace transform space
using FFT routines. Input to the algorithm consists of time-domain data;
namely, the recorded histories of the actual probe p(t) and of the response
b. (1), digitized at 2N equispaced points on the finite interval {0,27,, with N
and T sufficiently large. The ‘optimal’ value of the regularization parameter
w is best found interactively, starting from a plausible first guess for the
ratio ¢ /M.

4. Perturbations and the class B

An explicitly known class D pulse such as (2.3) or (2.4) can be synthesized
as an electrical voltage using a computer-driven digital to analog (D/A) con-
verter. (It is advantageous to use the lowest value of ¢ compatible with the
instrumentation bandwidth). To produce a dynamic force pulse having a
prescribed time dependence, a high fidelity transducer is necessary. How-
ever, the electrical signal must first be amplified to a level sufficient to drive
the transducer. The cumulative effects of the amplifier and transducer may
result in an actual mechanical pulse q(t} markedly different from the ideal,
narrow, unimodal shape, [1]. We will show how to get around this difficulty
in a large number of cases.

It is an interesting fact that there exist transformations of such proto-
typical class D pulses as (2.3) and (2.4} that may drastically change the time-
domain character of these waveforms, while preserving the non-vanishing
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property of their Fourier transforms. In particular, the distorted waveforms
may develop large negative oscillations and cease to be probability densities
altogether, let alone infinitely divisible ones. Convolution of D with the
one-sided functions h(t} described below, represents only one such class of
transformations. Other transformations, linear or nonlinear, may produce
similar results.

Consider any analytic function of the complex variable z of the form

Alz) =) anz",  anreal ac #0, (4.1)
n-0

such that for some R > 0,
0 < bo € A(2)l € b1 < o0, Izl < R. (4.2)

Let f(t) be any real one-sided fuhnction (including linear combinations of
Dirac §-functions) such that v2ni/f(£)] < R, and let

hit) = ) aaff()l™,  ((F(0)7C = 8(1)). (4.3)
n 0

Then h(t) is a one-sided function, and
0 < bo < V2nih(&)l < by < oo. (4.4)

One may also rescale the time variable and form

hift) = ) au8fBt—w)™,  9>0, ¥ 20, (4.5)

n ¢

while still retaining (4.4). The interesting case occurs when f(t) includes a
finite sum 3~ ¢k 8(t — 1y}, with 7, positive and ¢ real.

With arbitrariness in both A(z) and f(t), a bewildering variety of pulse
shapes can be created by iterated convolutions of p(t) € D with such h(t)'s.
The :esulting waveform is always causal and C* on the whole line. As a
si .ple example, consider

Alz) =M=, A real,

f(t) = 8(t - 1), e

ha(t) = e Y Aot n,

n

so that

VInhy(&) =e rere ' (4.7)

28 }
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Let
a=v2, b=V10, A=-05 u=-15, (4.8)

and let s{0.5, t) be the unimodal pulse (2.4) with ¢ = 0.5, shownin Figure A.1.
Form successively,

qi(t) = as(0.5,at), gz2(t) = (g1 * ha)(t)

q: = bgz(bt), gs = (q3 x hy)(t). (4.9

Then, q4(t}) is the pulse shown in Figure A.2.
Lety = (4a?b?)V4, a = 2]A + ul. Using 12.8) and (4.7), we have

o~ _t N BN vv:/ Vrenttl . . TN
e ¢ e lote Yi2E] < v27th4(&)| < el e (o vy . (4.10)

Next, let p(v,t) be the inverse Gaussian pulse {2.3). We observe from (2.7}
and (4.10) thatif v > (20 + 2e~"/y = 0.58, then

PVLE o

Ir < an
Gatey € A

Choosing v = 0.6, we see from (4.11) that the complicated non-positive
pulse in Figure A.2 is bounded below in Fourier space by the narrow inverse
Gaussian shown in Figure A.1. This relationship is shown graphically in
Figure A.3 where [d,4(&)~' (solid curve), and 2.5[p(0.6, )|~ " (dashed curve),
are plotted as functions of discrete frequency & = kn/10.24, k =1, ..., 650,
using FFT routines. These considerations serve to motivate the following
definition.

Definition 4.1. A function q(t) is in class B if and only if g(t) is causal
and C* on the whole line, with Ig{&)] > O for all real & and there exist an
infinitely divisible density p(t} < D and a positive constant K = K{q,p),
such that

[p(&)
= <K, & real. 412
(e ¢ (4.12)

B includes all functions of the form q{t) = (p « h)(t) with p(t) ¢ D
and h(t) of the form (4.3), and we have |p(&)]/14(&)| < 1/bo. In particular,
choosing h(t) = 5(t), it follows that D = B. Other transformations of
plt} € D, possibly nonlinear, may also produce objects gft) ¢ B.
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5. Deconvolution of class B probes

We view membership in ‘B as resulting from perturbations of the originally
intended class D probe, caused by interfacing devices. Assuming the actual
mechanical pulse g{t) € B, we use Fourier analysis to find p(t) € D such that
(4.12) is satisfied. As in Figure A.3, this may be accomplished by plotting
1g(&)i7" and adjusting the width parameter of the candidate pulse p(t} so
that with a reasonable constant K, the curve K|p(&)i~} lies above the g curve.
We then let d(&) = P(&)/¢(L), and refer to p(t) as the exchange pulse.
Suppose

{a«gl{t) = elt]), t =20, (5.1

where e(t) is the output response that would have been recorded in the
absence of noise. Let e, (t) be the noisy output data. As before, we assume

Talls M, lle—eqilsm, (5.2
where n «. M. Let
b(&) = d(&leld),  byu(&) = didleq(d). (5.3)
From (5.2), (4.12),
b b, g€, ¢ - K 5.4

Fourier transforming (5.1} and using (5.3}, we see that {p + g)(t) - b(t),
while b, (t} is the noisy output data corresponding to the exchange pulse
plt} « D. Thus, if q(t) < B, multiplication of the output ¢, (&) by the
bounded function d(&), reduces the deconvolution problem to the class D
case, with bounded noise magnification, ¢ = Kn. With w = ¢ 'M, we mav
now construct the family of partial deconvolutions vix, tiin [3.4) for which
the error bound (3.5) holds.

6. A numerical experiment

We now illustrate the foregoing development with a numerical reconstruc-
tion experiment using synthetic noisy data. Figure A4 represents the theo-
retically calculated impulse response a(t) of a homogeneous infinite elastic
plate, where the source and receivers are on opposite sides of the plate, with
the receiver located at the epicenter [8]. The sharp spikes are numerical -
functions, with support equal to one mesh interval At, and with height a/At,
the weights a being determined by the physics. The spikes, and other sin-
gularities, indicate the arrivals of elastic disturbances and their subsequent

%0 }
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multiple reflections from the plate faces. The drawing displays normalized
displacement versus normalized time where

Normalized displacement = 7t x shear modulus x plate thickness
x actual displacement/force,
Normalized time = actual time

x shear wave speed/plate thickness

The presence of flaws would generate additional reflections, resulting in a
signature different from that shown in Figure A 4.

The pulse g4(t) shown in Figure A.2, with t measured in normalized
time units, was used to simulate a distorted mechanical pulse appiied at the
plate surface. While such distortion is substantially worse than is typically
the case in experimental work, the robustness of the deconvolution proce-
dure is best demonstrated by considering extreme cases. The corresponding
epicentral response e{t) = (g4 + g)(t), evaluated by numerical quadratures,
is shown in Figure A.5. Each of g{t), q4(t), and e(t}, were calculated at 500
equispaced points on the normalized time interval [0,5]. Evidently, there is
little correlation between Figures A.4 and A.5.

Next, noisy data e, (t) were constructed by adding to each data value
y in e{t), a random number drawn from a uniform distribution in the range
+0.005y. A noise level of between 0.1% and 1% is believed to be representa-
tive of experimental co..ditions. The inverse Gaussian shown in Figure A1
was used as the exchange pulse, with corresponding data by, (t) obtained
from (5.3). With w = 1.0 - 107", the family v(x, t) was evaluated using (3.1}
at 16 equispaced values of x on the interval 0 < x & 1. The evolution is
shown in Figure A.6. In that drawing, the first trace, in the foreground, is
b, (t); the last trace, in the background, is the reconstructed g(tj. Although
there is no visual hint of spikes in the foreground trace b, (t), early genesis of
these singularities and their subsequent systematic development as x | 0, are
noteworthy features in Figure A.6. There is also an easily assimilated visual
relationship between successive traces, which facilitates pattern recognition.
These effects are a reflection of the dittusion process associated with the
exchange pulse p(t).

We remark that it is possible to apply the deconvolution algorithm
directly to (qy » al{t] - elt], foregoing the exchange option, by substituting
gsand e, forpand by, in (3.4). In that case, the underlying Cauchv problem
{3.1}is not of parabolic type. The resulting evolution is shown in Figure A.7.
While the last trace in that drawing is a good approximation to g(t), the
development of singularities is not easily discernible, as the non-positivity
properties of ¢4(t) result in a tortuous evolution of the data ¢, (t) into g(t).
In the presence of Taws, where additional reflections can be expected to
produce fairly complex signatures, pattern recognition may not be feasible.
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Figure A.2: Example of probing pulse in class B.
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i Epicentral response tc pulse in Figure A.2
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Figure A.5: Response to probe pulse of Figure A.2 with test config-
uration as in Figure A 4.
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Figure A.6: Continuous deconvolution of response in Figure A5
after using exchange option.
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Figure A.7: Continuous deconvolution of response in Figure A5
without use of exchange option.
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2 This work is about spatiotemporal random fields and their applications in
environmental research. Ordinary and generalized random fields are stud-
ied, and certain important classes of space nonhomogeneous/time non-
stationary random fields are derived. Results are obtained regarding the
optimal estimation and simulation of such fields in space and time.

1. Introduction

This presentation studies spatiotemporal natural processes, that is, processes
which develop simultaneously in space and in time. In Section 2 we discuss
the emergence of spatiotemporal natural processes in various branches of
physical sciences and address the fundamental hypotheses and problems
regarding the quantitative description of such processes. Several practical
issues of spatioternporal data analysis and processing are presented and the
variety of potential applications is reviewed. The latter is followed by a
critical discussion of the inadequacies of previous works on the subject.

[n order to proceed with the rigorous mathematical modelling of nat-
ural processes which change in space and time, one must elaborate on a
theory of spatiotemporal random field (S/TRF). This theory is presented in
Sections 3 through 6. The preceding mathematical results act then as the
theoretical support for the discrete parameter representations, as well as the
optimal space-time estimation and simulation methods which are discussed
in a more practical context in Sections 7, 8 and 9.
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Carolina at Chapel Hill,
287
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2. Spatiotemporal natural processes

Spatiotemporal processes, that is, processes which develop simultaneously
in space and time, occur in nearly all the areas of applied sciences, such
as: hydrogeology (e.g., water vapor concentrations, soil moisture content);
environmental engineering (e.g., concentrations of pollutants in environ-
mental media—water/air/soil/biota); climate predictions and meteorology
(e.g., variations of atmospheric temperature, density, and velocity); and oil
reservoir engineering (e.g., porosities, permeabilities and fluid saturations
during the production phase).

In this context, important issues include: the assessment of the spa-
tiotemporal variability of the earth’s surface temperature and the prediction
of extreme conditions; the assessment of space-time trends in runoff on the
basis of a spatially and temporally sparse data base; the estimation of the
soil moisture content at unmeasured locations in space and instants in time;
the reconstruction of the whole field of a climate parameter using all the
space-time data efficiently; the study of the transport of pollutants through
porous media; the elucidation of the spatiotemporal distribution of raintall
for satellite remote-sensing studies; the optimal sampling design of meteo-
rological observations; and the simulation of oil reservoir characteristics as
a function of the spatial position and the production time.

The issues above are parts of the general problem of analysis and pro-
cessing of datu from space-time physical phenomena. In all these situations, the
spatiotemporal pattern of change of the natural processes involved possesses
a certain structure at the macroscopic level and a purely random character
at the microscopic level. The latter implies a significant amount of uncer-
tainty in spatiotemporal variation. Moreover, this variation is, in general,
space nonhomogeneous and time nonstationary (there may exist complex
trends in space, time varying correlation structures, significant space-time
cross-effects, etc.). Spatiotemporal variability plays an extremely substantial
role in the understanding, modelling and prediction of surficial processes
in space-time. Itis, aiso, very important in improving our basic knowledge
regarding the climatological influences on the hydrogeology of a region. If
neglected, spatiotemporal-parameter variability of water management mod-
els may adversely influence management decisions.

Typically, space-time data analysis and processing problems have been
handled urder some convenient but rather simplistic assumptions. In/iydro-
geology and water resources research, common statistical methods of analysis
create artificial decompositions of hydrologic processes—one in space and
one in time—and study them separately [25, 10]; or focus on time averages
(monthly, seasonal, annual) of the hydrologic parameters; or make addi-
tional assumptions, like space homogeneity and weak time dependency
(e.g., [4]). The multivariate analysis concept which has been used in a num-
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ber of hydrologic problems (e.g., [11]) accounts for the vector formulation
of the scalar time series model, where the component time series are cor-
related to each other. Variability in space is not taken into consideration
and the modelling of the combined evolution of theses series in space and
in time is clearly not an issue addressed by multivariate analysis. Similar
decompositions has been applied on some recent studies on the assessment
of Ireland’s wind power resource (e.g., [17]). Moreover, classical statistics
and time-series methods have failed to provide a conceptual framework de-
termining the correlation structure of the spatiotemporal heterogeneity of
soil-water properties from local to global scales.

In environmental research the existing models (e.g., [2. 15]) either apply
traditional methods of classical statistics which are incapable of capturing
important features of the space-time structure, or have been designed to han-
dle problems that are significantly different in nature than those arising in
the spatiotemporal data analysis and processing context considered above.
In particular, the class of classical statistics models does not determine any
law of change of the environmental parameters, and the relative distances of
the sample locations/instances over space-time do not enter the analysis ot
the correlation structure. The second class of environmental models avaii-
able concern, either specific space-time interaction systems where the input/
output physical parameters are treated at each spatial location as separate
time series, or the description of the system’s transfer function by means ol
some special space-time patterns. These models do not provide an adequate
quantitative assessment of spatiotemporal variability in generai, and they
do not account for the space nonhomogeneous and/or time nonstationary
characteristics of the environmental parameters in particular. In some re-
cent environmental studies the spatio-chronological order of the data is not
properly considered, and arbitrary but not well justified decompositions ot
the correlation functions are assumed. Moreover, optimal reconstruction
schemes, which are general enough to cover the majority of applications
have not been developed; see, e.g., comments made in [28]; also by Bilonick
[3]; and by Rouhani and Hall [26] in a geostatistical framework. Space-time
models which are based on the distributed parameter concept [30] are not
in general appropriate for most environmental problems. These models
are assumed to be governed by a differential equation of a particular form
that does not represent adequately the majority of the spatiotemporal natu-
ral processes of interest; issues of stability, controlability and observability
involve serious difficulties.

In reservoir characterization, space-time data processing does not exist at
present. Most of the techniques available exclusively account for the spatial
variation of geological reservoir processes, when in reality these processes
are simultaneously a function of spatial location and production time (e.g.,
[20]). Also, current practices in data collection—with the exception of some
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oil sand deposits—do not account for time. The reasons that space-time
models do not exist at present in reservoir characterization is due to the fact
that the need for detailed and advanced reservoir characterization has been
recognized only recently.

The methods used for statistical climate modelling and prediction are usu-
ally somewhat primitive versions of the methods used for weather analysis
and prediction (e.g., [12, 21, 31])). Many of them suffer the same limitations
with the methods used in hydrology. For example, the basic ansatz of mul-
tivariate techniques such as “principal oscillation pattern” and “principal
interaction pattern” [31] is based on the arbitrary assumption that the space-
time characteristics of a low-order system are the same as those of the full
system. Also, important issues such as the characterization of spatiotempo-
ral intermittency or spottiness in rainfall as it pertains to various notions of
scaling as well as the physically observed features of clustering, growth, and
decay of convective cells, and larger-scale spatiotemporal forms observed
in mesoscale rainfall systems cannot be addressed by the existing statistical
methods (see, e.g., [9]).

In globul warming research, aspects of current interest are as follows:

1) Many eminent authors claim that while one certainly cannot assert
that no warming occured, the existing statistical analysis of earth’s
surface temperature data is unable of providing adequate assessments
regarding temperature’s space-time variability and it does not lead
to convincing arguments supporting the concept that changes at the
macroscopic level are due to greenhouse warming rather than to space-
time natural variability (e.g., [21]).

2) Inwater resources management the existence of a warming trend raises
the question whether the global warming has been sufficient as to
translate into a corresponding change in the spatiotemporal structure
of runoff series. Again, current statistical analyses of runoff series are
subject to serious question given that they are based on observations
relating to a spatially and temporally sparse data base and they as-
sume no model about the underlying spatiotemporal evolution of the
runoff series.

Clearly, the temperature data in [tem 1) and the rainfall series studies in
Item 2) above are typical examples of analyses where the theoretical models
used are incapable to provide adequate representations of the spatiotempo-
ral variability and, hence, they cannot give satisfactory answers to crucial
questions concerning climate and water resources problems.

The main reasons for such—clearly inadequate from various view-
points—analyses of spatiotemporal data should be attributed to the fol-
lowing facts: (i) the importance of spatiotemporal variability in the study of
space-time phenomena was not fully appreciated until recently; and (ii) most

200}
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of the theoretical tools and mathematical techniques of data processing avail-
able have been designed to operate exclusively in time (time series methods;
e.g., [16]) or exclusively in space (random fields, geostatistics; e.g., [22, 32,
33]). Undoubtedly, the literature on the subject of applied space-time data
analysis and processing is very limited and most aspects of importance in
the analysis, modelling and estimation of spatiotemporal parameters have
not been studied adequately.
In view of the foregoing, the following conclusions are drawn:

1) Any modelling assumption should reflect adequately the macroscopic
and microscopic evolution characteristics of the underlying processes
over space and time. The latter is a requisite for the understanding
and prediction of spatiotemporal processes in hydrogeology, climate
modelling and environmental pollution monitoring and control.

2) Due to the random character in the variability of the data at the micro-
scopic level, these processes must naturally be described stochasticaily;
the concept of randomness should be viewed as an intrinsic part of the
space-time evolution, and not only as a statistical description of possi-
ble states.

3) The proper model should be capable of assessing quantitatively any
space nonhomogeneous/time nonstationary variability features and
to provide efficient solutions to practical problems, such as space-time
estimation.

Taking these issues into account, it seems quite reasonable that the
concept of an S/TREF is the appropriate stochastic model for spatiotemporal
processes. Within the framework of the S/ TRF model, space and time forma
combined process having simultaneous and interrelated effects on the evolu-
tion of the natural variable it represents. Suitable methodological hypothe-
ses and operational tools assure that the mathematical concept of S/TRF is
compatible with the physics of the variate it describes and, thus, it is applica-
ble in practice. Lastly, conclusions regarding the spatiotemporal variability
(trends in space, periodicities in time, nonhomogeneous/nonstationary cor-
relations, etc.) can be established in terms of duality principles that relate the
mathematical notions and the physical behavior of the process they model.
Here, stochastic spatiotemporal correlation functions provide the means for
structurai inferences.

In general, the objectives of spatioteinporal data analysis and process-
ing are: (a) to assess quantitatively the spatiotemporal variability of the
natural processes of interest (degree of regularity, continuity, non- homoge-
neous spatial features, nonstationary characteristics, etc.); and (b) to provide
efficient and computationally attractive procedures for deriving nntimal (in
a well defined mathematical sense) and physically meaningful estimation




{ Christakos

292}

maps of the natural process, at unknown points in space and/or instants in
time, based on fragmentary space-time data.

Of course, the outcomes of space-time data analysis and processing
may be not an end in themselves. Several important consequences will
emerge in the context of earth sciences. More specifically:

1) A deeper understanding of the physics of the space-time processes
will be obtained. For instance, knowledge about the spatiotemporal
variability of the various climate parameters will improve our basic
understanding of how the global climate actually functions.

2) The predictive capabilities of many computer-based differential equa-
tion models in hydrology and environmental research, are limited be-
cause the parameters of the models are difficult to determine. Much of
this difficulty may stem: (a) from the spatiotemporal variability of the
media, and (b} from identifiable differences in initial physical assump-
tions. It is, hence, of significant importance to understand how (a) and
(b) influence the outcomes of modelling.

3) Space-time data analysis and processing will provide the necessary
means for solving important problems in various areas of water re-
sources. Information about the spatiotemporal-parameter variability
of a water resource system will allow the detailed simulation of the
system and will influence considerably management decisions. The
assessment of the spatiotemporal variability of pollutan. concentra-
tions will provide the knowledge needed to monitor and control envi-
ronmental pollution. S/TRF simulations of the anticipated effects on
surface temperature due to the increase of carbon dioxide in the atmo-
sphere over a specific time period will provide valuable insight into
the study of global warming issues. In connection to this, the possible
effects of the coupled increase of precipitation and temperature on the
hydrology of a particular region can be determined; then, conclusions
could be derived about the incorporation of climatic changes into the
planning of future earth systems, and the modification of the operating
rules of existing water resource systems.

A S/TREF is termed continuous parameter or discrete parameter ac-
cording to whether its space-time arguments of an S/TRF take continuous
or discrete sets of values.

3. Ordinary spatiotemporal random fields

3.i. The basic space-time notions

Let s = [syv.52,...,5n} &€ R" (R" 15 the Euclidean space of dimensionahty

“
n> withlsl = /3 sf,andt e T(TC R, ={te R :t > 0)
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In the Cartesian product ®R™ x T let (s,t € R®™ x T) denote space-time
coordinates, such that (s, t)]? = |s|2 + tZ. We also define (s,t)%P = s2tf =
sT'sy. ..5%tB where B is a nonnegative integer and & = (&1, x2,...,&n)
is a multi-index of nonnegative integers such that || = ):{‘ o and of =
o lag! Lot

We define some spaces of spatiotemporal functions X{s,t) in ®" x T,
which are useful within the framework of the present study: The space C
of all real and continuous space-time functions with compact support (i.e.,
they vanish outside some bounded region). The space K of all real, contin-
uoue and infinitely differentiable functions in space and time with compact
support. The space S of all real, continuous and infinitely differentiable
functions which, together with their derivatives of all orders, approach zero
more rapidly than any power of 1/|(s,t)| as (s, t)| — co. Notice that § D K,
as all functions in K vanish identically outside a finite support, whereas those
in S merely decrease rapidly at infinity. Spaces K and § are of particular im-
portance in this study. The topology in K and § is in the sense of [27] where,
in view of the aforementioned space-time considerations, the argument is
now (s,t) € R" x T.

3.2. Definition of ordinary spatiotemporal random fields

Let (Q),F, P) be a probability space, where Q is the sample space, F is the o-
field of subsets of Q and P is the probability measure on the measurable space
(Q), F) satisfying Kolmogorov’s axioms; let z = (s,t). We denote by H, =
L,{Q,F,P) the Hilbert space of all continuous-parameter random variables
X1,...,%n defined atz,,...,z,, and endowed with the scalar product

(XI.XZ)ZE[XIXZIZUXIXZde(Xl.Xz] (3.1)

where F,(x1,X2) denotes the joint probability distribution of the random
variables x; and x;, while

Iii? = Eixl? = Jxlde(x) . 3.2)

where F,(x) denotes the probability distribution of x. Usuaily F,(x] and
F.(x1,x2) are assumed to be differentiable so that they can be replaced by
the probability densities f,(x) and f,(x1,x2)-

Definition 3.1. The ordinary S/TRF (OS/TRF) X{s,t) is defined as the
function on the Cartesian product ®" « T with values in the Hilbert space
L2(Q,PF), viz.

X:R" x T - L2(Q,F,P) {3.3)
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Just as for purely spatial RF (SRF), a S/TRF X(z) = X(s, t) is specified
completely by means of all finite dimensional probability measures . (B)
associated with the families of random variables x1,...,x;m atz;,...,z.:

Hx(B) =Mz, ..z, (B) =Pl(x1,...,xm) € B] forevery B € ™

m

(3™ is a suitably chosen o-field of subsets of ®™) and all m = 1,2,... The
corresponding probability density functions are written as
fx(X1,.o Xm)dXr .o dxm =f2, .z, (X1, Xm) dX1 ... dXom

Pxr Sx(zi) €x1+ dxa, o Xm € X(Zm) < Xm + dxml. (34)
for all m. AllOS/TREF to be considered will be continuous in the mean square
sense, i.e., E}X(s',t') — X(s,t)]* = 0, when s’ — s and t' — t. Moreover,
OS/TREF are, in general, taken to represent space nonhomogeneous/time nonsta-
tionary natural processes (e.g., spatiotemporal history of soil shear stresses
during an earthquake, oil reservoir porosity distribution in space-time dur-
ing the production phase). The space of all continuous OS/TRF will be
denoted by X.

In the sequel we will consider second-order OS/TREF, that is, the anal-
ysis will be based on second order statistical moments which are assumed
to be continuous and finite. More precisely, an OS/TRF X(s, t) will be char-
acterized in terms of its spatiotemporal mean value

mdgt%:HX@¢H=Jxﬂuhu‘ (35)

the centered spatiotemporal covariance function

cels tis' ') = E[(X(s.t) = my(s, ) (X(s',t') — my(s',t'))]

2“(X1 —my){x2 — mz2if<(xy,x2) dxi dx2 (3.6)

and the spatiotemporal semivariogram or structure function

Yxls, t;s' t') = JEX(s,t) - X(s', t')]?

= %”m = x2)*fx(x1,x2) dx1 dxa. (3.7)

A continuous function ¢,(s,t;s’,t') is the covariance function of an
OS/TREF if and only if it satisfies the nonnegative-definiteness condition

m  ky m ki

Z Z Z_ Z Gij Qi Cx (8, tji sy, tjr) 2 0 (3.8)

RS B TRTNE ST
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forali m, ki, ki (=1, 2,...), all (s, t;) € R’™ « T and all numbers (real or
comp]ex) dij, Giry-; here k; denotes the number of time instants t;, j = l\, 24,
, ki used, given that we are at the spatial position s,
Instead of the centered covariance function one may also define the
non-centered spatiotemporal covariance function

ols, s’ ) = EIXs, 1)X(s' )]
= cols s’ ]+ myls timgls’ b, (3.9

The other mode of second-order analysis is that in the frequency domain
The harmonic expansions of X(s, t} can be considered as an extension in the
space-time context of the relevant results for SRF (e.g., [7]). In particular (for
simplicity’s sake, the symbol ®" T under the integrals will be omitted in the
following)

X(s.t) = ”expﬁ(m-g FALYXiw, Al da dA, {3.10}

where i = \/~T1, and X(w,A) is the so-called spectral amplitude of Xis, t!.
The corresponding spectral density function Cfw, Aiw' A"} is aefined by

Cxt§‘t"§l-(,) JJJJPXP ( § W st AL = AT

Colw A" A dw dA dw’ dX, (3111

where C,(w,Ain' A"} is a positive summable function in " . T. The
Cxlw, Aw’ A} forms an ®R" < T-fold Fourier transform pair with the spa-
tiotemporal covariance ¢ (s, t:s', t').

3.3. Space homogeneous/time stationary spatiotemporal random fields

An OS/TRF X(s,t), (s, t) ¢ R « T will be called space homogeneous/time
stationdry in the strict sense if all the multidimensional probability densities
are invariant under the translation z - z + dz (where, as before, z — (s, t)):
pfx‘ < X(;l) s X1 r dXI-~--~Xrn S xl;m) < X + de] =
Plx1 < x(zy +8z) < x1 + dxiv. .o Xm & xX(2, + 82)
! < Xm t+ dx"\]) [;]2)

or

z,. _5”‘()(]»--“)("\) :f;‘ob;. 2 té;(Xl‘---\Xm) {3.13)
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forall m = 1,2,... Space homogeneous/time stationary RF occur, for exam-
ple, in the case of blackbody radiation within a large cavity maintained at a
constant temperature.

An OS/TRF X(s,t) will be called space homogeneous/time stationary
in the wide sense if its mean and covariance do not change under a shift of
the parameters, i.e.,

my(s,t} = constant (3.14)
and
culs tis' t') = oy (h, T), (3.15)

where h = s — s’ and T = t —t'. In other words, there exist in the closed
linear subspace H spanned by the random variables x in L((), P, F) a group
of unitary operators Uy,  such that

UL\,TX(:S»”‘_Q_‘_\,TX(@U‘ (3.16)

where s, h « ®" and t,1 € T (here, 5 «X{s,t) = X(s + h, t + 1} is the
shift operator). It is easily seen that in the case of space homogeneous/time
stationary fields the covariance {3.6) and the semivariogram (3.7) are related
by (assuming a zero mean field)

C\[h-T] - C\‘Q-O) - Yx(h‘T)~ (3.17)

The set of all space homogeneous/time stationary ordinary ftields will be
denoted by Ko = K.

The space homogeneous/time stationary RF X{s, t1 admits the Fourier-
Stieltjes representation

Xis, t) = Jjexp[i(\\' S E AL AN (WL A (3.18)
where X, (w, A) is a random field such that C, (v, AdOy w/IdA - A7)

EldN, (w, A)dX, (w', A'}], where C,{w,A) is the spectral function satisfying
the spectral representation of the covariance ¢, (h, ), viz.

Cxlh,T) = ”exp[i(yg ~h + AT)C (w,A) dw dA, (3.19)
and
. 1 .
Celw A) = fz_n-)"‘ﬁ ”exp[ i(w-h + AT)leg(h, Tt dh dT. (3.200

Since the covariance ¢, (h, T) is a nonnegative-definite function, accord-
ing to Bochner’s theorein

Culw,A) 20 (3.21)




{ 207 Spatiotemiporal random field '}

for a1l w, A.
The ¢, (h, 1) will be termed space-time separable if

Clh,T) = ¢ fh)e (1) 13.224

Clearly, this implies C.(w.A) - C,[wIC(A). When physically justified,
separability is an extremely convenient property from a mathematical point
of view.

In practice, one usually makes an additional assumption, namelv that of
space isotropic/time stationary RE: the covariance and spectral functions are

l\(b‘Tl' - C\(Y\T\n 2324
and
Cofw, A = Colw, A, i5.21.

where r = Jvand w = .
In order that ¢, {r,T) be a covariance function of a space isotropic’
time stationary RE, it is necessary and sufficient that this tunction admits o
representation of the form
[N TN J v )
2 n- 2o 2wy con - .
Celr.t) = 27" 'J { 5o exp it !
—_ N

Joo fwrpmno<

¥
[29]
A

Colar, AT duw dA,

where C,[wA} 2 0 on the half-plane (W A], w0 - O o0l Mo 1 ox el A
similar condition holds true in terms of the semivariogram in {3.171.

Other combinations of spatial homogeneity and t mporal stationanty,
in the strict or the wide sense, are also possible [7]. Lastly, the space-time
covariances satisfy relationships similar to those for purely SRF; for example,
for a time stationary $/TRF (in the wide sense) it is valid that

ek (8,85 T) £ Veels,si00c, (s, 8301
4. Generalized spatiotemporal random fields

4.1. Definition and basic properties

In dealing with space nonhomogeneous and/or time nonstationary natural
processes it will be useful to introduce the notion of generalized S/TRF.
The latter is an extension in the space-time context of the notion of random
distribution due to Ito [18] and Gel’fand [13]. Let Q be some specified linear
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space of clements ¢ and let 'H. [:1Q. P Fibe the Fhilbert space of all
random variables x{g) on Q endowed with the scalar product

,

Ixtarhoxigatt Eixfgyixigei vxodboer xo 1

where Fix 1. x2 i denotes the joint probability distribution of the random van-
ables x{grl.xigriwith x(q) © Faig© -« and sanstvmg the tollowing:
lineanty condition

N A N
(D] T

IS vl
for all q. - Q and all {real or compleys numbers & P N The
clements g - Qarein™ ™ - Fie, g o f Amongitin Ostaces winchon

suitable for the purpose of this study, are the spaces Kand S ot Section 30

Definition 4.1. A generalized 5. TRE«CS TREYon Q) ¢ the random
mapping

X1Q 0P S

The GS/TRE considered will alwavs assumed to be continuous i the
sense that b Xia.)  Xigr® - Owhen g, g Theset or gl contimuocts

GS/TRE on Q will be denoted by 4.

N

The second order characteristics of the GSUTRE are dhe spatiotempara!
mean value

m.lgi - t'X(gV 'def‘\ixl. S
where T (x} denotes the probability distribution of X{g), and the

Chlav.gx) =~ EHX(gy) - motai) (Xtaa) - molga)) 4.3

which will be called the (centered) spatiotemporal covariance tunctional of
the GS/TRF X{gi. Both the mean and the covariance functional will be
assumed to be real-valued and continuous relative to the topology of Q.
Also, a useful second-order characteristic is the spatiotemporal structure or
semivariogram functional which is defined by

yeldrwe) = JEX(q1) - X{q2)I%. (4.6

Finally, mathematically equivalent space-time second order functionals may
be constructed in the frequency domain by taking the Fourier transform of
the covariance and the semivariogram functionals.
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4.2. Continuous linear functional representation
of generalized spatiotemporal random fields

In the sequel we will concentrate on GS/TRF which are of the continuous
linear functional form (CLF)

X(a) = {qls,t), X(s,1)) = H als, )X(s.t) ds dt, (4.7)

where g € Q and X(s,t) is an OS/TRF in the sense of Definition 3.1 above.
Depending on the choice of the function g, the CLF (4.7) may admit a variety
of physical interpretations. Let us consider the following example.

Example 4.2. Assume that X(s, t) represents the concentration of an aerosol
substance in the atmosphere. By choosing q(s,t) = &(s — s"15(t — ), (4.7)
gives the value of the substance at the point/instant s, t. If one let

(s.1) = 1, ifseVandte [t t,]
A5 =10, otherwise,

(4.7) provides the total amount of substance in the volume V during the time
period {t;,t2].

Since a GS/TRF X{q) cannot be assigned values at isolated points/
instances (s.t) (unless q is a delta function), we introduce the following
field.

Definition 4.3. A convoluted S/TRF (CS/TRF) is defined as the S/TRF

Yals,t) = {als’, t'),Sc X(s'. 1))

e ”q(y,t']Si‘(X(g'.L Jds"dt’. (4.8)

We can now make the following observations: The CS/TRF {4.8) is
characterized by Y,(0,0) = X{q) for all g < Q. Also, it holds true that
Yolsit) = SoaX(a) = X(S ¢ ) forall g € Qand all (s,t) € ®" - T. The
space X of OS/TRF may be considered as a subset of the space G of GS/TRF,
viz. K = §. Moreover, the fields X(q) and Y(s,t) have certain important
properties, as follows.

Property 4.4. The means and covariances of X(q) and Y,(s,t) write
m.(g) = EiX(g)l = (my(s.t),als, t)), (4.9)

my(s.t) = EYq(s, )] = (m, (s’ t),als' b)), {(4.10)




{ Christakos 00 }

: and
cxlgroaz) = E[(X(a1) — mxla1))(X(a2) — mylq2))]

= ((Cx (s, tis' V) ai(s, b)), az(s". t'). (4.11)
eyis,tis’ ') = E[(Yq,(s,t) = my(s.t))(Yq, (s ') — my(s' t'))]
= ((CxSsaX{s" "), Sy o X(s" £ ) qu (s, 7)),
qa(s",t")). (4.12)

The means and covaria:.ces of the GS/TRF and CS/TRF are linearly related to
those of the corresponding OS/TRF. From {4.10) and {4.12) we find that the
corresponding mean values and covariances functions write, respectively,

my(q) = my(Q,0), (4.13}

colgy.azi = oyl(0,0:0,00 (4.14)

Property 4.5. The covariance functional of the GS/TRF X(q) is a nonnegative-
definite bilinear functional in the sense that

¢ g, gl - GX{g) — mylg)r) =0 (+.15]
for alt q « Q. Conversely, every continuous nonnegative-definite bilinear
functional ¢ (g1.q;)in Qis a covariance functional of some GS/TRF X{q).
Property 4.6. The fields X(q)and Y (s, t) are always differentiable, even when
X(s,t)is not. To see this assume Q = K and let

x.’p.s;'(q) \q(s_t)‘xl”.Ll(S.t,>

= HQ(S.HX"’—‘("(S.Udsdt. (4.16)

where ¢ is a nonnegative integer and p = (p1,p2.....0. "is a multi-index of
nonnegative integers; i.c., the superscript (p,c) denotes partial differentia-
tion of the order p in space and differentiation of order ¢ in time

X'Ple by DX (s t) - L - “,“” r-aiX(e t) (4.17)
o o ash' . Lashe fate T o
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where p = [p,f = ¥ ' | pi. By applying integration by parts (4.16) writes,
X(2:4(q) = (=1)°* ¢X{(q'2:). (4.18)

Similarly for the CS/TRF,

{p,Q)

Y& (s 1) = (=1)P 1 CS  X(g'2 ). (4.19)

Therefore, although there may exist no X'2' as such, we can always
. : < ,
obtain X'®:¢'(q) and Y((,B “"in the sense defined above.

Property 4.7. By applying the Riesz-Radon theorem in terms of generalized
functions we find that the mean m,(q) can be written as

my(q) = <Z > q‘ﬁ"'(§,t).fp.g(§.t)> : (4.20)

pEv it n

where v and u are nonnegative integers, g(s, t) € Kand f, . (s, t} are contin-
uous functions in ®" ~ T, only a finite number of which are different than
zero on any given finite support W of K. Integration by parts vields

miq) = <Z Z(~1)*"¢f"j_’f(s‘n_q(s‘t)> : (4.21)

PV L

A similar expression may be derived for the mean m {s, ) of Y (s, t], namely

myfs.t) = <Z Z!--1w‘isf.m‘.'v,‘.’;_"‘4,«<'.t'>‘qrstt'>> . (4.22)

PV Lan

For convenience in the subsequent analysis let us put g, o (s.t) £ (s, t).
Closely related to Property 4.7 is the following section.

4.3. Space homogeneous/time stationary
generalized spatiotemporal random fields

A GS/TRF X{(q}, qis.t) € Q, (s.t) « | - T will be called space homo-
geneous/time stationary in the wide sense if its mean value m, (g} and
covariance functional ¢, (q1, g;) are invariant with respect to any shitt of the
parameters, that is

mx(q) - mx(Sh,Tq)\ “1.23)

Cxld1,92) = ¢ {Sh.vaG1.Sn 142), (4.24)




{ Christakos w02}

for any (h,T) € ®" x T. Clearly, when the X(q) is space homogeneous/
time stationary the cx(q1, g2} is a translation-invariant, nonnegative-definite
bilinear functional on Q, and the following proposition can be proven [6].

Proposition 4.8. If X(q) is a space homogeneous/time stationary, GS/TRF
on Q, there exists one and only one generalized functional c,(qgy,qz2) € Q'
such that (X(q1),X(q2)) = cx(g1,492), 91,92 € Q.

We shall denote by Go the set of all space homogeneous/time stationary
generalized fields. Note that Xo C Go € G. Similarly, the CS/TRF Y4(s,1t) is
called space homogeneous/time stationary if

my(s,t) = constant, {(4.25)
and
cy(s tis',t') = cy(h, 1), {4.26)

where h = s - s/, T =t —t/, forany (h,7) € ®" x T. In view of {4.22)
and condition (4.23) it follows that the functions f, ¢(s,t) are constants.
Therefore

gocls,t) =12 (s, ) =0 forallp> 1,021

(0.0 (4.27)
=fyo (s,t)=m forp=¢=0
and the m,(qg) wili have the form
m.(q) :qu(g.t)dédt = m(qls,t). 1). (4.28)

The c«{q1,92) € Q' can be expressed in terms of the corresponding ¢y (h, T)
as follows

cx(a1,92) = (ex{h, 7). q1 * g2(h. 7)) = cclar + a2), {4.29)

for all 4y, q2 € Q, where * denotes convolution and " denotes inversion (i.e.,
g2(h,T) = d2{~h, —T1).

Example 4.9. Let us define in R' x T a zero mean Wiener S/TRF W (s,t),
s € [sy,s2],t € [0, 00} as a Gaussian S/TRF with covariance function

cx{s, t;s',t') = min(s — sy,s' — s2)min{t, t'). (4.30)

The X(s,t) = "—%‘—"—‘J will be zero mean white noise S/TRF with co-
variance function

cx(h, 1) = 6(h,T], (4.31)
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where h = s —s', 1 =t - t" and 5(h, t) is the spatiotemporal delta function.
The corresponding GS/TRF X{q) = (X(s,t),q{s, t)) has covariance

clar,a2) = d(ar * gz2). (4.32)

The above results can be generalized to more than one spatial dimen-
sion. More specifically, one may define in 8" » T the so-called Brownian
sheet W (s,t) which is a zero mean Gaussian S/ TRF with covariance

Cwis, tis',t') = min(sy,s}) ... min(s,, s, )min(t,t'). {(4.33)

Brownian sheet has important applications in the context of stochastic partial
differential equations.

In the light of the Fourier transform properties of generalized functions,
it is valid that cx(qg1,492) = {co,qy + 42} = (&,d142), which vields the
following result (see also [6]).

Proposition 4.10. Let X{q) beaGS/TRFin R" ~ T. The covariance functional
writes

Cx(Ch.CIz)=”m(m.)\)dz(m.)\)ddﬂm‘)\), (4.34)

where gi{w,A) and q,{w,A)} are the Fourier transform of the gi(s,t} and
az2{s.t) respectively, and & (w, A} is some positive tempered measure in %" -
T. In this case the ¢ (', A} is called the spectral measure of the GS/TRF X{q).

Example 4.11. Consider once more Example 4.9 above. Since c.(d;.q2) =
{cCo.g1 + d2) = !,d14G2, and the Fourier transform of ¢y = dis dw dA
(Lebesgue space-time measure), we conclude that the spectral measure of
X(q)is dolw,A) = dwdA.

Space homogeneous/time stationary analysis yields the next property.

Property 4.12. The CS/TRF Y(s, t) can be zero mean space homogeneous/
time stationary even when the associated OS/TRF X(s.t) is space nonho-
mogeneous/time nonstationary. This can happen under certain conditions
concerning the choice of the functions q(s,t) as well as the form of the
functions g,, ¢ (s, t). More specifically, we must define spaces

Qv/u = {q S Q : <q(§;t)»gp.i(§vt)) =0 for all pEVv, (s U]‘ (435)
and
ev/'u = {gp_¢(§,t) € C: <q(§.t).gp_((§.t)) =0 =
(als,t),Sn.<gp.c(s,t)) =0forall p < v,0 < uj, (4.36)

where Cis the space of continuous functions in ®" x T with compact support.
{4.35) assures a zero mean value for the CS/TRF Yq(s,t) at (s,t) = (0,0),
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while the closeness of €, ,, to translation (equation (4.36)) is necessary in
order that stochastic inference about X(q) makes sense (i.e., in order that
the stochastic correlation properties of X(q] remain unaffected by a shift
Sn.x of the space/time origin). Functions that satisfy these conditions are of
the form

Qp.cls,t) = s2tCexpla - s + Bt], (4.37)

where a and § are (real or complex) vector and number, respectively.

From a practical point of view, the modelling of spatio-chronological
variations and the estimation of spatiotemporal processes is easier and more
efficiently carried out when the g,, ¢ (s, t} are pure polvnomials, viz.

C PN 1o p G Q)
Op.cls.t) = sPtC = s)'sh" L shts, (1,38}

where p = |pl = ¥ I' | p;. This is due mainly to convenient invariance and
linearity properties that the latter satisfy. In conclusion, the “derived” tields
X{a) and Y,{s.t) have a very convenient mathematical structure. From a
physical viewpoint this means that evenit X(s. t) represents an actual natural
process which has, in general, very irregular, space nonhomogeneous/time
nonstationary features, we can derive fields X{q) and Y (s, ] which have
regular, space ho