
AD-A276 193 DT
FEB 2 3 1994| i

AFrT/USS/.AS/93D-1 C

GUIDELINES FOR ENSURING SOFTWARE
SUPPORTABILITY IN SYSTEMS DEVELOPED
UNDER THE INTEGRATED WEAPON SYSTEM

MANAGEMENT CONCEPT

THESIS

Forrest F. Butts, III, Captain, USAF
Anthony C. Johndro, Captain, USAF

AFIT/GSS/LAS/93D-1

94-05652

Approved for public release; distribution unlimited

94 2 22 028

i

The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

Accesion For

NTIS CRA&I
OTIC TAB 0

B y -
O~strlbuttOf1 f

AvailabtitY Codes

AviIl and icor
Dist Special

w~~~

~ s

•

mm

AFIT3/SS/.AS/93D-l

GUIDELINES FOR ENSURING SOFTWARE SUPPORTABILITY IN

SYSTEMS DEVELOPED UNDER THE INTEGRATED WEAPON

SYSTEM MANAGEMENT CONCEPT

THESIS

Presented to the Faculty of the

Graduate School of Logistics and Acquisition Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Software Systems Management

Anthony C. Johndro, B.S Forrest F. Butts, Il, B.S.

Captain, USAF Captain, LJSAF

December 1993

Approved for public release; distribution unlimited

Table of Contents
Page

List of Figures ... v

List of Tables ... vi

Abstract ... vii

I. Introduction .. I

1.1 Current State of Software M aintainability ... 1
1.2 Past Air Force Acquisition Policy .. 3
1.3 Acquisition Policy with IW SM .. 3
1.4 Benefits of M aintainable Software ...
1.5 M aintainability Failures and Successes .. 4
1.6 Problem Statement ... 6
1.7 Research Objectives .. 6
1.8 Scope and Limitations ... 7
1.9 Significance of Research ... 7
1.10 Definitions of Terms .. 7
.11 Overview .. 8

II. Literature Review ... 9

2.1 Introduction ... 9
2.2 Plan for PDSS .. 11

2.2.1 M anagement and Administration .. 11
2.2.2 Software Engineering and Test ... 12
2.2.3 Configuration M anagement .. 12
2.2.4 Software Generation and Distribution ... 13
2.2.5 Technical Documentation .. 13
2.2.6 Deploym ent and Installation ... 13
2.2.7 Quality Assurance .. 13

2.3 PDSS Acquisition Requirements ... 14
2.3.1 Software Environment Requirements ... 14
2.3.2 Technical Data Requirements ... 14
2.3.3 Software Quality Requirements ... 14
2.3.4 Transition Requirements .. 15

2.4 Ensure Software Supportability and Quality .. 15
2.4.1 High Order Languages .. 15
2.4.2 Structured Programming .. 16
2.4.3 Reviews and Audits ... 16
2.4.4 Standards .. 17
2.4.5 Code W alkthroughs and Inspections .. 19
2.4.6 Testing ... 20

2.5 Supportability Techniques in the Development Cycle .. 21
2.6 The IW SM Philosophy .. 22
2.7 Summary .. 25

Il M. M ethodology ... 26

3.1. Introduction .. 26
3.2. Research Proces& .. 26

ii

Page
3.2.1. The Questionnaire .. 27

3.3. Population Under Observation .. 28
3.3.1. IW SM W eapon System Program s .. 28
3.3.2. C41 Program s ... 30

3.4. Data Collection ... 30
3.4.1. Data Assim ilation and Sampling Risks ... 30

3.5. Analysis and Observations .. 31
3.5.1. Literature Review .. 31
3.5.2. Background Interviews ... 31
3.5.3. The Questionnaire .. 32

3.6. M anagement Guideline Development .. 32
3.7. Sum mary ... 33

IV. Results and Analysis ... 34

4.1 Introduction ... 34
4.2 Data ... 34

4.2.1 Data Characteristics ... 34
4.2.2 Data Quality and Quantity .. 34
4.2.3 Data M anipulation .. 35

4.3 Program Organization Under IW SM .. 36
4.4 Planning for PDSS ... 39
4.5 Implementing PDSS Planning During Software Development 40
4.6 Transitioning from Software Development to Software Support 41
4.7 PDSS Stage ... 42
4.8 Guidelines for Ensuring Software Supportability in Systems Developed Under IWSM 43
4.9 Findings ... 44

4.9.1 Investigative Question #1 ... 44
4.9.2 Investigative Question #2 .. 44
4.9.3 Investigative Question #3 .. 45
4.9.4 Investigative Question #4 .. 46
4.9.5 Investigative Question #5 .. 46
4.9.6 Investigative Question #6 .. 47
4.9.7 Investigative Question #7 .. 47

4.10 Summary .. 47

V. Conclusions ... 48

5.1 Introduction .. 48
5.2 Research Results ... 48
5.3. Recommendations for Further Research ... 49

5.3.1 Supportability in Non IW SM Program s .. 49
5.3.2 Supportability M etrics ... 50
5.3.3 C41 Programs ... 50
5.3.4 Validate Research Results .. 50

5A Summ ary .. 50

Appendix A: The Questionnaire .. 51

Appendix B: Guidelines for Ensuring Software Supportability in Systems Developed Under IWSM ... 60

Bibliography .. 79

iii

Page
Vita (Forrest F. Butts III) 81

Vita (Anthony C. Johndro) 82

iv

List of Figures
Figure Page

1. DOD Embedded Software M arket ... 1

2. Breakdown of Respondents ... 38

3. Total IPTs vs. Those with Software Efforts .. 39

4. M anagement Organization of IPTs .. 40

5. How the Programs M anage Their Software Efforts .. 40

6. Configuration Management and Software Quality Assurance Involvement in Implementing
PDSS Plans ... 42

7. Participation in Software Reviews, Audits, Documentation Reviews and Code Inspections 43

8. Level of Supportability Testing Performed and Level of Software Support Personnel
Participation in Testing ... 44

9. Impact of Training on Ease of Transition ... 45

10. Routine or Difficult Support Effort ... 46

ev

List of Tables

Table Page
i. Supportability Techniques in the Development Cycle ... 22

vi

AFIT/GSS/LAS/93D-1

Abstract

"'his thesis studied the software maintenance planning and practices of the pilot integrated Weapon Sys-

tem Management (IWSM) programs. Before IWSM, a System Program Office (SPO) acquired an Air

Force weapon system then passed it to an Air Logistics Center (ALC) for follow-on support. The ALC

was forced to maintain the software despite its questionable maintainability. The SPO de-emphasized

maintainability because maintenance was an ALC responsibility and building maintainable software in-

creased development costs and lengthened schedules. The IWSM philosophy closes the gap between de-

velopment and maintenance. A System Program Director (SPD) ,who oversees both the system develop-

ment and maintenance, has an inherent interest in developing maintainable scftware because he or she is

now also responsible for supporting it. This research was accomplished through a literature review of cur-

rent maintainability plans and practi:es, followed by a survey of the pilot IWSM programs. This infor-

mation was combined to form draft guidelines for ensuring software maintainability. The draft guidelines

were then validated by experts in the field of software maintenance who offered opinions and recommen-

dations on the guidelines. The guidelines stress both up from planning and techniques for improving

maintainability during software development. The final guidelines are presented in Appendix B.

vii

GUIDELINES FOR ENSURING SOFTWARE SUPPORTABILITY IN
SYSTEMS DEVELOPED UNDER THE INTEGRATED WEAPON

SYSTEM MANAGEMENT CONCEPT

L Introduction

1.1 Current State of Software Maintainability

In 1992, companies in the United States spent $30 billion maintaining software. This number repre-

sents anywhere from 60 to 80 percent of each company's software budget. The estimate is that by 1995,

the number will grow to 90 percent (Sherer, 1992:70;. The following chart shows past and predicted

Department of Defense expenditures for embedded software.

DoD Embedded
Software Market

40

357
35 33.0 A

31.0 A

.- 23.6

A

-n26 211.

2 DA

0 20
165

S 13.Z

Figure 1 DOD Embedded Software Market

Applying the 60 to 80 percent to the 1992 figure ($29.1 billion), the DoD spent anywhere from $17.46

billion to $23.28 billion supporting developed or acquired software. By 1995, the estimates for DoD soft-

ware support could reach $32.13 billion (MCCR,1990:2-4). Somc companies must increase their mainte-

nance staffs by 15 percent a year just to keep up with the growing demands for system changes (Sherer,

1992:70). The majority of these changes involve user enhancements to the system once it is operational

(Edelstein and Mamone, 1992:82). The cause of this high cost of software support lies in the differences

between software developers and maintainers. Software developers are only concerned with building and

fielding a new system, with no regard for future changes to the software, while maintainers want a system

that can be easily and effectively modified. Once the maintenance organization has taken responsibility

for the system, then the maintainers must live with whatever software has been provided by the develop-

ers. If the maintenance organization is separate from the development organization, then maintainers

have had very little interaction with the developers (Arnold, 1987:24). Also, the software developer is

also more concerned with fulfilling contractual obligations (actual code and its documentation) than with

providing maintainable software (Arnold, 1987:27). Software maintainers also want a system which

meets the user's performance requirements, but they (maintainers) need a system which can be easily

modified in order to provide effective support.

David A. Sunday of the Northrop Corporation defines software maintainability as " a software charac-

teristic which reflects the degree of effort required to accomplish the following tasks:

1. Correction of errors.

2. Addition of features.

3. Deletion of capabilities.

4. Adaptation/Modification" (Sunday, 1989:50).

So maintainability should be thought of as a desired characterislic of software and not just another phase

of the software life cycle. While the major goal of the software developers is to get the software completed

on time and within budget, they should also have a goal of making the software maintainable, with par-

ticular emphasis on techniques which make enhancements to the software easier to implement (Sunday,

1989:50). The next two sections discuss past and present Air Force acquisition policy and its effect on

maintainability.

2

1.2 Past Air Force Acquisition Policy

Before Integratc I Weapon System Management (IWSM) and the creation of Air Force Materiel

Command (AFMC), a weapon system was developed or acquired by a system program office (SPO), then

transitioned to an Air Logistics Center (ALC) for follow on support. The goal of the SPO was to get the

software developed on time and within budget. Once the software was passed to the ALC for follow on

support, the SPO's job was over, and the ALC was forced to maintain or contract out maintenance for the

developed software no matter what the software quality was. In short, the SPO was not concerned with

maintainability because:

1. Maintenance was the responsibility of the ALC

2. To the system acquirer and developer there was a perception that building maintainability into the
code would incirease development costs and schedule.

The Air Force, in response to the increased support costs, searched for a new way to acquire software.

1.3 Acquisition Policy with IWSM

To close the gap between development and maintenance, the Air Force created the IWSM concept.

With IWSM, the single manager, called the System Program Director (SPD) oversees both the develop-

ment/acquisition and the system maintenance, as well as the transition between the two phases. The SPD

now has a inherent interest in developing maintainable software because he or she is now ultimately re-

sporisible for supporting the software he or she developed. The ultimate goal of IWSM is to provide a bet-

ter product to the customer. With the majority (up to 80%) of a software system life cycle's time, effort

and budget going to support of the software after development ends, the SPD should pay particular atten-

tion to techniques which would improve the maintainability of the software (Edelstein and Mamone,

1992:82).

3

1.4 Benefits of Maintainable Softx !?re

Any improvements in maintainability will reduce both the effort, through improved productivity be-

cause the software is more easily corrected, and cost of supporting the software because fewer problems

can be repaired faster. Maintainable software provides the customer with a higher quality product be-

cause there are fewer problems in the operational system. Wilma Osborne of the Institute for Computer

Sciences and Technology relates, "Software maintenance is an integral part of the software development

life cycle and should not be considered a separate entity with respect to staffing, management support, and

other resources" (Osborne, 1987:13).

1.5 Maintainability Failures and Successes

Thomas M. Pigoski and Craig A. Cowden related both the benefits of having, and the consequences

of not having, maintainability in the developed software in the article "Software Transition: Experience

and Lessons Learned" at the 1992 IEEE Conference on Software Maintenance. For a system accepted

from a Navy Research and Development Laboratory, there was no involvement by the maintenance or-

ganization during development, and, as a result, the system had major problems when deployed. There

was no maintenance plan, no attendance at design reviews, no coordination on configuration management

activities, and no participation in the testing. In fact, the system was to be fielded before the maintenance

contract was even awarded. When the system was finally fielded, the users were dissatisfied with what

they received. The developing organization tried to repair the problems, without the benefit of any con-

figuration management procedures or documentation, and was unsuccessful. When a maintenance con-

tract was finally awarded, the maintaining organization was not immediately ready to support the system.

The maintainers spent weeks with the developer learning the code because the developers failed to develop

a plan for training the maintainers. Then the maintainers had to establish a set of configuration manage-

ment procedures and bring out-of-date designs up to date. The bottom line is that each of these activities

cost money, money which could have been saved by involving the maintainers in the system's develop-

ment.

4

The same authors were also involved with another system accepted from a DOD organization, except

this time the maintainers A involved with the system development. The maintainers participated in the

reviews, reviewed all documentation, received training from the developers, and even participated in

testing. The system was completed on time and within budget. The user was extremely satisfied with the

product, and the maintenance organization was prepared to immediately support the system, which was

released just prior to the publication of the article (Pigoski and Cowden, 1992:295-297).

Another success story was presented by Rodger L Fritz and Fred Shocket at the 1988 IEEE Confer-

ence on Software Maintenance. They reported on the software maintenance success of their Light Air-

borne Multipurpose System (LAMPS) built by IBM for the U.S. Navy. The developers used many of the

same techniques as the company in the previous example, such as creation of a software support plan up

front, the selection of the maintainers early in the development, and participation in reviews. An addi-

tional technique was the participation in inspections by the support personnel. All high-level and detailed

designs were inspected. Code inspections were used selectively based on the criticality of the module.

The system was fir.,shed under schedule and under budget. Maintenance costs have been kept low be-

cause these various techniques resulted in relatively defect free software and minimal problems in enhanc-

ing the software. These final two examples show the benefits of maintainable software: a better product

with fewer errors which can be easily enhanced. This better product also saves money because errors are

caught before the system is operational, and the effort and cost to enhance the software is reduced (Fritz

and Shocket, 1988:165-167).

These failures and successes have common features in that planning for maintainability and the im-

plementation of supportability techniques affect the maintainability of a software system.

1.6 Problem Statement

How should the system support manager (SSM) plan for supportability and involve software main-

tainers during development to improve the maintainability of weapon system and Command Control

Communications, Computers, and Intelligence (C41) software developed under the IWSM concept?

1.7 Research Objectives

The research objectives are to determine how the software support managers can plan for Post De-

ployment Software Support (PDSS) and how the software maintainers can participate during the devel-

opment/acquisition of weapon system software to improve the supportability of the software system.

Several questions form the framework of our investigation:

1. What maintainability planning have the program management personnel done for software systems
currently under development?

2. Are the software maintainers participating in the development of the software to improve maintain-
ability?

3. For -ystems already in the support phase:

A. Was maintainability planning done by the software support management personnel during de-
velopment?

B. Did the software maintainers participate in the development of the software to improve maintain-
ability?

C. How satisfied are the software maintainers with the system they must maintain?

D. What do the software maintainers wish could have been done differcntly during software devel-
opment to make the software maintenance easier?

E. Is there any correlation between early and effective maintainability planning and implementation
and the satisfaction of the software maintainer?

4. How do the current software support plans compare with past plans?

5. What planning techniques do the experts recommend for improving maintainability?

6. How do these techniques compare with techniques used in current and past weapon system software
development?

6

7. Can past maintainability plans be combined with current efforts and expert opinion to provide a set
of guidelines for future maintainability efforts?

1.8 Scope and Limitations

The research is limited to an Air Force population of 22 weapon systems and C41 systems currently

under IWSM. The SPD, who is responsible for the entire life cycle cost and effort, can more readily apply

the improved maintainability techniques than the separate development and maintenance managers can

under the non-IWSM process. The maintainability techniques are also geared towards the acquisition of

software (government pr.ocu-,d custom software), as opposed to development of software (government

developed software).

1.9 Significance of Research

The ultimate goal of IWSM is to provide a better product to the customer. The techniques for im-

proving maintainability stress requirements validity, clear design, understandable code, effective testing,

clear configuration management plans, and involvement of quality assurance teams. While these are all

positive effects of improved maintainability, the real benefits of a maintainable system are a reduced life

cycle cost and a better operational system. It is cheaper to fix problems before the system becomes opera-

tional. A system developed for maintainability has fewer problems, which can be repaired faster, and the

software can also be changed to meet new requirements more effectively. "A lack of attention to software

maintainability during the requirements specification, design, and coding phases generally leads to exces-

sive software maintenance costs" (Osborne, 1987:21).

1JO Definitions of Terms

C4I - Command, Control, Communications, Computers, and Intelligence

Development Systems Manager (DSM) - The individual responsible for the initial development of a
weapon system. Reports to the System Program Director.

7

IWSM - Integrated Weapon System Management

System Lifecycle - The life of a weapon system from initial concept to retirement.

Software Support - Perfective, conective, and adaptive changes to software.

System Program Director (SPD) - The single manager for acquisition and support of a weapon system.

System Support Manager (SSM) - The individual responsible for the support of a weapon system. Reports
to the System Program Director.

1.11 Overview

The next chapter contains a literature review of the IWSM concept and techniques for improving

maintainability in the development of software systems. Chapter 3 contains the methodology to answer

the questions posed in section 1.7. Chapter 4 contains the analysis of data collected and a description of

the effort to construct guidelines for ensuring supportability. Finally, chapter 5 contains the conclusions

reached from the analysis and recommendations for improvement and follow on research.

8

I1. Literature Review

2.1 Introduction

This chapter examines the current literature available on building maintainability into software sys-

tems and the growing management philosophy of Integrated Weapon System Management (IWSM). The

review is divided into five sections: planning for Post Deployment Software Support (PDSS), PDSS ac-

quisition requirements, ensuring software supportability and quality, supportability techniques in the de-

velopment cycle, and, finally, background on IWSM. The first two sections assume the development and

maintenance contracts have not been awarded yet.

The PDSS process starts during the development of a software system. Several organizations share re-

sponsibility for PDSS planning, requirements, preparation, and performance. Briefly, the user organiza-

tion, or customer, identifies the need for the weapon system (which may require software). They also plan

for PDSS with a system maintenance concept, or, a suggested approach to perform system maintenance.

A Program Management Office (PMO) or System Program Office (SPO) (also the procuring agency) is

given the charge of planning, budgeting, managing and acquiring the weapon system. The PMO/SPO

assists the user in planning and preparing for future PDSS. The PMO/SPO typically contracts with a de-

velopment organization to develop the software system. The development organization, or developer, may

be a civilian company or a military organization with the resources and expertise to design and develop

the software system. The development organization produces the software system in accordance with the

user's specifications. Also, the developer considers plans, designs, and implementation of software sup-

portability within the software system. In conjunction with these organizations, the maintenance organi-

zation, or maintainer (also Software Support Agency (SSA)) oversees the software's development to en-

sure supportability issues are addressed. During development, the initial maintainer is typically a military

organization. However, like the development, actual software support may be performed by a civilian

company. Together, these four groups form the weapon system acquisition and support team.

9

According to MIL-HDBK-347, planning is one of the most important activities to reduce the cost and

risk of software maintenance. The earlier the planning begins, the better the support will be. The plan

outlines the procedures for maintaining the system. The plan includes:

"* Organization

"* Hardware

"* Software

"• Personnel requirements

"* Facilities requirements.

The plan also covers the program office's relationship with the user and maintainer, how require-

ments changes are incorporated into the system, along with quality assurance and testing of each changed

version (Osborne, 1987:21, Arnold, 1987:30, MIL-HDBK-347,1990:18).

Before the system is acquired, a defined maintenance concept of operations gives the procuring agency

a basis for evaluating the maintainability of the system. "The key idea is that the concept of operations

must drive the maintenance of the delivered system, not the system driving how maintenance is per-

formed" (Arnold, 1987:30). A good transition plan eases the strain of moving from a development to a

support environment. Supportability techniques, such as structured programming and coding standards,

reduce software complexity, making it easier for a programmer to make changes. Configuration man-

agement ensures supportability through an effective change control process. Effective testing and debug-

ging not only reduce the number of errors in a software system, but also determine the effectiveness of the

error correction process. Quality assurance improves maintainability through the effective use of reviews

and audits, along with design and code walkthroughs, help to ensure correct specifications and implemen-

tations. The first step is to plan for resources.

10

2.2 Plan for PDSS

According to MIL-HDBK-347, the PDSS concept is the basis for the whole PDSS plan. The concept

describes how and to what extent the software will be maintained. SSA resource requirements planning

identifies the resources required to implement the PDSS concept (MIL-HDBK-347, 1990:18-19). The

procedures also define facilities, equipment and personnel requirements, along with supportability char-

acteristics of the software, to include the means of measuring those characteristics (Sunday, 1989:5 1). If

at all possible, the maintenance organization should be identified or the contract awarded when the plan is

formed. If they are not identified, then the actual functions expected of an SSA should be laid out. The

user's organization interface with the SSA should also be identified. The SSA's functions group into the

following categories: management and administration, software engineering and test, configuration man-

agement, software generation and distribution, technical documentation, deployment and installation, and

quality assurance (Vollman, 1990:193).

2.2.1 Management and Administration. A management structure coordinates and

controls not only the SSA activities, but also the various organizations involved. Memorandums of

Agreement (MOA) between program management, the user, and the maintainers on each organization's

responsibilities should be drawn up. The MOA should require the maintaining organization to review all

documentation, participate in formal walkthroughs, and participate in reviews and testing during software

development. The user and maintenance organization relationship needs to be established early, because

they have to work together with the developed software for 10 to 15 years after system completion. The

development and support organizations need to establish a good relationship because they are both work-

ing towards the same goal, a high quality system. The PMO is the hub or connection between these three

entities. The PMO keeps the lines of communication flowing, and ensures that the right people from the

right organizations can meet whenever needed. A high quality, supportable system requires the effort of

all four organizations. During the planning phase, personnel requirements should be identified for both

the complete and minimum system transition staffs. Determining SSA facility requirements along with

the system hardware and software suites needs are part of the planning.

11

22.2 Software Engineering and Test. This function ensures that the software system

is mnodiflable and testable. Robert Arnold states that even though the developer will spend a great amount

of time developing a set of test data, it may not be used by the maintainers (Arnold, 1987: 27). Some rea-

sons for this are: the test data was not a deliverable item under the development contract, the maintainers

may not have the proper tools for testing software, and the data itself may be hard or impossible to under-

stand. To ensure the test data can be reused make sure it is a deliverable and, if possible, have the test

data jointly developed by the developers and maintainers. If this is not possible, the maintenance organi-

zation should review all test procedures and attend the Test Readiness Review to ensure they can use the

test data. The test procedures should describe the tools needed to maintain or test the system. The follow-

ing tools can be helpful:

"* Cross Reference/Browsers - These types of tools show where variable names are used throughout the
system so they can be changed consistently.

"* Performance Analyzers - These tools are effective in determining which modules are slowing down
the system at execution time.

"* Code Auditors - These provide automated assistance in checking for standards confirmation.

"* Comparator - This tool compares files to determine differences in files from one version to another.

"* Configuration Management/Version Control - These protect the baseline versions from becoming in-
advertently changed.

"* Requirements Tracer - This tool traces requirement changes back through the specifications.

"* Ripple Effect Detector - This tool reveals all connections to a particular change to avoid unwanted

side effects (Glass, 1992:197-204).

2.2.3 Configuration Management. Configuration management identifies how the

software and its documentation will be controlled. An effective change control process improves the sup-

portability of the software. Procedures should determine how the user reports problems, how the change

requests are approved and who approves the requests. Then the procedures should identify how changes

are scheduled, implemented and tested. Finally, the procedures identify how the new version will be re-

leased (Osborne, 1987:21).

Configuration management identifies which documents will be required by the maintenance organiza-

tion. Besides the deliverable Data Item Descriptors, the supporting organization may require data dic-

12

tionaries, program designs, and documentation templates. All documentation should be delivered in com-

puter readable format as well as hard copy (Arnold, 1987:30).

2.2.4 Software Generation and Distribution. This function is concerned with how

new software versions, their accompanying documentation, and user training will be distributed to the

user's sites. This includes media duplication, packaging, and a physical audit of the packages (Vollman,

1990:195).

2.2.5 Technical Documentation. Technical documentation requires that a library be

created to maintain the volumes of documentation and magnetic media which accompany DoD software

systems. A technical library stores the source and object code for every release, all test cases, all docu-

mentation, and any tools (Humphrey, 1990: 132-133).

2.2.6 Deployment and Installation. If the SSA will be responsible for installing new

versions at the user's site then personnel and procedures should be identified for installation and testing

plus providing any other technical support or training required by the user (Vollman, 1990:197).

2.2.7 Quality Assurance. The plan should identify if this system is to have its own Soft-

ware Quality Assurance (SQA) or if will it be part of an organization-wide SQA program. Personnel and

procedures should be drawn up in either case (Vollman, 1992:193-196). The main function of SQA is the

enforcement of standards. The development and support organization may have two different sets of

standards, and the maintainers may not be willing or able to conform to a new set of standards. A com-

mon set of standards, to include coding practices, should be identified and documented in this section

which will used by both the development and support organization. Each organization, including the pro-

gram office, will be responsible for enforcing the standards (Volhman, 1990:193-197).

After determining what is required to support the system, the requirements from sections 2.2.1 through

2.2.7 can be passed on to the development contractor.

13

2.3 PDSS Acquisition Requirements

MIL-HDBK-347 describes PDSS acquisition requirements as contractual requirements imposed upon

he software development contractor which facilitate maintainability. These requirements consist of op-

bums which could reduce life cycle costs, ease the transition to maintenance, or improve maintainability or

quality. When these requirements are included in the contract, life cycle costs and risks in maintenance

ame iduced. Many of these acquisition requirements can be taken directly from the PDSS plan. The ac-

quistion requirements are broken into software environment, technical data, software quality, and transi-

tio (MIL-HDBK-347, 1990: 19-20).

2.3.1 Software Environment Requirements. Software environment requirements

(which include hardware) can be specified in the contract to:

* Ensure the development and support environment (including automated tools, configuration man-
agement documentation, and network protocol) are the same, or as close as possible.

e Use existing government resources as components of the software maintenance facility.

e Provide backup systems at the software support facility.

e Limit the number of different environments and development

e Implement a consolidated support concept (MIL-HDBK-347, 1990:20).

2.3.2 Technical Data Requirements. Technical data (i.e., documentation) should be

idenified with clear and precise requirements. While development costs can be reduced by limiting the

docunentation requirements, not having enough documentation can increase the follow on support costs

(MIL-HDBK-347, 1990:20-21).

2.3.3 Software Quality Requirements. Software quality is also of importance to the

SSA because a higher quality product is easier to maintain. The maintenance organization should be in-

voived to improve quality, such as documentation and reviews, along with inspections and test participa-

tiao. Also included should be any joint SQA ventures, such as audits between the two organizations. The

program office should work with the development and support organizations to identify and establish

quality requirements, a quality evaluation process, and acceptance criteria (MIL-HDBK-347, 1990:21).

14

2.3.4 Transition Requirements. The program office, along with the development and

support organization, should establish specific transition requirements. Such requirements can include:

1. Ensure the SSA is staffed, trained and ready to support the system.

2. Install and test the hardware.

3. Install and test the software suite, including tools and databases.

4. Ensure all configuration management functions including updated documer.tation and records are in
place.

5. Secure any licensing agreements or warranties.

6. Ensure the SSA is ready to support the user with no interruption in service (Vollman, 1990:191).

2.4 Ensure Software Supportability and Quality

Software quality and supportability go hand-in-hand during development. Any methods to improve

quality improves supportability and any attempts to improve supportability result in a higher quality prod-

uct. Software supportability and quality cannot be ensured by contract specifications. The SSA must ac-

tively participate in evaluating software maintainability, authenticating specifications, verifying require-

ments, and evaluating software quality plans and activities (MIL-HDBK-347, 1990:21-22). Software

maintainability and quality can be improved by using such techniques as high level languages, structured

programming, design reviews, coding standards, a maintainability checklist, code walkthroughs and in-

spections, meaningful comments within source code, and testing.

2.4.1 High Order Languages. Using a high order language improves software quality

and supportability. The Air Force mandated the use of the programming language Ada in 1990. The

language has a number of built-in facilities which simplify implementation details, thereby reducing the

intellectual effort and the errors which accompany this effort (Guidelines, 1992:5-4). Ada is designed to

make use of the principles of information hiding and data abstractions. James Hager of HRB systems rec-

ommends using information hiding and abstraction of interfaces to ensure quality and maintainability

(Hager, 1989:272). Ada programs interact with each other through the package specifications, while

15

hiding the implementation details from other programs in the package body. The interfaces between the

programs must be well defined and thought out, which help to ensure a higher quality product. With data

abstraction, there is a single definition of a data object coupled with all the operations that can be per-

formed on the object (Glass, 1992:187) This abstraction simplifies any changes made to the data object.

2.4.2 Structured Programming. Another maintainability technique used during devel-

opment is structured programming which incorporates top-down design and the strict use of constructs.

Programs should be modular; that is, they should be composed of small, hierarchical units and have a

high degree of cohesion and low degree of coupling. Cohesion is the degree to which functions within the

module are bound together, while coupling is the degree to which modules are dependent on each other.

Structured programming has been shown to improve maintainability (Osborne, 1987:18).

2.4.3 Reviews and Audits. Reviews are conducted so management and the user can moni-

tor the developer's progress. These reviews and audits assure a uniformity across the software, which is

critical when someone other than the original programmer must maintain the code. The review deter-

mines if the design is meeting specific perforn'.nce, design, and verification requirements and that the

entire task can still be completed within the projected schedule and allocated budget (Glass, 1992:78).

Audits are more closely related to inspections where SQA inspects code modules or test procedures for

compliance with standards. During the early phases of the life cycle, audits can identify improper user

defined requirements, design compromises, and poor documentation, problems which lead to poor main-

tainability. Reviews in the definition phase ensure that user requirements are clearly defined and under-

stood by the development personnel. During the construction phase, quality assurance personnel review

all documentation to determine that the documentation is complete, adequate, and meets the system's

goals. In the implementation phase, quality assurance monitors and reviews all test plans and test reports,

and finally reviews all documentation once again to ensure that the system has actually met its original

goals (Wu, 1987:190-192). To ensure the system is supportable, and to become familiar with system,

maintenance personnel should carefully read all documentation and participate in each review. The

documentation and accompanying reviews are intended for technical people, not managers. Although

SQA should evaluate the documents for standardization, the documents should be passed on the appropri-

16

ate personnel, (i.e. programmers and testers), who are able to evaluate the documents against the require-

meats. Although managers should attend the reviews to establish good working relationships with their

corresponding development managers, it is the technical personnel who can make the greatest contribu-

tion to the quality of the system at a review.

2.4.4 Standards. Standards are essential for establishing a common maintenance environ-

meat. This common environment provides a common ground for reviewing another programmer's work,

understanding another's code, and ultimately changing another person's program. This section is divided

into development standards, coding practices, comments, and maintainability checklists.

2.4.4.1 Development Standards. In the Air Force, the development standard for

weapon system software is DOD-STD-2167A, Military Standard for Defense System Software Develop-

meat. The standard ensures that all contractors or organizations use the same uniform requirements in

developing software, along with the means for establishing, evaluating, and maintaining quality in the

software and its associated documents (DOD-STD-2167A, 1988: iii/iv).

2.4.4.2 Coding Practices. Good coding practices improve maintainability by provid-

ing a structure and framework in which systems can be developed and maintained in a clearer manner

(Osborne, 1987:18). Management or software quality assurance places the requirements on programmers.

An example list of practices may include:

"* Language requirements - Use Ada or some other high order language.

"* Code complexity - Use structured programming while avoiding undesirable language forms
(programmer tricks which someone else might not understand).

"* Modularity - Break a large procedure into smaller ones.

"* Maintainability - Make the code easy to understand and change.

"* Naming conventions - Use names that reflect the content or the variable or the structure of the pro-
gram or data or both.

o Comments - Each subprogram must contain standard comments.

"* Traceability - Each section of the code must trace back to the specifications (Glass,1992:90).

17

MIL-STD-1815A, Military Standard for the Ada Programming Language, specifies the form and

meaning of Ada programs to facilitate supportability, portability and reusability. The standard provides

specifications for.

"* Declarations and types

"* Names and expressions

"* Statements

"* Subprograms

" Paciages

" Tasks

"* Program structure

"* Exceptions

"* Generic Units

"* Input and output (MLL-STD-1815A, 1983:1-IV)

When used effectively, coding practices provide a common ground for both the developers and main-

tainers to wor.

2.4.4.3 Maintainability Checklists. David Sunday of the Northrop Corporation

advocates a software maintainability checklist. The checklist provides an actual tool to evaluate the code

from a maintainability perspective. Software designed against this checklist shows the following charac-

teristics:

1. Consistency - correlate and contain uniform notation, terminology, and symbology while meeting the
design objectives and requirements.

2. Testability - establish verification criteria and support evaluation of its performance, preferably at
the module level.

3. Modularity - partition the software into reasonably sized parts, components, and modules; blocks of
code are completely independent of all other modules within the program.

4. Descriptiveness - include information regarding their objectives, assumptions, inputs, processing,
outputs, revision status, etc. The software avoids ambiguity and is readily understood. This includes
code commenting and header information.

18

5. Changeability - must be able to change the information, computational functions, data storage, or
execution, time can be easily accomplished.. You can move a module or a part of a module to sim-
plify code reconstruction (Sunday, 1989:50-51).

2.4.4.4 Comments. Good comments also improve the maintainability of the system by

providing readability and valuable information on the module including its design. This is important

when someone other than the developer must modify the code. Comments should include the following:

"* Why the code was implemented this way.

* How this module affects other modules.

"* Any potential problems.

"* When the changes were made.

"* Who made the changes.

"• What the changes were (Osborne, 1987:18).

2.4.5 Code Walkthroughs and Inspections. Humphrey describes a software in-

spection as a review of a programmer's or tester's work to find problems and improve quality by allowing

them to recognize and fix their own problems before the system becomes operational. An inspection or

walkthrough by peers can catch problems which the workers could not find, and which may not be discov-

ered in testing. The inspection also ensures that both parties technically agree on the work and it meets

predefined criteria. It's incorrect to call the process between development and maintenance personnel an

inspection, since the term inspection could put the developers on the defensive. An appropriate term is

formal walkthrough or just walkthrough.

The walkthrough follows these principles:

1. The walkthrough is a formal process with a system of checklists and defined roles. The roles include
moderator, producer, reviewers, and recorder.

2. Checklists and standards are developed and tailored for each participant.

3. The participants prepare for the walkthrough in advance.

4. The purpose of the walkthrough is to discover problems.

5. The walkthroughs are for technical people, not managers.

6. The results are documented (Humphrey, 1990:171-177).

19

Because the walkthroughs involve personnel from three different organizations, the moderator should

be from the PMO, who ensures that both the developers and maintainers are treated fairly and that the

meeting doesn't turn into a finger pointing or shouting match.

There are three areas where walkthroughs can improve supportability: Design walkthroughs, code

walkthroughs, and test walkthroughs.

Scheduling formal walkthroughs of the developed code with corresponding maintenance programmers

improves maintainability in three ways. First, the maintainers are given the code to study before the in-

spection, which provides excellent training by familiarizing the maintainers with the code. Second, the

maintainers provide an independent opinion, because they weren't the original programmers. Finally, the

maintainers have a very high stake in the outcome: the better the inspection, the easier the maintenance.

The same rationale holds true for the testers. The testers from the maintenance organization should

review the test cases. In fact, the maintenance testers should develop some of the test cases to get a feel

for the system. Then, at the formal walkthrough, all test cases are reviewed by both the developers and

the maintainers to look for faults. In either case, the results of the walkthroughs should be documented,

and the recommendations should be implemented after the walkthrough. A follow up walkthrough is ad-

visable to see if the recommendations were in fact implemented.

When coding ends, the focus shifts to supportability techniques in testing.

2.4.6 Testing. Wilma Osborne contends that a system's maintainability can be increased by

improving the test plans and procedures (Osborne, 1987:19). A rigorous review and inspection process

improves these plans and procedures. Improved test plans account for all requirements and conditions.

Improved procedures increase the numbers of errors discovered and corrected, reduce the likelihood of fu-

ture errors, and ensure a higher quality system. The testers in the maintenance organization can review

or inspect the test plans, or even participate in the development of the test cases. The testers can also at-

tend the Preliminary Design Review, the Critical Design Review, and the Test Readiness Review to evalu-

ate the plans and procedures. By participating in the actual testing, the maintainers gain training on the

system, a better understanding of how the system works, and how it is tested. The test procedures are

passed on to the support organization for reuse or future regression testing (Guidelines, 1992:3-5).

20

During the error correction phase, the system's configuration management change process can be

evaluated to ensure changes are properly identified, validated, and implemented. The software correction

turnaround time should also be tracked so errors are identified and corrected in a reasonable amount of

time.

Robert Arnold asserts that, in addition to standard software tests, a maintainability test should be per-

formed throughout the coding cycle. A maintainability test requires that selected support programmers be

able to make specified software changes within a specified amount of time (Arnold, 1987:27).

Once program management knows how to ensure supportability they need to know when to do it. The

next section describes which techniques can be used in each phase. of the development process.

2.5 Supportability Techniques in the Development Cycle

With software supportability, timing is just as important as method. The development cycle is broken

into six phases: system requirements and design, software requirements analysis, preliminary design, de-

tailed design, CSCI test, and system integration and test. The table on then next page shows what the

maintainers can do in each phase of the development cycle.

21

Table 1
Supportability Techniques in the Development Cycle

Phase Techniques

System Requirements and Read System/Segment Specification, attend System Requirements
Design Review

Software Requirements Review Software Design Document (jreliminary) and Softwarn Test
Analysis, Preliminary Design Plan, attend Preliminary Design Review.

Detailed Design Review Software Design Document (detailed) and Software Test Pro-
cedures, attend Critical Design Review.

Code, CSU Test, CSC Inte- Code inspection by programmers. Joint SQA audits to enforce stan-
gration Test dards. Test case inspections. Evaluate CM during error correction.

,__ __ _ _Maintainability tests.

CSCI Test, System Integra- Participate in testing. Evaluate CM during error correction. Main-
tion Test tainability tests. Physical Configuration Audit, Review Software

Product Specification, Version Description Document, and manuals
for completeness and correctness.

(Osborne, 1987:18; Sunday, 1989:50-51; Humphrey, 1990:171-177; DOD-2167A, 1988:12-13)

2.6 The IWSM Philosophy

Today, due in part to the tremendous world political changes and more austere military budgets, the

process of weapon system acquisition and sustainment is evolving. As a result, military software system

management practices are changing. This new management practice is Integrated Weapon System Man-

agement (1WSM).

IWSM is the management approach adopted by AFMC, a new command born from the merger of Air

Force Logistics Command (AFLC) with Air Force Systems Command (AFSC). IWSM melds the

strengths of both commands to create an integrated management philosophy to acquire and support

weapon systems for its customer. IWSM is defined as: "the AFMC management philosophy for acquiring,

evolving, and sustaining our products. It empowers a single manager with authority over the widest range

22

of decisions and resources to satisfy customer requirements throughout the life cycle of the product"

(AFMCP 800-60,1993:2).

IWSM is recognized as a management philosophy, not a process. However, even as a philosophy, it

necessitates changes in the responsibility levels, structures, partnerships, and processes of current weapon

system acquisition and support organizations. This management approach creates a significant culture

change within the military community. Now, a weapon system will be managed by a single individual

who ties together systems acquisition and sustainment, two formerly separate functions. Conceptually, it

is management of a single product for each element of a system (e.g., landing gear, engines, avionics) for

that system's entire life cycle.

AFMCP 800-60 defines eight elements of IWSM which describe the important aspects of the philoso-

phy. These aspects are closely interrelated and must be taken as a whole.

I. Quality Air Force. Creating an environment that inspires trust, teamwork, continuous improvement,
and customer focus.

2. Cradle-to-Grave Management. Responsibility for all product decisions is given to a single manager.
This manager carries this responsibility for the life of the system.

3. Single Face to the User. The single manager has complete authority over all program decisions and
resources over the system's life cycle. Therefore, the user has a single individual to whom any and
all concerns should be addressed.

4. Seamless Processes. Critical processes are integrated across the product life cycle. Therefore, no
process seams should exist between organizations, locations, or program phases.

5. Empowered People. Authority and responsibility are assigned to the lowest level possible for effi-
ciency. Empowered people have the ownership and responsibility for their respective products.

6. Common Sense Approach. If it doesn't make sense, fix it.

7. Integrated Pl-oduct Development (IPD). IPD uses multidisciplinary teams to manage and integrate
critical processes.

8. Product Focus. Strive to produce the optimum product with the goal of customer satisfaction. In the
course of developing several trial programs, IWSM has created seven goals of weapon system man-
agement:

1. Increasing the System Program Director's authority

2. Creating a single business decision authority

3. Inserting technology

23

4. Creating Integrated Product Teams (IPTs)

5. Maintaining management continuity

6. Building new partnerships

7. Consolidating Air Force acquisition (AFMCP 800-60, 1993:3)

These goals are incorporated into all managerial and technical processes. The System Program Director

(SPD) is the single manager for the weapon system throughout its life cycle. The SPD manages two

groups at different ends of the life cycle: the Development System Manager (DSM) and the System Sup-

port Manager (SSM). Also, the DSMs and SSMs manage several elements of their system(s) through In-

tegrated Product Teams (IPTs). IPTs are multidisciplinary teams empowered with the responsibility for

developing and/or supporting their respective system elements. Developers and maintainers are now

brought together at program start to jointly manage system software until program cancellation or decom-

mission.

Current PDSS planning and implementation processes are impacted by this new approach. The IWSM

philosophy doesn't regulate or standardize a program's PDSS methodology. Therefore, individual

weapon system programs decide, within the IWSM concept framework and applicable regulations, how

best to plan for and implement PDSS for their weapon systems.

The IWSM philosophy is a way of looking at management relationships that encourages change to im-

prove the operation of weapon system programs. This improvement involves consolidating expanded re-

sponsibilities into a single manager, revisiting and strengthening the relationships between many organi-

zations; creating multidisciplinary process teams responsible for the products they design, build, and sus-

tain; and maintaining management continuity throughout the weapon system's life cycle. The manage-

ment of embedded software systems and, in particular, PDSS remains a vital element of the process.

24

2.7 Summary

This chapter presented the current literature available on ensuring software supportability and Inte-

grated Weapon System Management (IWSM). The review presented ideas on planning for maintainabil-

ity, acquisition requirements for supportability which can be levied on the contractor, and techniques for

ensuring maintainability during development. The IWSM review presented the background which

brought about the creation of the IWSM concept and how the concept is constructed.

With a background established in both IWSM and supportability, we now need to know what the ac-

tual IWSM software systems are doing to ensure supportability. The next chapter discusses the method-

ology employed to ascertain current and past supportability efforts in IWSM software systems, plus answer

the investigative questions posed in chapter 1.

25

Il1. Methodology

3.1. Introduction

This chapter addresses the methodology employed to answer the investigative questions from chapter

1. A defined process was created to formalize the research. The first section covers the overall research

process for this effort. The background of the population under study is then described. Next, the data

collection method used in conjunction with the research process is outlined. Finally, the data analysis

process is detailed.

3.2. Research Process

The research process involves building subject knowledge and data collection and analysis of observa-

tions. In order to develop a knowledge base and expertise on the subject matter, an extensive literature

search is necessary. However, reading the pertinent literature will not totally answer or clarify questions

on Air Force implementation of the principles. Interviews and surveys of the target population aid in fo-

cusing the research to answer the investigative questions.

The literature search provides the fundamental knowledge of software maintenance/support, software

supportability, and the IWSM philosophy and its implementation. The literature will provide the guiding

principles of software support and point out methods to design and plan for future software supportability.

Of specific interes is any discussion of transitioning a developed software package into a support envi-

ronment. Also, literature describing the tenets and principles of IWSM, as practiced by Air Force Mate-

riel Command (AFMC), is necessary to conceptualize how Air Force weapon systems will be managed.

Specifically, a concept is needed of how software support will fit into an IWSM management process.

26

Once a foundation is built, the research can proceed to the field to learn of real world implementation de-

tails.

Initially, various individuals in the Air Force community will be interviewed in person or by telephone

to gather background knowledge to conduct the rest of the research. Their insight into military software

support and the IWSM philosophy will guide our approach to the remaining research. Other literature

may be suggested for review. Other points of contact for interviews and questionnaires will be obtained

and contacted.

The System Program Directors (SPDs) and System Support Managers (SSMs), or their representatives,

in the population of Product Centers, and Air Logistics Centers (ALCs), will be contacted initially to find

the knowledgeable individuals to speak with. These individuals will be contacted to establish rapport and

request support for more detailed information. Where face-to-face contact is impractical, a telephone in-

terview will be arranged. These initial interviews will shape the follow-on questionnaire process. Each

contact will be asked questions regarding their knowledge on efforts to improve software supportability

during system development as it pertains to their weapon system program. Also, their general knowledge

about the IWSM philosophy and its effect on their program's management structure will be surveyed.

Using the information from these initial interviews along with knowledge gained from the literature

search, we will construct a questionnaire. We will review and revise the questionnaire to ensure adequacy

and completeness. Individuals from the background interviews will be solicited to evaluate and comment

on the questionnaire form's content. Once any revisions are completed, the questionnaire will be delivered

to those knowledgeable individuals identified in the initial round of contacts.

3.2.1. The Questionnaire. The questionnaire (see Appendix A) will be the primary source

of detailed data. It requests information from the individual identified in the program who manages the

software development and/or support effort.

The questionnaire consists of five parts. The first part asks questions about the program's IWSM man-

agement structure. The second part asks questions about the program's planning efforts for PDSS. The

third part asks how those PDSS plans are or were implemented during software development. The fourth

27

part asks questions about the program's transition from software development to support. The fifth part

asks questions about operational software support.

3.3. Population Under Observation

Our population was selected to keep the research effort within a manageable scope. The target popu-

lation is the 21 Air Force weapon systems selected as pilot programs to implement the IWSM philosophy.

In addition, several Command, Control, Communications, Computer, and Intelligence (C41) programs are

included as IWSM pilot programs. These programs can be characterized as mission support systems

which are software intensive. The population is split into two categories: those weapon systems which

are operational and those still under development. This split may point out differences in the system

management approaches between the categories. The weapon systems under development may have man-

agement structures which are more flexible to change. It is our expectation that with limited resources

and schedule, this thesis may address only a few of the weapon system programs. Following is a brief de-

scription of the programs who were sent questionnaires.

3.3.1. IWSM Weapon System Programs

3.3.1.1. Automatic Test Systems (ATS). Ongoing effort to support existing

weapon systems with automated test equipment and survey DoD logistic support centers for commonality

between ATS hardware and software test sets.

3.3.1.2. B-2A. Development, production, and supportable deployment of a four-engine,

low-observable, flying-wing type of strategic penetrating bomber, designed specifically to elude enemy air

defenses. (Mehuron, Jan 1993:561

3.3.1.3. C-130. Support for operational military cargo aircraft including software support

of operational flight program.

28

3.3.1.4. Airborne Warning and Control System (A WACS) (E-3).

Development of a major upgrade for the AWACS surveillance and battle management aircraft, including

radar system upgrades. [Mehuron, Jul 1992:34]

3.3.1.5. F-15. Development and support of various programs including F- 15E dual-role

fighter, subsystem, and support equipment programs. [Mehuron, Jan 1993:57]

3.3.1.6. F-16. Ongoing development and support for a single-engine, lightweight, high-

performance, tactical fighter with an air-to-air and air-to-surface multirole capability that can be deployed

from the continental US to any trouble spot in the world. [Mehuron, Jan 1993:57] Currently involved in

foreign military sales (FMS).

3.3.1.7. F-22. Development of next-generation Air Force air superiority fighter including

advanced propt,'ion, flight controls, fire controls, significant avionics integration, designed supportability

characteristics, et al. [Mehuron, Jan 1993:57]

3.3.1.8. F-117A. Development and production of major modifications to F-117 avionics

including an upgrade to forward-looking infrared (FLIR) and improvements to the navigation system.

[Mehuron, Jan 1993:56]

3.3.1.9. Navstar Global Positioning System (GPS). Deployment and sup-

port for a system that provides 24 hour, all-weather, worldwide, space-based radio navigation capabilities

for military and civilian users with extremely accurate three-dimensional position information. [Air Force

Magazine, Aug 1992:34]

3.3.1.10. ICBM. Modernization programs for the Minuteman intercontinental ballistic

missile.

33.1.11. Joint Surveillance and Target Attack Radar System (Joint

STARS). Development of a joint USAF-Army sensor which integrates a side-looking multimode radar

into an E-8A platform to create a targeting system able to detect stationary and moving ground-based ob-

jects. [Air Force Magazine, Jul 1992:35]

3.3.1.12. LANTIRN. Production of a two-pod navigation and targeting system for

night, under-the-weather ground attack by F-15E and F-16C/D aircraft. Provides video display of flight

29

path terrain, terrain-following radar (TFR), infrared target detection and tracking and laser designation

and range-finding. It is used for precision munitions deliveries. [Mehuron, Jan 1993:57]

3.3.2. C41 Programs. The C41 programs were added to the IWSM pilot programs after the

weapon systems. The C41 programs differ from the weapons systems in that C41 programs are primarily

computer hardware and software as opposed to a complete weapon system such as an aircraft. The scale

of a C41 system (cost, schedule, and effort) is also smaller than a weapon system. The three programs

which were sent questionnaires are the Combat Ammunition System (CAS), the Wing Command and

Control System (WCCS), and the Atmospheric Early Warning System (AEWS).

3.4. Data Collection

The data will be broken into two subsets, software intensive weapon systems under development and

those in operation requiring software support. Initial phone contacts and questionnaires are used for two

purposes. First, the knowledgeable person in the organization, that is, the SPD, the SSM or their desig-

nated representative is determined. This individual should be articulate about addressing software sup-

portability concerns in development and software support performance in their current IWSM structure.

Secondly, we must determine what, if any, software system management techniques are used. The indi-

vidual will be asked to participate in completing a questionnaire.

3.4.1. Data Assimilation and Sampling Risks. Once the questionnaires are sent, a

suitable period will be allowed for responses to return. If responses aren't returned by that time, follow-up

phone calls will determine their status. This phase of the thesis effort presents the most risk. If the con-

tacts choose not to or are unable to respond within a reasonable time, then a potential source of data may

be lost. The analysis may suffer due to insufficient sample size and poor representation of the population.

Also, other thesis tasks can run in parallel while awaiting responses.

30

3.4.1.1. Response Processing. Upon receipt of each response, the following steps take place:

1. Assign a control number to each response for tracking purposes. The control number dissociates the
response with any particular individual or program.

2. Review each answer for quality. Although the questionnaire introduction states that answers
shouldn't be restricted to "yes" or "no", we cannot prevent such an occurrence. Several questions re-
quire some elaboration.

3. Develop clarification questions from incomplete or ambiguous answers as required. Follow-up
phone calls will resolve these questions.

4. Separate software supportability planning data from post-deployment software support data. Each
subset provides material to develop its respective part of the management guidelines.

5. Cross reference IWSM management information with program maturity, i.e., development or op-
erational. Again, this data will support development of the overall management guidelines.

3.5. Analysis and Observations

Analysis remains the most difficult part of any research effort for the novice researcher (Emory and

Cooper, 1991:16). The objective of our analysis is to infer any characteristics or trends of IWSM organi-

zations and their methods of managing software intensive systems. The management guidelines will sum-

marize the analysis results.

The data gathered from the literature review, background interviews, and the questionnaire form the

analysis domain. A brief description of each data element's utility follows.

3.5.1. Literature Review. The review furnishes not only the basis of software support

knowledge but also the principles of managing a software support effort. These principles supply the in-

itial guidelines.

3.5.2. Background Interviews. The interviews set the stage for understanding the prin-

ciples of IWSM and USAF software support planning and management practices. This information aids

in the development of the questionnaire.

31

3.5.3. The Questionnaire. The questionnaire organizes data in three areas: the weapon

system program's IWSM management structure, software supportability planning efforts, and post-de-

ployment software support performance.

3.5.3.1. IWSM Management Structure. This section establishes background on

each program's organization. Of interest is their development of Integrated Product Teams (IPTs) and

how they address planning and/or support. This section helps distinguish system management method-

ologies without inferring their success or failure. The derived organization characteristics provide an ex-

planation of the software supportability planning approach.

3.5.3.2. Software Supportability Planning. This section measures the level of

planning performed during the weapon system's development phase. These measurements serve as a

metric to judge level of planning versus the perceived software support performance.

3.5.3.3. Post-Deployment Software Support. Here, ordinal data is gathered to

describe the success or failure of the software support effort. Inferences may be drawn relating the man-

agement techniques and support planning efforts to software support program success. Note that some

weapon system programs under study haven't yet fielded operational systems. Therefore, we can only

predict the outcome of any future software support effort from their supportability planning and IWSM

management structure.

3.6. Management Guideline Development

The ultimate objective of this thesis is to develop a set of management guidelines for enhanced future

software support under the IWSM philosophy. The guidelines are intended for use by system acquisition

and software system managers of software intensive systems. The guidelines address management prin-

ciples to apply during system development and operational support to prepare for or improve software

support.

32

The development process requires four steps:

1. Draft initial guidelines based on the literature review. This task was accomplished while we
awaited questionnaire responses.

2. Update the guidelines with new information from questionnaire response analysis.

3. Submit final drafts to several experts knowledgeable in the areas of software support and represen-
tatives from each IWSM progrmn which submitted a questionnaire response.

4. Gather comments and incorporate them into a final set of guidelines.

During this process, conflicts may arise between authors, questionnaire answers (e.g., management ap-

proaches), and guideline comments. To resolve the conflicts, we need to understand the basis of the con-

flicting elements. For example, conflicts in management approaches may be a result of differing assump-

tions. We'll attempt to point out those assumptions, validate them if possible, and suggest alternative

guidelines based on the particular assumptions.

When this thesis and the guidelines are completed, the results will be submitted to SAF/AQ for consid-

eration in their ongoing effort to establish management guidelines for software intensive systems.

3.7. Summary

This chapter described the methodology for answering the investigative questions posed in chapter 1.

The methodology employs a literature review, an initial telephone interview (with possible follow-ups), a

questionnaire, and the construction of management guidelines using the accumulated data. Our target

population description indicates the scope of our study. The process of data collection and assimilation

was described with its inherent risks. Finally, the analysis and observation methodology was related.

Chapter 4 contains the results of our analysis.

33

IV. Results and Analysis

4.1 Introduction

Chapter 4 describes the results obtained from the gathered data. First, the data itself deserves some

discussion in regards to its characteristics, quality, and applicability to comparison. Per the organization

of the questionnaire, the data can be grouped to study the different stages of PDSS: planning, implement-

ing supportability during development, transition from development to support, and PDSS implementat-

ion. The data collected and studied at each stage for aircraft, electronic, space, and C4I systems. Our ob-

servations and comparisons supplement the management guidelines with recommended techniques.

4.2 Data

4.2.1 Data Characteristics. Data was collected from several weapon system and C4I pro-

grams across Air Force Materiel Command (AFMC). The data represents responses from AFMC Product

Centers and Air Logistics Centers (ALCs), the former involved with weapon system procurement and the

latter with sustainment. Under the IWSM philosophy, Product Center and ALC personnel are managed

under a single System Program Director (SPD) to procure and maintain weapon system software.

Although the questionnaire requested elaboration on "yes or no" type questions, we received a mix of

terse and detailed responses. The elaboration was intended to qualify any yes or no answers.

4.2.2 Data Quality and Quantity. Not all IWSM pilot programs and C41 programs

could be reached to deliver questionnaires. Of those programs which were given questionnaires, not all

returned responses. Of fifteen questionnaires sent, eight were completed and returned. This is a return

rate of approximately 54%. One of the original IWSM programs, Automatic Test Equipment (ATE), is

nat currently developing or supporting software. A questionnaire for that program was deemed inappro-

priate, and, instead, an in-depth interview was conducted. The IWSM focal point at Human Systems Cen-

ter could not be reached, therefore, human system programs weren't considered in our analysis. Although

34

several attempts at contact were made, not all aircraft system programs could be reached or a software

point of contact established. Of the seven programs which didn't respond, attempts were made to remind

the volunteers of the needed information. Finally, a cutoff date was established in order to proceed with

the analysis. If a response came late, it wasn't included in the analysis to prevent bias.

As shown in figure 2, the percentage of total responses returned by aircraft, electronic, and space sys-

tems were relatively even. Only one of the three C41 programs surveyed responded. One data point on

C41 programs is not sufficient to characterize them. Therefore, any conclusions drawn on C41 PDSS

planning under IWSM would be speculative at besL

Response Sample Percentages

C41
250/913%

•~Aircraft

Electronic 37%
25%

Figure 2 Breakdown of Respondents

4.2.3 Data Manipulation. The respondents' data was recorded using a personal computer

spreadsheet application. Responses to each questionnaire question were represented in individual spread-

sheet cells. However, only a binary entry (e.g. yes or no) could be entered into the spreadsheet. Qualita-

tive answers could not be represented but they were used in addressing the investigative questions. Sepa-

rate spreadsheet regions were defined to separate results from the different weapon system categories.

From this point, data could be formatted to produce charts used in analysis.

35

4.3 Program Organization Under IWSM

General IWSM information was collected on each program. The following summarizes the various

management principles used for software development and/or support efforts.

Figure 3 clearly shows that software is a factor in 72% of the total Integrated Product Team (IPT) ef-

forts. Therefore, it is a significant factor in managing a weapon system. Those IPTs which don't directly

involve software development/support are functional support areas such as contracting, site activation, and

system testing. 88% of all programs surveyed integrate their functional elements with their IWrs. Of

these programs, one organized its IPTs around boards and working groups versus system elements. Also,

Predominance of Software Related IPTs

40

35
30

-20

10.
5
0

Total IPT$ IPTs with Software

* Aircraft N Electronic ESpace OC41

Figure 3 Total IPTs vs. Those with Software Efforts

one program had a single software IPT for all software efforts. The remaining program separated some

functional areas into stand alone IPTs. Of these programs, one also had a single software IPT.

In 88% of the programs surveyed, personnel were assigned in a matrixed or matrixed/dedicated fash-

ion to their IPTs as shown in figure 4. One of these programs dedicated their personnel to their IPTs.

36

Manpower Assignments to IPTs

4

3i

0 ad
Matrix Dedicated Mix

[n Aircraft N Electronic N Space a C41

Figure 4 Management Organization of IPTs

With the majority of IPTs involved in managing software development or support, are those efforts

managed separately or coordinated with each other? Managers can foresee resource, schedule, budget,

and requirements conflicts of concurrent software efforts which are coordinated with one another. Al-

though there may be reason to manage some efforts separately, doing so without an integrated perspective

may complicate future software supportability. Figure 5 indicates 63% of the efforts are coordinated with

each other. Of those programs with separate management efforts, one respondent felt their new team

Management Arrangement of Several Software Efforts

5

01
Coordinated Mgmt Separate Mgmt

*i Alrcraft ,Electronic E Space 13 C41

Figure 5 How the Programs Manage Their Software Efforts

37

With the majority of IPrs involved in managing software development or support, wv uu• 0..

managed separately or coordinated with each other? Managers can foresee resource, schedule, budget,

and requirements conflicts of concurrent software efforts which are coordinated with one another. Al-

though there may be reason to manage some efforts separately, doing so without an integrated perspective

may complicate future software supportability. Figure 5 indicates 63% of the efforts are coordinated with

each other. Of those programs with separate management efforts, one respondent felt their new team

Management Arrangement of Several Software Efforts

4-
f32-

0-
Coordinated Mgmt Separate) Mgmt

Alrcraft N Electronic NSpace D C4

Figure S How the Programs Manage Their Software Efforts

37

4.4 Planning for PDSS

All but one of the responding programs have a Computer Resources Lifecycle Management Plan

(CRLCMP). The CRLCMP addresses PDSS planning including the number and type of personnel re-

quired to perform PDSS, and the equipment and environment required. The remaining program used a

system maintenance plan (focusing on more than software support) such as an Integrated Logistics Sup-

port Plan (ILSP). Three of the programs surveyed had both a system maintenance plan and CRLCMP

which addressed software support. In this case, the CRLCMP was the central software planning docu-

ment. The companion system maintenance plan was sparse in details in 50% of these programs, thus de-

ferring to the CRLCMP.

Other valuable resources in PDSS planning are configuration management and software quality as-

surance (or quality assurance in general) personnel. Figure 6 shows 88% of the programs surveyed em-

ployed configuration management and 38% employed software quality assurance in their planning ef-

forts. 12% of the programs report using neither function in PDSS planning.

CM and SQA Involvement

75.

A3

2.

0
Config Mgmt Qual. Assurance

*• Aircraft MElectronic N Space 0 C41

Figure 6 Configuration Management and Software Quality Assurance
Involvement in Implementing PDSS Plans

39

4.5 Implementing PDSS Planning During Software Development

The primary materials software support personnel have to work with are documentation and software

code. As shown in figure 7, the SSM organization participated in software development reviews and

audits in 75% of the programs surveyed. Software support personnel were able to inspect software code

in 63% of the programs. 25% of the programs reported that although software support personnel are able

to inspect code either they don't do it or "rarely have the time". Another 25% of the programs had pecu-

liar limitations in the ability to review software code as it was being developed. One program reported

the software components had to be assembled before inspections could take place. The other program

could inspect only the application type and size (e.g., number of software lines of code) of the code.

Reviews/Audits, Documentation and Code Inspections

6.

o .

4,

02

0.
Reviews/Audits Documentation Code

Inspections

EIIAlIcraft KIIElectronic EIISpace OC41

Figure 7 Participation in Software Reviews, Audits, Documentation Reviews and Code
Inspections

Only 25% of the programs performed software supportability testing as shown in figure 8. Software

support personnel participated in 75% of the programs' overall software testing efforts. This participation

provides the supporter the opportunity to see how the software is tested. The participation level contrib-

utes to the learning experience. Software supporters participated by witnessing and hands-on support in

75% and 50% of the programs, respectively.

40

Software Supportability Testing and Level of Testing
Participation

6

4-

13

Supportability Witnessing Hands-On
Testing

[*Aircraft 0 Electronic E Space a C41

Figure 8 Level of Supportability Testing Performed and Level of Software Support
Personnel Participation in Testing

4.6 Transitioning from Software Development to Software Support

The information in this section applies to operational systems only. Only 50% of the programs re-

sponding to the survey have transitioned from a software development to support environmenL

All four operational programs report that their respective transition plans were followed. 60% of the

program 1 received training from the software developer. As shown in figure 9. three programs reported

a routine transition while the other two reported a difficult transition. The three "routine" programs re-

ceived training, however, the two "difficult" programs were split on the training provision. These two

programs have mixed organic/contracted PDSS organizations. One program had difficulty transitioning

to organic supporL Necessary software support requirements, including facility, location, security, and

41

personnel training and qualifications, were difficult to define exactly. The other "difficult" program is

One of the four operational programs was divided into two distinct programs. These programs represent
different models of the system whose support plans differ.

41

managing several dozen concurrent software development and support efforts. It is interesting to note

that the three "routine" programs have total Contractor Logistics Support (CLS) arrangements.

Transition Training vs Transition Ease

3

E
LO2

0.

Routine Transition Difficult Transition

1 Training ENo Training]

Figure 9 Impact of Training on Ease of Transition

4.7 PDSS Stage

The results during the PDSS phase of the operational programs, as seen in figure 10, are much the

same as during transition. Three of the programs have a CLS organization, while the remaining two have

a mix of contract and organic support, and no programs have solely organic support. The computer re-

sources chief of one of the "difficult" programs, in a move to minimize the difficulty between develop-

ment and support efforts, authored a program operating instruction to address computer resources support

as a program institution. Where many organizations are involved, as discussed in paragraph 4.3, such an

operating instruction serves as a common baseline procedures document.

42

Routine or Difficult Software Support

2.

01
Routine Support Difficult Support

E CLS Only 0 Organic/Contract Mix

Figure 10 Routine or Difficult Support Effort

4.8 Guidelines for Ensuring Software Supportability in Systems Devel-
oped Under IWSM

The goal of this thesis was the development of management guidelines for weapon system managers

in an IWSM environment who must field and support software intensive systerms. The formation of the

guidelines followed this process:

A. The initial draft of the guidelines was based on the literature review from chapter two. This task was

accomplished while awaiting questionnaire responses.

B. Any additional information from questionnaire response analysis was incorporated into the guide-

lines. The changes to the guidelines consisted of software maintainer involvement in the develop-

ment of the Software Configuration Management Plan and the Software Quality Assurance Plan.

C. The second drafts were submitted to several experts knowledgeable in the areas of software supporl

Four experts in the field of software supportability were invited to review the draft guidelines. Only

three accepted the invitation. Of these three, only two returned recommendations. One expert is as-

signed at SAF/AQK, and is responsible for producing the Guidelines for Successful Acquisition and

Management of Softwvare Intensive Systems: Weapon Systems and Management Information Sys-

43

leros. The other exper is an instructor at the Air Force Institute of Technology, with an extensive

background in softwate support, and the instructor for the Institute's Software Maintenance and

Generation course. The recommendations from the experts include: elaborate why the techniques

presented in the guideines are unique to the IWSM programs, explain why a separate PDSS plan is

needed besides the CRLCMP, include a discussion on improving supportability through the use of

commercial off-the-shelf and reusable software, and include supportability requirements in the soft-

ware developer's Memorandum of Agreement.

D.The final set of guidelines is a combination of the expert opinion from the literature review, addi-

tional information provided by the survey responses, and recommendations from the experts who

validated the guidelines.

4.9 Findings

4.9.1 Investigatdve Question #1. What maintainability planning have the software sup-

port management personnel done in current software system development? 80% of the program manage-

ment personnel with systems currently under development indicated that software support planning was

documented both in the Computer Resources Lifecycle Management Plan (CRLCMP) and a separate sys-

tem maintenance plan. These programs used the separate plan only to document the personnel require-

ments, while the CRLCMP was used to document the equipment and facilities requirements. Interestingly

enough, the other 20% who used either a system maintenance plan or the CRLCMP provided a more

complete plan in terms of personnel, equipment, supportability techniques, and transition planning than

the systems which had both a maintenance plan and a CRLCMP. No reasons were given.

4.9.2 Investigative Question #2. Are the software maintainers participating in the de-

velopment of the software to improve maintainability? 80% of the survey participants indicated that soft-

ware maintenance personnel worked with configuration management personnel to ensure supportability,

but only 40% worked with software quality assurance to make supportability a goal. 80% of those sw -

veyed said the maintainers reviewed (or were given the opportunity to review) all documentation devel-

44

oped before the formal review, and also attended (or were given the opportunity to attend) the actual re-

view. 40% of the systems surveyed said the maintainers inspected wte code as it was developed. All but

one of the maintainers participated in software testing, either hands-on or witnessing the actual tests.

4.9.3 Investigative Question #3. For systems already in the support phase:

Was maintainability planning done by the SSM personnel during development? 67% of those surveyed

indicated that the only support planning was documented in the CRLCMP. All systems who used the

CRLCMP documented the personnel and equipment requirements, while only 50% documented the sup-

portability techniques and transition plan. The one system that used a separate maintenance plan docu-

mented only the supportability techniques.

A. Did the software maintainers participate in the development of the software to improve maintain-

ability? All of the participants said the support personnel worked with configuration management

personnel to ensure supportability, while only 50% worked with software quality assurance. All of

the maintainers attended at least some of the reviews and read the documents prior to each review.

None of the maintairers inspected the code as it was developed, although 75% of the maintainers

were given the opportunity. 67% of the support personnel participated in software testing.

B. How satisfied are the software maintainers with the system they must maintain? 66% of the survey

participants are satisfied with the follow-on software support. One of the primary reasons for this

satisfaction is that the development contractor is also the follow-on support contractor, which sim-

plified any transitiorn, expertise, or training problems. On the down side, one survey participant de-

scribed unsatisfactory support was as "uncontrollable", primarily because of the many different con-

figurations (34) present in this weapon system.

C. What do the software maintainers wish could have been done differently during software develop-

ment to make their software maintenance easier? The respondents had several recommendations.

Some desired changes to their programs' software development effort include:

* Try to retain common software configurations between systems,

* Require the software developer to use modular code,

* Use standard software libraries to minimize redevelopment of common algorithms,

45

"* Institute common coding practices between the development and maintenance organizations,

"* Use a common software development process across all organizations,

"* Ensure the required software documentation is deliverable under a development contract, includ-
ing documentation produced by a subcontractor, and,

"* Educate the contractor as to why all of the above is needed by the government.

D. Is there any correlation between early and effective maintainability planning and implementation

and the satisfaction of the software maintainer? 38% of the support planning was placed in the

CRLCMP instead of (or along with) a separate system maintenance plan. The CRLCMP primarily

covered the personnel and equipment requirements, but omitted the supportability techniques and

transition planning. This shallow software maintenance planning combined with relatively few sup-

portability techniques implemented during development resulted in software which was difficult to

support. The system with the most complaints about support did no planning for supportability

techniques or transition. In this system, the maintainers performed no software inspections and par-

ticipated in none of the testing during development. In contrast, the system with the least com-

plaints planned for personnel, equipment, supportability techniques, and transition. The maintainers

for this system worked with configuration management and software quality assurance to ensure

supportability. The maintainers also attended reviews, inspected the software, and participated in

testing.

4.9.4 Investigative Question #4. How do the current plans compare with past plans?

The current plans have a separate software maintenance plan, whereas the past plans use only the

CRLCMP. The systems under development also used walkthroughs more than the operational systems,

but less than 40% of the development systems used walkthroughs, which was unexpected.

4.9.5 Investigative Question #5. What planning techniques do the experts recommend

for improving maintainability? The techniques are located in sections 2.2 through 2.5 of the literature

review. The techniques stress up-front planning for pýrsonnel and equipment requirements, and the re-

sponsibilities of a support organization. The experts recommend documenting all training, documenta-

tion, and quality assurance requirements for the development contractor. The techniques for implement-

ing supportability planning during development include: reviews and audits, walkthroughs, and test par-

46

ticipation. These recommendations became the basis for the guidelines for ensuring software supportabil-

ity.

4.9.6 Investigative Question #6. How do these techniques compare with techniques

used in pas and current weapon system software development? The questionnaire mirrored the literature

review, so, in effect, we were surveying the various system offices for comparison with the experts'

opinions of supportability techniques. While all of the systems surveyed used at least some of the expert

recommendations, only one system used all of the recommendations for planning and supportability

techniques.

4.9.7 Investigative Question #7. Can past maintainability plans be combined with cur-

rent efforts and expert opinion to provide a set of guidelines for ensuring future maintainability efforts?

The initial set of guidelines from the literature search were combined with the questionnaire responses

and recommendations from the evaluators to produce the final versions of the guidelines. The guidelines

are included in Appendix B.

4.10 Summary

This chapter provided analysis of the data from the survey responses, followed by the steps taken to

construct and validate the guidelines for ensuring supportability. Each of the investigative questions from

chapter I was answered. The next chapter contains the research results and recommendations for follow-

on research.

47

V. Conclusions

5.1 Introduction

The goal of this thesis was to determine how the Software Support Manager can plan for Post De-

ployment Software Support (PDSS) and how the software maintainers can participate during develop-

ment to improve supportability. The result of the research was a set of guidelines for ensuring support-

ability in software systems developed under the Integrated Weapon System Management (IWSM) concepL.

First, a detailed literature search was performed to determine what the experts recommend to ensure soft-

ware supportability. Then, selected IWSM software systems were surveyed, based on the investigative

questions from chapter one, to determine what was done in past and present systems to ensure supportabil-

ity. The results of these first two procedures were combined to form an initial set of guidelines for ensur-

ing supportability. This initial set of guidelines were validated by a panel of software supportability ex-

perts. The research results, as well as recommendations for follow on-research are presented in the next

two sections.

5.2 Research Results

The research revolved around three phases, which, when completed, provided us with the guidelines for

ensuring software supportability:

A.The in-depth literature search provided a detailed background on planning for software maintain-

ability and presented techniques which could be used during development to ensure supportability in

the software. The literature review stressed up-front planning for personnel, equipment, supportabil-

ity techniques, and transition from development to support. The review also included these support-

ability techniques which could be used during development: reviews and audits, inspections, and test

participation.

48

B. A survey on planning for PDSS and ensuring supportability within an IWSM organization was de-

veloped which would answer the seven investigative questions from chapter one. The survey of past

and present software supportability efforts allowed us to compare actual Air Force practice with the

expert opinions from the literature review. We found that the operational systems only used the

Computer Resources Lifecycle Management Plan (CRLCMP) and documented only personnel and

equipment requirements. The developmental systems used a separate maintenance plan along with

(or instead of) the CRLCMP. Although all the systems used at least some of the expert recommen-

dations, only one system used all the recommendations. The systems under development also used

software inspections more than the operational systems.

C. The initial guidelines for supportability were presented to a panel of software support experts for

validation. The recommendations included: clarifying why the techniques benefit IWSM programs

more than non-IWSM programs, discussing commercial off-the-shelf software and reusable soft-

ware, and preparing Memorandums of Agreement for supportability with the software developer.

The research culminated with the final version of the guidelines for ensuring supportability. The first re-

search objective is answered in chapter 2 of the guidelines, Planning for PDSS. The chapter stresses up

front planning for personnel, equipment, contractor requirement, and transition planning. The second

research objective is covered in chapter 2 of the guidelines, Ensuring Supportability During Development.

This chapter recommends attending reviews and audits, holding software inspections, and participating in

tests.

5.3 Recommendations for Further Research

5.3.1 Supportability in Non IWSM Programs. This thesis focused on programs

using IWSM. The questionnaire in this thesis can be used to survey the non-IWSM programs. The non-

IWSM programs have separate development and support managers. Non-IWSM and IWSM programs

can be compared to determii,e:

1. Which management style did more up front planning for PDSS?

49

2. Which management style had more participation by the software maintainers during development to
ensure supportability?

3. How satisfied are the maintainers with the developed software they received under each management
style?

5.3.2 Supportability Metrics. The follow-on research would survey operation systems to

determine which factors correlate with supportability and determine metrics to measure these factors.

Then the research should determine which values correlate with easy and hard support. These metrics

could then be applied to systems under development to determine the future supportability of a software

system.

5.3.3 C41 Programs. The single program which implemented all of the expert recommen-

dations was a Command, Control, Communications, Computer, and Intelligence (C41) system. However,

it was the only response that we received from the C4I community. The questionnaire and data accumu-

lated in this thesis can be used to survey the rest of the C41 programs to determine if there is any trend

among the C41 programs. If any type of trend exists, can the findings be applied to the weapon systems

programs?

5.3.4 Validate Research Results. Of all IWSM programs (20 in all) and C41 programs,

only eight responded to the questionnaire. A larger sample, which could include additional programs,

should be obtained to validate the results of this effort.

5.4 Summary

With the excessive cost of software support coupled with shrinking budgets in today's environ-

ment, the Air Force needs to focus on improving the supportability of the software it develops or acquires.

The Air Force has already taken a large step in improving the supportability of the software systems by

implementing the IWSM concept. The single manager will want to develop software that is easy to sup-

port. The guidelines presented in this thesis will enable the Software Support Manager to plan for PDSS

early in the lifecycle, implement techniques for ensuring supportability during development, and reap the

benefits during the system's operational lifetime.

50

Appendix A
The Questionnaire

51

QUESTIONNAIRE TO SUPPORT DEVELOPMENT OF SOFTWARE SUPPORT
GUIDELINES IN SOFTWARE SYSTEM DESIGN AND SUPPORT

UNDER INTEGRATED WEAPON SYSTEM MANAGEMENT

INTRODUCTION:

We appreciate your participation in our effort to develop a set of software support guidelines for soft-
ware system managers under IWSM. Your inputs are an important port of our thesis research effort and
the key to its success. We are working with SAF/AQKS to study the impacts IWSM has on preparing for
and managing post deployment software support (PDSS). One thing we want to make absolutely clear is
that we are only interested in obtaining a "big picture" perspective of the software support planning and
management processes based on the initial 21 IWSM pilot programs. Each individual input we receive
will be considered confidential, and there will be no ties to specific programs or individuals. We will
gladly share with you the results of our thesis project if you would like us to do so.

The survey should be answered by someone in the program office who manages the software support
effort, not technical personnel. The survey consists of five parts. The first part asks questions about your
program's IWSM managemei,. ;tructure. The second part asks questions about your program's planning
efforts for PDSS. The third part asks questions about how those PDSS plans are implemented during
software development. The fourth part asks questions about the transition from software development to
support. The fifth part asks questions about operational software support. The entire survey should take
no more than 45 minutes to complete.

Please remember that you are not restricted to a simple "yes" or "no" answer. Any elaboration will be
greatly appreciated. If an answer to a question is unknown, ask if there is an individual
in your organization who may be able to answer it.

If your system is not yet operational, please check here __ and complete only parts I through III.

52

Purt I: IWSM Management Structure

1. Please list each of your program's Integrated Product Teams (IPTs) and briefly describe the purpose of
each.

2. Which functional areas support these IPTs? (e.g., configuration management, engineering, finance)

3. Which IPT(s) involve(s) the development and/or support of software?

4. For each IPT listed in #3, are software development/support personnel (i.e., government civilian, mili-
tary, support contractor) matrixed, dedicated, or a mix?

5. Do the software deve!c;..!,:u;;"rt personnel partic :ate in your program's Computer Resources
Working Group (CRWG)?

6. Are all the software efforts managed in a coordinated manner or separately?

53

7. Do the software developmentapport personnel witin die System Development lanages (SDM) and
System Support Manager's (SSM) organizations meet regularly? If so, how frequently and by what
means?

54

Pant H: Planning for PDSS

1. Is there a maintenance plan for the system?

2. If one exists:
A. Does the plan include the number and type of personnel required for software support?

B. Does the plan identify tl!e equipment and environment required to support the software?

C. Does the plan address techniques for ensuring software supportability in the development phase?

D. Does the plan address the transition from software development to software support?

3. If no system maintenance plan exists, does the Computer Resources Lifecycle Management Plan
(CRLCMP) address PDSS?

4. If so:

A. Does the plan include the number and type of personnel required for software support?

B. Does the plan identify the equipment and environment required to support the software?

C. Does the plan address techniques for ensuring software supportability in the development phase?

D. Does the plan address the transition from software development to software support?

5. Did support and/or program office personnel work with configuration management to ensure the
change control process (i.e. forms used, approval process, and implementation process) was suitable for
the software support effort? (If so, please explain briefly.)

6. Did support and/or program office personnel work with quality assurance to ensure software support-
ability was included in the Quality Assurance Plan? Please explain briefly.

55

7. What requirements were levied on the development contractor(s) to ensure software supportability?
(e.g., requirements for the support environment, software documentation, quality assurance, product
evaluation, and transition)

56

Part ill: Implemending PDSS Planning During Software Development

1. Did government support personnel attend the reviews and audits and were they able to review applica-
ble documents prior to the actual review or audit?

2. Were government support personnel able to review or inspect code, as it was developed?

3. Were any software supportability tests performed with the developed code? (e.g., evaluating the time
for selected support personnel to identify and correct a hypothetical bug)

4. Did government support personnel participate in any of the software testing to become familiar with
the system? What level of participation took place? (e.g. witnessing or hands-on.)

57

The following questions pertain to those weapon system programs which have already fielded an op-

eratiomal system. If your weapon system is still under development, please skip parts IV and V.

Part IV: Transiltioning from Software Development to Software Support

I. Was the PDSS transition plan feliowed?

2. Did the software developer provide any training?

3. Was the transition from software development to software support routine or difficult? Please explain
briefly.

4. What suggestions or recommendations would you have for improving the transition process?

58

Par V: Post Deployment Software Support Stage

I. Is the follow on software support under a contract, performed by Air Force personnel, or a combina-
tior?

2. In what year was the software support contract awarded, or did the Air Force organization take re-
sponsibility for the software support?

3. Has supporting the software for your weapon system been routine or difficult? Please explain briefly.

4. Is there anything which cou:1 have been done differently during system development to simplify, im-
piove, or make the system's software support more effective?

59

Appendix B
Guidelines for Ensuring Software Supportability in Systems Developed

Under IWSM

60

GUIDELINES FOR ENSURING SOFTWARE SUPPORTABILITY
IN SYSi EMS DEVELOPED UNDER IWSM

61

Table of Contents

a q ter One Overview .. 63
1.1 Software Supportability Background .. 63
12 Integrated Weapon System Management (IWSM) Background 64
1.3 Purpose .. 65
1.4 Overview ... 65

Chapter Two Planning for PD SS ... 66
2.1 Introduction .. 66
2.2 Plan for PDSS ... 66

2.2.1 M anagem ent and Adm inistration .. 67
2.2.2 Software Engineering and Test ... 67
2.2.3 Software Configuration Management ... 68
2.2.4 Software Generation and Distribution ... 68
2.2.5 Technical Docum entation .. 68
2.2.6 Deploym ent and Installation ... 68
2.2.7 Q uality Assurance .. 68

2.3 PDSS Acquisition Requirem ents .. 69
2.3.1 Software Environm ent Requirements ... 69
2.3.2 Technical Data Requirem ents ... 69
2.3.3 Software Q uality Requirements ... 69
2.3.4 Transition Requirem ents .. 70

2.4 Planning Sum mary .. 70
Chapter Three Ensuring Supportability During Development ... 72

3.1 Introduction .. 72
3.2 High Order Languages ... 72
3.3 Reusable and Commercial Off-The-Shelf Software .. 72
3.4 M odwarity .. 72
3.5 Reviews and Audits .. 73
3.6 Standards .. 73

3.6.1 Development Standards .. 73
3.6.2 Coding Practices ... 73
3.6.3 M aintainability Checklists .. 74
3.6A Com m ents .. 74

3.7 Code W alkthroughs and Inspections .. 75
3.8 Testing ... 75
3.9 Supportability Techniques in the Development Cycle .. 76
3.10 Sum mary .. 76

References ... 78

62

Chapter One
Overview

1. 1 Software Supportability once It is operational. The causes of this
high cost of software support are:

Background Software developers are only con-
cemed with building the new sys-

(Note: Throughout these guidelines tem with no regard for future sup-
the terms 'software developer' and portability, while maintainers are
"developer' are assumed to mean civil- concerned with receiving a func-
ian contractors or a government or- tional system which can be easily
ganization which develops software.) supported.

In 1992, companies In the United * Once the maintenance organiza-
States spent $30 billion maintaining soft- tion has taken responsibility for the
ware. This number represents anywhere system, the maintainers must live
from 60 to 80 percent of each corn- with whatever software has been
pany's software budget. The estimate is provided by the developers. If the
that, by 1995, the number will grow to 90 system was developed without sup-
percent. Figure 1-1 shows past and portability in mind, then the mainta-
predicted Department of Defense ex- Iners will experience difficulty sup-
penditures for embedded software. porting the system.
Applying the 60 to 80 percent to the * If the maintenance organization is
1992 figure ($29 billion), the DoD spent separate from the development or-
anywhere from $17 billion to $23 billion ganization, then maintainers have
supporting developed or acquired soft- had very little interaction with the
ware. By 1995, the estimates for DoD developers and are relatively un-
software support could reach $32 bil- familiar with the system.
lion. The majority of these changes in- * The software developer is more con-
volve user enhancements to the system cerned with fulfilling contractual ob-

DoD Embedded
Software Market

40

353?
35 Ao

26o 29..1
3a1 0

220
AA

'-265

Is 13.5
114 A

10

Figure 1-1

63

ligatlons (actual code and its docu- Isfy customer requirements throughout
mentatlon) than with providing the life cycle of the product..
maintainable software. Software
maintainers also want a system IWSM is a management philosophy,
which meets the user's performance not a process. However, even as a
requirements, but they (maintainers) philosophy, it is changing the responsi-
need a system which can be easily bility levels, management structures,
modified In order to provide effec- partnerships, ana processes of current
tive support. weapon system acquisition and support

organizations. Now, a weapon system
Software maintainability Is a soft- will be managed by a single individual

ware characteristic which reflects the who ties together systems acquisition
degree of effort required to accomplish and sustainment, two formerly separate
the following tasks: functions. Conceptually, it Is manage-

1. Correction of errors ment of a single product for each ele-
2. Addition of features ment of a system (e.g., landing gear,
3. Deletion of capabilities engines, avionics) for that system's entire
4. Adaptation/Modification life cycle.
Maintainability is a desired charac-

teristic of software and not just another The System Program Director
phase of the software life cycle. While (SPD) is the single manager for the
the major goal of the program office is weapon system throughout its life cycle.
to get the software completed on time The SPD manages two groups at differ-
and within budget, it should also have a ent ends of the life cycle: the Develop-
goal of providing maintainable soft- ment System Manager (DSM) and the
ware, with particular emphasis on tech- System Support Manager (SSM). Also,
niques which make enhancements to the DSMs and SSMs manage several
the software easier to implement. Any elements of their system(s) through Inte-
Improvements in maintainability will re- grated Product Teams (IPTs). IPTs are
duce both the effort and cost of sup- mulfidisciplinary teams empowered with
porting the software. the responsibility for developing and/or

supporting their respective system ele-

1.2 Integrated Weapon ments. Developers and maintainers are
now brought together at program start

System Management (IWSM) to jointly manage system software until
Background program cancellation or decommission.

Today, due In part to the tremen- Current Post Deployment Software
dous world politicJl changes and more Support (PDSS) planning and Implemen-
austere military budgets, the process of tation processes are Impacted by this
weapon system acquisition and sus- new approach. Neither the IWSM phi-
tainment is evolving. IWSM has been losophy, nor AFMCP 800-60 regulate or
adopted to manage this evolving proc- standardize a PDSS methodology.

tes. tTherefore, Individual weapon system
programs decide, within the IWSM con-

IWSM is defined as: ceptual framework and applicable
"...the AFMC management philosophy regulations, how best to plan for and
for acquiring, evolving, and sustaining implement PDSS for their weapon sys-
our products. It empowers a single tems.
manager with authority over the widest
range of decisions and resources to sat-

64

1.3 Puqxoe

The purpose of these guidelines Is to
help program managers In IWSM pro-
grams ensure supportability In contrac-
tor acquired or government developed
software systems. IWSM programs can
benefit from the recommended tech-
niques because there Is now only one
agency responsible for both develop-
ment and maintenance. The SPD has
an inherent Interest in developing sup-
portable software because he or she is
now ultimately responsible for support-
Ing the software. With the majority (up
to 80%) of a software system life cycle's
time, effort and budget going to sup-
port, the SPD should implement any
techniques which would Improve the
maintainability of the weapon system
software. The major benefits of a main-
tainable system are a reduced life cycle
cost, and a Defter operational system
which can be easily and effectively
modified. It Is cheaper to fix problems
before the system becomes opera-
tional. Maintainable software has fewer
problems, faster repair times, and
changes to meet new requirements
more efficiently.

1.4 Overview

These guidelines are divided Into
two sections, planning for PDSS and en-
suring future software supportability.
The first section describes how to build a
plan which will be used during devel-
opment to construct a supportable sys-
tem. The second section describes
techniques which can be incorporated
Into the plan to ensure the developed
system Is supportable.

65

Chapter Two
Planning for PDSS

2.1 Introduction quality assurance and testing of each
changed version.

This chapter defines the Post De- The PDSS plan should be separate
ployment Software Support (PDSS) plan. from the Computer Resources Life Cycle
The chapter Is divided into two sections: Management Plan (CRLCMP). The PDSS
planning for PDSS and PDSS acquisition plan can be produced and maintained
requirements. by the SSM, Instead of being a small

The PDSS process starts during the chapter In the much larger CRLCMP
developent P of a software system, and stored In a library, The separate

development ofnatsoft sare re- plan should also go Into more detailwhere several organizations share re- than the CRLCMP on both the follow-on
sponsibility for PDSS planning:

1. The user organization, or customer. support and ensuring supportability in

2. The DSM organization or System Pro- the developed software.

gram Office (SPO) (also the procur- Assuming an SPD has been identi-
ing agency). fled, whether at a Product Center or Air

3. The development organization, or Logistics Center, this Is the first opportu-
developer. nity for an IWSM organization to ad-

4. The maintenance organization, or dress future PDSS. Software develop-
maintainer (also Software Support ment and/or maintenance personnel
Activity (SSA)). have the most Influence In guiding the

Together. these four groups form the PDSS plan. This Integrated approach to
weapon system acquisition and support defining PDSS requirements forms the
team. foundation for software supportability

Planning is one of the most important during development and ensures that

activities to reduce the cost and risk of the user and the SSA receives a product

future software maintenance. The ear-

lier the planning begins, the more effec-
tive the support will be. The PDSS plan
outlines the procedures for maintaining 2.2 Plan for PDSS
the weapon system software. The plan
Includes: The PDSS plan describes how and

"* Organizational procedures to what extent the software will be
"* Hardware resource requirements maintained. The procedures define fa-
"* Software resource requirements cilities, equipment and personnel re-
"* Personnel requirements quirements. The complete and mini-
"* Facilities requirements mum personnel requirements for follow-

on support are Identified, along with the
The plan also covers the program full and minimum system transition per-

office's relationship with the user and sonnel. SSA facility requirements along
maintainer, how requirements changes with the system hardware and software
are Incorporated into the system, and suites needs are part of the planning. If

at all possible, the maintenance organi-

66

zation should be Identified or the con- they are both working towards the
tract should be awarded by the time same goal: a high quality system.
the plan is formed. If they are not The SPD is the hub between these
identified, then the actual functions ex- parties. Communication Is vital, espe-
pected of the future SSA are laid out. cially when all the participants aren't
The SSA's functions fall into the following collocated. IPTs are ineffective without
categories: it. The SPD must ensure that the right

"* management and administration people from the right organizations can
"* software engineering and test meet whenever needed. If face-to-
9 configuration management face meetings are impractical, video
"* software generation and distribution teleconferencing, phone teleconfer-
"* technical documentation encing, and other media forms are
"* deployment and installation good substitutes. A high quality, sup-
"* quality assurance portable system requires the effort of all

these organizations.

2.2.1 Management and
Administration 2.2.2 Software Engineering

and Test
A management structure coordi-

nates and controls not only the SSA ac- This function ensures that the soft-
tivities, but also the various organizations ware maintainers will have all the nec-
involved. An appropriate IPT structure essary tools for modifying and testing
for the particular weapon system will in- the system. Even though the developer
tegrate and communicate PDSS ideas, will spend a great amount of time de-
approaches and issues. The partici- veloping a set of test data, it may not
pants come from the lowest organiza- be used by the maintainers. Some rea-
tional levels possible, taking responsibility sons for this are: the test data was not a
for planning decisions, deliverable item under the develop-

Organizational PDSS responsiblirny ment contract, the maintainers may not
agreements (possibly a Memorandum have the proper tools for testing soft-

of Agreement CMOA)) are established ware, and the data itself may be hard

between the user and SPD. These or impossible to understand. To ensure
arewements keep everyone Sf hsed othe test data can be reused, make sure
agreements keep everyone focused on it is a deliverable, and, if possible, havetheir tasks. The agreements prevent the the test dati jointly defined by the de-

DSM organization from trading off soft- velopers and maintainers. The plan

ware supportability requirements to pre- should describe the tools needed to

serve schedule. The SSA organization, maintain or test the system. The follow-

under the SSM. Is required to review all

documentation, and participate In for- Ing tools can be helpful:

mal walkthroughs, reviews, audits, and * Cross Reference/Browsers•Performance Analyzers
testing during software development. o Code Auditors

The agreements also bring the user and * CompArators

maintainers together early through the o Configuration Management and

SPD and IPT. The user and maintainer Version Controllers

will support the software for at least 10 Requirementraers

to 15 years after system deployment. o RequilrementsTracers

The DSM and SSM organizations de- o Ripple Effect Detectors

velop a synergistic relationship because

67

2.2.3 Software Configuration 2.2.5 Technical
Management Documentation

Software Configuration Manage- Technical documentation requires a
ment (SCM) Identifies how the software storage facility to maintain the volumes
and Its documentation will be con- of documentation and magnetic media
trolled. An effective change control which accompany DoD software sys-
process Improves the supportability of tems. The technical library must be able
the software. The Software Configura- to contain:
tion Management Plan (SCMP) Is jointly 9 the source and object code for every
produced by the developer and IPT release
and used throughout the life cycle. IPT 9 all test cases
membership includes SCM personnel. e all documentation for the entire sys-
The SCMP should determine how the tem and tools
user reports problems, how the change e any tools needed to support the sys-
requests are approved and who ap- tem.
proves the requests. Then the proce-
dures should identify how changes are
scheduled, implemented and tested. 2.2.6 Deployment and
Finally, the procedures identify how the Installatlon
new version will be released.

If the SSA will be responsible for in-Configuration management also stalling new versions at the user's site,
identifies which documents are reqized personnel and procedures should be
by the maintenance organization. Be- identified for installation and testing of
sides the deliverable Data item Descrip- the new software, plus provisions for any
tars, the supporting organization re- other technical support or training re-

quires data dictionaries, software de- qthrec h e use r.

signs, software requirements, specifica- quired by the user.
tions and documentation templates. All
documentation is to be delivered in 2.2.7 Quality Assurance
computer readable format as well as
hard copy. The plan should identify whether this

system is to have its own Software Qual-
ity Assurance (SQA) program or if it will

2.2.4 Software Generation be part of an organization-wide SQA
program. As with the SCM plan, the

and Distribution SQA plan is jointly developed and used
during the entire life cycle. Again, SQA

This function Is concerned with how personnel should be part of the IPT.
SCM will distribute new software ver- The main function of SQA Is the en-
slons. This function must also address forcement of standards and proce-
the version's accompanying documen- dures. The development and support
tation, and training to the user's sites. organization may have two different
Plans and procedures must be in place standards, and the maintainers may not
to handle duplication (both magnetic be willing or able to conform to a new
and print media), packaging of the set of standards. The supportability plan
products, product delivery, and a physi- must provide for a common set of stan-
cal audit of the packages. dards, including coding practices, and

used throughout the life cycle. Each

68

organization, the user, the SPD, DSM, * Use existing government resources as
SSM, development and support con- components of the software mainte-
tractor, will be responsible for enforcing nance facility.
the standards. e Provide backup systems at the soft-

ware support facility.
After determining what Is required to e Umit the number of different environ-

support the system, these requirements ments and development method-
are then passed on to the development ologies, to Include a high order lan-
contractor through the Request for Pro- guage such as Ada.
posal. e Implement a consolidated support

concept, that Is ensure the system
can be Included Into a combined

2.3 PDSS Acquisition support facility.
Requirements * Support and encourage software

reuse (design or components) where

This section of the supportability plan possible.

Identifies the PDSS acquisition require-
ments, which are contractual require- 2.3.2 Technical Data
ments Imposed upon the o- ware de- Requirements
velopment contractor whicti facilitate
maintainability. These requirements Technical data (i.e., documentatio-
consist of options which could reduce n) Is Identified by clear and precise re-
life cycle costs, ease the transition to n)iseientifile de precisermaintenance, or improve maintainabil- quirements. While development costs

qainty.aWhen thesmproe reqirmnts can be reduced by limiting the docu-
ity or quality. When these requirements mentation requirements, not having
are included in the contract, life cycle enough of the right documentation can
costs and risks in maintenance are re- increase the follow on support costs.
duced. Many of these acquisition re- The documentation must be useful to
quirements can be taken directly from the software maintainers, not just
the PDS3 plan. The acquisition require- eyewash*. Here, communication within
ments for the supportability plan are the IPT and joint data definition with the

broftwren nv t developer precludes data problems." software environment The documentation must be useful to
"• technical data the software maintainers, not just
"* software quality "eyewash".
"* transition requirements

2.3.1 Software Environment 2.3.3 Software Quality

Requirements Requirements

Software eSoftware quality is extremely impor-
(which I environment requirements tant in ensuring the maintainability ofIn the contract to: the product The concepts developed in

* Ensure the development and support sections 2.2.7, Quality Assurance can be

environment (including automated passed on to the contractor The proce-

tools, configuration management, dures must include any joint SQA ven-

documentation, and network proto- tures, such as audits or walkthroughs in-
col)doruenthiom, orand oeto prot- volving the development and support
sible e, organizations. The IPT should work with

the development organization to iden-

69

tify and establish quality requirements, a
quality evaluation process, and accep-
tance criteria.

2.3.4 Transition Requirements

The program office, along with the
development and support organization,
must establish specific transition re-
quirements. Major requirements are:

1. Ensure the SSA is staffed, trained and
ready to support the system.

2 Install and test the hardware.
3. Install and test the software suite,

Including tools and databases.
4. Ensure all Configuration Manage-

ment functions Including updated
documentation and CM records are
in place.

5. Secure any licensing agreements or
warranties.

6. Ensure the SSA Is ready to support
the user with no interruption in serv-
ice.

Once PDSS planning and acquisition
requirements are defined, then the fo-
cus shifts to ensuring supportability dur-
ing development.

2.4 Planning Summary

Table 2-1 on the following page sum-
marizes PDSS planning, SSA functions,
and acquisition requirements.

70

Table 2-1: PDSS Planning Activities

PDSS Planning
Section Contents

Personnel Full and minimum staffing for both transi-
tion and follow-on support.

Facilities Facilities required to house all equipment
and personnel.

Hardware and Software Suites All hardware and software required to
1 support the system, plus any backups.

SSA Functions
Section Contents

Management and Administration Management and IPT structure: agree-
ments; personnel, software, hardware,
and facility requirements.

Software Engineering and Test Any tools needed to support, test, and
analyze the software.

Configuration Management Deliverable documents for support; de-
fine change control process.

Software Generation and Distribution Delivery and training for new software
veisions.

Technical Documentation Define repository for documents, code,
and tools

Deployment and Installation Personnel and procedures needed for
software installation and test.

Quality Assurance Establish a common set of standards and
policies.

Acquisition Requirements

Section Contents
Software Environment Common development and support

environments; provide backup systems;
limit the number of development
methodologies; support reuse

Technical Data Documents needed for support listed as
deliverables.

Software Quality Establish quality requirement, evaluation
process, and acceptance criteria

Transition Installation, training, documentation, con-
figuration management records, and
warranties.

71

Chapter Three
Ensuring Supportability During Development

3. 1 IntroductHon help to ensure a higher quality product.
With data abstraction, there Is a single

This chapter provides techniques for definition of a data object coupled with

ensuring software supportability during all the operations that can be per-

the development cycle. Software qual- formed on the object. This abstraction
simplifies any changes made to theIty and supportability go hand-In-hand data object.

during development. Any methods to

Improve quality Improves supportability
and any attempts to Improve support- 3.3 Reusable and
'zbilty result in a higher quality product. Commercial Off-The-Shelf
Software supportability and quality
cannot be ensured by contract specifi- Software
cations. Software maintainability and
quality can be improved by using these Reusable and commercial off-the-
techniques: shelf (COTS) software inherently in-
"* high order languages creases supportability and quality be-
"* reusable and commercial off-the-shelf cause each has been tested and im-

software plemented in other domains. COTS re-
"* modularity quires little or no modification, while re-
"* reviews usable components contain fewer er-
"* standards rors which simplifies testing and reduces
"* testing the amount of modification of the soft-

ware. However, if the COTS needs to

3.2 High Order Languages be modified for any reason, then prob-
lems could arise with the effort and ex-

Using a high order languag') Im- pense of the changes. The issue of
data rights for COTS can also compli-proves software quality and supportabil- care matters. The IPT should identify

ity. The Air Force mandated the use of whether COTS and reusable compo-

the programming language Ada in nethe pareusable come.

1990. The language nas a number of nents will be part of the PDSS scheme.

built in facilities which simplify the transi-
tion from design from Implementation,
thereby reducing the intellectual effort 3.4 Modularity
and the errors which accompany this
effort. Ada is designed to make use of Another maintainability technique
the principles of Information hiding and used during development Is modularity;
data abstractions, which can improve programs should be composed of small
quality and maintainability. Ada pro- units which have a high degree of co-
grams interact with each other through heslon and low degree of coupling.
the package specifications, while hiding Cohesion Is the degree to which func-
the Implementation details from other tioi is within the module are bound to-
programs in the package body. The in- gether. Coupling is degree to which
terfaces between the programs must be modules are dependent on each other.
well defined and thought out, which

72

The Osborne article referenced provides greatest contribution to the quality of

more details on cohesion and coupling, the system at a review.

3.5 Reviews and Audits 3.6 Standards

Reviews ore conducted so the DSM Standards are essential for establish-
and the user can monitor the oevel- Ing a r- Ž'-mon maintenance environ-
opets progress. These reviews and ment. i nis environment provides a
audits assure a uniformity across the sot- common ground for reviewing another
tware, which is critical when someone programmers work, understanding an-
other than the original programmer others code, and ultimately changing
must maintain the code. The review de- another person's program. The stan-
termines if the product is meeting spe- dards are divided Into:
cific performance, design, and verifica- e development standards.
tion requirements and that the entire @ coding practices.
task can still be completed within the * comments.
projented .,chedule and allocated * maintainability checklists.
budget. Audits are more closely related
to inspections where SQA Inspects code
modules or test procedures for compli- 3.6.1 Development Standards
ance with standards To ensure the sys-
tem is supportable, and to become In the Air Force, the software devel-
familiar with the system, maintenance opment standard most often used for
personnel must carefully read all docu- weapon systems is DOD-STD-2167A, Mili-
mentation and participate In each re- tary Standard for Defense System Soft-
view. The documentation and accom- ware Development. Use of the stan-
panying reviews are Intended for tech- dard is meant to ensure that all con-
nical people, not managers. Although tractors or organizations use the same
SQA evaluates the documents for stan- uniform requirements In developing soft-
dardization, the documents must be ware, along with the means for estab-
passed on to the appropriate person- lishing, evaluating, and maintaining
nel, I.e., programmers and testers, who quality in the software and its associ-
evaluate the documents against the ated documents. The military is in the
following criteria: process of replacing DOD-STD-2167A

"* Internal consistency. with MIL-STD-498, Software Design and
"* Understandability. Documentation.
"* Traceability to the Indicated docu-

ments. 3.6.2 Coding Practices
"* Consistency with the indicated

documents. Good coding practices improve
"* Appropriate analysis, design, or cod- maintainability by providing a structure

i .g techniques used, and framework in which systems can be
"* Appropriate allocation of sizing and developed and maintained in a clearer

timing resources. manner. Management or software
"* Adequate test coverage of require- quality assurance places the coding

ments. practr-es requirement on programmers.
Although support managers should at- An example list of practices may in-
tend the reviews t- establish good cluda:
working relationships ,th their corre- * Language requirements - Use Ada.
sponding development , anagers. It is The language is mandatory unless
the technical personnel who make the

73

some other language can be shown 1. Consistency - correlate and con-
to be more cost-effective. tain uniform notation, terminol-

"* Code complexity - Use structured ogy, and symbology while meet-
programming while avoiding unde- Ing the design objectives and re-
sirable language forms (programmer quirements.
tricks which someone else might not 2. Testability - establish verification
understand). criteria and support evaluation of

"* Modularity - Break a large proce- its performance, preferably at the
dure into smaller ones. module level.

"* Naming conventions - Use names 3. Modularity - partition the software
which reflect the content of the Into reasonably sized parts,
variable or the structure of the pro- components, and modules;
gram or data or both. blocks of code are completely

"* Comments - Use standard com- independent of all other modules
ments for each subprogram. within the program.

"* Traceability - Trace each section of 4. Descriptiveness - include informa-
the code back to the specifications. tion regarding the software's ob-

jectives, assumptions, inputs,
The Department of Defense uses processing, outputs, revision

MIL-STD-1815A, Military Standard for the status, etc. The software avoids
Ada Programming Language. The ambiguity and is readily under-
standard provides specifications for: stood. This includes code com-

"* Declarations and types. menting and header information.
"* Names and expressions. 5. Changeability - Must be able to
"* Statements. physically change the informa-
"* Subprograms. tion, computational functions,
"* Packages. data storage, or execution time
"* Tasks can be readily accomplished.
"* Program structure.
"* Exceptions. 3.6.4 Comments
"* Generic Units.
"* Input and output. Good code comments also improve

the maintainability of the system by pro-
The Ada Quality and Style Guide viding readability and valuable infor-

(QSG) specifies the form and meaning mation on the module, including its de-
of Ada programs to facilitate support- sign. This is important when someone

ability, portability and reusability. When other Than th deeo per stmody
usedeffctivlytheQSG comon other than the developer must modifyused effectively, the QSG a common the code. Comments should include

ground for both the developers and the following:
maintiner to orkthe following:

maintainers to work. * Why the code was implemented this

way.
3.6.3 Maintainability * How this module affects other mod-

Checklists ules.
* Any potential problems.

A maintainability checklist Iprovides e When the changes were made.

on actual tool to evaluate the code * Who made the changes.

from a maintainability perspective. Soft- * What the changes were.

ware designed against this checklist
shows the following characteristics:

74

3.7 Code Walkthroughs and Scheduling formal walkthroughs ofthe developed products with corre-

Inspections sponding maintenance personnel im-
proves maintainability in three ways:

A software inspection is a review of 1. The maintainers are given the prod-
a programmer's or tester's work to find uct to study before the walkthrough,
problems and improve quality by allow- which provides excellent training by
ing the workers to recognize and fix their familiarizing the maintainers with the
own problems before the system be- code.
comes operational. An inspection or 2. The maintainers provide an inde-
walk-through by peers can catch prob- pendent opinion, because they
lems which the workers could not find, weren't the original authors.
and which may not be discovered in 3. The maintainers have a very high
testing. The inspection also ensures that stake in the outcome: the better the
both parties technically agree on the wall-"' rough, the easier the mainte-
work and it meets predefined criteria. it nar,,•o.
may not be accurate to call the proc-
ess between development and mainte- The results of the walkthrough should
nance personnel an inspection, since be documented, and the recommen-
the term inspection could put the de- dations should be implemented after
velopers on the defensive. An appro- the walkthrough. A follow up walk-
priate term is formal walkthrough or just through Is advisable to see if the rec-
walkthrough. ommendations were in fact imple-

The walkthrough follows these prin- mented.
ciples:

1. The walkthrough is a formal process When coding ends, the focus shifts to
with a system of checklists and de- supportability techniques in testing.
fined roles. The roles include mod-
erator, producer, reviewers, and re-
corder. 18 Testing

2. Checklists and standards are devel-
oped and tailored for each partici- A system's maintainability is in-
pant. creased by thorough testing of the sys-

3. The participants prepare for the tem. Thorough testing Is accomplished
walkthrough in advance, through enhancing the test plans and

4. The purpose of the walkthrough is to procedures. A rigorous review and in-
5. The walkthroughs are for technical spection process by the IPT and main-

tainer enhances these plans and proce-
people, not their managers. dures. Test plans must account for all

6. The results are documented. requirements and conditions. Proce-
dures must attempt to increase the

Besonnelfrm three wkthroughinvole numbers of errors discovered and cor-
personnel from three different organiza- rected, reduce the likelihood of future
tions (developer, maintainer, and DSM), retdrduehelkiodofuuethe moderator must be from t, DSM, errors, and ensure a higher quality sys-

the odeatormus befromt~ SM, tern. The testers in the maintenance or-
who ensures that both organizcrl,uns are te.Teesrsithmannnco-
treated fairly and thanztne meeting ganization must review and Inspect the
trean'ted frly ando that ter meting o test plans, plus participate in the devel-
shouting matcho opment of the test cases. The testers

must also attend the Preliminary Design

Review, the Critical Design Review, and
the Test Readiness Review to evaluate

75

the plans and procedures. By partici-
pating In the actual testing, the mainta-
iners gain training on the system, a bet-
ter understanding of how the system
works, and how it Is tested. The test
procedures are passed on to the sup-
port organization for reuse or future re-
gression testing.

During the error correction phase,
the IPT continually evaluates the sys-
tem's configuration management
change process Is continually evalu-
ated to ensure changes are properly
identified, validated, and imnplemented.
The software correction turnaround time
should also be tracked so errors are
identified and corrected in a reason-
able amount of time.

3.9 Supportability Techniques
in the Development Cycle

With software supportability, timing is
just as important as method. The de-
velopment cycle is broken into five
phases: system requirements and desi-
gn, software requirements analysis, pre-
liminary design, detailed design, CSCI
test, and system integration and test.
Toole 3-1 on the following page shows
what the maintainers can do in each
phase of the development cycle.

3. 10 Summary

These guidelines have presented a
plan for improving supportability. The
plan stresses planning for personnel and
facilities, the actual functions that will be
performed by the Software Support Ac-
tMty (SSA), and supportability require-
ments that can be passed on to the
contractor. The guidelines also include
supportability techniques that can be
used during development. By using the
information and techniques presented
here Software Support Managers can
Improve the both the cost and effort of
maintaining their software systems.

76

Table 3-1 Supportability Techniques in the Development Cycle

Phase Software Suppod Personnel

SSM Programmers Testers QA
System Re- Write PDSS Read Sys- Read SSS
quirements Plan, Attend tem/Segment
and Design System Re- Specification,

quirements Attend SRS
Review (SRS)

Software Re- Conduct Desi- Read Prellmi- Develop Soft- Read Prelimi-
quirements gn Walk- nary Software ware Test Plan nary SDD, STP

Analysis, Pre- through, At- Design Docu- (STP), attend
liminary Dep" ,n tend Prelimi- ment (SDD), At- PDR

nary Design tend PDR, Par-
Review (PDR) ticipate in De-

sign Walk.
throughs

Detailed De- Conduct desi- Read detailed Develop Soft- Read Software
sign gn and test SDD, Attend ware Test Pro- Test Proce-

case walk- CDR, Partici- cedures, Con- dures, SDD
through, at- pate in design struct test
tend Critical walkthroughs cases with de-

Design Review veloper, At-
(CDR) tend CDR, Par-

ticipate in test
case walk-

through
Code, CSU Conduct code Participate in Participate in Joint audits

Test, CSC Inte- walkthrough code walk- testing with developer
gration Test throughs, QA to enforce

evaluate code standards &
against main- practices,

tainability Evaluate CM
checklist during error

correction
CSCI Test, Syst- Observe error Participate in Evaluate CM
em Integration correction by Testing during error

Test development correction
programmers

77

References

1. Arnold, Robert S. "Improving Software Acquisition to Facilitate Software Maintenance", in
1987 IEEE Conference on Software Maintenance. Washington DC: IEEE Computer Society
Press, 1987.

2. Department of the Air Force. IW.MGuideok. AFMCP 800-60. Dayton OH: HQ AFMC,
1993.

3. Department of Defense. Guidelines for the Successful Acquisition of Computer Dominated
Systems and Maior Software Developments. Washington DC. GPO, 1992.

4. Department of Defense. Military Standard for Defense System Software Development.
DOD-STD-2167A. Washington DC: GPO, 1988.

5. Department of Defense. Military Standard for the Ada Proaramming Languaae. MIL-STD-
1518A. Washington DC: GPO, 1983.

6. Department of Defense. Mission Critical Comouter Resources Software Sunoort. MIL-
HDBK-347. Washington DC: GPO, 1990.

7. Department of Defense. Mission Critical Comouter Resources Management Guide.
Washington DC: GPO, 1990.

8. Edelstein, D. Vera and Salvatore Momone. "A Standard for Software Maintenance",

Comput, 37:82 - 83 (June 1992).

9. Glass, Robert L., Building Quality Software. Englewood Cliffs NJ: Prentice-Hall, 1992.

10. Hager, James A., "Developing Maintainable Systems: A Full Life-Cycle Approach", in 198
IEEE Conference on Reliability and Maintainability. New York: IEEE Computer Society
Press, 1989.

11. Humphrey, Watts S. Managing the Software Process. Reading MA: Addison-Wesley
Publishing, 1990.

12. Lawlis, Lieutenant Colonel Patricia K. Air Force Institute of Technology, Wright Patterson Air
Force Base OH. Personal Correspondence. 29 July 1993.

13. Osborne, Wilma M. "Building and Sustaining Software Maintainability", in 1987 IEEE
Conference on Software Maintenance. Washington DC: IEEE Computer Society Press,
1987.

14. Sherer, Susan A. "Cost Benefit Analysis and the Art of Software Maintenance", in 199
IEEE Conference on Software Maintenance. Los Alamitos CA: IEEE Computer Society
Press, 1992.

15. Sunday, David A. "Software Maintainability - A New 'ility", in 1989 IEEE Conference on
Reliability and Maintainability. New York: IEEE Computer Society Press, 1989.

16. Vollman, Thomas. "Transitioning From Development to Maintenance", in 1990 IEEE
Conference on Reliablity and Maintainability. Los Alamitos CA: IEEE Computer Society
Press, 1990.

78

Bibliography

1. "A Checklist of Major Aeronautical Systems", Air Force Magazin, 76: 56-57 (January 1993).

2. "A Checklist of Major Electronic Systems", Air Farce MagaziM, 75: 34-35 (July 1992).

3. "A Checklist of Space Systems", Air Force Magazine, 75: 34 (August 1992).

4. Abbott, Stephen, F. "Standardized Code", in 1983 IEEE Workshop on Software Maintenance. Silver
Spring MD: IEEE Computer Society Press, 1983.

5. Arnold, Robert S. "Improving Software Acquisition to Facilitate Software Maintenance", in IM8
IEEE Conference on Software Maintenance. Washington DC: IEEE Computer Society Press, 1987.

6. Department of Defense. Guidelines for the Successful Acquisition of Computer Dominated Systems
and Major Software Develomnts. Washington DC: GPO, 1992.

7. Department of Defense. Military Standard for Defense System Software Develonment. DOD-STD-
2167A. Washington DC: GPO, 1988.

8. Department of Defense. Military Standard for the Ada Progmammin_ Language. MIL-STD-1518A.
Washington DC: GPO, 1983.

9. Department of Defense. Mission Critical Computer Resources Software Supmort. MIL-HDBK-347.
Washington DC: GPO, 1990.

10. Department of Defense. Mission Critical Computer Resources Management Guide. Washington DC:
GPO, 1990.

11. Department of the Air Force. IWSM Guidok. AFMCP 800-60. Dayton OH: HQ AFMC, 1993.

12. Edelstein, D. Vera and Salvatore Momone. "A Standard for Software Maintenance", Computer,
37:82 - 83 (June 1992).

13. Emory, C. William and Donald R. Cooper. Business Research Methods (Fourth Edition). Home-
wood IL: Richard D Iwrin, Inc., 1991.

14. Fritz, Rodger L. and Fred Shocket. "LAMPS - Demonstrated Maintainability Through Application of
MIL-SPEC Software Development Techniques", in 1988 IEEE Conference on Software Maintenance.
Washington DC: IEEE Computer Society Press, 1988.

15. Glass, Robert L. Building Quality Software. Englewood Cliffs NJ: Prentice-Hall, 1992.

16. Hager, James A. "Developing Maintainable Systems: A Full Life-Cycle Approach", in 1989 ir2.
Conference on Reliability and Maintainability. New York: IEEE Computer Society Press, 1989.

17. Humphrey, Watts S. Managing the Software Process. Reading MA: Addison-Wesley Publishing,
1990.

18. Nicholas, John M. Managing Business and Engineering Proiects. Englewood Cliffs NJ: Prentice-
Hall, Inc., 1990.

79

19. Osborne, Wilma M. "Building and Sustaining Software Maintainability", in 1987 IEEE Conference
on Software Maintenance, Washington DC: IEEE Computer Society Press, 1987.

20. Pigoski, Thomas M. and Craig A. Cowden. "Software Transition: Experience and Lessons Learned",
in 1992 IEEE Conference on Software Maintenance. Los Alamitos CA: IEEE Computer Society
Press, 1992.

21. Sherer, Susan A. "Cost Benefit Analysis and the Art of Software Maintenance", in 1922EE Con-
ference on Software Maintenance. Los Alamitos CA: IEEE Computer Society Press, 1992.

22. , anday, David A. "Software Maintainability - A New 'ility", in 1989 IEEE Conference on Reliability
andainSabiily. New York: IEEE Computer Society Press, 1989.

23. "USAF Human Systems Checklist", Air Force Magazin, 75: 56-57 (December 1992).

24. Vollman, Thomas "Transitioning From Development to Maintenance", in 1990 IEEE Conference on
Reliability and Maintainability. Los Alamitos CA: IEEE Computer Society Press, 1990.

25. Wu, Chung-Fern. "Information System Development Audits and Software Maintenance", in 19I7
IEEE Conference on Software Maintenance. Washington DC: IEEE Computer Society Press, 1987.

80

Vita

(Forrest F. Butts IIl)

Captain Forrest F. Butts III was born on 30 January 1962 in Montgomery, Alabama. He graduated

from Prattville High School in 1980. He attended the University of Alabama in Tuscaloosa, Alabama

earning a Bachelor of Science degree in Computer Science in December 1984. He then attended Officer

L Training School at Lackland AFB, Texas receiving his commission on 13 September 1985. His first duty

assignment was to the 1912th Computer Systems Group at Langley AFB, Virginia. There he served as a

World Wide Military Command and Control System Database Programmer, Joint System Test Team

Chief for the Tactical Air Control System (TACS) Executive Officer, and Chief of Software Quality As-

surance for the Contingency TACS Automated Planning System. Capt Butts' next duty assignment was

with the Communication Systems Center's Operating Location "A", where he served as Chief of Commu-

nications Software, responsible for the development and maintenance of the Communications Front End

Processor,which transmits and receives all weather data for Air Force Global Weather Central. His next

position was as Chief of Operating Location "A", where he was responsible for the development and

maintnance of communications software on three mainframe systems. Capt Butts entered the School of

"iems and Logistics in May of 1992 in pursuit of a Master of Science in Software Systems Management.

Permanent Address:
1304 Huie St.
Prattville, Al 36066

81

Vita

(Anthony C. Johndro)

Captain Anthony C. Johndro was born on 5 September 1963 in Grand Falls, New Brunswick,

Canada. He graduated from Limestone High School in Limestone, Maine in 1981 and attended Boston

University, graduating with a Bachelor of Science in aerospace engineering in May 1985. He then at-

tended the USAF Officer Training School, received a commission in the USAF and served his first tour

of duty at Los Angeles AFB. He began his career as a Space Defense Mission Analysis Officer for the

Space Division (AFSC) Office of Plans and Advanced Programs where he analyzed operational needs for

space control, space surveillance, and space battle management until March 1989. He was then assigned

to the Over-the-Horizon Backscatter Radar System Program Office, Hanscom AFB, as a Radar Subsys-

tem Manager responsible for the development, unit-level, and system-level testing of several radar soft-

ware subsystem components. He was then chosen to serve as Chief, Software Maintenance, to define,

specify, and manage interim contractor support for the planning, scheduling, budgeting, development,

and release of two major software version releases for the radar system. His responsibilities included

planning, scheduling, and budgeting the transter of the radar system's Software Maintenance Facility to

the supporting Air Logistics Center. He was then seleciod to serve as Chief, Computer Resources, where

he assumed greater responsibilities for the entire radar computer hardware and software development, in-

terim support and support planning. His duties included chairmanship of the Computer Resources

Working Group to plan th ansition and future support of the radar's software until entering the School

of Logistics and Acquisition Management, Air Force Institute of Technology, in May 1992.

Permanent Address:
RD 5, Box 313
Lewistown, PA 17044

82

I Form ApprovedREPORT DOCUMENTATION PAGE oMr Aop7o4voe

PubiC reoýr,' DoOe" for thi coliecticn of information est etimated to average 1 hour per resporse, ciueclu ng the time for reviewing instricticrs. searcnhrg ex-sting data sOurces.
gathermna auc ;,aila,ning the data needed, and completing ar" reviewing the collection of information Send comments rega-o0ng this burden estimate or an, other aspect of this
colle"t: n 11:rmat• .:ncluo~ng suggestions for reducing this burden to Washengton Headduarters Servces. Direclora-e for information Operatior, and Reb.rtt. 1215 jefferson
Davis kcrý a.. 5 u 5 e 12C 4. Arington, vA 22202-4302. and to the Office of Management and Budget, PaperworK Reduction Project (0704-0188), Vhash ngton. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

GUIDELINES FOR ENSURING SOFTWARE SUPPORTABILITY IN SYST.ES
DEVELOPED UNDER THE I•lI1EGRATED WEAPON SYSTEM MANAGEFENT
CONCEPT

6. AUTHOR(S)
Forrest F. Butts, III, Capt., TSAF
Anthony C. Johndro, Capt, USAF

i 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
t REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GSS/IAS/93D-I

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING IMONITORING

ASAF/Acquisition AGENCY REPORT NUMBER

SAF/AQKS, 5D544
1060 Aix Force Pentagon
Washington, DC 20330-1060

11. SUPPLE %NTARY NOTES

12a. D!STRýBJTiON AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

1..A....C -.',).r20owords) This thesis studied the software maintenance planning and
practices of the pilot Integrated Weapon System Management (IWSM) programs. Before
IWSM, a System Program Office (SPO) acquired an Air Force weapon system then passed
it to an Air Logistics Center (ALC) for follow-on support. The ALC was forced to
maintain the software despite its questionable maintainability. The SPO de-empha-
sized maintainability because maintenance was an ALC responsibility and building
maintainable software increased development costs and lengthened schedules. The IWSM
philosophy closes the gap between develorment and maintenance. A System Program Dir-

iector (SPD), who oversees both system development and maintenance, has an inherent
Sinterest in developing maintainable software because he or she is now also responsi-
ible for supporting it. This research was accomplished through a literature review of
i current maintainability plans and practices, followed by a survey of the pilot IWSM
programs. This information was combined to form draft guidelines for ensuring soft-
ware maintainability. The draft guidelines were then validated by experts in the
field of software maintenance who offered opinions and recoxmendations on the guide-

'lines. The guidelines stress both up front planning and techniques for improving
maintainability during software development. The final guidelines are presented.
14. SUBJECT TERMS 15. NUMBER OF PAGES

Systems Management, Computer Programs, Maintenance Management, 94
Logistics Planning, Maintainability, Teams (Personnel) 16, PRICE CODE

17. SECUki1Y CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIF,.ATION 20. LIMITATION OF ABSTRACT
OF REPORT 7 0OF THIS PAGE j9OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 754.0-01.-280-5500 S'arca~c 1-orm 298 ýRev 2-89)
b,' . AN O'S to 139 3

AFIT Control NumberAFIT/GSS/LAS/ 9 3D-1

AFIT RESEARCH AfqESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please return completed questionnaires to: DEPARTMENT OF THE
AIR FORCE, AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET. WRIGHT
PATIERSON AFB OH 454 33-7765

1. Did this research contribute to a current research project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would have becn rescarched (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent value that your agency
received by virtue of AFIT performing the research. Please estimate what this research would
have cost in terms of manpower and/or dollars if it had been accomplished under contract or if it
had been done in-house.

Man Years

4. Often it is not possible to attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able to establish an equivalent
value for this research (3, above) what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No

Significant Significant Significance

S. Comments

Name and Grade Organization

Position or Title Address

