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AFIT/GSM/LAS/93S-3

Abstrat

The Theory of Constraints (TOC) is the foundation for a computerized scheduling

system called DISASTERTM. Although this system has proven successful in many

manufacturing settings, it has potential limitations due to the sequential heuristic

process by which it schedules constraints. The objective of this thesis was to

determine the extent to which these limitations impact the due date performance of

schedules created by DISA STERTM. This objective was addressed by developing an

algorithm to simultaneously schedule multiple constraints in a job shop environment

and provide the optimal schedule for minimized maximum tardiness. This algorithm

was used to obtain solutions for a matrix of job shop scheduling problems, which were

compared with solutions obtained by using DISA STERTM. This comparison showed

that DISA STERTm is capable of producing nearly optimal solutions for minimized

maximum tardiness, but that this capability is highly dependent on proper constraint

sequencing.
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A COMPARISON OF THE DISA STERTM SCHEDULING SOFTWARE

WITH A SIMULTANEOUS SCHEDULING ALGORITHM FOR

MINIMIZING MAXIMUM TARDINESS IN JOB SHOPS

I. Introduction

General Issue

The U.S. Air Force (USAF) has found the Theory of Constraints (TOC) to be

useful in many environments, ranging from common manufacturing challenges to

battlefield tactics. In the operational arena, a study of USAF doctrine during

Operation Desert Storm identified mobility as a constraint. This study recommended

the use of TOC to provide procedural guidance and enhance the ability of F- 16 units

to move within striking distance of SCUD missile sights (Cummins, 1993:27). The

Air Force has also successfully adopted TOC as a method for controlling aircraft

modification programs at several Air Logistics Centers (ALCs). For example, at

Ogden ALC the implementation of TOC concepts in an aircraft wheel repair facility

reduced flow days by 75% while increasing throughput by 38% (Demmy and Petrini,

1992:6).

In an ALC, the complex flow of work is often modeled as a job shop. In a job

shop, there may be any number of operations in a given job, and the workflow is

multidirectional. As such, any given machine may be required to process the job more
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than once in its production sequence (Baker, 1974:178). Job shop problems have been

undertaken by many researchers over the past several decades with limited success.

The general job-shop problem is a fascinating challenge. Although it is easy to
-tate and to visualize what is required, it is extremely difficult to make any
progress whatever toward a solution. Many proficient people have considered
the problem, and all have come away empty-handed. Since this frustration is
not reported in the literature, the problem continues to attract investigators, who
just cannot believe that a problem so simply structured can be so difficult until
they have tried it. (Conway, Maxwell, and Miller, 1967: 103)

This problem continues to draw attention because manufacturers view

improvements in production scheduling as a necessity to future success in the global

market (Wight, 1981:39). A 1981 study found that the typical manufacturing job in

the U.S. spent about ten times more time waiting in queue than in actual production.

Elimination of this unproductive time could improve inventory turn times by a factor

of one hundred (Kanet, 1981:58). Clearly, yesterday's scheduling methods failed to

maximize the effectiveness of production processes. However, since its introduction in

the early 1980's, TOC has helped many job shop managers to achieve better system

performance.

TOC simplifies the management of a system because it allows managers to control

their processes by scheduling and monitoring only the system constraints. In a

production process, the application of TOC usually results in the identification of no

more than two or three constraints (Rose, 1993). A schedule for the constraints is

much simpler than a schedule for the entire system, and may be obtained using

mathematical solution techniques that are incapable of solving more computationally

complex problems.
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The usefulness of a schedule is often expressed in its ability to minimize or

maximize a given performance measure. Common performance measures include

schedule cost and schedule performance (Graves, 1981:648). As in many situations,

cost limitations force a tradeoff in system performance. The objective of a solution

technique must therefore be specified (i.e. minimize cost, maximize profit, minimize

flow time, etc.) Due-date performance is often considered to be the most important

schedule performance measure.

Of the various measures of performance that have been considered in research
on sequencing, certainly the measure that arouses the most interest in those
who face practical problems of sequencing is the satisfaction of preassigned job
due-dates. Equipment utilization, work-in-process inventory, and job flow-time
are all interesting and more or less important, but the ability to fulfill delivery
promises on time undoubtedly dominates these other considerations. (Conway,
Maxwell, and Miller, 1967:229).

Prominent measures of due-date performance include: number of tardy jobs, total

tardiness, mean tardiness, and maximum tardiness. Tardiness is defined as:

tardiness = max(completion time - due date, 0) (1)

Maximum tardiness has been chosen as the topic of this research, primarily because of

its applicability to ALC operations. For example, if a number of jobs must be

performed in order to complete the repair of an aircraft in the depot, it is the most late

job that will determine when the repairs will be completed.

As part of a strategy to improve the performance of their production and

modification schedules, Warner-Robins ALC and Ogden ALC have both entered into

limited partnerships with the Avraham Y. Goldratt Institute, developer of a TOC based
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computerized scheduling system called DISASTERTM. At Warner Robins ALC alone,

over $500,000 has been spent on software and training to implement DISA STERTM

(Swartz, 1993).

Since its introduction in 1988, DISASTERTM has allowed many manufacturing

companies to quickly create schedules that improve production throughput (Severs,

1991:166). However, the heuristic technique used to schedule constraints in a

sequential manner is a common criticism of DISASTERTM because a user may

generate different schedules for the same plant depending on the order in which the

constraints are scheduled (Newbold, 1992:1). DISASTERTM creates a schedule for one

constraint, and then builds schedules for subsequent constraints around the existing

schedule. This sequential process introduces limitations which potentially sub-

optimize the final schedule (Simons, 1992:2). The Goldratt Institute acknowledges the

potential for eliminating this deficiency by simultaneously scheduling constraints, but

has not yet pursued such an approach (Newbold, 1992: 1). The USAF also recognizes

the possible limitations of sequential scheduling, and the Production Policy Division of

the Air Force Materiel Command Directorate of Logistics has sponsored this research

effort to investigate the potential for improvement in this area.

Specific Problem Statement

The DISA STERTM solution algorithm is potentially limited by the sequential

process which it uses to schedule constraints. The extent to which these limitations

affect the maximum tardiness of the resulting schedules is unknown.
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Research Objectives

The primary goal of this thesis is to determine the extent to which the limitations

of sequential scheduling impact the due date performance of jobs scheduled by

DISA STERTM. Our research objectives are:

1. Search the literature to determine whether an optimal solution method exists for
simultaneously scheduling multiple constraints in a job shop.

2. If an appropriate solution method cannot be found, develop a method to
simultaneously schedule multiple constraints in a job shop.

3. Compare the maximum tardiness of schedules created by DISA STERTM with
that of schedules created by a simultaneous scheduling method.

4. Determine the extent to which the performance of a simultaneous scheduling
method is related to characteristics of the job shop.

Scope

We will- address our research problem by identifying or developing an algorithm to

simultaneously schedule multiple constraints in accordance with TOC. We will use

this algorithm to obtain solutions to job shop scheduling problems, which we will

compare with solutions for the same problems produced by DISASTERTM.

Representative job shop scheduling problems must be mathematically modeled

before a solution algorithm can be applied. A matrix of representative job shop

scheduling problems for this research was developed by Captain Stewart W. James and

Captain Bruno A. Mediate in thesis AFIT/GSM/LAS/93S-9. This matrix consists of

problems containing two constraints in a variety of environments. The problems were

developed through the manipulation of three primary design factors.
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1. Plant type.
a. A-plants, where one finished product is created from several raw materials.
b. T-plants, where several finished products are created from several raw

materials.
c. V-plants, where several finished products are created from one raw

material.

2. Percentage resource criticality factor (%RCF) of the least-loaded constraint
(percent of maximum production capacity required).

3. The difference of percentage resource criticality factor (%ARCF) between the
two constraints (difference in maximum production capacity required).

Details of how the design factors were combined to form problems are included in

Appendix A and will be explained in more depth in Chapter 3.

A ssumptions Several assumptions must be incorporated in our algorithm to

account for the application of TOC and to make our results comparable to the

schedules produced by DISA STERTM. These assumptions involve the use of rods and

buffers, both of which will be explained in more detail in the next chapter. The

specific assumptions are:

1. All buffers are eight hours long.

2. A job is late when it breaches more than one-half of the shipping buffer.

3. All rods are four hours long (one half buffer length).

4. All constraints are known, and no other constraints will be identified through
subordination.

5. All operations are available for processing any time after the ready time
imposed by the rods between operations.

In addition to the assumptions required to make a valid comparison with

DISASTERTm, there are several additional assumptions that will apply to our model of
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the job-shop. These assumptions are drawn from the works of Conway, Maxwell, and

Miller (1967) and Baker (1974).

1. Only one of each machine type exists (i.e., no parallel processors).

2. All machines are continuously available and process material at a fixed rate.

3. Each operation has a constant processing time throughout the run of the model.

4. Setup times are either negligible or included in processing time (i.e., setups are
not sequence dependent).

5. Operation pre-emption is not allowed.

6. Machines are not interchangeable and can process only one job at a time.

Approach

We will first review literature relevant to TOC and production scheduling,

including an examination of the DISASTERWTM scheduling program. We will then

explore literature pertaining to scheduling problem classification, schedule generation,

and mathematical optimization techniques. In the methodology, we will first outline

the development of an algorithm to solve the scheduling problems. We will then

review the methods of data collection and statistical analysis. The results of our

research will then be presented, followed by conclusions and recommendations for

further research.
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II. Review of the Litenrtur

The Theory of Constraints

It is well known that a chain is only as strong as its weakest link. TOC attempts

to strengthen the chain (the manufacturing process) by focusing improvement efforts

on the weakest links, which it designates as constraints (Simons and Moore, 1992:2).

Constrcints. A constraint is anything that restricts the system from achieving a

higher level of performance toward the organizational goal (Demmy and Petrini,

1992:7). Eliyahu Goldratt, founder of TOC suggests dealing with constraints through

a process of five focusing steps:

1. Identify the system's constraint(s).

2. Exploit the system's constraint(s). In other words, determine how to achieve
the maximum performance from the constrained resources.

3. Subonlinate all else to the above decision. Processing by all non-constraint
resources should be solely focused on supporting the constraint(s).

4. Elevate the system's constraint(s). Address the restrictions which cause the
constraint(s), and attempt to eliminate them (i.e. increase capacity of
constrained resource).

5. If in the previous steps a constraint has been briken, go back to step 1, but do
not allow inertia to caue a system's constraint (Goldratt and Cox, 1992:303).

There are three basic types of constraints: external constraints, such as government

regulations or market demand; internal policy constraints, resulting from organizational

procedures and rules; and internal resource constraints, resulting when the demand for
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a resource exceeds its physical limitations (Demmy and Petrini, 1992:8). The output

of one constraint may later be the input for other constraints, a condition known as

constraint interaction (Newbold, 1990:1).

Internal resource constraints can be classified as bottlenecks or capacity construaned

resources (CCR) (Goldratt, 1990:187). A bottleneck is a resource that does not have

adequate capacity to satisfy average work load demands (Goldratt, 1990:189). A CCR

has adequate capacity to handle the average work load, but is overwhelmed by work

load peaks due to a lack of protective capacity (Goldratt, 1990:187). Since it is only

the lack of protective capacity that creates the capacity constraint for a CCR, it cannot

be considered the prime constraint (Goldratt, 1990:189). Bottlenecks will be the only

type of constraint dealt with in this research effort.

Drum-Buffer-Rope. The job shop scheduling technique used to implement

Goldratt's five-step process, known as Drum-Buffer-Rope (DBR), is summarized here

from Goldratt and Fox's 1986 book, The Race.

Once a constraint has been identified, we must exploit it and subordinate the rest

of the system to it. This is where the drum comes into action. The constraint is

scheduled for maximum efficiency, and this schedule (the drum) dictates the pace of

the rest of the system. Essentially, the constraint is beating the drum for the rest of

the resources to march to.

As the rest of the resources attempt to march to the constraint's drum they may

encounter problems that temporarily halt overall production. These problems are dealt

with through the use of three types of buffers: constraint buffers, assembly buffers,
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and shipping buffers. If a resource feeding work to the constraint is disrupted, the

constraint could potentially be starved for work, causing the entire system to lose

throughput. A constrmnt buffer of material placed in front of the constraint will help

prevent this occurrence. The size of the buffer is measured in terms of the amount of

time it will take to process a given amount of material. For example, an "eight-hour"

buffer would consist of the number of parts the constraint could process in an eight

hour day. By providing this limited supply of work-in-process (WIP) before the

constraint, we allow it to continue working through any disruption of preceding

resources. Since the preceding resources have greater capacity than the constraint (or

else they would also be constraints) they can use their excess capacity to replenish the

buffer after the disruption has been corrected. Assembly buffers are placed ahead of

assembly processes to hold non-constraint parts which are to be joined with parts from

a constraint. Assembly buffers ensure that parts passed from the constraint continue to

move through the production process without delay. Finally, a shipping buffer is

placed at the end of the assembly process. This buffer absorbs disruptions from non-

constraint processes occurring after processing by the final constraint which might

result in failure to achieve customer due dates.

Finally, it is necessary to control the release of raw material into the plant at a

pace that will not cause the growth of excess inventory beyond the limits of the

buffers. This is done by establishing a control process, or rope, which only allows the

release of raw materials into the plant at a pace that supports the constraint's drumbeat

(Goldratt and Fox, 1986:96-100).
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DISASTERTM. The DISA STERTM scheduling software was developed by the

Avraham Y. Goldratt Institute in 1986. DISASTERTM is a personal-computer based

scheduling software package that implements the DBR scheduling technique. The user

works interactively with the software to develop a schedule for the constraints in the

plant. After the user describes the layout of his/her plant, DISA STERTN determines

which processes represent constraints. If multiple constraints exist, DISASTERTM

recommends a sequence in which to schedule the constraints. The choice of which

constraint to schedule first often affects the quality of DISA STERTh's final schedule.

The performance of DISA STERTm under these conditions is examined further in a

thesis by Captains James and Mediate (AFIT/GSMiLAS/93S-9).

Ruins. Once a decision has been made on which constraint to schedule first,

DISASTERTM constructs a diagram of the ruins, a Gantt-chart representation of the

workload on the constraints under the assumption of infinite capacity (Goldratt,

1990:220). The ruins are then leveled (backward scheduled in reverse order based on

due dates) to accommodate the limited capacity of the constraints (Goldratt, 1990:204).

If the quantity of work exceeds current capacity, this levelling process will result in an

infeasible schedule where work must begin in the past (Goldratt, 1990:205). To

resolve this problem, the blocks are then forward scheduled from the present to

represent the best effort that can be achieved by beginning this work immediately

(Goldratt, 1990:205).

Buffers. The schedules created by DISASTERTM account for all three types of

buffers previously described. DISA STERTh indicates a high probability that a job will
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be late if the final constraint operation is completed less than one-half shipping buffer

before the due date (Goldratt, 1990:206).

Rods. DISA STERTM uses the concept of rods to protect the flow of parts that

must pass through multiple constraints, or the same constraint more than once

(Goldratt, 1990:218). Rods prevent two constraint operations in the same job from

being sequenced too close together. Scheduling constraint operations too close

together would increase the probability that a system disruption could starve a

constraint and delay job completions. Rods are heuristically defined to be one-half the

length of the constraint buffer and their placement is determined by the processing

time per part on the constraints (Goldratt, 1990: 218). As shown in Figure 1, the

placement of the rods can allow an overlap of operations, or a gap between operations.

SA

BI

C]

T I

Figum 1: Placement of Rods
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In the first example, two operations (A and B) each process ten parts. The

processing time per part for operation B is greater than for operation A. A forward

rod begins at the completion time of the first part in operation A and extends forward

in time. A backward rod begins at the starting time of the last part in operation B and

extends backward in time. Operations cannot be scheduled any closer together than is

permitted by the rods. In this example, the placement of the rods creates a gap

between the completion of operation A and the start of operation B.

The second example is analogous, except that the predecessor operation (C) has a

longer processing time per part than the successor operation (D). In this particular

case, the placement of the rods creates an overlap between the completion of operation

C and the start of operation D. It must be noted that this overlap between operations

can only occur when the operations are on different constraints and when the batch

being processed consists of individual items which can be transferred to the next

operation independently of the remaining items in the batch.

Consistent with TOC philosophy, DISASTERTM does not provide a schedule for

non-constraints. Non-constraints work on a first-come-first-served basis according to

the rate of material release (a function of the rope). DISASTERTM therefore produces

executable schedules with significantly less input (or output) data than conventional

scheduling packages (Severs, 1992:167-168).
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Schedule Development

Theoretically, an infinite number of feasible schedules can be generated for any job

shop problem, since an infinitely variable amount of idle time can exist between any

two adjacent operations. However, when attempting to maximize any regular measure

of scheduling performance, it is clearly desirable to eliminate any unnecessary idle

time in the schedule (Baker, 1974: 181).

Semi-A ctive Schedules. Superfluous idle time can be eliminated by an adjustment

called a local-left-shift: the movement of each operation to the earliest possible time

without altering the operation sequences on any machine (Baker, 1974: 181). In this

manner, a set of schedules with no superfluous idle time is created which is called the

set of semi-active schedules (Baker, 1974:181). For any regular performance measure

it is only necessary to consider the set of semi-active schedules, since the optimal

schedule will be contained within this set (Conway, Maxwell, and Miller, 1967:109).

This now leaves a finite set of schedules, since there is only one schedule for each of

the finite number of possible operation sequences (Conway, Maxwell, and Miller,

1967:109). Although finite, this set is still too large to allow complete evaluation for

most practical problems.

A ctive Schedules. A subset of the set of semi-active schedules can be created by

an adjustment called a global-left-shift (Baker, 1974:183). A global-left-shift of an

operation is any decrease in the starting time of the operation that does not increase

the starting time of any other operation (Conway, Maxwell, and Miller, 1967:111).

This allows an operation to shift past another operation into an interval of idle time, if

14



the interval is large enough to accommodate the shift (Conway, Maxwell, and Miller,

1967: 111). This subset, known as the set of active schedules, dominates the set of

semi-active schedules; which means that it is sufficient to consider only the set of

active schedules when optimizing any regular measure of performance (Baker,

1974:185).

Schedule Generation. All schedule generation procedures operate on the set of

operations to be scheduled, selecting operations one at a time, and assigning a starting

time to each operation (Conway, Maxwell and Miller, 1967:112). The basic

differences between schedule generation procedures are the order in which operations

are selected, and the method in which the starting times are determined (Conway,

Maxwell, and Miller, 1967:112). These differences will classify a schedule generation

procedure as single-pass or adjusting. In a single-pass schedule generation procedure,

the starting time of an operation is fixed when it is initially assigned, allowing full

schedule generation with a single pass through the set of operations to be scheduled

(Baker, 1974:187). In an adjusting schedule generation procedure, the initial

assignment of an operation starting time is tentative and may be modified after

subsequent operations have been scheduled (Baker, 1974:188).

Most computer programs use single-pass schedule generation procedures due to the

difficulty of explicitly stating rules for adjustment (Conway, Maxwell, and Miller,

1967:112). This does not place any limits on the set of schedules that can be

generated since there is a single-pass procedure capable of producing any schedule

(Conway, Maxwell, and Miller, 1967:113).
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Schedule generation procedures operate on the set of candidate operations: those

operations which have no unscheduled predecessors (Baker, 1974:189). At each stage

in the scheduling process, a separate set of scheduleable operations exists, along with a

paflial schedule consisting of all the operations that have already been assigned

starting times (Baker, 1974:189). For each partial schedule, the potential start time of

the next selected operation is determined by the completion time of the direct

predecessor of that operation, and the earliest time the machine required by that

operation is available (Baker, 1974:189).

Approaches for Solving Scheduling Problems

Attempts to solve complex scheduling problems fall into two general categories:

heuristic solution procedures, and optimal solution procedures.

Heuristic Solution Procedures. Heuristic solution methods are used to create

feasible schedules, but do not always provide the optimal schedule for a given

performance measure. Heuristics are commonly applied to large problems where the

enormous computational effort required to obtain an optimal solution makes other

approaches impractical (Baker, 1974:195).

Common heuristic methods use a priority rule that is selected based on the

management objective of the schedule. A schedule is built by sequencing the

operations according to the selected priority rule. For the objective of minimizing

tardiness, many priority rules such as earliest-due-date and minimum-slack-time have

proven useful (Baker, 1984:195). The solution technique employed by DISASTERT4
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is heuristically based, and does not guarantee optimal schedule performance (Newbold,

1992:1).

Optimal Solution Procedures. Optimal solution procedures mathematically express

the relationships between the operations in a problem and seek to generate a schedule

satisfying all of these relationships while optimizing a measurable goal (Heizer,

Render, and Stair, 1993:94).

Integer Prgronmming. Integer programming is a general purpose approach used

to optimally solve job shop scheduling problems (Baker, 1974: 192). This approach

seeks to sequence individual operations to satisfy both sequencing requirements and

noninterference restrictions (which address the inability of any machine to process

more than one operation simultaneously) (Manne, 1960: 219). Technically, integer

programming can be though of as including both pure integer programs and mixed

integer programs. In pure integer programs, all decision variables must assume an

integer value. In mixed integer programs, decision variables are both continuous and

integer. The general job shop scheduling problem is usually formulated as a mixed

integer program. A formulation of the problem identifies the objective to be optimized

as well as the constraints that exist to characterize the problem.

In his 1960 paper "On the Job-Shop Scheduling Problem," Manne describes an

integer programming formulation for the job shop problem. This formulation assumes

each job requires each machine only once.

Let:
xt.k = the starting time of job i on machine k

d,.k= the processing time of job i on machine k
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In order to satisfy the noninterference restrictions, the operations must precide each

other by a sufficient quantity of time to allow the completion of one operation before

another is scheduled. Accordingly, if there are two operations requiring machine k,

then either "!1 Ž-2 4 ,k (2)

or

-'tXt2 l (3)

If job i precedes job j, then XJ,,k must be d~k days after Xk. As such, the integer

programming condition becomes

x4k,+di, , xj (4)

The sequence of operations is determined when all of the equations in the problem

formulation are simultaneously solved for the values of XIk. For even small problems

this sv-t of constraints can quickly develop into an unmanageable system of

inequalities. With only 4 machines and 10 jobs there are 220 variables and 390

constraint equations (Conway, Maxwell, and Miller, 1967:108). The increasing

number of constraints and variables has forced many researchers to consider integer

programming as impractical for most job shop problems. (Conway, Maxwell, and

Miller, 1967:109).

Enumerative Methods. The enormous complexity of large integer programming

problems has led to the development of specialized enumerative approaches to obtain

optimal solutions (Patterson, 1984:855). These techniques enumerate efficiently,
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requiring that only a small subset of the total number of possible solutions be

examined individually (Levin and Kirkpatrick, 1975:349). This is accomplished by

solving portions of the problem, temporarily ignoring certain restrictions or constraints.

As the constraints are introduced back into the problem, a set of possible schedules is

generated and ranked, revealing the best solution (Patterson, 1984:855).

I. SEPARATE'

(STOP' YES IST-ST- NO

I L3ATE
2. SELECT INCLMBENT

IF NECESSARY

3. RELAX
&

L YES.-NO

Figum 2: General Branch & Bound Procedure (Simpson, 1991:14)
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Enumerative techniques are based on three fundamental concepts: separation,

relaxation, and fathoming (Geoffrion and Marsten, 1972:465). These concepts are

described below, and a strategy for their implementation is depicted in Figure 2.

Separation. Separation (Step 1) enables a "divide and conquer strategy" by

dividing a problem into simplified subproblems that are easier to solve than the

original problem. Subproblems must meet the following two criteria:

1. Every feasible solution of the parent problem is a feasible solution of exactly
one of the subproblems.

2. A feasible solution of any of the subproblems is a feasible solution in the
parent problem (Geoffrion and Marsten, 1972:466).

The most common way of separating a problem is by using contradictory constraints

on a single variable (Geoffrion and Marsten, 1972:466). An example of this approach

would be fixing one variable to a single value and solving the rest of the problem with

this variable constant. The optimal solution for this subproblem can be selected (Step

2) as a candidate for the optimal solution to the parent problem while other

subproblems are examined.

Relaxation. Relaxation (Step 3) determines a limit to the value of the objective

function of a parent unrelaxed problem by loosening the constraints on the problem.

This simplification of the parent problem implies the following relationships:

1. If the subproblem has no feasible solutions, the same is true for the parent
problem.

2. If an optimal solution of the subproblem is feasible in the parent problem, then
it is an optimal solution of the parent problem (Geoffrion and Marsten,
1972:467).
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Relaxation can be performed by simply omitting one of the constraints or by

eliminating the bounds or nonnegativity conditions on the variables in the parent

problem (Geoffrion and Marsten, 1972:467).

Fathoming. Fathoming (Step 4) involves discarding subproblems from further

consideration if:

1. The subproblem can be shown to have no feasible solution.

2. The subproblem has no feasible solution better than the current candidate
solution to the parent problem (Geoffrion and Marsten, 1972:468).

If an optimal solution to the subproblem can be found, then the subproblem is

completely accounted for, and there is no need for further separation (Geoffrion and

Marsten, 1972:468).

By applying the techniques of separation, relaxation and fathoming to a problem, it

is expected that the solution space (defined by the constraint set) can be systematically

searched to find and verify the optimal solution to the problem (provided one exists).

One enumerative technique in which these principles are applied is the branch and

bound method, where solutions to valid subproblems provide a bound to the optimal

solution of the initial problem.

Branch and Bound. Branch and bound (as applied to a scheduling problem) is an

enumerative solution method which creates a "tree" of partial schedules. Each node in

the tree represents an active schedule at a stage when more than one operation could

be scheduled on a particular machine. Each "branch" emanating from a node

represents the selection of one of the competin& operations (Conway, Maxwell, and
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Miller, 1967:117). Each branching operation can create as many new partial schedules

as there are competing operations at that stage. Creation of all possible branches at

each node will eventually result in a set of all possible feasible schedules (Stinson,

Davis, and Khumawala, 1978:253). This set is too large to be practical for finding the

optimal solution to even medium-sized problems. Therefore, partial schedules are

fathomed using lower bounds and upper bounds as a means to reduce the time

required to find and verify the optimal solution.

A lower bound based upon an existing partial schedule is calculated for every

node, and represents the "best case" value for the objective function for all of the

complete schedules which ultimately emanate from that node (Conway, Maxwell, and

Miller, 1967:117). The value of a lower bound may not be feasible in a complete

schedule, because it is often calculated through relaxation of the constraints. An upper

bound is calculated after a complete schedule has been generated. It consists of the

value of the objective function measure for the complete schedule (Conway, Maxwell

and Miller, 1967: 117).

Techniques known as search methods use these bounds to converge on an optimal

solution by evaluating the iounds of the branches and determining how the branch-

and-bound tree is developed (Johnson, 1988:17). An example of a search method is

the last-in-first-out search (LIFO). This method begins with the initial node in the

solution tree, forms all branches descending from that node, and selects the branch

with the lowest lower bound. A node is then formed from this branch, and the

branching process is repeated. An upper bound (incumbent solution's objective
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function value) is calculated when all operations have been sequenced. The LIFO

search then backtracks along the node path to the nearest node that has a descending

node that has not been extended. If this descending node's lower bound is superior to

the upper bound, the branching process resumes (Johnson, 1988:24). Branches with

lower bounds inferior to the upper bound are fathomed (i.e. eliminated from further

consideration). Each time a new complete schedule is produced, its objective function

value is compared to the current upper bound. If this new value is superior, the upper

bound is adjusted and the schedule which produced it becomes the incumbent. If an

optimal solution exists, this process will continue until an incumbent solution

backtracks all the way to the initial node, and is thus identified as the optimal solution.

The value of fathoming lies in the fact that it reduces the number of alternative

schedules which must be explicitly considered. A node whose lower bound exceeds

the current upper bound cannot possibly produce an optimal solution. We know this

because the existence of the upper bound indicates that we already have a schedule

better than the best possible case which could be obtained from the node being

fathomed.

Graph-Theoretical Method. One method of implementing the branch-and-bound

solution technique for the job shop scheduling problem is the Graph-Theoretical

machine sequencing algorithm outlined by Florian, Trepant, and McMahon in their

1971 paper "An Implicit Enumeration Algorithm for the Machine Sequencing

Problem." Their technique involves a single-pass method which generates all active

schedules, using a LIFO search method to obtain an optimal solution for regular
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performance measures. The following sections summarize the portions of their

formulation and solution technique relevant to this research effort.

A graphical notation is used to represent precedence conditions between operations.

This notation creates a node for every operation, along with an initial node (0), and a

terminal node (*). Conjunctive wcrs are one-way arrows which connect nodes

representing successive operations within each job. These arcs reflect precedence

constraints between operations. Machine interference constraints that must be resolved

to create a complete schedule are represented by opposing pairs of disjunctive Mrs.

Table 1 provides data for a sample problem consisting of two machines and three jobs.

Table 1. Sample Problem Data (Florian, Trepant, and McMahon, 1971:B783)

Operation Job Machine Duration

1 1 1 4

2 1 2 3

3 2 2 2

4 2 1 3

5 3 1 1

6 3 2 2

Figure 3 depicts this problem in graph-theoretical form. Note that conjunctive arcs

are shown between successive operations in the same job (such as operations 1 and 2).

By contrast, disjunctive arcs join operations which must be processed on the same

machine (such as operations I and 4), representing machine interference constraints.

A solution for the problem is obtained by determining the optimal sequence of

operations on each machine. This is sequence is created by "resolving" the disjunctive
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1igtne 3: Graph-Theoretical Network (Florian, Trepant, and McMahon,
1971 :B783)

arcs and replacing them with conjunctive arcs, indicating which of the two operations

will be scheduled earlier.

Resolving the Disjunctive A rcs. A disjunctive arc is resolved when the

sequence of the two operations connected by the arc is determined. An operation is

scheduled on a machine when all disjunctive arcs connected to the operation have been

resolved. To begin this process, it is necessary to identify the initial cut (C). A cut

is defined as the set of all candidate operations (those with no unscheduled

predecessors). In this example, Co consists of operations 1, 3, and 5, the only

operations with no predecessors other than the initial node. A generating set is

obtained from this cut, consisting of all operations in the cut on the same machine as

the operation in the cut with the earliest possible finish time. A branch and bound tree

node is created for each alternative within the generating set. Examination of Table 1
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reveals that operation 5 has a duration of 1 time unit. Since all operations in the

initial cut are able to start at time zero, operation 5 has the earliest possible finish

time. The generating set consists of all operations in C0 that are on the same machine

as operation 5 ( machine 1). Thus we see that the generating set for C0 is {1.5}.

Since there is more than one operation in the generating set, it is necessary to

decide which to sequence first on machine 1. A decision is made to schedule one of

the nodes in the generating cut by calculating and comparing the lower bounds of the

competing operations. The operation with the lowest bound is selected and scheduled

by resolving all disjunctive arcs connected to the node. Because the lower-bound

calculation method used by Florian, Trepant, and McMahon is not relevant to this

research effort, it will not be reviewed here, and we will simply assume that operation

I has the lowest bound.

Since operation I has the lowest bound, it becomes the first operation scheduled on

machine 1. A new cut is now defined to begin selection of the next operation to

schedule. This new cut (C1) is created by removing operation I from the cut Co, and

adding its successor, operation 2 to the cut. A generating set is obtained from this cut

as before, and the procedure repeats until all operations have been scheduled. This

method is known as the consecutive cut enumertion method. As this method

progresses, a tree of nodes begins to develop, such as in Figure 4. Florian, Trepant,

and McMahon have proven that this method generates all active schedules for the job

shop problem (Florian, Trepant, and McMahon, 1971:B-786). As mentioned
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previously, it is sufficient to consider only the set of active schedules when seeking

the optimal solution for any regular performance measure (Baker, 1974:185).

2) 5

frigunm 4: Tree of Nodes

A complete -schedule is generated when all disjunctive arcs have been resolved.

Figure 5 contains a network representation of a completed schedule that maintains the

precedence and machine relationships for all operations in our example problem.

Figure 5: Resolved Graph-Theoretical Network
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A Gantt chart corresponding to the schedule shown in Figure 5 is provided in Figure 6

to aid in the interpretation of the network.

MACHINE ONE 5 1 4

MACHINE TWO 3 :6]2

I I I I I )time
0 1 2 3 4 5 6 78

Figune 6: Gantt Chart for Resolved Network

Backtracking. Once a complete schedule has been generated, a value for the

objective function is computed. (Florian, Trepant, and McMahon's objective function is

to minimize makespan). This becomes the incumbent solution (upper bound). The

optimality of this solution is then tested by backtracking through the tree of nodes.

The lower bound of all nodes in the generating set of each cut are examined. If any

of the lower bounds are less than the incumbent upper bound, then the corresponding

operation is substituted for the operation originally scheduled from that cut. A new

series of cuts is then defined, and the procedure repeats until we have backtracked all

the way to the initial cut. If, however, a node's lower bound is greater than the

incumbent upper bound, then the node is fathomed and the schedules which would

have been produced from that node need never be explicitly considered. The sequence
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producing the final upper bound is an optimal sequence for the desired management

objective (Florian, Trepant, and McMahon, 1971::B-782 - B-790).

Summary

Our overview of TOC has reviewed the rationale allowing the scheduler to focus

on the constraints in the system. Our review of the DISA STERTN software package

demonstrated how this program applies TOC to generate a useable schedule. We also

noted the potential shortcoming of DISASTERTM resulting from its heuristic solution

method. We reviewed the classification of production scheduling problems, and the

methods that exist to generate schedules for these problems. Finally, we examined

methods for determining the solution to a production scheduling problem, with

particular emphasis on the characteristics of the branch-and-bound solution technique

and the Graph-Theoretical method for producing optimal solutions.
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III. Meihodology

In our survey of the existing literature, we did not find an optimal solution method

that met our requirements. In accordance with our second research objective, we

developed a solution method for simultaneously scheduling multiple constraints in a

job shop. The first step in developing this method was to formulate the problem. Our

formulation seeks to optimize due date performance by minimizing the maximum

tardiness of all jobs. The algorithm we developed to solve this problem was an

adaptation of the Graph-Theoretical method developed by Florian, Trepant, and

McMahon for the general job shop. The basic node expansion logic of their method

was retained, but new bounds were required due to the different objective function.

Additional modifications were required to accommodate the differences between the

general job shop and a job shop applying the principles of TOC.

Problem Formulation

Our problem formulation was adapted from Baker's 1974 integer programming

formulation for the job shop problem. Our formulation uses the following notation.
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Table 2: Function Notation

n = the number of jobs

q, = the number of operations in job 1

m = the number of machines

= ln jobs

j = l..q, operations

k = l..m machines

f~jk = completion time of operationj of job i on machine k

,h, h = due date of job i

fP0 = processing time of operation q of job p on machine k

g,"ý = the ready time of operation j of job i on machine k
X = very large positive number

C = the set of all jobs

Y~lp).Ilk = I if operation j of job i precedes operation q of job p on machine k.
else = 0

Objective Function.

Min( iIC(MX(,,-J,0))) (5)

Subject To:

f(*t-d*Iit gykt V ij~k (6)

fP0-fuk+X( -y(4P)t) >dot V ijp,q,k (7)

fjfk-fet+X(y(jP)W) z dt* V ij,p,q,k (8)

fo-dyk z 0 V Ajk (9)

The objective is to minimize the maximum tardiness (the difference between due

date and completion) across the set of all jobs. Equation (7) states that no operation
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can start any earlier than its ready time. Equations (8) and (9) prevent the scheduling

of two operations on the same machine simultaneously. Equation (10) prevents

scheduling of operations in the past. The g,, are used to accommodate the rods.

Algorithm Development

Our algorithm was based on the Graph-Theoretical machine sequencing algorithm

developed by Florian, Trepant, and McMahon described in the previous chapter. This

method was selected because their solution technique was easily adaptable to the

objective of minimizing maximum tardiness by simply using a different lower bound.

The bound we developed for this research effort is calculated by assigning each

operation the due date of its job and sequencing the operations by earliest due date

(EDD) with ties broken arbitrarily. The value of this lower bound reflects the

minimum possible maximum tardiness at each point in sequence of operations. A

proof of the validity of this lower bound is contained in the following sections.

Assumptions: All operations are ready for processing at t=0 (referred to later as the

assumption of readiness).

Notation:

C = the set of all operations

ij = two operations within C

B, = the set of operations preceding operation i in the current schedule

f• = the completion time of operation i

hi = the due date of the job containing operation i

T, = the tardiness of operation i

di = the processing time of operation i
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Single Machine Tardiness Detennination Hypothesis: On a single machine, for all

jobs, tardiness of a job will be determined by the maximum tardiness of the operations

in that job.

Single Machine Tardiness Determination Proof- Each job consists of multiple

operations and is assigned a job due date. Assume that there exists a job, A,

consisting of two operations, i and j. Job A will be complete upon the completion of

operations i and j. It can therefore be stated that the due date for the completion of

operations i and j is the due date for the completion of job A. Tardiness is defined as

the positive difference between the completion of an operation or job and its due date.

Since the due date is the same for both operations i and j, the tardiness of each

operation will be determined by the operation's finish time. In the two-operation

example with job A, there are only four possible outcomes:

1. Iff,<h, and fj hthenT. =0

2. Iff, > fJ and f >hj, then TA =T,

3. Iff, > f, and f, >h, then TA=T

4. If =f, andf > h, then TA , = T,

The above example can be extended to jobs consisting of more than two operations;

however, in all cases the tardiness of a job is determined by the tardiness of the most

tardy operation.

Single Machine Tardiness Minimization Hypothesis: Since the tardiness of a job

will be determined by the tardiness of its most tardy operation, the minimized
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maximum tardiness of multiple jobs can be determined by minimizing maximum

tardiness of the operations of these jobs.

Single Machine Tardiness Minimization Proof- The following proof of minimizing

maximum tardiness with EDD sequencing is adapted from Baker (1974).

An initial sequence, S, may be formed by scheduling the operations in any order.

The assumption of readiness results in a schedule with no idle time - a continuous

period of activity on the machine from t = 0 until the completion of the last scheduled

operation. The makespan of this activity on the machine will remain the same

regardless of the sequence of operations.

If the operations are not in EDD sequence, there will exist two operations, i and j,

withj directly following i such that h, > h•. A new sequence, S', can be constructed in

which i and j are interchanged and all other operations complete in the same time as in

sequence S.

The tardiness of the two operations in sequence S will be determined as the

positive difference between the completion of an operation and its due date:

TAS) = maWx +d,-h,, 0) (10)

T/s) = max(fx+d,+d-hi 0) (11)
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The tardiness of the two operations in sequence S' will be similarly determined as:

TI(S' m-,ff,+dj+d1-h,, 0) (12)

TAS') M= fdfm+dj-hj 0) (13)

If neither J jeration has tardiness > 0, there is no benefit or penalty in terms of

minimized maximum tardiness by interchanging the two operations. If both operations

have positive tardiness, the above relationships show that:

T1 S) > T(S') (14)

and

TJ(S) > TS' (15)

The tardiness of operation j in sequence S is greater than the tardiness of i or j in

sequence S' If operation i or operation j are not the most tardy operations in the

sequence S, the value for T.,. will be unchanged in sequence S'. This procedure may

be repeated for all operations in the sequence where the succeeding operation's due

date is earlier than that of the preceding operation. At each iteration, the value of .,.,

will remain the same or be reduced. After all of these cases have been resolved, the

resulting sequence will minimize maximum tardiness for all operations in the schedule.

Multiple Machine Hypothesis: The procedure that we have just reviewed for

sequencing operations on a single machine can be used as a bound in the multiple

machine case by ignoring operational precedence constraints and scheduling each

machine independently. By scheduling the remaining operations of all jobs on each
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applicable machine by EDD, we will minimize the maximum tardiness of each job

relative to each machine. The value for the bound will then be the maximum tardiness

of all jobs among all machines.

Multiple Machine Proof: As presented in Geoffrion and Marsten (1972), any

constrained optimization problem, P, can be relaxed by loosening its constraints,

resulting in a new problem, P'. In the case of our bound, the problem of sequencing

the operations among both machines, P, is simplified by relaxing the operational

precedence constraints and the machine interference constraints. The new problem, P,

requires that we minimize the maximum tardiness among each machine independently

when all operations are available for processing at T=O. The property of relaxation

implies that the minimal value of our performance measure for P is no less than the

minimal value of the performance measure for P' Additionally, if an optimal solution

of P' is feasible in P, then it is an optimal solution for P.

Statement of the Basic A Igorithm

Our algorithm, as adapted from the algorithm outlined in Florian, Trepant, and

McMahon's 1971 paper to reflect the objective of minimizing maximum tardiness, is

presented below.

1. Problem initialization

a. Designate the initial cut, a set consisting of all operations whose only
predecessor is the initial node.

b. Compute earliest start times for all operations.
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c. Set upper bound -

2. Extract Generating Set from Cut

a. Determine the operation in the cut with the earliest finish time.

b. All operations in the cut on the same machine as the above operation are in
the generating set.

c. If there are no operations in the generating set, then go to step 8.

d. If there is only one operation in the generating set, then go to step 6.

e. If there is more than one operation in the generating set, then continue.

3. Compute the lower bound for every operation in the generating set.

a. Assume the selected operation is scheduled.

b. Sequence all unscheduled operations by earliest due date.

c. Calculate the tardiness for each job.

d. Record maximum tardiness. This is the lower bound for the selected
operation.

4. Select the operation in the generating set with the lowest value for the lower
bound. If this lower bound > the incumbent upper bound, then go to step 7;
otherwise schedule the selected operation next on its designated machine.

5. Set the lower bound for the selected operation = 0o.

6. Remove the selected operation from the cut, and add any successors to the
selected operation to the cut. Compute new earliest start and finish times for
each unscheduled operation. Go to step 2.

7. If the current cut is the initial cut, then go to step 9; otherwise backtrack to the
previous cut and go to step 4.

8. A complete sequence has been generated. Compare the maximum tardiness of
this sequence to the incumbent upper bound. If this sequence results in a lower
maximum tardiness, then the maximum tardiness resulting from this sequence is
the new upper bound. Go to step 7.
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9. The last complete sequence generated was the optimal sequence for minimizing
maximum tardiness.
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A daptaton of the Basic A Igorithm to a TOC Job Shop

Three basic changes were made to adapt the previously defined algorithm to a

TOC job shop and allow a valid comparison to results generated by DISA STERTM.

Constraints. DISA STERTM only creates a schedule for constraint resources, and it

controls all non-constraint resources through subordination. In order to provide

schedules comparable with those generated by DISASTERTM we ignored all non-

constraint operations, and built a schedule for the constraint operations only.

Subordination of non-constraint operations to our constraint schedule is beyond the

scope of this research effort.

Shipping Buffer DISASTERTM defines a job as tardy if the last constraint

operation is completed less than one-half of a shipping buffer before the due date of

the job. If the operation is completed after this point, DISASTERTM adds one full

shipping buffer to the completion time of the last constraint operation to arrive at the

anticipated completion time of the job. To allow a comparison with results generated

by DISA STERTM, we have used the same method to compute completion times.

Rods. Since we are only scheduling constraints, TOC mandates the use of rods

between operations. In order to introduce this concept into our algorithm, we calculate

an adjusted ready time for each operation. This new ready time is the earliest time

that an operation can be scheduled without violating a rod. To allow a comparison

with results generated by DISASTERTm, we used the same half-buffer rod length, and

the same method of calculating rod placement.
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Model Coding

The algorithm was encoded using Bodarnd Turbo Pascal for Winduws 1.5. The

program was compiled and run on a Unisys personal computer (IBM compatible) with

a 386DX 33MHz processor. This machine had eight mega-bytes of RAM and a 387

coprocessor. The operating environment was Microsoft DOS 5.0 with Microsoft

Windows 3.1. A copy of the program file is included in Appendix B.

Experimental Factors

In accordance with our fourth research objective, a split-plot experimental design

was created to manipulate several job shop characteristics. The performance of our

algorithm was examined through the manipulation of three factors to observe the effect

on a set of dependent variables. This experimental design was developed by Captain

Stewart W James and Captain Bruno A. Mediate in thesis AFIT/GSM/LAS/93S-9 to

produce a set of benchmark problems and DISASTERTM solutions. A description of

each factor and its levels are provided below.

Plant Type. The first experimental factor differentiates among three basic plant

types used in this research effort: A-plants, T-plants, and V-plants. A single

configuration of each plant type was used in the benchmark problems.

An A -plant is a plant in which operations converge, with a few finished products

created from many raw materials (Fawcett and Pearson, 1991:50). For the purpose of

this research effort, an A-plant will create one finished good from nine raw materials.

A diagram of the A-plant used in this research is provided in Appendix A.
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A T-plant is a plant in which several finished goods are created from several raw

materials. This type of plant is usually an assemble-to-order operation with a number

of common parts used to assemble the finished products (Fawcett and Pearson,

1991:51). For the purpose of this research effort, a T-plant will create five finished

goods from four raw materials. A diagram of the T-plant used in this research is

provided in Appendix A

A V-plant is a plant in which operations diverge, with many finished products

created from a few raw materials (Fawcett and Pearson, 1991:50). For the purpose of

this research effort, a V-plant will create five finished goods from one raw material.

A diagram of the V-plant used in this research is provided in Appendix A.

Plants exhibiting characteristics of more than one of these plant types are called

combination plants (Fawcett and Pearson, 1991:50). Combination plants will not be

addressed in this research effort.

Percent Resource Criticality Factor. Of the ten resource types used in the

previously defined plants, Captains James and Mediate defined two constraints, the

Blue resource and the Gold resource. They operationalized the demand for each

constraint as a percent resource criticality factor (%RCF). %RCF is defined as the

ratio of total time a resource is required for a given time period to the total capacity

available for that resource (Gargeya, 1992: 3). The second experimental factor

expresses demand for the lower-constrained resource in terms of %RCF at three

different levels: 105%, 115%, and 125%. These levels of %RCF are achieved in the
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benchmark problems by varying the required processing time of each operation on the

constraints, as depicted in Appendix A.

Percent Delta Resource Cnticality Factor Differences in demand between the two

constraint resources is expressed in terms of their third experimental factor (%ARCF).

This factor is expressed at three different levels: 0%/e, 25%, and 50%. These levels of

%ARCF are achieved in the benchmark problems by varying the relative processing

time of each operation on the constraints, as depicted in Appendix A.

Background Variables. Captains James and Mediate identified sixteen background

variables, all but two of which were controlled by holding them constant. The

exceptions were product types, and job order due dates.

Product Types. To achieve a wide range of conditions, a series of product

types were defined, using various constraint process sequences. The following table

identifies the constraint sequence for each plant type's products.

Table 3: Product Type Constraint Sequence (James and Mediate, 1993:115-141)

Plant Type Product Type Constraint Sequence

A FG-D Blue-Gold-Blue

T FG-B Blue-Blue-Gold-Blue

T FG-C Blue-Blue-Gold

T FG-D Gold

T FG-F Gold

T FG-G Blue-Blue-Gold-Gold

V FG-A Blue-Blue

V FG-B Blue-Gold

V FG-D Blue

V FG-E Gold-Gold

V FG-G Gold-Gold-Blue
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Due Dates. Job order due dates were assigned according to a due date

assignment rule which is based on the job order's arrival date, and the number of

processing stations for the corresponding product type (Ragatz and Mabert, 1984:29).

There were ten job orders for each replication. The product types were drawn from

the table above, and the arrival dates were randomly selected without replacement

from a two week period. This process was used to generate four replications for each

treatment of the experimental factors, resulting in 108 benchmark problems (3 plant

types x 3 %/oRCF levels x 3 %ARCF levels x 4 replications = 108 replications). The

replications for each plant type were not identical, hence the split-plot experimental

design. Details on the levels of the experimental factors for each replication are

included in Appendix A. Since the problems involved two constraints, Captains James

and Mediate ran each replication through DISASTERTM twice, reversing the sequence

of the constraint schedule and thereby producing two separate schedules for each

replication. Because of the simultaneous scheduling nature of our algorithm, we

produced only one schedule for each replication.

Data Collection

We used the 108 problems developed by Captains James and Mediate to create an

input data file for our algorithm. Running our program with this input file, we

attempted to produce an optimal solution for each problem. We discovered that

several problems would not produce a solution within a reasonable amount of

processing time. As a result, we terminated processing for each problem after 5
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minutes of CPU time if an optimal solution had not yet been verified. At that point,

we designated the incumbent solution as a "heuristic" solution. These solutions may,

in fact, have been optimal, but the time required to verify the optimality of the

solution exceeded the designated time limit.

Statistical A nalysis

In order to satisfy research objectives three and four, we performed a series of

statistical comparisons using descriptive statistics and analysis of variance (ANOVA).

All analyses were conducted using the STATISTIXTM 4.0 software package.

Statistical Comparisons. In order to compare the maximum tardiness of schedules

created by DISASTERTm with that of schedules created by a simultaneous scheduling

method (research objective three), we must compare the samples of data collected

using both solution methods. Tests for statistical comparisons among the means or

medians of two samples of data (i.e. paired t-test, sign test) require independence of

the data within each sample set. Our split-plot experimental design introduces

dependence among these values, since the same four replications are repeated within

each setting for plant type (this is a characteristic of the split plot design). Therefore,

statistical tests of the means or medians of these samples are not valid (Reynolds,

1993). As a result, we analyzed all comparisons between the two solution methods of

data qualitatively.

A nalysis of Vanrice. Our fourth research objective requires an investigation of

the extent to which the performance of a simultaneous scheduling method is related to
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the characteristics of the job shop (research objective four), an ANOVA was used to

examine the variance of the mean values for dependent variables resulting from

different levels of each of the experimental factors. The model used for a three-factor

split-plot ANOVA for the dependent variable (XJk) is d,:fined below, as adapted from

Kirk, 1982.

when: p ,,,= mean estimate of X

a,,,y•1= main effects parameters

X,,)=confounding interaction error parameter

(a0 3 )1k,(a7),1,( 0Y)k1= two-factor interactions

(037)kIO),(Y)c)k0O,,= two-factor error parameters

(aI3y) 1,= three-factor interactions

(fr•tXIh)= three-factor error parameter

sijkl= random effects error

and: i = number of replication =1.4

j = values for PLANT=A, V, T

k values for %RCF=105, 125, 150

1= values for %ARCF=O, 25, 50

Our null hypothesis (H0 ) was that the values of Pk are equal in the ANOVA model.

Our alternate hypothesis (HA) was that the p,,, terms are different.
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The ANOVA of the split-plot model accounts for the dependence introduced by the

presence of the confounding variable (replications) and the resulting error parameters

shown above. However, an analysis of differences in the results generated by our

algorithm and those generated by DISASTERTM among the levels of experimental

factors could not be examined through the split-plot ANOVA. This comparison would

have to account for another set of treatments introduced by the two solution

procedures, creating an environment that must be addressed by a split-split plot

ANOVA (Reynolds, 1993). The execution this analysis is highly complex, and is

beyond the scope of this research effort. Consequently, ANOVA will be used when

addressing research objective four, but not research objective three.

Assumptions of the ANOVA Model. There are three common assumptions for

standard ANOVA models: independence among groups, normality of the sampling

distributions of sample means, and homogeneity of variance. As previously

mentioned, the condition of independence among groups does not apply in

experimental situations in which different treatments are applied to the same subject (a

split-plot design) (Cody and Smith, 1991: 136). The condition of normality is easily

verified through the use of a Wilk-Shapiro test. All of our sampling distributions

demonstrated a Wilk-Shapiro statistic of greater than 0.9, indicating good normality

(Reynolds, 1993). All of our sample distributions also exhibit good homogeneity of

variance when examined via a scatterplot.

Post-ANOVA Analysis. Statistically significant differences among the means

associated with different levels of the three experimental factors were investigated
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using a Tukey Multiple Comparisons Method (p=0.05). This test is used to rank the

means and test for pair-wise differences among the means (Freund and Littell,

1981:57). Sample means that differ by more than the critical value (calculated using

the appropriate degrees of freedom and levels of significance) are found to be

statistically different from the others (Freund and Littell, 1981:56).

The ANOVA also identifies interaction among the experimental factors. Any

interaction with a p-value greater than 0.05 was examined by plotting the means

associated with each level of the experimental factors. The interaction plots were

visually inspected to locate cross-over points where the values of one experimental

factor demonstrated different trends given the values of the other experimental factors.

This plot makes it possible to identify the response of the dependent variable to

combinations of the experimental factors that may have been nullified in the ANOVA.

Summary

In this chapter, we examined our basic algorithm for scheduling a job shop to

minimize maximum tardiness. This algorithm required several modifications to

incorporate TOC and allow valid comparisons with DISA STERTM. We reviewed these

modifications, along with our experimental design and data collection procedures.

Finally, we presented our method for statistical analysis.
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IV Results

We used several statistical comparisons to analyze the results of our research

effort. The primary purpose of these comparisons was to address our third and fourth

research objectives by comparing the maximum tardiness of schedules created by

DISASTERTM with those created by a simultaneous scheduling method, and

determining the extent to which the performance of a simultaneous scheduling method

is related to characteristics of the job shop. The data used for these analyses can be

found in tabular form in Appendices C and D.

Comparison with DISA STERTM Results

In order to asses the maximum tardiness of schedules created by DISA STERTM"

with those created by a simultaneous scheduling method (research objective three), we

conducted three sets of comparisons. The data groups used for these comparisons are

outlined in Table 4. Details of each comparison follow the table.
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Table 4: Data Grouping for Comparison of Schedules

GROUP [ DEFINITION

ALLCASE Best solution (optimal or heuristic) found by our algorithm within
the five minute time limit for maximum number of days tardy for
each problem

OPTCASE Optimal solution found by our algorithm for maximum number of
days tardy for each problem

DISASTERba, Best solution for maximum number of days tardy for each problem
as determined by DISASTERTM

DISASTERWO., Worst solution for maximum number of days tardy for each
problem as determined by DISASTERTM

DISASTERmt Best solution for maximum number of days tardy for each problem
as determined by DISASTERTM (excluding problems without

constraint interaction)

%ATARDYm., Percent reduction in maximum tardiness for each problem between
our best solution (optimal or heuristic) and DISA S7TERTM's best
solution (with or without interactive constraints)

%ATARDY = (DISASTER=-ALLCASE) (17)

%ATARDYWOft Percent reduction in maximum tardiness for each problem between
our best solution (optimal or heuristic) and DISA STERTM's worst
solution (with or without interactive constraints)

%ATARDY.., = (DISASTER.m-ALLCASE) (18)DIS4STER.,

%ATARDYi~t Percent reduction in maximum tardiness for each problem
between our optimal solution and DISA STERTM's best solution
with interactive constraints.

%ATARDY, = (DISASTERi.-AL WASE) (19)

DIMSTERL

Comparison with DISASTERTM Best Case. This comparison was made between

the tardiness for each problem given the best solutions (optimal or heuristic) obtained

using our algorithm within the five minute time limit (ALLCASE) and the tardiness

for the same problems given the best solutions obtained for the same problems using
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DISASTERTM (DISASTERI•). This comparison gives some indication of the degree

to which DISA STERTM is capable of achieving the minimum possible maximum

tardiness for a given problem. Descriptive statistics for each dependent variable, as

well as the percent difference between the dependent variables (%ATARDYb,,) are

provided in Table 5.

Table 5: Descriptive Statistics - ALLCASE vs DISASTERb.,S

VARIABLE MEAN TARDINESS MEDIAN TARDINESS STANDARD DEVIATION

ALLCASE 7.2 days 7.0 days 2.9 days

DISASTER, 7.9 days 7.0 days 2.8 days

%ATARDY,. 1 2.2 % 0.0 % 10.2 %

A histogram of the percent differences (%ATARDYb••) is shown in Figure 8. Positive

values reflect superior results by simultaneous scheduling of the constraints. Negative

100

86

2. 0 . ............................ ........... ........-------- ............. ... ..............---- ................ ...................

1 3 1 62 1 1

80

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

% Delta TARDY best
Figure 8: Histogram of %ATARDYb.,,
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values do not represent superior performance by DISA STERTM In these cases,

DISA STERT' identified only one constraint, and therefore solved a simpler problem

than the one solved by our algorithm.

Inspection of the histogram revealed that although a one case resulted in a

difference in minimized maximum tardiness as large of 50%, the majority of cases

(76%) resulted in no difference. This observation, along with the descriptive statistics

indicated that DISASTER, typically performed as well as ALLCASE.

Comparison with DISASTERTm Worst Case. This comparison was made between

the tardiness for each problem given the best solutions (optimal or heunstic) obtained

using our algorithm within the five minute time limit (ALLCASE) and the tardiness

for the same problems given the worst solutions obtained for the same problems using

DISASTERTh (DISASTER,.j. This comparison gives some indication of the degree

to which a user of DISA STERTm may fail to achieve the minimum possible maximum

tardiness for a given problem if they fail to schedule constraints in the best sequence.

Descriptive statistics for each dependent variable, as well as the percent difference

between the dependent variables (%ATARDYO) are provided in Table 6.

TalMe 6: Descriptive Statistics - ALLCASE vs DISASTERkor

VARIABLE MEAN TARDINESS MEDIAN TARDINESS STANDARD DEVIATION

ALLCASE 7.2 days .70 davs 2.9 days
DISASTER,, 9.1 days 9.0 days 3.5 days
! %ATARDYW,. 19.3 % 15.5 % 18.0%

A histogram of the percent differences (%ATARDY..j is shown in Figure 9.
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Figure 9: Histogram of %ATARDY,,o,.,

Inspection of the histogram revealed a difference in the majority (70%) of cases.

For many cases this difference was great, as high as 60%. This observation, along

with the descriptive statistics indicated that ALLCASE performance was typically and

substantially better than that of DISASTER.,,.

Comparison of Optrmal and Valid Cases. Out of the 108 benchmark problems

provided by Captains James and Mediate, 39 did not provide a satisfactory solution for

comparison. In these 39 problems, the best case solution provided by DISASTERTM

failed to account for the existeftce of the second constraint, thereby eliminating

constraint interaction. Additionally, our algorithm was unable to find and verify an

optimal solution for 26 of the benchmark problems. Therefore, we limited our third

comparison to the 51 problems for which both an optimal solution was obtained using
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our algorithm (OPTCASE), and interactive constraints existed in the solution provided

by DISA STERTm (DISASTER.). This comparison identifies the differences in the

best solutions provided by DISASTERTm and the optimal value for minimized

maximum tardiness for a given problem, without any of the complicating factors

mentioned above. Descriptive statistics for each dependent variable, as well as the

percent difference between the dependent variables (%ATARDYmt) are provided in

Table 7. A histogram of percent differences (%ATARDYj) is shown in Figure 10.

Table 7: Descriptive Statistics - OPTCASE vs DISASTER.,

VARIABLE MEAN TARDINESS MEDIAN TARDINESS STANDARD DEVIATION

OPTCASE 7.2 days 7.0 days 2.9 days

DISASTER.. 7.9 days 8.0 days 3. 1 days

%ATARDY, 2.9% 0.0% 6.5 %

50
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1 0 ....... .. ---. ................... ......
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10 1S
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Figure 10: Histogram of %ATARDY.,
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Inspection of the histogram revealed that the majority of cases (71%) resulted in no

difference. This observation, along with the descriptive statistics indicated that

although DISASTERTM did not always achieve the optimal solution for minimized

maximum tardiness, there were only occasional moderate differences between the

values for this performance measure as represented by the variables OPTCASE and

DISASTERb,.

Investigation of A lgorithm Performance

In order to determine the extent to which the performance of a simultaneous

scheduling method is related to the characteristics of the job shop (research objective

four), we examined the relationship between the performance of our algorithm and the

characteristics of the job shop designated as factors in our experimental design. These

factors are listed in Table 8.

Table 8: Experimental Factors

FACTOR DEFINITION LEVELS

PLANT Job shop configuration A, T, V

%RCF Percent resource criticality factor 105, 115, 125

%ARCF Difference in percent resource criticality factor 0, 25, 50

For each problem, we recorded two parameters which characterized the

performance of our algorithm. First, we recorded the time required to find the best

solution (without verification) for our objective of minimized maximum tardiness

(TrnD). This measure gives an indication of the strength of our branching technique.
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Next, we recorded the time required to verify the best solution (exclusive of the time

to find) for our objective of minimized maximum tardiness (Tvwy). This measure

gives an indication of the strength of our lower bound. If the best solution was not

verified within five minutes (300 seconds), then verification time was designated as

TVMm7 = 300 - Tp• (20)

For the 26 problems where the best solution was not verified as optimal within five

minutes, Tm~y represents an optimistic measure of the actual time required to verify

our best solution. Therefore, the statistical significance of any differences in our

values for TvE across the various levels of the experimental factors are likely to be

understated in this analysis.

We analyzed both dependent parameters with respect to the different levels of the

factors-of the experimental design using a split-plot ANOVA. The ANOVA indicated

no in difference Twn, across the different levels of the experimental factors.

However, the ANOVA did indicate a significant difference in TVEy across different

levels of PLANT (P-value = 0.0004). A Tukey test showed that our algorithm verified

the optimality of the best solution for our objective function in problems with PLANT

- V significantly faster than in problems with PLANT = A or T. There were no

significant differences across thl 'ferent levels of the other two experimental factors.
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Sum mary

In this chapter, we presented the results of our analyses in two parts. First, we

compared the schedules generated by our algorithm with those generated by

DISASTERTM. We demonstrated that with proper constraint sequencing,

DISASTERTM is capable of achieving a level of maximum tardiness similar to that

achieved by our algorithm. However, we also showed that if the constraint sequencing

in DISASTERTM is not chosen carefully, our algorithm was able to achieve lower

maximum tardiness.

Next, we investigated the solution characteristics of our algorithm. We found that

there was no difference in time to find the best solution across the different levels of

the experimental factors, but that there was a significant difference in time to verify

the best solution across different values of PLANT, with V-Plant problems being

verified significantly faster than T-Plant or A-Plant problems.

Table 9: Summary of Results

COMPARISON RESULTS

ALLCASE vs DISASTERb Mean difference = 2.2%
Median difference = 0.0%
Standard deviation of difference = 10.2%

ALLCASE vs Mean difference = 19.3%
DISASTER.. Median difference = 15.5%

Standard deviation of difference = 18.0%

OPTCASE vs DISASTERI.. Mean difference = 2.9%
Median difference = 0.0%
Standard deviation of difference = 6.5%

TvRD No significant difference across levels of the experimental
factors

TveIUFY Faster (P-value = 0.0004) verification in problems with
PLANT = V vs problems with PLANT = A or V
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V Conclusions and Recommendaions

In the previous chapter, we presented the results of our research. In this chapter

we will examine these findings as they relate to our research objectives, and offer

some suggestions for further research.

Problem Fonnulation and Solution Methodology

We formulated the job shop problem for the objective of minimized maximum

tardiness in a manner consistent with the principles of TOC. This formulation differed

from traditional job shop formulations primarily due to the introduction of rods. The

presence of rods was reflected by dynamic ready times among the constraint

operations. We were unable to identify an optimal solution technique consistent with

our formulation during our review of the literature. We therefore modified the Graph-

Theoretical method of Florian, Trepant, and McMahon to reflect the performance

measure of minimized maximum tardiness and the relevant concepts of TOC.

Comparison with DISA STERTM Results

In general, our algorithm demonstrated little improvement over DISA STERT's

best performance for the objective of minimizing maximum tardiness. A mean

reduction in tardiness of 2.9% was achieved between DISASTER--s best solutions for

problems with interacting constraints and our optimal solutions for the same problems.
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In 71% of these problems, there was little or no difference between the maximum

tardiness of schedules generated by our algorithm and those created by DISASTERT"

This improvement was less than we initially expected since our algorithm was

designed solely to find an optimal schedule to minimize maximum tardiness, while

DISA S TERT's heuristic solution technique attempts to meet numerous scheduling

objectives. Our results indicate that DISASTER"'s heuristic solution technique is

very strong for this performance measure.

Despite the excellent performance of DISA STERT?"s best solutions there is still

room for improvement. In 29% of the problems comparing our optimal solutions and

DISA STER"''s solutions with interacting constraints, we achieved at least 10% better

performance for the objective of minimizing maximum tardiness. The improvement

demonstrates that simultaneous scheduling of the constraints can result in better

schedule performance, which may translate into increased system throughput.

Our algorithm demonstrated significant improvement (mean = 19.3%) over

DISA STERTm's worst performance even when heuristically limited to five minutes of

processing. It was also observed that the sequence of constraints resulting in the worst

solution for minimized maximum tardiness was occasionally the sequence which was

recommended by DISASTERTIM. Our improvement over DISASTERTr's worst

performance suggests that users of DISASTERTM should examine the results of all

possible constraint sequences to find the best schedule that DISASTERTM is capable of

producing for a given performance measure.
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Investigation of A lgonthm Performance

We determined that there was no difference across the various levels of the

experimental factors in the time required to find the best solution for our objective of

minimized maximum tardiness. However, we did find a statistically significant

difference across levels of the experimental factors in the time required to verify the

best solution for our performance objective. Solutions to problems in V-plants were

verified significantly faster than solutions to problems in T-plants and A-plants.

There are a greater number of operations in A-plants and T-plants than V-plants

In order to maintain comparable total constraint loading, the problems with more

operations have shorter processing times per operation. The rods create a greater

interval between operations as the processing time per operation decreases. Our bound

does not account for the presence of rods. Thus, it appears that our bound is weaker

in plants with shorter processing times because the best achievable tardiness is

significantly greater (due to the gaps in the schedule) than that estimated by simple

early-due-date sequencing, which ignores the presence of rods.

Recommendations For Further Research

Scheduling practices using TOC have not been subjected to a great deal of

empirical research. As such, there has been little information available to evaluate the

results of this process in a controlled environment. This research has demonstrated the

relative strength of DISA STERTM's heuristic constraint scheduling technique for the

objective of minimized maximum tardiness. Continued evaluation of this heUristic is
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encouraged, since this portion of the software is a crucial to determining the

throughput of the production system. Any increase in throughput as a result of

improvements to this heuristic or other aspects of DISASTERTM will be very valuable

to users of this software.

There are three general areas where we identified a need for further research.

First, there are several areas in which our algorithm could be improved. A new lower

bound could be developed which is able to consider the effects of rods. The utility of

the algorithm could also be enhanced by addressing other parts of TOC scheduling

such as subordination of non-constraints to the constraint schedule. Also, heuristic

solution techniques could be developed which avoid lengthy optimality verification.

These improvements would create a viable scheduling alterative to DISASTERTm. This

alternative would not be dependent on proper constraint sequencing for maximum

performance.

Another area rich in opportunity is further evaluation of DISASTERTM.

Algorithms should be developed to evaluate the ability of DISA STERTM to maximize

or minimize another objective - number of late jobs, makespan, etc. This would reflect

the other management concerns relevant to job shop scheduling. Additionally, it

would be very useful to develop an ability to predict the small percentage of cases

where DISA STERTm's solutions are far from optimal and devise heuristic adjustment

procedures to deal with those cases.

The evaluation of DISA STERTM could also be enhanced by the development of a

new experimental design with compete independence among the benchmark problems.
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A more thorough analysis could then be conducted to determine the relationship

between the optimality of DISA STERrM's solutions and the characteristics of the job

shop.

The final area of further research opportunity which we envision is in the

application of TOC scheduling to the USAF. Multiple constraints are known to exist

in many USAF operations. The budget-cutting activities of 1990's can be expected to

put more demand on our remaining resources, which will increase the likelihood of

encountering system constraints. An empirical study of USAF systems is needed to

identify the number and nature of existing constraints in USAF systems (i.e. activities

at an Air Force Logistics Center). This research will help focus the efforts of both

future users and researchers of TOC.

Conclusion

This research effort has provided the first empirical evidence of the effectiveness

of the DISA STERTM scheduling program. The existing partnerships with the Avraham

Y. Goldratt Institute will allow the Air Force to become an influential participant in

the further refinement of DISASTERTm. We can expect that the management of the

constraints in USAF operations will contribute to future success in executing our

global mission. As the Air Force is challenged to increase its effectiveness despite

shrinking resources, the strategies expressed in TOC will be a valuable source of

guidance for continuous improvement efforts.
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Appendix A: Job Shop Scheduling Problems
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Figum 11: A-Plant Configuration (James and Mediate, 1993:115-123 )
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Table 10: A-Plant Constraint Loading (James and Mediate, 1993: 115-123)

%RCF %ARCF [ Blue Processing Time Gold Processing Time

105 0 170 170

105 25 170 210

105 50 170 250

115 0 185 185

115 25 185 230

115 50 185 275

125 0 200 200

125 25 200 250

125 50 200 300

Table 11: A-Plant Job Order Due Dates (James and Mediate, 1993: 115-123)

Rep One Rep Two Rep Three Rep Four

Product JDue Date Product Due Datel Pro duct jDue Datel Product jDue Date

FG-D 04 Oct 93 FG-D 04 Oct 93 FG-D 05 Oct 93 FG-D 05 Oct 93

FG-D 05 Oct 93 FG-D 07 Oct 93 FG-D 05 Oct 93 FG-D 06 Oct 93

FG-D 05 Oct 93 FG-D 07 Oct 93 FG-D 07 Oct 93 FG-D 07 Oct 93

FG-D 06 Oct 93 FG-D 08 Oct 93 FG-D 08 Oct 93 FG-D 08 Oct 93

FG-D 07 Oct 93 FG-D 12 Oct 93 FG-D 11 Oct 93 FG-D 12 Oct 93

FG-D 11 Oct 93 FG-D 13 Oct 93 FG-D 12 Oct 93 FG-D 13 Oct 93

FG-D 13 Oct 93 FG-D 14 Oct 93 FG-D 13 Oct 93 FG-D 13 Oct 93

FG-D 13 Oct 93 FG-D 14 Oct 93 FG-D 13 Oct 93 FG-D 15 Oct 93

FG-D 14 Oct 93 FG-D 15 Oct 93 FG-D 14 Oct 93 FG-D 15 Oct 93

FG-D 15 Oct 93 FG-D 15 Oct 93 FG-D 15 Oct 93 FG-D 15 Oct 93
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Figure 12: T-Plant Configuration (Jamnes and Mediate, 1993: 124-132)
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Table 12: T-Plant Constraint Loading (Jaihes and Mediate, 1993:124-132)

%RCF %ARCF Blue Processing Time Gold Processing Time

105 0 360 360

105 25 360 450

105 50 360 540

115 0 400 400

115 25 400 500

115 50 400 600

125 0 430 430

125 25 430 540

125 50 430 640

Table 13: T-Plant Job Order Due Dates (James and Mediate, 1993: 124-132)

Rep One Rep Two Rep Three Rep Four

Product DueDate Product 1 Due Date ProductI DueDate Product Due Date

FG-B 04 Oct 93 FG-D 04 Oct 93 FG-D 06 Oct 93 FG-C 04 Oct 93

FG-C 05 Oct 93 FG-G 05 Oct 93 FG-F 06 Oct 93 FG-D 04 Oct 93

FG-B 07 Oct 93 FG-C 05 Oct 93 FG-D 07 Oct 93 FG-F 06 Oct 93

FG-F 07 Oct 93 FG-G 06 Oct 93 FG-F 07 Oct 93 FG-D 08 Oct 93

FG-F 08 Oct 93 FG-B 07 Oct 93 FG-C 08 Oct 93 FG-F 11 Oct 93

FG-D 11 Oct 93 FG-F 07 Oct 93 FG-B 13 Oct 93 FG-G 11 Oct 93

FG-C 12 Oct 93 FG-F 08 Oct 93 FG-G 13 Oct 93 FG-G 13 Oct 93

FG-D 12 Oct 93 FG-B 11 Oct 93 FG-B 14 Oct 93 FG-B 14 Oct 93

FG-G 14 Oct 93 FG-D 11 Oct 93 FG-G 14 Oct 93 FG-B 14 Oct 93

FG-G 15 Oct 93 FG-C 15 Oct 93 FG-C 15 Oct 93 FG-C 15 Oct 93
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Fligure 13: V-Plant Configuration (James and Mediate, 1993:133-141)
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Table 14: V-Plant Constraint Loading (James and Mediate, 1993:133-141)

%RCF [ %ARCF Blue Processing Time Gold Processing Time

105 0 500 500

105 25 500 650

105 50 500 750

115 0 550 550

115 25 550 690

115 50 550 830

125 0 600 600

125 25 600 750

125 50 600 750

Table 15: V-Plant Job Order Due Dates (James and Mediate, 1993:133-141)

Rep One Rep Two Rep Three Rep Four

Product Due Da te Product  Due Date Product J Due Date Product Due Date
==Z = =ý = = =

FG-G 04 Oct 93 FG-E 04 Oct 93 FG-G 04 Oct 93 FG-A 04 Oct 93

FG-A 07 Oct 93 FG-A 06 Oct 93 FG-B 05 Oct 93 FG-A 05 Oct 93

FG-A 08 Oct 93 FG-B 06 Oct 93 FG-D 06 Oct 93 FG-G 05 Oct 93

FG-B 08 Oct 93 FG-D 07 Oct 93 FG-A 12 Oct 93 FG-B 06 Oct 93

FG-E 08 Oct 93 FG-G 08 Oct 93 FG-B 12 Oct 93 FG-E 06 Oct 93

FG-E 11 Oct 93 FG-B 12 Oct 93 FG-D 12 Oct 93 FG-G 06 Oct 93

FG-G 11 Oct 93 FG-D 12 Oct 93 FG-G 12 Oct 93 FG-B 07 Oct 93

FG-B 12 Oct 93 FG-G 12 Oct 93 FG-A 15 Oct 93 FG-E 07 Oct 93

FG-D 14 Oct 93 FG-A 13 Oct 93 FG-E 15 Oct 93 FG-D 08 Oct 93

FG-D 15 Oct 93 FG-E 15 Oct 93 FG-E 15 Oct 93 FG-D 15 Oct 93
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Appendix B: Software Code Listing

program Thesis;

uses
W'mCrt, W'mDos, WinProcs;

coast
m = 40;
numjob = 10;
bignum = 32000;

type
rvector = array[0..61J of real;
vector array[0..61] of integer;
dblvector = array [0..61,1..21 of integer,
check = array[O..611 of boolean;
matrix array[0..61,0..m] of integer;
rmatrix - array[O..61,0..ml of real;
dual = array[l..2] of real;

var
space, checktime, solvetime, starttime, finishtime, mtard, upbound, temp:real;
mlowbound, jlowbound, lowbound, tempbound, nodecnt: real,
a, j, i, n, k, filend, branch, level, select, rcf, drcf, genset, rep, termnode: integer:
overdue, start, finish: rvector,
job, machine, gensize, duration, due, gold, blue: vector;
pred: dblvector;
scheduled, cut: check;
GC: matrix;
GCbound: rmatrix;
indata, outdata: text;
done, solution, test: boolean;
hour, minute, second, seclO0: word;
plant: char,
machfin: dual;

(* NEWSTART PROCEDURE -Calculates new start times when an operaton is scheduled*)
procedure Newstart(var nstart, nfinish: rvector; var nscheduled: check; var nselect: integer);

var
mcnt, j, othermach : integer;
tempstart: real;

begin
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naclifmn[ 1J 0-, (Initialize machine one finish time)
machfin[2J 0; (Initialize machine two finish time)

if machineinselectl = I (Determine machine for selected operation)
then othermiach :=2

else othermach 1;

for i :=I to n do (Set finish time of selected machine)
if (machinelj = machine[nselect]) (to the finish time of latest scheduled operation)

and (nscheduled[iJ TRUE)
and (nfinish[i] > machfintmachine~nselectll)

then niachfin[machine[niselectll := nfinishfil;-

for i 1= to n do (Set finish time of non-selected mac~hine)
if (machinejiji = othermach) (to finish time of the latest scheduled operation)

and (nscheduled~iJ = TRUE)
and (nfinishfil > machfin[othermachl)

then machfinliothermachl := nfinishllil;

for j :=I to 2 do (Calculate inter-operation spacers)
if pred~nselcctjj > 0 then
begin

space :=0;
if machine[nselectl = machinelpred(nselectijll

then
begin

if duration~pred[nselectjJ] < duration [nselectl
then space (240-(0.99*duration~pred~nselect~jIJ))
else space (240-(0.99*durationtnselectJ));

if space < 0 then space := 0;
if (nifinish~pred~nselectjj]-i-space) > nstartlnselecti

then nstart[nselectj:=(nfinish[pred[nselectj JJ+space);
end
else
begin

if duration~pred[nselectjjj < duration [nselectJ
then space :=(240-(0.99*duration[pred[nselectjJJ))

else space (240-(O.99*duration[nselectJ));
if (nfinish[pred[nselectj JJ+space).> nstartfnselectj

then nstart[nselectj :=(nflnishllpred~nselectj I +space);
end;

end;

if nstart[nselectJ < machfinllmachine[tiselect~l (Determine early start/finish for eac~h operation)
then nstar~tlnselectl := machfin[machinejnselectjj;
nfinish[nselectj := nstart[nselectl + duration [nselect];
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machfin[machine[nselect]] := nfinish[uselect];
nscheduled[nselectl := TRUE;
end;

W* MBOUND FUNCTION -Calculates lower bound for selected operation *) function
MBound(bselect: integer; bstart, bfinish: rvector, bdue: vector; bscheduled: check): real;

var
mcnt, complete, short: integer;
done: boolean;
mfinish, tardy, tardymax: real;

begin
newstart(bstart, bfinish, bscheduled, bselect); (Calculate new start times given selected
operation)
tardymax := 0;

for i := 1 to n do (Determine maximum tardiness for scheduled ops)
if (bscheduled(i] = TRUE)

and ((bfinish[i]-bdue[i]) > tardymax)
then tardymax := (bfinishlil - bduefil);

for mcnt : 1 to 2 do (For each machine do...)
begin

mfinish := machfin[mcnt];
done := FALSE;

while done FALSE do (While due date calculations are not done
do...)

begin
complete : bignum;
for i := 1 to n do (Find operation with earliest due date)

if (machine[i] = mcnt)
and (bscheduled[ij = FALSE)

and (bdue[i] < complete)
then

begin
complete := bdue[iJ;
short := i;

end;
if complete bignum

then done := TRUE
else
begin

mfinish :- mfinish + duration[short];
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tardy := mfinish - bdue(short]; (Determine tardiness of selected operation)
if tardy > tardymax

then tardymax := tardy; (Update marimum tardiness)
end;

bscheduled[short] := TRUE; (Eliminate early unscheduled due date from
search)

end;

end;

rebound := tardymax; (Return largest machine based lower bound)
end;

(*** GENERATE PROCEDURE - Calculates the generating set for the current cut ***}
procedure Generate(var glevel: integer; var gcut: check; var gGC: matrix);

var
genmach: integer;
muifin: real;

begin
minfin bignum; (Select machine for generating set)
glevel glevel + 1; [Increment level number)

for i := 1 to n do

if (gcut[i] = TRUE)

and (fimish(ij<minfin)
then

begin
minfin := finishtil; (Find operation with earliest finish time)
genmach :- machine[ij; (Select machine corresponding to operation)

end;

genset := 0;
fori:= I tondo

if (gcut[i] = TRUE) (Select operations in cut/on machine)
and (machine[i] = genmach)

then
begin

genset := genset + 1; (Increment operations in generating set)
gGC[glevelgenset] := i; (A dd operation to generating set)

end;

gensize[glevell := genset; (Save size of generating set at this level)
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if genset - 0
then solution := TRUE

end;

(*** SOLVE PROCEDURE - Calculates schedule solution during backtraking mode **
procedure solve(slevel: integer; sstart, sfinish: rvector; sblue, sgold: vector;

ssolution: boolean; scut, sscheduled: check; sGC: matrix; sGCbound: rmatrix);

var

j, sselect, initbranch, z: integer;

label 1;

begin;
solution := FALSE; (A ssume no solution exits)
sselect:= sGC[slevel,branchl; (Select the given operation)
initbranch := branch;
for i := (slevel) to n do (For all levels below thar of selected operation do)
begin

sblue[i] 0; (Reinitialize schedule information)
sgold[i] 0;
for j := I to gensizefi] do
begin

sstart[sGC[ij] :-- 0;
sfinish[sGC[ijl] := (sstart[sGC[ij]]+duration[sGC[ij]]);
scut[sGC[ij]] := FALSE;

end,
end;

newstart(sstart,sfimish,sscheduled,sselect);(Calculae start times)

if machine[sselect] = 1 (Schedule selected operaion on proper machine)
then sblue[slevell sselect
else sgold[slevel] sselect;

for i := i to n do (Select successor operaion for next cut)
if (sscheduled[pred[i,l]] = TRUE)

and (sscheduied[pred[i,211 = TRUE)
and (sscheduled[iJ = FALSE)

then scut[i] := TRUE;

Generate(slevel,scut,sGC); (Generate next Generating Set)

While (solution = FALSE) do (Until a solution is reached do...)
begin
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temp bignum;

for a:= 1 to genset do
begin (Find the operation with the smallest lower bound)

lowbound := mbound(sGC[slevel,a],sstart,sfinish,due,sscheduled);
sGCbound[slevel,a] := lowbound;
if lowbound < temp

then
begin

branch := a;
temp := lowbound;

end;
end;

While temp >= upbound do (If lower bound exceeds upper bound then do)
begin

genset := gensize[slevell; (Reset schedule information cf this level)
for a := 1 to genset do
begin

sstart[sGC[slevel,a]] := 0;
sfinish[sGC[slevel,a]] := (sstart[sGC [slevel,a]l+duration [sGC [slevel,all);
sscheduled[sGC[slevel,alI := FALSE;
scut[sGC[slevel,a]I := FALSE;

end;
sblue[slevell 0;
sgold[slevel: 0;
slevel := slevel - 1; (Backtrack one level)
if slevel <= level (If backtracked to subroutine entry point, then exit)

then
begin

GCbound[level,initbranch] bignum;
level := level + 1;
goto 1;

end
else (Else try next lower bound of previous level)
begin

temp := bignum;
genset := gensize[sleveil;
for a :1 to genset do
begin

sstart[sGC[slevel,aI] := 0;
sfinish[sGC[slevel,a]] := (sstart[sGC[slevel,alJ+duration[sGC[slevel,all);
sscheduled[sGC[slevel,al] := FALSE;
scut[sGC[slevel,al] := FALSE;
if sGCbound[slevel,a] < temp

then
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begin
branch := a,
temp := sGCbound[slevel,a];

end;
end;

end;
end;
sGCbound[slevelbranch] := bignum; (Set lower bound of selected operation = bignum)
sselect := sGC[slevel,branch]; (Selected operation is to be schedueled next)
nodecnt := nodecnt + I;

if machinefsselecti = 1 (Schedule selected operation on proper machine)
then sblue[slevell sselect

else sgold[slevel] := sselect;

newstart(sstart,sfinish,sscheduled,sselect); (Calculate new start times)
scut[sselect] := FALSE; (Remove selected operation from cut)

for i := 1 to n do (Select successor operation for next cut)
if(sscheduled[pred[i,1]] = TRUE)

and (sscheduled[pred[i,211 = TRUE)
and (sscheduled[i] = FALSE)

then scut[il := TRUE;

Generate(slevel,scut,sGC); (Generate new genL ring set)

end;
upbound:= 0;
for i := I to n do (Update schedule info with new schedule)
begin

start[il := sstart[i];
finish[i] := sfinish[i];
blue[i] sblue[i];
gold[i] sgold[i];
cut[i] := scut[i];
scheduled[iI := sscheduled[i];
forj 1:= tom do
begin

GC[ij] := sGC[ij];
G-Cbound[ij] := sGCbound[ijj;

end;
if (sfinish[i] - due[i]) > upbound (Calculate new upper bound)

then upbound := (sfinish(i] - duefi]);
end;
GetTime(Hour, Minute, Second, Secl O0);(Get solution time)
solvetime := ((((hour*60)+minute)*60)+second+(sc 100*0.01));
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termnode := termnode + 1;
level := n+l;
1: end;

{*** RENITUALIZE PROCEDURE - Resets all vwiables to inital status **
procedure reinitialize;

begin
done:= FALSE;
solution := FALSE;
level := 0;
mtard := 0;
nodecnt:= 0;
termnode 0;
upbound 0;
temp := 0;
lowbound := 0;
tempbound := 0;
branch := 0;
select 0;
genset 0;
for i := 0 to 60 do
begin

cut[i] := FALSE;
scheduled[i] := FALSE;
job[i] := 0;
machine[i] 0;
duration[i] 0;
due[ij := 0;
finishli] := 0;
start[i] := 0;
overdue[i] 0;
gensize[i] 0;
gold[i] 0;
blue[i] 0;
fork:= k to2do

pred[i,k] := 0;
fork :=Otom do
begin

GC[ik] := 0;
GCbound[i,k] := 0;

end;
end;
end;
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( * ~ ~ ~~ MAIN ROUTIEVE ****************

begin
asign (indata,'indata.txt'); (open zucii input datafile)
reset (indata);
assign (outdata, 'outdata.txt'); (open ascii output data file)
rewrite (outdata);
readln(indata,filend);
while filend < 1 do (While not end-of-file do ... )
begin

gettime(hour, minute, second, sec 100); (Get computation start time)
starttime := ((((hour* 60)+m inute)* 60)+second+(sec 1 00*0.0 1));

(*** INPUT DATA ***)

read(indata, plant, rcf, drcf, rep, n); (Read schedule identification information)

writeln(outdata,plant,'-PLANT, ',rcf,'%o RCF, ',drcf,*/o DRCF, REPLICATIQN:',rep);
writeln(outdata); (Write schedule header)
for i 1= to n do
begin

read (indata~job[i]); (Read the job num ber for eac.~h operation)
read (indata~machine[i); (Read the machine number for eac.h operation)
read (indata~pred[i,1 J, pred[i,21); (Read the predecessors of each operation)
read (indata~duration[ii); (Read the duration of eac'h operation)
read (indata~due[iI); (Read the due date of each operation)

end;

(*** SELECT INITIAL CUT ~*
for i 1= to n do

if (predli,lJ = 0)
and (pred(i,2] = 0)

then cut~iil. TRUE; (Alli ope -aions without predecessors in initial cut)

A* ASSIGNV EARLIEST STA RT AND FINISH TIMES ***)
start[l1:= 0; (Null operation starts at 0)
tinish[0] : 0; (Null operation finishes at 0)
scheduled[0J : TRUE; (Null operation is scheduled)

for i :=I to n do
finish~i := start~ii + duration ji]; (For each operation finish = start + duration)

(*FIND UPPER BOUND *
generate(level,cut,GC); (Generate initial generating set)
while solution = FALSE do (Until a solution is found do for each level ... )
begin

temp :=bignum;
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for a:= 1 to genset do
begin (Find the operation with the smallest lower bound)

lowbound := mbound(GC[level,a],startfinish,due,scheduled);
GCbound[level,a] := lowbound;
if lowbound < temp

then
begn

branch := a;
temp := lowbound;

end;
end;
GCbound[level,branch] := bignum; (Remove selected operation from consideration)
select := GC[level,branch]; (Designate selected operation)
nodecnt := nodecnt + 1; (Increment node count)

if machine~select} = 1
then blue[level} := select

else gold[level} := select; (Record selected operation)

newstart(startfmnish,scheduled,select);(Calculade new start times)
cutlselect] := FALSE; (Remove selected operation from cut)

for i :1 to n do
if (scheduled[pred[i,111 = TRUE)

and (scheduled[pred[i,211 = TRUE)
and (scheduledlil = FALSE)

then cut[i} := TRUE; (Determine next cut)

Generate(level,cut,GC); (Generate next generating set)
end;

for i:= 1 to n do
if (finish[iJ - due[ij) > upbound

then upbound := (finish[i} - duelil); (When solution achieved, calculate upper bound)

gettime(hour, minute, second, sec100); (Get solution time)
solvetime ((((hour*60)+minute)*60)+second+(sec 100*0.01));
termnode termnode + 1; (Increment number of terminal nodes)

(*** BACKTRACKING ROUTINE ***)
level :- level - 1; (Decrement level)
While level > 0 do (While level greater than zero do...)
begin;
genset := gensize[level]; (Determine size of generating set at this level)
tempbound := upbound;
for i := I to genset do
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scheduled[GC[Ievel,iJJ FALSE; tUnschedule operations at this level)
for 1 :1 to genset do (Determine lowest lower bound at this level)

if (GCboundjlevel,iJ < tempbound)
then

begin
branch := ;
tempbound :=GCboundflevelliJ;

end;
if tempbound < upbound then (If lower bound <upper bound then goto SOLVE)

solvc(level, start, finish, blue, gold, solution, cut, scheduled, GC, GCbound);
level :=level - 1; (Decrement level)
end;

(*** -OUTPUT ROUTIE V)
for i :=1 to n do (For each operation do.)
begin

overduelil : finishlil - due[i]; (Calculate tardiness)
if overdue[iJ < -240 (If > ý!/2 shipping buffer early)

then overduelil 0 (Operation not tardy)
else overdue~iJ overdue~i]+480, (Operation tardy (add buffer))

end;
mitard :=0;
for i:=lIto ndo

then mitard :=overduefiJ;
mntard :=mtardl480; (Translate maximum tardiness to days)
if mitard - trunc(mitard) > 0

then mntard :=trunc(mitard) + 1; (Round up to nearest whoke day)

writeln(outdata,' Blue Machine Schedule');
writeln(outdata,'operation job start finish due tardy');
for i 1= to n do

if bluelli] > 0
then
begin

write(outdata,blue~iJ:5); (Output operation number)
write(outdatajob[blue[iJJ:9); (Output aissociatedjob number)
write(outdata,bawo~lue[i]]:9: 1); (Output operation starr time)
write(outdata~finish[blue[ilJ:8: 1); (Output operation finish time)
write(outdata,due[bluefill:g); (Output operation due date)
writeln(outdata,overdue[blue[iJJ:8: 1); (Output operation tardiness)
end;
writeln(outdata);
writeln(outdata,' Gold Machine Schedule');
writeln(outdata,'operation job start finish due tardy');
for i :=1 to n do

if goldlil > 0
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then
begin
write(outdata.,goldfiJ :5); (Output operation number)
write(outdata~jobfgoid~iIJ:9); (Output associatedjob number)
write(outdata,start[gold[iJj:9: 1); (Output operation start time)
write(outdatarfznish[goldfiJJ:8: 1); (Outpt operation finish time)
write(outdata,duellgold(iJI:8); (Output operation due date)
writeln(outdata~overdue[goldfiJJ: 8: 1); (Output operation tardiness)
end;
writeln(outdata);
writeln(outdata,'MAXIMUM TARDINESS =',,rtard:3:3,' days');
writeln(outdata);
GetTime(Hour, Minute, Second, Sec 100); (Get finish time)
finishtime :((((hour* 60)+m inutc)* 60)+second+(sec 1 00*0.0 1))-solvetime;
soivetime :=solvetime-starttime; f(Calculate solution time)
checktime :=finishtime-solvetime; (Calculate verification time)
writeln(outdata,'SOLUTION TIME =',sol'vetime: 7:1 ,'seconds');
writeln(outdata,'VERIFICATION TIME =',chccktimne: 7:1,' seconds'),
writeln(outdata);
writeln(outdata,' NODES :,nodecnt: 7:1,' TERMINAL NOD ES: ',term node),
writeln(outdata,'=---- - -- - - ---
writeln(outdata);
reinitialize; (Reinitialize all varidbles)
readln(indata, filend); (Read fikend status vanfablej
end,
end:
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Appendix C: Comparison of Solutions

Disaster Disaster
Plant Soluion MBlue GoldType J9/RCF */wARCF Rjepion Type Tardiness soluo S inType (Days) (Days) (Days)

V 105 0 1 Optimal 5 6 5

V 105 0 2 Optimal 4 4 4

V 105 0 3 Optimal 3 4 3

V 105 0 4 Optimal 8 8 8

V 105 25 1 Optimal 8 9 8

V 105 25 2 Optimal 5 11 6

V 105 25 3 Optimal 5 5 5

V 105 25 4 Optimal 11 11 11

V 105 50 1 Optimal 10 11 10

V 105 50 2 Optimal 7 13 8

V 105 50 3 Optimal 7 7 7

V 105 50 4 Optimal 13 13 13

V 115 0 1 Optimal 6 7 6

V 115 0 2 Optimal 5 6 5

V 115 0 3 Optimal 4 4 4

V 115 0 4 Optimal 9 9 9

V 115 25 1 Optimal 9 10 9

V 115 25 2 Optimal 6 13 7

V 115 25 3 Optimal 6 6 6

V 115 25 4 Optimal 12 12 12

V 115 50 1 Optimal 12 13 12

V 115 50 2 Optimal 9 14 9
V 115 50 3 Optimal 9 9 9

V 115 50 4 Optimal 15 15 15

V 125 0 1 Optimal 7 8 7

V 125 0 2 Optimal 6 6 6

V 125 0 3 Optimal 4 5 5
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Dismser Disaswer
Plant Solution Blue Gold
Type /.RCF /VRCF Repel/don Type (Days) Solution Solution

(Days) (Days)

V 125 0 4 Optimal 10 10 10

V 125 25 1 Optimal 10 10 10

V 125 25 2 Optimal 7 13 8

V 125 25 3 Optimal 7 7 7

V 125 25 4 Optimal 13 14 13

V 125 50 1 Optimal 13 14 13

V 125 50 2 Optimal 10 16 10

V 125 50 3 Optimal 10 10 10

V 125 50 4 Optimal 6 16 16

A 105 0 1 Heuristic 4 5 4

A 105 0 2 Heuristic 2 3 3

A 105 0 3 Heuristic 3 3 2

A 105 0 4 Heuristic 2 4 4

A 105 25 1 Optimal 5 6 5*

A 105 25 2 Optimal 5 5 5*

A 105 25 3 Optimal 5 5 5*

A 105 25 4 Optimal 5 8 5*

A 105 50 1 Optimal 7 8 7*

A 105 50 2 Optimal 7 8 7*

A 105 50 3 Optimal 7 8 7*

A 105 50 4 Optimal 7 10 7*

A 115 0 1 Heuristic 4 5 4

A 115 0 2 Optimal 3 3 4

A 115 0 3 Heuristic 3 3 3

A 115 0 4 Heuristic 3 4 4

A 115 25 1 Heuristic 6 7 6*

A 115 25 2 Optimal 6 6 6*

A 115 25 3 Optimal 6 8 6*

A 115 25 4 Optimal .6 9 6*
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Disaser Disaster
Plant Solution Tiness Blue Gold
Type Type (Days) pSolution Solution

(Das) (Days) (Days)

A 115 50 1 Optimal 9 9 9*

A 115 50 2 Optimal 9 9 9*

A 115 50 3 Optimal 9 9 9*

A 115 50 4 Optimal 9 10 9*

A 125 0 1 Heuristic 4 6 4

A 125 0 2 Optimal 4 4 5

A 125 0 3 Heuristic 4 4 4

A 125 0 4 Heuristic 5 5 5

A 125 25 1 Optimal 7 8 7*

A 125 25 2 Optimal 7 8 7*

A 125 25 3 Optimal 7 8 7*

A 125 25 4 Optimal 7 9 7*

A 125 50 1 Optimal 10 12 108

A 125 50 2 Optimal 10 11 106

A 125 50 3 Optimal 10 12 103

A 125 50 4 Optimal 10 12 10*

T 105 0 1 Optimal 4 4 8

T 105 0 2 Optimal 5 8 6

T 105 0 3 Heuristic 3 3 3

T 105 0 4 Optimal 3 6 4

T 105 25 1 Optimal 5 8 6

T 105 25 2 Optimal 8 10 8

T 105 25 3 Optimal 5 12 5*

T 105 25 4 Heuristic 5 10 6

T 105 50 1 Optimal 7 11 7

T 105 50 2 Optimal 10 11 10*
T 105 50 3 Optimal 7 14 7*

T 105 50 4 Heuristic 8 12 7*

T 115 0 1 Optimal 5 5 11
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- 1 1 Disaster Disaster
Plant Solution i Blue Gold
Type Type T(Days) Solution Solution

(Days) (Days)

T_ 115 0 2 Optimal 6 7 7

T 115 0 3 Heuristic 4 4 4

T 115 0 4 Heuristic 4 7 5

T 115 25 1 Heuristic 6 9 7

T 115 25 2 Optimal 9 12 9*

T 115 25 3 Optimal 6 13 6*

T 115 25 4 Heuristic 7 11 6*

T 115 50 1 Optimal 9 13 9

T 115 50 2 Optimal 12 13 12*

T 115 50 3 Optimal 9 16 9*

T 115 50 4 Heuristic 9 14 9*

T 125 0. 1 Heuristic 5 6 12

T 125 0 2 Optimal 8 10 8

T 125 0 3 Heuristic 5 5 5

T 125 0 4 Heuristic 5 8 6

T 125 25 1 Optimal 7 11 7

T 125 25 2 Optimal 11 12 11

T 125 25 3 Optimal 7 7 7*

T 125 25 4 Heuristic 8 12 7*

T 125 50 1 Optimal 10 14 10

T 125 50 2 Optimal 14 14 13*

T 125 50 3 Optimal 10 17 10*

T 125 50 4 Heuristic 10 15 10*

* Non-interactive constraints
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Appendix D: TOC Job Shop A lgonthm Statstics

Plant Optimal Solution Verification TCinal Tota

(Seconds) (Seconds)
- mEN-oOmE -

V 105 0 1 Yes 0.3 0.1 2 30

V 105 0 2 Yes 0.2 0.1 1 20

V 105 0 3 Yes 0.2 0.2 1 20

V 105 0 4 Yes 0.2 0.1 1 20

V 105 25 1 Yes 0.7 0.1 5 79

V 105 25 2 Yes 0.4 0.1 3 45

V 105 25 3 Yes 0.9 0. 1 6 106

V 105 25 4 Yes 0.2 0.0 1 21

V 105 50 1 Yes 0.2 0.1 1 20

V 105 50 2 Yes 0.2 0.1 2 27

V 105 50 3 Yes 0.1 0.4 3 50

V 105 50 4 Yes 0.2 0.0 1 21

V 115 0 1 Yes 0.3 0.0 2 30

V 115 0 2 Yes 0.2 0.1 1 20

V 115 0 3 Yes 0.2 0.1 1 20

V 115 0 4 Yes 0.2 0.0 1 20

V 115 25 1 Yes 0.5 0.1 5 59

V 115 25 2 Yes 0.3 0.1 3 45

V 115 25 3 Yes 0.6 0.1 5 83

V 115 25 4 Yes 0.2 0.0 1 21

V 115 50 1 Yes 0.2 0.1 1 20

V 115 50 2 Yes 0.3 0.0 2 27

V 115 50 3 Yes 0.3 0.1 2 35

V 115 50 4 Yes 0.2 0.1 1 21

V 125 0 1 Yes 0.2 0.1 2 30

V 125 0 2 Yes 0.2 0.1 1 20

V 125 0 3 Yes 0.2 0.1 1 20

V 125 0 4 Yes 0.2 0.1 1 20

V 125 25 1 Yes 0.4 0.1 3 47
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Solution Verification Terminal Tota
Tp %RCF .&RCF Repetition ti im TIM Nodes Nodes

pSolution (Seconds) (Seconds)

V 125 25 2 Yes 0.3 0.1 3 45

V 125 25 3 Yes 0.6 0.0 4 66

V 125 25 4 Yes 0.2 0.1 1 20

V 125 50 1 Yes 0.2 0.1 1 20

V 125 50 2 Yes 0.2 0.1 1 20

V 125 50 3 Yes 0.3 0.1 2 35

V 125 50 4 Yes 0.2 0.1 1 20

A 105 0 1 No 24.6 275.4 14 5128

A 105 0 2 No 7.7 292.3 4 2114

A 105 0 3 No 22.9 277.1 11 11004

A 105 0 4 No 151.4 148.8 14 6355

A 105 25 1 Yes 48.6 0.2 15 1066

A 105 25 2 Yes 39.5 0.1 15 565

A 105 25 3 Yes 37.7 0.2 13 759

A 105 25 4 Yes 46.6 0.1 16 912

A 105 50 1 Yes 15.5 0.1 5 192

A 105 50 2 Yes 15.4 0.1 5 192

A 105 50 3 Yes 9.0 0.2 3 105

A 105 50 4 Yes 15.6 0.1 6 206

A 115 0 1 No 19.3 280.8 10 4238

A 115 0 2 Yes 7.8 0.1 4 241

A 115 0 3 No 26.5 273.5 9 13175

A 115 0 4 No 84.8 215.2 11 6530

A 115 25 1 No 31.4 268.9 10 18385

A 115 25 2 Yes 32.2 0.1 11 448

A 115 25 3 Yes 30.8 0.2 10 666

A 115 25 4 Yes 34.7 0.1 12 649

A 115 50 1 Yes 5.9 0.1 2 62

A 115 50 2 Yes 5.9 0.2 2 62

A 115 50 3 Yes 5.9 0.1 2 62

A 115 50 4 Yes 6.1 0.1 3 74
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plant Optimal Solution Verificalion Teinal TotalOpC %RF oeInu Time Tune Trina oa

Type °/oRCF *ARCF Repetition Solution (Seconds) (Seconds) Nodes Nodes

A 125 0 1 No 19.2 280.8 15780

A 125 0 2 Yes 7.7 0.1 4 241

A 125 0 3 No 26.6 273.4 9 13108

A 125 0 4 No 70.3 229.7 15 6619

A 125 25 1 Yes 25.3 0.1 8 327

A 125 25 2 Yes 25.1 0.1 8 327

A 125 25 3 Yes 18.6 0.1 6 234

A 125 25 4 Yes 25.4 0.1 9 341

A 125 50 1 Yes 6.0 0.2 2 62

A 125 50 2 Yes 5.9 0.2 2 62

A 125 50 3 Yes 5.9 0.2 2 62

A 125 50 4 Yes 5.9 0.1 2 62

T 105 0 1 Yes 1.5 40.1 2 2369

T 105 0 2 Yes 0.7 0.1 3 65

T 105 0 3 No 0.4 299.6 1 44301

T 105 0 4 Yes 122.5 0.1 4 21957

T 105 25 1 Yes 57.3 0.1 9 3087

T 105 25 2 Yes 0.5 0.1 1 28

T 105 25 3 Yes 0.5 0.1 1 28

T 105 25 4 No 0.6 299.4 1 41927

T 105 50 1 Yes 1.4 0.1 4 85

T 105 50 2 Yes 0.6 0.0 1 28

T 105 50 3 Yes 0.5 0.1 1 28

T 105 50 4 No 0.5 299.5 1 41344

T 115 0 1 Yes 27.2 146.3 2 19767

T 115 0 2 Yes 0.7 0.1 3 65

T 115 0 3 No 0.4 299.6 1 44315

T 115 0 4 No 172.1 127.9 5 40641

T 115 25 1 No 2.9 297.1 8 24066

T 115 25 2 Yes 0.6 0.1 1 28

T 115 25 3 Yes 0.5 0.1 1 29
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Plan Oplinud Solution Vedfication Tehwl j Tota

Type It RCF */1RCF Repetition Solution Tieon TIeo Nodes Nodes
- _____(Seconds) (Seconds)

T 115 25 4 No 0.5 299.6 1 40452

T 115 50 1 Yes 1.1 0.2 3 80

T 115 50 2 Yes 0.5 0.0 1 28

T 115 50 3 Yes 0.6 0.1 1 28

T 115 50 4 No 0.4 299.6 1 40860

T 125 0 1 No 52.6 247.4 3 36251

T 125 0 2 Yes 0.7 0.1 3 65

T 125 0 3 No 0.4 299.6 1 44106

T 125 0 4 No 173.2 126.8 5 40455

T 125 25 1 Yes 2.1 0.1 7 142

T 125 25 2 Yes 0.4 0.1 1 28

T 125 25 3 Yes 0.5 0.1 1 28

T 125 25 4 No 0.5 299.5 1 40516

T 125 50 1 Yes 1.1 0.1 3 67

T 125 50 2 Yes 0.5 0.1 1 28

T 125 50 3 Yes 0.4 0.1 1 28

T 125 50 4 No 0.4 299.6 1 40145
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