
AD-A276 181 _IQ PG Fpmfto.d

6- mmra 1111111111111 daomf ea"tekdneta or mv Wh~Mpedo he aliet at inamftw, vL4
U2=2430; 09 rd wid uget Wmairgan. OC 205M.

1. NY USE (L"eav 2. REPOHI 13 PORT TYEAND DTES

4. TITL AND 5 c. FUNDING
DACS MIPS R3000 bare Ada Cross Compiler System, Version 4.7 1
Host: Sun SPARCstation IPX running under SunOS, Release 4.1 3
ýgrj8: D~q~jun SPARC/SHiOS to MIPS R3000 Bare Insbruction et Architecture Simulator

6. Autnors:

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING
ORGANIZATION

g atia aa l ti t ute of~tanda rds adTcnlg
ui tdg ~ oom anRTcholg

Gaithersburg, Maryland 20899

9ý SONSRIN/MOITOINGAGENY NME() AD I 1L10. SPONSORGINMONITORING

11. SUPPLEMENTARY

1 2a. DISTRIBUTION/A VAILABILITY 1 2b. DISTRIBUTION

Approved for Public Release; ý. distribution unlimited

13. ýiw 0
DACS MIVS R3000 bare Ada Cross COmpiler System, Version 4.7.1, Host: Sun SPARCstation
IPX running under SunOS, Release 4.1.3, Target: DACS Sun SPARC/SunOS to MIPS R3000
Bare Instruction Set Architecture Simulator, Version 4.7.1

931119S1. 11332

~\\ 4-05934

14. SUBJECT 15. NUMBER OF

Ada programving linguage, Ada Compler Validation Summary Report, A 6*PIC
A36 Val. Testing, Ada Val. Office, Ada Val. Fcility

17. SECURITY 18. SECURITY 119. SECURITY 20, LIMITATION OF'
CLASSIFICATION e CLASSIFICATION
UNCLASSIFIED 1UNCLASSIFIED IUNCLASSIFIED UNCLASSIFIED

Standrdw mcr g. (Rev. 29
14SNPClang d j ANSI ft.

94~~ 2 231

AVF Control Number: NIST92DDI51051.11
DATE COMPLETED

BEFORE ON-SITE: 93-11-12
AFTER ON-SITE: 93-11-19
REVISIONS: 93-12-10

Accesion For

NTIS CRA&I
DTIC TAB

U:37 .ý-,,o.;ced EJ

By

DiJ ibtion I

Availability Codes

Ada COMPILER Avail andfor
VALIDATION SUMMARY REPO .T: Dist Special

Certificate Number: 931119S1.11332
DDC-I, Inc.

DACS MIPS R3000 bare Ada
Cross Compiler System, Version 4.7.1

Sun SPARCstation IPX => DACS Sun SPARC/SunOS to
MIPS R3000 Bare Instruction Set Architecture Simulator,

Version 4.7.1

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.

AVF Control Number: NIST92DDI5105_1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on November 19, 1993.

Compiler Name and Version: DACS MIPS R3000 bare Ada Cross
Compiler System, Version 4.7.1

Host Computer System: Sun SPARCstation IPX running under
SunOS, Release 4.1.3

Target Computer System: DACS Sun SPARC/SunOS to MIPS R3000
Bare Instruction Set Architecture
Simulator, Version 4.7.1

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
931119S1.11332 is awarded to DDC-I, Inc. This certificate expires
2 years after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

!

Ada Validatio a i ty Ada Validation Fa-ility
Dr. David K. ffS n Mr. L.' Arnold Johnson
Chief, Information S stems Manager, Software Standards

Engineering Division (ISED) ValidationG oup
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

,Ada P-1 &n organization >.Ada Joint Program Office
Diret tor, w•mputer & Software I44-Dirk Rogers, Major, USAF

Engineering Division /Acting Director
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Washington DC 20301
U.S.A. U.S.A.

NIST92DDI5105_1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: DDC-I, Inc.

Certificate Awardee: DDC-I, Inc.

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Buildinq 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS MIPS R3000 bare Ada Cross
Compiler System, Version 4.7.1

Host Computer System: Sun SPARCstation IPX running under
SunOS, Release 4.1.3

Target Computer System: DACS Sun SPARC/SunOS to MIPS R3000
Bare Instruction Set Architecture
Simulator, Version 4.7.1

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

Customer Signature Date
Company DDC-I, Inc.
Tit e f,""

Certificate Awardee Signature Date
Company DDC-I, Inc.
Title l'9e° C

TABLE OF CONTENTS

CHAPTER 1 i..1-1
INTRODUCTION i1..1-

1.1 USE OF THIS VALIDATION SUMMARY REPORT i-i
1 .2 REFERENCES 1-2
1 .3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS..1-3

CHAPTER 2 ... 2-1
IMPLEMENTATION DEPENDENCIES.............................. 2-1

2.1 WITHDRAWN TESTS.... o 2-1
2.2 INAPPLICABLE TESTS..... 2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3..3-1
PROCESSING INFORMATION 3-i

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A ... o ... A-1
MACRO PARAMETERS .. A-i

APPENDIX B ... B-i
COMPILATION SYSTEM OPTIONS B-I
LINKER OPTIONS ...B-2

APPENDIX C C-I
APPENDIX F OF THE Ada STANDARD C-I

CHAPTER .

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard (Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and (UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

,.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for _withdrawing each test is
available from either the AVI or the AVF. The publication date for
this list of withdrawn testb is 91-08-02.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDlB06A ADIB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2Bl5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

2-1

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 test) use a line length in the input file which
exceeds 126 characters.

The following 21 tests check for the predefined type SHORTINTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA i1s less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than

2-2

type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine
code insertions; this implementation provides no package
MACHINECODE.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE240IA..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A

2-3

CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83AO7B B83A07C B83EO0C
B83EO1D B83EO1E B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1101B BC1109A BC1109C
BC11O9D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this

2-4

implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as d 4.rected by the AVO. The tests abort
with an unhandled exception wx-n USE ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3526

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 549
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 549 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

The DDC-I Symbolic Debugger System (SDS) runs under Sun
SPARCstation IPX. The DDC-I SDS contains the MIPS R3000 Bare
Instruction Set Architecture Simulator, Version 4.7.1, and is used
to download and schedule the target programs.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-library -list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 126 -- Value of V

$BIGIDl (l..V-i => 'A', V => 'I')

SBIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (1..V-1-V/2 => 'A')

SBIGID4 (1..V/2 => 'A') & '4' & (1..V-l-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

SBIGSTRING1 g""' & (1..V/2 => 'A') & "I'

SBIGSTRING2 '""' & (l..V-l-V/2 => 'A') & 'I' & ""l

$BLANKS (I..V-20 => '

SMAXLENINTBASEDLITERAL
"2:-" & (l..V-5 => '0') & "11:"

SMAXLENREALBASED_LITERAL
"16:" & (l..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL ""'l & (1..V-2 => 'A') & '""'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACC SIZE :32
ALIGNMENT :2
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 4*i024*I024*1024
DEFAULT STOR UNIT :8
DEFAULT SYS NAME : MIPS
DELTA DOC -- 1.0/2.0**(SYSTEM.MAXMANTISSA)
ENTRY ADDRESS : SYSTEM.MODx
ENTRY ADDRESS1 : SYSTEM.TLBL
ENTRYADDRESS2 : SYSTEM.TLBS
FIELD LAST : 35
FILE TERMINATOR : of
FIXED_NAME : NO SUCH FIXED TYPE
FLOATNAME : NO-SUCH-FLOAT_-TYPE
FORM STRING : ""

FORM_STRING2
"CANNOT RESTRICTFILECAPACITY"

GREATER THAN DURATION : 131E071.0
GREATER THAN DURATION BASELAST : 131-072.0
GREATER-THAN-FLOAT BASELAST : 2#1.0#El29
GREATERTHANFLOATSAFELARGE

2#0.1IIII1111111111111111l#E126
GREATER THAN SHORTFLOATSAFELARGE: 0.0
HIGH PRIORITY : 255
ILLEGAL EXTERNAL FILE NAME1 : ILLEGAL FILE NAME 1
ILLEGAL EXTERNAL FILE NAME2 : ILLEGALFLLE NAME 2
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATE PAGE LENGTH : -1
INCLUDEPRAGMA1

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGER FIRST : -2147483648
INTEGER LAST : 2147483647
INTEGER LAST PLUS_1 : 2147483648
INTERFACELANGUAGE : ASSEMBLY
LESS THAN DURATION : -131 072.0
LESS THAN DURATION BASEFIRST : -131073.0
LINETERMINATOR : ,
LOW PRIORITY :0
MACHINE CODE STATEMENT : NULL;
MACHINE CODETYPE : NO SUCHTYPE
MANTISSA DOC- 31-
MAXDIGITS . 15

A-2

MAXINT 2147483647
MAX INT -PLUS_1 . 2147 483 648
MIN INT : -21l47483648
NAME : NO -SUCHINTEGERTYPE
NAMELIST : MIPS
NAMESPECIFICýATIONi : NAME SPEC 1
NAMESPECIFICATION2 : NAME SPEC 2
NAME SPECIFICATION3 : NAME SPEC 3
NEG BASED INT : 16#F-FFFFF-FE#
NEWHEMSIZE : 4*1024*1024*1024
NEWSTOR_ UNIT :8
NEW SYS NAME .MIPS

PAGE TERMIINATOR of'
RECORD DEFINITION :NEW INTEGER;
RECORD NAME :NOSUCHMACHINECODETYPE
TASK SIZE :32-
TASKSTORAGESIZE : 1024
TICK- : 2.0**(-14)
VARIABLEADDRESS : 16#800E0000#-2**32
VARIABLE ADDRESS1 : 16#800F0000#-.2**32
VARIABLE ADDRESS2 : 16f80100000#-2**32
YOURPRAGMA : EXPORT-OBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

Chapter 4

The Ada Compiler

The Ada Compiler translates Ada source code into MIPS R3000 object code.

Diagnostic messages are produced if any errors in the source code are detected. Warning messages are also

produced when appropriate.

Compile, cross-reference, and generated assembly code listings are available upon user request.

The compiler uses a program library during the compilation. An internal representation of the compilation,

which includes any dependencies on units already in the program library, is stored in the program library as a

result of a successful compilation.

On a successful compilation, the compiler generates assembly code, invokes the Unix assembler as(l) to

translate this assembly code into object code, and then stores the object code in the program library. (Option-

ally, the generated assembly code may also be stored in the library.) The invocation of the Assembler is com-

pletely transparent to the user.

4.1. The Invocation Command

The Ada Compiler is invoked by submitting the following Unix command:

% adamips {option) source-file-name {source-file-naife)

4.1.1. Parameters and Options

Default values exist for all options as indicated below. All option names may be abbreviated (characters omitted

from the right) as long as no ambiguity arises.

source-file-name

This parameter specifies the file containing the source text to be compiled. Any valid Unix file name may be

used.

If the file name specified does not have a suff',i, then the suffix .ada is assumed.

More than one file name can be specified. Each source-file-name may contain pattern matching characters as

defined by the shell (such as "*" and "?"). The compilation starts with the leftmost file name from the command

4-2 The Ada Compiler

ae compiled in alphanumeric order. If any file name occurs more than once in this process, then it is compiled
more than once.

The format of the source text is described in Section 42.1.

-list

The user may request a source listing by means of this option. The source listing is written to the list file. Section
4.3.1 contains a description of the source listing.

If the option is not present, no source listing is produced, regardless of any use of pragma LIST in the program or of
any diagnostic messages produced.

In addition, this option provides generated assembly listings for each compilation unit in the source file. Section
43.3 contains a description of the generated assembly listing.

-Iongerror messages

This option specifies that diagnostic messages in the listing file and in the error file are extended with:

"• a more elaboration description of the error
"* recommended user action
* one or more references to the Ada Reference Manual

A complete list of all diagnostic messages can be found in the Diagnostics Guide. (Note that the compiler issues a I
few messages related to representation clauses and implementation-dependent pragmas that may not appear in the I
Diagnostics Guide.)

-nowarnings

This option controls whether compiler warning messages are suppressed or noL By default, they are not I
suppressed.

-xref

A cross-reference listing can be requested by the user by means of this option. If it is present and no severe or fatal
errors are found during the compilation, the cross-reference listing is written to the list file. The cross-reference
listing is described in Section 4.3.1.3.

-library file-name

This option specifies the current sublibrary and thereby also specifies the current program library, which consists of
the current sublibrary through the root sublibrary (see Chapter 2). If the option is omitted, the sublibrary desig-
nated by the environment variable ADAMIPSLIBRARY is used as the current sublibrary.

Section 4.4 describes how the Ada compiler uses the current sublibrary.

The Ada Compiler 4-3

-configuration_file file-name

This option specifies the configuration file to be used by the compiler in the current compilation.

If the option is omitted, the configuration file designated by the rile name $release/compiler/config is used by
default. Section 4.2.2 contains a description of the configuration fde.

-nocheck check-kind, {check-kind}

check kind ::= index I access I discriminant I length I range I
division I overflow I elaboration I storage I all

By default, all run time checks will be generated by the compiler.

When the -nocheck option is used, the checks corresponding to the particular check kinds specified will be
omitted. These kinds correspond to the identifiers defined for pragma SUPPRESS [Ada RM 11.7]. There is no
default kind for -nocheck; to suppress all checks, specify -nocheck all.

Suppression of checks is done in the same manner as for pragma SUPPRESS (see Section F.2).

-gisa

Use of this option directs the compiler to accept an extended set of address clauses for interrupt entries,
corresponding to additional interrupts found in the GISA architecture (see Sections F.5 and F.8).

-nosave source

By default, the source text of the compilation unit is stored in the program library. In case that the source text
file contains several compilation units, the source text for each compilation unit is stored in the program library.
The source texts stored in the program library can be extracted using the Ada PLU type command (see Chapter
3).

By using the -nosave source option, this saving of the source text will not occur. While this will reduce some-
what the space needed by the program library, it will also prevent automatic recompilation by the Ada Recom-
piler, and hence is not recommended for normal use.

-keepassembly

When this option is given, the compiler will store the generated assembly source code in the program library,
for each compilation unit being compiled. By default this is not done. Note that while the assembly code is
stored in the library in a compressed form, it nevertheless takes up a large amount of library space relative to
the other information stored in the library for a program unit.

This option does not affect the productio, of generated assembly listings.

4-4 The Ada Compiler

-progress

When this option is given, the compiler will write a message to the standard output as each pass of the compiler
starts to run, as well as the name and type of each compilation unit. This information is not provided by default.

-debug limit-optimizations I fulloptimizations

When this option is given, the compiler will generate symbolic debug information for each compilation unit in
the source file and store the information in the program library. By default this is not done.

This symbolic debug information is used by the DACS Unix to MIPS R3000 Bare Symbolic Cross Debugging
System.

If -debug full optimizations is specified, the compiler will generate code with all optimizations enabled. This
code will be the same object code as if the option had not been specified at all (though there may be some
minor differences in the generated assembly code, due to some extra labels being present). However, this full
level of optimization may result in some unreliable symbolic debug information being produced.

If -debug limit-optimizatlons is specified, the compiler will suppress those optimizations which might --sult in
unreliable symbolic debug information. These optimizations include code motion across Ada statemem boun-
daries; not storing the values of Ada variables to memory across statement boundaries; the elimination of
unnecessary library package elaboration routines; and the transformation of certain kinds of tasks into more
efficient "monitor tasks". Users may also wish to specify this option to make the generated machine code more
understandable relative to the Ada source code.

The remaining options pertain to the various optimizing components of the compiler. By default, the compiler
operates with all optimizations turned on. The principal reason why users might want to turn off some optimi-
zations is covered by the -debug option described above, and that option should be used accordingly.

The options described below directly turn off particular optimizing components, and should only be used to cir-
cumvent the capacity or other problems described below.

-nofeoptimize

This pertains to the *front end' optimizer. This sometimes places capacity limits on the source program (e.g.,
number of variables in a compilation unit) that are more restrictive than those documented in Section F.13. If a
compile produces an error message indicating that one of these limits has been reached, for example

*** 1562S-O: Optimizer capacity exceeded. Too many names in a basic block.

then use of this option will bypass this optimizer and allow the compilation to finish normally.

-nogoptimize

This pertains to the "g-code" (intermediate language) optimizer. This optimizer presents no special capacity or
other problems, so use of this option is unlikely to be necessary.

The Ada Compiler 4-5

-nobeoptimize

This pertains to the "back end" optimizer. This optimizer is the most powerful in the compiler, and accordingly
uses a fairly large amount of host resources, in both CPU time and virtual memory. If such resource utilization
is causing a problem or is undesired, then this option may be used.

Examples of option usage

"% adamips navigation-constants

"% adamips -list -long -xref event schedulera

"% adamips -prog -lib test.versions.alb -debug limit /usrl/source/altitudes_b

[remainder of chapter deleted]

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

Chapter 5
The Ada Linker

Before a compiled Ada program can be executed it must be linked into a load module by the Ada Linker.

In its normal and conventional usage, the Ada Linker links a single Ada program.

The Ada Linker also has the capability to link multiple Ada programs into one load module, where the pro-
grams will execute concurrently. This capability, which is outside the definition of the Ada language, is called
mult,'programming, and is further discussed below.

The Ada link, while one command, can be seen as having two parts: an 'Ada part" and a 'MIPS part".

The Ada part performs the link-time functions that are required by the Ada language. This includes checking
the consistency of the library units, and constructing an elaboration order for those library units. Any errors
found in this process are reported.

To effect the elaboration order, the Ada link constructs an assembly language "elaboration caller routine" that is
assembled and linked into the executable load module. This is a small routine that, during execution, gets con-
trol from the Ada runtime executive initiator. It invokes or otherwise marks the elaboration of each Ada library
unit in the proper order, then returns control to the runtime executive, which in turn invokes the main program.
The action of the elaboration caller routine is transparent to the user.

If no errors are found in the Ada part of the link, the MIPS part of the link takes place. This consists of assem-
bling the elaboration caller routine, then invoking the DACS Unix to MIPS R3000 Bare Cross Linker, linking
the program unit object modules (stored in the program library) and the elaboration caller routine together
with the necessary parts of the Ada runtime executive (and some other runtime modules needed by the gen-
erated code). The output of the full Ada link is an executable load module file.

The invocations of the MIPS Assembler and Linker are transparent to the user. However, options on the Ada
link command allow the user to specify additional information to be used in the target link. Through this facil-
ity, a wide variety of runtime executive optional features, customizations, and user exit routines may be intro-
duced to guide or alter the execution of the program. These are described in the DACS Unir to MIPS R3000
BareAda Run-Thme System User's Guide. This facility may also be used to modify or add to the standard DACS
Unix to MIPS R3000 Bare Cross Linker control statements that are used in the MIPS part of the link; in this
way, target memory may be precisely defined. The control statements involved are described in the DACS Unix
to MIPS R3000 Bare Cross Linker Reference Manual.

[ponion of chapter deleted]

5-2 The Ada Linker

5.1. The Invocation Command

The Ada Linker is invoked by submitting the following Unix command:

% adamipsiink (option) main-program-name (mainyprosramname)

As part of the "MIPS part" of an Ada link, a temporary subdirectory is created in /tmp (unless the -stop option
has been used, in which case it is created below the current directory). Use of this subdirectory, the name of
which is constructed from the Unix process-id, permits concurrent linking in the same current directory. The
subdirectory contains work files only, and it and its contents are deleted at the end of the link.

S.M. Parameters and Options

Default values exist for all options as indicated below. All option names may be abbreviated (characters omit-
ted from the right) as long as no ambiguity arises.

main-program-name

If a single program link is being done, main-program-name must specify a main program which is a library unit
of the current program library, but not necessarily of the current sublibrary. The library unit must be a parame-
terless procedure. Note that main-program-name is the identifier of an Ada procedure; it is not a Unix file
specification.

When main-program-name is used as the file name in Ada link output (for the load module, memory map file,
etc.), the file name will be truncated to 29 characters if necessary.

If a multiprogramming link is being done, multiple main-program-names are specified, separated by spaces.
The first name supplied is the one used for the file name in Ada link output.

The fwst three of the options below pertain to the "Ada part" of the Ada link. The remaining options pertain to
the "MIPS part" of the link.

4og file-name

This option specifies whether a log file is to be produced during the linking. By default no log file is pro-

duced.

The contents of the log file are described in Section 5.3.

-warnings

This option specifies whether warnings are output if detected by the linker. Warnings can be generated when
conflicts between target program attributes and the specified qualifiers are found, and when a package has an
inconsistent body. By default warnings are suppressed.

The Ada Linker 5-3

-library file-name

This option specifies the current sublibrary and thereby also the current program library, which consists of the
current sublibrary through the root sublibrary (see Chapter 2). If the option is omitted, the sublibrary desig-
nated by the environment variable ADAMIPS LIBRARY is used as current sublibrary.

-mp

This option specifies that a multiprogramming link be done. By default a single program link is done.

-options 'symbol-name = value{,symbol-name =value)*

This option is used to override certain default values that are used by the Ada runtime executive. If the option
is omitted, no overriding takes place.

The option specifies a quoted string, containing one or more special symbol assignments that override the
default values of these symbols. Numeric values are treated as decimal.

If a multiprogramming link is done, suffixes are used in the special symbol names to indicate which programs
the overrides are for.

Since the option value cannot be continued onto a new line, an alternative method is available if a large number
of overrides must be specified. This involves creating a file of Assembler preprocessor directives specifying the
overrides, and then defining that file with the environment variable adamipsFte.opts.

A full list of the names of these special symbols, their default values, and the runtime behavior that they control,
is given in the Ada Run-Tune System User's Guide, as are the details of the alternative method.

A few of the most commonly used of these symbols are listed here, for the sake of convenience.

Most Commonly Used Run-Time Override Symbols

Function Symbol Default

Program Heap Size rtheapszl = 102400 (100K)
Main Procedure Stack Size rtmstackszl= 102400 (100K)

Default Task Stack Size rttstackszl= 8192 (8K)
Maximum Number of Concurrent Tasks rtttcbs = 50

Default Task Priority rttprtyl= 0

See the Examples section below for examples of actual usages of these symbols.

-standardcontrol file-name

This option specifies the file name of "standard" DACS Unix to MIPS R3000 Bare Cross Linker control state-
ments that are to be used for all links for an installation or project.

5-4 The Ada Linker

-control file-name

This option specifies the file name of "user" DACS Unix to MIPS R3000 Bare Cross Linker control statements
that are to be used for this particular link.

The files designated by the previous two options are used to form the full input control statement stream to the
DACS Unix to MIPS R3000 Bare Cross Linker, in this concatenated order:

"standard" control file (if it exists)
<statements generated by the Ada part of the link>
"user" control file (if option present and it exists)

The statements generated by the Ada part of the link are usually just object_rfe statements for the elaboration
caller routine(s) and main program(s).

The Compiler System is delivered with the environment variables described above defined to files that contain
default sets of standard control statements. These consist of the minimal relocation statements required by the
DACS Unix to MIPS R3000 Bare Cross Linker, and various other necessary directives.

-user rts directoty-ist

This option specifies a colon-separated list of directories that contains either user-dependent RTE modules,
such as a change to the task scheduler for a particular application, or pragma INTERFACE (ASSEMBLY)
bodies for subprograms that are not library units (see Section F.2). Modules in this list's directory(ies) are
taken ahead of those in the directories specified by the -targetrts option (see below) and those in the standard
RTE directories (including those RTE modules in the predefmed library). If the option is omitted, environ-
ment variable adamips user rts is used, if it has been defined.

-target rts directory-list

This option specifies a colon-separated list of directories that contains MIPS-implementation(target)-dependent
runtime executive (RTE) mc Oes. such as modules to do character I/O for a particular simulator or micropro-
cessor. Modules in this list'ý diz-ctory(ies) are taken ahead of those in the standard RTE directory. If the
option is omitted, environment variable adamips target.rts is used, if it has been defined.

-debug

When this option is given, the Ada Linker will produce a symbolic debug information file, containing symbolic
debut, information for all program units involved in tl&e link that were compiled with the -debug compiler
option. By default no such rile is produced, even if some of the program units linked were compiled with a
debug option.

This symbolic debug information file is used by the DACS Unix to MIPS R3000 Bare Symbolic Cross Debug-
ging System.

The show -invocation command command of Ada PLU may be used to determine what options units in the
program library were compiled with.

Note that the identical executable load module is produced by the Ada Linker, whether or not this option is
used.

The Ada Linker 5-5

Occasionally, some Ada language constructs may not be supported in the symbolic debug information file,
meaning that certain Ada names may not be known to the Symbolic Cross Debugging System. When this hap-
pens, warnings will be issued during the Ada link, so that the user is aware of what names fall into this situation.
Also, some Ada names or source lines may not be present in the symbolic debug information file, and thus will
not be known to the Symbolic Cross Debugging System, because they have been "optimized away", e.g. by dead
code elimination. When this happens, informational messages will be issued during the Ada link.

Examples of these warnings and informational messages:

" Warning: Renaming package BDT is not present
in syeOtic debug information file; refer to renamed package.

I informationat: Source tines 655 thru 674 of file
ADASDISK: •ADAQA.TESTING.MIPS]NATH2.ADA;I are unreachabte
and are not referenced in the symbolic debug information file.

-noinform

By default, the "diagnostic traces" of the Ada runtime executive are linked in and activated. These traces print
out information when unusual conditions occur, such as unhandled exceptions and task deadlock. See the Ada
Run-7une System User's Guide for full details.

By asing the -noinform option, these diagnostic traces will not be linked in or activated.

-trace

When this option is present, the "optional traces" of the Ada runtime executive are linked in (but not activated).
These traces print out information during normal program execution, to assist in debugging and in better
understanding program behavior. See the Ada Run-Tune System User's Guide for full details.

By default, the optional traces are not linked in.

-eslink options *DACS Unix to MIPS R3000 Bare Cross Linker options'

This option specifies a string containing one or more command options to be passed to the execution of the
DACS Unix to MIPS R3000 Bare Cross Linker.

-stop number

This option, when used with number 0, results in the Ada link stopping after the "Ada part" has done all Ada-
required checking, and has created a command file (Unix Bourne shell script) (located in the temporary sub-
directory) that executes the "MIPS part", but before that file has actually been invoked.

When used with number 1, the file is invoked, but stops before the DACS Unix to MIPS R3000 Bare Cross
Linker is-invoked, leaving the temporary subdirectory and its files in place. When used with number 2, it exe-
cutes the DACS Unix to MIPS R3000 Bare Cross Linker but then stops before the symbolic debug information
file is produced.

This option is useful for trouble-shooting, or for giving the user an intervention point for Ada link customiza-
tions not covered by any of the available options.

5-6 The Ada Linker

5.1.2. Examples

Some examples of single program and multiprogramming links:

% adamipeaink flight-simulator # single program

% adamips.lUk -nap able baker charlie # multiprogramming

An example of overriding default runtime executive values, in this case the system heap size and main stack size:

% adamipslink -options "rtheapszl = 48*1024,rtmstackszl = 8000 flightsimulator

An example of overriding values when multiprogramming is involved (the system heap size is overridden for
each program):

% adamipsllnk -mp -options "rtheapszl=20*1024,theapsz2=12*1024,rtheapsz3=50*1024 able baker char

Now, an example of introducing "user" DACS Unix to MIPS R3000 Bare Cross Linker control statements:

% adamipslink -control test driver.ctl test-driver

where test driver.ctl in the current directory contains

searchpath is
/dma/object

end
object fite is

doacheck
end
informationat messages are off

Now, an example of the use of user and target RTE directories:

% setenv adamipstargetrts "/tektronhx/io/test:/tektronix/lo'
% aamlpsJink -user-rts "/sys-user/test/stormgre flight simulator

Runtime executive modules will be looked for in the directory specified by the -user rts option, then in the two
directories specified by the adamipstargetrts environment variable, and lastly in the standard RTE directory.

To revert to referencing only the standard RTE directory.

% unsetenv adamips_target rts
% adamipslink flight simulator

[renmainder of chapter deleted]

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only* allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -2#1.0#E128 .. 2#0.11111111111111111111#E128

type LONGFLOAT is digits 15
range -2#1.0#E1O24 ..2#0.I1iii#E024;

type DURATION is delta 2**(-14) range -131 072.0 .. 131_071.0;

end STANDARD;

C-I

Appendix C
Appendix F of the Ada Reference Manual

"This appendix includes in its entirety Appendix F from the DACS Unix to MIPS R3000 Bare Ada Cross Conpiler
System User's Guide.

Note that the implementation-specific portions of the package STANDARD are included in this appendix, as Sec-
tion F.I.

This Page Intentionalty Left Blank

Appendix F
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the DACS Unix to MIPS R3000 Bare Ada Cross Compiler System, including those required in the Appendix F
frame of Adria RM.

F.1. Predefined Types in Package STANDARD

This section describes the implementation-dependent predefined types declared in the predefined package
STANDARD [Ada RMAnnex C1, and the relevant attributes of these types.

F.1.1. Integer Types

One predefined integer type is implemented, INTEGER. It has the following attributes:

INTEGER'FIRST = -2 147 483 648
INTEGER'LAST = 2 147 483 647
INTEGER'SIZE = 32 - -

No other predefined integer types (such as SHORT INTEGER or LONG-INTEGER) are implemented, as
there are no corresponding underlying machine base type.

F.12. Floating Point Types

Two predefimed floating point types are implemented, FLOAT and LONGFLOAT. They have the following
attributes:

FLOAT'DIGITS = 6
FLOAT'FIRST - -2#1.0#E128

F-2 Appendix F of the Ada Reference Manual

FLOAT'LAST - 2#0.11111111111111111111 #E128
FLOATMACHINE EMAX = 128
FLOAT'MACHINE EMIN -125
FLOATMACHINE-MANTISSA = 24
FLOAT'MACHINE OVERFLOWS = TRUE
FLOATMACailNE-RADIX - 2
FLOAT'MACHINE ROUNDS = TRUE
FLOAT'SAFE EMAX = 125
FLOAT'SAFE-LARGE = 2#0.11111111111111111111#E125
FLOArSAFE SMALU = 2#0.1#E-125
FLOAT'SIZE = 32

LONG FLOATDIGITS = 15
LONG-FLOATFIRST = -2#1.0#E1024
LONG-FLOAT'LAST = 2#0.111#E1024
LONG FLOAT'MACHINE EMAX = 1024
LONG-FLOATMACHINE-EMIN = -1021
LONG FLOArMACHINE-MANTISSA = 53
LONGFLOATMACHINE-OVERFLOWS TRUE
LONG FLOATMACHINE-RADIX = 2
LONG-FLOAT'MACHINE-ROUNDS = TRUE
LONG FLOAT'SAFE EMA = 1023
LONG-FLoAT'SAFE-LARGE 2#0.111#E1023
LONG-FLoATSAFE-SMALL - 2#0.1#E-1023
LONG-FLOATSIZE - 64

No other predefined floating point types (such as SHORTFLOAT) are implemented, as there are no
corresponding underlying machine base types.

F.13. Fixed Point TYpes

One kind of anonymous predefined fixed point type is implemented, fixed (which is not defined in package
STANDARD, but is used here only for reference), as well as the predeFmed type DURATION.

For objects of fixed types, 32 bits are used for the representation of the object.

For fixed there is a virtual predefined type for each possible value of small [Ada RM 3.5.91. The possible values
of small are the powers of two that are representable by a LONGFLOAT value, unless a length clause specify-
ing T"SMALL is given, in which case the specified value is used.

The lower and upper bounds of these types are:

lower bound offixed types = -2 147 483 648 * small
upper bound of fixed types = 2 147 483 647 * small

A declared fixed point type is represented as that predefinedfixed type which has the largest value of small not

greater than the declared delta, and which has the smallest range that includes the declared range constraint.

Any fLxed point type T has the following attributes:

Appendix F of the Ada Reference Manual F-3

T'MACHINE OVERFLOWS = TRUE
r'MACHINE ROUNDS = TRUE

Tye DURATION

The predefined fixed point type DURATION has the follow•g attributes:

DURATION'AFT = 5
DURATION'DELTA = DURATION'SMALL
DURATION'FIRST - -131 072.0
DURATION'FORE = 7
DURATION'LARGE = 131071999938965EG5
DURATION'LAST = 131 071.0
DURATION'MANTISSA - 31
DURATIONSAFE LARGE = DURATION'LARGE
DURATION'SAFE SMALL = DURATION'SMALL
DURATIONSIZE = 32
DURATION'SMALL = 2*(-14) = 6.10351562500000E-05

F.2. Predefined Language Pragmas

This section lists all language-defimed pragmas and any restrictions on their use and effect as compared to the
definitions given in Ada RM.

F.2.1. Pragma CONTROLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.

F.2.2. Pragma ELABORATE

As inAda RM.

F.2.3. Pragma INLINE

This pragma causes inline expansion to be performed, excer, n the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, i.e., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement.

F-4 Appendix F of the Ada Reference Manual

3. The subprogram is an instantiation of the predefined generic subprograms
UNCHECKED CONVERSION or UNCHECKEDDEALLOCATION. Calls to such subprograms
are expanded inlime by the compiler automatically.

4. The subprogram is declared in a generic unit. The body of that generic unit is compiled as a secon-

dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

F.2.4. Pragma INTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE-LANGUAGE
in package SYSTEM.

Language ASSEMBLY

Ada programs may call assembly language subprograms that have been assembled with the DACS Unix to
MIPS R3000 Bare Assembler (VAX/VMS and Sun SPARC/SunOS hosts) or the Unix assembler as(l) (MIPS
RISC/os or DECStation/ULTRIX hosts; for the latter, assemblies must be done using the -EB option; other-
wise, object code will be produced according to the host's little-endianism).

The compiler generates a call to the name of the subprogram (in all upper case). If a call to a different external
name is desired, use pragma INTERFACESPELLING in conjunction with pragma INTERFACE (see Section
F.3).

Parameters and results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not elaborated at runtime, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program units.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the -userarts option, see Section 5.1), so that the DACS Unix to MIPS R3000 Bare Cross
Linker can find it.

Appendix F of the Ada Reference Manual F-5

Languages (, C + +, Fortran, and Pascal

It is possible to use pragma INTERFACE to call subprograms written in these other languages supported by
MIPS Technologies, Inc. derived compilers. (These are the compilers licensed by MIPS for their RISC/os sys-
tems, by Silicon Graphics for their IRIX systems, by Digital for their DECStation ULTRIX systems, etc.) This
is because the object code format and the compiler protocols [MIPS Appendix D] used by the Compiler System
are the same as those used ia the MIPS-supplied compilers. (Note however that special data mapping is done
peculiar to the other languages, e.g. it is the user's responsibility to null-terminate Ada strings when passing
them to C, to reconcile Ada versus Fortran array layouts, etc.)

To do this for VAX/VMS or Sun SPARC/SunOS hosts, compile such subprograms on a MIPS derived com-
puter system (making sure they are compiled for a big-endian configuration), and then transfer the object files
(and any language runtime library object files needed by the subprograms) to VAX/VMS or Sun
SPARC/SunOS. (Make sure the transfer preserves the binary nature of the files.) Then proceed as with
assembly language subprograms.

To do this for MIPS RISC/os or DECStation/ULTRIX hosts, compile such subprograms using the normal
Unix compile command (cc(1), etc.). Note that if the host system is DECStation/ULTRIX, compiles must be
done using the -EB option; otherwise, object code will be produced according to the host's little-endianism.

Note that C+ + is not a valid language name to pragma INTERFACE; use C instead.

F.2.5. Pmma LIST

As inAda RM.

F.2.6. Pragma MEMORY-SIZE

This pragma has no effect. See pragma SYSTEMNAME.

F.2.7. Pragma OPTIMIZE

This pragma has no effect.

F.2.8. Pragma PACK

This pragma is accepted for array types whose component type is an integer, enumeration, or fixed point type
that may be represented in 32 bits or less. (The pragma is accepted but has no effect for other array types.)

The pragma normally has the effect that in allocating storage for an object of the array type, the components of
the object are each packed into the next largest 2n bits needed to contain a value of the component type. This
calculation is done using the minimal size for the component type (see Section F.6.1 for the definition of the
minimal size of a type).

However, if the array's component type is declared with a size specification length clause, then the components
of the object are each packed into exactly the number of bits specified by the length clause. This means that if
the specified size is not a power of two, and if the array takes up more than a word of memory, then some com-
ponents will be allocated across word boundaries. This achieves the maximum storage compaction but makes
for less efficient array indexing and other array operations.

F-6 Appendix F of the Ada Reference Manual

Some examples:

type BOOL ARR is array 0l..32) of BOOLEAN; -- BOOLEAN minimal size is 1 bit
pragme PACK (SO0LARR); o- each component pecked into I bit

type TINY JINT is range -2..1; -- minimt size is 2 bits
type TINY ARR is array (1..32) of TINY INT;
prague PACK (TINY ARR); -- each component packed into 2 bits

type SMALLINT is range 0..63; -- minimat size is 6 bits, not a power of two
type SWALL ARR is array 01..32) of SHALL_INT;
prae PACK (SMALL ARR); o- thus, each component pecked into 8 bits

type SMALLINT_2 is range 0..63; o- minim1 size is 6 bits, but
for SMALL INT 2'SIZE use 6; -- this tim tength ctause is used
type SMALLAiR_2 is array (1.32) of SMALL - iNT.2;
pragme PACK (SMALL ARR_2); o- thus, each component packed Into 6 bits;

some components cross word boundaries

Pragma PACK is also accepted for record types but has no effect. Record representation clauses may be used to
"pack" components ui a record into any desired number of bits; see Section F.6.3.

F.2.9. Pragma PAGE

As inAda RM.

F2.10. Pragma PRIORITY

As in Ada RM. See the DACS Unix to MIPS R3000 Bare Ada Run-Time System User's Guide for how a default
priority may be set.

F.2.11. Pragma SHARED

This pragma has no effect, in terms of the compiler (and a warning message is issued).

F.2.12. Pragma STORAGEUNIT

This pragma has no effect. See pragma SYSTEM-NAME.

F.2.13. Pragma SUPPRESS

Only the "identifier" argument, which identifies the type of check to be omitted, is allowed. The "[ON = >I
name" argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with all checks other than DIVISION CHECK results in the corresponding checking code
not being generated. The implementation of arithmetic operations is such that, in general, pragma SUPPRESS
with DIVISION CHECK has no effect. In this case, runtime executive customizations may be used to mask the
overflow interrupts that are used to implement these checks (see the DACS Unix to MIPS R3000 Bare Ada
Run-Time System User's Guide for details).

Appendix F of the Ada Reference Manual F-7

F2.14. Pragma SYSTEM-NAME

This pragma has no effect. The only possible SYSTEM NAME is Mips. The compilation of pragma
MEMORYSIZE, pragma STORAGE-UNIT, or this pragma does not cause an implicit recompilation of
package SYSTEM.

F.3. Implementation-dependent Pragmas

F3.1. Pragma EXPORT

This pragma is used to define an external name for Ada objects, so that they may be accessed from non-Ada
routines. The pragma has the form

pragma EXPORT (object.name [,extemaJnamestring literal]);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name in all upper case is used as the external name. Note that the Assembler is case-sensitive;
the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a library package (or package nested within a library package), and
must not be a statically-valued scalar constant (as such constants are not allocated in memory).

Identical external names should not be put out by multiple uses of the pragma (names can always be made
unique by use of the second argument).

Objects which are allocated indirectly by the compiler (such as dynamically-sized arrays and renames of
dynamically-addressed objects) must be so interpreted by non-Ada routines.

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragme EXPORT (ABLE);

Baker : STRING(1..8);
pragne EXPORT (Baker, "Baker");

end GLOBAL;

may be accessed in the following assembly language fragment

Lw $8,ABLE # get value of ABLE

ta S9,Baker # get address of Baker

F-8 Appendix F of the Ada Reference Manual

F.32. Pragma IMPORT

This pragma is used to associate an Ada object with an object defined and allocated externally to the Ada pro-
gram. The pragma has the form

pragma IMPORT (object name [,extemol name string literall);

The pragma must ;*-,Pear immediately after the associated object declaration. If the second argument is omit-
ted, the object name in all upper case is used as the external name. Note that the Assembler is case-sensitive;
the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a library package (or package nested within a library package). The

associated object may not have an explicit or implicit initialization.

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragma IMPORT (ABLE);

Baker : STRING(1..8);
pragma IMPORT (Baker, "Baker");

end GLOBAL;

are actually defined and allocated in the following assembly language fragment

.gtobt ABLE

.comm ABLE, 4

gtobt Baker
.Lcomi Baker, 8

F.3.3. Pragma INTERFACE-SPELLING

This pragma is used to define the external name of a subprogram written in another language, if that external
name is different from the subprogram name (if the names are the same, the pragma is not needed). Note that
the Assembler is case-sensitive; this pragma must be used if the external name is to be other than all upper
case. The pragma has the form

pragma INTERFACESPELLING (subprogram name, etemalname stringliteral);

The pragma should appear after the pragma INTERFACE for the subprogram.

This pragma is useful in cases where the desired external name contains characters that are not valid in Ada
identifiers. For example,

Appendix F of the Ada Reference Manual F-9

procedure CornectBus (SIGNAL : INTEGER);
pragmna INTERFACE (ASSEMBLY, ColnnectBus);
pragms INTERFACE-SPELLING (Conrect Bus, Connect.Bus");

F.3.4. Pragma SUBPROGRAM-SPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit number. The pragma has the form

pragma SUBPROGRAMSPELLING (subprogramn.ame {,oevnsa/name stringliteral];

The pragma is allowed wherever a pragma INTERFACE would be allowed for the subprogram. If the second
argument is omitted, the object name in all upper case is used as the external name. Note that the Assembler is
case-sensitive; the second argument must be used if the external name is to be other than all upper case.

This pragma is useful in cases where the subprogram is to be referenced from another language.

F.4. Implementation-dependent Attributes

FA.A. X'PASSED BY REFERENCE

For a prefix X that denotes a formal parameter (of either a subprogram or an entry) or any type, this attribute
yields the value TRUE if the formal parameter is (or would be, in the case of a type, assuming a formal param-
eter of that type) passed by reference; it yields the value FALSE otherwise, that is, when the formal parameter
is (would be) passed by copy-in/copy-back [Ada RM 6.2 (6-8)]. The value of this attribute is of the predefined
type BOOLEAN.

Examples of the use of this attribute:

type SOME-TYPE Is ...

B : BOOLEAN := SOMETYPE'PASSED BYREFERENCE;

accept E (PARAN : SOME TYPE) do
if PARAN'PASSEDBY REFERENCE then

etse

end if;
end E;

F-10 Appendix F of the Ada Reference Manual

F.5. Package SYSTEM

The specification of package SYSTEM is:

package SYSTEM is

type ADDRESS is new INTEGER;
ADDRESS-NULL constant ADDRESS := 0;

type NAKE 1a (Mips);

SYSTEMNA1E constant MANE :- Nips;

STORAGE-UNIT constant a 8;
MEMORYSIZE constant := 4 * 1024 * 1024 1024;

NI .INT constant := -2 147 483 647-1;
MAXINT constant : 2 147483 647;
MAX DIGITS constant :- 15;
MAX MANTISSA constant :z 31;
FINE DELTA constant 1.0 / 2.0 P MAX MANTISSA;
TICK- constant 1.0 / 2.0 ' 14;

subtype PRIORITY is INTEGER range 0..255;

type INTERFACE-LANGUAGE is (Assembty, C, Fortran, Pescac);

-- these are the possible ADDRESS values for Interrupt entries
"NOOx constant := 1 * 2**2; -- (MOD Is reserved word)
TLBL : constant := 2 * 2**2;
TLBS : constant := 3 * 2**2;
AdEL : constant : 4 * 2**2;
ACES : constant := 5 * 2**2;
IBE : constant := 6 * 2**2;
DBE : constant 7 * 2**2;
Sys : constant := 8 * 2**2;
Bp : constant := 9 * 2**2;
RI : constant := 10 * 2**2;
CPU : constant :z 11 * 2**2;
Ovf : constant := 12 * 2**2;
Reserved13 : constant := 13 * 2**2;
Reserved14 : constant = 14 * 2**2;
Reserved15 : constant := 15 * 2**2;
SWO : constant : 2**0 * 2**8;
SWi : constant := 2**1 * 2**8;
IPO : constant 2**0 * 2"10;
IP1 : constant := 2"*1 * 2"*10;
IP2 : constant 2**2 * 2"*10;
IP3 : constant := 2**3 * 2.'10;
IP4 : constant :z 2**4 * 2**10;
IP5 : constant := 2**5 * 2"10;
-- these are only meaningful for the GISA processor
GISAO : constant :z IPO + 1 4 0;
GISA1 : constant := IPO + 1 + 1;
GISA2 : constant IPO + 1 + 2;
GISA3 : constant IPO + 1 + 3;
GISA4 : constant IPO + 1 + 4;
GISA5 : constant :: IPO + 1 * 5;
GISA6 : constant : IPO + 1 4 6;
GISA7 : constant := IPO * I + 7;
GISA8 : constant IPO + 1 + 8;
GISA9 : constant :a IPO + I + 9;
GISA10 : constant :z IPO + 1 + 10;
GISA1I : constant IPO + 1 + 11;
GISA12 : constant := IPO * 1 + 12;

Appendix F of the Ada Reference Manual F-il

GISA13 : constant IPO + 1 * 13;
GISA14 : constant IP0 * 1 + 14;
GISA15 : constant := IPN 1 + 15;
GISA16 : constant := IPO + I + 16;
GlSA17 : constant : P0 + 1 * 17;
GISA18 : constant :I IP0 + 1 ÷ 18;
GISA19 : constant := IPO + I 4 19;
GISA20 : constant :- IPO + ¶ ÷ 20;
GISA21 : constant :- IPO + ¶ + 21;
GISA22 : constant : IPO + 1 + 22;
GISA23 : constant :z IP0 + 1 + 23;
GISA24 : constant :z IPO + 1 + 24;
GISA2S : constant :x IPO + 1 * 25;
GISA26 : constant :- IP0 + 1 + 26;
GISA27 : constant :a IPN + 1 + 27;
GISA28 : constant :a P0I + I 28;
GISA29 : constant :a IP0 + 1 + 29;
GISA30 : constant := IPO * 1 + 30;
GISA31 : constant :z IP0 + 1 + 31;

end SYSTEM;

Note that since timers are not part of the MIPS R3000 architecture specification, different MIPS R3000 target
implementations may contain timers with varying characteristics. This has an effect on the granularity of the
CLOCK function in package CALENDAR. The value of the named number TICK above, which represents
that granularity, corresponds to the MIPS R3000 target implementation that the DACS Unix to MIPS R3000
Bare Ada Cross Compiler System is validated upon. It also is the most common value for the different MIPS
R3000 target implementations that the Compiler System supports; however, for some supported target imple-
mentations, it is incorrect.

For more details on timers and the different MIPS R3000 target implementations, see the DACS Unix to MIPS
R3000 Bare Ada Run-linme System User's Guide.

F.6. Type Representation Clauses

The three kinds of type representation clauses - length clauses, enumeration representation clauses, and
record representation clauses - are all allowed and supported by the compiler. This section describes any res-
trictions placed upon use of these clauses.

Change of representation [Ada RM 13.6] is allowed and supported by the compiler. Any of these clauses may
be specified for derived types, to the extent permitted byAda RM.

F.6.1. Length Clauses

The compiler accepts all four kinds of length clauses.

Size specification: T'SIZE

The size specification for a type T is accepted in the following cases.

If T is a discrete type then the specified size must be greater than or equal to the minimal size of the type, which
is the number of bits needed to represent a value of the type, and must be less than or equal to the size of the
underlying predefined integer type.

The calculation of the minimal size for a type is done not only in the context of length clauses, but also in the

F-12 Appendix F of the Ada Reference Manual

context of pragma PACK, record representation clauses, the T'SIZE attribute, and unchecked conversion. The
definition presented here applies to all these contexts.

The minimal size for a type is the minimum number of bits required to represent all possible values of the type.
When the minimal size is calculated for discrete types, the range is extended to include zero if necessary. That
is, both signed and unsigned representations are taken into account, but not biased representations. Also, for
unsigned representations, the component subtype must belong to the predefined integer base type normally
associated with that many bits.

Some examples:

type SMALLtNT is range -2..1;
for SMALLINT'SIZE use 2; -- OK, signed representation, needs minims 2 bits

type U SMALL INT Is range 0..3;
for USMALL INTISIZE use 2; -- OK, unsigned representation, needs minimum 2 bits

type B SMALL INT is range 7..10;
for 8_SMALL INTISIZE use 2; -- ittegaL, woutd be biased representation
for B SMALL INT'SIZE use 4; -- OK, the extended 0._10 range needs minimum 4 bits

type U.G INT is range 0..2**32-1;
for U.BIGINTISIZE use 32; -- ittegat, range outside of 32-bit INTEGER predefined type

If T is a fixed point type then the specified size must be greater than or equal to the minimal size of the type,
and less than or equal to the size of the underlying predefined fixed point type. The same definition of minimal
size applies as for discrete types.

If T is a floating point type, an access type or a task type, the specified size must be equal to the number of bits
normally used to represent values of the type (32 or 64 for floating point types, 32 for access and task types).

If T is an array type the size of the array must be static and the specified size must be equal to the minimal
number of bits needed to represent a value of the type. This calculation takes into account whether or not the
array type is declared with pragma PACK.

If T is a record type the specified size must be equal to the minimal number of bits needed to represent a value
of the type. This calculation takes into account whether or not the record type is declared with a record
representation clause.

The effect of a size specification length clause for a type depends on the context the type is used in.

The allocation of objects of a type is unaffected by a length clause for the type. Objects of a type are allocated
to one or more storage units of memory. The allocation of components in an array type is also unaffected by a
length clause for the component type (unless the array type is declared with pragma PACK); components are
allocated to one or more storage units. The allocation of components in a record type is always unaffected by a
length clause for any component types; components are allocated to one or more storage units, unless a record
representation clause is declared, in which case components are allocated according to the specified component
clauses.

There are two important contexts where it is necessary to use a length clause to achieve a certain representa-
tion. One is with pragma PACK, when component allocations of a non-power-of-two bit size are desired (see
Section F.2.8). The other is with unchecked conversion, where a length clause on a type can make that type's
size equal to another type's, and thus allowed the unchecked conversion to take place (see Section F.9).

Appendix F of the Ada Reference Manual F-13

Specification of collection size: T'STORAGE SIZE

This value controls the size of the collection (implemented as a local heap) generated fof the given access type.
It must be in the range of the predefined type NATURAL. Space for the collection is deallocated when the
scope of the access type. is left.

See the DACS Unir to MIPS R3000 Bare Ada Run-Tune System User's Guide for full details on how the storage

in collections is managed.

Specification of storage for a task activation: T'STORAGE SIZE

This value controls the size of the stack allocated for the given task. It must be in the range of the predefined
type NATURAL.

It is also possible to specify, at link time, a default size for all task stacks, that is used if no length clause is
present. See the DACS Unix to MIPS R3000 Bare Ada Run-Tune System User's Guide for full details and for a
general description of how task stacks, and other storage associated with tasks, are allocated.

Specification of a small for a fixed point type: T'SMALL

Any real value (less than the specified delta of the fixed point type) may be used.

F.6.2. Enumeration Representation Clauses

Enumeration representation clauses may only specify representations in the range of the predefined type
INTEGER.

When enumeration representation clauses are present, the representation values (and not the logical values) are
used for size and allocation purposes. Thus, for example,

type ENUM is (ABLE, BAKER, CHARLIE);
for ENUM use (ABLE => 1, BAKER a> 4, CHARLIE => 9);

for ENUNISIZE use 2; -- ittegat, 1..9 range needs minimum 4 bits
for ENUt4'SIZE use 4; -- OK

type ARR is array (ENUM) of INTEGER; -- wit(occupy 9 storage units, not 3

Enumeration representation clauses often lead to less efficient attribute and indexing operations, as noted in
[Ada RM 13.3(6)].

F.6.3. Record Representation Clauses

Alignment clauses are allowed.

The permitted values are 1, 2, and 4. However, if the type is used as the component type of an array type, then
the only permitted value is 1.

In terms of allowable component clauses, record components fall into three classes, depending on their type:

F-14 Appendix F of the Ada Reference Manual

* integer, enumeration, and fixed point types whose minimal size (see Section F.6.1) is less than 32 bits;

* statically-bounded array types declared with pragma PACK, and record types declared with a record
representation clause;

* all others.

Components of the "less-than-32-bit integer/enumeration/fixed" class may be given a component clause that
specifies a storage place at any bit offset, and for any number of bits, as long as the storage place is greater than
or equal to the minimal size of the component type, and less than or equal to 32 bits. Furthermore, if the
storage place is less than 32 bits, the component may cross a word boundary.

Components of the "packed array/record rep clause" class may be given a component clause that specifies a
storage place at any bit offset, if the size of the array or record is less than a word, or at a storage unit offset oth-
erwise. The size of the storage place must be the same as the minimal size of the array or record type. Note
that the component clause for an array or record component type cannot specify a representation different from
that of the component's type.

Components of the "all others" class may only be given component clauses that specify a storage place at a word
offset, and for exactly the number of bits normally allocated for objects of the underlying base type.

If a component clause is used for a discriminant, that discriminant must be the only discriminant of the record
type.

An example of the rule regarding array and record component types:

Appendix F of the Ada Reference Manual F-15

type SMALL INT is range 0..15;

type INNERREC is record
A : SMALL INT;
S : SMALL_INT;

end record;

type 5OOL. ARR is array (1..8) of BOOLEAN;

type RECILLEGAL is record
IR : |NNER REC;
BA : OOL_ AiR;

end record;
for RECILLEGAL use record

IR at 0 range 0..7; -- ittegat, not enough storage space
BA at 0 range 8..15; -- ilegal, not enough storage space

end record;

type INNER RIECR is new INNER REC;
for INNER _EC E use record

A at 0 range 0..3;
6 at 0 range 4..7;

end record;

type 5O0L ARR P is new BOOL ARR;
pragom PACK (5OOLARRP);

type RECLEGAL is record
IR : INNERRECR;
BA : OOLARRP;

end record;
for REC LEGAL use record

IR at 0 range 0..7; -- OK, now that component type is packed
BA at 0 range 8..15; -- OK, now that component type has rep. ctause

end record;

Component clauses do not have to be in storage order, and there may be gaps in storage between c, "Iponent
clauses. No other components are allocated in such gaps.

Components that do not have component clauses are allocated in storage places beginning at the next word

boundary following the storage place of the last component in the record that has a component clause.

Records with component clauses cannot exceed 1K words (32K bits) in size.

The ordering of bits within storage units is defined to be big-endian. That is, bit 0 is the most significant bit and
bit 31 is the least significant bit. Note that this convention differs from the one used in [MIPS p. 2-61 for bit-
ordering.

F.7. Implementation-dependent Names for Implementation-dependent Components

None are defined.

F-16 Appendix F of the Ada Reference Manual

F.& Address Clauses

Address clauses are allowed for variables (objects that are not constants), and for interrupt entries. Address
clauses are not allowed for constant objects, or for subprogram, package, or task units.

Address clauses occurring within generic units are always allowed at that point, but are not allowed when the
units are instantiated if they do not conform to the implementation restrictions described here. (Note that the
effect of such address clauses may depend on the context in which they are instantiated; for example, whether
multiple address clauses specifying the same address are erroneous may depend on whether they are instan-
tiated into library packages or subprograms.)

F.8.1. Address Clauses for Variables

Address clauses for variables must be static expressions of type ADDRESS in package SYSTEM.

It is the user's responsibility to reserve space at link time for the object. See the DACS Unix to MIPS R3000
Bare Cross Linker Reference Manual for the means to do this. Note that to conform with Compiler System
assumptions, space so reserved should begin and end on 16-byte storage boundaries, even if the variable itself is
not allocated on a 16-byte storage boundary. Also note that any bit-addressed object (a packed array or a
record with a representation clause) must be allocated on a fullword (4-byte) boundary.

Because the value of a variable with an address clause must also be stored in memory, rather than kept in a
register, compilations of source units containing references to address clause variables are done with less optim-
izations than normal. The compiler issues a warning message when this happens. The user may want to isolate
such references into small, separately compiled units, to limit the effect of this consequence.

Type ADDRESS is a 32-bit signed integer. Thus, addresses in the memory range
16#8000_0000#..16#FFFF FFFF# (i.e., the upper half of target memory) must be supplied as negative
numbers, since the positive (unsigned) interpretations of those addresses are greater than ADDRESS'LAST.
Furthermore, addresses in this range must be declared as named numbers, with the named number (rather than
a negative numeric literal) being used in the address clause. The hexadecimal address can be retained in the
named number declaration, and user computation of the negative equivalent avoided, by use of the teinique
illustrated in the following example:

X : INTEGER;
for X use at 1607FFF FFFF#; -- legal

Y : INTEGER;
for Y use at 16#FFFFFFFF#; -- iLLegaL

ADDR HIGH : constant :z 16#FFFFFFFF# - 2**32;
Y : INTEGER;
for Y use at ADDRHIGH; -- tegal, equivatent to unsigned 16#FFFFFFFF#

F..2. Address Clauses for Interrupt Entries

Address clauses for interrupt entries do not use target addresses but rather, the values in the target Cause regis-
ter that correspond to particular interrupts. For convenience these values are defined as named numbers in
package SYSTEM, c.-responding to the mnemonics used in [MIPS pp. 5-4, 5-5. Note that if the -gisa compile
option is present, indicating that the target is the Westinghouse GISA architecture, an additional set of interrupt
values is available (see Sections 4.1.1 and F.5).

Appendix F of the Ada Reference Manual F-17

The following restrictions apply to interrupt entries. An interrupt entry must not have formal parameters.
Direct calls to an interrupt entry are not allowed. An accept statement for an interrupt entry must not be part of
a selective wait, i.e., must not be part of a select statement. If any exception can be raised from within the accept
statement for an interrupt entry, the accept statement must include an exception handler.

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, execution of
the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Control must again return to the point where the accept
statement is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the target machine state and with the Run-
time Executive. For these details, see the DACS Unix to MIPS R3000 Bare Ada Run-.ime System User's Guide.

F.9. Unchecked Conversion

Unchecked type conversions are allowed and supported by the compiler.

Unchecked conversion is only allowed between types that have the same size. In this context, the size of a type is
the minimal size (see Section F.6.1), unless the type has been declared with a size specification length clause, in
which case the size so specified is the size of the type.

In addition, if UNCHECKED CONVERSION is instantiated with an array type, that array type must be stati-
cally constrained.

In general, unchecked conversion operates on the data for a value, and not on type descriptors or other
compiler-generated entities.

For values of scalar types, array types, and record types, the data is that normally expected for the object. Note
that objects of record types may be represented in two ways that might not be anticipated: there are compiler-
generated extra components representing array type descriptors for each component that is a discriminant-
dependent array, and all dynamically-size array components (whether discriminant-dependent or not) are
represented indirectly in the record object, with the actual array data in the system heap.

For values of an access type, the data is the address of the designated object; thus, unchecked conversion may
be done in either direction between access types and type SYSTEMADDRESS (which is derived from type
INTEGER). (The only exception is that access objects of unconstrained access types which designate uncon-
strained array types cannot reliably be used in unchecked conversions.) The named number
SYSTEMADDRESS NULL supplies the type ADDRESS equivalent of the access type literal null. Note how-
ever that due to compiler assumptions about the machine alignment properties of objects, unchecked conver-
sions from SYSTEMADDRESS to access objects must be done on 4-byte (word) aligned addresses only.

For values of a task type, the data is the address of the task's Task Control Block (see the DACS Unix to MIPS
R3000 Bare Ada Run-7irme System User's Guide).

For unchecked conversions involving types with a size less than a full word of memory, and different representa-
tional adjustment within the word (scalar types are right-adjusted within a word, while composite types are left-
adjusted within a word), the compiler will correctly readjust the data as part of the conversion operation.

Some examples to illustrate all of this:

type BOOLARR is array(1..32) of BOOLEAN;
pragma PACK (SOOL.ARR);

-4

F-18 Appendix F of the Ada Reference Manual

function UC is new UNCHECKED-CONVERSION (OOLARR, INTEGER); -. OK. both have size 32

type BITS .8 is array(1..8) of BOOLEAN;
prago" PACK (BITS 8);

function UC is new UNCHECKED-CONVERSION (BITS_8. INTEGER); -- illegal, sizes are 8 and 32

type SMALLINT is range -128..127;
function UC is new UNCHECKED CONVERSION (BITS.8, SMALL_INT); -- OK, both have size 8

type BYTE is range 0..255;
function UC is new UNCHECKED-CONVERSION (BITS_8, BYTE); -- OK, both have size 8

type BIGBOOLEAN is r-w BOOLEAN;
for BIG BOOLEAN'SIZE ,se 8;
function UC is new UNCHECKED CONVERSION (CBTS.8, BIG BOOLEAN); -- OK, both have size 8

SM : SMALL INT; -- actual data Is rightmost byte in object's word
01 : BITS 8; -- actual date is teftmost byte in object's word

SM :z UC (BI); -- actual data is moved from leftmost to rightmost byte as pert of conversion

Calls to instantiations of UNCHECKED-CONVERSION are always generated a& inline calls by the compiler.

The instantiation of UNCHECKED CONVERSION as a library unit is not allowed. Instantiations of
UNCHECKED-CONVERSION may not be used as ge~aeric actual parameters.

F.10. Other Chapter 13 Areas

F.10.1. Change of Representation

Change of representation is allowed and supported by the compiler.

F.10.2. Representation Attributes

All representation attributes [Ada RM 13.7.2, 13.7.3] are allowed and supported by the compiler.

For certain usages of the X'ADDRESS attribute, the resulting address is ill-defined. These usages are: the
address of a constant scalar object with a static initial value (which is not located in memory), the address of a
loop parameter (which is not located in memory), and the address of an inlined subprogram (which is not
uniquely located in memory). In all such cases the value SYSTEM.ADDRESSNULL is returned by the attri-
bute, and a warning message is issued by the compiler.

When the X'ADDRESS attribute is used for a package, the resulting address of that of the machine code asso-
dated with the package specification.

The X'SIZE attribute, when applied to a type, returns the minimal size for that type. See Section F.6.1 for a full
definition of this size. However, if the type is declared with a size specification length clause, then the size so
specified is returned by the attribute.

Since objects may be allocated in more space than the minimum required for a type (see Section F.6.1), but not
less, the relationship O'SIZE > = T'SIZE is always true, where 0 is an object of type T.

Appendix F of the Ada Reference Manual F-19

F.10.3. Machine Code Insertions

Machine code insertions are not allowed by the compiler. Note that pragma INTERFACE (ASSEMBLY) may
be used as a (non-inline) alternative to machine code insertions.

F.10.4. Unchecked Deallocation

Unchecked storage deallocation is allowed and supported by the compiler.

Calls to instantiations of UNCHECKED DEALLOCATION are always generated as inline calls by the com-
piler.

The instantiation of UNCHECKED DEALLOCATION as a library unit is not allowed. Instantiations of
UNCHECKED DEALLOCATION may not be used as generic actual parameters.

F.11. Input-Output

The predefined library generic packages and packages SEQUENTIAL IO, DIRECT 1O, and TEXT 10 are
supplied. However, file input-output is not supported except for the standard input and output fil•s. Any
attempt to create or open a file will result in USE-ERROR being raised.

TEXT IO operations to the standard input and output fides are implemented as input from or output to some
visible device for a given MIPS R3000 target implementation. Depending on the implementation, this may be a
console, a workstation disk drive, simulator files, etc. See the DACS Unix to MIPS R3000 Bare Ada Run-Time
System User's Guide for more details. Note that by default, the standard input file is empty.

The range of the type COUNT defined in TEXTO1 and DIRECTIO is 0.. SYSTEM.MAXINT.

The predefined library package LOW LEVELIO is empty.

In addition to the predefined library units, a package STRING OUTPUT is also included in the predefined
library. This package supplies a very small subset of TEXTJO operations to the device connected to the stan-
dard output fide. (It does not use the actual standard output file object of TEXT10, so TEXTI10 state func-
tions such as COL, LINE, and PAGE are unaffected by use of this package).

The specification of STRING-OUTPUT is:

package STRINGOUTPUT is

procedure PUT (ITEM : in STRING);

procedure PUT-LINE (ITEM : in STRING);

procedure NEW-LINE;

end STRING-OUTPUT;

By using the 'IMAGE attribute function for integer and enumeration types, a fair amount of output can be done
using this package instead of TEXT 10. The advantage of this is that STRINGOUTPUT is smaller than
TEXTIO in terms of object code size, and faster in terms of execution speed.

Use of TEXT 10 in multiprogramming situations (see Chapter 5) may result in unexpected exceptions being

F-20 Appendix F of the Ada Reference Manual

raised, due to the shared unit semantics of multiprogramming. In such cases STRINGOUTPUT may be used
instead.

F.12. Compiler System Capacity Umitations

The following capacity limitations apply to Ada programs in the Compiler System:

" the names of all identifiers, including compilation units, may not exceed the number of characters
specified by the INPUT LINELENGTH component in the compiler configuration file (see Section
42-2);

" a sublibrary can contain at most 4096 compilation units (library units or subunits). A program library
can contain at most eight levels of sublibraries, but there is no limit to the number of sublibraries at
each level An Ada program can contain at most 32768 compilation units.

The above limitations are all diagnosed by the compiler. Most may be circumvented straightforwardly by using
separate compilation facilities.

F.13. Implementation-dependent Predef'med Library Units

In addition to the predefined library units required by [Ada RMAnntx C1, the predefined library in the Com-
piler System is delivered with several other library units that application developers may be interested in. These
are:

* package STRING-OUTPUT, described in Section F.11 above

* a number of packages constituting the Application Runtime Interfaces, which allow for applications to
access or control runtime executive functions in ways that are in addition to, or an alternate to, stan-
dard Ada language features. These are described in the DACS Unix to MIPS R3000 Bare Ada Run-
Time System User's Guide.

* generic package GENERIC MATH FUNCTIONS. This is a public domain math package, taken
from the Ada Software Repository, based on the algorithms of Cody and Waite. It supplies a set of
elementary mathematics functions. The source for both the specification and the body of the package
can be extracted from the predef'med library through the Ada PLU type command.

In addition to these units, there are also a number of units in the predefined library that are used as part of the
runtime system itself. These are "called" by the code generated by the compiler, and are not intended for direct
use by application developers.

