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Over the last two decades, observations of acoustic scintillations in the ocean have been -0)
usefdl in testing theories that predict the statistics for WPRM. Ocean acoustic
,obirvations differ from scattering processes observed in other WPRM sub-fields in two
important ways, First, the statistics of the refractive index can be determined accurately
from oceanographic measurements. Hence, exacting tests of theories c;in be done when
careful 'neasurements of the medium and the wavefield are made synoptically. Second,
the scattering of acoustic energy is predominantly influenced by the ocean internal wave
field, which tends to exhibit statistical stationarity in many ocean regimes, and not by
non-stationary turbulent processes, as observed in the atmosphere. We discuss space/time
acoustic propagation experiments carried out in three scattering regimes: (1) weak, where
the Rytov approximation is valid; (2) moderate, where multiple scattering theory i.
required; and (3) the case where multiple scattering in a single medium irregularity is
encountered. A review is presented of the measurements and comparisons with theory.

It is clear from field and numerical experiments that 2-point statistics cannot possibly
explain the observations of intensity. Because two-point statistics are the norm when
interpreting both medium and wavefield measurements, the possible failure of Gaussian
statistics must be addressed. This has yet to be done. We will discuss remaining issues
for which we believe further study is needed.

2. INTRODUCTION

0

This conference addresses fluctuations in the propagation of waves in media with random
index of refraction fields. This discipline is rooted in the practicalities of dealing with

n .those fluctuations, and the beauty associated with explaining them. We present
U, ®observations of acoustic scintillation statistics measured by our group over three paths in
!,- the deep ocean. The ocean environment is ideal in the sense that the scattering refractive

index field may be monitored simultaneously with scintillation measurements. However,
ocean paths are complicated by an anisotropic scattering field and a depth-dependent

, •sound speed and scattering strength. The experiments we describe attempted to minimize
- ,, these complications by using propagation ranges less than 20 km. In particular, the

oo second path we discuss was nearly horizontal. Evaluations of 4th moment theory have
successfully predicted the strong (< 12 > > 2) scintillation levels from this path.

"° '~ The complex amplitudes of the fluctuations are observed to have highly non-Gaussian
"behavior; hence we are "stuck" with a need to understand the phenomena at complexities
beyond the usual two-point statistics. Numerical simulations are ideal for studying field
statistics over a broad range of scattering conditions. The latter part of our presentation
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discusses parabolic equation-based numerical experiments used to study intensity
probability distributions. Using our ocean acoustic measurements as a starting point, we
use the generalized gamma distribution to model simulated data from weak and through
strong scatter to saturation.

Since the introduction of the system of parabolic moment equations by Shishov1 (1968),
we have had the tantalizing expectation of understanding the scattering physics. It has
been a long road and we highlight some of the work pertinent to the experiments
presented. We would like to emphasize that understanding observations of ocean acoustic
scintillation has driven the development of theory.

Using the Garrett and Munk 2 (1972) ocean internal wave model, Uscinski3 (1980)
applied 4th moment theory to the published 4 1971 Cobb Seamount experiment temporal
spectra of intensity. These were only partial solutions however, and in 1982 Uscinski 5

provided the first full range solution to the 4th moment equation for a plane wave initial
condition. Uscinski et al. 6 and Ewart et al. 7 gave predictions for the Cobb experiment
intensity time spectra that showed the proper acoustic frequency dependence. The
scintillation index remained under-predicted. That theory included a point source initial
condition. Macaskill 8 (1983) provided a correction term i- the 4th moment using two-
scale expansions. That theory was applied by Macaskill and Ewart9 (1984) to "numerical
experiments" based on parabolic wave field-marching through computer-generated index
of refraction fields. There was good agreement between the full range theory with the
correction term, and the simulated data intensity correlations for low values of the
scattering parameters (for Gaussian and 4th order power law medium transverse spectra).
Ewart and Reynolds1 0 (1984) presented the initial results from a subset of the MATE
(Mid-Ocean Acoustic Transmission Experiment) experiment data compared to zeroth
order theory using an ocean model that included linear ocean internal waves and a
refinement termed finestructure. Agreement between the theory and intensity correlations
from the data improved, but the under-prediction remained. Ewart et al. 11 (1985) showed
that the cross frequency 4th moment theory of Uscinski and Macaskil112 (1985) severely
under-predicted the cross-spectra for intensity records at differing frequencies. A full
range solution to the 4th moment equation using the path integral was formulated by
Uscinski et al. 13 (1986). Earlier path integral solutions were asymptotic to short and long
range cases, and not applicable to the experiments at Cobb Seamount. In this paper, we
include linear internal waves and finestructure as well as a correction term to the theory
for the MATE predictions.

Macaskill and Ewart 1 4 (1984) provided a model of the intensity moments and an
intensity probability distribution of the log intensity that predicted several experiments
spanning a wide range of scattering parameters. Ewart and Percival 1 5 (1986)
demonstrated that the generalized gamma distribution models both field and numerical
experiment data (acceptance at the 90% confidence level). Using numerical experiments,
Ewart1 6 (1989) demonstrated (for 8 decades in scattering strength corresponding to 3
decades in wavenumber and 6 decades in range) that the generalized gamma distribution
is a valid model for the intensity probability distribution for WPRM. In the past few --.......
years, Uscinski's Cambridge Group has produced several publications on comparisons of , • t 2
wavefield simulations with numerical solutions for the 4th momnent equation. References A
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are found in Leonard and Uscinski17 . Recently, Martin and Flatte"1 8, 19 extended these
simulation techniques to 3-D media for a point source.

Almost all of the testing problems arise when thewiies are confronted with real data sets.
Having full range solutions for many of the possible 2-point separations requires
comparisons with observations for validation; that is the crux of this paper.

2.1. Expgriments at Cobb Seamount

Ewart4 examined ocean acoustic fluctuations, where both the phase and the amplitude (4
and 8 kHz transmissions over an 18 km path using fixed sources and receivers) were
recorded synoptically (6 days) with oceanographic measurements. The observed intensity
fluctuations were large (< 12 > > 2). The available theories (many based on the Rytov
approximation) were able to predict the phase fluctuations (Desaubies 20 , 21,22 and Munk
and Zachariesen 2 3 ). However, these same theories were hopelessly inadequate for
predicting the large intensity variance, or its spectral decomposition. For that experiment,
the oceanographic observations were insufficient to deteoinine the full 3-space/time ocean
model.

In a second experiment at Cobb Seamount (MATE), the frequencies were expanded to
include 2 and 13 kHz. The space/time medium fluctuations along the transmission path
region were sampled by many different sensors so that various projections of the 3-
space/time statistics were known. Twelve days of data on a downward path and two days
on an upward path were recorded (the paths were both totally refracted). As in the first
experiment, the fixed source and receivers allowed determination of the travel time to
within a few microseconds, and it was possible to separate the upward or downward
arrivals into identifiable Fermat paths 24 , 25, 26. In this paper, we will only discuss the
MATE results.

2.2. The AIWEX Acoustic Transmission Experiment (AATE)

AATE was conducted from a multi-year icefield north of Prudhoe Bay, Alaska (Ewart
and Reynolds 2 7). Transmissions at 2, 4, 8, and 16 kHz were made over a 6.4 km path for
12 days to a receiving array with a 153 m vertical (synthetic) aperture. As in MATE, the
arrivals were isolated into single Fermat paths and the phase and amplitude results were
obtained. In AATE the intensity fluctuations were very weak, and the oceanography (as
determined synoptically by the Arctic Internal Wave Experiment (AIWEX) investigators)
was highly non-stationary, even when viewed over the operation's short duration.

Testing the full range moment equation theories has evolved into more precise
evaluations of theories and subtle increases in our understanding of ocean variability. It is
our contention that the remaining tasks facing us in our quest to validate the theories will
boil down to "getting the medium right," rather than any order one changes in the
theories. In the atmosphere, investigators have had to contend with a severe lack of
stationarity in turbulent processes. In the ocean, horizontal homogeneity and stationarity
of processes are good assumptions, but the actual spectral models are complex in both
wavenumber and frequency.



3. OCEAN INDEX OF REFRACTION VARIABILITY

In the late 1960's and early 1970's, it was recognized by oceanographers that
submesoscale variability was dominated by the processes of internal waves - dynamic
oscillations on the weak internal density gradients of the ocean. In a series of papers,
Garrett and Munk 2 , 28 outlined a model for the linear internal wave field of the ocean.
These dynamics differ from turbulence in that they are anisotropic, and the dispersion
relation requires inclusion of spatial/temporal coupling. Another complication is
additional variance in the index of refraction from processes that have been termed
finestructure 29 . Finestructure may represent a significant fraction of the total < n2 >, and
cannot in general, be ignored. Unlike the atmospheric case, internal wave velocities
produce a much smaller effect on the index of refraction (as seen by a propagating wave)
than do internal wave vertical displacements. To set the stage for introducing the
distinctions between atmospheric turbulence and ocean variability, we present Figure 1.
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Figure 1. MATE phase and moored temperature sensor data converted to < n2 > units.
(Note that cyclical units are used in the Figures.)

Here we have plotted the 2 kHz travel time spectrum of the MATE experiment, in < n2
units. The same normalization has been done for one of the moored (fixed point)
temperature spectra in the experiment, where the temperature fluctuations measured in
the mooring have been converted to index of refraction fluctuations. The integrals of both
spectra equal < n2 >. The frequencies between the inertial frequency, coi , and the
buoyancy frequency, rob, Regime II, is the band where linear internal wave dynamics is
allowed. Regime I below wi, that extends (unobservable in the spectrum) into Region II,
is the finestructure regime, and Regime III above wob, is the high-vertical-wavenumber
microstructure with a very small total energy. In both spectra, the energy in the tide lines



has been removed by combined modeling of stochastic and deterministic processes. The
moored spectrum of the index of refraction is

-- o -(00 = f On

where On is the 3-space/time spectrum of n. We need the medium correlation function
projected (integrated) in the propagation direction, Bp.. For straight ray propagation
in z,

Bp.n (VXI Vy, Td)

i j J n(1X C ,=0 o kv CV CT divdc dw, (2)

where (ix, i y, lcz, (o) and (vx, Vy, vz, r) are the spectral and separation coordinates
respectively. The spectrum of the phase, S, is

Ds (co) = k2 zR fBp,n (0, 0, T) e-i'a dr. (3)

Bp', (0, 0, 0) = < n2 > Lp, with Lp the integral scale from the integration in range, k is
the acoustic wavenumber, and zR is the range. The projected medium correlation
function, Bp,, (vx,v ,r), is usually called the Transverse Correlation Function, TCF. It is
analogous to the integrated structure function in atmospheric scattering literature. This
expression has been generalized to the curved ray case by Esswein and Flatte'30.

For normalization, we use the standard parameters of the parabolic moment equations,
where two parameters, scattering strength, F, and the scaled range Z, represent the
scattering regimes,

r=k3 <n 2 >LpLY2 , Z-k--z2 ,and <S 2 >=FZ. (4)

L is the transverse correlation length. In physical terms, F is the "Fresnel" distance,
ayL2 , divided by the scattering (or coherence) length (k2 <n 2> Lp)'l; Z is the propagation
distance scaled by the "Fresnel" distance. Thus, the phase spectrum can be written

f pn (0, 0, r) e-'iWT dr

B,,OB, (0,0, 0)

We will require more detail on the TCF later in the discussion. The theoretical phase
fluctuation and moored spectra plotted in Figure 1 were obtained from the MATE



spectral model and (1) and (3). The steepening of the travel time spectrum in the internal
wave regime- arises from the dispersion relation; an extra power is subtracted in the
negative power law exponent, thus effectively demonstrating the accuracy and
applicability of the linear internal wave dispersion relation. In the observable
finestructure regime i.e., below oi, the spectra are statistically the same, indicating the
lack of a dispersion relation. We believe that in the microstructure regime, small scale
structures are advected by the internal waves and the power law exponent changes in the
same fashion between the spectrum of n and the spectrum of S.

For propagation studies in the turbulence spectrum of the atmosphere as found in
Ishimaru 3 1 , the TCF of the medium is obtained from an assumed spectrum of turbulence
that is advected past the measurement apparatus. The TCF for the case of a spectrum,

On (Kx, Ky, Kz) is

,f ,f~(x KV,)e 0-[ ( ' T)+K -v dK 1 dK~)

BP~n(twrb)t[(vx - VX r), (VY - VYrJ

where vx and vy are the medium velocities transverse to the propagation. The fluctuations
in time are the same as the fluctuations at a field point. For such a medium, Os and OM
in Figure 1 would have the same spectral dependence. If the internal wave spectrum of
the atmosphere plays a role in the scattering of electromagnetic waves, the effects could
be detectable from the usual Taylor hypothesis models by precise measurements of the
phase and the one-point index of refraction fluctuations for electromagnetic or acoustic
propagation.

We turn our attention to reviewing the specific TCF's we will need in discussing ocean

experimental results.

3.1. The AATE TCF

As mentioned in the introduction, the AATE propagation geometry sampled a weak
scattering environment. Fluctuations in the refractive index were dominated by internal
waves. Levine3 2 showed that the observed environmental variability could be described
by a modified GM internal wave model. The internal wave displacement variance was
reduced by about a factor of 50 from open ocean values and spectral frequency
dependence and modal bandwidth differed from the traditional model. For our purposes,
we decompose the vertical variability denoted by mode number, j.

Using the GM formulation, the refractive index spectrum decomposed in terms of
frequency and vertical mode number can be written



cn ( j; y) = < n2 (y) > G(w) ti , where (5)

(,_W2  ))112 110
G (w) = Go G, .Hi = j"-• 2 "+ j.)

Go and HO are normalization constants such that

GO- h' =(O(W2 - oi2 )1/2 " and 1
G°-I I o),andfftK:X-1=

I P2= + j.2'•

The level of refractive index fluctuations is related to the internal wave displacement
variance, < V >, by the relative gradient in potential sound speed. That is,

<2(y) > = 1 dc cP 2
<o aOýy J< C2(y) >. (6)

The displacement variance is related in turn to the vertical profile of the internal wave
buoyancy frequency. From the environmental observations, p = 2.2 and j. = 30 for the
AATE site; see Levine3 2 for details. In general, because < n2 > is a function of depth,
scattering is vertically inhomogeneous along ocean rays. This was the case during AATE,
and the TCF must be written as a weighted integral of (5) along the ray. We defer further
discussion to the section on acoustic results.

3.2. The MATE TCF

Two ray paths were monitored along the MATE 18 km range. Unlike AATE, an
effectively homogeneous scattering environment was traversed by the upward ray.
However, fluctuations in the refractive index were complicated by the presence of
finesuructure variability roughly equal in variance to that described by the internal wave
model, but apparently having a much longer time scale. This knowledge was obtained
using the extensive environmental measurements made during the experiment 3 3 . Because
only the downward path was monitored for environmental fluctuations, we predict
internal wave variability along the upward path using the GM-model and test the result
with the phase spectrum.

Along the MATE paths, the spectrum of the refractive index is modeled as the sum of
internal wave and finestructure components

'D = unVW + Dn,FS (7)

The covariance function of n, B,, is defined in terms of the internal wave and

finestructure correlation functions, and

Bn (vx, vy, vz, r) = < nwZ(y) > p., where p, = (pjw + b pn.FS). (8)



For the downward path, b = I from observation; for the upward path we assume b = 0.

As mentioned earlier, we require the correlation function (8) projected along the direction
of propagation. We denote this correlation function as pp. For internal waves (see
Equation 12 of Uscinski3 ), PPIWl (Vx, Vy, "T)

2 f G(co)i ' U2J - Y Zcos(a v.,)cos(Ky vy)cos(ow r) dry dwo. (9)2 2 9)K
(0 2 

-i 2 )I Ich y

G(w) is given in (5). Because the buoyancy frequency varies slowly with depth, a WKBJ
approximation is used21 . The modal decomposition used in the AATE case, can now be
written in terms of a vertical wavenumber, Ky:

H(KY) = o- K'(I. _ C2) 1 10 KY. di (10)
_ Y f K2, + C 2)

Icy = (W 2 (,2 /"2 tand K - K ."' -

where oo = cob(0) and Yo is the scale depth of ob(y). The internal wave dispersion
relationship,

)( 2 _ (1f)2)

is used in evaluating (9). The local measurements found that p = 2.7 and t = 3.1 m -Is (j*
= 6). For details on the environmental modeling see Levine et al.33.

The finestructure correlation function is modeled as

Pn,FS(vx,Vy,Vz, r)=e[-4('2 + vY2) L'j' + v.2 / L,2 ] e (-'Ij ' ) (12)

Note that horizontal isotropy is assumed for both internal wave and finestructure fields
and is well supported by the measurements. Projecting along the range direction gives for
finestructure:

PP,FS( VXy, r)= 2L;, .a . K, (a) e(-1l /) (13)

K1 is the modified Bessel function and a2 = (v,2 / L'I + Vy /



To first order, the finestructure correlation lengths equal those for internal waves. Lp=
ppjw (0, 0, 0), then

2LH =Lp; LL , = Lt, (14)

where Lv = 1 / Ky.. Estimating tro is difficult because the experiment did not last long

enough; we take to = 500 h.

Combining internal wave and finestructure terms, the MATE projected covariance
function is

Bp.( vzxV, IT) =< n1W2>Fpp[W (VX'vY IT) + b .PPFS(V~, vYr' (15)1 LP
4. THE ACOUSTIC EXPERIMENT RESULTS

In this section we review acoustic experiment results. Predictions for the acoustic

observations use the TCFs from the previous sections.

4. 1. AATE

AATE provides a good example of the complications that can arise from the ocean sound
channel. The sound speed profile, along with the deepest and shallowest ray paths for
each receiving channel, are shown in Figure 2. There were no deterministic interfering
multipaths. The predicted internal wave induced variability in the refractive index,
< n2 (y,) >, is also shown.
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Figure 2. The AATE propagation environment. Locations of the transmitter and three
depth cycling receivers are noted on the center ray trace. The rays are traced to the top
and bottom positions of the depth cycling (synthetic aperture) array for each receiving
channel.



Along ocean rays, the dominant scattering occurs near the turning points. Because of the
very weak levels of < n2 > at the ray turning points, the fluctuations observed are very
low. The measured variances in the log-amplitudes for four acoustic frequencies, as a
function of depth, are shown in Figure 3. For the observed scintillation levels, weak
scattering theory is appropriate. We utilize the Rytov approximation-based theory of
Munk and Zachanasen 2 . The GM-formulation in (4) with parameters determined by the
environmental measurements provides the spectrum of < n2 (y )> required by theory,
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Figure 3. Predicted and observed log-amplitude variance for the receiving array depths.
The predictions (solid lines) were obtained by integrating (16). The 2, 4, 8 and 16 kHz
observations are shown as crosses, asterisks, boxes and diamonds respectively. (Noise
estimates were subtracted from the 16 kl-Iz variances, and are available from the bottom
channel only.)

The prediction for the frequency spectrum of phase, OS, and log-amplitude, OX , for a ray
path with a single lower turning point can be written 23

4 S/X (D;Y) = k2 '0 Y°- ZRdz sec2 o Ij±cos(#SL j2)] 0-. ((0) j; Z) (16)

wee2 (iY) Lan 2 (irWb(y)) z(ZR - z)where WL = W'i: + rob" (Y) = ;(oy ) k S (c~ooo) 2  k ZR

and k is the acoustic wavenumber (taken constant). In the terms in brackets in (16),
+ corresponds to S and - corresponds to ;r. wo and YO are scales associated with the



buoyancy frequency cob (y), wl is the local inertial frequency, and 0 is the ray angle. The
integral is carried out along the ray path to range zR .

To obtain the total variance of Z as a function of depth, Dz in (16) is integrated over
[cii, C0bI. The predictions are shown in Figure 3 for the four acoustic frequencies at
AATE. The symbols are the < Z2 > observations as noted in the caption. For a given
depth, observations match the predicted proportional scaling with acoustic frequency.
The depth dependence is similar as well. The observations uniformly exceed the
predicted values, due to variability outside the internal wave bandwidth.

A better test of theory is provided by the observed frequency spectra. These are shown in
Figure 4 for the 8 kHz case at the 191 m receiver. The phase spectrum peaks near coi
because of mooring motion. (Phase and travel time are equivalent.) Although the total
<Z2 > in Figure 3 exceeds the predicted value, within the internal wave band there is
agreement within a factor of 2. The curves denoted GM in the figure are the predictions
obtained using the traditional open ocean internal wave values. The observed spectral
dependence is better matched by the AIWEX prediction of fo- 2 -2 than the &)-3 dependence
of GM. Clearly, our ability to make reasonable predictions was possible only with the
local environmental results. At low frequencies, the effect of array motion is apparent in
the travel time. (This motion was on the order of 10-6 of the 6.4 km path.)
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Figure 4. Observed travel time and log-amplitude spectra (solid) compared with
predictions 17 . The "GM" predictions (light dashed) use open ocean parameters, whereas
the AIWEX curves (bold) use the AIWEX model parameters. wi and 0ob are noted on the
right hand graph. (The departures from regularity in the theory curves are due to the input
< n2 (y) > profile.) 90% confidence intervals, obtained by numerical simulation, are
shown dotted about the 10-7 line on the left hand graph.

The two-point spatial covariances are shown in Figure 5. We have estimated the spatial
covariance using the top receiver position as a common point and pairing with a series at
the noted vertical distance away. Because of the severe lack of homogeneity, it is not



possible to wnte the vertical correlations as a simple depth-time covariance. For any
given time-lag, r, the covariances fall off more rapidly with depth as the acoustic
frequency increases. This behavior should be predictable by extending Munk and
Zachariesen's formulation to follow the vertical inhomogeneity along two different rays.
This complication has yet to be addressed.
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Figure 5. Two-point covanances observed at AATE for depth-separated pairs of log-
amplitudes as a function of time lag tc. Depth separations are shown when they are
statistically different from zero, Yiop = 191 m.

In summary, the level of acoustic variability measured during AATE was very weak.
Rytov approximation theory for acoustic scintillation due to internal waves gives a
reasonably good comparison (better than a factor of 2) with the observations. Detailed
knowledge of the local environment was required. Our ability to predict the observations
is complicated by the vertically inhomogeneous medium, and the lack of stationarity
(only 4 days of data could be included in these results). The AATE measurements
provide statistics of weak ocean scattering. Comparisons with theory in this regime
where the scattering environment is known are surprisingly scarce in the ocean acoustic
literature.

4.2. The MATE Lower Path

Unlike the AATE case, pulses traversed this path over a nearly homogeneous scattenng
environment, and the paths were fixed. The average vertical sound speed profile is shown
in Figure 6 along with the two ray paths. The vertical profile of refractive index
fluctuations inferred from the internal wave variability is also shown.
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Figure 6. The MATE propagation environment. The location of the moored arrays is
shown. The topography of the seamounts is an actual depth-recorder output
superimposed on the ray trace. (Note the break in scale at 200 m in the plot of n2 (y)).

The validity of the modeled TCF (15) can be demonstrated by comparing the predicted
phase spectrum with the observation at a single receiver. Using the results in (3)
(neglecting ray curvature effects), the temporal spectrum of acoustic phase at scaled
range zR is given by

0s (to) 1 < S2 + b 4 T0 do (17)0o.) . 2r L. 1 + (0_) _ro)2 f a) 2 •
I f

The phase variance, < S2 > , is obtained using the technique developed by Esswein and
Flatte' 3 0 . (The spectral normalization used here is that the integral over positive
frequencies equals the variance. (17) has an additional factor of 2 from (3).) The variance
over the upward ray is roughly a factor of 5 greater than that of the downward ray. Figure
7 shows (17) compared to the observations (travel time and phase are interchangeable at
MATE). Over the internal wave continuum (between wi and OWb) the comparison is
excellent. The lines of energy just above and below (0i are due to deterministic tides and
are not considered here. (Note that the tides are removed in Figure 1.)

We turn our attention to the intensity records. Time gating was used to separate the
upward and downward path arrivals. (The instrumentation allowed only one path to be
monitored at a time.) The behavior of the intensity time series is very different for the
two paths. A portion of the observed intensity series during the time gating change from
the downward to the upward path is shown in Figure 8. All four acoustic frequencies are
plotted. This figure illustrates the dramatic changes in the intensity probability
distributions and the temporal behavior in the various scattering regimes. The normalized
intensity variances, (< 12 > - < I >2 ) / < j >2, are listed in Table I. The levels increase



with the acoustic frequency and decrease between 8 and 13 kHz. Predictions for the
downward path, obtained using 4th moment theory (Ballard and Uscinski, unpublished)
are listed in Table 1. The theory uses the MATE TCF (15), and includes the zeroth order
solution plus a correction term. The agreement is excellent.
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Figure 7. Observed phase spectra compared with the TCF (bold-solid) along the
downward (a) and upward paths (b). The finestructure component, with correlation time-

scale ro = 500 h, is seen at frequencies below coi in (a). 90% confidence intervals (as in
Figure 4) are shown relative to 10-8.
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Figure 8. MATE intensities for two inertial periods before and after the instrumentation
change from monitoring the downward to the upward path. The time of the change is
denoted by a vertical dotted line.



Table I. MATE Observed Intensity Scintillation Indices

Frequencies 2 4 8 13 kHz
Down-Path
Observed
Tower I (bottom/top) .71/.64±.08 1.28/1.21±.14 1.48/1.39±.12 1.40/1.34±.10
Tower 2 (bottom/top) .481.51±.06 1.07/1.05±.17 1.25/1.23±.14 1.48/1.38±.16
Predicted .54 1.0 1.5 1.4
Up-Path
Observed
Tower 1 (bottom/top) .651.68±.07 .90/.97±.12 1.01/I.03±.11 .95/.91±.08
Tower 2 (bottom/top) .60/.60±-.07 .83/.87±.10 1.04/1.14±.1 1

The intensity spectra observed at a single receiver are shown in Figure 9 for both the
down and the up paths. The zeroth-order fourth moment theory predictions for four
scaled ranges for 8 kHz are shown in Figure 10 along with the observed 8 kHz intensity
spectrum. The theory and predictions near the inertial frequency are in excellent
agreement, and we believe represent the first time that the tail of the Rytov
approximation behavior has been observed or predicted in multiple scattering for the
ocean TCF.
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Figure 9. Intensity spectra observed over the MATE downward (a) and upward paths (b).
All four acoustic frequencies are over-plotted. For temporal frequencies below 10 -4 Hz,
the spectra are statistically the same. 90% confidence levels as in Figure 4.

Two-frequency and two-point spatial intensity statistics are available from the
experiment, but theory evaluation has not been attempted for the extended MATE time
series. The 2-point correlations, p 1,2 (r), are shown in Figure 11 for vertical (upper
graphs) and horizontal (lower graphs) separations. The solid lines are the downward path
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Figure 10. The zeroth-order solution to the moment equation is shown at four scaled
ranges. The MATE downward path TCF was used. The observed 8 kHz intensity
spectrum (corresponds to scaled range Z3) is over-plotted as dot-dashed.
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correlations as functions of time lag, r. The downward path results are shown solid and
upward path shown dotted for the four acoustic frequencies.



results. The possible pairs of 2-frequency correlations of intensity for the down and up
paths are plotted in Figure 12.
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Figure 12. Pairs of 2-frequency correlations of intensity for the down (top) and up
(bottom) paths at MATE. The solid, dot-dashed and dashed curves on the left correspond
to 13/8, 13/4, and 13/2; solid, dot-dashed in the middle to 8/4, 8/2; and the solid curve on
the right to 4/2 respectively.

4.3. The MATE Upper Path

Along the upward directed path at MATE, because < n2(y) > reaches a maximum near
the turning point (see Figure 6), the scattering is largely concentrated over the narrow
region of the turning point. The scintillation indices and intensity for the upward path are
given in Table 1 and Figure 9(b), respectively. Spatial and cross-frequency statistics are
shown in Figures I11 and 12. Note that in Figure 9(b) the absence of a roll-off below Uwi
may be due to the short duration (2 days) of the time series. In any case, the evaluation of
theory for the upper path has yet to be done.

Summarizing MATE, for the four pulse frequencies, on the downward path r = (.028 -
7.7) x 104 Z = (1.0 - 6.8) x 10-2, and on the upward path, r = (.20 - 56.) x 104 and Z =
(.7 - 4.8) x 10-2. Observations of the scintillations in the 4 (r, Z ) regimes for the MATE
lower path allowed us to test full range 4th moment theory (autocorrelations) away from
the asymptotic regions. The medium correlation functions are messy, but well-tested in
an oceanographic sense. Predicting the observed cross-correlations of intensity for spatial
and frequency two-point separations awaits further theory development.



5. THE INTENSITY PROBABILITY DISTRIBUTION

We have shown that the intensity variance can be predicted for AATE and MATE, where
scattering conditions span wide ranges in r and Z. This is a far cry from knowing the full
statistics. One might say, "If we knew the two-point correlations of the complex field, the
4th moments of the field, and the intensity probability distributions, we would know a lot
about the process." The problems we face in understanding the intensity probability
distribution are seen clearly in Figure 13. A one parameter distribution cannot explain the
behavior for near to far range, and the true (unknown) distribution has a complicated
form. Here we have plotted the 3rd and 4th intensity moments of a plane wave
propagating through a medium with a 4th order power law transverse spectrum versus the
2nd moment. F = 1000 (a moderate ocean acoustic propagation value) and the scaled
range varied from zero to the point of field saturation (< 12 > = 2). The intensity
moments of the data (circles) are those computed from many realizations. The fields were
generated by Monte-Carlo methods (see Macaskill and Ewart1 4 and Ewartl 6 ). Also
plotted with various line types are the universal moments of the log normal, K, gamma,
Weibull, exponential, and modified exponential 3 4).
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Figure 13. Moments from simulated data that has been fitted by the generalized gamma
distribution plotted with several one parameter results defined by m2.

The modified exponential distribution is a good fit for the region approaching saturation.
The K distribution does not fit this region well, as was shown by Macaskill and Ewart1 4 .
The gamma and Weibull distributions are clearly poor models of the full-range moments.
Our point is that the generalized gamma distribution fits all of the data (circles) for all of
the (F, Z) pairs with a 90% confidence interval acceptance using theoretical-quantile-
data-quantile fits for a range of F (10-1 to 10o) and Z (10-4 to 102). Thus, it is not



necessary to use asymptotic forms for the moments or the probability distributions,
unless one is considering "first principle" predictions.

In Figure 14 we have plotted contours of the moments < 12 > / < I >2 (for the full suite of
simulations) as a function of r and Z. We see lognormal moments at short ranges, an
increase to a peak (the medium focus), and a drop to 2 at longer ranges. Ewart1 6 showed
that the peak at the medium focus follows closely the prediction of Spivack and
Uscinski3 5 . Using numerical solutions to the 4th moment equation, the (I', Z)
dependence of the peaks, lognormal boundary, and exponential boundary obey the
relation, r Z2 .3 = constant. It is a relatively simple exercise to generate these results for
any other medium TCF. Similar results are available for the 3rd and 4th intensity
moments and can be obtained by request.
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Figure 14. Contours of the 2nd moment from the simulated data.

Ewart and Ballard (unpublished) have completed a similar study for the point source
initial condition for a few (F, Z) pairs. In this work, the Q-Q fits to the generalized
gamma distribution are even better in the region of the medium focus (due to modified
sampling techniques), and < 12 > / < 1 >2 is well predicted by moment theory for
propagation from a point source. The scintillation indices at the focus increase to higher
values at longer ranges for a plane wave as would be expected, but conclusions as to the
results of Figure 14 will remain little changed for a point source initial condition. In order
to relate these curves to a particular scattering problem, it is only necessary to recognize



that the parameters, < n2 > Lp and Ly are the two parameters of the medium that define F
and Z. Following Ewart16 , these can be interpreted in terms of k and zR by inverting (4).
Thus, given an assumed medium correlation function and its normalization, it is a simple
matter to obtain predictions of observations from the simulated fields.

In the ocean case, the second moment is limited to values below = 3, due to the strong
frequency-dependent chemical absorption. For the same reason, the wavefields do not
closely approach saturation.

5.1. MATE and AATE Intensity Probability Distributions

The hypothesis that AATE and MATE intensities are modeled with the generalized
gamma distribution is well tested. The MATE data is temporal, and AATE is spatial and
temporal. Uscinski and Ballard (unpublished) have modeled the MATE upper path as
weak scattering near the point of inflection in the ray at 200 m and a deeply modulated
phase screen at the upper turning point. The presence of a deeply modulated screen could
indicate that the intensity probability distribution should be Rician; see Roberts 36 . In
Figure 15, upward path intensity moments are plotted on a figure from that paper
comparing the Rician normalized intensity moments. The agreement could be taken as
support for the phase screen model.
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Figure 15. Observed 3rd and 4th intensity moments from the MATE upward path are
over-plotted on a figure from Roberts 3 6 . The MATE moments are shown as circled
asterisks, the other points are those from Roberi's phase screen simulations, and the lines
are for the Rician distribution.

6. SUMMARY AND CONCLUSIONS

We have presented results of the predicted and measured intensity correlations for three
very different scattering regimes using ocean measurements. A summary of related
studies of the intensity probability distribution for both ocean and simulated data has



been included. Our overall conclusion is that the theoretical predictions for the 4th
moment of a propagating wavefield have progressed quite far from the asymptotic region
theories of a decade ago. Getting the medium TCF correct is an overriding issue, and a
difficult one.

Direct 4th moment solvers now being developed will provide predictions that are
accurate and relatively easy to compute. As an example, Macaskill and Ballard
(unpublished) have achieved predictions superior to those presented in Ewart et al. 11 of
the MATE cross frequency covariances at r = 0 using adaptive grid 4th moment solvers.
Leonard and Uscinski17 have successfully predicted cross frequency intensity
correlations using adaptive grid 4th moment solvers for simulated data with Gaussian and
4th order power law TCFs up to F = 1000. The solvers are a reasonable approach when
one "needs to get an answer," but provide little insight. The 4th moment solutions
initiated by Uscinski and Macaskill in the early 1980's are difficult to evaluate for the
complex ocean TCF. Clearly, more theoretical work remains. Field and numerical
experiment results should be used to test these emerging theories.

6.1. AATE

The phase and intensity for this experiment have been very well predicted using the
Rytov approximation theory of Munk and Zachariesen, and the TCF derived from the
AIWEX ocean model. The intensity probability distributions from AATE can be modeled
with a generalized gamma distribution.

6.2. The MATE Lower Path

The phase auto-spectra are well modeled using Rytov approximation theory and the
MATE TCF. The intensity variances are well predicted using 4th moment theory (with
zeroth order theory evaluation plus a correction). The auto-spectra of intensity are
reasonably well predicted, but improvements are expected when the direct 4th moment
solvers are fully tested. Direct solvers are also expected to successfully predict the two-
frequency intensity cross spectra. A theoretical issue here is "what was wrong" with the
4th moment theory solutions. The spatial cross spectra have been predicted by Uscinski,
but the theory has not been evaluated. The intensity probability distributions for the
MATE lower path are well modeled by the generalized gamma distribution.

6.3. The MATE Utoer Path

The phase auto-spectra are well modeled using the Rytov approximation theory and the
MATE TCF. The sharp turning of the ray inside a horizontal correlation scale at the
upper turning point has been modeled as a deeply modulated screen, with small regions
of extended media on each side; initial predictions of the intensity variance with that
model are not encouraging. The data intensity variance rises to 2, apparently without a
peak. A new theory may be required for this case. The intensity moments are fit well
using a Rician model (single phase screen assumption). The intensities are also well fit
by the generalized gamma distribution; they are not close to exponential, indicating that
saturation occurs at a more distant range.



The focus of WPRM studies in the ocean must include the waveguide aspects of the
ocean at longer ranges and lower frequencies. A "MATE like" experiment, where the
phase and the amplitude are recorded for several frequencies and ranges is needed to
make further tests of theory. It is essential that such an experiment include phase and
amplitude measurements over a sizable depth range. Regions of the ocean where internal
waves dominate the dynamic and passive index of refraction fluctuations are well known,
and could be used for such an experiment. Collaboration with many oceanographers
would be essential, if one is serious about obtaining the space-time spectrum of the index
of refraction and the appropriate TCF. In future intensity probability distribution studies,
we will attempt to link the various irradiance distribution models, e.g. I-K distributions,
with the generalized gamma model.
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