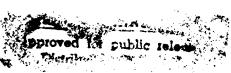


UNITED STATES AIR FORCE ELMENDORF AIR FORCE BASE, ALASKA

ENVIRONMENTAL RESTORATION PROGRAM


ENVIRONMENTAL BASELINE ASSESSMENT REPORT NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION RESEARCH STATION

FINAL

DTIC QUALITY AND LETTO 2

JANUARY 1994

94 2 18 014

This Document was Printed on 100% Recycled Paper

REPORT DISCLAIMER

NOTICE

This report has been prepared for the United States Air Force for the purpose of aiding in the implementation of a final remedial action plan under the Air Force Installation Restoration Program (IRP). As the report relates to actual or possible releases of potentially hazardous substances, its release prior to an Air Force final decision on remedial action may be in the public's interest. The limited objectives of this report and the ongoing nature of the IRP, along with the evolving knowledge of site conditions and chemical effects on the environment and health, must be considered when evaluating this report, since subsequent facts may become known which may make this report premature or inaccurate. Acceptance of this report in performance of the contract under which it is prepared does not mean that the Air Force adopts the conclusions, recommendations, or other views expressed herein, which are those of the contractor on¹v and do not necessarily reflect the official position of the United States Air Force.

Copies of this report may be purchased from:

Government agencies and their contractors registered with the Defense Technical Information Center (DTIC) should direct requests for copies of this report to: Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.

Non-Government agencies may purchase copies of this document from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161.

Acces	sion For	
DTIC Unam	CRA&I TAB nounced	
By Distand Distait	Hon / Lition / Vailability Code	95
Dist Dist A-1	Availability (Availand for Availand for Special	

REPORT DOCUMENTATION PAGE

-

Form Approved OMB No. 0704-0188

	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.								
1	1.	AGENCY USE ONLY (Leave blank)	2. REPORT DATE January 1994	3. REPORT TYPE AND DA		VERED			
	4.	TITLE AND SUBTITLE Environmental Baseline Assessment NOAA Research Station, Elmendorf	•		- -	UNDING NUMBERS -F33615-90-D-4013-0018			
	6.	AUTHOR(S) Radian Corporation							
	7.	PERFORMING ORGANIZATION NAM Radian Corporation P.O. Box 201088 8501 N. Mopac Blvd. Austin, Texas 78759		ERFORMING ORGANIZATION EPORT NUMBER					
	9.	SPONSORING/MONITORING AGEN AFCEE/ESRT Bidg. 624 West Brooks AFB, Texas 78235-5000		Ponsoring/Monitoring Gency Report Number					
	11.	SUPPLEMENTARY NOTES		· · · · · · · · · · · · · · · · · · ·					
	12a.	DISTRIBUTION/AVAILABILITY STATE	MENT		12b. D	STRIBUTION CODE			
	13. ABSTRACT (Maximum 200 words) The Environmental Baseline Assessment Report consists of four sections. Section 1.0 is the Introduction. A description of the methodology employed in the EBA, including the records search, the geophysical survey, the soils and groundwater investigations, the identification of potential contaminants of concern, and recommendations criteria for disposition of the NOAA site are presented in Section 2.0. Section 3.0 presents and discusses the findings of the EBA, including the NOAA site history and current use, the NOAA site environmental setting, and the investigation results for Areas 1, 2, 3, 4, and 5 of the NOAA site. References cited in the report are listed in Section 4.0.								
┟	14.	SUBJECT TERMS				15. NUMBER OF PAGES			
		Environmental Baseline Assessment	, NOAA, Eimendorf AFB, Alaska			16. PRICE CODE			
	17.	SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	CATION	20. LIMITATION OF ABSTRACT			
L		Unclassified	Unclassified	Unclassified		L			
	NSN 7	7540-01-280-5500				Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18			

TABLE OF CONTENTS

		P	Page
EXEC	CUTIV	E SUMMARY E	ES-1
1.0	ENVI	RONMENTAL BASELINE ASSESSMENT REPORT	1-1
	1.1 1.2	Purpose and Scope Objectives 1.2.1 General Project Objectives 1.2.2 Area-Specific Field Objectives of the Environmental	1-1 1-6 1-6
	1.3	Baseline Assessment	1-7 1-7
2.0	ENVI	RONMENTAL BASELINE ASSESSMENT METHODOLOGY	2-1
	2.1 2.2	Records Search	2-1 2-1 2-1 2-2
	2.3 2.4	 2.3.1 Sample Location Selection Criteria 2.3.2 Area 1Pesticide Storage Area 2.3.3 Area 2USGS Laboratory 2.3.4 Area 3West of Former Fire Station 2.3.5 Area 4USGS Storage Area 2.3.6 Area 5Former Gasoline Station 2.3.7 Groundwater Sampling Identification of Potential Contaminants of Concern 2.4.1 Preliminary Contaminants of Concern 	2-3 2-5 2-5 2-6 2-7 2-7 2-8 2-8 2-8 2-8
	2.5	2.4.2 Risk-Based Concentrations and ARARs 2.4.3 Background Data Disposition of NOAA Areas 2.5.1 Recommendation for No Further Action 2.5.2 Recommendation for RI/FS 2.5.3 Recommendation for Inclusion in Other Regulatory Programs	2-12 2-16 2-16 2-16

TABLE OF CONTENTS (Continued)

3.0	ENV	IRONMENTAL BASELINE ASSESSMENT FINDINGS
	3.1	NOAA Site History and Current Use
		3.1.1 Site History and Past Use of Facilities
		3.1.2 Current Use
	3.2	NOAA Site Environmental Setting
		3.2.1 Surface Physical Features
		3.2.2 Utilities
		3.2.3 Geology and Hydrogeology 3-4
	3.3	Area 1 Findings
		3.3.1 Historical Releases and Potential Sources
		3.3.2 GPR Results
		3.3.3 Sampling Program and Analytical Results
		3.3.4 Comparison of Field Data to Risk-Based Concentrations
		and Action Media Levels
		3.3.5 Disposition of Area 1 3-16
	3.4	Area 2 Findings
		3.4.1 Historical Releases and Potential Sources
		3.4.2 GPR Results
		3.4.3 Sampling Program and Analytical Results 3-19
		3.4.4 Comparison of Field Data to Risk-Based Concentrations,
		Maximum Contaminant Levels, and Action Media Levels 3-37
		3.4.5 Disposition of Area 2 3-38
	3.5	Area 3 Findings 3-39
		3.5.1 Historical Releases and Potential Sources
		3.5.2 GPR Results
		3.5.3 Sampling Program and Analytical Results 3-39
		3.5.4 Comparison of Field Data to Risk-Based Concentrations,
		Maximum Contaminant Levels, and Action Media Levels 3-57
	• •	3.5.5 Disposition of Area 3 3-58
	3.6	Area 4 Findings
		3.6.1 Historical Releases and Potential Sources
		3.6.2 GPR Results
		3.6.3 Sampling Program and Analytical Results
		3.6.4 Comparison of Field Data to Risk-Based Concentrations,
		Maximum Contaminant Levels, and Action Media Levels 3-66
		3.6.5 Disposition of Area 4 3-66

TABLE OF CONTENTS (Continued)

Page

	3.7			ngs	
		3.7.1	Histor	ical Releases and Potential Sources	57
		3.7.2	GPR 3	Results	57
		3.7.3	Sampl	ing Program and Analytical Results	57
		3.7.4	Comp	arison of Field Data to Risk-Based Concentrations,	
				num Contaminant Levels, and Action Media Levels 3-7	
		3.7.5	Dispos	sition of Area 5	14
4.0	REFE	RENC	ES	4.	-1
	APPEN	NDIX .	A:	Ground Penetrating Radar Survey Results	
	APPEN	NDIX I	B:	Soil Boring Logs	
	APPEN	NDIX (C:	Detailed Analytical Results	

LIST OF FIGURES

	rage
1-1	Site Location Map, Elmendorf AFB, Anchorage, Alaska 1-2
1-2	Location of NOAA Research Station, Elmendorf AFB, Alaska 1-3
1-3	Site Layout and Building Identifications for NOAA 1-5
2-1	GPR Survey Areas and Sampling Locations at the NOAA Research Station
3-1	Location of Geologic Cross Section at the NOAA Site
3-2	Geologic Cross Section at the NOAA Site
3-3	Groundwater Surface at the NOAA Site
3-4	Detected Compounds Greater Than RBCs or ARARs at Area 1
3-5	Location of Possible Pit at Area 2 Based on Interpretation of GPR Line N0SL12
3-6	Interpreted GPR Lines N0SL12 Showing the Approximate Location of Possible Pit at Area 2
3-7	Detected Compounds Greater Than RBCs, ARARs, or MCLs at Area 2 3-33
3-8	Locations of Geophysical Anomalies at Area 3
3-9	Interpreted GPR Line N0SL25 Showing the Location of the Original Septic Tank at Area 3
3-10	Interpreted GPR Line N0SL26 Showing Approximate Location of Leach Field at Area 3
3-11	Interpreted GPR Line N0SL28 Showing Potential Buried Storage Tank at Area 3
3-12	Detected Compounds Greater Than RBCs, ARARs, or MCLs at Area 3 3-54
3-13	Sampling Locations at Area 4

LIST OF FIGURES (Continued)

-

Page

3-14	Location of Interpreted UST at Area 5 Based on GPR Data
3-15	Interpreted GPR Line Showing Location of UST at Area 5
3-16	Sampling Location at Area 5

LIST OF TABLES

	Page
1-1	List of NOAA Areas of Investigation 1-4
2-1	Calculated RBCs and ARARs for Compounds Not Found in the OU 3 or OU 4 Management Plans
2-2	Metals Concentrations of Background Soil Boring Samples, Elmendorf AFB, Anchorage, Alaska (CH2M Hill, 1993)2-14
3-1	Results for Analyses of Area 1 Soil Samples from Elmendorf NOAA1993
3-2A	Results for Analyses of Area 2 Surface Soil Samples from Elmendorf NOAA1993
3-2B	Results for Analyses of Area 2 Auger Samples from Elmendorf NOAA1993
3-3	Results for Analyses of Groundwater Samples from Areas 2, 3, and 5 at Elmendorf NOAA1993 3-29
3-4	Results for Analyses of Area 3 Soil Samples from Elmendorf NOAA-1993
3-5	Results for Analyses of Area 4 Soil Samples from Elmendorf NOAA1993
3-6	Results for Analyses of Area 5 Soil Samples from Elmendorf NOAA1993 3-70

ACRONYMS AND ABBREVIATIONS

AFB	Air Force Base
AFCEE	Air Force Center for Environmental Excellence
ARARs	Applicable or Relevant and Appropriate Requirements
BLM	Bureau of Land Management
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
EBA	Environmental Baseline Assessment
GPR	Ground Penetrating Radar
MCLs	Maximum Contaminant Levels
NOAA	National Oceanic and Atmospheric Administration
NFA	No Further Action
OU	Operable Unit
PC	Personal Computer
PCBs	Polychlorinated Biphenyls
POL	Petroleum, Oils, and Lubricants
RBCs	Risk Based Concentrations
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
RPM	Remedial Project Manager
RTC	Restoration Team Chief
SERA	State Environmental Restoration Agreement
SVOCs	Semi Volatile Organic Compounds
USAF	United States Air Force
USGS	United States Geological Survey
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds

ix

EXECUTIVE SUMMARY

Purpose

The purpose of this report is to present the results of the Environmental Baseline Assessment (EBA) performed at the National Oceanic and Atmospheric Administration Research Station (NOAA) at Elmendorf Air Force Base (AFB), and to recommend further action as to the disposition of the NOAA areas investigated under the EBA.

Background

The U.S. Air Force (USAF) and the contractor conducted an EBA at the NOAA property in order to determine the environmental suitability of the NOAA property for future real estate transactions. To accomplish this, the following activities were performed:

- Determine historical property ownership and use;
- Determine historical practices which could have resulted in uncontrolled releases of hazardous waste; and
- Determine the presence or absence of contamination.

To facilitate the execution of the above tasks, the NOAA site was divided into five areas of investigation based on past or current building usage. Area 1 consists of three buildings (A-10, A-11, and the former A-12) which may have been used in the past for pesticide storage. Area 2 consists of Building A-6 and a suspected disposal pit. Area 3 consists of the fire station (Building A-3) and the associated septic system. The maintenance shelters (Building A-5) comprise Area 4, while the former gasoline station (Building A-1) comprises Area 5.

Environmental Baseline Assessment Methodology

The methodology for performing the main EBA activities described above consisted of the following: records search; geophysical survey; soil and groundwater investigation; and, identification of contaminants of concern.

Environmental Baseline Assessment Findings

Results of the records search, field investigation (sampling and analytical results), and recommendations as to further disposition (as decided by the USEPA, the Alaska Department of Environmental Conservation, and Elmendorf AFB) are as follows:

- NOAA Site History and Current Use--No new information on past site use, hazardous chemical use or releases, or previous site use before acquisition by the USAF were discovered.
- Area 1--No Further Action Recommended--No Further Action (NFA) was recommended since the only significant contaminants detected were low levels (just slightly above the carcinogenic RBCs) of benzo(b)fluoranthene and/or benzo(k)fluoranthene, and chrysene.
- Area 2--Inclusion in the CERCLA Program Recommended--Several semivolatile organic compounds (SVOCs) and metals (arsenic and lead) were detected at or above RBCs and/or soil action levels. Lead was also detected above the maximum contaminant level (MCL) in the groundwater sample.
- Area 3--Inclusion in the Alaska State Environmental Restoration Agreement (SERA) Recommended--The most significant contaminant found in the soil was diesel at 4.4 percent. Several SVOCs also exceeded RBCs, soil action levels, or both.
- Area 4--No Further Action Recommended--NFA was recommended since no contaminant concentrations exceeded soil action levels or RBCs.

• Area 5--No Further Action Recommended--NFA was recommended since no contaminant concentrations exceeded soil action levels, RBCs, or MCLs.

ENVIRONMENTAL BASELINE ASSESSMENT REPORT

The U.S. Air Force (USAF) and the contractor have conducted an Environmental Baseline Assessment (EBA) at the National Oceanic and Atmospheric Administration (NOAA) Research Station at Elmendorf Air Force Base (AFB), Anchorage, Alaska (Figure 1-1). This EBA consisted of a limited, yet focused investigation to characterize the environmental condition of real property at the NOAA Research Station located as shown in Figure 1-2. The EBA focused on five areas within NOAA. These five areas are listed in Table 1-1, and the associated building locations within NOAA are shown in Figure 1-3. Area 1 consists of three buildings (A-10, -1-11, and A-12) which have been historically used for pesticide storage. Area 2 consists of Building A-6 (Building 24-301), which is the former United States Geological Survey (USGS) geotechnical laboratory, and its adjacent disposal pit. Area 3 consists of the fire station (Building A-3) and the associated septic system. The maintenance shelters (Building A-5) comprise Area 4, while a former gasoline station (Building A-1) comprises Area 5.

1.1 <u>Purpose and Scope</u>

1.0

The EBA provides a framework for determining the environmental suitability of the NOAA property for future real estate transactions, including acquisition, transfer, lease, or other property conveyance. As such, the EBA consists of the following areas of investigation:

- Historical property ownership and use;
- Historical practices which could have resulted in uncontrolled releases of hazardous waste; and
- The presence or absence of contamination.

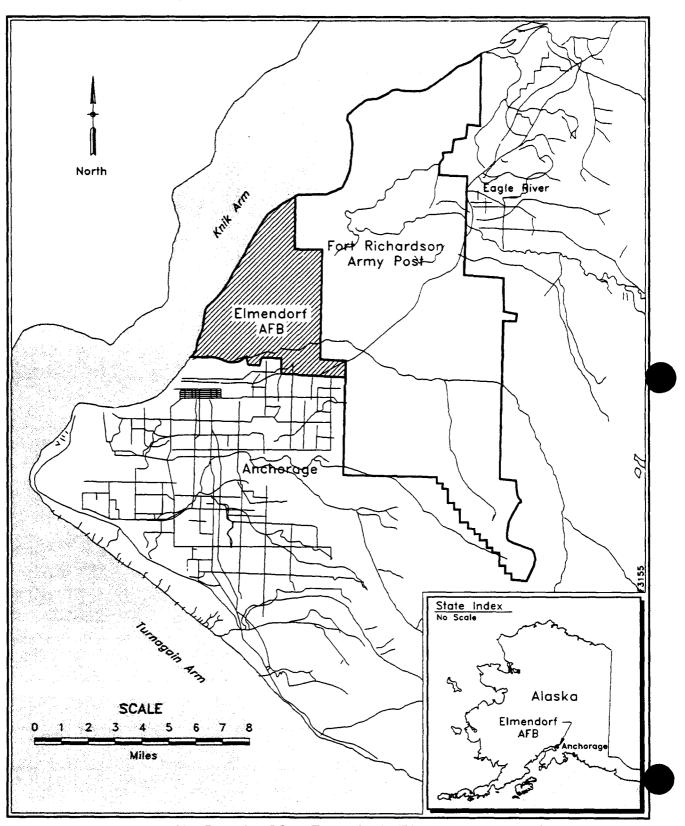
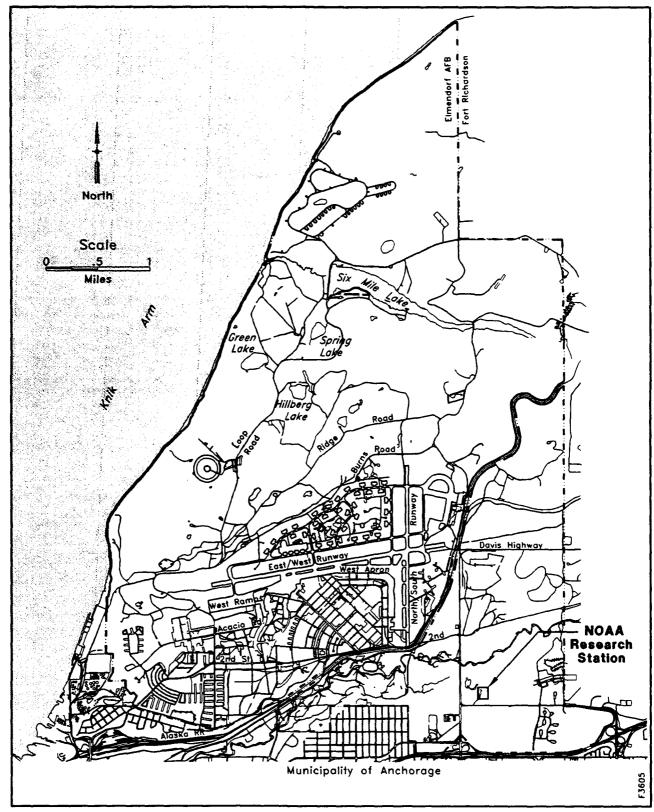


Figure 1-1. Site Location Map, Elmendorf AFB, Anchorage, Alaska



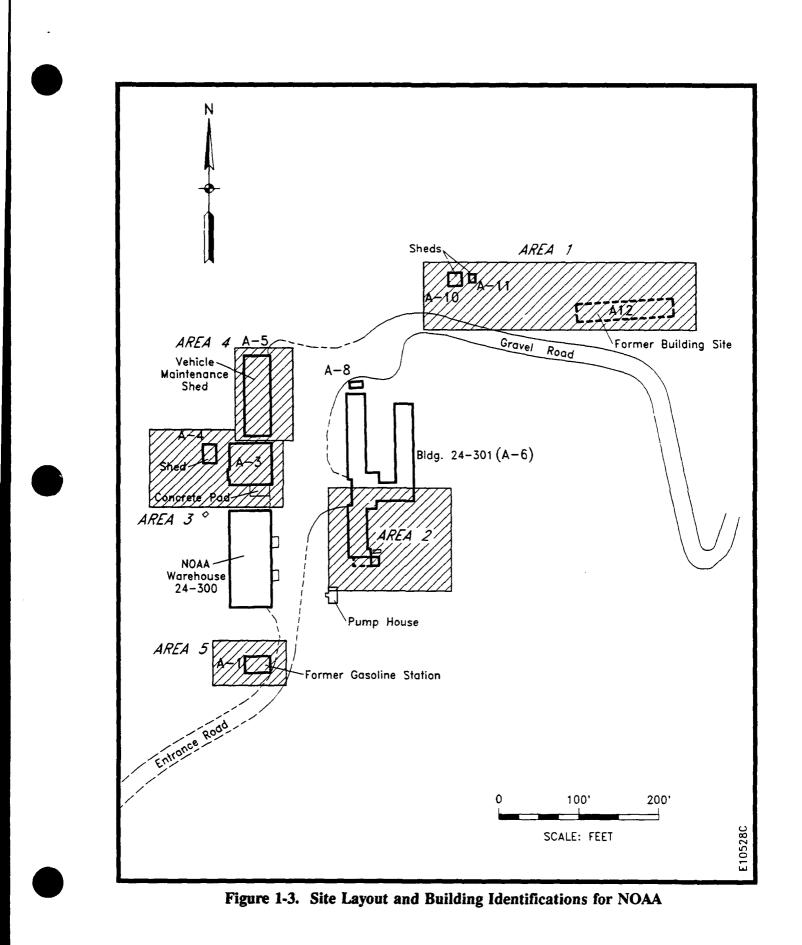

Figure 1-2. Location of NOAA Research Station, Elmendorf AFB, Alaska

Table 1-1

List of NOAA Areas of Investigation

Area Name	Buildings Included	Preliminary Description of Area Use		
Area 1	1 A-10, A-11, A-12 Pesticide storage buildings			
Area 2	A-6	Former film processing and research lab and possible disposal pit or leach field		
Area 3 A-3		Fire station and associated fuel storage, septic system, and leach field		
Area 4	A-5	Vehicle and equipment maintenance shelters		
Area 5	A-1	Former gasoline station and possible underground storage tank(s)		

0

1-5

The purpose of this document is twofold: the first is to present the EBA methodology and findings, and to discuss these in terms of the environmental suitability of the property for conveyance; and the second is to use the EBA findings to make recommendations for further actions for the disposition of the NOAA areas. The actions recommended for each fall into one of the following categories:

- No Further Action (NFA);
- Inclusion in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigation/ Feasibility Study (RI/FS) program; and
- Inclusion in other regulatory program(s), such as the State Environmental Restoration Agreement (SERA).

1.2 Objectives

1.2.1 General Project Objectives

As stated above, the main purpose of the EBA 15 to facilitate real estate transactions which may involve all or part of the NOAA site in the future. Therefore, the primary objective of the EBA was to determine the environmental suitability of the NOAA property for acquisition, transfer, lease, or other property conveyance. Another objective of the EBA was to assess the potential for past hazardous waste releases or disposal practices which may have occurred at the site. Evidence of past hazardous waste disposal practices could require further investigation under CERCLA. In order to meet these primary objectives, the following secondary EBA objectives were sought at each area of the NOAA site investigated:

- Determine the historical property ownership and use;
- Determine historical practices which could have resulted in uncontrolled releases of hazardous waste; and

• Determine the presence or absence of contamination.

1.2.2 Area-Specific Field Objectives of the Environmental Baseline Assessment

The field activities conducted as described in the EBA Plan (Radian Corporation, 1993a) were not designed to fully characterize any spatial extent of contamination which was found at each site. Rather, the EBA was designed to confirm or deny the presence of contamination, to determine the magnitude of any contamination found, and to collect enough data to recommend any further actions required for the various areas at the NOAA facility, based on regulatory and risk-based comparison criteria. At Area 1, the EBA focused on assessing the potential for soil contamination associated with the storage (and potential spills) of pesticides in the area. At Area 2, the EBA focused on a suspected subsurface disposal area and building drains adjacent to Building A-6; this was done by sampling surface and subsurface soil and by installing a monitoring well. Subsurface soil and groundwater investigations were also performed at Area 3, to determine the presence or absence of contamination associated with past use of fuel tanks and a disposal pit, a septic tank, and leach field. At Area 4, the EBA focused on determining the presence of surface contamination associated with maintenance activities in the vehicle maintenance shed. At Area 5, the EBA focused on the potential for contamination associated with underground storage tanks adjacent to a former gasoline station.

1.3 Organization of the Report

The Environmental Baseline Assessment Report consists of four sections. Section 1.0 is this Introduction. A description of the methodology employed in the EBA, including the records search, the geophysical survey, the soils and groundwater investigations, the identification of potential contaminants of concern, and recommendations criteria for disposition of the NOAA site are presented in Section 2.0. Section 3.0 presents and discusses the findings of the EBA, including the NOAA site history and

current use, the NOAA site environmental setting, and the investigation results for Areas 1, 2, 3, 4, and 5 of the NOAA site. References cited in the report are listed in Section 4.0.

2.0 ENVIRONMENTAL BASELINE ASSESSMENT METHODOLOGY

This section discusses the EBA methodology, including the records search, the geophysical survey, the soils and groundwater investigation, identification of contaminants of concern, and the possible disposition of the NOAA areas.

2.1 <u>Records Search</u>

A records search was conducted as part of the EBA to try to identify past activities at the NOAA Research Station. The following agencies or departments were approached during this record search: The Bureau of Land Management (BLM); the Real Estate Department of Civil Engineering Squadron 3 of Elmendorf AFB; the United States Geological Survey (USGS) personnel on site at the NOAA Research Station; and the Elmendorf AFB Historian's office.

2.2 <u>Geophysical Survey</u>

A ground penetrating radar (GPR) survey was conducted at several locations at the NOAA site to detect the presence and location of any unknown pipes, USTs, and the limits of leach fields or pits. Separate surveys were carried out adjacent to the old filling station at the south end of the site (Area 5); south and east of the former USGS laboratory (Building 24-301, Area 2); and west of the former Fire Station Building (Area 3). Maps depicting GPR line locations and line numbers, along with standard wiggle trace hardcopy prints of the GPR results, are included in Appendix A. Selected GPR lines are included in the text.

2.2.1 Principles of Ground Penetrating Radar

Ground penetrating radar (GPR) works by transmitting a radar impulse of a selected bandwidth into the ground via a transmitter and receiving a reflected signal

back from objects/strata in the subsurface which have differing electrical properties. The radar is moved along the ground, creating a profile of radar traces with length along the x-axis and time along the y-axis. Buried structures, such as pipes and tanks, which have electrical properties differing from those of the surrounding media display characteristic patterns on the radar profile. Pits, trenches, and other areas of disturbed soil also show up as "anomalous" zones on the radar profile. This enables the user to determine where tanks, pipes, pits, or other related structures are located.

2.2.2 Ground Penetrating Radar Methods

A Sensors & Software, Inc. PulseEkko[™] IV ground penetrating radar system was used for data collection at the NOAA site. This system allowed for flexibility in antenna spacing to concentrate on different target depths.

Prior to initiating the GPR survey at the various areas, two lines were recorded to determine the proper setup for the equipment. It was determined that for all data collection at the NOAA site, an antenna spacing of 3 feet, a distance between traces of 0.5 foot, and a time window of 200 nanoseconds would be sufficient for the anticipated target depths. Two hundred megahertz antennae were used for all data collection.

Field Interpretation of Radar Data

All radar data were interpreted on a datalogger screen while collecting the data. This enabled the operator to determine if any anomalies existed which would require further radar data collection. At the end of the day, the data were evaluated on a desktop PC using MATLAB[®] software and proprietary data processing routines. Hardcopy output for the text will be presented in the MATLAB[®] format.

Areas of GPR Survey

Figure 2-1 shows the general area of coverage by the GPR survey. Regular grids of data were collected from a grid pattern at both the former gasoline station (Area 5) and the USGS laboratory building (Area 2). Radar lines for the filling station carry the designation NOGRA*, with line numbers increasing southwest-to-northeast, and lines recorded at the USGS building carry the designation NOGRB*, with line numbers increasing north-to-south. Radar lines collected at Area 3 were selected to cover suspected septic tanks, leach fields, pipes, or other anomalous zones. These lines carry the designation NOSL*. More detailed maps of line locations are given in Appendix A.

2.3 Soils and Groundwater Investigation

A limited soils and groundwater investigation was undertaken at the five separate areas at the NOAA site to determine if any current or past activities have caused significant contamination at the site. Selection of locations for soil samples and numbers of samples are discussed below.

2.3.1 Sampling Location Selection Criteria

Sampling locations for the five areas of NOAA are also shown in Figure 2-1. The locations were selected based on 1) field interpretation of GPR survey lines, 2) accessibility by the drilling rig or proximity to overhead power lines, 3) visual inspection of the site, and 4) discussion with the Base RPM and AFCEE. A total of 17 surface soil locations, three soil boring locations, and seven hand auger locations were sampled at the five areas which comprise the NOAA site.

As a result of the lack of drilling rig access, several sample locations which were originally planned as soil borings were actually sampled as hand-auger/surface soil

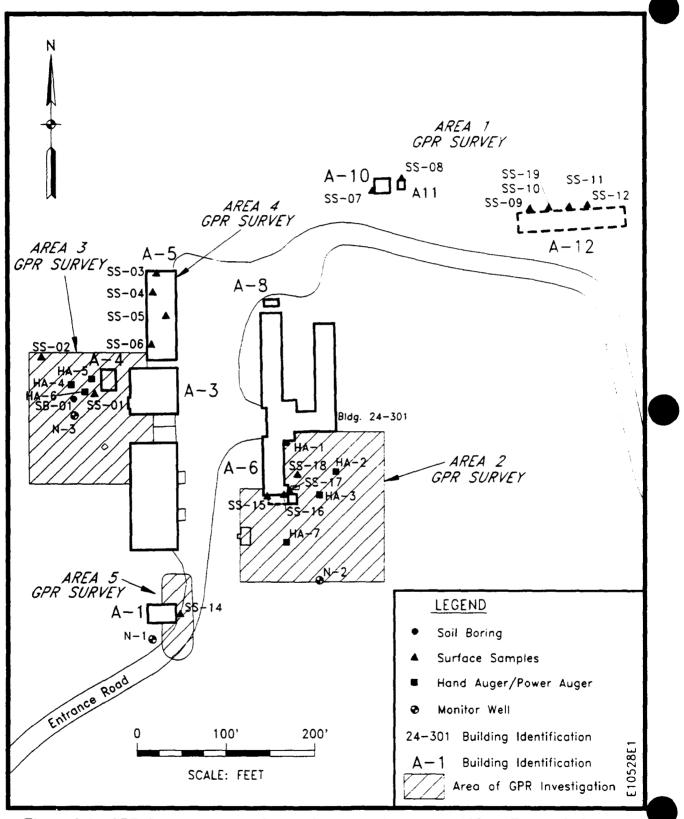


Figure 2-1. GPR Survey Areas and Sampling Locations at the NOAA Research Station

locations. A brief description of number of samples and rationale for sampling at these locations is provided below.

2.3.2 Area 1--Pesticide Storage Area

Six surface soil locations were sampled in Area 1 on the basis of reports of pesticide storage in the buildings (see Figure 2-1). Two of the buildings are currently standing (A-10 and A-11), and the largest of the three (A-12) has been demolished and removed. At the former Building A-12, remnants of creosote posts which served as piers for the building are all that remain, and the area is covered with gravel. Sample locations at the demolished building site were taken at evenly spaced intervals which were based on what appeared to be the outline of the old building. The samples were collected from the natural soil north of and adjacent to the edge of the gravel.

Samples at Building A-10 were collected from a small (4-inch by 4-inch) ditch which trends southwest from the southwest corner of the building. Samples at Building A-11 were taken from a small depression behind the building. It was assumed that any pesticide or other chemical spillage/leakage would have drained out to these depressions from inside the buildings.

No soil borings, hand augers, or monitor wells were installed at Area 1.

2.3.3 Area 2--USGS Laboratory

A total of four surface soil locations were sampled based on proximity to building drain outfalls (Figure 2-1). Currently, the pipes are either disconnected from the building drains or are connected to the drains but broken somewhere along the length of the pipe. Based on field observations, all of the drains/pipe outfalls appear to discharge directly onto the ground.

Four locations were sampled by hand or power augers at Area 2 (Figure 2-1). Location HA-1 is adjacent to the base of a metal stairwell which leads down from a covered porch. Reportedly, laboratory waste was disposed of from the porch and out of a nearby window at this location. Location HA-2 was chosen as it was the terminus for a disposal pipe which led out of the laboratory building. The pipe is currently separated at the location of soil sample SS-18. HA-3 is located in a round (approximately 3 feet in diameter) disposal pit in which cracked test tubes containing a reddish-brown powder were discovered. Location HA-7 was chosen based on 1) an 8-inch diameter hole 5 feet north of the location and 2) what was interpreted as the location of a previous pit based on GPR data. No analytical samples were collected in association with the drilling of monitoring well N-2. Location N-2 was chosen at the site for the upgradient monitoring location based on the inferred groundwater flow direction.

2.3.4 Area 3--West of Former Fire Station

Two surface soil locations were sampled in Area 3 (Figure 2-1). Sample SS-01 was taken from soil over which a geophysical anomaly (see Section 3.5.2) was detected. The area surrounding this location is void of vegetation and the soil has an odor of rancid petroleum product. Sample SS-02 was taken in a circular depression approximately 10 feet in diameter and 3 feet below ground level. The depression was located at the end of a trench which originates in the area behind the former fire station. The sample was taken to determine if any contaminants may have been washed down or dumped into the pit.

Two soil borings were drilled at Area 3, one of which was converted to monitoring well N-3. The location for N-3 was chosen to sample the end of the leach field associated with the original septic tank for the former fire station and the original NOAA building (Building 24-300). The location was determined from both GPR results and the drain pipe associated with the leach field.

Soil boring SB-01 was originally intended to be located approximately 30 feet east and just north of location N-3. The site was abandoned after the augers could no longer be advanced at 4 feet of depth due to some obstruction. This obstruction may be a metal pipe or the top of a septic tank. After consultation with AFCEE, an alternate site was chosen at an area west of a geophysical anomaly under location SS-01, in order to test for lateral extent of soil contamination.

Three hand auger samples were collected in Area 3. The locations were chosen to try to delineate the extent of the soil contamination which was visible in SB-01.

2.3.5 Area 4--USGS Storage Area

Four surface soil samples were collected in the storage area (Figure 2-1). All samples were collected from areas of soil (gravel) discoloration. Sample SS-03 was taken from under a pallet where vehicle batteries were reportedly stored.

No soil boring or hand-auger samples were collected from Area 4.

2.3.6 Area 5--Former Gasoline Station

One surface soil sample was taken at this location (Figure 2-1). The sample was taken in front of the island where the pump had been installed. This location was chosen to detect any spillage of petroleum product from fueling activities.

One soil boring was drilled at Area 5. This soil boring was converted to monitor well N-1. The location for soil boring/well N-1 was chosen to sample possible soil and groundwater contamination from the interpreted UST. The well was not placed in a more downgradient position (see Section 3.2.3) because of vegetation that prevented access by the drilling rig.

2.3.7 Groundwater Sampling

Groundwater sampling was performed on the three monitoring wells as outlined in the EBA Plan. In addition, a grab sample of groundwater was taken in SB-01 and analyzed in the contractor's field lab.

2.4 Identification of Potential Contaminants of Concern

The following subsections describe the general approach used to identify the preliminary contaminants of concern, and the approach used to determine risk-based concentrations and ARARs at the NOAA Research Station.

2.4.1 Preliminary Contaminants of Concern

Based on the limited information regarding the historical activities that have taken place at the different areas at the NOAA Research Station, the following list of general categories of compounds was identified as having likely been related to site operations at one or more of the NOAA areas:

- Petroleum, oils, and lubricants (POLs);
- Halogenated solvents and degreasers;
- Film processing products; and
- Pesticides.

This general list of categories of compounds was refined by reviewing the historical land use and analytical results from each of the areas in NOAA.

2.4.2 Risk-Based Concentrations and ARARs

Human health risk-based concentrations (RBCs) for compounds detected at NOAA were extracted from the "Supplemental Guidance for Superfund Risk Assessments in Region X," Appendix II (USEPA Region X, 1992) and are included in summary tables of chemicals of potential concern at each area (Sections 3.3 through 3.7). If toxicity values were not available, RBCs were not calculated.

Residential soil and water ingestion pathways were used in deriving the RBCs. Inhalation of volatiles from water was considered as part of the water ingestion pathway. These were the standard default exposure scenarios recommended by USEPA Region X (1992).

The RBCs provided are not necessarily "safe" levels, but are used with ARARs in screening the measured concentrations for the preliminary determination of chemicals of potential concern, detection limits required by analytical tests, and cleanup levels.

ARARs have been previously developed as part of the Operable Unit 4 (OU 4) Management Plan (Radian Corporation, 1993b); Operable Unit 3 Management Plan (Radian Corporation, 1993c); and Operable Unit 7 Limited Field Investigation Work Plan (Radian Corporation, 1993d) at Elmendorf AFB. Some of these chemicalspecific, location-specific, and action-specific ARARs also apply to NOAA, since the compounds or groups of compounds detected at the NOAA areas overlap with constituents or groups of constituents that have been detected at OU 3, OU 4, and/or OU 7. Therefore, a separate ARARs evaluation for NOAA is not included in this report. However, a few RBCs and ARARs were not available from these other sources, and were therefore calculated. These additional compounds and associated RBCs and ARARS are presented in Table 2-1.

Table 2-1

Calculated RBCs and ARARs for Compounds Not Found in the OU 3 or OU 4 Management Plans

	Sa			Wi		
Noncar Compound (ug/kg		Care (ung/log)	Action Level (mg/kg)	Noncare (mg/L)	Care (mg/L)	Action Level/MCL (mg/L)
Acetone	30,000	NA	8000			NF
Acenaphthylene	NA	NA	NF			NF
butylbenzylphthalate	50,000	NA	16,000			NF
4-Nitroanaline	NA	NA	NF	NA	NA	NF
Pentachlorophenol	8000	5	5.83	1	0.7	0.001
Benzyl alcohol	80,000	NA	24,000			NF
Methyl isobutyl ketone	13,500	NA	4000	1.825	NA	NF
Methyl ethyl ketone	1000	NA	4000	0.6	NA	NF
Trichlorofluoromethane	NA	NA	24,000			NF
Di-N-octylphthalate	5000	NA	1600	0.7	NA	NF
4-Bromopheylphenyl ether	NA	NA	1600	NA	NA	NF
Benzoic acid	1,000,000	NA	NF	100	NA	NF
Diethylphthalate	200,000	NA	64,000	30	NA	NF
Bromomethane	400	NA	112			NF
Chloromethane	NA	50	NF			NF
Chloroethane	NA	NA	NF			NF
1,1-dichloroethene	2000	1	11.7	0.3	0.00007	NF
Carbon Tetrachloride	200	5	5.38			0.005
Bromodichloromethane	5000	5	5.38			NF
1,2-Dichloropropane	NA	9	10.3	NA	0.001	0.005
cis-1,2-Dichloropropene	80	4	3.89	0.009	0.0001	NF
Dibromochloromethane	5000	8	83.3			NF
Bromoform	5000	80	112			NF
Bromobenzene	NA	NA	NF			NF
2-Chloroethylvinylether	NA	NA	NF	NA	NA	NF
1-Chlorohexane	NA	NA	NF			NF

Table 2-1

(Continued)

	Soll RBC			Water RBC		Action
			Action			
Compound	Noncare (mg/kg)	Care (mg/kg)	Level (mg/kg)	Noncart (mg/L)	Carc (mg/L)	Level/MCL (mg/L)
Dibromomethane	NA	NA	0.00824			NF
1,1,1,2-Tretachloroethane	8100	25	26.9			NF
1,2,3-Trichloropropane	1620	NA	480			NF
Benzo(g,h,i)perylene	NA	NA	5.38			NF
Indeno(1,2,3-cd)pyrene	NA	0.06	0.538			NF
Phenol	200,000	NA	48,000			NF
Aldrin	8	0.04	0.0412			NF
Endrin	80	NA	24			0.0002
Endrin aldehyde	NA	NA	NF			NF
Heptachlor	100	0.1	0.156			0.0004
Methoxychlor	1000	NA	400			0.04

NA = Toxicity value and/or MCL not available, so RBC cannot be calculated.

NF = Not found.

-

2.4.3 Background Data

Background soil analytical data were collected and reported on by CH2M Hill in the Basewide Background Sampling Report (1993). CH2M Hill (1993) collected 60 soil samples from 14 soil borings drilled at background locations at the base. The samples were collected to attempt to establish the background levels of metals at the base, and as such were analyzed for metals only. Statistics were applied to the results so that they could be compared to the analytical results obtained from the other base investigations.

The criteria used to establish the boring locations as "background" included:

- Areas selected were a minimum of 1,000 feet from developed areas of the base;
- Aerial photographs showed no past development in the areas selected;
- Stressed vegetation not present in the areas chosen;
- The areas chosen were upgradient of utilities and POL lines; and
- The areas chosen were outside of existing Operable Units on base.

Seven soil borings were drilled on the terminal moraine and another seven on the outwash plain. At least three samples were collected from each boring, with one each being collected from three specific depth horizons, including the surface (0.0-0.5 feet), root zone (0.5-3.0 feet), and deep soil (3.0 feet to the top of the groundwater). Analyses were performed on samples from different depth intervals to define specific background metals concentrations for future use in risk evaluations. A range of values were reported for each depth interval so that a statistical distribution could be obtained. Table 2-2 presents a summary of the pooled results of the metals analysis after data reduction. The results were pooled as it was determined that no statistically significant differences exist between the metals content of the soils of the outwash plain and the moraine (CH2M Hill, 1993). The metals results are listed in descending order of means. Metal concentrations were found to vary with depth.

The 99th percentile Upper Tolerance Limit (UTL) with an associated 95% confidence level is reported, suggesting that there is a 95% probability that 1 in 100 samples is expected to exceed this level when individual sample results from the site must be compared to background. This value is chosen to represent the limit of true background soil metals values. In most cases, metals concentrations that contribute to unacceptable levels of risk to human health and the environment are expected to be several times larger than background concentrations. However, the UTL for arsenic and beryllium at Elmendorf AFB exceeds the 10^6 risk-based soil concentrations for these species (CH2M Hill, 1993).

To date, background groundwater quality information has been difficult to establish at Elmendorf AFB. In 1990, five groundwater monitoring wells were installed and sampled for the purpose of obtaining background groundwater data. Some of these wells were installed in the end moraine north of the outwash plain. It is probable that wells completed in this material will produce water of different quality than those completed in the alluvial portion of the base and thus provide unsuitable data for comparison to background in all cases, depending on the source locations. An additional problem with the wells was difficulty with development, resulting in excess sediment in the samples. More recent attempts at defining the background groundwater quality have also had inconclusive results. Therefore, for the purpose of the EBA Report, background and groundwater sample comparisons were not attempted.

Table 2	-2
---------	----

Metals Concentrations of Background Soil Boring Samples Elmendorf AFB, Anchorage, Alaska (CH2M Hill, 1993)

		Concentrations * (angles coll)						995		N-mber
Mistal	Deptis Range	Min	Mean	Mex	Sea Dev	Number of Cases	Number of Non- Detects	Upper Tolerance mg/kg seil	Limit for Che Mean (mg/kg)	of Prints Alases BT Love
Iron	Surface	8,970	22,359	32,700	7,609	14	0	49,237	27,748	0
	Root Zone Deep	23,450 18,500	28,082 24,581	32,000 38,000	3,039 4,262	14 21	0 0	38,818 38,210	30,235 26,932	0 1
Aluminum	Surface	4,750	15,094	25,000	5,613	14	0	35,627	19,211	0
	Root Zone Deep	14,850 9,830	19,700 12,878	23,800 16,600	2,391 1,606	14 21	0	31,655 18,013	21, 3 93 13,764	0 0
Magnesium	Surface	769	2,821	6,610	2,133	14	0	10,356	4,332	0
	Root Zone Deep	2,160 3,690	6,371 7,895	10,100 14,800	1,929 2,112	14 21	0	13,183 14,648	7,737 9,060	0 1
Calcium	Surface	1,330	2,803	8,210	1,721	14	0	8,881	4,021	1
	Root Zone Deep	1,730 2,980	3,283 5,312	7,530 10,800	1,474 1,503	14 20	0	8,490 10,169	4,327 6,165	1
Potassium	Surface	244	406	685	144	14	0	915.7	508.5	0
	Root Zone Deep	236 221	466 612	630 842	119 154	14 21	0	887.1 1,105.1	550.3 697.3	0 0
Manganese	Surface	67.8	319.9	738.0	197.0	14	0	1,015.7	459.4	0
	Root Zone Deep	193.5 375.0	489.4 518.3	742.5 640.0	136.2 58.6	14 21	0	970.5 705.8	585.8 550.6	0 0
Sodium	Surface	242.0	327.8	381.0	44.5	11	0	497.8	364.9	0
	Root Zone Deep	178.5 181.0	251.2 234.8	317.0 306.0	40.5 38.3	11 17	0	406.1 363.1	285.0 258.7	0 0
Barium	Surface	77.3	113.8	154.0	24.9	14	0	201.7	131.4	0
	Root Zone Deep	43.4 37.1	103.3 54.5	171.0 82.5	31.4 12.7	14 21	0	214.3 95.0	125.5 61.5	0
Vanadium	Surface	21.5	53.4	83.1	18.5	14	0	118.6	66.5	0
	Root Zone Deep	46.9 33.2	60.0 44.3	76.6 59.9	8.8 6.7	14 21	0	91.3 65.8	66.3 48.0	0
Zinc	Surface	12.9	36.7	77.7	18.7	14	0	102.9	49.9	0
	Root Zone Deep	33.7 34.1	51.3 51.7	62.0 63.0	9.5 7.5	14 21	0	84.8 75.7	58.0 55.9	0
Chromium	Surface	9.6	19.6	34.3	8.1	14	0	48.4	25.5	0
	Root Zone Deep	19.0 18.5	31.8 31.6	45.3 80.9	6.4 13.9	14 21	0	54.4 76.1	36.3 39.3	0 1
Nickel	Surface	1.3	13.0	31.7	10.1	14	. 2	48.5	20.1	0
	Root Zone Deep	11.0 17.6	29.6 34.6	44.5 73.1	8.8 11.4	14 21	0	60.6 71.1	35.8 40.9	0 1
Copper	Surface	7.8	14.8	24.8	4.9	14	0	32.2	18.3	0
	Root Zone	14.0 14.5	20.8 29.5	28.3 59.9	4.0 9.3	14 21	0	34.7 59.2	23.6 34.7	0
	Deep	14.5	29.5	59.9	9.3	21	0	59.2	34.7	

Table 2-2

(Continued)

		Contestrations * (orging col)						**	Upper 1956 Castidosce	Number
Misia	Best Rasp	Ma	Xim	Max	Sid Der	Number ef Cases	Number of Non- Datacts	Upper Tolerance * mg/kg soil	Limit for the Mann (mg/kg)	of Frints Above UT Loval
Cobalt	Surface	1.3	7.1	12.6	3.9	14	2	2 0.7	9.81	0
	Root Zone Deep	7.2 7.2	12.3 11.1	14.3 16.6	2.2 2.0	14 21	0	20.2 17.5	13.8 12.2	0
Arsenic	Surface	3.90	7.20	13.10	2.54	14	0	16.18	9.00	0
Alsenie	Root Zone	4.70	6.87	9.60	1.28	14	0	11.40	7.78	0
	Deep	3.50	5.46	8.35	1.18	21	0	9.24	6.12	0
Lead	Surface	4.30	6.93	11.10	1.80	14	0	13.3	8.2	0
	Root Zone	4.10	5.65	7.00	0.89	14	0	8.78	6.28	0
ļ	Deep	3.00	5.30	9.10	1.48	21	0	10.0	6.12	1
Cadmium	Surface	0.17	1.07	1.95	0.55	14	2	3.01	1.46	0
	Root Zone Deep	0.93 0.96	1.62 1.63	1.90 2.70	0.26 0.44	14 21	0	2.53 3.03	1.80 1.87	0
Antimony	Surface Root Zone	1.45 1.20	1.83 1.40	3.40 1.60	NA NA	14 14	13 14	NA NA	NA NA	NA NA
	Deep	1.10	1.29	3.10	NA	21	20	NA	NA	NA
Silver	Surface	0.23	0.63	1.60	0.39	14	4	2.00	0.91	0
	Root Zone	0.16	0.51	1.20	0.32	14	5	1.62	0.73	0
	Deep	0.15	0.41	0.78	0.20	21	6	1.05	0.52	0
Beryllium	Surface	0.12	0.37	0.62	0.15	14	3	0.91	0.47	0
	Root Zone Deep	0.29 0.09	0.41 0.28	0.55 0.48	0.08	14 21	03	0.70 0.63	0.46	0
Selenium	Surface Root Zone	0.055 0.045	0.295 0.161	0.510 0.290	0.113 0.089	14 14	1 3	0.69 0.47	0.37	0
	Deep	0.040	0.101	0.400	NA	21	16	NA	NA	NA
Thallium	Surface	0.105	0.133	0.280	NA	14	13	NA	NA	NA
	Root Zone	0.085	0.101	0.115	NA	14	14	NA	NA	NA
	Deep	0.060	0.092	0.190	NA	21	20	NA	NA	NA
Mercury	Surface	0.050	0.029	0.150	0.029	14	0	0.19	0.11	0
	Root Zone	0.040	0.075	0.220	0.044	14	0	0.23	0.11	1
	Deep	0.040	0.088	0.165	0.036	21	0	0.20	0.11	0

*Assumes non-detect values are equal to one half of the detection limit.

-

* Upper tolerance limit for the 99th percentile with a 95 percent confidence level.

2.5 Disposition of NOAA Areas

This report makes recommendations as to the disposition of each of the five areas of investigation at the NOAA site in Sections 3.3 through 3.7. These recommendations, which are made on the basis of the results of the records search, the ground penetrating radar (GPR) survey, and the sampling performed at each area, fall into one of the following categories:

- No Further Action (NFA);
- Inclusion into the CERCLA RI/FS program; and
- Inclusion into other regulatory program(s).

A meeting was held on 11 August 1993 to review analytical results and discuss the disposition of the NOAA areas. In attendance were representatives of Elmendorf AFB, AFCEE, USEPA, and ADEC. The meeting resulted in an agreement as to the disposition of the five areas at the site. The general criteria upon which the above decisions were made are summarized below in the following subsections.

2.5.1 Recommendation for No Further Action

When the results of the sample analyses for an area are found to be less than applicable regulatory levels of concern (ARARs), and less than human health riskbased concentrations (RBCs), no Further Action (NFA) is recommended.

2.5.2 Recommendation for RI/FS

An area is recommended for inclusion into the CERCLA RI/FS program if contaminant concentrations are found to exceed ARARs or risk-based concentrations.

2.5.3 Recommendation for Inclusion in Other Regulatory Programs

If the conditions for recommending an RI/FS (Section 2.5.2) are met, but contamination is determined to be limited to petroleum oils and lubricants (POL), then the particular site in question is recommended for inclusion in a regulatory program other than CERCLA, such as an appropriate Alaska State program under SERA.

3.0 ENVIRONMENTAL BASELINE ASSESSMENT FINDINGS

This section presents the findings of the EBA, including the NOAA site history and current use, the NOAA site environmental setting, and the findings for Area 1, Area 2, Area 3, Area 4, and Area 5 areas of investigation.

3.1 NOAA Site History and Current Use

As part of the EBA, an effort was made to determine the site history, past use of facilities, and current use of facilities at the NOAA Research Station Site. This effort included a records search of, and interviews with persons from, the following agencies:

- National Oceanic and Atmospheric Administration;
- United States Geological Survey (USGS);
- Bureau of Land Management (BLM); and
- Elmendorf AFB.

3.1.1 Site History and Past Use of Facilities

The records search and personnel interviews revealed little new information on the site history and past use of the facilities. The NOAA site was part of the original transfer of Alaskan public land to the U.S. War Department (which later became the Department of Defense) in 1943. Judging from the architectural style and condition of the site buildings, the site has been used since the late 1940's or early 1950's, but the exact date that NOAA began using the site is unknown. The structures on site, previously listed in Table 1-1, were used for:

- Pesticide storage;
- USGS film processing and a research laboratory;

- Fire station and equipment maintenance; and
- Gasoline station.

BLM records were searched for historical information regarding occupancy and past activities at the site. The record search indicated that a withdrawal was filed by Elmendorf AFB in December of 1975 to obtain jurisdiction of the NOAA Research Station land from the BLM. No other records regarding activities or occupancy of the site, prior to 1975, could be located at the BLM. According to personnel from the Real Estate Department of Elmendorf AFB, NOAA occupied the land prior to the 1970's (Mont Beal, personal communication). However, the first record available at the Real Estate Department dates back to 1977, when Elmendorf AFB outleased 38 acres of land to NOAA. Subsequently, a permit amendment was filed in 1983 to retain only 9.16 acres for use thereafter. In January 1985, NOAA requested the demolition of several buildings. This request was later amended to demolish only Building A-9 which was located southeast of Building A-6.

In May of 1986, Elmendorf AFB personnel inspected the NOAA facility and recommended remedial action to clean up the site and maintain its appearance. Debris and surficial waste was reportedly removed by July 1986. However, an unknown number of drums were reportedly left outside Buildings A-5 and A-7. These drums were said to belong to the USGS.

Building A-6 historically housed a geotechnical laboratory (known as the rock lab) from the USGS. Based on interviews held with USGS personnel on site, the rock lab employed full time workers for seven days a week during a period of three months per year. It is unknown for how long Building A-6 served as the rock lab. Currently, this building appears to be used as an electronics laboratory for seismic equipment. According to interviews on site, the U.S. Cost Guard also appears to have used the NOAA facilities to some extent in the past. However, the dates of occupancy and activities potentially conducted by the U.S. Coast Guard are unknown.

3.1.2 Current Use

Of the buildings on site, only the seismic laboratory in Building 24-301 (A-6) and NOAA activities in Building 24-300 are still in use. The exact dates of last use for most of the facilities are unknown, but the gasoline station was apparently last used in 1972, and the USGS laboratory was in operation between 1984 and 1989.

3.2 NOAA Site Environmental Setting

3.2.1 Surface Physical Features

The NOAA site consists of five main buildings and several auxiliary buildings. The area between the main buildings is almost completely covered with gravel and roadbed material. Most of the area adjacent to the buildings is currently covered with small saplings, brush, and larger trees. There is one cleared area to the eastsoutheast of Building 24-301. Discussions with Elmendorf AFB personnel indicate that the area contained a building which has been removed.

The site is generally flat with less than 5 feet of elevation change. The ground elevation drops 60 to 70 feet off a bluff approximately 200' northwest of Building A-5. At the base of the bluff is a marsh.

Surface runoff is directed mainly to the north and west, although several small depressions around the site may hold standing water. No standing water was observed while on site.

3.2.2 Utilities

An overhead power line for telephone and electricity enters the site from the south and stops approximately 80 feet from the south end of the USGS Building (24-

301). Electrical power to Building 24-301 is supplied by overhead lines. Power to the other buildings is supplied by buried cable. Water is thought to be supplied by a base water well located in the BLM pump house southwest of Building 24-301.

3.2.3 Geology and Hydrology

The NOAA site is underlain by a 1-foot to 3-foot layer of gray to brown clayey silt, followed by a thick section of dark grayish brown to dark olive gray sand and gravel (Figures 3-1 and 3-2). The sand and gravel varies in size of the clasts and relative percent of sand and gravel, but no correlable units were distinguished between the soil borings within this section. Boring logs for the three wells and one soil boring are included in Appendix B.

Groundwater flow across the NOAA site is west-southwest with a gradient of 0.009. Figure 3-3 is a map of the groundwater surface at the site. No aquifer tests for hydraulic conductivity or transmissivity were performed at the site.

3.3 Area 1 Findings

3.3.1 Historical Releases and Potential Sources

No documented releases are known for Area 1. Pesticides had reportedly been stored in the building during past occupancy.

3.3.2 GPR Results

No GPR survey was performed at this site.

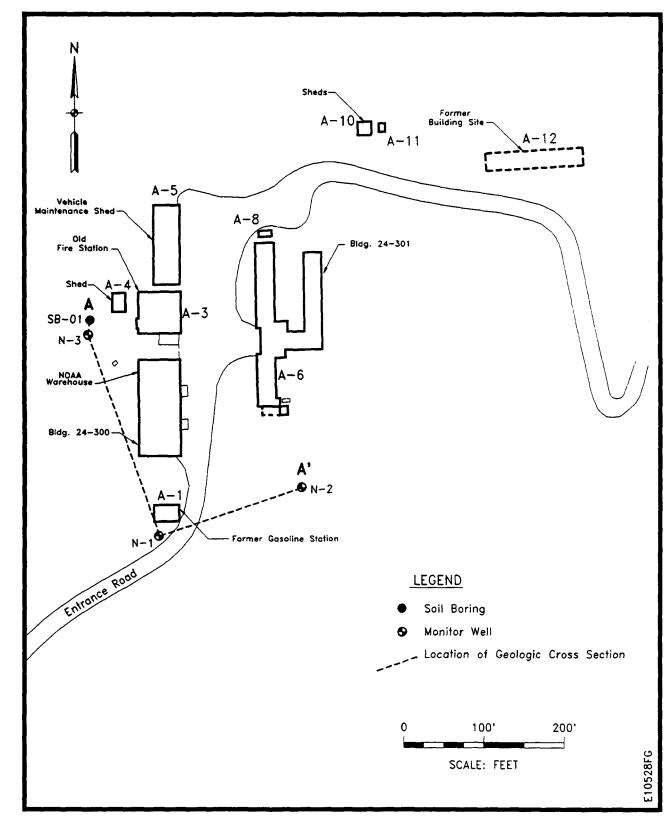
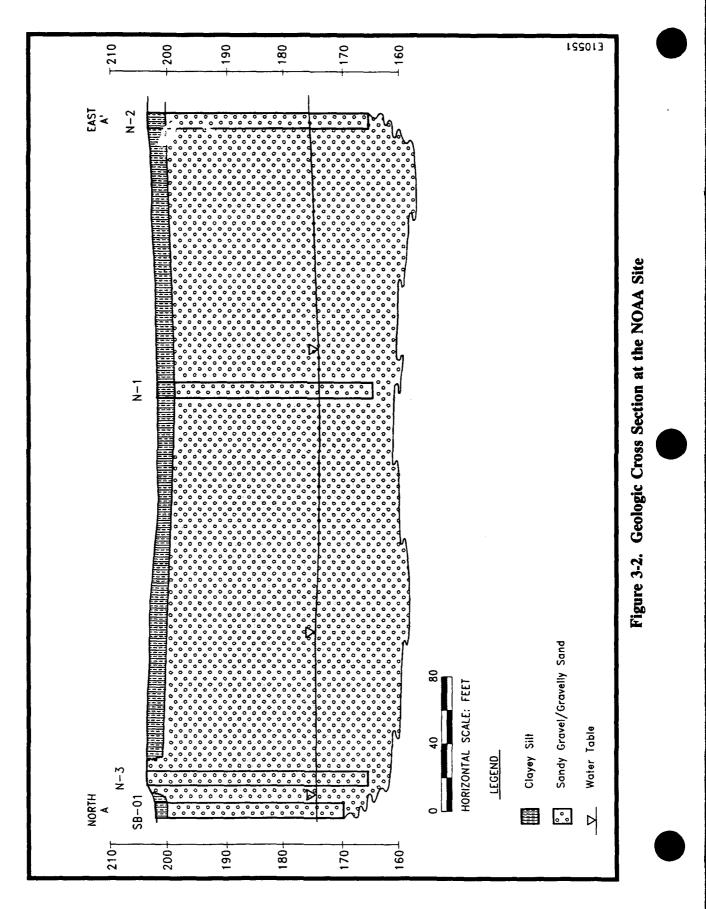



Figure 3-1. Location of Geologic Cross Section at the NOAA Site

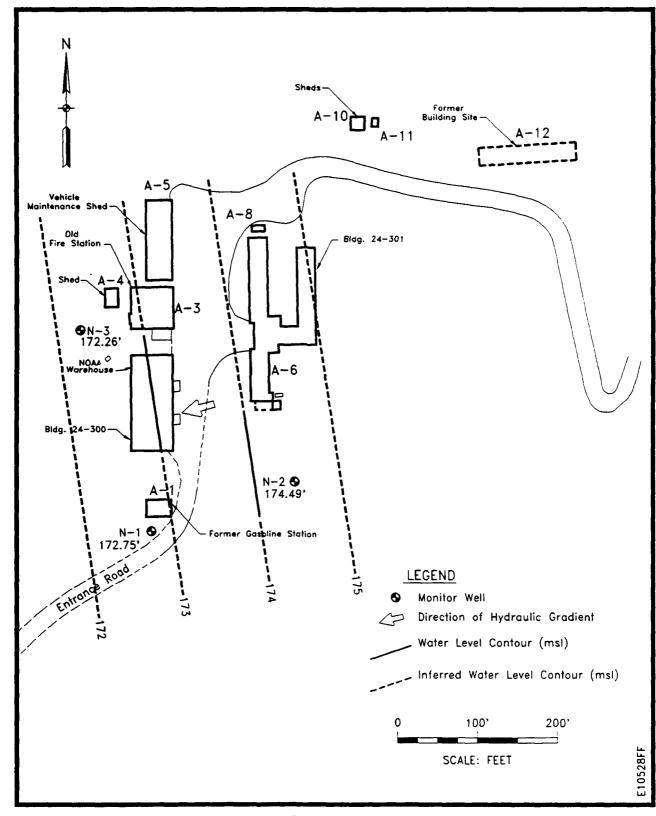


Figure 3-3. Groundwater Surface at the NOAA Site

3.3.3 Sampling Program and Analytical Results

The detailed results for the analyses of Area 1 samples are given in Appendix C. Only the results for those compounds detected in the Area 1 samples are given in Table 3-1 and are discussed in the following subsections. The compounds detected in Area 1 at or above their respective RBCs or ARARs are highlighted in the table and shown at their respective sampling locations in Figure 3-4 along with associated sampling depths. All soil data is reported on a dry weight basis. Please note that organochlorine pesticide and PCB (SW8080) results flagged with a P indicate that the second column confirmation analysis confirms the presence of the compound but that the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of 3. The lower result is reported since the higher result is usually present due to coelution with a non-target contaminant.

Sampling Program

Seven surface soil samples were taken at a depth interval of 0 to 0.25 feet at six locations in Area 1. These samples were taken adjacent to three buildings which have been used for pesticide storage: one adjacent to the northwest corner of former Building A-10; one along the north side of former Building A-11; and four along the north side of former Building A-12. These sampling locations are given in Figure 3-4. These soil samples were analyzed for organochlorine pesticides and PCBs (SW8080) and moisture content (from SW846). Sample SS-10, taken along the north side of former Building A-12, was also analyzed for volatile organic compounds (SW8240), semivolatile organic compounds (SW8270), and metals (SW6010, SW7060, SW7241, and SW7471).

•

Results for Analyses of Area 1 Soil Samples from Elmendorf NOAA--1993

						Sample	Bangale Location (depth in (det)	(b (cet)		
	Soli RB	BCJ	Propert	Sem	65.06	56-03	65×10		S8-11	51-85
Parameter	NORCECC	Care	Level	0.0.25	0.0.25	6.9.5	9.0.5	0.001	C. C. L.	0.0.25
Pesticides and PCBs (SW8080), µg/kg	1080), µ£/kg									
Aldrin	8000	40	41.2	ND (0.158)	1.44 KJ (3.54)	1.50 KJ (3.73)	0.395 (0.145)	ND (0.294)	0.615 (0.163)	10.4 (1.60)
alpha-BHC	NA		111	0.483 (0.181)	ND (1.52)	4.49 (1.61)	ND (0.166)	ND (0.336)	ND (0.186)	4.87 (1.83)
beta-BHC	NA	400	3890	ND (0.290)	ND (2.44)	ND (2.57)	0.127 PJ (0.386)	ND (0.538)	ND (0.298)	3.16 PJ (4.26)
delta-BHC	NA	NA	NF	ND (0.0996)	ND (0.837)	ND (0.883)	ND (0.0914)	ND (0.185)	1.01 (0.103)	9.24 (1.01)
4,4'-DDD	3000	NA	2920	4.97 P (0.362)	15.0 (3.04)	19.6 P (3.21)	3.74 (0.332)	ND (0.672)	ND (0.373)	16.3 (3.67)
4,4-DDE	2000	NA	2060	5.06 (0.244)	21.7 (2.05)	84.4 (2.17)	12.1 (0.224)	2.65 (0.454)	ND (0.252)	29.4 (2.47)
4,4-DDT	2000	NA	2060	101 (4.53)	127 (3.81)	349 (4.01)	44.9 (0.415)	3.45 (0.840)	ND (0.466)	136 (4.58)
Endosulfan sulfate	NA	NA	4000	ND (0.634)	UD (5.33)	ND (5.62)	ND (0.581)	0.439 J (1.18)	0.214 KJ (0.653)	ND (6.42)
Endrin	80,000	NA	24,000	0.156 KJ (4.53)	ND (4.57)	2.00 PJ (4.82)	1.10 KJ (4.15)	UD (10:1)	0.184 KJ (4.66)	ND (5.50)
Endosulfan 1	10,000	NA	4000	- ND (0.281)	ND (2.36)	1.17 KJ (2.49)	ND (0.257)	ND (0.521)	ND (0.289)	0.905 KJ (2.84)
Endosulfan II	10,000	NA	4000	0.0615 KJ (0.226)	0.0116 KJ (1.9)	ND (2.01)	ND (0.208)	ND (0.42)	ND (0.233)	0.164 KJ (2.29)
Heptachlor epoxide	4000	7	76.9	0.0619 PJ (1.13)	0.349 PJ (1.29)	ND (1.36)	0.892 PJ (1.04)	0.0192 PJ (0.286)	3.87 (0.159)	ND (1.56)
VOCs (SW8240), µg/kg										
Methyl ethyl ketone	10,000,000	NA	4,000,000	NS		NS	3.99 J (4.96)	SN	NS	NS
Methylene chloride	20,000,000	90,000	93,300	NS	NS	SN	6.32 B (1.78)	SN	NS	N

-	•
4	
•	
4	2
P	5
6	1
[-	

(Continued)

						Sample	Sample Location (depth in feet)	(hi feet)		
	Soil RBG	BCS	Proposed	29.97	(WESS)	56-09	87.18		88.11	Seco
Parameter	Noncerc	Care	Level	0.0.25	0.025	0.025	92.0-0	0.0.25	0.025.000	0.025
SVOCs (SW8270), mg/kg										
Benzo(a)anthracene	NA	0.06	0.83	SN	NS	NS	0.0210 (0.0190)	NS	NS	NS
Benzo(b)fluoranthene	NA	0.06	0.86	NS	NS	NS	<u>0.134 F</u> (0.0384)	NS	NS	NS
Benzo(k)fluoranthene	NA	0.06	1.84	NS	NS	SN	<u>0.134 F</u> (0.0422)	NS	SN	SN
Benzoic acid	1,000,000	NA	NF	SN	SN	SN	0.0951 J (1.63)	NS	NS	SN
Chrysene	NA	0.06	28	SN	SN	SN	<u>0.0790</u> (0.0227)	NS	SN	SN
Fluoranthene	10,000	NA	3200	NS	NS	NS	0.0626 (0.0199)	SN	NS	NS
Phenanthrene	NA	NA	4.8	NS	SN	SN	0.0274 (0.0198)	NS	SN	NS
Pyrene	8000	NA	2400	NS	NS	NS	0.0503 (0.0172)	NS	NS	SN
Metals (SW6010 and SW7000 Series), mg/kg	00 Serles), mg/kg									
Aluminum	NA	NA	NF	SN	NS	SN	22,900 (7.07)	NS	NS	NS
Barium	20,000	NA	5600	NS	NS	SN	150 (0.0558)	NS	NS	NS
Beryllium	1000	0.1	0.163	NS	SN	SN	0.413 (0.0568)	NS	SN	S
Calcium	NA	NA	NF	NS	NS	NS	3650 (22.9)	NS	NS	S
Chromium	c	NA	400 ^d	SN	NS	SN	28.5 (0.263)	NS	SN	SN
Cobalt	NA	NA	NF	NS	SN	SN	11.6 (0.503)	SN	SN	SN
Copper	10,000	NA	3200	SN	NS	NS	19.9 (0.238)	SN	NS	SN

•

(Continued)

							Securities Excertions (depits in feet)	in (ce)		
	Son RB	BCS	Prepare	See	SS-06	86-09	85×10	39-13	1	SE-13
Parameter	Noncare	Care	Level	0-0.25	0-0.25	6.025	0.025	0.025	COMPCUT	2.0.02
Iron	NA	NA	NF	NS	NS	SN	29,400 (30.0)	NS	NS	SN
Magnesium	NA	NA	NF	NS	NS	SN	4470 (2.63)	NS	NS	NS
Manganese	30,000	NA	NF	NS	NS	NS	466 (0.0114)	NS	NS	SN
Molybdenum	1350	NA	NF	NS	NS	SN	0. 8 92 (0.253)	SN	NS	SN
Nickel	5000	NA	1600	SN	NS	NS	25.3 (1.05)	SN	SN	SN
Potassium	NA	NA	NF	NS	NS	NS	638 (33.4)	NS	SN	SN
Selenium	1000	NA	400	NS	NS	NS	10.4 B (4.26)	NS	NS	SN
Sodium	NA	NA	NF	NS	SN	SN	121 (2.50)	SN	SN	SN
Vanadium	2000	NA	560	NS	NS	NS	66.5 (0.414)	SN	NS	SN
Zinc	80,000	NA	16,000	NS	NS	NS	62.9 (0.281)	NS	NS	SN
Arsenic (SW7060)	80	0.4	24	NS	SN	NS	<u>9.10</u> (0.155)	SN	NS	SN
Lead (SW7421)	NA	NA	114	SN	SN	SN	12.3 (0.366)	SN	SN	SN
Mercury (SW7471)	c	NA	ХF	NS	SN	SN	0.0833 B (0.0154)	NS	SN	SN
Molsture Content (from SW846), %	N846), %			26.5	12.5	17.0	21.5	20.9 -	28.6	27.3

NA Toxicity value and/or MCL not available, so RBC can not be calculated. NF Not found. NS Not sampled. ND Not detected, no instrument response for analyte, or result less than zero. () Sample specific detection limit. Calculated based on the method detection limit determined according to 40 CFR 136, Appendix B and preparation, analytical, and moisture factors.

(Continued)

a Risk-based concentrations (RBCs) for soils are based on residential ingestion of soil.

b Proposed soil action levels calculated according to RCRA Subpart S. c RBCs calculated based on soil ingestion pathway may not be appropriate. Inhalation toxicity may be of more concern than ingestion. d Proposed soil action level listed is for Cr (VI). Cr (III) level is 80,000 mg/kg.

P Analyte presence is confirmed; however, the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of three. The lower J Reported analyte concentration less than stated sample specific detection limit. K Peak did not meet method identification criteria. Analyte not detected on other GC column.

result is reported since the higher result is usually due to coelution with a non-target contarninant. B Analyte detected in method blank at concentrations up to: 1.82 µg/kg methylene chloride, 2.31 mg/kg selenium, and 0.0200 mg/kg mercury. F Interference or coelution of benzo(b)fluoranthene and benzo(k)fluoranthane suspected.

Note: Shaded data points indicated concentrations greater than the proposed soil cleanup levels. Underlined data are greater than an RBC.

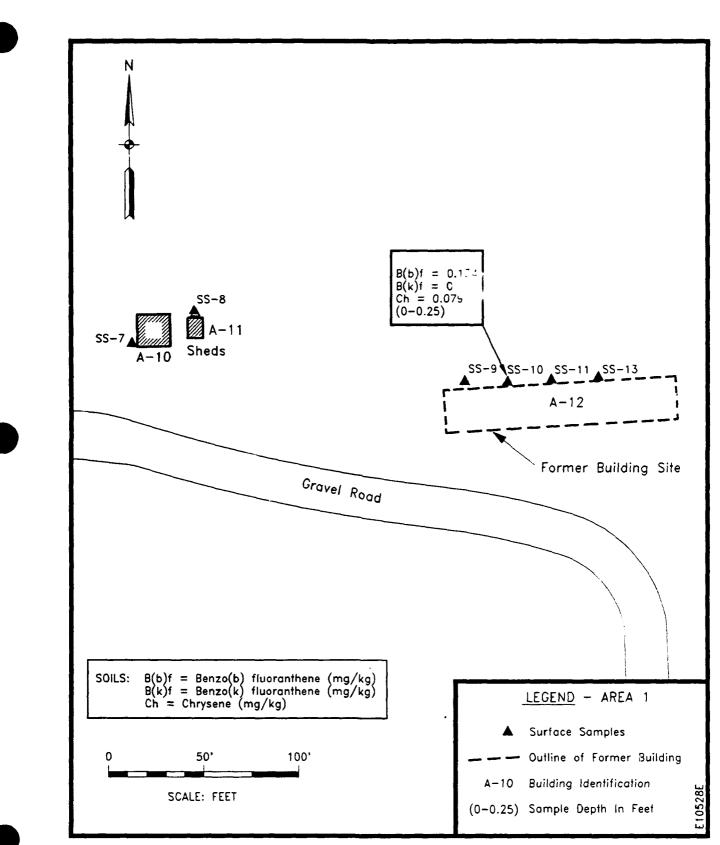


Figure 3-4. Detected Compounds Greater Than RBCs or ARARs at Area 1

Analytical Results--Soils

Organochlorine Pesticides and PCBs (SW8080)--Several pesticides were detected in the surface soil sample SS-07 which was taken adjacent to the northwest corner of former Building A-10. This sample contained 4.97 μ g/kg 4,4'-DDD, 5.06 μ g/kg 4,4'-DDE, and 101 μ g/kg 4,4'-DDT. Low concentrations (less than 5 μ g/kg) of alpha-BHC, endrin, and heptachlor epoxide were also found in sample SS-07.

The surface soil sample SS-08 from the north of Building A-11 contained 15.0 μ g/kg 4,4'-DDD, 21.7 μ g/kg 4,4'-DDE, and 127 μ g/kg 4,4'-DDT. Low concentrations (less than 5 μ g/kg) of aldrin and heptachlor epoxide were also found in sample SS-08.

Several pesticides were detected in the surface soil samples at SS-09, SS-10, SS-11, and SS-13, which were all taken along the northern border of former Building A-12. These samples contained up to 19.6 μ g/kg 4,4'-DDD, 84.4 μ g/kg 4,4'-DDE, 349 μ g/kg 4,4'-DDT, 10.4 μ g/kg aldrin, and 9.24 μ g/kg delta-BHC. Samples SS-09 and SS-10, which were taken along the west and east extremities of the sampling transect, were found to contain the highest concentrations of these organochlorine pesticides. Low concentrations (less than 5 μ g/kg) of alpha-BHC, beta-BHC, and heptachlor epoxide were also found in these samples.

PCBs were not detected in any of the Area 1 soil samples.

Volatile Organic Compounds (SW8240)--Methylene chloride was found at a concentration of $6.32 \mu g/kg$ in sample SS-10, at about three times the concentration found in the method blank. No other target compounds were detected in sample SS-10.

Semivolatile Organic Compounds (SW8270)--Several semivolatile organic compounds (SVOCs) were detected in sample SS-10. This sample contained 0.021

mg/kg benzo(a)anthracene, 0.134 mg/kg benzo(b)fluoranthene and benzo(k)fluoranthene (coelution problems preclude the separation of these two compounds), 0.079 mg/kg chrysene, 0.0626 mg/kg fluoranthene, 0.0274 mg/kg phenanthrene, and 0.0503 mg/kg pyrene, These are all polynuclear aromatic compounds and the presence of these compounds is consistent with the use of technical grade solvents or the burning of waste solvents at the site, although these activities have never been reported at the site.

Metals (SW6010, SW7060, SW7241, SW7471)--Toxic metals (defined as the

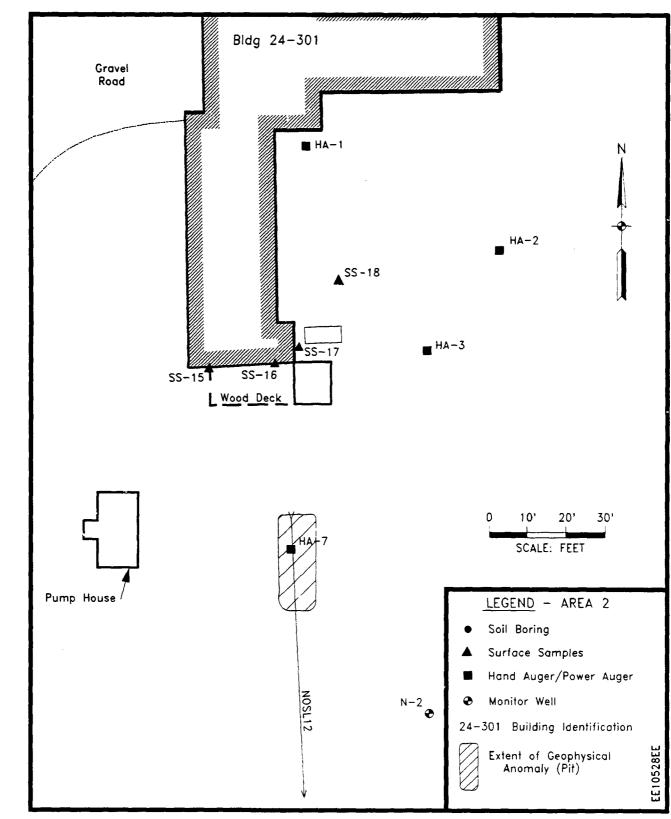
thirteen priority pollutants and/or RCRA metals) found in sample SS-10 include: 9.10 mg/kg arsenic, 150 mg/kg barium, 0.413 mg/kg beryllium, 28.5 mg/kg chromium, 19.9 mg/kg copper, 12.3 mg/kg lead, 0.0833 mg/kg mercury, 25.3 mg/kg nickel, 10.4 mg/kg selenium, and 62.9 mg/kg zinc. Antimony, cadmium, silver, and thallium were not detected in sample SS-10.

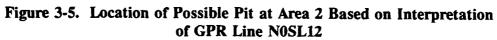
3.3.4 Comparison of Field Data to Risk-Based Concentrations and Action Media Levels

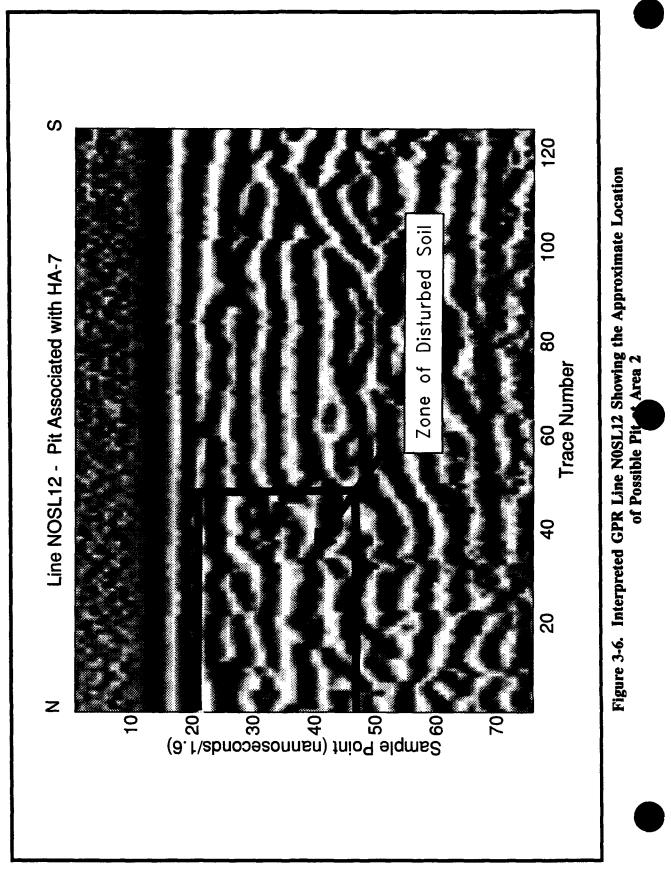
The Area 1 surface soil samples were compared to the RBCs and soil action levels referenced in Section 2.4. Sample SS-10 contained benzo(a)fluoranthene and benzo(k)fluoranthene (0.134 mg/kg) at a concentration that exceeded the carcinogenic RBC of 0.06 mg/kg but which was below the action level of 0.86 mg/kg. (These compounds coelute and could not be quantitated separately.) In addition, the sample contained chrysene (0.079 mg/kg) at a level slightly above the RBC, but well below the action level (28 mg/kg). This sample also contained arsenic at a concentration of 9.10 mg/kg, which exceeded the carcinogenic RBC of 0.4 mg/kg but which was well below the action level of 24 mg/kg. The beryllium concentration (0.413 mg/kg) of sample SS-10 exceeded the carcinogenic RBC (0.1 mg/kg) and the action level (0.163 mg/kg). However, these arsenic and beryllium concentrations are within the background concentration ranges of 0.37 to 0.62 mg/kg beryllium and 7.20 to 13.1 mg/kg arsenic (CH2M Hill, 1993).

3.3.5 Disposition of Area 1

As discussed in the previous section, analytical results from this area indicate that the only significant contaminant concentrations detected were low levels of benzo(b)fluoranthene [B(b)F] and/or benzo(k)fluoranthene [B(k)F], and chrysene. As noted in Table 3-1, the results for the fluoranthene compounds have some uncertainty, due to suspected interference or coelution. It is likely that the detected compounds originate from the creosote posts discussed in Section 2.3.2. The results indicate that the concentrations found are below the soil action levels and the non-carcinogenic RBCs, but just above the carcinogenic RBCs for the compounds. It should be noted that the RBCs assume extensive ingestion of contaminated soil as the primary exposure route. In addition, this exposure pathway is unlikely, given the military use and remote location of the NOAA property. Therefore the USEPA, ADEC, and Elmendorf AFB have agreed that NFA is recommended for this site.


3.4 <u>Area 2 Findings</u>


3.4.1 Historical Releases and Potential Sources


No documented releases, or records of solvents being burned at the site, are known for Area 2, although chemicals from both the rock laboratory and photographic dark room were reportedly disposed of down drains and/or out of windows. Potential sources of contamination at Area 2 are the drain exits and pipes which were allowed to discharge onto the ground.

3.4.2 GPR Results

A GPR survey was performed at Area 2 to locate any underground pipe outfalls, pits, or tanks associated with Building 24-301. Figure 3-5 shows the location of an interpreted pit and the sample location in the pit. Figure 3-6 is an interpreted GPR

line showing the N-S boundaries of the pit. No significant anomalies were recognized which would indicate the presence of any underground piping leaving the building. GPR lines were collected over an area in which an 8-inch diameter hole was found, to determine if it was associated with a pit or leach field. A map showing the locations of all of the GPR lines at Area 2, along with hardcopy output, is located in Appendix A.

3.4.3 Sampling Program and Analytical Results

The detailed results for the analyses of Area 2 samples are given in Appendix C. Only the results for compounds that were detected in the Area 2 samples are given in Table 3-2 (soils) and Table 3-3 (groundwater) and will be discussed in the following subsections. The compounds detected in Area 2 at or above their respective RBCs, ARARs, or MCLs are shown with their sampling locations in Figure 3-7 along with associated sampling depth. All soil data are reported on a dry weight basis. Please note that purgeable petroleum hydrocarbons (SW8015MP) results flagged with a P indicate that the second column confirmation analysis confirms the presence of the compound but that the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of 3. The lower result is reported since the higher result is usually present due to coelution with a non-target contaminant.

Sampling Program

Ton surface soil samples were taken at a depth interval of 0 to 0.25 feet at seven locations in Area 2: seven adjacent to the south and southeast corner of Building A-6; and three as the 0 to 0.25 feet interval samples associated with the hand auger sampling locations HA-1, HA-2, and HA-3 which were taken southeast of the "Y" in Building A-6. A sample was also taken at a depth interval of 4 to 4.5 feet at these hand augering locations. An additional hand augering sample (at a depth of 3.5 to 4 feet) was taken at location HA-7, located about 30 feet south of Building A-6. Monitoring well

Table 3-2A

Results for Analyses of Area 2 Surface Soil Samples from Elmendorf NOAA - 1993

			Proposed			Samp	Sample Location (depth in feet)	lepth in feet)		
	Sol RBCs	BCs [®]	Sol	S13	SS-ISD	91-SS	S-17	22.170	81-82	SS-18D
Parameter	Noncarc	Carc	Level	0-0.25	0-0.25	0-0.25	0-0.25	0.0.25	0-0.25	0-0.25
Nonhalogenated VOCs (SW8015), mg/kg					τ	arget comp	ounds not dete	Target compounds not detected in these samples	amples	
Purgeable Petroleum Hydrocarbous (SW8015MP), µg/kg	P), μg/kg									
Benzene	NA	20,000	100	4.47 KJ	NS	N/A	ND (CE 6)	3.49 KJ (0.34)	5.24 KU	
Eihulhenzane	10 000 000	NA		11 3 DR	ž	N/A	G	G	F	Ę
	000°000°00		000'000'0	(4.56)	24	W 111	(6.86)	(6.87)	(7.36)	(7.22)
Toluene	50,000,000	VN	16,000,000	17.9 B	NS	V/N	18.3 B	16.1 B	17.5 B	7.81 B
				(5.87)			(7.40)	(7.42)	(36)	(0.79)
Xylenes (total)	500,000,000	V N	160,000,000	16.4 PJ	NS	N/A	91.1	65.1	21.0 PJ	9.99 KJ
				(19.6)			(19.2)	(19.2)	(26.5)	(20.2)
VOCs (SW8240), µg/kg										
Acetone	30 × 10°	AN	8 × 10°	Q	SN	QZ	13.0 J	15.71	QN	28.5 B
				(14.2)		(17.2)	(17.6)	(18.1)	(19.0)	(18.7)
Methyl ethyl ketone	10,000,000	NA	4,000,000	QN	SN	QN	44.6	QN	QN	Q
				(4.29)		(2.19)	(5.31)	(5.48)	(5.75)	(2.66)
Methylene chloride	20,000,000	000'06	93,300	7.52	NS	18.2	30.7	69.2 B	20.1	22.4 B
				(1.54)		(1.86)	(1.90)	(1.96)	(2.06)	(2.03)
Tribromomethane (bromoform)	5,000,000	80,000	86,000	QN	SN	an	QN	QN	QN	Ð
				(1.77)		(2.13)	(2.18)	(2.26)	(2.37)	(2.33)
Extractable Petroleum Hydrocarbons (SW8015 ME), µg/	ME), μg/kg				τ	arget comp	ounds not dete	Target compounds not detected in these samples	amples	
SVOCs (SW8270), mg/kg										
Acenaphthylene	NA	VN	NF	QN	SN	0.0222	QN	QN	QN	QN
				(0.0151)	-	(0.0186)	(0.0562)	(0.0578)	(0.0206)	(0.0201)
Anthracene	80,000	٧N	24,000	QN	SN	0.0719	QN	QN	QN	0.0132 J
				(0.0133)		(0.0163)	(0.0495)	(0.0509)	(0.0181)	(0.0177)
Benzo(a)anthracene	AN	90.06	0.83	0.0121 J (0.0162)	SN	<u>0.216</u> (0.0199)	0.0599 J (0.0604)	0.0299 J (0.0621)	0.0184 J (0.0221)	0.0384 (0.0215)
Benzo(a)pyrene	NA	0.06	0.121	0.0151 J (0.0187)	SN	0.0230)	UN (7690.0)	UD (717)	ND (0.0255)	0.0403 (0.0249)
				(0.0187)		(0.0230)	(0.0697)	Ĩ	0.0717	0.0717) (0.0255)

Table 3-2A

•

(Continued)

			Proposed			Samp	Sample Location (depth in feet)	lepth in feet)		
	Soll RBCs	BG		SS-15	SS-15D	SS-16	S-17	S-170	S5-18	S-18D
Paraméter	Noncarc	Car	Leve	0-0.25	0-0,25	0-0.25	0-0.25	0-0.25	0-0.25	0.0.25
Benzo(b)fluoranthene	AN	0.06	0.86	0.0347 F (0.0328)	NS	0.945 F	0.0369 J	ND (0,126)	ND (0.0447)	<u>0.117 F</u> (0.0436)
Benzo(o h i)nervlene	A N	AN N	RF	GN	NN.	0.0821	GN	g	QN	QN
				(0.0368)	2	(0.0453)	(0.137)	(0.141)	(0.0502)	(0.0489)
Benzo(k)fluoranthene	NA	0.06	1.84	0.0347 FJ	NS	0.945 F	0.0352 J	Q	QN	<u>9.117 F</u>
				(0.0361)		(0.0443)	(0.134)	(0.138)	(0.0492)	(0.0479)
Benzoic acid	1,000,000	NA	NF	QN	SN	0.0954 J	QN S	QN S	0.128 J	0.0965 J
				(65.1)		(1.1)	(61.0)	().34)	(04.1)	(68.1)
Butylbenzylphthalate	50,000	AN	16,000	0.0240	NS	0.0488	Q.	Ð	QN	QN
	-			(0.0226)		(0.0277)	(0.0841)	(0.0865)	(0.0308)	(0.0300)
Chrysene	V N	0.06	28	0.0190 J	NS	0.595	0.0752	0.0430 J	0.0102 J	0.0387
				(0.0194)		(0.0238)	(0.0722)	(0.0743)	(0.0265)	(0.0258)
Dibenz(a,h)anthracene	NA	0.06	0.11	QN	NS	0.0470	Q	Ŋ	QN	Q
				(0.0293)		(0.0360)	(0.109)	(0.112)	(0.0399)	(0.0389)
Dibenzofuran	300	AN	NF	QN	NS	0.0218 J	QN	QN	QN	Q
				(0.0194)		(0.0238)	(0.0722)	(0.0743)	(0.0265)	(0.0258)
Dibutylphthalate	30,000	AN	8000	0.325	NS	0.124	QN	QN	QN	0.0231
	[(0.0117)		(0.0144)	(0.0436)	(0.0448)	(0.0160)	(0.0155)
Diethylphthalate	200,000	VN	64,000	0.0152 J	NS	QN	QN	Q	QN	ę
				(0.0186)		(0.0229)	(0.0693)	(0.0713)	(0.0254)	(0.0247)
Di-n-octylphthalate	5000	NA	1600	0.0784	NS	0.0204	QN	QN	QN	QN
				(0.0127)		(0.0156)	(0.0474)	(0.0487)	(0.0173)	(0.0169)
bis(2-Ethylhexyl)phthalate	5000	50	50	2.52	NS	0.808	0.0822 B	0.103 B	0.0356 B	ą
				(0.0210)		(0.0258)	(0.0782)	(0.0804)	(0.0286)	(0.0279)
Fluoranthene	10,000	٨A	3200	0.0265	NS	0.332	0.0324 J	az	0.0183 J	0.119
				(0.0170)		(0.0209)	(0.0634)	(0.0652)	(0.0232)	(0.0226)
Fluorenc	10,000	٧V	3200	QN	NS	0.0113 J	QN	QN	QN	QN
				(0.0137)		(0.0169)	(0.0511)	(0.0526)	(0.0187)	(0.0182)
Indeno(1,2,3-cd)pyrene	٧N	0.06	0.538	Ð	NS	0.102	Q	Q	Q	ę
				(0.0480)		(0.0590)	(0.179)	(0.184)	(0.0655)	(0.0638)

2A	
9	
ble	
La	

(Continued)

			Proposed			Sent	Sample Location (depth in feet)	tepth in feet)		
	Soll 1	Son RBCs [®]	Sol	S1-SS	SS-15D	SS-16	4158	071-SS	81-53	S-18D
Parameter	Noncarc	Care	Level	0-0.25	0-0.25	0-0.25	0-0.25	0-0,25	0-0.25	0-0.25
2-Methylnaphthalene	AN	NA	NF	QN	NS	0.0648	1.18	0.208	QN	QN
	-	•		(0.0131)		(0.0162)	(0.0490)	(0.0504)	(0.0179)	(0.0175)
Naphthalene	10,000	VN	3200	UD (173)	NS	0.0577	0.330	0.0642 J	0.00877 J	UD (0.0229)
4-Nitroaniline	AN	NA	NF	0.130	SN	QŽ	QN	g	ŊŊ	QN
			:	(0.0219)		(0.0269)	(0.0815)	(0.0838)	(0.0299)	(0.0291)
Pentachlorophenol	8000	\$	5.83	0.0516 (0.0321)	NS	0.1 82 (0.0395)	ND (0.120)	ND (0.123)	0.229 (0.0438)	ND (0.0427)
Phenanthrene	VN	NA	4.8	0.0302 (0.0169)	SN	0.132 (0.0208)	0.136 (0.0630)	0.0466 J (0.0648)	0.0217 J (0.0231)	0.0528 (0.0225)
Pyrene	8000	V	2400	0.0227 (0.0147)	SN	0.377 (0.0181)	0.0716 (0.0549)	0.0333 J (0.0565)	0.0161 J (0.0201)	0.0936 (0.0196)
Metals (SW6010 and SW7000 series), mg/kg										
Aluminum	٩N	NA	Ч	14,600 (6.32)	SN	19,700 (7.82)	20,300 (7.84)	22,900 (8.02)	16,600 (8.42)	12,600 (7.81)
Barium	20,000	AN	5600	156 (0.0499)	SN	162 (0.0618)	130 (0.0620)	118 (0.0633)	136 (0.0665)	128 (0.0617)
Beryllium	0001	0.1	0.163	<u>0.282</u> (0.0508)	ŅS	<u>0.345</u> (0.0628)	0.0630)	<u>0.427</u> (0.0644)	<u>0.332</u> (0.0677)	<u>0.211</u> (0.0628)
Cadmium	100	NA	80	<0.248	SN	2.08 (0.306)	1.27 (0.307)	0.428 (0.314)	<0.330	< 0.306
Calcium	٩N	VN	ЧĽ	4850 (20.5)	SN	5540 (25.4)	2980 (25.5)	2750 (26.0)	3850 (27.3)	2690 (25.4)
Chromium	U	NA	400 ^d	40.5 (0.236)	SN	37.2 (0.291)	27.5 (0.292)	28.3 (0.299)	24.4 (0.314)	17.7 (0.291)
Cobalt	٩٧	NA	NF	7.90 (0.450)	SN	10.7 (0.557)	10.4 (0.559)	11.9 (0.571)	9.00 (0.600)	5.41 (0.556)
Copper	10,000	NA	3200	47.2 (0.213)	NS	177 (0.263)	23.5 (0.264)	20.9 (0.270)	29.6 (0.284)	15.5 (0.263)
Iron	AN	NA	NF	30,700 (26.8)	NS	29,000 (33.2)	27,300 (33.3)	31,000 (34.0)	23,600 (35.7)	18,600 (33.1)

Table 3-2A

.

•

.

(Continued)

Magnesium Mangancse	, с. с. с. т		A STATISTICS IN THE ADDRESS OF AD		Contraction of the second		 A state way in the state of the state 			
Siebel.	5 150	Sold RBCs	SOU Action	S1-32	ası-ss	91-SS	11-SS	S.ID	8155	081-55
Magnesium Mangancse	Noncarc	Carc	Level	0.0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25
Manganese	٩N	AN	NF	7840	NS	6820	4410	4420	4360	2370
Manganese				(2.36)		(2.91)	(2.92)	(2.99)	(3.14)	(16.2)
	30,000	AN	NF	365	SN	420	421	480	406	225
				(0.0102)		(0.0126)	(0.0126)	(0.0129)	(0.0136)	(0.0126)
Molybdenum	1350	AN	NF	0.858	SN	1.35	0.628	0.674	<0:301	< 0.279
				(0.226)		(0.279)	(0.280)	(0.287)		
Nickel	5000	VN	1600	29.6	SN	34.4	21.8	23.7	8.61	12.1
	-			(0.940)		(1.16)	(1.17)	(1.19)	(1.25)	(1.16)
Potassium	AN	AN	NF	759	SN	275	722	590	630	445
				(29.8)		(36.9)	(37.0)	(37.8)	(39.8)	(36.9)
Selenium	1000	AN	400	10.1 B	SN	<4.71	5.81 B	9.89 B	5.51 B	8.10 B
				(J.81)			(4.73)	(4.83)	(5.08)	(4.71)
Silver	1000	AN	6 04	2.35	SN	101	<0.196	< 0.200	< 0.210	<0.195
				(0.158)		(0.195)				
Sodium	٩N	AN	NF	107	SN	203	127	104	177	150
				(2.23)		(2.76)	(2.77)	(2.83)	(2.98)	(2.76)
Thallium	20	AN	4	0.814 J	SN	0.768 J	<7.43	<7.59	<i>L</i> 0.7>	<7.40
				(5.99)		(7.40)				
Vanadium	2000	N A	560	47.6	SN	52	56.0	69.7	52.3	44.1
				(0.371)		(0.459)	(0.460)	(0.470)	(0.494)	(0.458)
Zinc	80,000	VN	16,000	340	SN	-139	868	484	106	115
				(0.251)		(0.310)	(0.311)	(0.318)	(0.334)	(0.310)
Arsenic (SW7060)	80	0.4	24	12.4	SN	11.3	<u>9.72</u>	12.0	7.87	7.88
				(0.305)		(0.188)	(0.206)	(0.199)	(0.202)	(0.206)
Lead (SW7421)	AN	NA	114	143	SN	339	326	131	22.4 B	8.34 B
				(3.60)		(8.8)	(0.72)	0.70)	(1.19)	(0.243)
Mercury (SW7471)	80	٧N	ЧĻ	0.340	SN	0.537	0.199	0.187	0.199	0.174
				(0.0130)		(0.0160)	(0.0164)	(0.0167)	(0.0176)	(0.0174)
Moisture Content (from SW846), %				7.97	NS	25.0	26.7	28.3	32.4	30.7

Table 3-2B

Results for Analyses of Area 2 Auger Samples from Elmendorf NOAA - 1993

Parameter Nonhalogenated VOCs (SW8015), mg/kg Purgeable Petroleum Hydrocarbons (SW8015MP), µg/kg	Soil RBCs ⁶	•:3	S.T.			A CONTRACT OF A DATE OF A				
	A STREET AND			H	HA-1	HA-3	-2	H	HA-3	14.7H
Nonhalogenated VOCs (SW8015), mg/kg Purgeable Petroleum Hydrocarbons (SW8015MP), µg/kg	Voncarc	Care	Level	0.0.25	445	0-0.25	145	0.0.25	577	3.5.4
Purgeable Petroleum Hydrocarbons (SW8015MP), µg/kg				•	. Target col	Target compounds not detected in these samples	stected in the	se samples		
	80									
Benzene	NA	20,000	100	3.24 KJ (9.14)	3.72 KJ (7.93)	NS	SN	SN	SN	SN
Ethylbenzene 30,	,000,000	٩N	1,600,000	ND (6.72)	ND (5.83)	SN	SN	SN	SN	SN
Toluene 50,0	,000,000	NA	16,000,000	31.3 B (7.25)	7.04 B (6.30)	NS	SN	NS	SN	SN
Xylenes (total) 500.	0,000,000	٨٨	160,000,000	56.7 (18.8)	8.35 KJ (16.3)	NS	NS	SN	SN	SN
VOCs (SW8240), µg/kg										
Acetone	30 x 10 °	٧N	8 × 10°	16.4 J (34.5)	4.24 J (15.3)	17.9 J (19.2)	4.55 J (13.6)	13.6 J (30.1)	8.45 J (27.1)	12.2 <i>1</i> (29.9)
Methyl ethyl ketone	000'000'0	NA	4,000,000	18.0 B (15.0)	20.9 B (4.62)	ND (5.81)	19.2 B (4.10)	19.6 B (13.1)	14.4 B (11.8)	18.5 B (13.0)
Methylene chloride 20,	000'000'0	000'06	00£'£6	13.3 B (5.76)	12.0 B (1.66)	7.17 B (2.08)	3.37 B (1.47)	31.5 B (5.03)	4.68 B (4.53)	4.16 J (4.99)
Tribromomethane (bromoform) 5,(,000,000	80,000	86,000	ND (2.90)	ND (1.90)	ND (2.39)	ND (1.69)	ND (2.53)	1.48 J (2.28)	ND (2.51)
Extractable Petroleum Hydrocarbons (SW8015 ME), µg/kg	/kg			•	Target coi	Target compounds not detected in these samples	stected in the	se samples .		
SVOCs (SW8270), mg/kg										
Acenaphthylene	٧N	NA	NF	ND (0.0189)	ND (0.0162)	ND (0.0204)	ND (0.0143)	ND (0.476)	ND (0.412)	ND (0.0160)
Anthracene	80,000	NA	24,000	ND (0.0166)	ND (0.0142)	ND (0.0180)	ND (0.0126)	ND (0.419)	ND (0.362)	ND (0.0141)
Benzo(a)anthracene	٩N	0.06	0.83	0.0120 J (0.0203)	ND (0.0174)	0.0166 J (0.0219)	ND (0.0154)	ND (0.512)	ND (0.442)	ND (0.0172)

Table 3-2B

.

.

(Continued)

			Proposed			Semple Loce	Sample Location (depth in feet)	a foot)		
	Soil RBCs ⁴	BG ⁴	Sel Sel	/H	HA:1	БУН	5	H	HA.3	г.лн
Parameter	Noncarc	Care	Level	0-0.25	44.5	0.0.25	445	52.0-0	4.5	1.5.6
Benzo(a)pyrene	AN	0.06	0.121	ND (0.0234)	ND (0.0201)	ND (0.0253)	ND (7710)	ND (0.590)	ND (0.510)	ND (991099)
Benzo(b)fluotanthene	NA	0.06	0.86	0.0466 F (0.0411)	ND (0.0352)	0.0406 J (0.0444)	ND (1160.0)	ND (1.03)	ND (0.894)	ND (0.0349)
Benzo(g,h,i)perylene	NA	NA	NF	ND (0.0461)	ND (0.0395)	ND (0.0498)	ND (0.0349)	ND (1.16)	ND (1.00)	ND (0.0392)
Benzo(k)fluoranthene	٩N	0.06	1.84	0.0466 F (0.0452)	ND (0.0387)	0.0276 J (0.0488)	ND (0.0342)	ND (1.14)	ND (0.984)	ND (0.0384)
Benzoic acid	1,000,000	NA	NF	0.226 J (1.75)	ND (1.49)	0.159 J (1.89)	ND (1.32)	ND (44.0)	ND (38.0)	ND (1.48)
Butylbenzylphthalate	50,000	NA	16,000	ND (0.0283)	ND (0.0242)	ND (0.0305)	ND (0.0214)	ND (0.712)	ND (0.615)	ND (0.0240)
Chrysene	NA	0.06	28	0.0244 (0.0243)	ND (0.0208)	<u>0.0650</u> (0.0262)	ND (0.0184)	ND (0.612)	ND (0.529)	ND (0.0206)
Dibenz(a,h)anthracene	AN	0.06	0.11	ND (0.0367)	ND (0.0314)	ND (0.0396)	ND (0.0277)	ND (0.924)	ND (0.799)	UD (11E0:0)
Dibenzofuran	300	NA	NF	ND (0.0243)	ND (0.0208)	0.01 84 J (0.0262)	ND (0.0184)	ND (0.612)	ND (0.529)	ND (0.0206)
Dibutylphthalate	30,000	N	8000	ND (0.0146)	ND (0.0125)	ND (0.0158)	ND (1110.0)	ND (0.369)	0.320 (0.319)	ND (0.0124)
Diethylphthalate	200,000	NA	64,000	ND (0.0233)	ND (0.0199)	ND (0.0252)	ND (0.0176)	ND (0.587)	ND (0.507)	ND (0.0198)
Di-n-octylphthalate	5000	NA	1600	ND (0.0159)	ND (0.0136)	ND (0.0172)	ND (0.120)	ND (0.401)	ND (0.347)	ND (0.0135)
bis(2-Ethylhexyl)phthalate	5000	50	50	ND (0.0263)	ND (0.0225)	0.0557 (0.0284)	ND (0.0199)	<u>53.7</u> (0.662)	15.7 (0.572)	ND (0.0223)
Fluoranthene	10,000	۷N	3200	0.00845 J (0.0213)	ND (0.0182)	0.392 (0.0230)	ND (0.0161)	ND (0.537)	ND (0.464)	ND (0.0181)

2 H
ς.
le
da l
Ë

(Continued)

			Proposed			Sample Loci	Sample Location (depth in feet)	a (sec)		
	Sol RBCs ⁴	BC.	Soil	HAH	A D	RA-2	.	H	на.3	HA-7
Parander	Noncarc	Carc	Level	0-0.25	517	0-0.25	514	0-0.25	577	1.2.6
Fluorene	10,000	NA	3200	UD (2710.0)	ND (0.0147)	ND (0.0186)	0510.0)	ND (0.433)	ND (0.374)	ND (0.0146)
Indeno(1,2,3-cd)pyrene	NA	0.06	0.538	UD (1090.0)	ND (0.0515)	0590.0) (0.0650)	ND (0.0455)	ND (1.52)	UD (1.31)	ND (0.0511)
2-Methylnaphthalene	NA	V N	NF	ND (0.0165)	ND (0.0141)	UD (0.0178)	ND (0.0124)	ND (0.415)	ND (0.358)	ND (0.0140)
Naphthalene	10,000	٩N	3200	ND (0.0216)	ND (0.0185)	ND (0.0234)	ND (0.0163)	ND (0.545)	ND (0.471)	ND (0.0184)
4-Nitroaniline	AN	AN	NF	ND (0.0274)	ND (0.0235)	ND (0.0296)	ND (0.0207)	UD (169:0)	ND (0.597)	ND (0.0233)
Pentachlorophenol	8000	S	5.83	0.132 (0.0402)	ND (0.0344)	0.245 (0.0434)	ND (0.0304)	ND (10.1)	ND (0.875)	ND (0.0341)
Phenanthrene	ΥN	VN	4.8	0.0171 J (0.0212)	ND (0.0181)	0.431 (0.0229)	ND (0.0160)	0.307 J (0.533)	ND (0.461)	ND (0.0180)
Pyrene	8000	NA	2400	0.0122 J (0.0184)	ND (0.0158)	0.234 (0.0199)	ND (0.0140)	ND (0.465)	ND (0.402)	ND (0.0157)
Metals (SW6010 and SW7000 series), mg/kg										
Aluminum	AN	AN	NF	20,100 (7.80)	16,900 (6.13)	11,900 (8.69)	16,300 (5.93)	6,050 (6.58)	12,400 (5.52)	16,900 (6.24)
Antimony	001	VN	32	<2.05	< 1.61	<2.29	<1.56	280	<1.45	6.53 (0.164)
Barium	20,000	NA	5600	175 (0.0616)	84.7 (0.0484)	99.5 (0.0687)	55.6 (0.0468)	516 (0.0520)	34.6 (0.0436)	110 (0.0493)
Beryllium	0001	0.1	0.163	0.485 (0.0627)	0.434 (0.0493)	0.250 (0.0699)	<u>0.366</u> (0.0476)	0.165 (0.0529)	<u>0.221</u> (0.0443)	0.0501)
Cadmium	100	٧N	80	0.387 (0.305)	< 0.240	< 0.340	<0.232	2.34 (0.258)	< 0.216	<0.244

ī

Table 3-2B

(Continued)

			Proposed			Sample Location (depth he foot)	ition (depth	(30) H		
	Sol R	Soil RBCs [®]	Sol	ны	E E	түн			i syu	нкл
Parameer	Noncarc	Carc	Level	0-0.25	515	0-0,25	SH	0-0.25	5 72	1.5.6
Calcium	AN	٩N	NF	4900 (25.3)	4910 (19.9)	1780 (28.2)	6000 (19.2)	3650 (21.4)	4080 (17.9)	5040 (20.3)
Chromium	υ	AN	400 ^d	40.6 (0.290)	33.9 (0.228)	12.2 (0.324)	30.8 (0.221)	9.76 (0.245)	26.9 (0.205)	34.1 (0.232)
Cobalt	ΥN	NA	NF	13.7 (0.555)	11.2 (0.437)	2.76 (0.619)	10.6 (0.422)	2.20 (0.469)	6.59 (0.393)	11.1 (0.444)
Copper	10,000	٩N	3200	33.6 (0.263)	28.9 (0.207)	39.8 (0.293)	20.7 (0.200)	30.9 (0.222)	24.8 (0.186)	25.1 (0.210)
Iron	NA	NA	NF	29,400 (33.1)	27,500 (26.0)	15,000 (36.9)	26,300 (25.2)	6230 (27.9)	22,200 (23.4)	24,000 (26.5)
Magnesium	AN	NA	NF	7270 (2.90)	8060 (2.28)	855 (3.24)	8770 (2.21)	1180 (2.45)	7440 (2.05)	7680 (2.32)
Manganese	30,000	NA	NF	604 (0.0126)	529 (0.00987)	73.2 (0.0140)	603 (0.00954)	55.2 (0.0106)	303 (0.00888)	511 (0.0100)
Molybdenum	1350	NA	NF	0.451 (0.279)	0.612 (0.219)	<0.311	0.716 (0.212)	2.53 (0.235)	0.616 (0.197)	0.484 (0.223)
Nickel	5000	NA	1600	35.2 (1.16)	34.1 (0.912)	4.15 (1.29)	31.2 (0.882)	5.53 (0.979)	22.7 (0. 82 0)	34.3 (0.928)
Potassium	NA	NA	NF	836 (36.8)	930 (28.9)	507 (41.0)	714 (28.0)	1620 (31.1)	697 (26.0)	721 (29.5)
Selenium	1000	NA	400	13.7 (4.70)	6.73 B (3.70)	<5.24	9.96 B (3.57)	<3.97	5.66 B (3.33)	<3.76
Silver	0001	٧N	400	<0.195	<0.153	<0.217	<0.148	107 (0.164)	3.25 (0.138)	<0.156
Sodium	AN	NA	NF	173 (2.76)	126 (2.17)	137 (3.07)	76.3 (2.09)	259 (2.33)	66.7 (1.95)	153 (2.21)
Thallium	20	AN	4	<7.38	1.23 J (5.81)	<8.23	<5.61	<6.23	<5.22	1.51 J (5.91)

Table 3-2B

(Continued)

Soil RBCs Soil RBCs Parameter Noncarc Vanadium 2000 Vanadium 2000 Na 2000 Na 2000 Na 2000 Na 2000 Na 2000	Soll							
dium 2000 NA 80,000 NA 80,000 NA		на.	-1	PA-2	2	H	КА-3	г-лн
dium 2000 80,000	Level	0-0.25	445	0-0.25	145	0-0.25	545	15.8
80,000	560	61.0 (0.458)	52.7 (0.360)	37.1 (0.510)	54.1 (0.348)	17.6 (0.386)	45.5 (0.324)	49.6 (0.366)
	16,000	235 (0.310)	53.9 (0.243)	61.1 (0.345)	61.5 (0.235)	51.6 (0.261)	37.9 (0.219)	45.9 (0.248)
Arsenic (SW7060) 80 0.4	24	<u>9.16</u> (0.195)	<u>7.72</u> (0.154)	<u>6.11</u> (0.214)	<u>4.83</u> (0.152)	<u>26.0</u> (0.646)	<u>20.4</u> (1:46)	<u>6.53</u> (0.164)
Lead (SW7421) NA NA NA	114	134 (4.61)	5.77 (0.181)	10.9 (0.253)	4.8 1 (0.179)	35.8 (1.90)	17.6 (0.343)	4.99 (0.215)
Mercury (SW7471) C NA	NF	0.139 (0.0162)	0.0988 (0.0140)	0.0551 (0.0176)	<0.0124	<0.014 1	<0.0126	0.0690B (0.0138)
Moisture Content (from SW846), %		26.3	14.3	31.9	3.38	14.8	5.09	13.3

NA Toxicity value and/or MCL not available, so RBC can not be calculated. NF Not found. ND Not detected, no instrument response for analyte, or result less than zero.

NS Not sampled.

() Sample-specific detection limit. Calculated based on the method detection limit determined according to 40 CFR 136, Appendix B and preparation, analytical, and moisture factors.

a Risk-based concentrations (RBCs) for soils are based on residential ingestion of soil.

b Proposed soil action levels calculated according to RCRA Subpart S.

RBCs calculated based on soil ingestion pathway may not be appropriate. Inhalation toxicity may be of more concern than ingestion. o

Proposed soil action level for Cr (VI). Cr (III) level is 80,000 mg/kg.

J Reported analyte concentration less than stated Detection Limit.

K Peak did not meet method identification criteria. Analyte not detected on other GC column. P Analyte presence is confirmed; however, the quantitation is not confirmed since the ratio of

Analyte presence is confirmed; however, the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of three. The lower result is reported since the higher result is usually due to coelution with a non-target contaminant. B Analyte detected in method blank at concentrations up to: 7.39 µg/kg ethylbenzene, 4.99 µg/kg toluene, 9.61 µg/kg acetone, 34.7 µg/kg methyl ethyl ketone, 20.5 µg/kg methylene chloride, and 2.31 mg/kg selenium.

F Interference or coelution suspected.

Note: Shaded data points indicated concentrations greater than the proposed soil cleanup levels. Underlined data are greater than an RBC.

Results for Analyses of Groundwater Samples from Areas 2, 3, and 5 at Elmendorf NOAA - 1993

	Water RBCs *	RBC3		Ang 2		And	Nuu S
Parameter	Noncarc	Caro	MCL ¹	N.3	N-2 dup	3	I'N
Nonhalogenated VOCs (SW801 ^c), mg/L		i				1	
Methyl isobutyl ketone	1.825	NA	1.75	0.669 KJ (1.46)	1.28 B (1.46)	6.63 P (1.46)	ND (1.46)
Purgeable Petroleum Hydrocarbons (SW)	(SW8015MP), µg/L						
Benzene	NA	20,000	100	ND (0.0674)	ND (0.0674)	ND (0.0674)	0.037 PJ (0.0678)
Toluene	1000	NA	1000	0.0862 B (0.0858)	0.114 B (0.0858)	0.0533 J (0.0858)	1.04 (0.0538)
Xylenes (total)	800	NA	10,000	0.0599 B (0.0388)	ND (0.0388)	ND (0.0388)	0.467 (0.141)
VOCs (SW8240), µg/L							
Methylene chloride	2000	7	6	ND (2.28)	1.16 J (2.28)	1.78 J (2.28)	0.504 J (2.28)
Extractable Petroleum Hydrocarbons (80	15 (8015ME), µg/L						
Diesel	267	NA	NF	35.6 I (23.0)	37.51 (23.2)	36.2 I (23.3)	37.3 I (22.7)
SVOCs (SW8270), µg/L							
bis(2-Ethylhexyl)phthalate	700	6	6	3.18 (1.84)	ND (1.85)	ND (1.89)	ND (0.590)
Metals (SW6010 and SW7000 Series), m _S /L	Υ						
Aluminum	NA	NA	NF	0.0395 (0.0284)	0.0480 (0.0284)	<0.0284	<0.0284

(Continued)

	Water	Water RBCs*		Area 2	= 2	Area S	Area S
Parameter	Noncare	Care	MCL.	N-2	N-2 dup	N.3	1.1
Barium	3	AN	1	0.00565 (0.000530)	0.00645 (0.000530)	0.0472 (0.000530)	0.00486 (0.000530)
Beryllium	0.2	0.00002	0.004	<0.000554	<u>0.000890</u> (0.000554)	<0.000554	<0.000554
Cadmium	0.02	NA	0.005	0.00186 B (0.00172)	0.00256 B (0.00172)	<0.00172	⊲0.00172
Calcium	NA	NA	ż	24.0 (0.148)	23.8 (0.148)	105 (0.148)	23.3 (0.148)
Chromium	40	NA	0.1	0.00497 B (0.00249)	0.00421 B (0.00249)	<0.00249	0.0512 (0.00249)
Cobalt	NA	NA	Ę	<0.00340	<0.00340	<0.00340	<0.00340
Copper	1.0	NA	1.3	<0.00381	<0.00381	<0.00381	≪0.00381
Iron	NA	NA	NF	0.0835 (0.00596)	0.103 (0.00596)	1.20 (0.00596)	0.551 (0.00596)
Magnesium	NA	NA	NF	4.70 (0.0228)	4.65 (0.0228)	50.8 (0.0228)	4.61 (0.0288)
Manganese	1.0	NA	0.05 °	0.0141 (0.000395)	0.0152 (0.000395)	2.10 (0.000395)	0.0226 (0.000395)
Molybdenum	0.167	NA	É	<0.00463	<0.00463	0.00468 (0.00463)	0.0129 (0.00463)
Nickel	0.7	AN	0.1	<0.00986	<0.00986	<0.00986	0.0958 (0.00986)

.

•

(Continued)

ſ

	Water RBCs*	RBCs*		Area 2	• 2	Area 3	Årea S
Parameter	Noncare	Carc	MCL ¹	N-2	N-2 dup	6-N	N.1
Potassium	NA	NA	臣	0.699 (0.00287)	0.722 (0.00287)	1.29 (0.00287)	0.689 (0.00287)
Selenium	0.2	NA	0.05	<0.0417	0.0410 J <0.0417	<0.0417	<0.0417
Sodium	NA	NA	NF	2.35 (0.0397)	2.30 (0.0397)	174 (0.0397)	2.34 (0.0397)
Thallium	3	NA	0.002	0.00880.1 (0.0172)	0.0138 J (0.0172)	0.00300.1 (0.0172)	<0.0172
Vanadium	0.03	NA	0.25°	0.00360 B (0.00236)	0.00267 B (0.00236)	<0.00236	<0.00236
Zinc	10	NA	۶¢	0.00581B (0.00153)	0.00644 B (0.00153)	0.00329 B (0.00153)	0.00939 (0.00153)
Arsenic (SW7060)	0.01	0.00005	0.05	<0.000657	<0.000657	0.00720 (0.000657)	<0.000657
Lead (SW7421)	NA	NA	0.015	0.0210 (0.000800)	0.0190 (0.000800)	0.00100 (0.000800)	0.0100 (0.000800)
Total Dissolved Solids (E160.1), mg/L				108 (8.67)	117 (8.67)	107 (8.67)	117 (8.67)

(Continued)

- Toxicity value and/or MCL not available, so RBC can not be calculated.
- Vot found
- Not detected, no instrument response for analyte, or result less than zero. Z Z Z Z C
 - Not sampled.
- Sample-specific detection limit. Calculated based on the method detection limit determined according to 40 CFR 136, Appendix B and preparation, analytical, and moisture factors.
- Risk-based concentrations (RBCs) for soils are based on residential ingestion of water and inhalation of volatiles from water. പെ
- Maximum Contaminant Levels (MCLs) are the primary drinking water standards, or the water action level from methyl isobutyl ketone.
 - Secondary Drinking Water MCLs. ം മ
- Analyte detected in method blank at concentrations up to: 0.0332 µg/L toluene, 0.0679 µg/L total xylenes, 0.635 mg/L, methyl isobutyl ketone, 0.00065 mg/L cadmium, 0.00167 mg/L chromium, 0.00078 mg/L vanadium, and 0.00183 mg/L zinc.
 - Analyte identification suspect. See Narrative for explanation.
- Reported analyte concentration less than stated Detection Limit.
- Peak did not meet method identification criteria. Analyte not detected on other GC column. XA
- Analyte presence is confirmed; however, the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of three. The lower result is reported since the higher result is usually due to coelution with a non-target contaminant.

Note: Shaded data points indicated concentrations greater than the MCL Action Levels. Underlined data are greater than an RBC. Note: Thallium and selenium results above the MCLs of (0.002 mg/L and 0.025 mg/L) are reported even if J flagged.

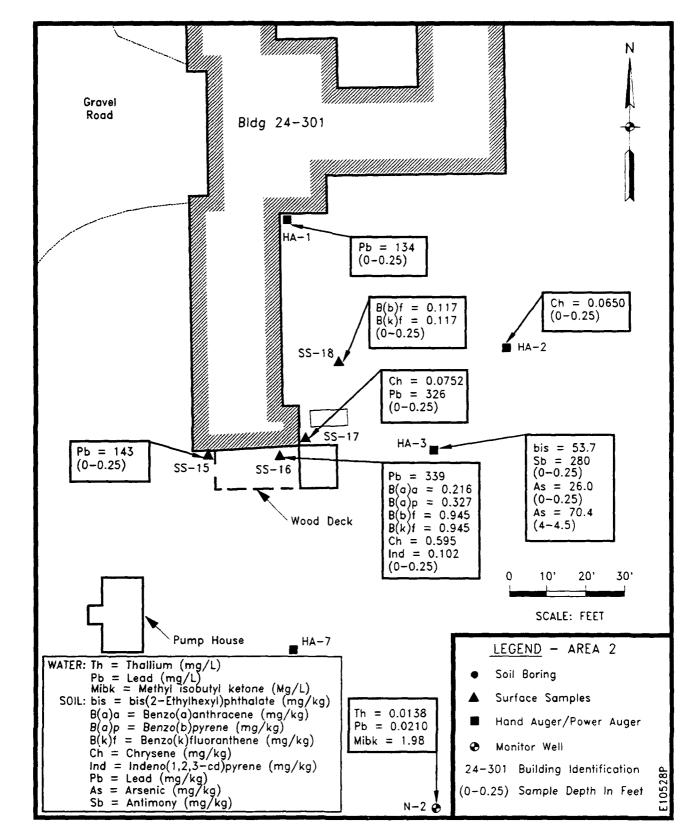


Figure 3-7. Detected Compounds Greater Than RBCs, ARARs, or MCLs at Area 2

N-2 was also installed, developed, and sampled in duplicate during the 1993 field effort. The sampling locations are given in Figure 3-7. These samples were analyzed for nonhalogenated volatile organic compounds (SW8015), purgeable petroleum hydrocarbons (SW8015MP), extractable petroleum hydrocarbons (SW8015ME), volatile organic compounds (SW8240), semivolatile organic compounds (SW8270), metals (SW6010, SW7060, SW7241, and SW7471), and moisture content (from SW846) or total dissolved solids (E160.1), where appropriate.

Analytical Results--Soils

Nonhalogenated Volatile Organic Compounds (SW8015)--No target compounds were detected in the Area 2 soil samples.

Purgeable Petroleum Hydrocarbons (SW8015MP)--Ethylbenzene was found in surface soil sample SS-15 at an estimated concentration of 54.9 μ g/kg (with data qualifier P), but was not detected in the remaining area 2 soil samples. Toluene concentrations ranged from 7.04 μ g/kg in the HA-1 sample (taken at 4-4.5 feet) to 18.3 μ g/kg in surface soil SS-17. Similarly, sample HA-1 (4 to 4.5 feet) contained total xylenes at a concentration below the sample specific detection limit (16.3 μ g/kg) to 91.1 μ g/kg in SS-17. The Area 2 soil samples also contained benzene at concentrations below the sample specific detection limits. Gasoline was not detected in these soil samples.

Extractable Petroleum Hydrocarbons (SW8015ME)--No target compounds were detected in the Area 2 soil samples.

Volatile Organic Compounds (SW8240)--Acetone and methyl ethyl ketone were found in the soil samples at concentrations up to $28.5 \,\mu g/kg$ and $44.6 \,\mu g/kg$, respectively. Similar concentrations of these compounds were found in the method blanks analyzed with these samples, indicating that the results for these two compounds can be attributed to laboratory contamination. Methylene chloride was found at concentrations ranging from $4.16 \,\mu g/kg$ in sample HA-7 (3.5 to 4 feet) to $69.2 \,\mu g/kg$ in

sample SS-17 field duplicate. The method blanks contained up to $3.64 \mu g/kg$ methylene chloride, indicating that sample concentrations up to about $4 \mu g/kg$ can be attributed to laboratory contamination in Area 2. No other target compounds were detected in the Area 2 soil samples.

Semivolatile Organic Compounds (SW8270)--Several semivolatile organic compounds (SVOCs) were detected in the Area 2 soils. Surface soils sample SS-16 contained the highest SVOC concentrations: 0.216 mg/kg benzo(a)anthracene, 0.327 mg/kg benzo(a)pyrene, 0.945 mg/kg benzo(b)fluoranthene and benzo(k)fluoranthene (coelution problems preclude the separation of these two compounds), 0.595 mg/kg chrysene, 0.126 mg/kg fluoranthene, 0.132 mg/kg phenanthrene, and 0.377 mg/kg pyrene. These are polynuclear aromatic compounds and the presence of these compounds are consistent with the use of technical grade solvents or the burning of waste solvents at the site.

Metals (SW6010, SW7060, SW7241, SW7471)--Toxic metals (defined as the thirteen priority pollutants and/or RCRA metals) were found in Area 2 soil samples. The arsenic concentrations in the HA-3 (0-0.25 feet) and HA-3 (4-4.5 feet) samples were 26.0 mg/kg and 70.4 mg/kg, respectively. Other Area 2 soil arsenic concentrations were all less than 12.5 mg/kg. Sample HA-3 (0-0.25 feet) also contained a high barium concentration of 516 mg/kg, compared to the remaining Area 2 soils, which all contained less than 175 mg/kg barium. The beryllium concentrations in the Area 2 soil samples ranged from 0.165 to 0.485 mg/kg. The Area 2 soil samples also contained from <0.248 to 2.34 mg/kg cadmium, 9.76 to 40.6 mg/kg chromium, and 15.5 to 177 mg/kg copper. Mercury concentrations ranged from <0.012 mg/kg to 0.537 mg/kg in sample SS-16. The Area 2 soil selenium concentrations were all less than 14 mg/kg. High concentrations of lead and zinc were found in samples SS-15 (143 mg/kg Pb and 340 mg/kg Zn), SS-16 (339 mg/kg Pb and 739 mg/kg Zn), SS-17 (326 mg/kg Pb and 898 mg/kg Zn), SS-17 field duplicate (131 mg/kg Pb and 484 mg/kg Zn), and HA-1, 0 to 0.25 feet (134

mg/kg Pb and 235 mg/kg Zn). Antimony and thallium were not detected at concentrations above the sample specific detection limits in the Area 2 soil samples.

Analytical Results--Groundwater

Nonhalogenated Volatile Organic Compounds (SW8015)--Methyl isobutyl ketone was detected at a concentration of 1.98 mg/L (about three times the method blank concentration of 0.635 mg/L) in the Area 2 groundwater samples. No other target compounds were detected in the Area 2 groundwater samples.

Purgeable Petroleum Hydrocarbons (SW8015MP)--Toluene and total xylenes were found at concentrations up to $0.114 \,\mu g/L$ and $0.0599 \,\mu g/L$, respectively in the Area 2 groundwater samples. No other target compounds were detected in the Area 2 groundwater samples.

Extractable Petroleum Hydrocarbons (SW8015ME)--Diesel fuel was detected in the N-2 groundwater sample at a concentration of $35.6 \,\mu$ g/L. No other target compounds were detected in the Area 2 groundwater samples.

Volatile Organic Compounds (SW8240)--No target compounds were detected in the Area 2 groundwater samples.

Semivolatile Organic Compounds (SW8270)--Bis(2-ethylhexyl)phthalate was detected at a concentration of $3.18 \,\mu g/L$ in the field sample. This compound was not detected in the field duplicate of this sample. No other target compounds were detected in the Area 2 groundwater samples.

Metals (SW6010, SW7060, SW7241, SW7471)--Toxic metals (defined as the thirteen priority pollutants and/or RCRA metals) were found in Area 2 groundwater sample N-2 and the N-2 field duplicate at concentrations up to: 0.00645 mg/L barium,

0.00089 mg/L beryllium, 0.00256 mg/L cadmium, 0.00497 mg/L chromium, 0.0210 mg/L lead, and 0.00644 mg/L zinc. Antimony, arsenic, copper, mercury, nickel, selenium, silver, and thallium were not detected above the detection limit in these samples.

Total Dissolved Solids (E160.1)--Area 2 groundwater sample N-2 total dissolved solids concentration was 108 mg/L.

3.4.4 Comparison of Field Data to Risk-Based Concentrations, Maximum Contaminant Levels, and Action Media Levels

The Area 2 soil samples were compared to the RBCs and soil action levels referenced in Section 2.4. Sample SS-16 contained benzo(a)pyrene (0.327 mg/kg) and benzo(a)fluoranthene/benzo(k)fluoranthene (0.945 mg/kg) at a concentration that exceeded the carcinogenic RBCs of 0.06 mg/kg and the action levels of 0.121 mg/kg and 0.86 mg/kg, respectively. Sample SS-16 concentrations of benzo(a)anthracene (0.216 mg/kg), chrysene (0.595 mg/kg), and indeno(1,2,3-cd)pyrene (0.102 mg/kg) also exceeded the carcinogenic RBCs but were below the respective action levels. Other sample locations exceeding RBCs and/or action levels for organics were SS-16, SS-17, HA-2, and HA-3. The lead action level of 114 mg/kg was exceeded in samples SS-15 (143 mg/kg), SS-16 (339 mg/kg), SS-17 (326 mg/kg), and HA-1, 0 to 0.25 feet (134 mg/kg). Antimony levels (280 mg/kg) exceeded the action level (32 mg/kg) and the non-carcinogenic RBC (100 mg/kg) at sample HA-3.

The arsenic action level of 24 mg/kg and carcinogenic RBC of 0.4 mg/kg were exceeded in samples HA-3, 0-0.25 feet (26 mg/kg) and HA-3, 3.5-4 feet (70.4 mg/kg). The remaining arsenic concentrations all exceed the carcinogenic RBC of 0.4 mg/kg; however, they fall within the background concentration range of 7.20 to 13.1 mg/kg arsenic (CH2M Hill, 1993). The beryllium results all exceed the carcinogenic RBC (0.1 mg/kg) and the action level (0.163 mg/kg), but are below the upper limit of the background concentration range (0.62 mg/kg beryllium).

Comparison of Groundwater Results to RBCs and MCLs

The Area 2 groundwater sample results were compared to the water RBCs and MCLs referenced in Section 2.4. The field duplicate of sample N-2 contained 1.98 mg/L methyl isobutyl ketone which is slightly above the RBC of 1.825 mg/L and the MCL of 1.75 mg/L. The method blank analyzed with this sample contained 0.635 mg/L methyl isobutyl ketone, indicating that the field result may be biased high by apparent laboratory contamination.

These samples contained lead at concentrations of 0.0210 and 0.0190 mg/L, exceeding the national MCL of 0.015 mg/L, but below the state MCL of 0.05 mg/L. Sample N-2 and the N-2 field duplicate exhibited thallium concentrations (0.00880 mg/L and 0.0138 mg/L) which exceeded the MCL of 0.002 mg/L. It should be noted that these thallium results are qualitative; the method chosen for this study (SW6010) is only a screening tool, since significant concentrations of calcium, iron, and aluminum in the groundwater will bias the thallium results high. In addition, historical records do not indicate that thallium was ever used on the base.

3.4.5 Disposition of Area 2

Analytical results from this area indicate that localized and/or generalized surface contamination exists at the site. Several semi-volatile organic compounds (SVOCs) and metals were detected at the site at or above RBCs and/or soil action levels. As indicated in Table 3-2, benzo(a)pyrene [B(a)P], B(b)F, bis(2-ethylhexyl)-phthalate, chrysene, and antimony were detected above RBCs and soil action levels. Arsenic was found in one location at concentrations exceeding soil action levels at a depth of 4.5 feet. In addition, lead (Pb) was detected in every soil sample taken at the site; and at four sample locations, the lead levels exceeded the soil action levels. Furthermore, lead was detected in the groundwater sample at levels just above the national maximum contaminant level (MCL). Additionally, methyl isobutyl ketone was

detected at a level just above the MCL, although the result may be biased from laboratory contamination. During discussions concerning this site, the USEPA, ADEC, and Elmendorf AFB agreed that further studies of this site should be done to determine the nature and extent of contamination. Therefore, a focused investigation through the CERCLA program is recommended for this site.

3.5 <u>Area 3 Findings</u>

3.5.1 Historical Releases and Potential Sources

No documented releases are known for Area 3. Potential sources include the old septic tank and leach field system and the area where soil sample SS-01 was taken (see Figure 2-1). This site originally was the location for an above-ground storage tank containing kerosene or diesel fuel. A geophysical anomaly is also present at this location. This anomaly is discussed below.

3.5.2 GPR Results

The GPR survey of Area 3 revealed the location of the original septic tank and leach field for the former fire station, along with an anomaly indicative of a buried tank. The locations of these anomalies are shown in Figure 3-8. Figures 3-9, 3-10, and 3-11 are interpreted sections of the septic tank, leach field, and potential buried tank. As no record existed of an underground storage tank at this location, a more complete records search and geophysical survey over the area should be initiated to determine if the anomaly is a buried tank.

3.5.3 Sampling Program and Analytical Results

The detailed results for the analyses of Area 3 samples are given in Appendix C. Only the results for those compounds detected in the Area 3 samples are

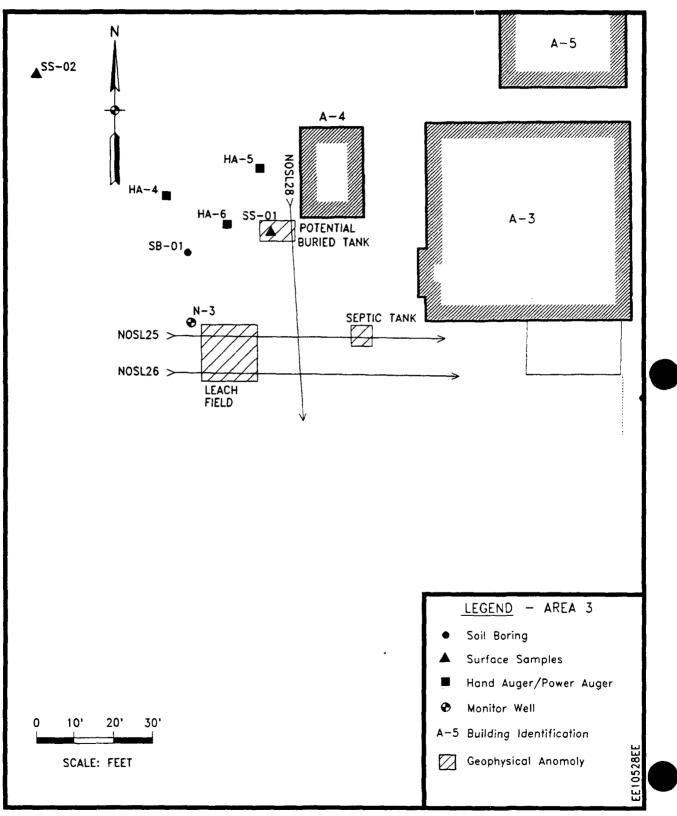
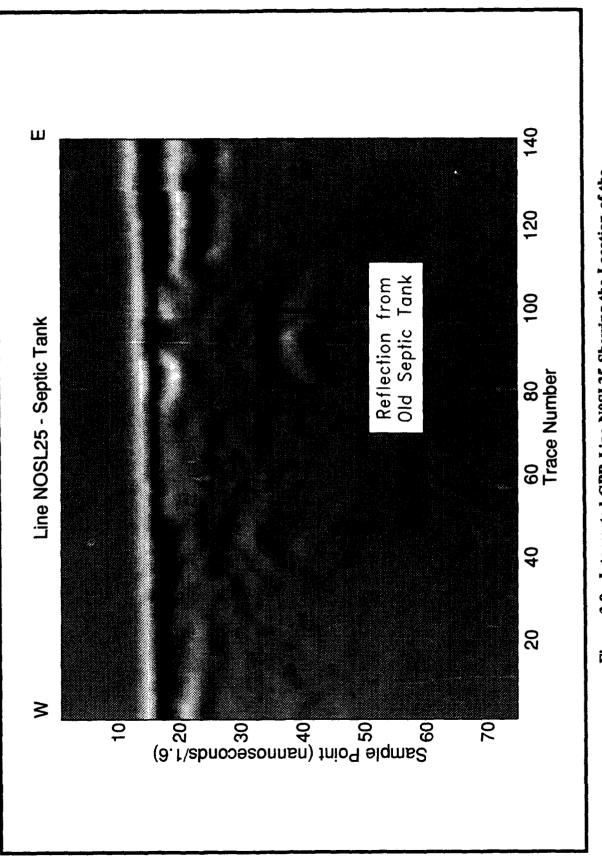
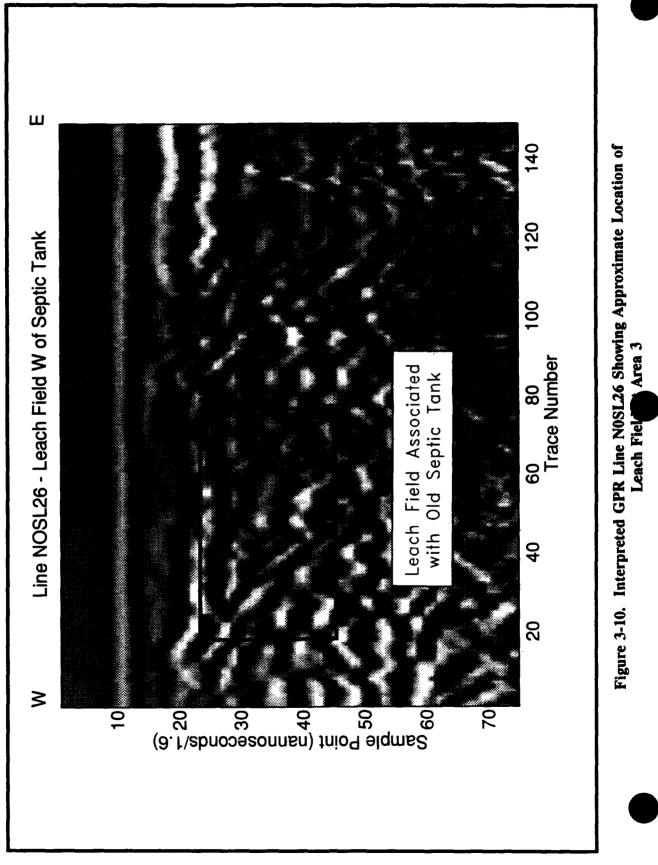




Figure 3-8. Locations of Geophysical Anomalies at Area 3

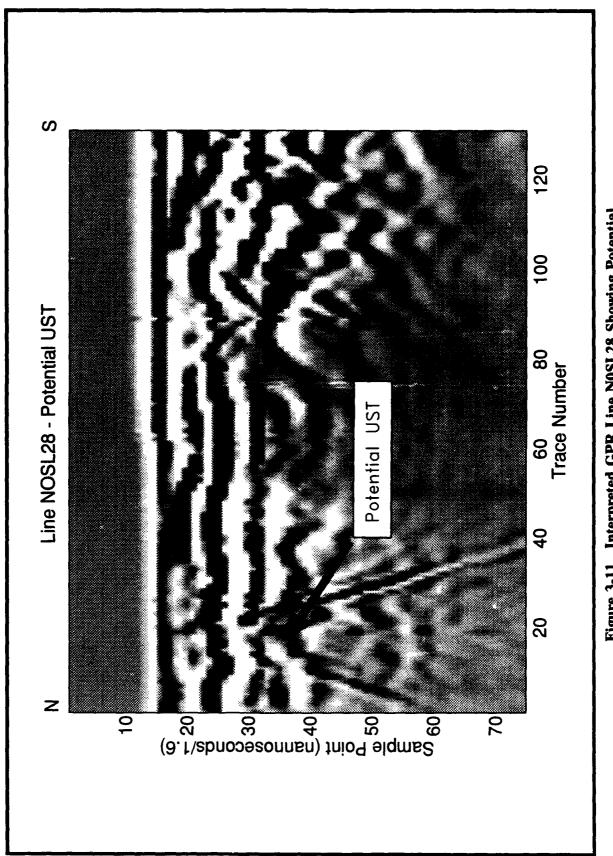


Figure 3-11. Interpreted GPR Line NOSL28 Showing Potential Buried Storage Tank at Area 3 given in Table 3-4 (soils) and Table 3-3 (groundwater) and will be discussed in the following subsections. The compounds detected in Area 3 at or above their respective RBCs, ARARs, or MCLs are shown with the sampling locations in Figure 3-12, as well as associated sampling depths. All soil data are reported on a dry weight basis. Please note that purgeable petroleum hydrocarbons (SW8015MP) results flagged with a P indicate that the second column confirmation analysis confirms the presence of the compound but that the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of 3. The lower result is reported since the higher result is usually present due to coelution with a non-target contaminant.

Sampling Program

Three surface soil samples were taken at a depth interval of 0 to 0.25 feet at three locations in Area 3: one northwest of Building A-4; one southwest of Building A-5; and one as the 0 to 0.25 foot interval sample associated with the hand auger sampling location HA-4, located about 40 feet west of Building A-5. Hand auger samples HA-4 (3.5 to 4 feet), HA-5 (2.5 to 3 feet), and HA-6 (2.5 to 3 feet) were also taken to the west of Building A-5. Two soil borings were drilled in Area 3. SB-01 was located west of Building A-5 and sampled at five depth intervals: 4 to 6 feet, 7 to 9 feet, 14 to 16 feet, 19 to 21 feet, and 24 to 26 feet. Borehole N-3 was drilled fifty feet south and west of Building A-5. Borehole N-3 was sampled at 5 depth intervals: 4 to 5 feet, 5 to 7 feet (sampled in duplicate), 7 to 9 feet, 14 to 16 feet (sampled in duplicate), and 20 to 22 feet. Borehole N-3 was also completed as a monitoring well, developed, and sampled. The sampling locations are given in Figure 3-12.

This sampling effort resulted in eighteen soil samples and one groundwater sample in Area 3. These samples were analyzed for nonhalogenated volatile organic compounds (SW8015), purgeable petroleum hydrocarbons (SW8015MP), extractable petroleum hydrocarbons (SW8015ME), volatile organic compounds (SW8240),

•

Results for Analyses of Area 3 Soil Samples from Elmendorf NOAA - 1993

	Sel RBC*	*				C.N		Sanp	e Location	Sample Location (depth on feet)	æ	10-88			
			Soll Action											91471	
Parameter			T.C.C.				8 K.O.4 88	14.7	2.2	2.25	8-258 (UD 0		88 C 2 F 2		X124
Nonhalogenated VOCs (SW8015), mg/kg	V8015), mg/kg						Targe	t compour	nds were no	Target compounds were not detected in these samples	n these sam	ples			
Purgeable Petroleum Hydrocarbons (SW8015 MP)	ocarbons (SW)	8015 MP), µg/kg												
Benzene	NA	20,000	001	SN	SN	3.45 K J (6.87)	NS	NS	15.4 KJ (35.6)	NS	SN	NS	3.18 K J (6.85)	3.55 KJ (6.68)	N/A
Ethylbenzene	30,000,000	NA	8,000,000	NS	SN	ND (5.33)	SN	NS	ND (27.6)	NS	NS	SN	14.1 (5.32)	ND (5.19)	N/A
Toluene	50,000,000	NA	16,000,000	NS	NS	7.77 J (8.81)	SN	NS	48.2 (45.6)	NS	SN	NS	11.5 (8.79)	10.8 (8.58)	N/A
Xylenes (total)	500,000,000	NA	160,000,000	NS	NS	ND (4.30)	SN	NS	115 (22.3)	NS	NS	SN	31.2 (4.29)	24.7 (4.19)	N/A
Gasoline	54,100,000	368,000	NF	NS	NS	ND (5120)	NS	NS	ND (26500)	NS	SN	SN	ND (5110)	ND (4990)	N/A
V.OCs (SW8240), µg/kg															
Acetone	30,000,000	NA	8,000,000	ND (13.5)	NS	ND (13.4)	ND (13.6)	NS	ND (27.7)	NS	SN	SN	ND (26.9)	ND (26.8)	ND (26.6)
Ethyl henzene	30,000,000	NA	8,000,000	0.678 J (0.885)	SN	ND (0.879)	ND (0.890)	NS	ND (1.94)	NS	SN	SN	ND (1.89)	ND (1.88)	ND (1.87)
Methyl ethyl ketone	10,000,000	NA	4,000,000	ND (4.08)	NS	5.06 (4.06)	ND (4.11)	NS	ND (12.1)	NS	NS	SN	ND (7.11)	ND (11.7)	ND (11.6)
Methylene chloride	20,000,000	90,000	93,300	10.7 (1.46)	NS	4.64 (1.45)	9.64 (1.47)	NS	18.3 B (4.62)	NS	NS	NS	15.8 B (4.49)	11.2 B (4.48)	8.80 B (4.44)
Trichlorofluoromethane	81,100,000	NA	24,000,000	ND (1.26)	NS	ND (1.25)	ND (1.27)	NS	ND (4.24)	NS	SN	SN	ND (4.12)	ND (4.11)	ND (4.07)
m&p-Xylene	500,000,000	VN	160,000,000	4.35 (0.822)	SN	ND (0.816)	ND (0.827)	NS	ND (4.06)	NS	NS	SN	ND (3.94)	ND (3.93)	ND (3.90)
o-Xylene	500,000,000	AN	160,000,000	1.74 (0.590)	NS	ND (0.586)	ND (0.594)	NS	ND (2.05)	NS	SN	SN	UD (1.99)	ND (1.99)	ND (1.97)

(Continued)

								Sampl	Cocession of	Sample Location (depth on (set)	(teet)				
	Sod RBCs	•				C:N						10:8S			
			Soft Second											10100	
Parameter	Nancare	(COLO	Level	4.6	631	10-16	12-01	25.25		5.3	(SCOR)	3.9	063	CIED	10.24
Extractable Petroleum Hydrocarbons (SW8015 MI	rocarbons (S	W8015 M	E), µg/kg												
Diesel	2,160,000	AN		NS	ND (5000)	SN	SN	SN	ND (5000)	SN	SN	SN	ND (5000)	ND (25,000)	SN
Kerosene	AN	AN	NF	NS	ND (10,000)	SN	SN	NS	920,000 (10,000)	NS	SN	NS	37,000 (5000)	120,000 (5000)	NS
SVOCs (SW8270), mg/kg															
Benzo(a)anthracene	NA	0.06	0.83	UD (1710)	SN	UD (1810.0)	SN	ND (0.0178)	NS	ND (0.0178)	ND (0.0526)	ND (0.0180)	ND (0.0180)	NS	NS
Benzo(a)pyrene	NA	0.06	0.121	ND (0.0132)	NS	ND (0.0135)	NS	ND (0.0132)	NS	ND (0.0132)	ND (0.0391)	ND (0.0134)	ND (0.0134)	SN	NS
Benzo(b)fluoranthene	NA	0.06	0.86	ND (0.0196)	SN	ND (0.0200)	SN	UD (0.0197)	NS	ND (0.0196)	ND (0.0582)	ND (0.0199)	ND (0.0199)	SN	NS
Benzo(g,h,i)pcrylene	NA	AN	NF	ND (0.0168)	NS	ND (0.0171)	SN	ND (0.0168)	NS	ND (0.0168)	ND (0.0498)	ND (0.0170)	ND (0.0170)	SN	SN
Benzo(k)fluoranthene	NA	0.06	1.84	ND (0.0333)	NS	ND (0.0340)	SN	ND (0.0335)	SN	ND (0.0334)	ND (0.0989)	ND (0.0338)	ND (0.0338)	SN	NS
Benzyl alcohol	80,000	٩N	24,000	ND (0.0372)	NS	ND (0.0379)	SN	ND (0.0373)	SN	ND (0.0373)	ND (0.110)	ND (0.0377)	ND (0.0377)	SN	NS
bis(2-Ethylhexyl) phthalate	5000	50	50	ND (0.0630)	NS	ND (0.0643)	SN	ND (0.0632)	NS	ND (0.0632)	ND (0.187)	ND (0.0639)	ND (0.0639)	SN	N
Butyl benzył phthalate	50,000	AN	16,000	ND (0.0135)	NS	UD (0.0138)	SN	ND (0.0136)	NS	ND (0.0136)	ND (0.0402)	ND (0.0137)	0.0106 J (0.0137)	NS	NS
Chrysene	NA	0.06	28	ND (0.0230)	NS	ND (0.0235)	NS	ND (0.0231)	NS	ND (0.0231)	ND (0.0684)	ND (0.0234)	ND (0.0234)	NS	NS
Dibenz(a,h)anthracene	NA	0.06	0.11	ND (0.0163)	NS	ND (0.0167)	NS	ND (0.0164)	NS	ND (0.0164)	ND (0.0485)	ND (0.0165)	NL [:] (0.0165)	NS	NS
Fluoranthene	10,000	NA	3200	ND (0.0220)	NS	ND (0.0224)	NS	ND (0.0220)	NS	ND (0.0220)	ND (0.0652)	ND (0.0223)	ND (0.0223)	SN	NS
Indeno(1,2,3-cd)pyrene	NA	0.06	0.538	ND (1810.0)	NS	ND (0.0184)	NS	ND (0.0181)	NS	ND (0.0181)	ND (0.0537)	ND (0.0183)	ND (0.0183)	SN	NS
2-Methylnaphthanlene	νv	AN	NF	ND (0.0227)	NS	ND (0.0232)	NS	ND (0.0228)	NS	0.0214 J	0.0348 J (0.0675)	ND (0.0230)	0.0176 J (0.0230)	SN	NS

•

(Continued)

								Contraction of the second	Concerned in	Semple (scation (denth on Sec)	(set)				
	Soll RBCs*	•	1			S.S						Sitte			
											Γ			1616	
Parameter	Nancarc	Care	Level *	4.6	6:1	10.16	12-61	22.25	3	5.3	ens : S	2~6	1210	400	1024
Naphthalene	10,000	NA	3200	UD UD UD UD UD	SN	ND 10,0256)	SN	ND (0.0252)	SN	0.0286	0.0433 J	ND (0.0255)	0.0188 J	SN	SN
Phenanthrene	NA	AN	4.8	ND ND	NS	ND (0.0219)	SN	ND (0.0215)	NS	ND (0.0215)	ND (0.0636)	ND (0.0217)	ND (0.0217)	SN	SN
Pyrene	8000	NA	2400	ND (0.0161)	SN	ND (0.0164)	SN	ND (0.0162)	SN	ND (0.0162)	ND (0.0478)	ND (0.0163)	ND (0.0163)	sx	SS
Nfetals (SVV6010 and SVV7000 series), mg/kg)0 series), mg/	Į,													
Aluminum	NA	AN	NF	18,200 (4.97)	NS	15,600 (5.57)	SN	14,900 (5.30)	SN	17,500 (5.56)	18,500 (4.79)	14,300 (4.91)	18,300 (5.77)	SN	SN
Barium	20,000	AN	5600	69.1 (0.0393)	NS	34.8 (0.440)	SN	37.7 (0.0419)	NS	71.8 (0.0439)	55.8 (0.0378)	52.8 (0.0388)	53.8 (0.0456)	SN	NS
Beryllium	1000	1.0	0.163	0.04000	NS	0.241	SN	0231 (0440)	SN	8229 (0.0447)	0.0385)	(96330) 5770	(033-60) (036-650)	SN	SN
Cadmium	100	NA	80	0.278 (0.195)	NS	0.175 J (0.218)	NS	<0.208	NS	0.398 (0.218)	0.253 (0.187)	0.238 (0.192)	0.215 J (0.226)	NS	SN
Calcium	NA	NA	NF	6170 (16.2)	SN	6780 (18.1)	SN	6950 (17.2)	SN	6970 (18.1)	6580 (15.5)	5540 (15.9)	8310 (18.7)	SN	SN
Chromium	U	AN	400 ⁴	35.3 (0.185)	NS	33.0 (0.207)	SN	27.3 (0.197)	SN	32.2 (0.207)	33.0 (0.178)	28.5 (0.183)	31.0 (0.215)	NS	SN
Cobalt	NA	AN	NF	11.2 (0.354)	NS	10.1 (0.397)	SN	9.58 (0.378)	SN	10.4 (0.396)	11.5 (0.341)	11.7 (0.350)	11.8 (0.411)	NS	NS
Copper	10,000	AN	3200	61.6 (0.168)	NS	51.0 (0.188)	SN	42.9 (0.179)	SN	50.9 (0.187)	50.8 (0.161)	62.3 (0.165)	44.3 (0.195)	SN	SN
Iron	NA	NA	NF	31,200 (21.1)	NS	27,700 (23.6)	SN	26,600 (22.5)	NS	28,700 (23.6)	30,900 (20.3)	28,100 (20.8)	32,700 (24.5)	SN	SN
Magnesium	NA	NA	NF	10,400 (1.85)	NS	9660 (2.07)	NS	9010 (1.97)	NS	9510 (2.07)	10,200 (1.78)	10,200 (1.83)	11,600 (2.15)	SN	NS
Manganese	30,000	AN	NF	921 (0.00801)	SN	502 (0.00896)	SN	530 (0.00854)	NS	571 (0.00895)	629 (0.00771)	944 (0.00790)	663 (0.00930)	۸S	SN
Molybdenum	1350	NA	NF	1.15 (0.178)	SN	0.315 B (0.199)	NS	1.04 (0.190)	NS	0.586 B (0.199)	1.08 (0.171)	0.745 (0.175)	0.953 (0.206)	SN	SN

(Continued)

								Semple	e Ecocation	Bampie Location (depth on feet)	(tet)				
	Soft RBCs*	•	Pressed			S.N.						SECT			
Parameter	Nencare	Care	Sell Action	9 †	¢ú	14.16	13-61	24.26	6.6	\$7	\$3 the	2.5	14.16		50.23
Nickel	5000	AN	1600	35.1 (0.740)	SN	29.1 (0.828)	SN	27.6 (0.788)	SN	29.8 (0.827)	31.9 (0.712)	33.7 (0.730)	33.1 (0.859)	SN	SN
Potassium	NA	AN	NF	833 (23.5)	NS	735 (26.3)	NS	700 (25.0)	NS	1010 (26.3)	991 (22.6)	760 (23.2)	928 (27.3)	NS	SN
Selenium	1000	AN	400	12.8 (3.00)	NS	10.4 (3.36)	SN	9.82 (3.20)	SN	10.1 (3.35)	13.1 (2.89)	9.93 (2.96)	13.8 (3.48)	NS	SN
Sodium	NA	NA	NF	117 (1.76)	NS	103 (1.97)	NS	125 (1.87)	SN	107 (1.97)	114 (1.69)	108 (1.73)	192 (2.04)	NS	SN
Thallium	20	AN	4	<4.71	NS	3.18 J (5.27)	NS	2.55 J (5.02)	SN	<5.27	0.939 J (4.53)	0.956 J (4.65)	1.59 J (5.47)	NS	SN
Vanadium	2000	AN	560	59.7 (0.292)	SN	55.9 (0.327)	SN	53.9 (0.311)	SN	56.1 (0.326)	60.3 (0.281)	53.8 (0.288)	70.0 (0.339)	SN	SN
Zinc	80,000	NA	16,000	76.8 (0.198)	SN	63.5 (0.221)	NS	59.9 (0.211)	NS	69.1 (0.221)	73.3 (0.190)	82.3 (0.195)	69.9 (0.229)	NS	SN
Arsenic (SW7060)	08	0.4	24	<u>8.06</u> (0.141)	SN	7.05 (0.140)	NS	<u>7.10</u> (0.141)	SN	<u>11.9</u> (0.142)	<u>8.85</u> (0.131)	<u>7.55</u> (0.125)	<u>8.05</u> (0.136)	NS	NS
Lead (SW7421)	NA	NA	114	6.90 S (0.167)	SN	5.05 S (0.165)	NS	5.09 S (0.166)	NS	6.16 S (0.166)	5.27 S (0.156)	6.53 S (0.145)	6.91 S (0.158)	NS	NS
Mercury (SW7471)	c	NA	NF	0.0208 (0.0125)	SN	0.0422 (0.0127)	SN	0.0286 (0.0125)	NS	0.0158 (0.0126)	0.013 (0.0125)	0.0131 (0.0126)	0.0263 (0.0126)	NS	NS
Molsture Content (from SW846), %	V846), %			3.75	7.80	4.34	4.17	3.97	7.65	4.88	3.14	4.91	4.55	3.57	4.18

.

.

Table 3-4

(Continued)

					8	Sample Location (depth on Red)	(depth on fee)		
	Soll RBCs*	C)**		10-SS	83:02	EA.4	•	EAS	BAS
Parameter	Noncare	Care	Action Lavel	8-0.25	0.025	0-0.25	3.54	2.5.3	253
Nonhalogenated VOCs (SW8015), mg/kg					Target o	Target compounds not detected in these samples	etected in these	samples	
Purgeable Petroleum Hydrocarbons (SW8015MP), µg/s	SMP), µg/kg								
Benzene	NA	20,000	100	ND (99.4)	ND (3.65)	ND (8.68)	ND (3.68)	ND (3.64)	ND (3.66)
Ethylbenzene	30,000,000	NA	8,000,000	1220 P (182)	ND (6.68)	ND (6.38)	ND (6.73)	ND (6.67)	15.9 (6.71)
Toluene	50,000,000	NA	16,000,000	123 KJ (330)	ND (12.1)	8.58 B (6.89)	ND (12.2)	13.8 (12.1)	7.30 KJ (12.2)
Xylenes (total)	500,000,000	NA	160,000,000	1390 P (512)	ND (18.8)	10.6 J (17.9)	ND (18.9)	11.6 KJ (18.7)	ND (20.4)
Gasoline	54,100,000	368,000	NF	ND (59200)	ND (2170)	ND (1240)	ND (2190)	ND (2170)	ND (2180)
VOCs (SW8240), µg/kg									
Acetone	30,000,000	NA	8,000,000	ND (38.1)	ND (28.4)	13.7 J (33.5)	SN	SN	NS
Ethyl benzene	30,000,000	NA	8,000,000	ND (2.68)	ND (1.99)	ND (2.36)	SN	NS	NS
Methyl ethyl ketone	10,000,000	NA	4,000,000	ND (16.6)	ND (12.4)	18.7 B (14.6)	SN	NS	NS
Methylene chloride	20,000,000	00006	93,300	5.23 J (6.36)	25.2 (4.74)	4.12 J (5.61)	SN	SN	NS
Trichlorofluoromethane	81,100,000	NA	24,000,000	11.5 (5.84)	ND (4.35)	ND (5.14)	SN	NS	NS
m&p-Xylene	500,000,000	NA	160,000,000	ND (5.59)	ND (4.16)	ND (4.92)	SN	SN	SN
o-Xylene	500,000,000	NA	160,000,000	ND (2.82)	ND (2.10)	ND (2.49)	SN	SS	SN

(Continued)

					8	Rampie Location (depth on Mat)	(depth on the	8	
	Sol RBCs*	G •	Sed	85-01	56-02	BA.		65.753	EA.S
Parumeter	Nonearc	Carl	Level*	0.025	0.0.25	6-0.25	3.5.4	253	555
Extractable Petroleum Hydrocarbons (SW8015 ME), µg/kg	5 ME), µg/kg								
Diesel	2,160,000	NA	NF	<u>44,000,000</u> (100,000)	ND (5000)	ND (5000)	ND (5000)	ND (5000)	790,000 (5000)
Kerosene	NA	NA	NF	ND (2,000,000)	ND (10,000)	ND (10,000)	ND (10,000)	ND (10,000)	ND (500,000)
SVOCs (SW8270), mg/kg									
Benzo(a)anthracene	NA	0.06	0.83	1.74 (0.784)	0.0103 J (0.0183)	ND (0.0193)	NS	NS	SN
Benzo(a)pyrene	NA	0.06	0.121	2.70 (0.383)	0.0109 J (0.0136)	ND (0.0223)	SN	NS	SN
Benzo(b)fluoranthene	NA	0.06	0.86	894F (0.867)	0.0390 F (0.0202)	UD (0.0391)	SN	NS	SN
Benzo(g,h,i)perylene	NA	NA	NF	1.49 (0.742)	0.0111 J (0.0173)	ND (0.0439)	SN	NS	SN
B en zo(k)fluoranthene	NA	0.06	1.84	824 E (147)	0.0390 F (0.0343)	ND (0.0430)	NS	NS	SN
Benzyl alcohol	80,000	NA	24,000	ND (1.64)	0.0387 (0.0383)	ND (0.0263)	NS	NS	SN
bis(2-Ethylhexyl)phthalate	5000	50	50	0.796 J (2.79)	0.00745 J (0.0649)	ND (0.0250)	NS	NS	SN
Butyl benzyl phthalate	50,000	NA	16,000	ND (0.598)	ND (0.0139)	ND (0.0269)	NS	NS	SN
Chrysene	NA	0.06	28	<u>7.31</u> (1.02)	0.0199 J (0.0237)	ND (0.0231)	NS	NS	SN
Dibenz(a,h)anthracene	NA	0.06	0.11	0.722)	ND (0.0168)	ND (0.0349)	NS	NS	SN
Fluoranthene	10,000	NA	3200	7.84 (0.972)	0.0105 J (0.0266)	ND (0.0203)	SN	SN	SN

-

(Continued)

					. 8.	Samule Location (dentis on fast)		(
	Sol RBC:*	۰.	bed	85-01	20-35	e a la companya de la		BASS	er e
Parameter	Noncare	Care	action Level	0.025	6.05.5	9.025	3,9-4	2,53	255
Indeno(1,2,3-cd)pyrene	NA	0.06	0.538	1.05 (0.800)	0.0118 J (0.0186)	ND (0.0573)	NS	NS	NS
2-Methylnaphthalene	NA	NA	NF	ND (101)	ND (0.0234)	ND (0.0157)	NS	NS	NS
Naphthalene	10,000	NA	3200	UD (11.1)	ND (0.0259)	ND (0.0206)	NS	NS	SN
Phenanthrene	NA	NA	4.8	ND (0.947)	0.00536 J (0.0221)	ND (0.0201)	NS	NS	NS
Pyrene	8000	NA	2400	29.0 (0.713)	0.00699 J (0.0166)	ND (0.0176)	NS	NS	SN
Metals (SW6010 and SW7000 series), mg/kg									
Aluminum	NA	NA	NF	12,300 (8.96)	16,700 (6.17)	26,600 (7.93)	NS	NS	NS
Barium	20,000	NA	5600	123 (0.0708)	60.0 (0.0487)	102 (0.0627)	NS	NS	NS
Beryllium	1000	0.1	0.163	<u>0.142</u> (0.0720)	0.289 (0.0495)	(1500)0	NS	NS	NS
Cadmium	100	NA	80	<0.351	0.362 (0.241)	0.405 (0.311)	NS	NS	NS
Calcium	NA	NA	NF	2590 (29.1)	5690 (20.0)	1710 (25.8)	NS	NS	SN
Chromium	c	NA	400 ^d	16.2 (0.334)	29.6 (0.230)	23.3 (0.295)	NS	NS	NS
Cobalt	NA	NA	NF	3.74 (0.638)	10.1 (0.439)	14.4 (0.565)	SN	SN	SN
Copper	10,000	NA	3200	11.3 (0.302)	22.4 (0.208)	16.5 (0.267)	NS	NS	SN
Iron	NA	NA	NF	17800 (38.0)	28500 (26.2)	29700 (33.7)	NS	NS	SN

(Continued)

					ĝ.	Bample Location (depth on het)	depth on he	6	
	808 RBCs*		Seal.	10-SS	S8-03	KA-4		BA-S	83.6
Parameter	Noncare	Cars	Acuta Level	8-0.25	0.8.25	8-9-25	3.5.4	2.5.3	2,5.3
Magnesium	NA	NA	NF	1690 (3.34)	8800 (2.30)	1630 (2.95)	NS	NS	NS
Manganese	30,000	NA	NF	186 (0.0144)	567 (0.00993)	755 (0.0128)	SN	NS	NS
Molybdenum	1350	NA	NF	0.725 B (0.320)	1.23 (0.220)	1.09 (0.284)	NS	NS	NS
Nickel	5000	NA	1600	5.88 (1.33)	32.5 (0.917)	15.2 (1.18)	SN	SN	SN
Potassium	NA	NA	NF	776 (42.3)	800 (29.1)	355 (37.4)	SN	NS	NS
Selenium	1000	NA	400	10.9 (5.40)	13.5 (3.72)	13.2 (4.78)	SN	NS	NS
Sodium	NA	NA	NF	125 (3.17)	109 (2.18)	124 (2.80)	NS	NS	NS
Thallium	20	NA	4	0.798 J (8.49)	0.0597 J (5.84)	<7.51	SN	N	NS
Vanadium	2000	NA	560	48.5 (0.526)	56.2 (0.362)	71.3 (0.465)	NS	NS	NS
Zinc	80,000	NA	16,000	48.1 (0.356)	57.1 (0.245)	60.5 (0.315)	SN	NS	NS
Arsenic (SW7060)	80	0.4	24	<u>3.24</u> (0.121)	<u>6.05</u> (0.0810)	<u>15.2</u> (0.397)	NS	SN	SN
Lead (SW7421)	NA	NA	114	10.7 S (0.285)	13.7 S (0.382)	14.2 (0.468)	NS	NS	NS
Mercury (SW7471)	υ	NA	NF	<0.0207	0.0214 (0.0128)	0.0519 (0.0156)	NS	NS	NS
Molsture Content (from SW846), %				32.1	9.76	22.8	8.66	9.55	9.25

(Continued)

- Sample-specific detection limit. Calculated based on the method detection limit 40 CFR 136, Appendix B and preparation, analytical, and moisture factors. Not sampled
 ND Not detected, no instrument response for analyte, or result less than zero.
 N/A Sample not analyzed as per field crew request.
 NA Toxicity value and/or MCL not available, so RBC can not be calculated.
 NF Not found.
 () Sample-specific detection limit. Calculated based on the method detection
- Risk-based concentrations (RBCs) for soils are based on residential ingestion of soil. 65
 - Proposed soil action levels calculated according to RCRA Subpart S. P.
- RBCs calculated based on soil ingestion pathway may not be appropriate. Inhalation toxicity may be of more concern than ingestion. Proposed soil action level for Cr (VI). Cr (III) level is 80,000 mg/kg. u
 - t
 - Reported analyte concentration less than stated Detection Limit.
- Peak did not meet method identification criteria. Analyte not detected on other GC column. х
- Analyte presence is confirmed; however, the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of three. The lower is reported since the higher result is usually due to coelution with a non-target contaminant. д,
 - B Analyte detected in method blark at concentrations up to: 0.0186 μ g/J. toluene, 2.03 μ g/L methylene chloride, and 0.177 mg/L molybdenum. S Analyte concentration obtained using Method of Standard Additions (MSA).

Note: Shaded data points indicated concentrations greater than the proposed soil cleanup levels. Underlined data are greater than an RBC.

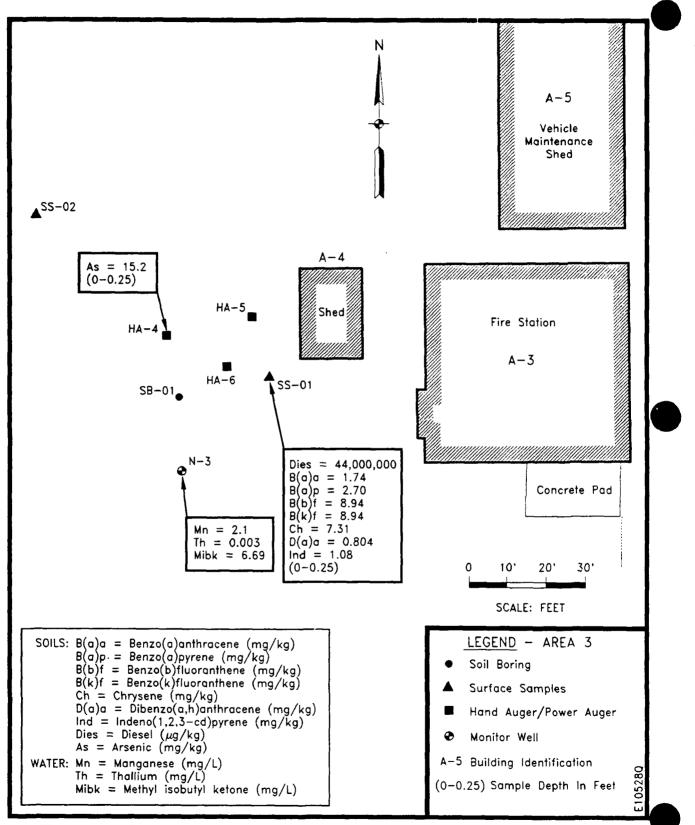


Figure 3-12. Detected Compounds Greater Than RBCs, ARARs, or MCLs at Area 3

semivolatile organic compounds (SW8270), metals (SW6010, SW7060, SW7241, and SW7471), and moisture content (from SW846) or total dissolved solids (E160.1), where appropriate.

Analytical Results--Soils

Nonhalogenated Volatile Organic Compounds (SW8015)--No target compounds were detected in the Area 3 soil samples.

Purgeable Petroleum Hydrocarbons (SW8015MP)--Ethylbenzene and total xylenes were found in surface soil SS-01 at estimated concentrations of $1220 \mu g/kg$ (data qualifier P) and $1390 \mu g/kg$ (data qualifier P), respectively. Toluene was found in hand auger sample HA-5 (2.5-3 feet) at a concentration of $13.8 \mu g/kg$. Hand auger sample HA-6 (2.5 to 3 feet) contained $15.9 \mu g/kg$ ethylbenzene. Soil boring SB-01, sampled from 4 to 5 feet, was found to contain $48.2 \mu g/kg$ toluene and $115 \mu g/kg$ total xylenes. Samples from the 14 to 16 feet depth interval of SB-01 contained $14.1 \mu g/kg$ ethylbenzene, $11.5 \mu g/kg$, and $31.2 \mu g/kg$ total xylenes. Gasoline and benzene were not detected above the sample specific detection limits in the Area 3 soil samples.

Extractable Petroleum Hydrocarbons (SW8015ME)--Diesel fuel was found in sample SS-01 and HA-6 (2.5 to 3 feet) at concentrations of 44,000,000 μ g/kg and 790,000 μ g/kg, respectively. Samples from the 4 to 5 feet and 14 to 16 feet depth intervals of SB-01 contained kerosene at concentrations of 920,000 μ g/kg and 37,000 μ g/kg, respectively. No target compounds were detected in the remaining Area 3 soil samples.

Volatile Organic Compounds (SW8240)--Methylene chloride was found at concentrations ranging from $4.12 \,\mu$ g/kg in sample HA-4 (0 to 0.25 foot) to $25.2 \,\mu$ g/kg in sample SS-20. The method blanks contained up to $2.03 \,\mu$ g/kg methylene chloride, indicating that sample concentrations up to about $2 \,\mu$ g/kg can be attributed to laboratory contamination in Area 3. Low concentrations (less than $11.5 \,\mu$ g/kg) of acetone,

ethylbenzene, methyl ethyl ketone, trichlorofluoromethane, and xylenes were detected in the Area 3 soils. No other target compounds were detected in the Area 3 soil samples.

Semivolatile Organic Compounds (SW8270)--Several semivolatile organic compounds (SVOCs) were detected in the Area 3 surface soils. Surface soils sample SS-01 contained very high SVOC concentrations: 1.74 mg/kg benzo(a)anthracene, 0.804 dibenz(a,h)anthracene, 2.70 mg/kg benzo(a)pyrene, 8.94 mg/kg benzo(b)fluoranthene and benzo(k)fluoranthene, (coelution precludes the separation of these two compounds), 1.49 mg/kg benzo(g,h,i)perylene, 7.31 mg/kg chrysene, 7.84 mg/kg fluoranthene, 1.08 mg/kg indeno(1,2,3-cd)pyrene, and 29.0 mg/kg pyrene. Much lower concentrations of these polynuclear aromatic compounds (less than 0.04 mg/kg) were found in sample SS-02. No other target compounds were found at concentrations greater than the sample specific detection limits in Area 3 soil samples.

Metals (SW6010, SW7060, SW7241, SW7471)--The maximum concentration of toxic metals (defined as the thirteen priority pollutants and/or RCRA metals) found in Area 3 soil samples are: 15.2 mg/kg arsenic, 123 mg/kg barium, 0.433 mg/kg beryllium, 0.405 mg/kg cadmium, 35.3 mg/kg chromium, 62.3 mg/kg copper, 14.2 mg/kg lead, 0.0519 mg/kg mercury, 35.1 mg/kg nickel, 13.8 mg/kg selenium, 3.18 mg/kg thallium, and 82.3 mg/kg zinc. Antimony was not detected at concentrations above the sample specific detection limits in the Area 3 soil samples.

Analytical Results--Groundwater

Nonhalogenated Volatile Organic Compounds (SW8015)--Methyl isobutyl ketone was detected at an estimated concentration of up to 6.69 mg/L (data qualifier P) in the Area 3 groundwater sample. No other target compounds were detected in the Area 3 groundwater samples.

Purgeable Petroleum Hydrocarbons (SW8015MP)--No target compounds were found above the sample specific detection limits in the Area 3 groundwater.

Extractable Petroleum Hydrocarbons (SW8015ME)--Diesel fuel was detected in the N-3 groundwater sample at a concentration of $36.2 \mu g/L$. No other target compounds were detected in the Area 3 groundwater sample.

Volatile Organic Compounds (SW8240)--No target compounds were detected in the Area 3 groundwater sample.

Semivolatile Organic Compounds (SW8270)--No target compounds were detected in the Area 3 groundwater sample.

Metals (SW6010, SW7060, SW7241, SW7471)--Toxic metals (defined as the thirteen priority pollutants and/or RCRA metals) found in Area 3 groundwater sample include: 0.00720 mg/L arsenic, 0.0472 mg/L barium, 0.00100 mg/L lead, and 0.00329 mg/L zinc. Antimony, beryllium, cadmium, chromium, copper, mercury, nickel, selenium, silver, and thallium were not detected above the detection limit in these samples.

Total Dissolved Solids (E160.1)--Area 3 groundwater total dissolved solids concentration was 107 mg/L.

3.5.4 Comparison of Field Data to Risk-based Concentrations, Maximum Contaminant Levels, and Action Media Levels

The Area 3 soil samples were compared to the RBCs and soil action levels referenced in Section 2.4. Sample SS-01 contained dibenzo(a)anthracene, benzo(a)-pyrene, benzo(a)fluoranthene/benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene at concentrations which exceeded both the carcinogenic RBC of

0.06 mg/kg and action levels ranging from 0.11 to 1.84 mg/kg. Sample SS-01 also contained diesel at concentrations which exceeded the non-carcinogenic RBC of 2,160,000 μ g/kg. The chrysene concentration of sample SS-01 exceeded the carcinogenic RBC of 0.09 mg/kg but is below the action level of 28 mg/kg.

The beryllium results all exceed the carcinogenic RBC (0.1 mg/kg) and the action level (0.163 mg/kg), but are below the upper limit of the background concentration range (0.62 mg/kg beryllium).

Comparison of Groundwater Results to RBCs and MCLs

The Area 3 groundwater sample results were compared to the water RBCs and MCLs given in Section 2.4. Sample N-3 contained 6.69 mg/L (data qualifier P) methyl isobutyl ketone, which is above both the RBC of 1.825 mg/L and the MCL of 1.75 mg/L. The methyl isobutyl ketone was also detected in the Area 2 groundwater sample (N-2) located up- and cross-gradient from N-3.

This sample contained 2.10 mg/L manganese, exceeding both the RBC of 1.0 mg/L and the national MCL of 0.05 mg/L. The thallium concentration of the sample (0.00300 mg/L) exceeds the MCL of 0.002 mg/L. Thallium was analyzed by SW6010 for screening purposes only; therefore, as discussed in Section 3.4.4, the reported result should be used for qualitative purposes.

3.5.5 Disposition of Area 3

Analytical results from this site indicate some localized contamination may be present. The majority of contamination above action levels at this site was found at a single sample location (SS-01) as indicated in Table 3-4 and Figure 3-12. At sample location SS-01, several SVOCs were found at concentrations exceeding RBCs, soil action levels, or both. However, the most significant contaminant concentration found at this

sample location was for diesel fuel, which was found here at a concentration of 44,000 mg/kg (4.4%). In addition, kerosene was found at elevated levels in SB-01, although there are no RBCs or action levels available for a comparison at this time. Also at SB-01, a grab sample of the groundwater taken at the bottom of the borehole indicated the presence of hydrocarbons. During discussions concerning this site, the EPA, ADEC, and Elmendorf AFB agreed that further studies of this site should be done to determine the nature and extent of contamination. However, because the nature of contamination at this site appears to be derived from petroleum products, a focused investigation through the Alaska SERA program is recommended for this site. It is further recommended that downgradient characterization of the groundwater be performed, to assess the potential for hydrocarbon presence and migration at this source area.

3.6 Area 4 Findings

3.6.1 Historical Releases and Potential Sources

No documented releases are known for Area 4. Potential sources for contamination were vehicle batteries which were formerly stored in the northern part of the building and petroleum containers formerly stored in the building.

3.6.2 GPR Results

No GPR survey was performed at Area 4.

3.6.3 Sampling Program and Analytical Results

The detailed results for the analyses of Area 4 samples are given in Appendix C. Only the results for those compounds detected in the Area 4 samples are given in Table 3-5 (soils), and are discussed in the following subsections. All soil data is reported on a dry weight basis.

Results for Analyses of Area 4 Soil Samples From Elmendorf NOAA - 1993

	Sold RBCs ⁴	G*			Sample Location (depth in feet)	dapth in feet)	
			Proposed	5¢-03	86.01	86.65	86.66
Parameter	Nonearc	Cure	Sou Action Level	0.025	0.0.25	0.0.25	0-0.25
Purgeable Petroleum Hydrocarbons (SW8015MP), pg/kg	(SW8015MP), µg/kg						
Toluene	50,000,000	NA	16,000,000	5.12 KJ (11.5)	6.17 KJ (11.5)	10.4 KJ (11.0)	8.35 KJ (11.2)
Xylenes (total)	500,000,000	NA	160,000,000	ND (17.8)	13.8 KJ (17.8)	11.8 KJ (17.0)	5.45 KJ (17.3)
VOC's (SW8240), µg/kg							
Methylene chloride	20,000,000	000'06	93,300	11.1 B (4.65)	NS	SN	SN
Extractable Petroleum Hydrocarbons (SW8015M	: (SW8015МЕ), µg/kg			Target compounds 1	Target compounds not detected in these samples	ıples	
SVOCs (SW8270), mg/kg							
Benzo(a)anthracene	NA	0:06	0.83	0.0128 J (0.0184)	NS	SN	SN
Benzo(a)pyrene	NA	0.06	0.121	0.0207 (0.0137)	NS	NS	SN
Benzo(b)fluoranthene	NA	0.06	0.86	0.0421 F (0.0203)	NS	SN	SN
Benzo(k)fluoranthene	NA	0.06	1.84	0.0421 F (0.0345)	NS	NS	SN
Benzo(g,h,i)perylene	NA	NA	NF	0.0245 (0.0174)	SN	SN	SN
Chrysene .	NA	0.06	28	0.0249 (0.0239)	NS	NS	SN
Dibutylphthalate	30000	NA	8000	0.0703 (0.0176)	SN	SN	SN
bis(2-Ethylhexyl)phthalate	\$000	50	50	0.0845 (0.0653 <i>)</i>	SN	NS	N
Fluoranthene	10,000	NA	3200	0.0140 J (0.0228)	NS	SN	SN

•

•

.

Table 3-5 (Continued)

	Boll RBCs"				Benntie Lecenton (dentit in feet)	depth in fact)	
			Preposed Solt Action	58-03	88.04	80-05	200
Parameter	Noncarc	Care	Led	0.025	0.0.25	0.0.15	9.0.55
Indeno(1,2,3-cd)pyrene	NA	0.06	0.538	0.0127 J (0.0187)	SN	SN	SN
2-Methylnaphthalene	NA	NA	NF	0.0205 J (0.0235)	SN	NS	SN
Naphthalene	10,000	NA	3200	0.0239 J (0.0260)	SN	NS	SN
4-Nitroaniline	NA	NA	NF	0.244 (0.0173)	NS	NS	SN
Pentachlorophenol	8000	\$	5.83	0.0421 (0.0308)	SN	SN	SN
Phenanthrene	NA	NA'	4.8	0.0132 J (0.0222)	NS	NS	SN
Pyrene	8000	NA	2400	0.0198 (0.0167)	NS	NS	NS
Metals (SW6010 and SW7000 series), mg/kg	mg/kg						
Aluminum	NA	NA	NF	20,100 (6.11)	NS	NS	NS
Barium	20,000	NA	5600	72.4 (0.0483)	NS	NS	SN
Beryllium	1000	0.1	0.163	0.0451) (0.0451)	NS	NS	SN
Cadmium	100	NA	80	0.347 (0.239)	NS	NS	SN
Calcium	NA	NA	NF	9340 . (19.8)	NS	SN	SN
Chromium	υ	NA	400 ^d	37.6 (0.228)	NS	SN	SN
Cobalt	NA	NA	NF	12.2 (0.435)	NS	SN	SN

Table 3-5 (Continued)

	Soli RBCS"	c.			Bampie Location (depth in feet)	depth in feet)	
			Prepared	58-03	SS.01	50°95	88.66
Parameter	Noncare	Carc	Soli Action Level	0-0.25	0.025	0.0.25	0.0.15
Copper	10,000	NA	3200	31.1 (0.206)	SN	NS	SN
Iron	NA	NA	NF	30,300 (25.9)	NS	NS	SN
Magnesium	NA	NA	NF	9360 (2.28)	SN	SN	SN
Mangancse	30,000	NA	NF	739 (0.00984)	SN	SN	SN
Molybdenum	1350	NA	NF	0.966 (0.218)	SN	SN	SN
Nickel	\$000	NA	1600	34.1 (0.909)	SN	SN	SN
Potassium	NA	NA	NF	1040 (28.8)	SN	SN	SN
Selenium	0001	NA	400	12.7 (3.68)	SN	SN	SN
Sodium	NA	NA	NF	161 (2.16)	NS	NS	SN
Vanadium	2000	NA	560	61.5 (0.358)	SN	SN	SN
Zinc	80,000	NA	16,000	67.0 (0.243)	SN	SN	SN
Arsenic (SW7060)	80	0.4	24	<u>8.67</u> (0.0825)	SN	SN	SN
Lead (SW7421)	NA	NA	114	37.6 S (1.77)	NS	NS	SN
Mercury (SW7471)	с	NA	NF	0.0860 (0.0129)	NS	NS	SN
Molsture Content (from SW846), %				6.98	4.80	1.39	4.15

•

(Continued)

NA Toxicity value and/or MCL not available, so RBC can not be calculated. NF Not found.

ND Not detected, no instrument response for analyte, or result less than zero. NS Not sampled.

() Sample-specific detection limit. Calculated based on the method detection limit determined according to 40 CFR 136, Appendix B and preparation, analytical, and moisture factors.

Risk-based concentrations (RBCs) for soils are based on residential ingestion of soil. -

b Proposed soil action levels calculated according to RCRA Subpart S.

c RBCs calculated based on soil ingestion pathway may not be appropriate. Inhalation toxicity may be of more concern than ingestion. d Proposed soil action level for Cr (VI). Cr (III) level is 80,000 mg/kg.

J Reported analyte concentration less than stated Detection Limit.

K. Peak did not meet method identification criteria. Analyte not detected on other GC column.
 F. Interference or coelution suspected.
 Analyte detected in method blank concentrations up to: 2.03 µg/kg methylene chloride.
 S. Analyte concentration obtained using Method of Standard Additions (MSA).

Note: Shaded data points indicate concentrations greater than the proposed soil cleanup levels. Underlined data are greater than an RBC.

Sampling Program

Four surface soil samples were taken at a depth interval of 0 to 0.25 feet at four locations in Area 4. All four of these samples (SS-03 through SS-06) were taken at locations from the northwest corner of Building A-5 to the south of it at about twenty foot intervals in areas of visible staining. The sampling locations are given in Figure 3-13. These soil samples were analyzed for purgeable petroleum hydrocarbons (SW8015MP), extractable petroleum hydrocarbons (SW8015ME), and moisture content (from SW846). Sample SS-03 was also analyzed for volatile organic compounds (SW8240), semivolatile organic compounds (SW8270), and metals (SW6010, SW7060, SW7241, and SW7471).

Analytical Results--Soils

Purgeable Petroleum Hydrocarbons (SW8015MP)--Toluene and total xylenes were both detected in these field samples at concentrations below the sample specific detection limits. Gasoline, benzene, and ethylbenzene were not detected in these soil samples.

Extractable Petroleum Hydrocarbons (SW8015ME)--No target compounds were detected in the Area 4 soil samples.

Volatile Organic Compounds (SW8240)--Methylene chloride was found at a concentration of $11.1 \,\mu$ g/kg in sample SS-03, at about five times the concentration found in the method blank. No other target VOCs were detected in sample SS-03.

Semivolatile Organic Compounds (SW8270)--Several semivolatile organic compounds (SVOCs) were detected in sample SS-03. This sample contained 0.244 mg/kg 4-nitroaniline, 0.0845 mg/kg bis(2-ethylhexyl)phthalate, and 0.0703 mg/kg dibutylphthalate. Very low concentrations (less than 0.05 mg/kg) of several polynuclear

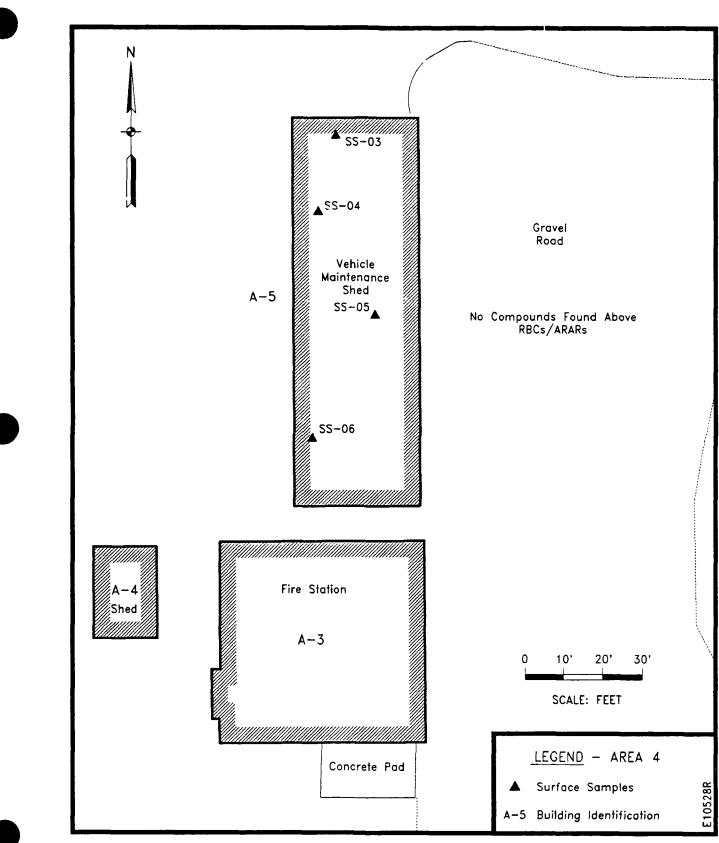


Figure 3-13. Sampling Locations at Area 4

aromatic compounds, pentachlorophenol, and naphthalene were also detected in the sample.

Metals (SW6010, SW7060, SW7241, SW7471)--Toxic metals (defined as the thirteen priority pollutants and/or RCRA metals) found in sample SS-03 are 8.67 mg/kg arsenic, 72.4 mg/kg barium, 0.351 mg/kg beryllium, 0.347 mg/kg cadmium, 37.6 mg/kg chromium, 31.1 mg/kg copper, 37.6 mg/kg lead, 0.0860 mg/kg mercury, 34.1 mg/kg nickel, 12.7 mg/kg selenium, and 67.0 mg/kg zinc. Antimony, silver, and thallium were not detected at concentrations above the sample specific detection limits in this sample.

3.6.4 Comparison of Field Data to Risk-based Concentrations and Action Media Levels

The Area 4 soil samples were compared to the RBCs and soil action levels referenced in Section 2.4. Sample SS-03 contained arsenic at a concentration of 8.67 mg/kg, which exceeded the carcinogenic RBC of 0.4 mg/kg and the action level of 24 mg/kg. The beryllium concentration (0.351 mg/kg) for sample SS-03 exceeds the carcinogenic RBC of 0.1 mg/kg and the action level of 0.163 mg/kg. However, these arsenic and beryllium concentrations are consistent with the background concentration ranges of 7.20 to 13.1 mg/kg arsenic and 0.37 to 0.62 mg/kg beryllium (CH2M Hill, 1993). All other target compounds are below the RBCs and soil action levels.

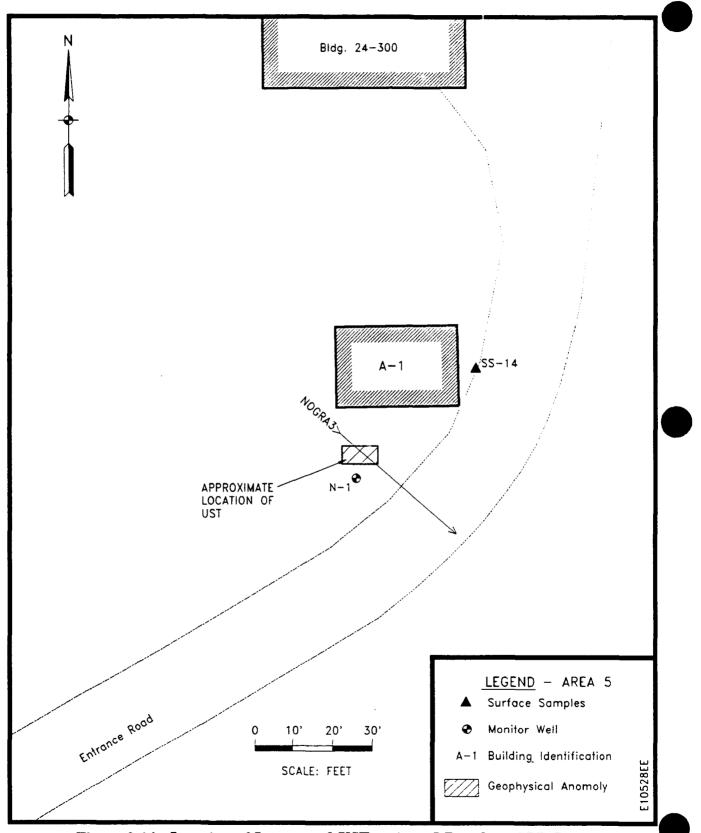
3.6.5 Disposition of Area 4

Analytical results from this area show that no contaminant concentrations exceed soil action levels or RBCs. Therefore the USEPA, ADEC, and Elmendorf AFB have agreed that NFA is recommended for this area.

3.7 <u>Area 5 Findings</u>

3.7.1 Historical Releases and Potential Sources

No documented releases are known for Area 5. Potential sources of contamination at this area were spills at the pump island and releases from the associated UST and piping. The filling station has been inactive since about 1972 and is currently used for storage of outboard motors and snowmobiles.


3.7.2 GPR Results

A GPR survey was conducted around the filling station to locate the UST associated with the pump island. Figure 3-14 shows the interpreted location of the UST, and Figure 3-15 is an interpreted GPR line of the UST. One anomaly was identified during the GPR survey. The anomaly only appeared well on selected lines, indicating that the tank is probably not very large. No records of the location or size of the tank were found to support this conclusion.

The area around the filling station was covered with dead trees and saplings. It is recommended that the area be cleared and more extensive GPR work be performed to delineate the limits of the tank if removal is initiated.

3.7.3 Sampling Program and Analytical Results

The detailed results for Area 5 soil and groundwater analyses are given in Appendix C. Only those results for compounds detected in the Area 5 samples are listed in Table 3-3 (groundwater) and Table 3-6 (soils) and are discussed in the following subsections. All soil data are reported on a dry weight basis.

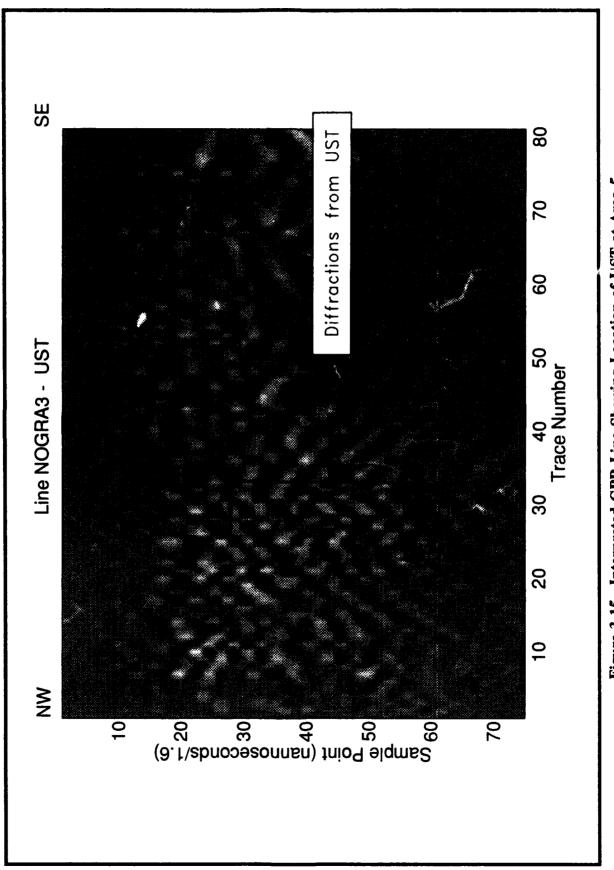


Figure 3-15. Interpreted GPR Line Showing Location of UST at Area 5

Results for Analyses of Area 5 Soil Samples from Elmendorf NOAA - 1993

					Samp	Sample Location (depth in feet)	ta feet)
Parameter	Soil Re Noneare	CBs ⁺ Cane	Proposed Soll Action Lavel ⁸	58-14 0-0.25	I	N	18-20
Purgeable Petroleum Hydrocarbons (SV	n Hydrocarbons (S ¹	W8015MP), µg/kg					
Benzene	NA	20000	100	ND (7.37)	ND (8.18)	5.16 KJ (8.06)	4.41 KJ (7.14)
Toluene	50,000,000	VA	16,000,000	9.14 B (5.85)	9.11.9 (10.5)	8.68 B (6.40)	8.40 B (5.67)
Xylenes (total)	5.0E+08	NA	160,000,000	31.1 (15.2)	ND (5.13)	11.6 PJ (21.3)	16.0 B (14.7)
Extractable Petroleum Hydrocarbons (SW8015 ME), µg/kg	im Hydrocarbons (SW8015 ME), µg/l	kg	Targ	et compounds no	Target compounds not detected in these samples	samples
Moisture Content (from SW846). %	rom SW846). %			7.30	17.7	17.3	4.72

NA Toxicity value and/or MCL not available, so RBC can not be calculated.

NF Not found. ND Not detected, no instrument response for analyte, or result less than zero.

NS Not sampled.

() Sample-specific detection limit. Calculated based on the method detection limit determined according to 40 CFR 136, Appendix B and preparation, analytical, and moisture factors.

a Risk-based concentrations (RBCs) for soils are based on residential ingestion of soil.

b Soil action levels calculated according to RCRA Subpart S.

J Reported analyte concentration less than stated Detection Limit.

K Peak did not meet method identification criteria. Analyte not detected on other GC column.

P. Analyte presence is confirmed; however, the quantitation is not confirmed since the ratio of results from the primary and secondary GC columns differ by greater than a factor of three. The lower result is reported since the higher result is usually due to coelution with a non-larget contaminant.
B. Analyte detected in method blank at concentrations up to: 8.92 µg/kg toluene and 21.5 µg/kg total xylenes.

Note: Sample data from this site were all below RBCs and soil action levels.

Sampling Program

A surface soil sample, SS-14, was sampled at the fuel pump island on the east side of Building A-1. A monitoring well, N-1, was drilled just south of Building A-1. The soil from this boring was sampled at depth intervals corresponding to 2 to 4 feet, 7 to 9 feet, and 18 to 20 feet. The sampling locations are given in Figure 3-16. These soil samples were analyzed for purgeable petroleum hydrocarbons (SW8015MP), extractable petroleum hydrocarbons (SW8015ME), and moisture content (from SW846). The borehole at N-1 was completed as a monitoring well and subsequently sampled for nonhalogenated volatile organic compounds (SW8015), purgeable petroleum hydrocarbons (SW8015MP), extractable petroleum hydrocarbons (SW8015ME), volatile organic compounds (SW8240), semivolatile organic compounds (SW8270), metals (SW6010, SW7060, SW7421, and SW7471), and total dissolved solids.

Analytical Results--Soil

Purgeable Petroleum Hydrocarbons (SW8015MP)--Toluene was found at a concentration of about $9 \mu g/kg$ in the soil samples from Area 5. Xylene concentrations were $31.1 \mu g/kg$ in surface soil SS-14, $11.6 \mu g/kg$ in the soil sample from the 7 to 9 foot depth interval of borehole N-1, $16.0 \mu g/mg$ in the 18 to 20 foot sample, and was not detected in the sample from the 2 to 4 foot depth interval. No other target analytes were detected at concentrations greater than the sample specific detection limits in the Area 5 soil samples.

Extractable Petroleum Hydrocarbons (SW8015ME)--No target compounds were detected in the Area 5 soil samples.

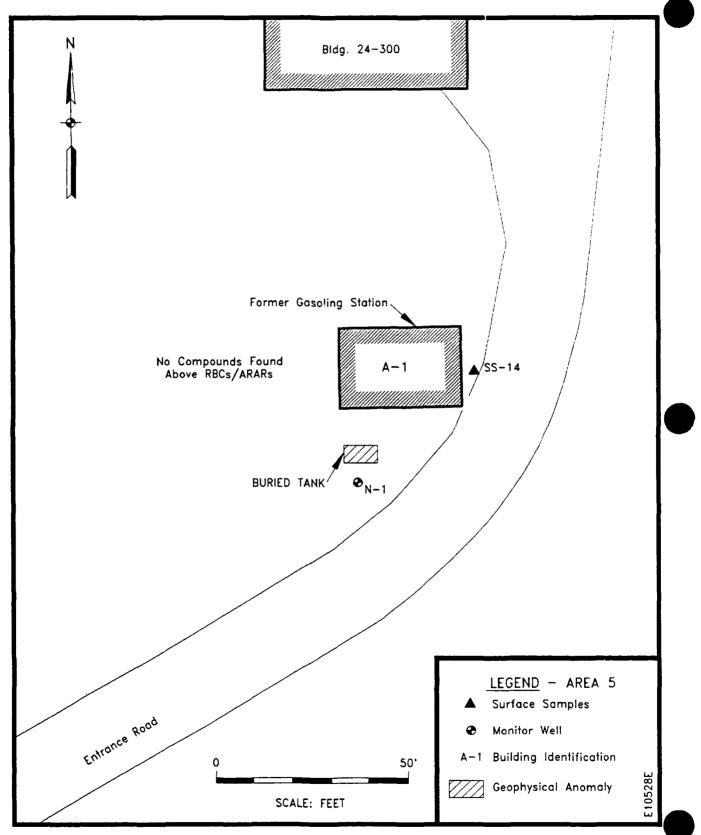


Figure 3-16. Sampling Location at Area 5

Analytical Results--Groundwater

Nonhalogenated Volatile Organic Compounds (SW8015)--No target compounds were detected in the Area 5 groundwater samples.

Purgeable Petroleum Hydrocarbons (SW8015MP)--Toluene and total xylenes were found at concentrations of $1.04 \ \mu g/L$ and $0.467 \ \mu g/L$, respectively, in the Area 5 groundwater sample. No other target analytes were detected in the Area 5 groundwater sample.

Extractable Petroleum Hydrocarbons (SW8015ME)--Diesel fuel was detected in the in the N-1 groundwater sample at a concentration of $37.3 \mu g/L$. No other target compounds were detected in the Area 5 groundwater sample.

Volatile Organic Compounds (SW8240)--No target compounds were detected in the Area 5 groundwater sample.

Semivolatile Organic Compounds (SW8270)--No target compounds were detected in the Area 5 groundwater sample.

Metals (SW6010, SW7060, SW7421, SW7471)--Toxic metals (defined as the thirteen priority pollutant or eight RCRA metals) found in groundwater sample N-1 include; 0.00486 mg/L barium, 0.0512 mg/L chromium, 0.0100 mg/L lead, 0.0958 mg/L nickel, and 0.00939 mg/L zinc. Antimony, arsenic, beryllium, cadmium, copper, mercury, selenium, silver, and thallium were not detected above the detection limit in this sample.

Total Dissolved Solids (E160.1)--Area 5 groundwater sample N-1 had a total dissolved solids concentration of 117 mg/L.

3.7.4 Comparison of Field Data to Risk-Based Concentrations, Maximum Contaminant Levels, and Media Action Levels

The Area 5 soil samples were compared to the soil action levels given in Section 2.4. None of the soil target analytes exceeded the RBCs or soil action levels.

Comparison of Water Results to RBCs and MCLs

The Area 5 groundwater sample results were compared to the water RBCs and the MCLs. This sample contained 0.0958 mg/L nickel which was just below the MCL of 0.1 mg/L which goes into effect on 17 January 1994. Alaska does not have a state MCL for nickel. All other target analytes are below the RBCs and Primary MCLs.

3.7.5 Disposition of Area 5

As in Area 4, analytical results from this area show that no contaminant concentrations exceed soil action levels, MCLs, or RBCs for water or soil. Therefore the USEPA, ADEC, and Elmendorf AFB have agreed that, other than a UST removal under the SERA program, NFA is recommended for this site.

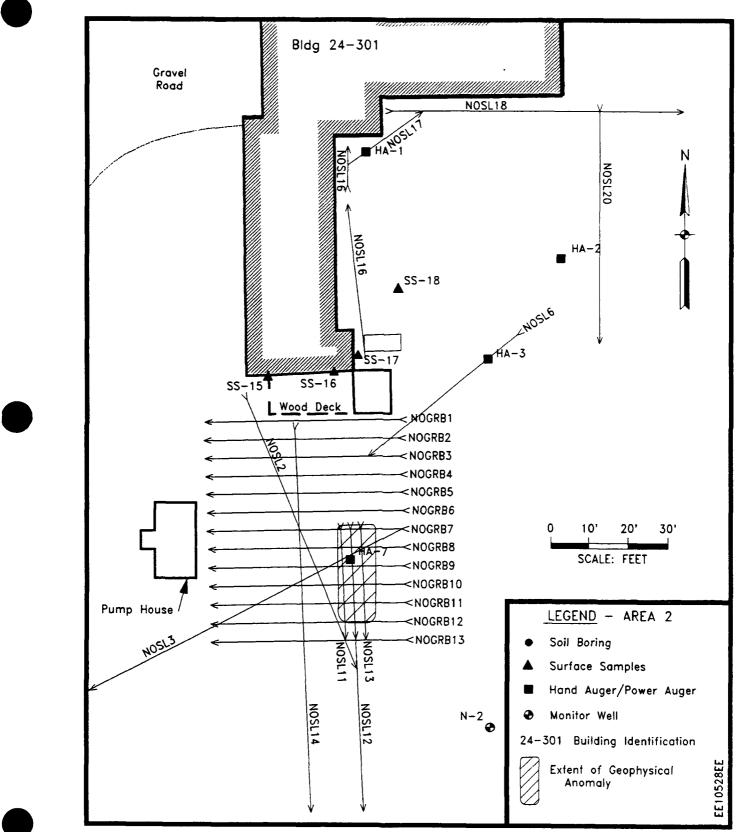
4.0 **REFERENCES**

- US Environmental Protection Agency (USEPA). <u>Supplemental Guidance for Superfund</u> <u>Risk Assessments in Region X</u>. EPA 910/9-91-036. October 1992.
- Radian Corporation, <u>United States Air Force, Elmendorf Air Force Base, Alaska.</u> Final <u>Environmental Baseline Assessment Plan National Oceanic and Atmospheric</u> <u>Administration Research Station</u>. June 1993.
- Radian Corporation. <u>United States Air Force, Elmendorf Air Force Base, Alaska. Draft</u> <u>Final Management Plan, Operable Unit 4</u>. April 1993.
- Radian Corporation. <u>United States Air Force, Elmendorf Air Force Base, Alaska.</u> Draft <u>Management Plan, Operable Unit 3</u>. April 1993.
- Radian Corporation. <u>United States Air Force, Elmendorf Air Force Base, Alaska, Draft</u> <u>Limited Field Investigation Work Plan, Operable Unit 7</u>. May 1993.
- CH2M Hill. <u>Elmendorf Air Force Base, Alaska Basewide Sampling Report</u>. January 1993.

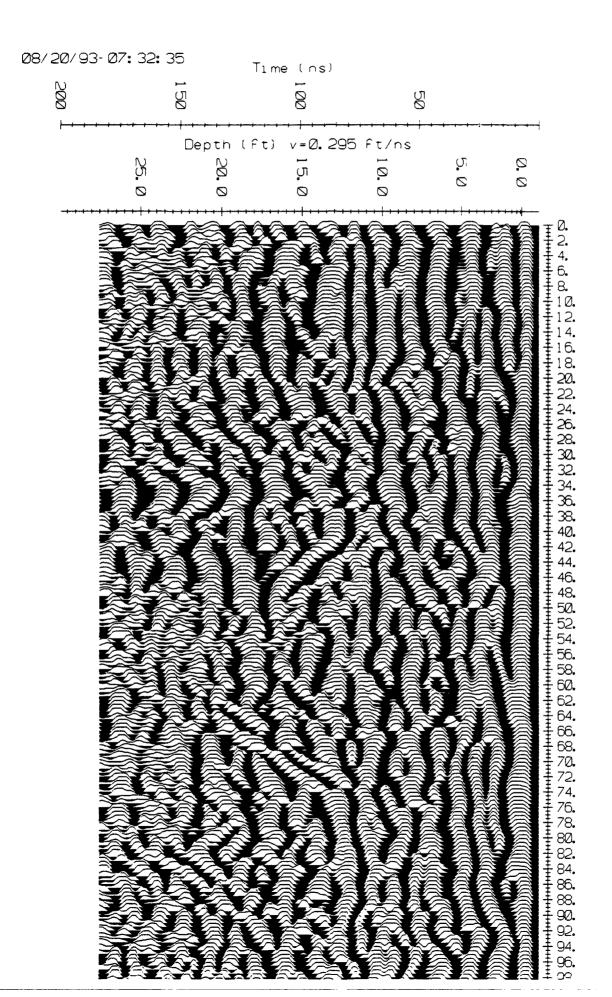
APPENDIX A

-

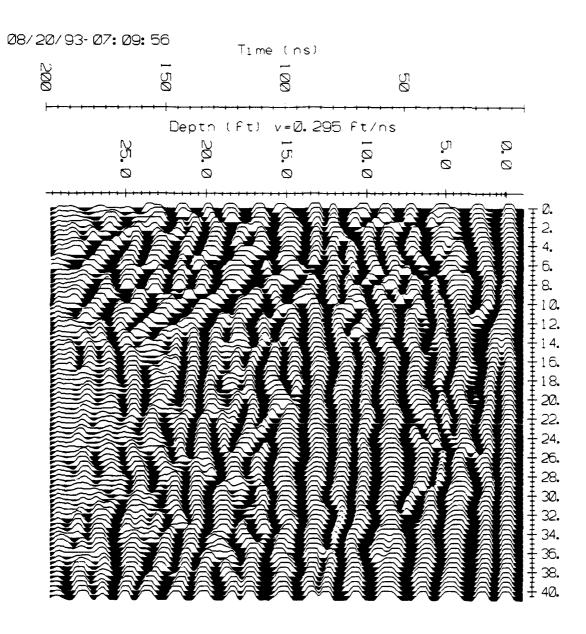
Ground Penetrating Radar Survey Results

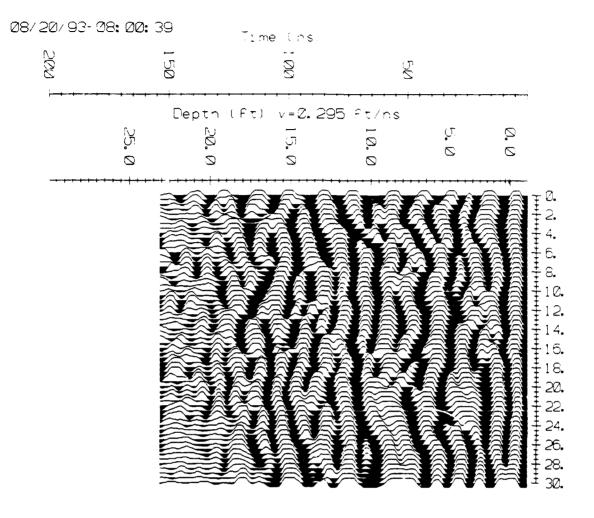

Ground penetrating radar data for the NOAA Site will be presented in the following format.

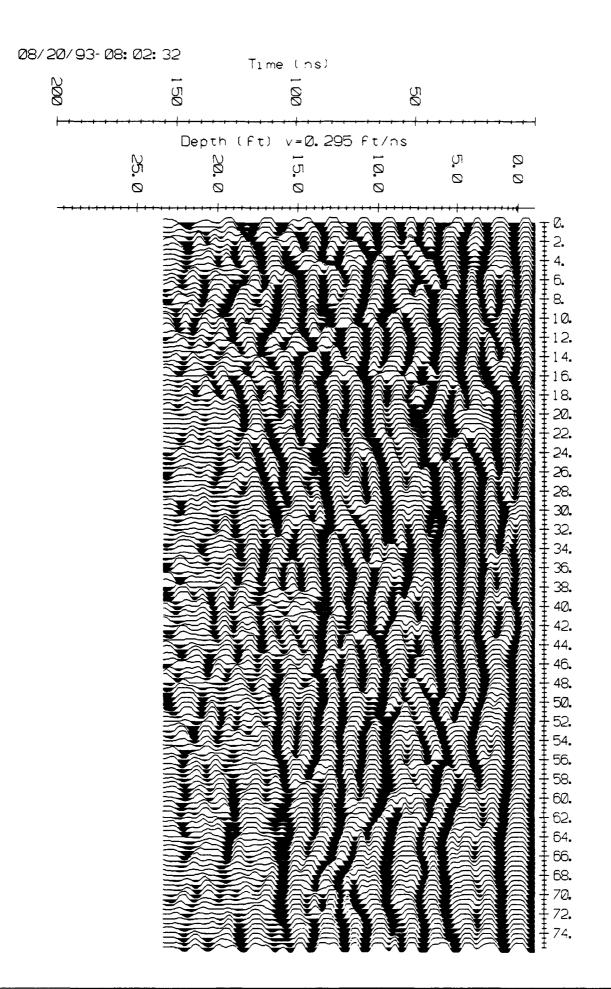
- A map showing the locations of the individual radar lines will preceed the data.
- A header sheet will preceed the output of the radar data.
- A standard wiggle trace display of the data will follow.

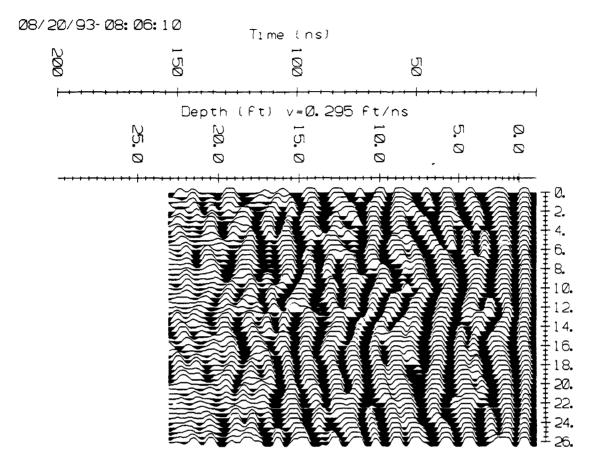

All of the GPR data presented in the Appendix were processed with Sensors & Software EkkoTools[™] software using the following flow:

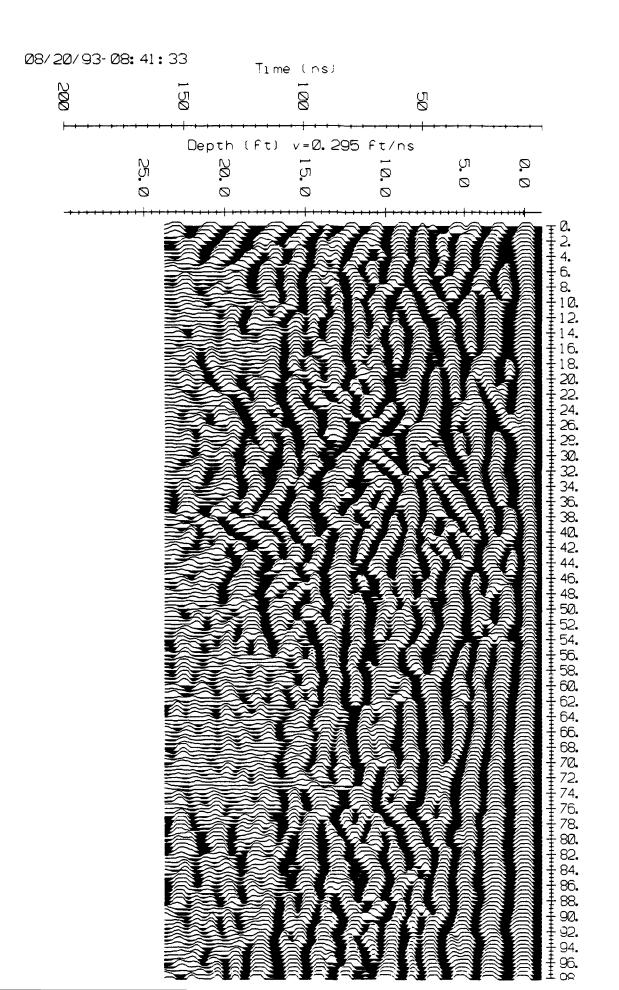
- 1). Signal Saturation Correction (Dewow).
- 2). First Break and First Break Shift (Static Shift T0 Correction).
- 3). Bandpass Filtering Trapezoidal; 30,50,170,230 mHz Determined by amplitude spectral analysis.
- 4). AGC (Automatic Gain Control) for display.

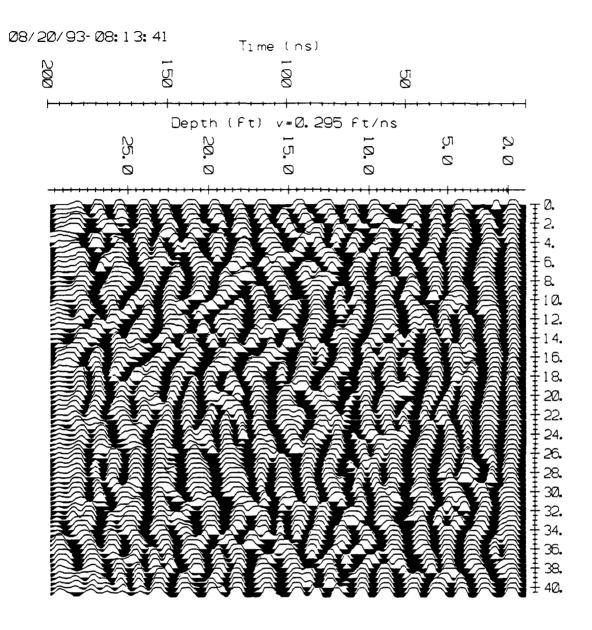

Digital format of the raw data available to AFCEE upon request.

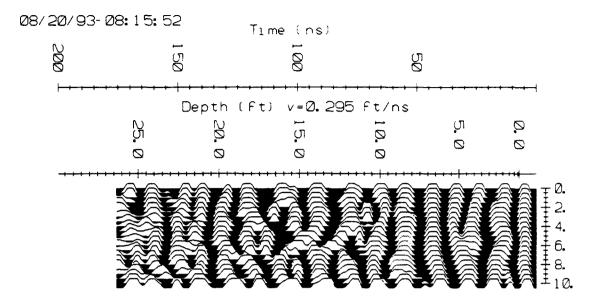

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nosl3.hd 1.00000 NOAA leach field on side of old bldg 19/06/93 NUMBER OF TRACES = 201NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 21 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 100.000000STEP SIZE USED = 0.500000 POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz PROCESSING SELECTED: Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths : 5000 Maximum Amount Selection : Time = 0 to 200 ns Trace = 1 to 201Picture Id : 08/20/93-07:32:35 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.040" : 0.080" Trace Width Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

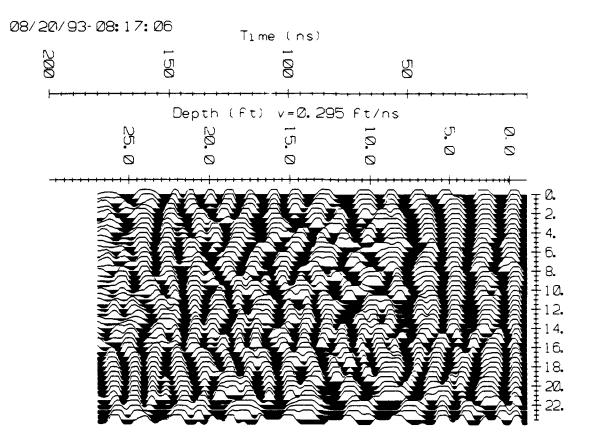

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nosl6.hd
   1.00000
   19/06/93
   NUMBER OF TRACES
                    = 82
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 3
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
   FINAL POSITION = 40.500000
   STEP SIZE USED
                   = 0.500000
  POSITION UNITS = feet
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
                     = 256
   NUMBER OF STACKS
                     = Reflection
   SURVEY MODE
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                        170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
    Window : 1.000 pulse widths
    Amount : 5000 Maximum
   Selection : Time = 0 to 200
                               ns
               Trace = 1 to 82
   Picture Id : 08/20/93-07:09:56
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                   : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl11.hd
   1.00000
   20/06/93
  NUMBER OF TRACES = 61
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 58
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 30.00000
  STEP SIZE USED
                   = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.00000
   ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
                     = Reflection
  SURVEY MODE
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                        170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
   Points Stacking : 7
   Trace Differencing: N
  Gain Type : AGC
    Window : 1.000 pulse widths
    Amount : 5000 Maximum
   Selection : Time = 0 to 200
                              ns
               Trace = 1 to 61
   Picture Id : 08/20/93-08:00:39
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                   : 0.100"
  Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl12.hd
  1.00000
  20/06/93
  NUMBER OF TRACES
                     = 152
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 55
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 75.500000
  STEP SIZE USED
                     = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
                     = Reflection
   SURVEY MODE
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                             50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
                   : 3
   Trace Stacking
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
             : 1.000 pulse widths
     Window
             : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
                Trace = 1 to 152
   Picture Id : 08/20/93-08:02:32
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

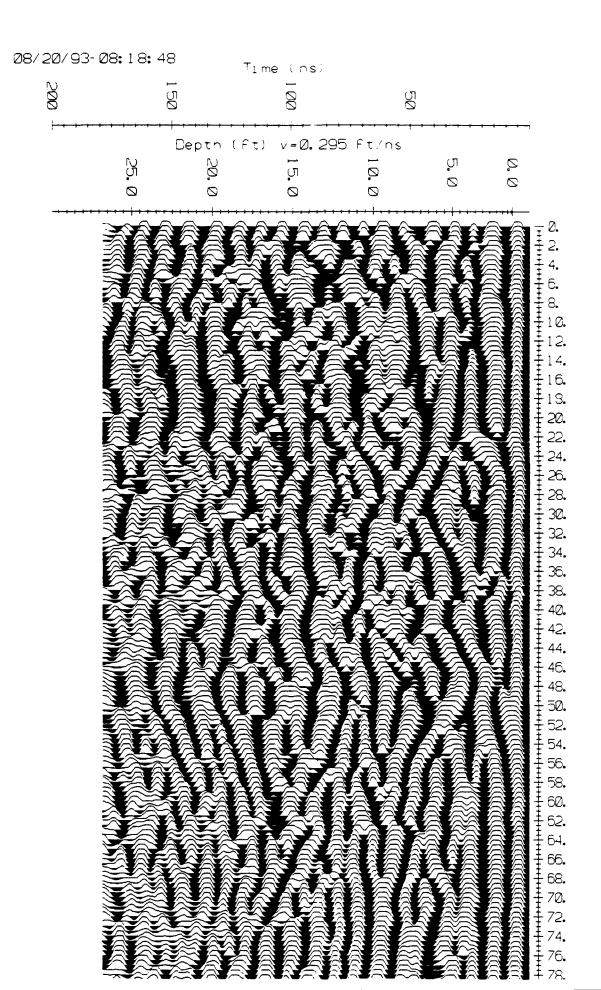


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nos113.hd
   1.00000
   20/06/93
  NUMBER OF TRACES
                    = 53
  NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 58
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 26.000000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                    = 256
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                        170.00 230.00 MHz
PROCESSING SELECTED:
  Trace Stacking
                  : 3
  Points Stacking : 7
  Trace Differencing: N
  Gain Type : AGC
    Window
           : 1.000 pulse widths
             : 5000 Maximum
    Amount
  Selection : Time = 0 to 200
                               ns
               Trace = 1 to 53
  Picture Id : 08/20/93-08:06:10
PLOT LAYOUT PARAMETERS:
  Trace Spacing : 0.050"
   Trace Width
                   : 0.100"
  Trace Position : 1.000" to 6.000"
  Left/Right Margin : 0.500" / 0.000"
  Border Size : 0.500"
  Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl14.hd
  1.00000
  20/06/93
  NUMBER OF TRACES
                   = 197
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 53
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 98.00000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
  512 -PT FFT FILTER : 30.00
                                50.00 170.00 230.00 MHz
PROCESSING SELECTED:
  Trace Stacking
                    : 3
  Points Stacking
                  : 7
  Trace Differencing: N
  Gain Type : AGC
    Window : 1.000 pulse widths
    Amount
             : 5000 Maximum
  Selection : Time = 0 to 200 ns
               Trace = 1 to 197
  Picture Id : 08/20/93-08:08:06
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                   : 0.100"
  Trace Position : 1.000" to 6.000"
  Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```

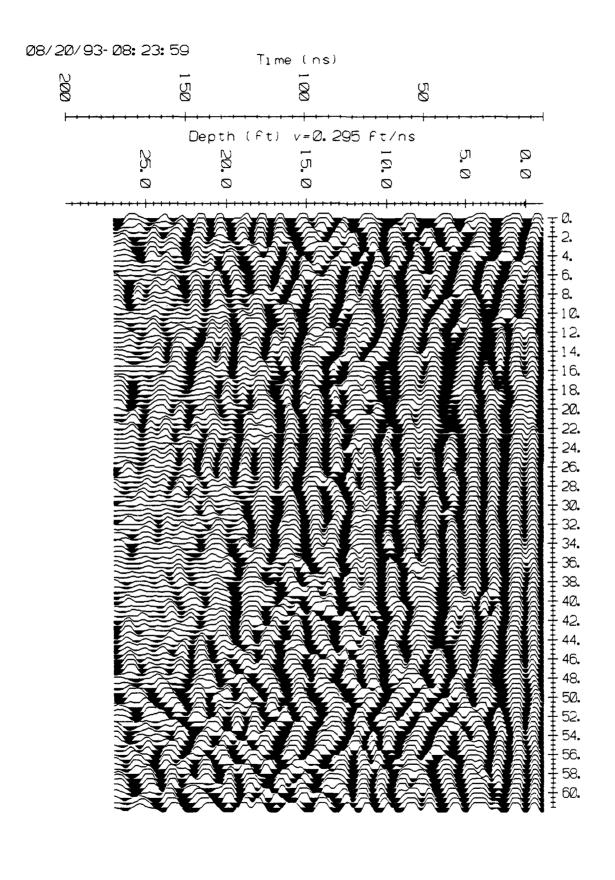


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl16.hd
   1.00000
   21/06/93
  NUMBER OF TRACES
                     = 82
  NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 2
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
   FINAL POSITION = 40.500000
  STEP SIZE USED = 0.500000
POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                     = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                             50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount : 5000 Maximum
   Selection : Time = 0 to 200
                               ns
               Trace = 1 to 82
   Picture Id : 08/20/93-08:13:41
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



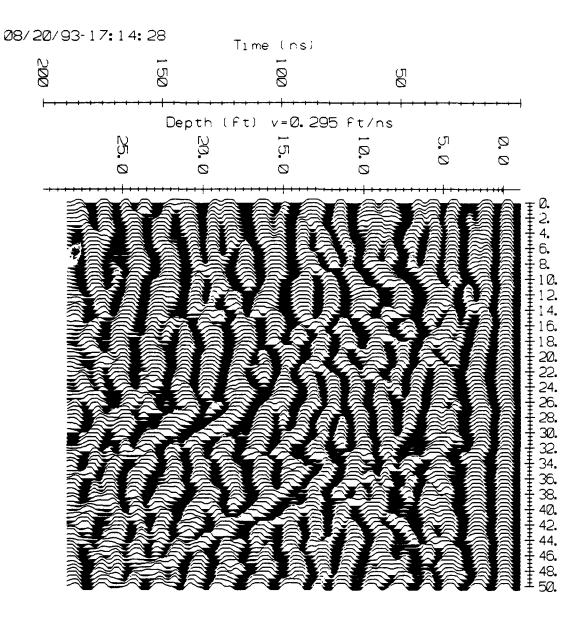
```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nosl16a.hd
   1.00000
   21/06/93
   NUMBER OF TRACES = 21
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 30
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 0.000000
   FINAL POSITION = 10.000000
  STEP SIZE USED = 0.500
POSITION UNITS = feet
                    = 0.500000
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS
                    = 256
   SURVEY MODE
                      = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                          170.00 230.00 MHz
PROCESSING SELECTED:
  Trace Stacking : 3
Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
                Trace = 1 to 21
   Picture Id : 08/20/93-08:15:52
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

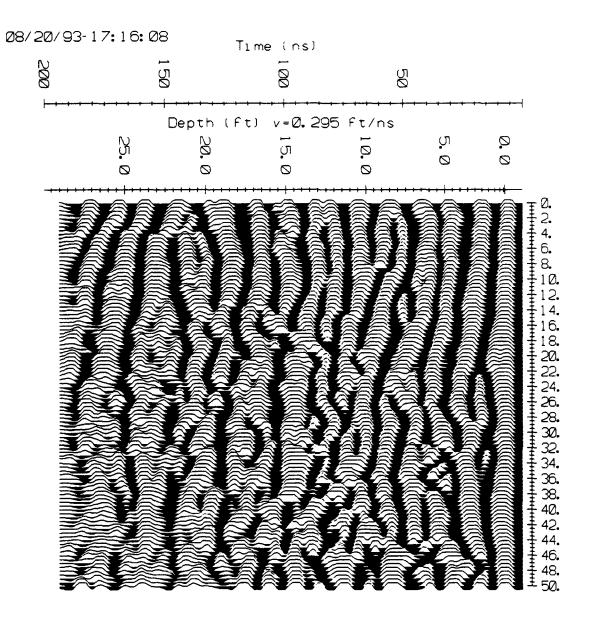


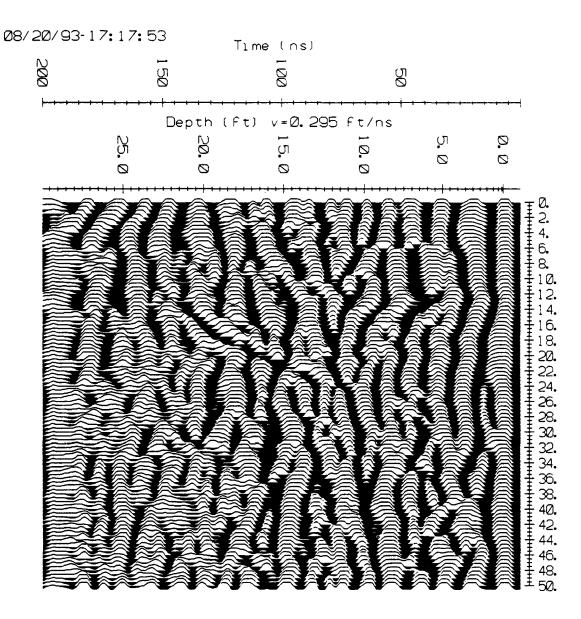

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl17.hd
   1.00000
   21/06/93
  NUMBER OF TRACES
                    = 48
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 26
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 23.500000
   STEP SIZE USED
                   = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
                     = Reflection
  SURVEY MODE
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                        170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
  Points Stacking
                  : 7
  Trace Differencing: N
  Gain Type : AGC
    Window : 1.000 pulse widths
    Amount
             : 5000 Maximum
   Selection : Time = 0 to 200
                               ns
               Trace = 1 to 48
  Picture Id : 08/20/93-08:17:06
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                   : 0.100"
  Trace Position : 1.000" to 6.000"
  Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
  Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```

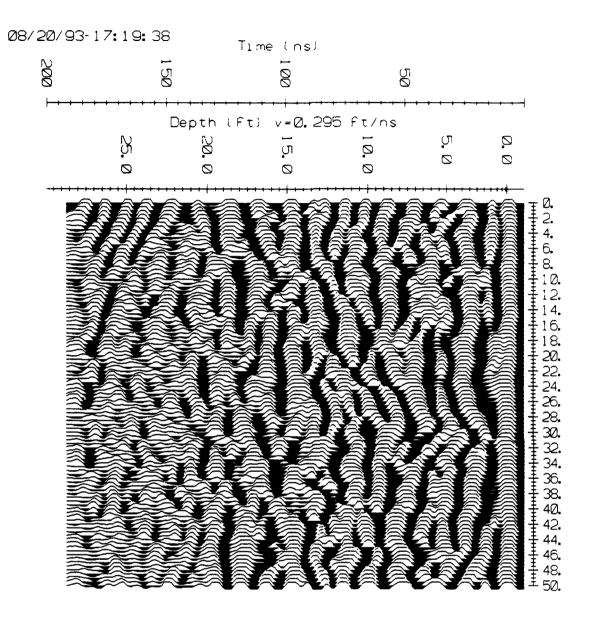


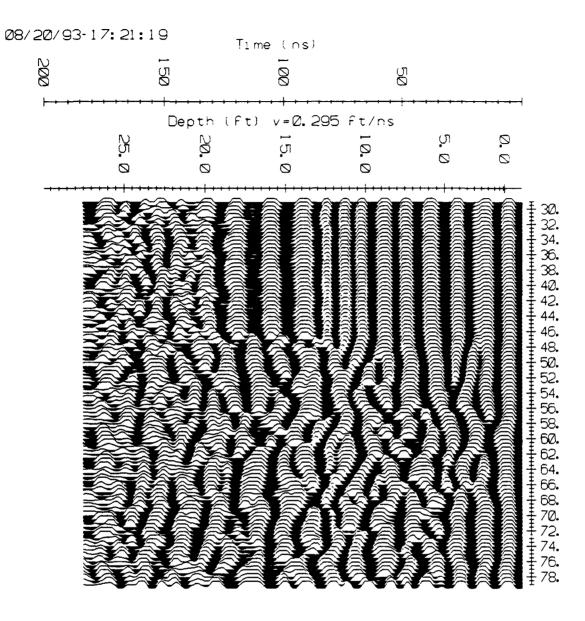
.


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nosl18.hd
   1.00000
   21/06/93
   NUMBER OF TRACES = 159
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 27
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 0.000000
  FINAL POSITION = 79.000000
STEP SIZE USED = 0.500000
POSITION UNITS = feet
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS = 256
   SURVEY MODE
                      = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                              50.00
                                          170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                    : 3
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
            : 1.000 pulse widths
     Window
             : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
                Trace = 1 to 159
   Picture Id : 08/20/93-08:18:48
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl20.hd
   1.00000
  21/06/93
  NUMBER OF TRACES = 124
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 25
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 61.500000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                     = 256
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                        170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
  Points Stacking
                  : 7
  Trace Differencing: N
   Gain Type : AGC
    Window
           : 1.000 pulse widths
             : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
               Trace = 1 to 124
   Picture Id : 08/20/93-08:23:59
PLOT LAYOUT PARAMETERS:
  Trace Spacing : 0.050"
                   : 0.100"
   Trace Width
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
  Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

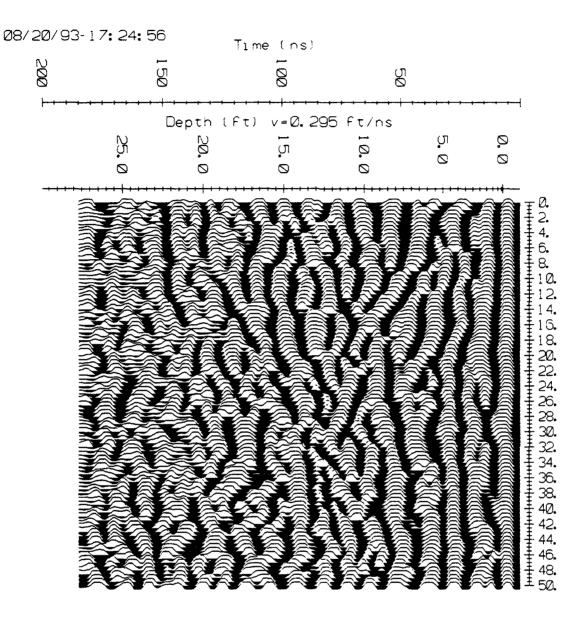


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb1.hd
   1.00000
   19/06/93
   NUMBER OF TRACES = 101
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 13
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 0.000000
   FINAL POSITION = 50.00000
   STEP SIZE USED= 0.500000POSITION UNITS= feet
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking
                  : 7
   Trace Differencing: N
   Gain Type : AGC
     Window
            : 1.000 pulse widths
             : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:14:28
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
                   : 0.080"
   Trace Width
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

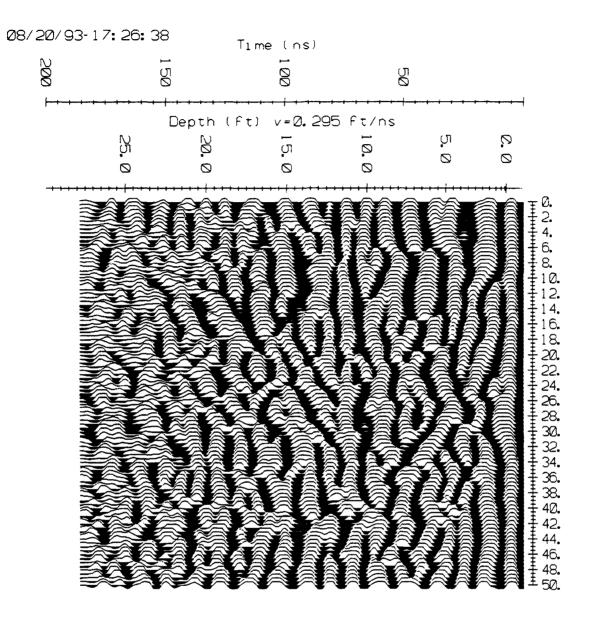


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb2.hd
   1.00000
   19/06/93
   NUMBER OF TRACES
                     = 101
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 8
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
   FINAL POSITION = 50.000000
  STEP SIZE USED = 0.500000
POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
    Window
            : 1.000 pulse widths
    Amount : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:16:08
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
                   : 0.080"
   Trace Width
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size
                : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb3.hd
   1.00000
   19/06/93
   NUMBER OF TRACES
                     = 101
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 1
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
   FINAL POSITION = 50.000000
   STEP SIZE USED= 0.500000POSITION UNITS= feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS
                     = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
    Window : 1.000 pulse widths
    Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:17:53
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
   Trace Width
                   : 0.080"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

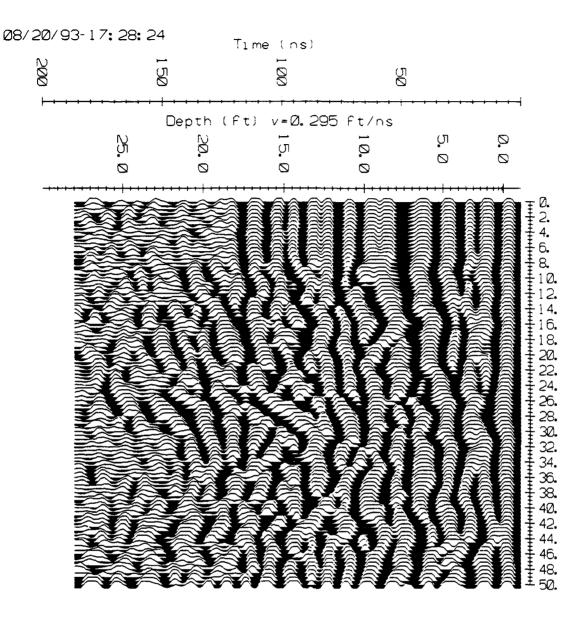


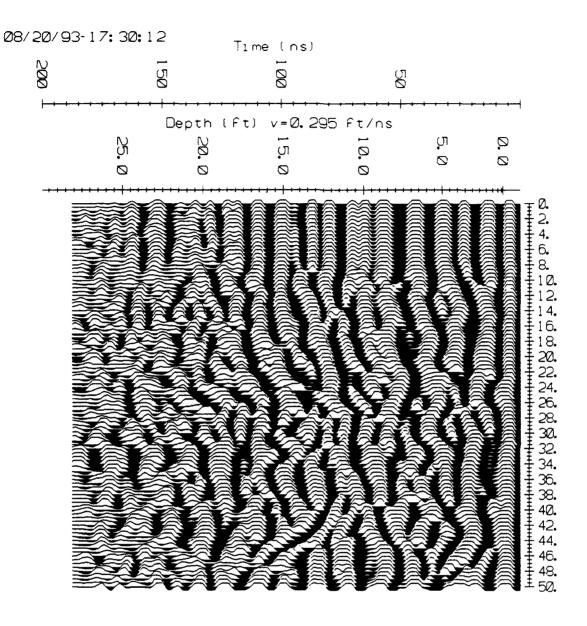
```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nogrb4.hd
   1.00000
   19/06/93
  NUMBER OF TRACES
                     = 101
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 11
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 50.000000
  STEP SIZE USED
                   = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                        170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
  Points Stacking : 7
  Trace Differencing: N
  Gain Type : AGC
    Window : 1.000 pulse widths
    Amount : 5000 Maximum
  Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:19:38
PLOT LAYOUT PARAMETERS:
  Trace Spacing : 0.040"
  Trace Width
                   : 0.080"
  Trace Position : 1.000" to 6.000"
  Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
  Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb5.hd
   1.00000
   20/06/93
  NUMBER OF TRACES
                     = 101
  NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 21
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 29.000000
   FINAL POSITION = 79.00000
   STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                     = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                              50.00
                                        170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking
                  : 7
   Trace Differencing: N
   Gain Type : AGC
     Window
            : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:21:19
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
                   : 0.080"
   Trace Width
  Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size
                : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb6.hd
   1.00000
   20/06/93
   NUMBER OF TRACES = 101
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 19
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 0.000000
   FINAL POSITION = 50.00000
   STEP SIZE USED = 0.50
POSITION UNITS = feet
                    = 0.500000
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
                     = 256
   NUMBER OF STACKS
                     = Reflection
   SURVEY MODE
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00 170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
             : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:23:12
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
   Trace Width
                   : 0.080"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

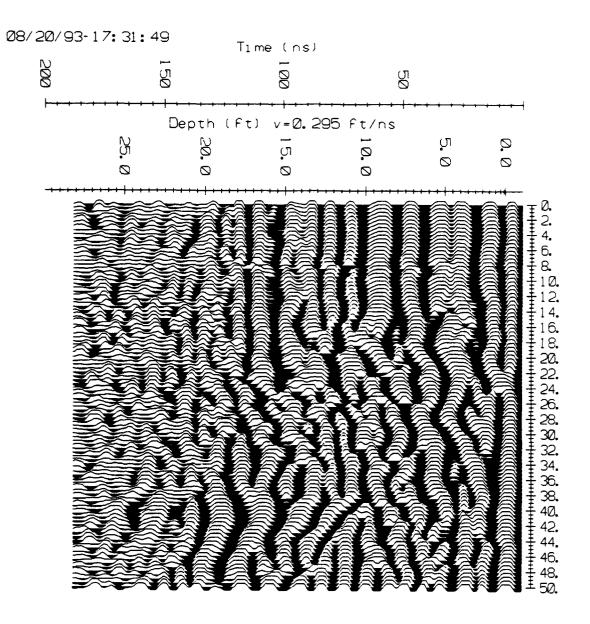
08/20/93-17:23:12 Time (ns) 200 50 00 50 Depth (ft) v=0.295 ft/ns 20 ----10. ហ N V 0 ហ 0 \odot . © 0 Ø 0


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nogrb7.hd
  1.00000
  20/06/93
  NUMBER OF TRACES
                     = 101
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 19
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 50.00000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
  Trace Stacking
                   : 3
                  : 7
  Points Stacking
  Trace Differencing: N
  Gain Type : AGC
    Window
             : 1.000 pulse widths
             : 5000 Maximum
    Amount
  Selection : Time = 0 to 200
                               ns
               Trace = 1 to 101
  Picture Id : 08/20/93-17:24:56
PLOT LAYOUT PARAMETERS:
  Trace Spacing : 0.040"
                    : 0.080"
  Trace Width
  Trace Position
                   : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
  Border Size
                : 0.500"
  Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```

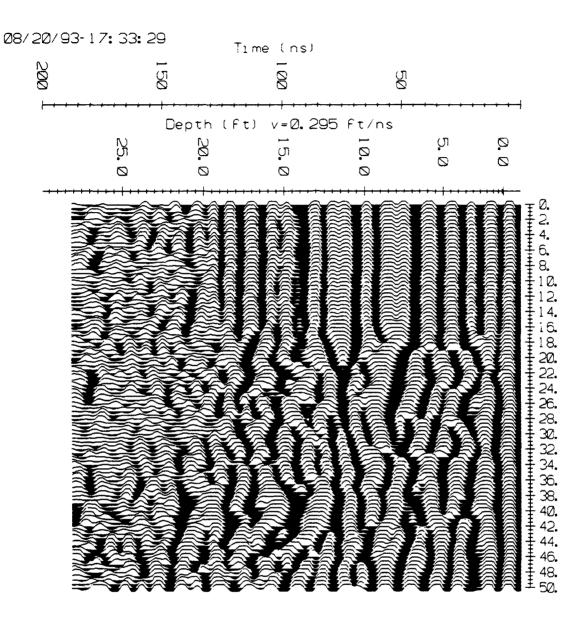


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb8.hd
   1.00000
   20/06/93
   NUMBER OF TRACES = 101
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 18
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 0.000000
   FINAL POSITION = 50.000000
  STEP SIZE USED = 0.500
POSITION UNITS = feet
                    = 0.500000
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS = 256
                     = Reflection
   SURVEY MODE
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
    Window : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:26:38
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
   Trace Width
                    : 0.080"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

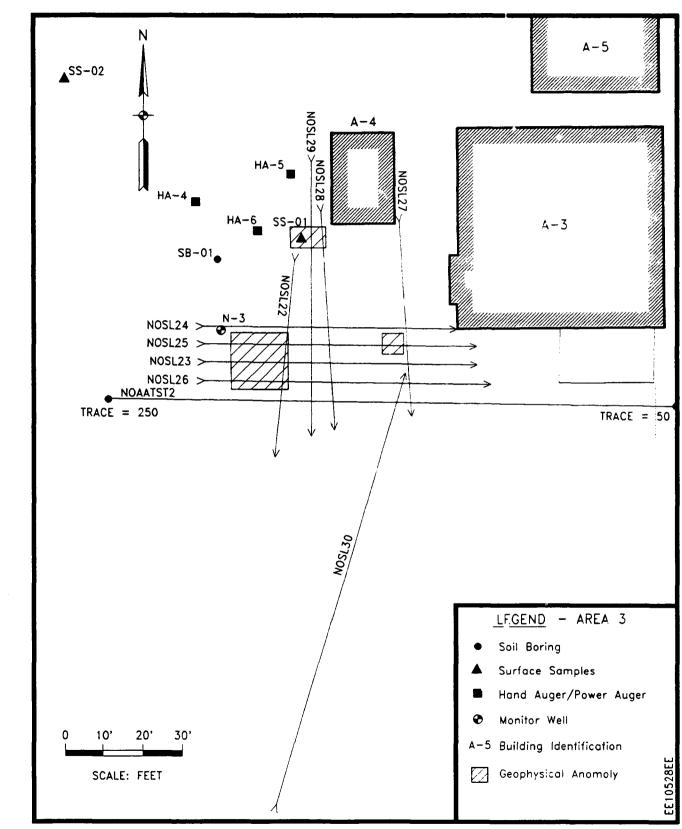


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb9.hd
   1.00000
   20/06/93
  NUMBER OF TRACES = 101
  NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 17
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION= 50.000000STEP SIZE USED= 0.500000POSITION UNITS= feet
  NOMINAL FREQUENCY = 200,000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                              50.00
                                          170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
                Trace = 1 to 101
   Picture Id : 08/20/93-17:28:24
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
   Trace Width
                    : 0.080"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

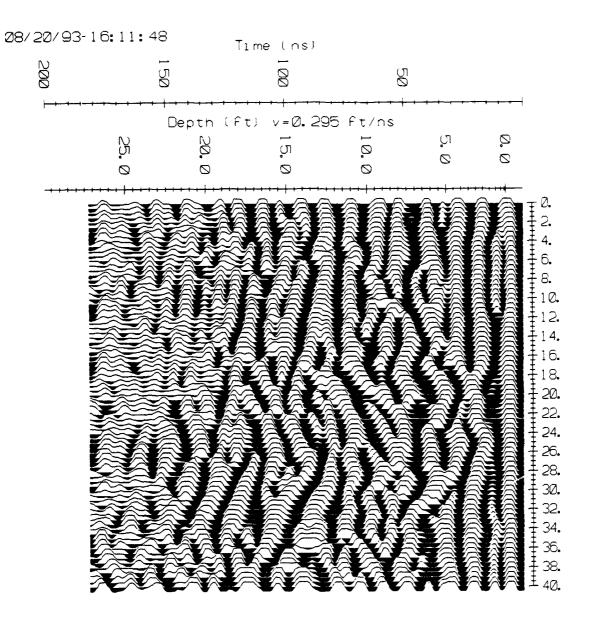


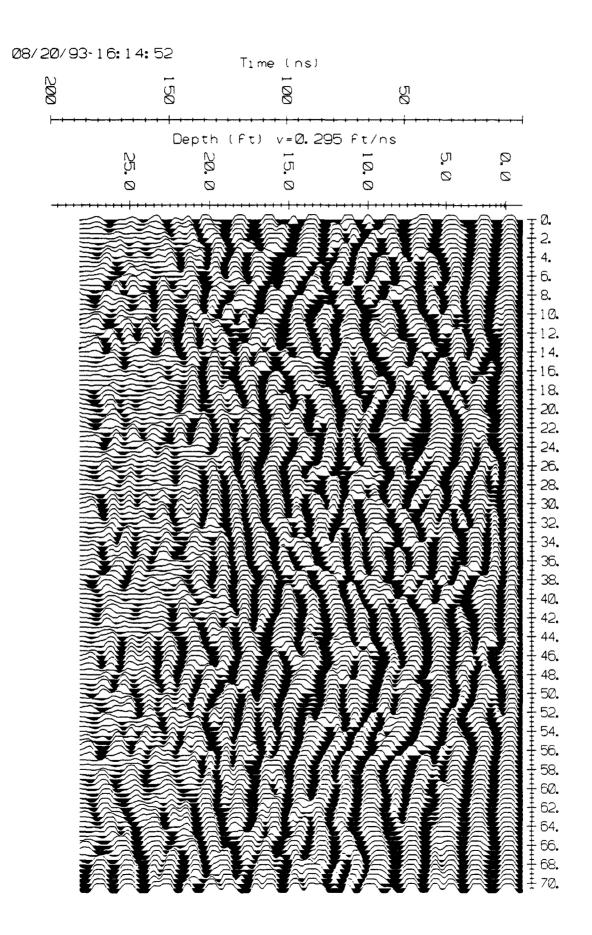

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb10.hd
   1.00000
   20/06/93
   NUMBER OF TRACES = 101
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 15
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 50.000000
  STEP SIZE USED= 0.500000POSITION UNITS= feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS = 256
                     = Reflection
   SURVEY MODE
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:30:12
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
                   : 0.080"
   Trace Width
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



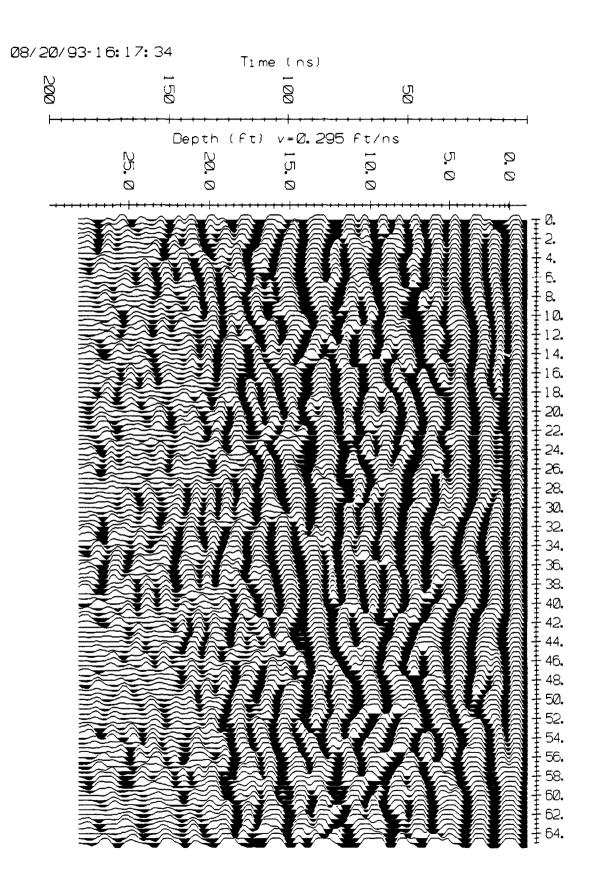

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb11.hd
   1.00000
   20/06/93
  NUMBER OF TRACES = 101
  NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 15
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
   FINAL POSITION = 50.000000
  STEP SIZE USED = 0.500000
POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
                  : 3
   Trace Stacking
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount
              : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:31:49
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
   Trace Width
                   : 0.080"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

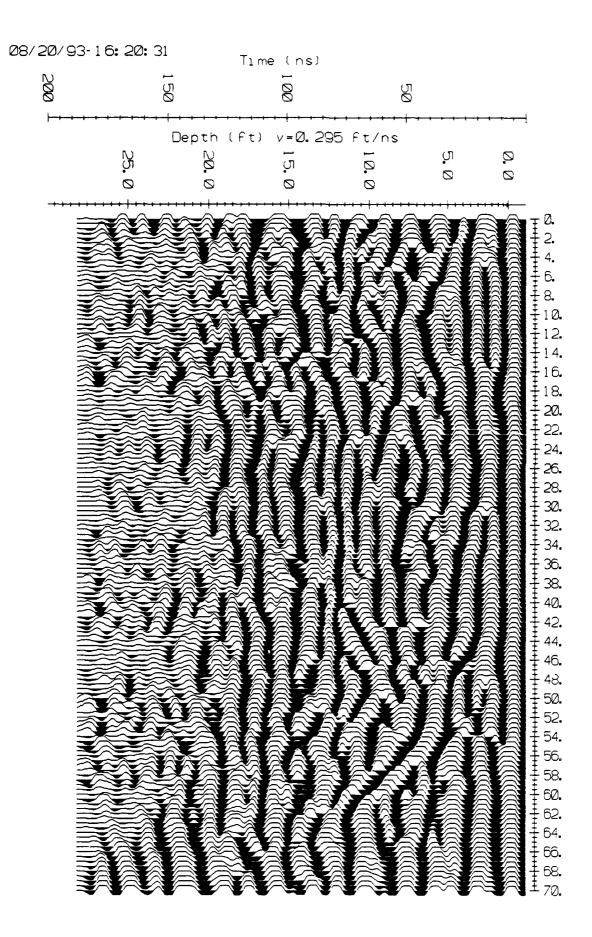
7

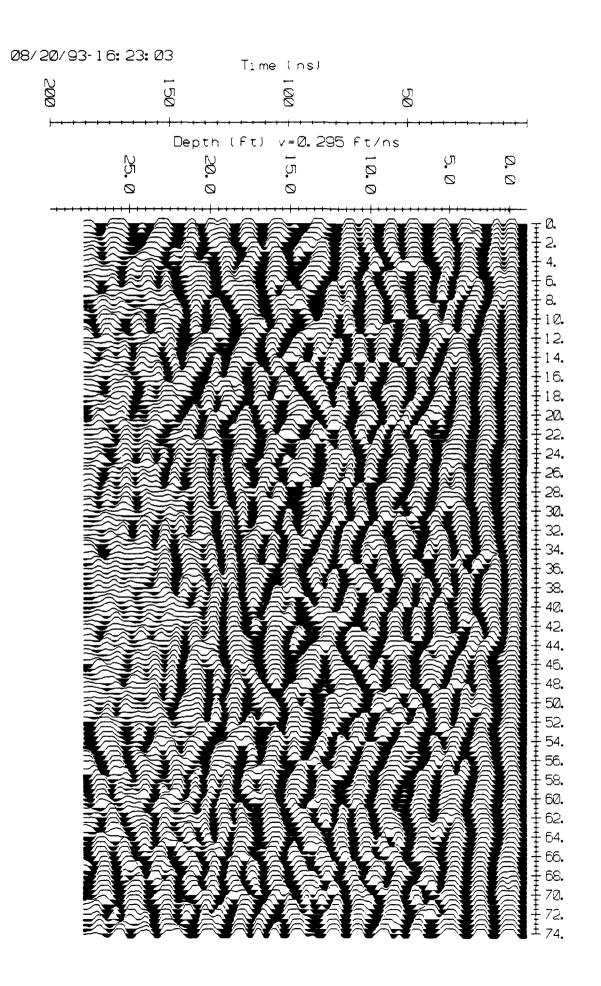

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nogrb12.hd
   1.00000
   20/06/93
   NUMBER OF TRACES = 101
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 15
   TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
   FINAL POSITION = 50.00000
   STEP SIZE USED = 0.500000
POSITION UNITS = feet
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 101
   Picture Id : 08/20/93-17:33:29
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
                   : 0.080"
   Trace Width
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

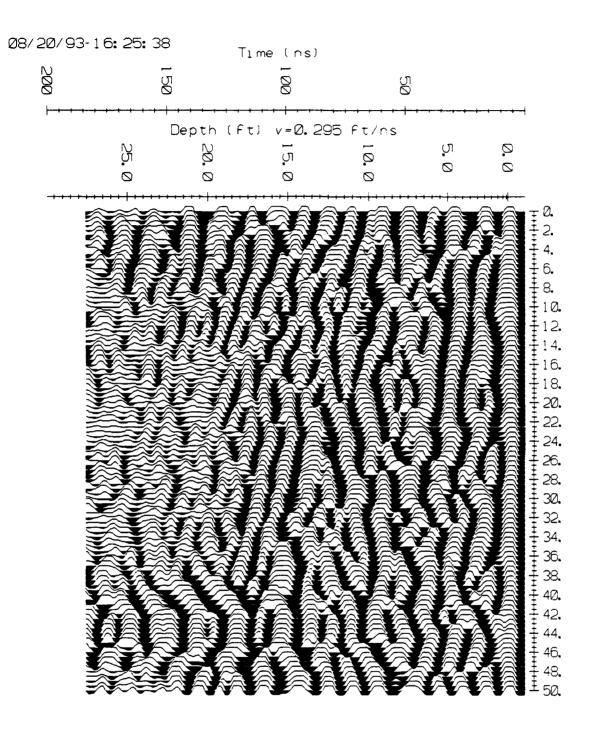
PulseEKKO Data Sheet


```
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl22.hd
   1.00000
  NOSL22 - across leach field paralell to bldgs.
   21/06/93
  NUMBER OF TRACES
                     = 81
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 23
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 40.00000
                    = 0.500000
  STEP SIZE USED
  STEP SIZE USED = 0.50
POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                     = 256
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
                    : 3
  Trace Stacking
                  : 7
  Points Stacking
  Trace Differencing: N
  Gain Type : AGC
    Window
             : 1.000 pulse widths
             : 5000 Maximum
    Amount
  Selection : Time = 0 to 200 ns
                Trace = 1 to 81
   Picture Id : 08/20/93-16:11:48
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
  Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```

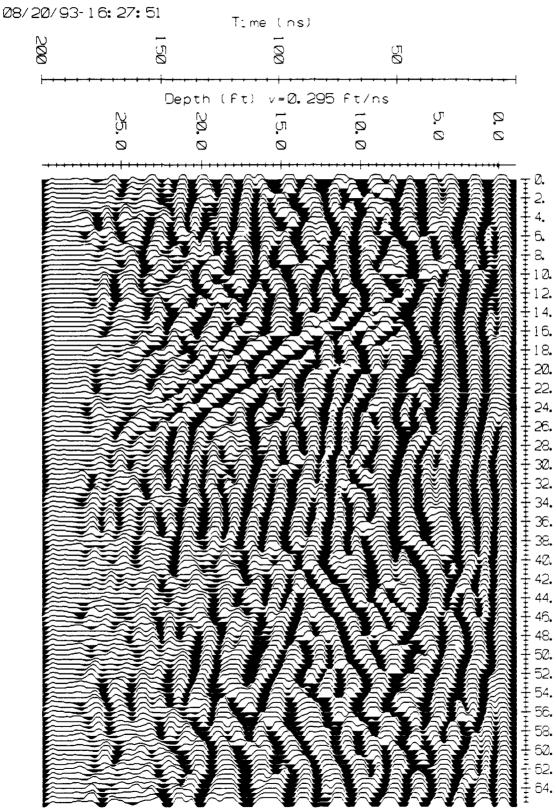


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl23.hd
   1.00000
          Perpendicular to NOSL22 over leach field
  NOSL23
   21/06/93
  NUMBER OF TRACES
                     = 142
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 15
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 70.500000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
                     = Reflection
  SURVEY MODE
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
                                 50.00
   512 -PT FFT FILTER : 30.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 142
   Picture Id : 08/20/93-16:14:52
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                   : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nosl24.hd 1.00000 NOSL24 10 feet north and paralell to NOSL23 21/06/93 NUMBER OF TRACES = 131NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 15TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 65.00000 STEP SIZE USED= 0.500000POSITION UNITS= feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400= 256NUMBER OF STACKS SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC : 1.000 pulse widths Window : 5000 Maximum Amount Selection : Time = 0 to 200 ns Trace = 1 to 131Picture Id : 08/20/93-16:17:34 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

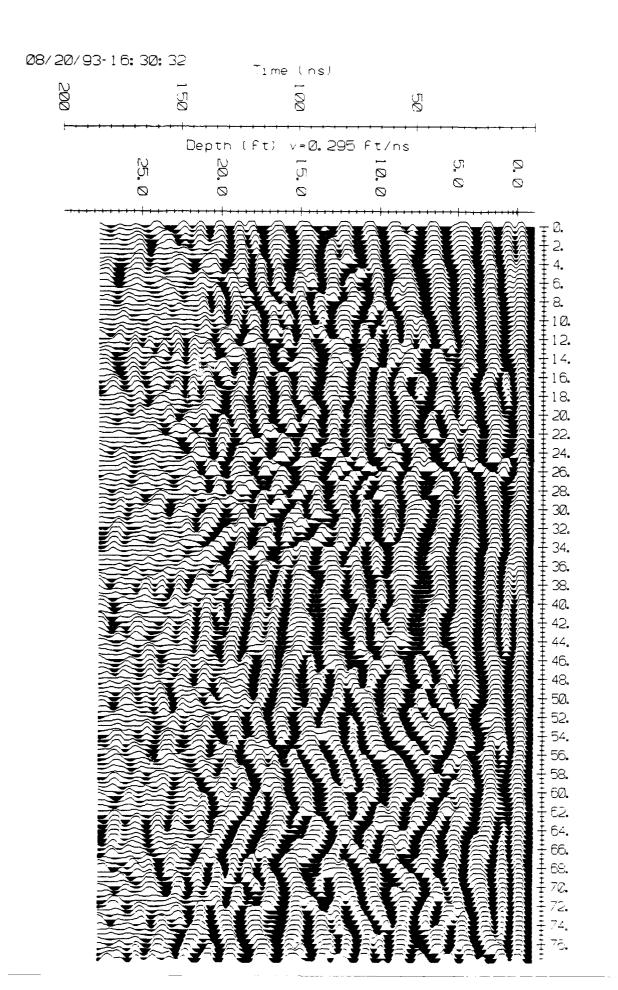

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nosl25.hd
   1.00000
   NOSL25 - in middle of NOSL23 and NOSL24
   21/06/93
  NUMBER OF TRACES
                     = 141
   NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 15
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 0.000000
   FINAL POSITION = 70.000000
  STEP SIZE USED= 0.500000POSITION UNITS= feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                     = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                              50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
              : 1.000 pulse widths
     Window
     Amount
              : 5000 Maximum
   Selection : Time = 0 to 200 ns
                Trace = 1 to 141
   Picture Id : 08/20/93-16:20:31
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                   : 0.100"
   Trace Position
                   : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```




```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nosl26.hd
   1.00000
   NOSL26 Five feet south of NOSL23
   21/06/93
  NUMBER OF TRACES
                     = 149
  NUMBER OF PTS/TRC = 250
   TIMEZERO AT POINT = 18
   TOTAL TIME WINDOW = 200
   STARTING POSITION = 0.000000
   FINAL POSITION = 74.000000
   STEP SIZE USED = 0.500
POSITION UNITS = feet
                    = 0.500000
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS
                     = 256
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                  : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
              : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
               Trace = 1 to 149
   Picture Id : 08/20/93-16:23:03
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

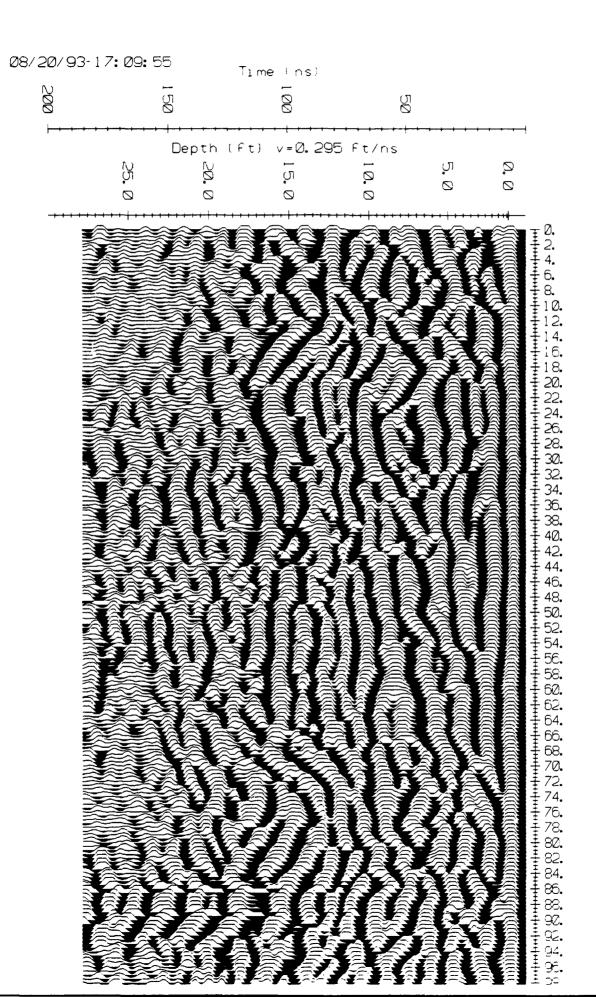


```
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl27.hd
  1.00000
  NOSL27 - crosses NOSL 23, 24, 25, 26 at 50' 20 ' from bldg
  21/06/93
  NUMBER OF TRACES
                     = 101
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 21
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 50.000000
                    = 0.500000
  STEP SIZE USED
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                     = 256
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                               50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
  Trace Stacking
                   : 3
  Points Stacking
                   : 7
  Trace Differencing: N
  Gain Type : AGC
             : 1.000 pulse widths
    Window
             : 5000 Maximum
    Amount
  Selection : Time = 0 to 200 ns
               Trace = 1 to 101
  Picture Id : 08/20/93-16:25:38
PLOT LAYOUT PARAMETERS:
  Trace Spacing : 0.050"
  Trace Width
                   : 0.100"
                   : 1.000" to 6.000"
  Trace Position
  Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
  Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```

PulseEKKO Data Sheet

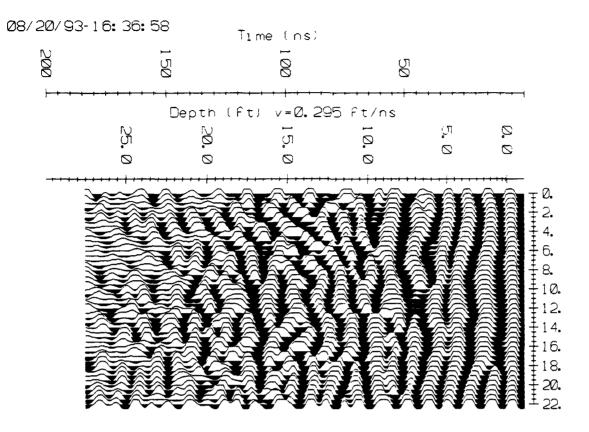



```
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl28.hd
   1.00000
  NOSL28 - crosses NOSL 23, 24, 25, 26 at 30' Point
  21/06/93
  NUMBER OF TRACES
                     = 132
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 1
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION
                     = 65.500000
                     = 0.500000
  STEP SIZE USED
  POSITION UNITS
                    = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
                     = 256
  NUMBER OF STACKS
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                             50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
  Trace Stacking
                   : 3
  Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
            : 1.000 pulse widths
    Window
             : 5000 Maximum
     Amount
            : Time = 0 to 200 ns
   Selection
               Trace = 1 to 132
   Picture Id : 08/20/93-16:27:51
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
                   : 1.000" to 6.000"
   Trace Position
   Left/Right Margin : 0.500" / 0.000"
                : 0.500"
   Border Size
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

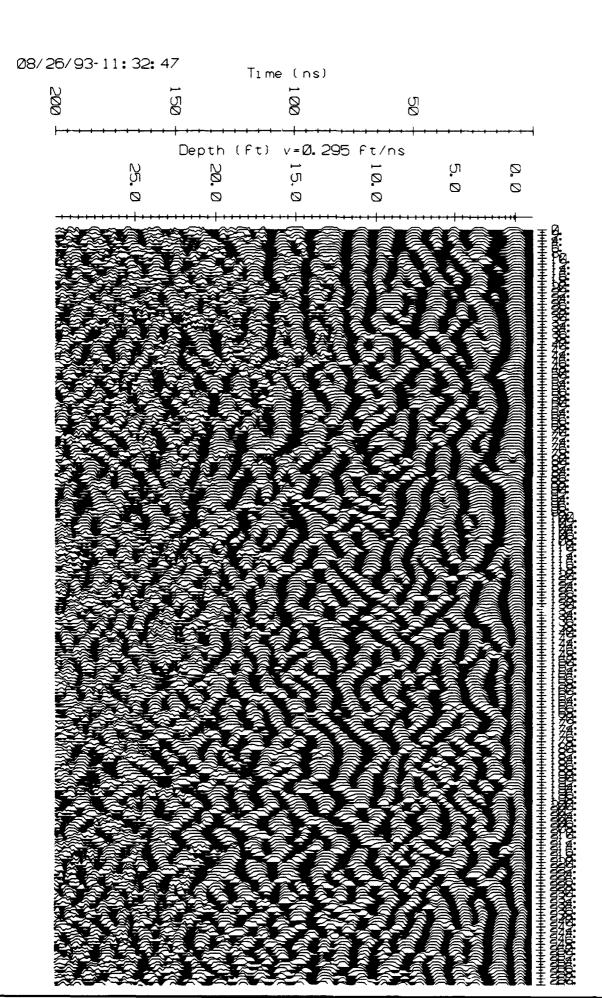
PulseEKKO Data Sheet



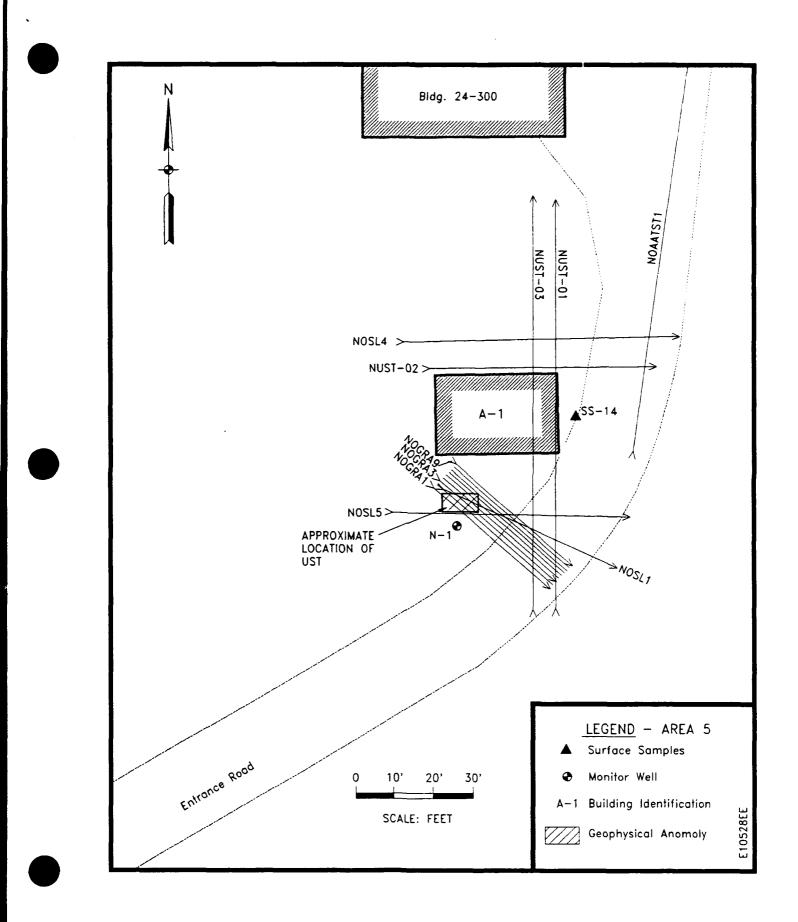

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl29.hd
   1.00000
  NOSL29 - Crosses NOSL 23,24,25,26 at 24.5 feet
  21/06/93
  NUMBER OF TRACES
                     = 156
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 19
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
  FINAL POSITION = 77.500000
                    = 0.500000
  STEP SIZE USED
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
   PULSER VOITAGE (V) = 400
  NUMBER OF STACKS
                     = 256
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                             50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
                   : 3
  Trace Stacking
                    : 7
  Points Stacking
  Trace Differencing: N
  Gain Type : AGC
    Window
             : 1.000 pulse widths
             : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
               Trace = 1 to 156
   Picture Id : 08/20/93-16:30:32
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
  Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



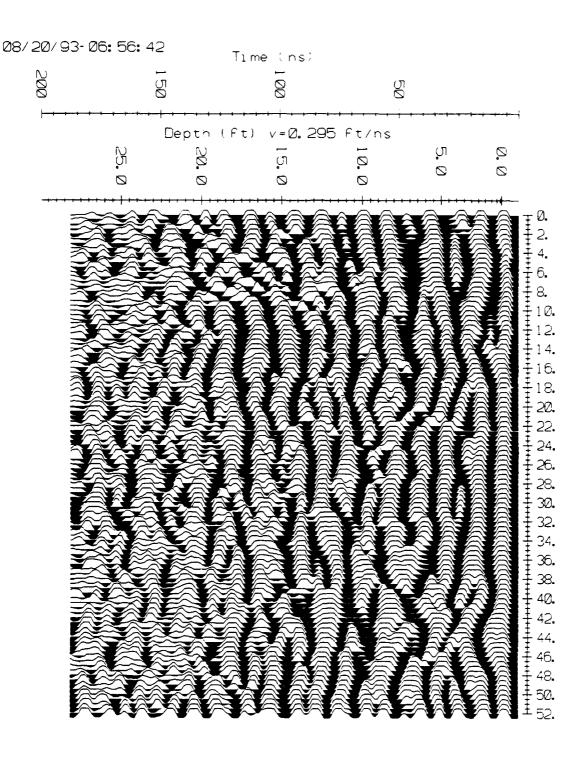
PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nosl30.hd 1.00000 NOSL30 - Line behind NOAA blue building 21/06/93 NUMBER OF TRACES = 197 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 18 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 98.000000 STEP SIZE USED = 0.500000POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 256= Reflection SURVEY MODE SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz PROCESSING SELECTED: Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200 ns Trace = 1 to 197Picture Id : 08/20/93-16:33:30 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

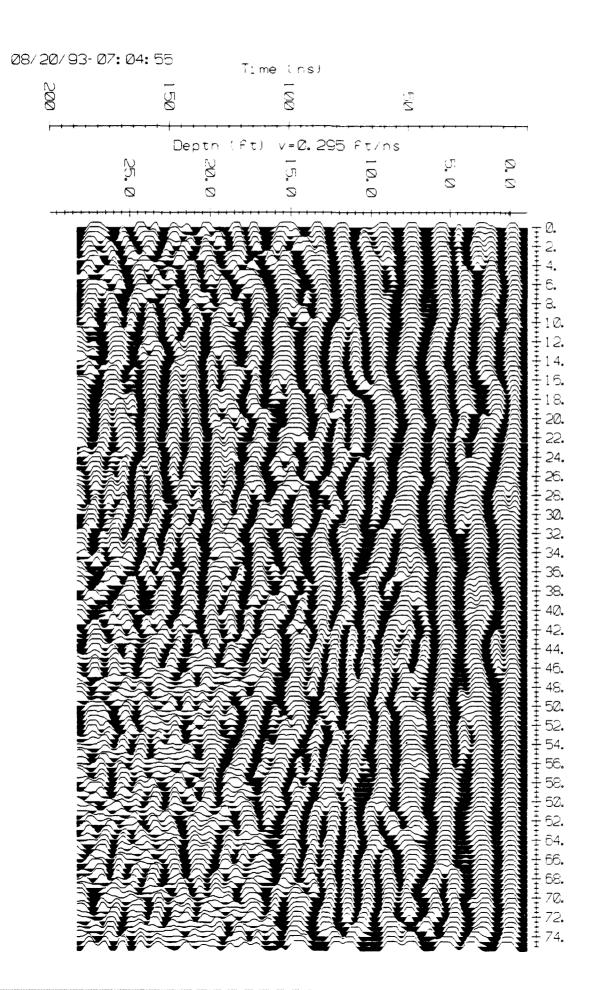

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nosl30.hd 1.00000 NOSL30 - Line behind NOAA blue building 21/06/93 NUMBER OF TRACES = 197 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 18 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 98.00000STEP SIZE USED = 0.500000POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 256 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths : 5000 Maximum Amount Selection : Time = 0 to 200 ns Trace = 1 to 197Picture Id : 08/20/93-17:09:55 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.040" Trace Width : 0.080" Trace Position 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

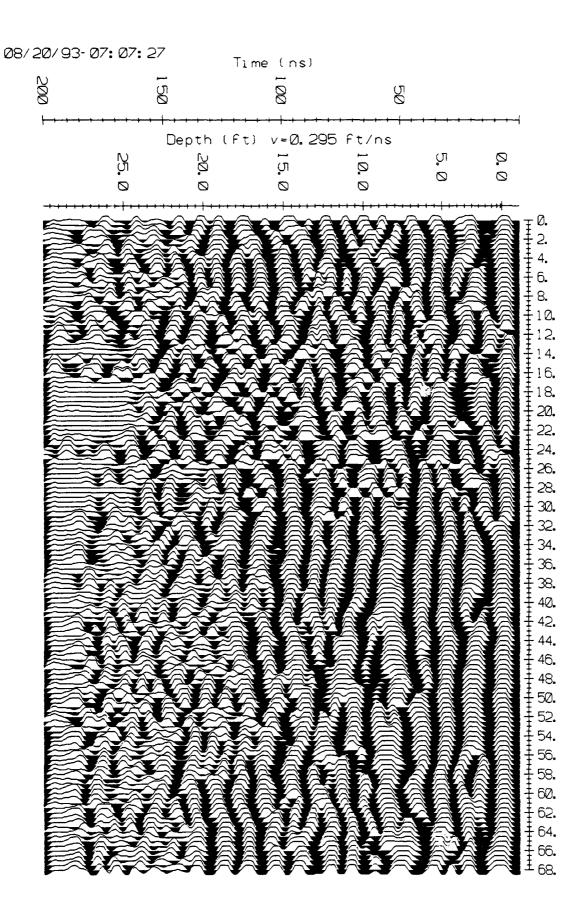
PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nosl31.hd 1.00000 NOSL31 - Line across stink pit behind old fire station 21/06/93 NUMBER OF TRACES = 45 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 21 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 22.000000STEP SIZE USED = 0.500000POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 256 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** : 3 Trace Stacking : 7 Points Stacking Trace Differencing: N Gain Type : AGC : 1.000 pulse widths Window : 5000 Maximum Amount Selection : Time = 0 to 200 ns Trace = 1 to 45Picture Id : 08/20/93-16:36:58 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

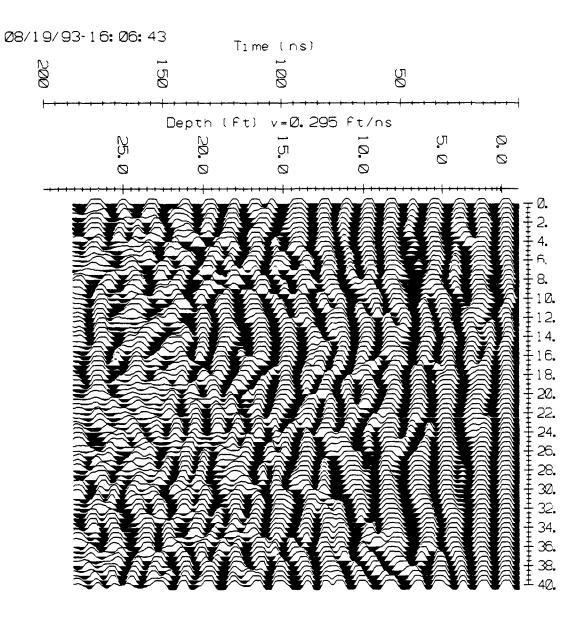


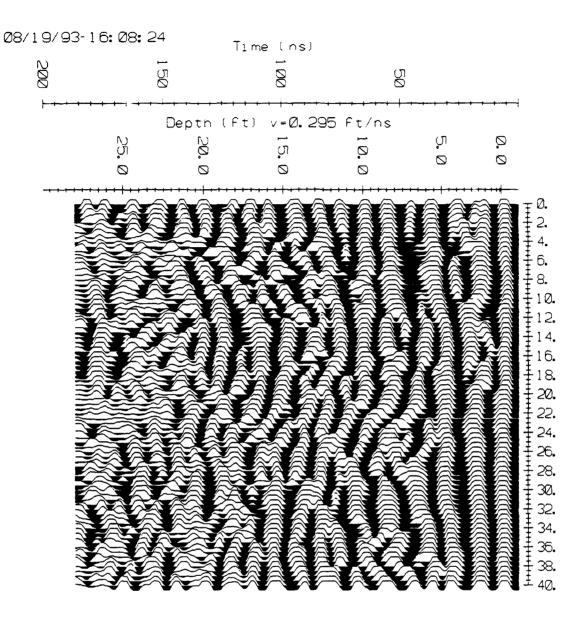

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\noaatst2.hd
   1.00000
   13/06/93
   NUMBER OF TRACES
                     = 304
   NUMBER OF PTS/TRC = 1250
   TIMEZERO AT POINT = 52
   TOTAL TIME WINDOW = 1000
STARTING POSITION = 0.000000
   FINAL POSITION = 303.00000
   STEP SIZE USED= 1.000POSITION UNITS= feet
                    = 1.000000
   NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS = 64
   SURVEY MODE
                    = Reflection
   SOURCE DATA FILE = A:\noaatst2
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
PROCESSING SELECTED:
   Trace Stacking
                  : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
                Trace = 1 to 304
   Picture Id : 08/26/93-11:32:47
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.030"
   Trace Width
                    : 0.060"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

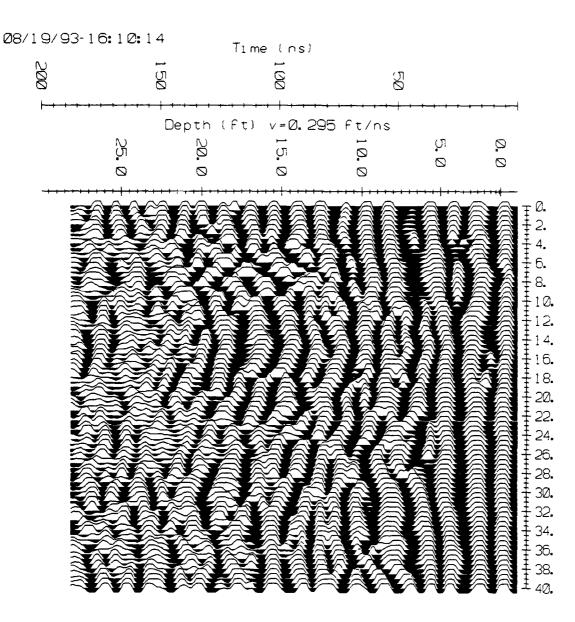


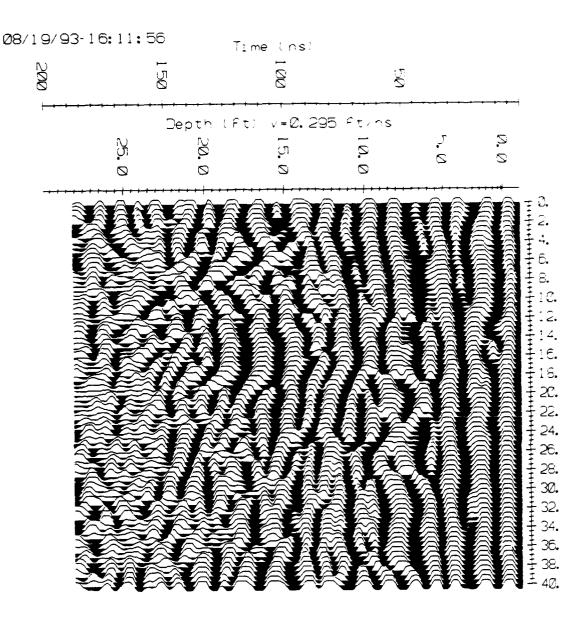

·

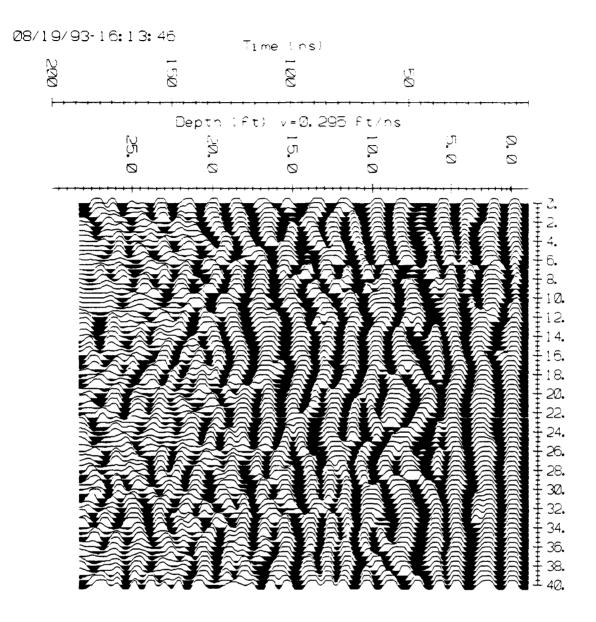

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nosl1.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 105 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 16TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 52.000000STEP SIZE USED = 0.500000POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION' = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200 ns Trace = 1 to 105Picture Id : 08/20/93-06:56:42 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" : 0.100" Trace Width Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

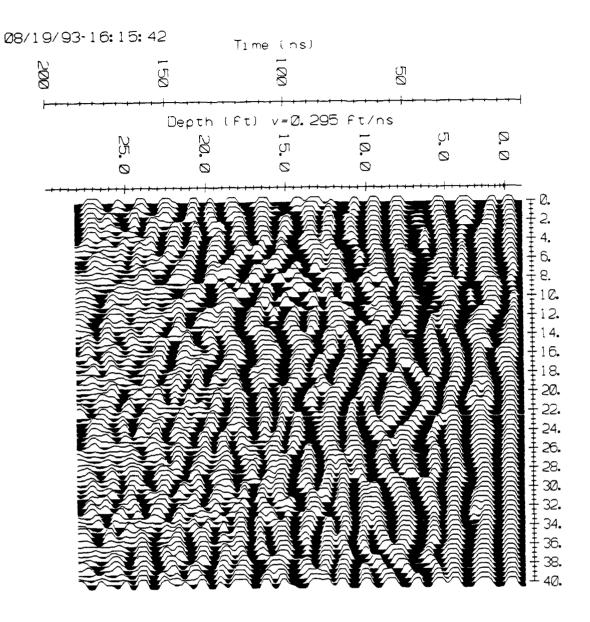

```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nosl4.hd
  1.00000
   19/06/93
  NUMBER OF TRACES
                     = 151
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 14
  TOTAL TIME WINDOW = 200
  STARTING POSITION = 0.000000
                     = 75.000000
  FINAL POSITION
  STEP SIZE USED
                     = 0.500000
  POSITION UNITS
                     = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                     = 64
  SURVEY MODE
                     = Reflection
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00
                                 50.00
                                         170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                    : 3
                  : 7
   Points Stacking
  Trace Differencing: N
   Gain Type : AGC
    Window : 1.000 pulse widths
    Amount
             : 5000 Maximum
  Selection : Time = 0 to 200 ns
               Trace = 1 to 151
  Picture Id : 08/20/93-07:04:55
PLOT LAYOUT PARAMETERS:
   Trace Spacing
                   : 0.050"
   Trace Width
                    : 0.100"
                   : 1.000" to 6.000"
   Trace Position
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```

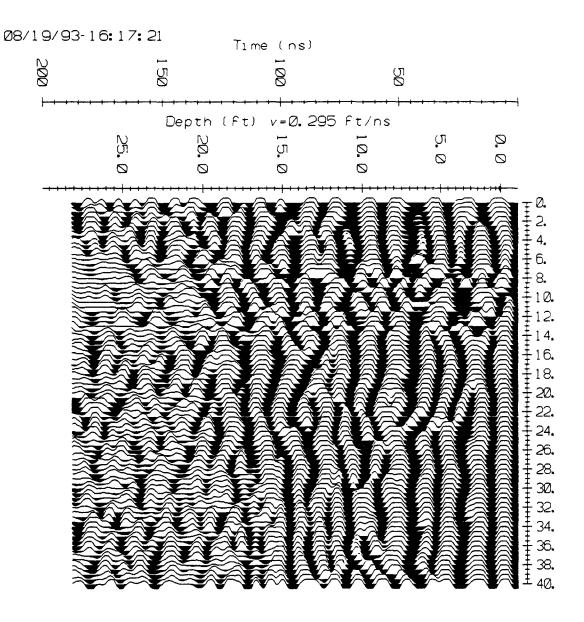


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nos15.hd
   1.00000
   19/06/93
  NUMBER OF TRACES = 137
  NUMBER OF PTS/TRC = 250
  TIMEZERO AT POINT = 1
  TOTAL TIME WINDOW = 200
STARTING POSITION = 0.000000
  FINAL POSITION = 68.00000
  STEP SIZE USED= 0.500000POSITION UNITS= feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS = 64
   SURVEY MODE
                     = Reflection
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
   512 -PT FFT FILTER : 30.00 50.00
                                          170.00 230.00 MHz
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount : 5000 Maximum
   Selection : Time = 0 to 200 ns
                Trace = 1 to 137
   Picture Id : 08/20/93-07:07:27
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.050"
   Trace Width
                    : 0.100"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```

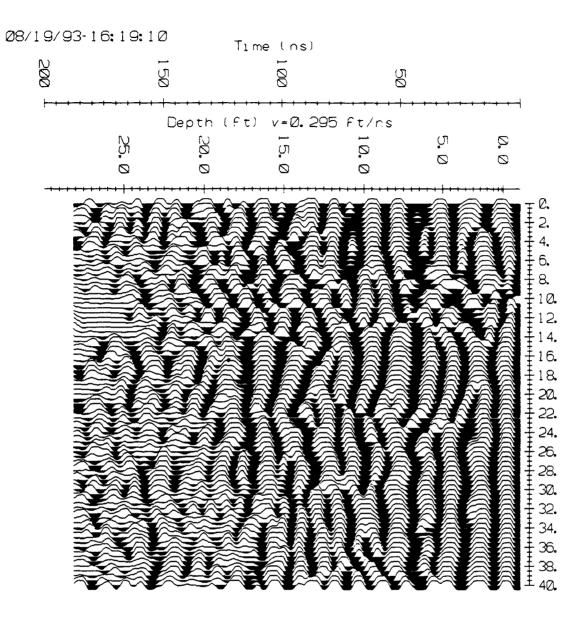


PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogral.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 15 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.000000 = 0.500000 STEP SIZE USED POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200ns Trace = 1 to 81Picture Id : 08/19/93-16:06:43 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

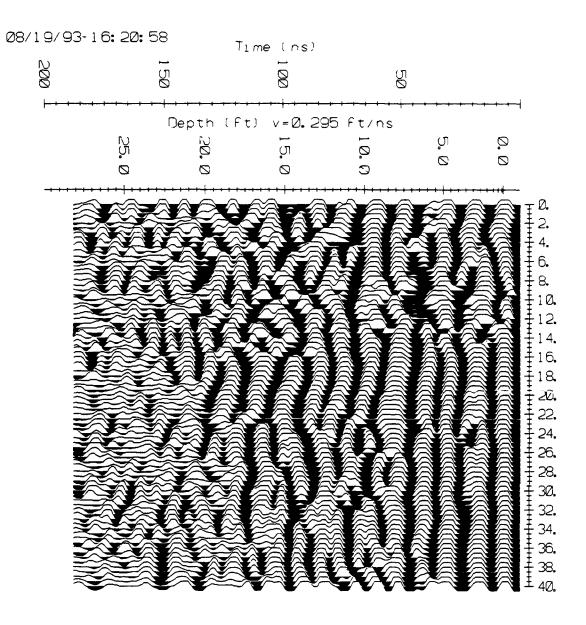

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogra2.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 17 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.000000STEP SIZE USED= 0.50POSITION UNITS= feet = 0.500000NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths : 5000 Maximum Amount Selection : Time = 0 to 200 ns Trace = 1 to 81Picture Id : 08/19/93-16:08:24 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

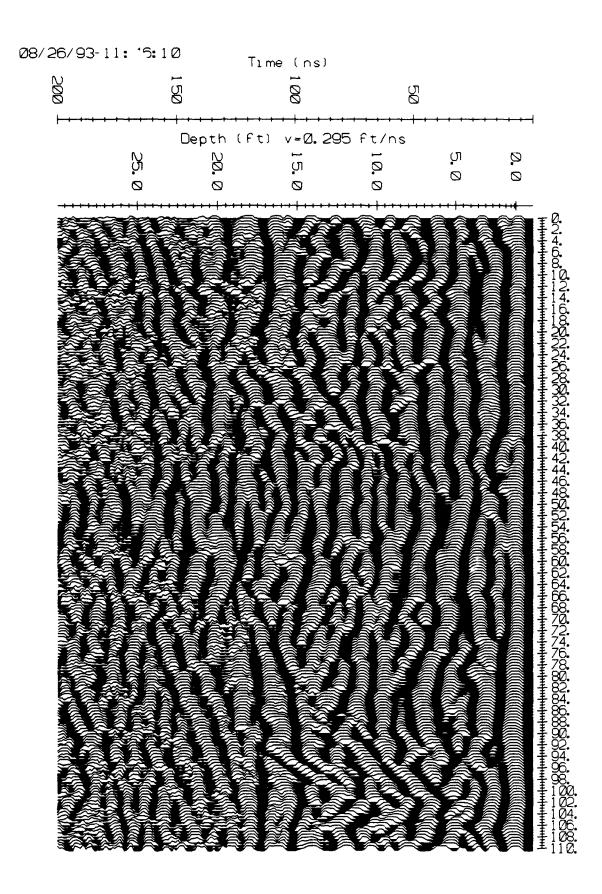

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogra3.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 15 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.000000 = 0.500000 STEP SIZE USED = 0.50 POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz PROCESSING SELECTED: Trace Stacking : 3 : 7 Points Stacking Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200ns Trace = 1 to 81Picture Id : 08/19/93-16:10:14 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

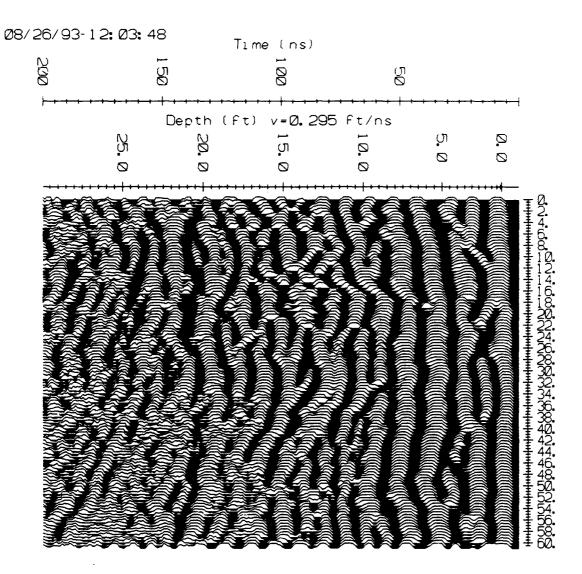

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogra4.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES **= 81** NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 15 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.00000STEP SIZE USED = 0.500000 POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC : 1.000 pulse widths Window : 5000 Maximum Amount Selection : Time = 0 to 200ns Trace = 1 to \$1Picture Id : 08/19/93-16:11:56 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

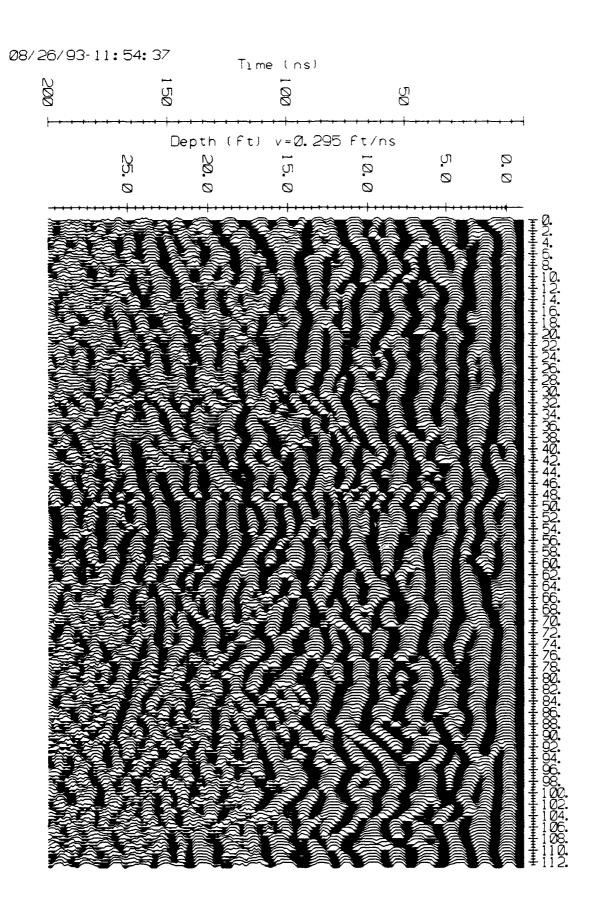

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Da_a File = D:\EKKO\nogra5.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 14 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.000000STEP SIZE USED = 0.500000POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400= 128 NUMBER OF STACKS SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHULD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200 ns Trace = 1 to 81Picture Id : 08/19/93-16:13:46 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

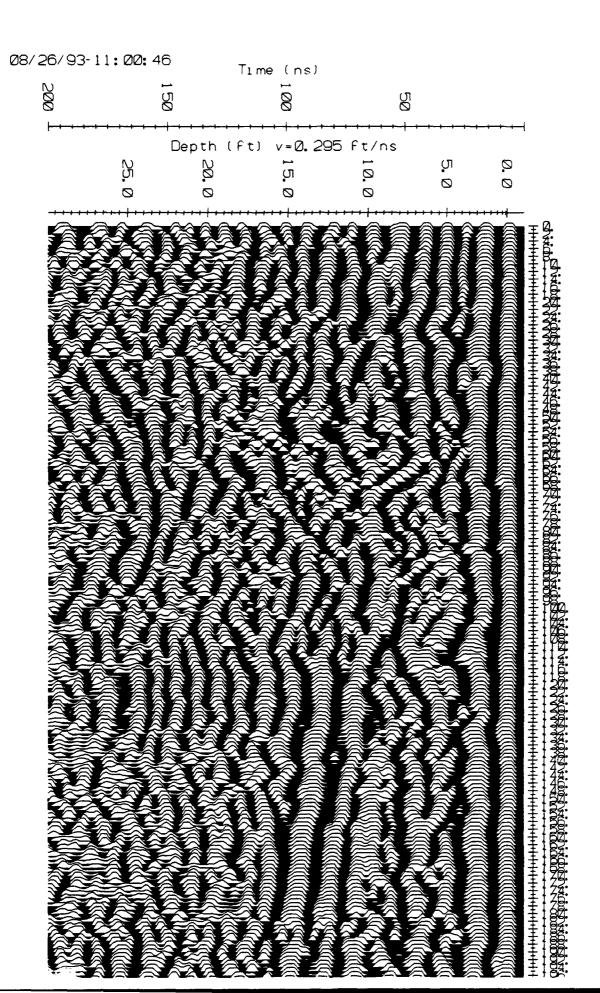

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogra6.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250 TIMEZERO AT POINT = 15 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 = 40.000000FINAL POSITION STEP SIZE USED POSITION UNITS = 0.500000= feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 170.00 230.00 MHz 512 -PT FFT FILTER : 30.00 50.00 PROCESSING SELECTED: : 3 Trace Stacking : 7 Points Stacking Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200 ns Trace = 1 to 81Picture Id : 08/19/93-16:15:42 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" : 0.100" Trace Width Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi

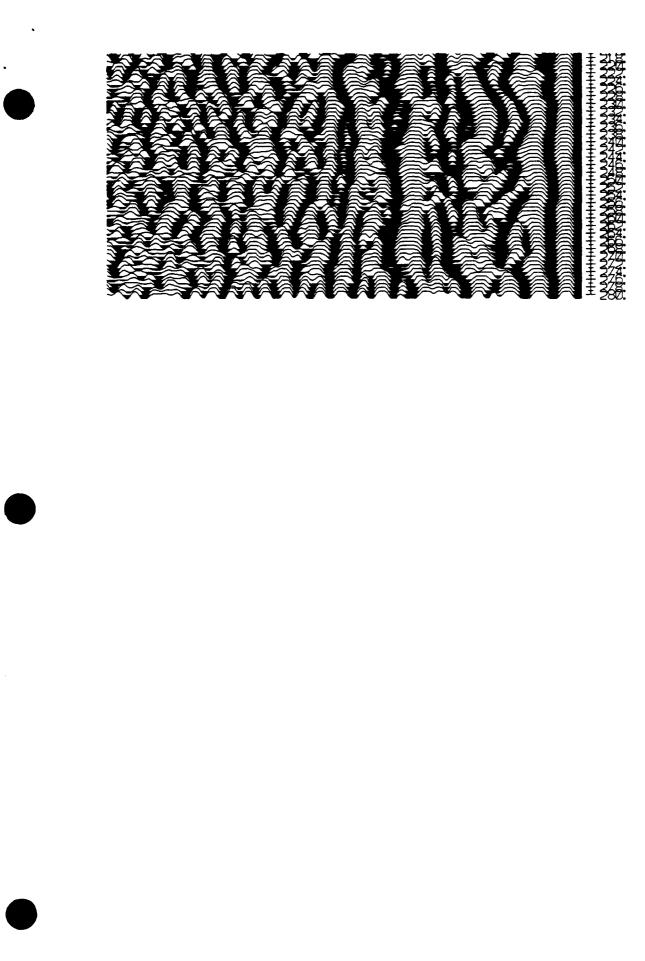

PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogra7.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 15 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.000000 STEP SIZE USED = 0.500000 STEP SIZE USED= 0.50POSITION UNITS= feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz PROCESSING SELECTED: Trace Stacking : 3 : 7 Points Stacking Trace Differencing: N Gain Type : AGC : 1.000 pulse widths Window Amount : 5000 Maximum Selection : Time = 0 to 200 ns Trace = 1 to 81Picture Id : 08/19/93-16:17:21 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi


PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogra8.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 15 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.000000 STEP SIZE USED = 0.500000 STEP SIZE USED= 0.50POSITION UNITS= feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz **PROCESSING SELECTED:** : 3 Trace Stacking Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200 ns Trace = 1 to 81Picture Id : 08/19/93-16:19:10 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi


PulseEKKO Data Sheet DATA FILE #1 PARAMETERS: Data File = D:\EKKO\nogra9.hd 1.00000 Classic Owl leach field & tank 18/06/93 NUMBER OF TRACES = 81 NUMBER OF PTS/TRC = 250TIMEZERO AT POINT = 16 TOTAL TIME WINDOW = 200 STARTING POSITION = 0.000000 FINAL POSITION = 40.000000= 0.500000 STEP SIZE USED POSITION UNITS = feet NOMINAL FREQUENCY = 200.000000 ANTENNA SEPARATION = 3.000000 PULSER VOLTAGE (V) = 400NUMBER OF STACKS = 128 SURVEY MODE = Reflection SIGNAL SATURATION CORRECTION APPLIED FIRST BREAK POINT CORRECTED. THRESHOLD = 10000 FIRST BREAK SHIFT APPLIED. 512 -PT FFT FILTER : 30.00 50.00 170.00 230.00 MHz PROCESSING SELECTED: Trace Stacking : 3 Points Stacking : 7 Trace Differencing: N Gain Type : AGC Window : 1.000 pulse widths Amount : 5000 Maximum Selection : Time = 0 to 200n Trace = 1 to 81Picture Id : 08/19/93-16:20:58 PLOT LAYOUT PARAMETERS: Trace Spacing : 0.050" Trace Width : 0.100" Trace Position : 1.000" to 6.000" Left/Right Margin : 0.500" / 0.000" Border Size : 0.500" Page Length/Width : 11.000" / 8.500" Printer Name : HP LaserJet II 300dpi


```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nust-01.hd
   1.00000
   14/06/93
  NUMBER OF TRACES
                     = 221
  NUMBER OF PTS/TRC = 375
  TIMEZERO AT POINT = 27
  TOTAL TIME WINDOW = 300
  STARTING POSITION = 0.000000
  FINAL POSITION = 110.000000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                   = 128
   SURVEY MODE
                     = Reflection
   SOURCE DATA FILE = A:\nust-01
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK SHIFT APPLIED.
PROCESSING SELECTED:
                    : 3
   Trace Stacking
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
    Window
             : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 221
   Picture Id : 08/26/93-11:46:10
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.030"
   Trace Width
                    : 0.060"
  Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
  Data File = D:\EKKO\nust-02.hd
  1.00000
  14/06/93
  NUMBER OF TRACES
                     = 122
  NUMBER OF PTS/TRC = 375
  TIMEZERO AT POINT = 25
  TOTAL TIME WINDOW = 300
  STARTING POSITION = 0.000000
  FINAL POSITION = 60.500000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
  PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS = 128
  SURVEY MODE
                     = Reflection
  SOURCE DATA FILE = A: nust-2
  SIGNAL SATURATION CORRECTION APPLIED
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
  FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
PROCESSING SELECTED:
  Trace Stacking : 3
                  : 7
  Points Stacking
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount
             : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 122
   Picture Id : 08/26/93-12:03:48
PLOT LAYOUT PARAMETERS:
  Trace Spacing : 0.030"
   Trace Width
                   : 0.060"
  Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
  Page Length/Width : 11.000" / 8.500"
  Printer Name : HP LaserJet II 300dpi
```

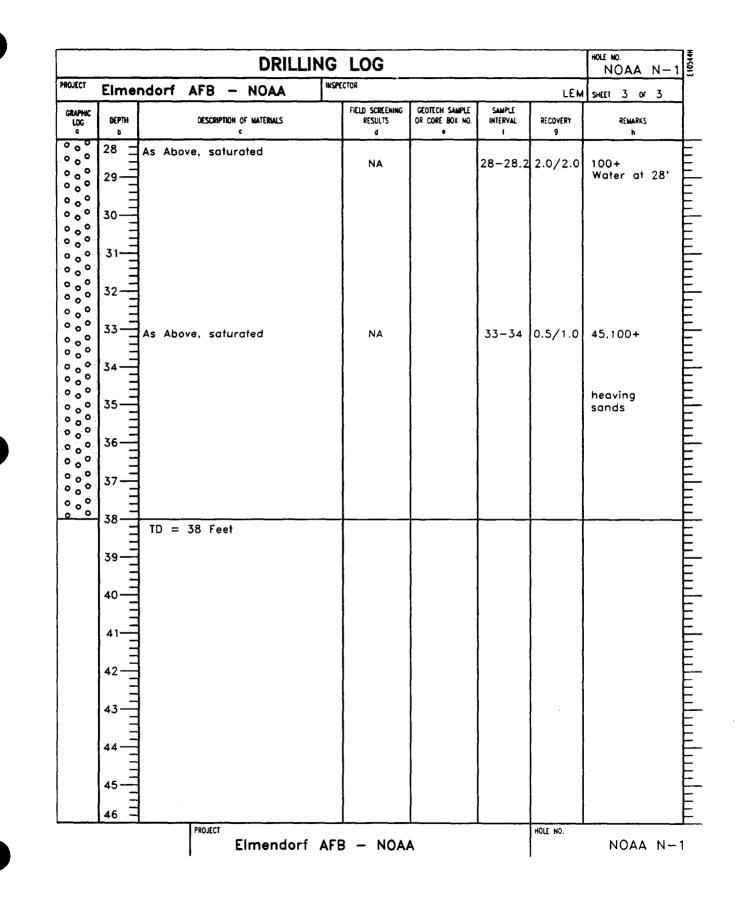



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\nust-03.hd
   1.00000
   14/06/93
  NUMBER OF TRACES
                     = 226
  NUMBER OF PTS/TRC = 375
  TIMEZERO AT POINT = 17
   TOTAL TIME WINDOW = 300
   STARTING POSITION = 0.000000
  FINAL POSITION = 112.500000
  STEP SIZE USED
                    = 0.500000
  POSITION UNITS = feet
  NOMINAL FREQUENCY = 200.000000
  ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
  NUMBER OF STACKS
                    = 128
   SURVEY MODE
                     = Reflection
   SOURCE DATA FILE = A:\nust-03
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
PROCESSING SELECTED:
                   : 3
   Trace Stacking
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
            : 1.000 pulse widths
     Window
             : 5000 Maximum
     Amount
   Selection : Time = 0 to 200 ns
               Trace = 1 to 226
   Picture Id : 08/26/93-11:54:37
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.030"
   Trace Width
                   : 0.060"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```



```
PulseEKKO Data Sheet
DATA FILE #1 PARAMETERS:
   Data File = D:\EKKO\noaatstl.hd
   1.00000
   13/06/93
   NUMBER OF TRACES = 281
   NUMBER OF PTS/TRC = 1250
   TIMEZERO AT POINT = 52
   TOTAL TIME WINDOW = 1000
  STARTING POSITION = 0.000000
  FINAL POSITION = 280.000000
  STEP SIZE USED= 1.000000POSITION UNITS= feet
  NOMINAL FREQUENCY = 200.000000
   ANTENNA SEPARATION = 3.000000
   PULSER VOLTAGE (V) = 400
   NUMBER OF STACKS = 64
   SURVEY MODE
                    = Reflection
   SOURCE DATA FILE = A:\noaatest
   SIGNAL SATURATION CORRECTION APPLIED
   FIRST BREAK POINT CORRECTED. THRESHOLD = 10000
   FIRST BREAK SHIFT APPLIED.
                             50.00
                                         170.00 230.00 MHz
   4096-PT FFT FILTER : 30.00
PROCESSING SELECTED:
   Trace Stacking
                   : 3
   Points Stacking
                   : 7
   Trace Differencing: N
   Gain Type : AGC
     Window : 1.000 pulse widths
     Amount : 5000 Maximum
   Selection : Time = 0 to 200 ns
               Trace = 1 to 281
   Picture Id : 08/26/93-11:00:46
PLOT LAYOUT PARAMETERS:
   Trace Spacing : 0.040"
   Trace Width
                   : 0.080"
   Trace Position : 1.000" to 6.000"
   Left/Right Margin : 0.500" / 0.000"
   Border Size : 0.500"
   Page Length/Width : 11.000" / 8.500"
   Printer Name : HP LaserJet II 300dpi
```


APPENDIX B


.

Soil Boring Logs

			-		LLING							HOLE	IOAA	N-	1
. COMPANY	NAME RA	ADIAN	COI	RPORATION	2	DRILLING	SUBCONTRACT	^{or} Test	er			SHEET	1 0	F 3	
3. PROJECT				AFB - NO	AA		4. LOCATIO	" NC)AA			-4	- <u>-</u>		-
5. NAME OF	DRILLER (Chuck	Gri	nneil			6. NANUFA	TURER'S DE	SIGNATION	OF DRUL M	obile B	-61			-
	D TYPES OF PLING EQUIP		3″ 5	Split Spoon			8. HOLE LO	CATION 20	5424	29.11,	16084	05.4	6		-
			3" E	Brass Liners			9. SURFACI	ELEVATION	201	.40	·····				
		ŀ									11. DATE COMPL			.r. 0	
2. OVERBUI	RDEN THICKN	ESS	NA	···		·····		GROUNDWAT			 28.0 Fe		<u> </u>	1 <u>E</u> 9	<u> </u>
I3. DEPTH E	DRILLED INTO	ROCK	NA			<u> </u>	16. DEPTH	TO WATER A		ED TIME AFTER	DRILLING COMPLE	TED			
4. TOTAL D	EPTH OF HO	LE		.0 Feet			17. OTHER	WATER LEVE		<u>Catter</u>	well insta m	allatio	n)		
18. GEOTECH	INICAL SAMP	LES		DISTURBED		UNDISTURB	ED 19	. TOTAL NUI	ABER OF	CORE BOXES	 NA		<u> </u>		
20. SAMPLES	S FOR CHEMI	CAL ANALYSIS		VOC	MET	ALS	OTHER	SPECIFY)	OTH	R (SPECIFY)	OTHER (SPE	CIFY)		AL CORE	
				1									REC	overy 7	
22. DEPOSIT	ion of hole			BACKFILLED (Volciay	MONITORI		OTHER	SPECIFY)	23. SIG	NATURE OF INS	PECTOR	······································			
				Grout)	Х						r			LEN	N
GRAPHIC LOG q	DEPTH b	- 	DES	CRIPTION OF MATERIALS) SCREENING RESULTS d (OVM)	GEOTECH OR CORE e	BOX NO.	SAMPLE INTERVAL f	RECOVERY 9		REMARK	s	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GRAVEL olive sanc Sanc grain subc com	LLY : gre i, 2! d ve nec, angu post), low plastic ML) SAND with sil (5Y 3/2), 5% gravel, 5% (c) grave	t: Dark 70% 2 silt. ry coar gravel phic W)	se	o 0 0			2-4 4-6 7-9	2.0/2.0 2.0/2.0 2.0/2.0	20,8		100	
0 0 0 0 0 0 0 0 0 0 0	9 - 1 10 - 1														

•

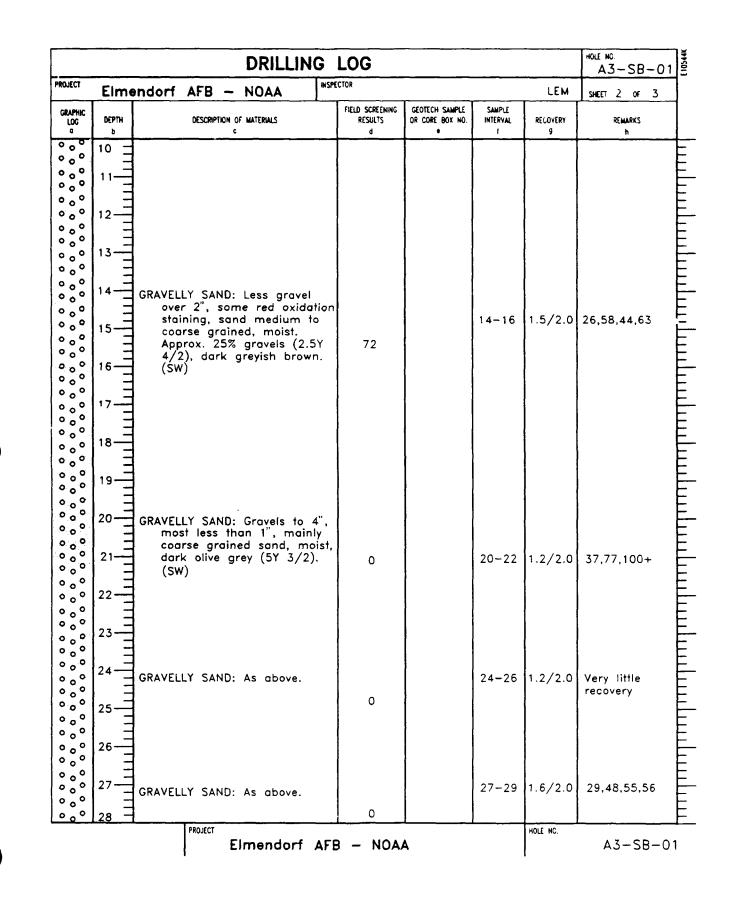
r	Fime	DRILLING	ECTOR			LEM	NOAA N-1	1054#
IIC	DEPTH	DESCRIPTION OF WATERVALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	SAMPLE INTERVAL	RECOVERY	SHEET 2 OF 3 REMARKS	
0 0	10 =		1					F
0	11-1		ļ					E
	111							E
	12							E
•								E
000000000000000000000000000000000000000	13							F
0 0	14							E
		As Above, moist to saturated	0		14-16	2.0/2.0	16,29,40,88	E
	15							Ē
0 0	16-							E
0					ļ			E
0	17							E
•								E
。 。	18							F
。 。	19-							E
		As Above, moist	0		19-21	2.0/2.0	18,51,41,46	E
0	20		1					E
0	21-							E
			[E
0	22							E
0	27							F
0	23			ł	[E
0 0	24 -	As Above	0	l	24-26	2.0/2.0	40,56,88,68	E
o	_ =		ļ]		2.0/ 2.0	+0,00,00,00	Ē
0	25-							E
。 。	26							E
0 0								F
0	27							F
0	28 -							F
		PROJECT Elmendorf AF	D			HOLE NO.	NOAA N-	

					LLING							HOLE NO. NOA	A N-2
I. COMPANY	NAME RA	DIAN	CO	RPORATION	2. D	RILLING SU	BCONTRACT	^{or} Test	er			SHEET 1	0F 3
3. PROJECT	El	mend	orf	AFB - NO	AA		4. LOCATIO	NC	AA				
5. NAME OF	DRILLER C	Chuck	Gri	nnell			6. MANUFA	CTURER'S DES	GNATION	OF DRILL M	obile B	-61	
7. SIZES AN	id types of Pling Equipi	DRILLING		Split Spoon			8. HOLE L	DCATION 26	5424	190.83,	16805	84.92	
	-		3" E	Brass Liners				E ELEVATION					
					· · · · · · · · · · · · · · · · · · ·						11. DATE COMPL		JNE 93
2. OVERBUI	rden Thickni	I	NA	••••				GROUNDWATE		10000	29.0 Fe		JNE 95
3. DEPTH I	DRILLED INTO	ROCK	NA	<u></u>			16. DEPTH	TO WATER A	ND ELAPS	SED TIME AFTER	DRILLING COMPLE	TED	<u> </u>
4. TOTAL D	DEPTH OF HO	LE		.0 Feet			17. OTHER	WATER LEVE	_	8.4' (atte REMENTS (SPECIF	e <mark>r well in</mark> M	stallation	<u>יי</u> י
8. GEOTECH	HNICAL SAMP	LES	<u> </u>	DISTURBED	UN	DISTURBED	1	9. TOTAL NUM	BER OF	CORE BOXES	NA		
O. SAMPLES	S FOR CHEM	CAL ANALYSI	s	VOC	METALS		OTHER	(SPECIFY)	OTH	ER (SPECIFY)	OTHER (SPE		TOTAL CORE
													RECOVERY Z
2. DEPOSIT	ion of hole			BACKFILLED (Volciay	MONITORING	WELL	OTHER	(Specify)	23. SIG	NATURE OF INST	PECTOR		
				(Voicidy Grout)	X			T			······		SEF
GRAPHIC LOG g	DEPTH b		DES	SCRIPTION OF MATERIALS			SCREENING SULTS d (OVM)	GEOTECH : OR CORE E		SAMPLE INTERVAL I	RECOVERY 9		ARKS h
	11	CLAYE	Y SIL	T: Slightly m brown (5Y	oist, 4/4)		Space pm)						F
	1	lo	w plo	asticity, minor ained sand.			.o´		1	0-2	2.0/2.0		F
			ne gi	diffed Suild.									Ę
	2												Ę
													E
0 ° °	3							1					Ē
000						ľ							E
		GRAVE	ELLY	SAND: Gravels dark olive gr	s (20%)		3.0			4-6	1.0/2.0	100+ (grave	n E
0.0	5	(5	5Y 3/	2), moist; so sorted, very	ind is			}				10.2.0	É
000		р С	arse	grained. (SW	/)								F
0.0	6												E
° °													
0 0 0 0 0 0	7	Metan	norph	ic gravels									
0 ~ 0	8							·					E
°°°	,												F
	9		ELLY noist.	SAND: As abo	ove,	1	0.1			9-11	1.5/2.0	15,31,	75,64
0 _ 0								ł					E
ິິ	10 -												

ROJECT	Elma		INSPECTOR	·····			NOAA N-
GRAPHIC LOG	DEPTH	DESCRIPTION OF WATERALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	SAMPLE INTERVAL	SEF	SHEET 2 OF 3
000	, 10	SANDY GRAVEL: Dark olive gro (5Y 3/2), gravels and same		•	1	9	hh
000	11	poorly sorted, gravels subrounded, sand (25%) subangular to subrounded					
00000	12	moist. (GW)					
0 0 0 0 0	13	Becoming less gravelly 13'-1	4'.				
000	14-	SAND GRAVEL: As above, mois gravel (80%), 15'-16' very poorly sorted. (GW)	it, 0.5		14-16	1 5/2.0	20,57,43,40
0 0 0 0 0 0 0 0 0	15						
0000	16						
0 0 0 0 0 0 0 0	17						
0 0 0 0 0 0	18						
0 0 0 0 0 0 0 0 0 0	19 1 20	SAND & GRAVEL: (50/50), da olive grey (5Y 3/2, some carbonaceous material	rk 1.0		19-21	1.25/2.0	38,75,100+ refusal at 13"
000	20	(charcoal-like), poorly sorted, moist. (SW-GW)					
0 0 0 0 0 0	22						
000	23						
0000	24						
	25	SAND & GRAVEL: As above, becoming very moist at 24.5'.	2.0		24-26	1.0/2.0	61,100+ (9")
0 0 0 0 0 0	26						
0000	27						
° ° °	28	PROJECT					·

•

2	HOLE HO. NOAA N-2				LOG	DRILLING		
	1	SEF			CTOR	ndorf AFB - NOAA	Elmer	JECT
	REMARKS	RECOVERY g	SAMPLE INTERVAL 1	GEOTECH SAMPLE Or core box no. e	FIELD SCREENING RESULTS d	DESCRIPTION OF MATERIALS c	DEPTH b	LOG a
1							28 _	° °
	19,21,36,44	1.75/2.0	29/31		1.0	SAND & GRAVEL: (~50/50), very dark grey (5Y 3/1), saturated, poorly sorted,	=	0 0 0 0 0 0 0 0
						gravels subrounded, sands angular to subrounded, very fine to coarse sand (mainly fine grained). (SW-GW)	30	
							32-1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rs	Sand in augers						33	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Drilled to 39', didn'i sample so sands wouldn't be					SAND & GRAVEL: As above.	35-11	000000
	allowed to enter augers. Cuttings are sand and		ļ				36	00000
	gravel.						38	000
╡						TD = 39 Feet	39	ິ
							40 1 1	
							41	
							42	
							43	
							44	
							45-11	
그	NOAA N-2	HOLE NO.		<u>l</u>		PROJECT	46 —	


				LLING						<u></u>	HOLE NO. NOAA	<u>N-3</u>
. COMPANY	NAME R	ADIAN CO	RPORATION	2. D	Rilling Sui	BCONTRACT	^{of} Test	er			SHEET 1 OF	_
. PROJECT	EI	mendorf	AFB - NO	AA	T	4. LOCATIO	NC	AA				
. NAME OF	DRILLER (Chuck Gri	innell			6. MANUFA	CTURER'S DES	SIGNATION	OF DRILL N	lobile B	-61	
	D TYPES OF		/8" ID Augers	5		8. HOLE LO	CATION 26	5426	82.39,	16803	16.94	
			Split Spoon				ELEVATION				— <u> </u>	
					L				NE 93	11. DATE COMPL		
2. OVERBU	RDEN THICKN	ESS NA	<u> </u>				GROUNDWATE		NTEDED	 29.0 Fe	29 JUNE	. 93
3. DEPTH I	DRILLED INTO		<u> </u>		—	16. DEPTH	TO WATER A	ND ELAPS		DRILLING COMPLE well insta		
4. TOTAL D	EPTH OF HO		.0 Feet						(atter REMENTS (SPECI		llation)	
8. GEOTECI	HNICAL SAMP		DISTURBED		HSTURBED	19	. TOTAL NU	IBER OF	CORE BOXES			
		CAL ANALYSIS	VOC	METALS			SPECIFY)		ER (SPECIFY)	NA OTHER (SPE	CIFY) 21. TOTAL	C085
											RECOV	
2. DEPOSIT	ION OF HOLD		BACKFILLED	MONITORING	WELL	OTHER (SPECIFY)	23. SIG	NATURE OF INS	PECTOR	-	
			(Volclay Grout)	X					<u> </u>			SEF
GRAPHIC LOG a	DEPTH b	Œ	SCRIPTION OF MATERIALS		RES	CREENING GULTS d (OVW)	GEOTECH OR CORE		SAMPLE INTERVAL 1	RECOVEPY 9	REMARKS b	
000			SAND with sil rown (2.5Y 5			Space om)					×	
000		aravels	2″ diameter,	v sorted		.5			0-2	1.0/2.0	14,14,12,	12
0 0 0 0 0 0		poorly	sorted and r	nostly						.,	,	-
000	2	(SW)	rained, slightl	y moist.	1					ĺ l		
000												
0 0 0 0 0 0	3-	SAND. Cra	uallu aa abau			-			2-4	1.5/2.0	9,13,15,2	4
000		brown	velly, as abov (7.5Y 6/3).	/e, light		.5						
000	4											
000	5	SAND AND poorly	GRAVEL: (50, sorted, olive	/50), grey						1 7 /0 0	14.00.00	7.7
000	=	(5Y 4/	2), gravels to nd, sand fine	ο 3",					4-6	1.7/2.0	14,28,29,	57
000	6	coarse	, mainly med d, moist. (SW	ium	14	1.2	1					
° ° °	=	gramet	.,	0)	'		}				1	
0,00	7-	CRAVELLY	CAND. Office									
0 0 0 0 0 0		(5Y 4/	SAND: Olive of 2), moist. As	above]					
0,00	8	but les (SW)	ss gravels (25	5%).	7	.9			7-9	1.7/2.0	7,14,21,2	27
	=						ĺ					
					1		l					
0 0 0	9						1					

		······	DRILLIN	IG	LOG				HOLE NC. NOAA N-3
JECT	Elme	ndorf AFB	- NOAA	INSPE	CTOR			SEF	SHEET 2 OF 3
APHIC LOG g	DEPTH b	DESCRIPTIO	n of materials c		FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	SAMPLE INTERVAL I	RECOVERY 9	REMARKS h
• • • • • • • • • • • • • • • • • • •	10 11 12 13 14 15 16 17	Sand size	CL: As previou to very moist mainly coarse Y 3/2). (SW-	e	7.9		14-16	1.5/2.0	Driller noted fuel like odor, no reading on HNU
	18 19 19 20 21 11 19	SAND & GRAVE very moist.			1.5		19-21	1.25/2.0	
$\begin{smallmatrix} \circ & \circ $	22 23 24 25 26 27 28	coming up	gravels to 4" augers, sand subrounded,		1.5		24-26	1.2/2.0	16,35,54,61
<u>م_</u> 1	40	PROJECT	Elmendorf	AFB	– NOA/	۱ ۸	l	HOLE NC.	NOAA N-

ROLECT Elmendorf AFB - NOAA MSPECTOR SEF SEF SHET: 3 of 3 CAUNIC LOG 0 DEFTH DESCRIPTION OF MATERALS FELD SCREENING c COULD SCREENING d COULD SCREENING BESULTS COULD SCREENING COULD SCREENING d SAMPL BESULTS SAMPL BESUL	ROLECT Elmendorf AFB NOAA INSPECTOR SEF SEF<			DRILLIN	١G	LOG				HOLE NO. NOAA N-3
GRAPHIC LOG DESCRIPTION OF MATERIALS FILD SCREPLING RESULTS GROTEN SAMPL DECORE ROL NO. SAMPL II INTERVAL I RECOVERY N 28 - 29 SAND & GRAVELL: Saturated, poorly sorted, gravels from fine to coarse, mainly coarse. (SW-GW) 1.5 30 31 50 32 50 32 50 33 50 34 50 34 50 35 51 GRAVELLY SAND: Saturated as above. (SW)	BUPTINE LDC DESCRIPTION OF WATERALS FELD SECENCE ESULTS COTCH SumPLE DR CORE BOLING SumPLE MATERIAL SumPLE SECONTR MATERIAL MATERIAL RECONTR MATERIAL 29	OJECT	Elmei	ndorf AFB – NOAA	INSPECTO	08			SEF	
28 29 3AND & GRAVEL: Saturated, poorly sorted, gravels from granulers to several inches, subrounded. Sands from fine to coarse, mainly coarse. (SW-GW) 31 32 33 34 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	28 29 30 30 30 31 32 34 35 35 34 35 35 36 37 39 TD = 39 Feet SAND & GRAVEL: Saturated, poorly sorted, gravels from gravels from fine to coarse, mainly coarse. (SW-GW) 1.5 1.5 29–31 17.30,34,44 29–31 17.30,34,44 Drilling down to 39'. looking at auger cuttings. Don't want to risk sand heaving. Some sand coming up augers. TD = 39 Feet	LOG			'	RESULTS	OR CORE BOX NO.	INTERVAL		REMARKS
	37 = 39 38 = 39 39 = 39 Feet TD = 39 Feet	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 29 30 31 32 33 34 35 36	SAND & GRAVEL: Saturated, poorly sorted, gravels fro granulers to several inch subrounded. Sands from fine to coarse, mainly coarse. (SW-GW) GRAVELLY SAND: Saturated a	ies,				9	Drilling down to 39', looking at auger cuttings. Don't want to risk sand heaving. Some sand coming up

•

					LLING							HOLE A	™. 3-SB-01	1
. COMPANY	NULLE RA	DIAN	CO	RPORATION	2. Di	RILLING SUI	BCONTRAC	TOR Test	er			SHEET	t 1 or 3	
5. PROJECT				AFB - NO			4. LOCATH	Au	AA					1
5. NAME OF	DRILLER C	huck	Gri	nnell			6. MANUFI	ACTURER'S DES	GNATION	OF DRILL M	lobile B	-61		1
	id types of Plung Equipi		65,	/8" ID Augers	3		8. HOLE L	OCATION 26	5427	02.16,	16803	19.1	4	1
	-		3" 5	Split Spoon				E ELEVATION		.57				1
		}								NE 93	11. DATE COMPL	ETTO TO	JUNE 93	
2. OVERBU	RDEN THICKN	ESS	NA					GROUNDWATE		NTERED 2	9.4 Fee	<u></u>	JUNE 9.	괵
3. DEPTH I	DRILLED INTO	ROCK	NA				16. DEPTH	I TO WATER A	ND ELAPS		DRILLING COMPLE		····	1
4. TOTAL C	DEPTH OF HO	u:		0 Feet			17. OTHER	R WATER LEVEL	MEASUR	EMENTS (SPECH	FY)			+
8. GEOTEC	HNICAL SAMP	ſS		DISTURBED	UND	HSTURBED	ī	9. TOTAL NUM	BER OF	CORE BOXES	 NA			-
20. SAMPLE	S FOR CHEMI	CAL ANALYSE	s	VOC	METALS		OTHER	(SPECIFY)	OTHE	R (SPECIFY)	OTHER (SPE	CIFY)	21. TOTAL CORE	┥
													RECOVERY 7	
2. DEPOSIT	ION OF HOLE			BACKFILLED (Volclay)	MONITORING	WELL	OTHER	(SPECIFY)	23. SIG	NATURE OF INS	PECTOR			1
				Grout)							т	·	LEM	4
GRAPHIC LOG o	DEPTH b		DES	CRIPTION OF MATERIALS		RES	SCREENING SULTS d (OVM)	GEOTECH OR CORE E		SAMPLE INTERVAL 1	RECOVERY 9		REMARKS h	
				T: Nonplastic e, dark brow			Space PM)	•						F
	1	(7		4/3), hard,		•	5.5			0-2	1.2/2.0	3,5	,7,11	F
			0.0	(·						E
	2	CANE	• •		- P									
000		gr	ey (5	RAVEL: Dark o 5Y 3/2), mois	st,		_							E
000	3	in	auge	sorted, grave er returns, so	ind		0			2-4	1.2/2.0	15	,85,(100+)	E
000	E_	Oi	ly loc	medium grai ok and obivio	us odor	ĺ								E
۰ <u></u> ۰				ceable) betwe feet. (SW-GW										F
000	5-									5-7		57,4	\$3,35,29	F
0 0 0 0 0 0		SAND	& CI	RAVEL: As ab	ove.	-	78				1			F
° ° °	6			50/50, moist.		′	, 0				}			E
000														E
0 0 0 0 0 0	7			SAND: As abo gravel, moist,							1			E
ംം	8	ol	live b	prown, (2.5Y		,	76			7-9	1.4/2.0	25	12 20 CC	E
000		(2	SW)				36			, — 3	1.4/2.0	25	,43,38,55	F
0 0 0 0 0 0	9													F
~	ı −1	1						1						F
0 0 0 0 0	10 =													F

					DRI	LLING	LOG				HOLE NO. A3-SB-01	
Ε	Imen	dorf	AFB		NOAA	ins	PECTOR			LEM	SHEET 3 OF 3	1
c	DEPTH		DESCRI	PTION OF c	MATERIALS		FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	SAMPLE INTERVAL 1	RECOVERY	REMARKS	
2	8 =	GRAVE	LLY SA	AND:	As ab	ove.					WL measured at 29.4'	Ŧ
3 2	911										Took water sample for	
> र	에										screening	
3	2											
3	3-1	<u> </u>	33 Fe							 		Ę
3	4	10 -	55 re									
3	E											Ē
	Ē											
3	Ē											Ē
3	7-1											
3	8-1											
3	9 -]											
4												
4												Ę
4	2											
4	3											
4	4								-			Ē
	5											
	5 - 1 - 1											
			PROJECT				B - NOA	<u>ــــــــــــــــــــــــــــــــــــ</u>	L	HOLE NO.	A3-SB-0	-

APPENDIX C

.

Detailed Analytical Results

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, NOAA at Elmendorf.

0.332) (0.415)(0.191) (0.224) (1.04) (2.03) (4.15) (7.89) (2.33) (2.41) (3.28) (1.87) (0.224) (0.145)(1.25) (0.332) (0.257) (0.208) (0.581) (4.15) (0.274)(6.23) (0.415)(0.166) (0.386) (0.0914) E-NOAA-01-05 A1-5510 0 - 3 3 2 2 0.892 0.127 44.9 3.74 12.1 0.395 9 S â 2 2 -2 2 2 g ð g 2 £ 9 g S 22 Q []] **[**] <u>[</u>] [] [10] 01 [10] 22 [0] [0] 2 0 10 0 [] 10] Ξ 2 [] (2.17) (19.7) (40.1) (76.3) (22.5) (23.3) 3.21) 2.17) (4.01)(3.73) (12) (3.21) (2.49) (2.01) (5.62) (4.82) (2.65) (1.85) (1.36)(60.2) (31.7) (18.1) (4.01) (1.61) (2.57) (0.883) E-N0AA-01-04 A1-5509 0 - 3 2 2 3 ۵. 19.6 349 1.5 l.17 84.4 R 4.49 8 ĝ g 2 g ĝ 2 g g Ş g 2 9 ĝ 2 Ş 2 2 2 <u>[</u>] [0] [10] 2 Ξ [0] [10] Ξ [0] [] 10 [0] Ξ Ξ [0] Ξ [0] Ξ 10] Ξ [] 10] Ξ Ξ BEG. DEPTH - END DEPTH (FT.) LOCATION ID (2.51) (2.05) (1.29) (18.6) (38.1) (72.3) (21.3) (22.1) (57.1) (30.1) (17.1) (3.81) (1.52) 3.81) (3.04) (2.36) (1.9) (5.33) (4.57) (1.75) 3.04) 2.05) (3.54) (11.4) (2.44) 0.837) SAMPLE ID E-N0A-01-03 SITE 10 A1-SS08 0 - 3 3 3 2 1.44 0.0116 0.349 21.7 127 웃 2 g 2 문문 2 22 S Ş 2 Q 22 <u>S</u> 15 ĝ 2 22 3333333 0 ΞΞ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ ΞΞ Ξ Ξ Ξ Ξ (8.6) (0.244)(4.53) 0.158) (1.36)(0.362) (0.281) (0.226) (4.53) (0.299) (0.208) (0.244) (1.13)(2.22) (4.53) (2.54) (2.63) (6.79) (3.58) (2.04) (0.453) (0.181) (0.29) (0.0996) (0.362) 0.634) E-NOAA-01-02 A1-SS07 0 - 3 SW8080 - Organochlorine Pesticides and PCBs (ug/kg) 3 3 2 ٥. 0.156 5.06 4.97 g 0.0615 0.0619 Q 101 Ş g g g 2 8 9 ð 0.483 2 9 ₽ 2 ð 2 £ 2 ð Gamma-HCH(BHC) - (Lindane) Endosulfan Sulfate Heptachlor epoxide Endrin Aldehyde Endosulfan 11 Endosu)fan I Methoxychlor Heptachlor Chlordane PARAMETER Toxaphene alpha-BHC delta-BHC --------Dieldrin PCB-1016 4,4'-000 4,4'-DDT 4,4'-DDE PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1221 PCB-1232 beta-BHC Aldrin Endrin

ND = Not Detected

[] = Dilution Factor () = Detection Limit Compiled: 24 January 1994

NA = Not Applicable

TABLE C1

PARAMETER	نیا ا	A1-SS10 E-NDAA-14-D1 0 - 3		Ш	A1-SS11 E-NOAA-01-01 0 - 3		E-N0AA-01-	A1-SS11 E-NOAA-01-07 Dup of E-NOAA-01-01 0 - 3	104A-01-01		A1-SS13 E-NOAA-01-06 0 - 3	513 01-06 3
SW8080 - Organochlorine Pesticides and PCBs		(ng/kg)				1						
4,4'-DDD	NA			QN	(0.672)	Ξ	QN	(0.373)		16.3		(3.67)
4,4'-DDE	NA			2.65	(0.454)	Ξ	QN	(0.252)		29.4		(2.47)
4,4'-DDT	NA			3.45	(0.84)	Ξ	QN	(0.466)		136		(4.58)
Aldrin	NA			QN	(0.294)	Ξ	0.615	(0.163)		10.4		(1.6)
Chl ordane	NA			QN	(2.52)	Ξ	QN	(1.4)	Ξ	QN		(13.7)
Dieldrin	NA			QN	(0.672)	Ξ	QN	(0.373)		QN		(3.67)
Endosulfan I	NA			QN	(0.521)	Ξ	QN	(0.283)		0.905	3	(2.84)
Endosulfan 11	NA			QN	(0.42)	Ξ	Q	(0.233)		0.164	3	(2.29)
Endosulfan Sulfate	NA			0.439 J	(1.18)	Ξ	0.214	KJ (0.653)		QN		(6.42)
Endrin	NA			QN	(10.1)	Ξ	0.184	KJ (4.66)		QN		(5.5)
Endrin Aldehyde	NA			QN	(0.555)	Ξ	Q	(0.308)	Ξ	Q		(3.02)
Gamma-HCH(BHC) - (Lindane)	NA			QN	(0.387)	Ξ	QN	(0.214)	[1]	Q		(2.11)
Heptachlor	NA			QN	(0.454)	Ξ	Q	(0.252)	[]	Q		(2.47)
Heptachlor epoxide	NA			0.0192 F	P.J (0.286)	Ξ	3.87	(0.159)		Q		(1.56)
Methoxychlor	NA			ON	(4.12)	Ξ	QN	(2.28)		QN		(22.5)
PCB-1016	NA			QN	(8.4)	Ξ	Q	(4.66)		Q		(45.8)
PCB-1221	NA			QN	(16)	Ξ	QN	(8.86)	[1]	Q		(87.1)
PCB-1232	NA			QN	(4.71)	Ξ	QN	(2.61)		Q		(25.7)
PCB-1242	NA			QN	(4.87)	Ξ	QN	(2.7)		QN		(26.6)
PCB-1248	NA			QN	(12.6)	Ξ	QN	(6.99)		Q		(68.7)
PCB-1254	NA			QN	(6.64)	Ξ	QN	(3.68)		QN		(36.2)
PCB-1260	NA			QN	(3.78)	Ξ	QN	(2.1)		QN		(20.6)
Toxaphene	NA			QN	(0.84)	Ξ	ON	(0.466)		QN		(4.58)
a 1 pha – BHC	NA			QN	(0.336)	Ξ	Q	(0.186)		4.87		(1.83)
beta-BHC	NA			QN	(0.538)	Ξ	Q	(0.298)		3.16	L1	(4.26)
del ta-BHC	NA			Q	(0.185)	[7]	1.01	(0.103)	[1]	9.24		(10.1)
SW8240 - Volatile Organics (ug/kg)												
1,1,1-Trichloroethane	QN	(1.6)	Ξ	NA			NA			NA		
1,1,2,2-Tetrachloroethane	QN	(1.58)	Ξ	NA			NA			N		
1,1,2-Trichloroethane	QN	(1.4)	Ξ	NA			N			NA		
1,1-Dichloroethane	GN	(1.16)	Ξ	NA			NA			NA		
1,1-Dichloroethene	QN	(1.48)	Ξ	NA			AN			NA		
1,2-Dichloroethane	QN	(0.997)	Ξ	NA			NA			NA		
1,2-Dichloropropane	QN	(0.795)	Ξ	NA			NN			NA		
2-Chloroethyl vinyl ether	QN	(3.37)	Ξ	NA			NA			NA		

.

~

		A1-SS10		A1-5511	A1-5511	A1-5513
	Ļ	Ξ.		Ţ	Š	1
PARAMETER		0 - 3		0 - 3	0 - 3	0 - 3
SW8240 - Volatile Organics, cont.	(ug/kg)	- - - - - - - - - - - - - - - - - - -				
2-Hexanone	QN	(3.98)	Ξ	NA	NA	NA
4-Methyl-2-Pentanone(MIBK)	QN	(4.58)	Ξ	NA	NA	NA
Acetone	QN	(16.4)	Ξ	NA	NA	NA
Benzene	QN	(0.493)	Ξ	NA	NA	NA
Bromodichloromethane	QN	(0.939)	Ξ	NA	NA	NA
Bromomethane	QN	(1.33)	[1]	NA	NA	NA
Carbon disulfide	QN	(1.69)	Ξ	NA	NA	NA
Carbon tetrachloride	ND	(1.75)	Ξ	NA	NA	NA
Chlorobenzene	QN	(0.711)	Ξ	NA	NA	NA
Chloroethane	QN	(4.18)	[1]	NA	NA	NA
Chloroform	QN	(11.11)	Ξ	NA	NA	NA
Chloromethane	QN	(2.23)	Ξ	NA	NA	NA
Dibromochloromethane	QN	(1.19)	Ξ	NA	NA	NA
Ethyl benzene	QN	(1.07)	Ξ	NA	NA	NA
Meta-&Para-Xy]ene	QN	(0.997)	[1]	NA	NA	NA
Methyl ethyl ketone	3.99 J	(4.96)	Ξ	NA	NA	NA
Methylene Chloride	6.32 B	(1.78)	Ξ	NA	NA	NA
Ortho-Xylene	QN	(0.716)	Ξ	NA	NA	NA
Styrene	QN	(1.04)	Ξ	NA	NA	NA
Tetrachloroethene	QN	(0.817)	Ξ	NA	NA	NA
Tol uene	QN	(0.439)	Ξ	NA	NA	NA
Tribromomethane(Bromoform)	QN	(2.04)	[]	NA	NA	NA
Trichloroethene	QN	(0.838)	Ξ	NA	NA	NA
Trichlorofluoromethane	QN	(1.53)	Ξ	NA	NA	NA
Vinyl Chloride	QN	(1.69)	Ξ	NA	NA	NA
Vinyl acetate	QN	(2.72)	Ξ	NA	NA	NA
cis-1,2-Dichloroethene	QN	(1.15)	Ξ	NA	NA	NA
cis-1,3-Dichloropropene	QN	(0.782)	Ξ	NA	NA	MA
trans-1,2-Dichloroethene	QN	(1.21)	Ξ	NA	NA	NA
trans-1,3-Dichloropropene	QN	(0.886)	[1]	NA	NA	NA
SW8270 - Semivolatile Organics (u	(6/6n)					
	QN	(0.0165)	Ξ	NA	NA	NA
1,2,4-Trichlorobenzene	QN	(0.0249)	Ξ	NA	NA	NA
1,2-Dichlorobenzene	QN	(0.0268)	Ξ	NA	MA	NA
1 3-Dich]crchenzene	Ĩ	10 03031	5	MA	NA	M

FARAMETER PARAMETER SW8270 - Semivolatile Organics, cont. (ug/g) 1,4-Dichlorobhenol 2,4,5-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene 2,5-Dinitrotoluene		53	E-NUAA-UI-UI	E-NUAA-UI-U/ UUD OT E-NUAA-UI-UI- 0 - 3 	E-MUAA-01-00
	•	====	1 i	1	•
1		33			************
		ΞΞ			
	(0.0215) (0.0214) (0.024) (0.0549) (0.0549) (0.025) (0.0166) (0.0166)	:=:	NA	NA	NA
	(0.0214) (0.024) (0.0549) (0.0549) (0.177) (0.025) (0.0166)	• •	NA	NA	NA
	(0.024) (0.0549) (0.177) (0.025) (0.0364) (0.0166)	Ξ	NA	NA	NA
	(0.0549) (0.177) (0.025) (0.0364) (0.0166)	[1]	. AN	NA	NA N
×	(0.177) (0.025) (0.0364) (0.0166)	3	NA	NA	NA
	(0.025) (0.0364) (0.0166)	Ξ	NA	NA	NA
	(0.0166) (0.0166)	Ξ	NA	NA	NA
	(0.0166)	33	NA	NA	NA
	(0 000 0)	33	NA	NA	NA
	(0.0268)	Ξ	NA	NA	NA
alene	(0.0154)	[1]	NA	NA	AN
2-Methylphenol(o-cresol) ND	(0.0131)	Ξ	NA	NA	NA
2-Nitroaniline ND	(0.028)	[7]	NA	NA	NA
2-Nitrophenol ND	(0.0221)	Ξ	NA	NA	NA
3,3'-Dichlorobenzidine ND	(0.0141)	[1]	NA	NA	NA
3-Nitroaniline ND	(0.0166)	[1]	NA	NA	NA
4,6-Dinitro-2-methylphenol ND	(0.0182)	[1]	NA	NA	NA
4~Bromophenyl phenyl ether ND	(0.0205)	Ξ	NA	NA	NA
4-Chloro-3-methylphenol ND	(0.0218)	Ξ	NA	NA	NA
4-Chlorophenyl phenyl ether ND	(0.0178)	Ξ	NA	NA	NA
4-Methylphenol(p-cresol) ND	(0.0194)	Ξ	NA	NA	NA
4-Nitroaniline ND	(0:0256)	Ξ	NA	NA	A N
4-Nitrophenol NO	(0.0396)	Ξ	NA	NA	NA
Acenaphthene ND	(0.0115)	Ξ	NA	NA	AN
Acenaphthylene ND	(0.0177)	Ξ	NA	NA	NA
Anthracene ND	(0.0156)	[1]	NA	NA	NA
Benzo(a)anthracene 0.021	(0.019)	Ξ	NA	NA	NA
Benzo(a)pyrene ND	(0.0219)	[1]	NA	NA	NA
Benzo(b)fluoranthene 0.134 F	(0.0384)	[1]	NA	NA	NA
Benzo(g,h,i)perylene ND	(0.0431)	Ξ	NA	NA	NA
Benzo(k)fluoranthene 0.134 F	(0.0422)	[1]	NA	NA	NA
Benzoic acid 0.0951 J	(1.63)	[1]	NA	NA	NA
Benzyl alcohol ND	(0.0258)	Ξ	NA	NA	NA
Butylbenzylphthalate	(0.0264)	[1]	NA	NA	NA
Chrysene 0.079	(0.0227)	Ξ	NA	NA	NA
Di-n-octylphthalate ND	(0.0149)	Ξ	NA	NA	NA
		- 011.44. Factor	ND HAT	NA = N=4 A==14 ==61 =	

		A1-SS10		A1-SS11	A1-5511	A1-5513
	ц	E-NOAA-14-01		E-N0AA-01-01	E-NOAA-01-07 Dup of E-NOAA-01-01	E-NOAA-01-06
PARAMETER		0 - 3		0 - 3	0 - 3	0 - 3
SW8270 - Semivolatile Organics, cont.	nt. (ug/g)					
Dibenz(a,h)anthracene	QN	(0.0343)	Ξ	NA	NA	NA
Dibenzofuran	QN	(0.0227)	Ξ	KA	NA	NA
Dibutylphthalate	QN	(0.0137)	Ξ	NA	NA	NA
Diethylphthalate	QN	(0.0218)	Ξ	NA	NA	NA
Dimethylphthalate	QN	(0.0142)	Ξ	NA	NA	NA
Fluoranthene	0.0626	(0.0199)	Ξ	NA	NA	RA N
Fluorene	QN	(0.0161)	Ξ	NA	NA	NA
Hexach] orobenzene	QN	(0.0133)	Ξ	NA	NA	NA
Hexachlorobutadiene	QN	(0.0216)	Ξ	NA	NA	NA
Hexachlorocyclopentadiene	QN	(0.249)	Ξ	NA	NA	NA
Hexachloroethane	QN	(0.0268)	Ξ	NA	NA	NA
Indeno(1,2,3-cd)pyrene	QN	(0.0562)	Ξ	NA	NA	NA
l sophorone	QN	(0.026)	Ξ	NA	NA	NA
N-Nitroso-Di-n-propylamine	QN	(0.0276)	Ξ	NA	NA	NA
N-Nitrosodipheny]amine	QN	(0.0114)	Ξ	NA	NA	AN
Naphthalene	QN	(0.0202)	Ξ	NA	NA	NA
Nitrobenzene	QN	(0.0356)	Ξ	NA	NA	NA
Pentachlorophenol	QN	(0.0376)	Ξ	NA	NA	NA
Phenanthrene	0.0274	(0.0198)	Ξ	NA	NA	NA
Phenol	QN	(0.0373)	Ξ	NA	NA	NA
Pyrene	0.0503	(0.0172)	Ξ	NA	NA	NA
bis(2-Chloroethoxy)methane	QN	(0.0256)	Ξ	NA	NA	NA
bis(2-Chloroethyl)ether	QN	(0.0162)	Ξ	NA	NA	NA
bis(2-Chloroisopropyl)ether	QN	(0.0337)	Ξ	NA	NA	NA
bis(2-Ethylhexyl)phthalate	QN	(0.0246)	Ξ	NA	NA	NA
p-Chloroaniline	QN	(0.0315)	Ξ	NA	NA	NA

٠

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

ļ

1

		A2-HA-1-01			A2-HA-1-02	-1-02		A2.	A2-HA-2-01		A	A2-HA-2-02	
	J	E-NOAA-09-01			E-N0AA-09~02	-09-02		E - N	E-NOAA-09-03		<u>г</u> ш	E-N0AA-09-04	
PARAMETER		0 - 3			4	4.5			0 - 3			4 - 4.5	
SW8015 - Nonhalogenated Volatile Organics	1	(mg/kg)	E 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3								9 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 5 7 1
Ethanol	~	(1.21)] NA				NA			NA		
Ethyl ether	QN	(4.34)	(H)					NA			NA		
Methyl ethyl ketone	QN	(4.05)] NA				NA			NA		
Methyl isobutyl ketone	QN	(2.49)						NA			NA		
SW8015MP Petroleum Hydrocarbons-Modified Purgeable	Modified Purg	eable (ug/kg)	kg)										
Benzene	3.24 k	<u> </u>) [50]] 3.72	3	(2.93)	[20]	NA			MA		
Ethyl benzene			. —			(5.83)	[20]	NA			NA		
Gasoline	QN	(1300)				(1130)	[20]	NA			NA		
Toluene	31.3 B		-		8	(6.3)	[20]	NA			N		
Xylene (total)	56.7	(18.8)] 8.35		(16.3)	[20]	NA			NA		
SW8240 - Volatile Organics (ug/kg)	ka)												
	QN	(3.5)	[1] (1	DN [(1.49)	Ξ	QN	(1.88)	Ξ	QN	(1.32)	Ξ
<pre>1,1,2,2-fetrachloroethane</pre>	QN	(2.58)	Ξ	QN [(1.47)	Ξ	Q	(1.85)	Ξ	QN	(1.3)	Ξ
1,1,2-Trichloroethane	ON	(3.38)				(1.31)	Ξ	QN	(1.64)	Ξ	QN	(1.16)	Ξ
1,1-Dichloroethane	ON	(2.66)		DN [(1.08)	Ξ	ND	(1.36)	Ξ	QN	(0.956)	Ξ
1,1-Dichloroethene	QN	(2.05)				(1.38)	Ξ	QN	(1.73)	Ξ	QN	(1.22)	Ξ
1,2-Dichloroethane	QN	(2.63)				(0.93)	Ξ	QN	(1.17)	Ξ	QN	(0.825)	Ξ
1,2-Dichloropropane	QN	(4.18)		GN [-	(0.741)	Ξ	QN	(0.932)	Ξ	QN	(0.657)	Ξ
2-Chloroethyl vinyl ether	QN	(3.46)				(3.14)	Ξ	QN	(3.95)	Ξ	QN	(2.78)	Ξ
2-Hexanone	QN	(2.17)				(3.71)	Ξ	QN	(4.67)	Ξ	QN	(3 29)	Ξ
4-Methyl-2-Pentanone(MIBK)	QN	(3.42)] ND		(4.27)	Ξ	QN	(5.37)	Ξ	QN	(3.79)	Ξ
Acetone	16.4 J	1 (34.5)] 4.24	ſ	(15.3)	Ξ	נ 17.9 ט	(19.2)	Ξ	4.55 J	(13.6)	Ξ
Benzene	ND	(2.74)				(0.46)	Ξ	Q	(0.578)	Ξ	Q	(0.408)	Ξ
Bromodichloromethane	QN	(4.06)			-	(0.875)	Ξ	QN	(1.1)	Ξ	Q	(0.776)	Ξ
Bromomethane	QN	(4.75)		ON [(1.24)	Ξ	QN	(1.56)	Ξ	QN	(1.1)	Ξ
Carbon disulfide	QN	(5.48)				(1.58)	Ξ	QN	(1.98)	Ξ	QN	(1.4)	Ξ
Carbon tetrachloride	QN	(1.46)				(1.63)	Ξ	QN	(2.06)	Ξ	QN	(1.45)	Ξ
Chlorobenzene	QN	(2.69)			-	(0.663)	Ξ	QN	(0.834)	Ξ	Q	(0.588)	[1]
Chloroethane	QN	(2.91)		ON [(3.9)	Ξ	Q	(4.9)	Ξ	QN	(3.46)	Ξ
Chloroform	QN	(2.45)				(1.04)	Ξ	QN	(1.3)	Ξ	QN	(0.918)	Ξ
Chloromethane	QN	(4.23)				(2.08)	Ξ	QN	(5.61)	Ξ	QN	(1.84)	Ξ
Dibromochloromethane	QN	(3.25)		_		(11.11)	Ξ	Q	(1.39)	Ξ	Q	(0.982)	Ξ
Ethyl benzene	QN	(2.42)	_] ND		Ξ	Ξ	QN	(1.26)	Ξ	QN	(0.888)	[1]
Meta-&Para-Xylene	QN	(2.05)	Ξ	_		(0.93)	Ξ	QN	(1.17)	Ξ	QN	(0.825)	Ξ
Compiled: 24 Jan 1994	() = Detection Limit	on Limit	[] = Diluti	= Dilution Factor	ND = Not	ot cted	NA = NOI	NA = Not Applicable	•				

PARAMETER SW8240 - Volatile Organics, cont. (ug												
TER - Volatile Organics, cont.	A2	A2-HA-1-01			A2-HA-1-02		A	A2-HA-2-01		A2	A2-HA-2-02	
.IEK - Volatile Organics, cont.	<u></u> н – Х	-		LU L	¥		Ē	-		E-N	\$	
- Volatile Organics, cont.	+ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0 - 3			c. 4 - 4			0 - 0	;			
Mathul athul Latana	(64/6n)											
MERINAL ERINA VERONE	18 B	(12)	Ξ	20.9 B	(4.62)	Ξ	QN	(2.81)	Ξ		(4.1)	Ξ
Methylene Chloride	13.3 B	(5.76)	Ξ	12 8	(1.66)	Ξ	7.17 B	(2.08)	Ξ	3.37 B	(1.47)	Ξ
Ortho-Xylene	QN	(2.55)	Ξ	QN	(0.667)	Ξ	QN	(0.84)	Ξ	QN	(0.592)	Ξ
Styrene	QN	(3.33)	Ξ	QN	(0.971)	Ξ	QN	(1.22)	Ξ	QN	(0.861)	Ξ
Tetrachloroethene	QN	(2.5)	Ξ	QN	(0.762)	Ξ	QN	(0.959)	Ξ	QN	(0.676)	Ξ
Toluene	QN	(3.45)	Ξ	QN	(0.41)	Ξ	QN	(0.515)	Ξ	QN	(0.363)	Ξ
Tribromomethane(Bromoform)	QN	(5.9)	Ξ	QN	(1.9)	[1]	QN	(2.39)	Ξ	QN	(1.69)	Ξ
Irichloroethene	QN	(3.82)	Ξ	QN	(0.782)	Ξ	QN	(0.984)	Ξ	QN	(0.693)	Ξ
Trichlorofluoromethane	QN	(5.28)	Ξ	QN	(1.42)	Ξ	QN	(1.79)	Ξ	QN	(1.26)	Ξ
Vinyl Chloride	ÛN	(4.03)	Ξ	QN	(1.58)	Ξ	QN	(1.98)	Ξ	QN	(1.4)	Ξ
Vinyl acetate	QN	(3.95)	Ξ	QN	(2.53)	Ξ	QN	(3.19)	Ξ	QN	(2.25)	Ξ
cis-1,2-Dichloroethene	QN	(2.22)	Ξ	QN	(1.07)	Ξ	QN	(1.35)	Ξ	ÛN	(0.953)	Ξ
cis-1,3-Dichloropropene	ON	(1.97)	Ξ	QN	(0.729)	Ξ	QN	(0.918)	Ξ	QN	(0.647)	Ξ
trans-1,2-Dichloroethene	QN	(2.29)	Ξ	QN	(1.09)	Ξ	QN	(1.37)	Ξ	QN	(0.969)	Ξ
trans-1,3-Dichloropropene	QN	(1.33)	Ξ	QN	(0.826)	Ξ	QN	(1.04)	Ξ	QN	(0.733)	Ξ
SW8270 - Semivolatile Organics (ug/g)	_											
<pre>1,2,4,5-Tetrachlorobenzene</pre>	QN	(0.0176)	Ξ	QN	(0.0151)	Ξ	QN	(0.0191)	Ξ	QN	(0.0133)	Ξ
1,2,4-Trichlorobenzene	QN	(0.0266)	Ξ	Q	(0.0228)	Ξ	Q	(0.0287)	Ξ	QN	(0.0201)	Ξ
1,2-Dichlorobenzene	QN	(0.0287)	Ξ	QN	(0.0246)	Ξ	QN	(0.031)	Ξ	QN	(0.0217)	Ξ
1,3-Dichlorobenzene	Q	(0.0324)	Ξ	QN	(0.0278)	Ξ	Q	(0.035)	Ξ	QN	(0.0245)	Ξ
l,4-Dichlorobenzene	QN	(0.0266)	Ξ	QN	(0.0228)	Ξ	QN	(0.0287)	Ξ	DN	(0.0201)	Ξ
2,4,5-Trichlorophenol	QN	(0.023)	Ξ	QN	(0.0197)	Ξ	QN	(0.0249)	Ξ	QN	(0.0174)	Ξ
2,4,6-Trichlorophenol	QN	(0.0229)	Ξ	Q	(0.0196)	Ξ	QN	(0.0247)	Ξ	ÛN	(0.0173)	Ξ
2,4-Dichlorophenol	QN	(0.0257)	Ξ	QN	(0.022)	Ξ	QN	(0.0278)	Ξ	QN	(0.0195)	Ξ
2,4-Dimethylphenol	QN	(0.0588)	Ξ	0N	(0.0503)	Ξ	QN	(0.0635)	Ξ	QN	(0.0445)	Ξ
2,4-Dinitrophenol	QN	(0.189)	Ξ	QN	(0.162)	Ξ	QN	(0.204)	Ξ	QN	(0.143)	Ξ
2,4-Dinitrotoluene	QN	(0.0267)	Ξ	QN	(0.0229)	Ξ	QN	(0.0289)	Ξ	QN	(0.0202)	Ξ
2,6-Dinitrotoluene	QN	(0.0389)	Ξ	QN	(0.0333)	Ξ	ON	(0.0421)	Ξ	QN	(0.0294)	Ξ
2-Chloronaphthalene	QN	(0.0177)	Ξ	QN	(0.0152)	Ξ	QN	(0.0192)	Ξ	QN	(0.0134)	Ξ
2-Chlorophenol	QN	(0.0287)	Ξ	QN	(0.0246)	Ξ	QN	(0.031)	Ξ	QN	(0.0217)	Ξ
2-Methylnaphthalene	QN	(0.0165)	Ξ	QN	(0.0141)	Ξ	QN	(0.0178)	Ξ	QN	(0.0124)	Ξ
2-Methylphenol(o-cresol)	QN	(0.014)	Ξ	ON	(0.012)	Ξ	QN	(0.0151)	Ξ	QN	(0.0106)	Ξ
2-Nitroaniline	QN	(0.03)	Ξ	QN	(0.0257)	Ξ	Q	(0.0324)	Ξ	QN	(0.0227)	Ξ
2-Nitrophenol	QN	(0.0236)	Ξ	QN	(0.0202)	Ξ	QN	(0.0255)	Ξ	QN	(0.0179)	Ξ
3,3'-Dichlorobenzidine	QN	(0.0151)	Ξ	QN	(0.0129)	Ξ	QN	(0.0163)	Ξ	QN	(0.0114)	Ξ

		E-NOAA-09-01		ш	E-NOAA-09-02		ٺ `	E-NOAA-09-03		IJ	E-N0AA-09-04	
PARAMETER		0 - 3			4 - 4.5			0 - 3			4 - 4.5	
	ont. (ug/g)											
3-Nitroani]ine	QN	(0.0178)	Ξ	QN	(0.0152)	Ξ	QN	(0.0192)	Ξ	QN	(0.0134)	Ξ
4,6-Dinitro-2-methy]phenol	QN	(0.0194)	Ξ	QN	(0.0166)	Ξ	QN	(0.021)	Ξ	Q	(0.0147)	Ξ
4-Bromophenyl phenyl ether	QN	(0.0219)	Ξ	Q	(0.0187)	Ξ	QN	(0.0237)	Ξ	QN	(0.0166)	Ξ
4-Chloro-3-methylphenol	QN	(0.0233)	Ξ	QN	(0.0199)	Ξ	QN	(0.0252)	Ξ	QN	(0.0176)	Ξ
4-Chlorophenyl phenyl ether	QN	(0.019)	Ξ	Q	(0.0163)	Ξ	QN	(0.0206)	Ξ	QN	(0.0144)	Ξ
4-Methylphenol(p-cresol)	ON	(0.0208)	Ξ	QN	(0.0178)	Ξ	QN	(0.0224)	Ξ	QN	(0.0157)	Ξ
4-Nitroaniline	QN	(0.0274)	Ξ	QN	(0.0235)	Ξ	QN	(0.0296)	Ξ	QN	(0.0207)	Ξ
4-Nitrophenol	QN	(0.0424)	Ξ	QN	(0.0363)	Ξ	QN	(0.0458)	Ξ	QN	(0.032)	Ξ
Acenaphthene	QN	(0.0123)	Ξ	QN	(0.0105)	Ξ	QN	(0.0133)	Ξ	QN	(0.0093)	Ξ
Acenaphthylene	QN	(0.0189)	Ξ	QN	(0.0162)	Ξ	QN	(0.0204)	Ξ	QN	(0.0143)	Ξ
Anthracene	QN	(0.0166)	Ξ	QN	(0.0142)	Ξ	QN	(0.018)	Ξ	QN	(0.0126)	Ξ
Benzo(a)anthracene	0.012 J	(0.0203)	Ξ	QN	(0.0174)	Ξ	0.0166 J	(0.0219)	Ξ	QN	(0.0154)	Ξ
Benzo(a)pyrene	QN	(0.0234)	Ξ	QN	(0.0201)	Ξ	QN	(0.0253)	Ξ	QN	(0.0177)	Ξ
Benzo(b)fluoranthene	0.0466 F	(0.0411)	Ξ	QN	(0.0352)	Ξ	0.0406 3	(0.0444)	Ξ	QN	(0.0311)	Ξ
Benzo(g,h,i)perylene	QN	(0.0461)	Ξ	QN	(0.0395)	Ξ	ND	(0.0498)	Ξ	QN	(0.0349)	Ξ
Benzo(k)fluoranthene	0.0466 F	(0.0452)	Ξ	QN	(0.0387)	Ξ	0.0276 J	(0.0488)	Ξ	QN	(0.0342)	Ξ
Benzoic acid	0.226 J	(1.75)	Ξ	QN	(1.49)	Ξ	0.159 J	(1.89)	Ξ	Q	(1.32)	Ξ
Benzył alcohol	QN	(0.0276)	Ξ	QN	(0.0236)	Ξ	ÛN	(0.0298)	Ξ	Q	(0.0209)	Ξ
Butylbenzylphthalate	QN	(0.0283)	Ξ	Q	(0.0242)	Ξ	QN	(0.0305)	Ξ	QN	(0.0214)	Ξ
Chrysene	0.0244	(0.0243)	Ξ	Q	(0.0208)	Ξ	0.065	(0.0262)	Ξ	QN	(0.0184)	Ξ
Di-n-octylphthalate	QN	(0.0159)	Ξ	QN	(0.0136)	Ξ	QN	(0.0172)	Ξ	QN	(0.012)	Ξ
Dibenz(a,h)anthracene	QN	(0.0367)	Ξ	QN	(0.0314)	Ξ	QN	(0.0396)	Ξ	ÛN	(0.0277)	Ξ
Di benzofuran	QN	(0.0243)	Ξ	QN	(0.0208)	Ξ	0.0184 J	(0.0262)	Ξ	QN	(0.0184)	Ξ
Dibutylphthalate	QN	(0.0146)	Ξ	QN	(0.0125)	Ξ	QN	(0.0158)	Ξ	QN	(0.0111)	Ξ
Diethylphthalate	QN	(0.0233)	Ξ	QN	(0.0199)	Ξ	QN	(0.0252)	Ξ	QN	(0.0176)	Ξ
Dimethylphthalate	QN	(0.0152)	Ξ	QN	(0.013)	Ξ	QN	(0.0164)	Ξ	QN	(0.0115)	Ξ
Fluoranthene	0.00845 J	(0.0213)	Ξ	QN	(0.0182)	Ξ	0.392	(0.023)	Ξ	Q	(0.0161)	Ξ
Fluorene	QN	(0.0172)	Ξ	QN	(0.0147)	Ξ	QN	(0.0186)	Ξ	QN	(0.013)	Ξ
Hexachlorobenzene	QN	(0.0142)	Ξ	QN	(0.0122)	Ξ	QN	(0.0153)	Ξ	QN	(0.0107)	Ξ
Hexach]orobutadiene	QN	(0.0231)	Ξ	Q	(0.0198)	Ξ	QN	(0.025)	Ξ	QN	(0.0175)	Ξ
<u>Hexachlorocyclopentadiene</u>	QN	(0.266)	Ξ	QN	(0.228)	Ξ	QN	(0.288)	Ξ	QN	(0.201)	Ξ
Hexachloroethane	QN	(0.0287)	Ξ	QN	(0.0246)	Ξ	QN	(0.031)	Ξ	QN	(0.0217)	Ξ
Indeno(1,2,3-cd)pyrene	QN	(0.0601)	Ξ	QN	(0.0515)	Ξ	QN	(0.065)	Ξ	Q	(0.0455)	Ξ
l sophorone	QN	(0.0279)	Ξ	Q	(0.0238)	Ξ	QN	(0.0301)	Ξ	QN	(0.0211)	Ξ
N-Nitroso-Di-n-propylamine	QN	(0.0296)	Ξ	Q	(0.0253)	Ξ	QN	(0.032)	Ξ	QN	(0.0224)	Ξ
N∸Nitrosodiphenylamine	QN	(0.0122)	Ξ	Q	(0.0104)	Ξ	QN	(0.0131)	Ξ	QN	(0.0092)	Ξ

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(ug/g) (ug/g) (ug/g) (0.0381) (1] (0.0381) (1] (0.0382) (1] (1] (1] (1] (1] (1] (1] (1]	E 0 1	(0.0234) (0.0411) (0.0434)		- 4.5	
(40/4) (0.215) [1] 10 (0.0153) [1] 10 (0.0163) 0.1 0 0.0215 [1] 10 (0.0135) [1] 10 (0.0133) 0.11 1 0 0.0215 [1] 10 (0.0134) [1] 10 (0.0133) 0.11 1 0 0.0213 [1] 10 (0.0134) [1] 10 (0.0134) 0.11 1 0 0.0213 [1] 10 (0.0134) [1] 10 (0.0134) 0.11 1 0 0.01343 [1] 10 (0.0134) [1] 10 (0.0134) 0.12 0 0.0133 [1] 10 (0.0134) [1] 10 (0.0134) 0.12 0 0.0133 [1] 10 (0.0134) [1] 10 (0.0134) 11 0 0.0133 [1] 10 (0.0134) [1] 10 (0.0134) 11 10 0.0133 [1] 10 (0.0334) [1] 10 (0.0134) 11 10 0.0233 [1] 10 (0.0334) [1] 10 (0.0334) 11 10				(ug/g) (ug/g) N N 0.132 (0.0381) 0.132 (0.0381) 0.11 (0.0381) 0.11 (0.0212) 11 (11 11 (0.0399) 11 (11 11 (0.0124) 11 (11 11		(0.0234) (0.0411) (0.0434)			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m M0 (0.0216) [1] M0 henol 0.132 (0.0381) [1] M0 henol 0.117 0.0121 [1] M0 cethoxy)methane 0.0122 0.0122 [1] M0 cethoxy)methane 0.0122 0.0133 [1] M0 cethoxy)methane 0.0223 [1] M0 ostivu)lether N0 (0.0361) [1] M0 nexyl)phthalate N0 (0.0351) [1] N0 fine N0 (0.0337) [1] N0		(0.0434) (0.0411) (0.0434)	-	63)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.0434)		(88)	ΞΞ
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Incophenol 0.132 (0.0402) [1] M0 Threne 0.0171 J (0.0212) [1] M0 M0 (0.0399) [1] M0 Charten 0.0122 J (0.0184) [1] M0 Chloroethyl)ether ND (0.0274) [1] ND Chloroethyl)ether ND (0.0261) [1] ND Chloroethyl)ether ND (0.0351) [1] ND caniline ND (0.0337) [1] ND Outiline ND (0.0337) [1] ND Contiline ND		(0.0434)	_	(00)	ΞΞ
Interve 0.011 1 0.012 11 0.012 11 0.023 11 0.023 11 0.013 Information 0.012 1 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0123 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 11 0.0133 0.0133 Provide the result 0 0.0133 11 0 0.0133 11 0.0133 0.0133 Provide the result 0 0.01331	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	hrene 0.0171 J (0.0212) [1] ND hD (0.0399) [1] ND (0.0399) [1] ND hDoroethoxy)methane ND (0.0374) [1] ND (0.0374) [1] ND hDoroethy1)ether ND (0.0173) [1] ND (0.0274) [1] ND hDoroethy1)ether ND (0.0351) [1] ND (0.0351) [1] ND chthalate ND (0.0337) [1] ND (0.0337) [1] ND caniline ND (0.0337) [1] ND (0.0337) [1] ND		•	-	(40)	33
$ \begin{array}{cccccc} & 0 & 0 & 0.0389 & 11 & 0 & 0.0389 & 11 & 0 & 0.0381 $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} & 0 & 0 & 0.039) & 11 & 0 & 0.0431 $	N0 (0.0399) [1] N0 Alloroethoxy)methane N0 (0.0184) [1] N0 Alloroethoxy)methane N0 (0.0274) [1] N0 Alloroethoxy)methane N0 (0.0351) [1] N0 Alloroethy1)ether N0 (0.0351) [1] N0 Alloroethy1)ether N0 (0.0351) [1] N0 Chbihalate N0 (0.0353) [1] N0 Caniline N0 (0.0337) [1] N0 Caniline N0 (0.0337) [1] N0		(0.0229)		191	ΞЗ
$\begin{array}{rcccc} 0.0122 & J & (0.0184) & [1] & 10 & (0.0153) & [1] & 00 & (0.014) \\ \mbox{linerethoxy} \mbox{linerethox} \$	$\begin{array}{rcccccl} 0.0122 & J & (0.0184) & [1] & 00 & (0.0136) & [1] & 00 & (0.0134) & [1] & 0$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	0.0122 J (0.0184) [1] ND hloroethoxy)methane ND (0.0274) [1] ND hloroethy) lether ND (0.073) [1] ND hloroisopropy) lether ND (0.0361) [1] ND (0.0337) [1] ND oaniline ND (0.0337) [1] ND 		(0.0431)	<u> </u>	(20)	Ξ
$\begin{aligned} \begin{array}{rcccc} \text{Moreethavy} & \text{Moreethavy} \\ \text{Moreethy} & \text{Moreethavy} \\ \text{Moreethy} & \text{Moreethy} \\ \text{Moreethy} & \text{Moreethy} \\ \text{Moreethy} & \text{Moreethy} \\ \text{Moreethy}$	$ \begin{array}{ccccc} \begin{array}{cccccc} \begin{array}{cccccccc} \begin{array}{cccccccccc$	Alloracethoxy/methan 0 (0.0231) [1] 0 (0.0231) Shloracethy/lether 0 (0.013) [1] 0 (0.0231) Shloracthy/lether 0 (0.013) [1] 0 (0.013) Incorting 0 (0.013) [1] 0 (0.013) Incorting 0 (0.023) [1] 0 (0.023) Incorting 0 (0.023) [1] 0 (0.023) Incorting 0 (0.023) [1] 0	All rosethaxy/methan M (0.023) [1] M (0.023) All rosethy/lifter M (0.013) [1] M (0.023) All rosethy/lifter M (0.013) [1] M (0.023) All rosethy/lifter M (0.013) [1] M (0.033) All rosethy/lifter M (0.013) [1] M (0.033) Missionsproy/lifter M (0.033) [1] M (0.033) Missionsproy/lifter M (0.0233) [1] M (0.033) Missionsproy/lifter M (0.0233) [1] M (0.033) Missionsproy/lifter M (0.0233) [1] M (0.033) Missionsproy/lister	hloroethoxylmethane ND 0.0274) 1 ND hloroethyl)ether ND (0.0361) 1 ND hloroisopropyl)ether ND (0.0361) 1 ND ithylbexyl)phthalate ND (0.0331) 1 ND oaniline ND (0.0337) 1 ND oaniline ND (0.0337) 1 ND		(0.0199)		14)	Ξ
				M M 0 0.0173) 111 M M 0 0.0337) 111 M M M 111 M M 1111 M M 11111 M M 11111 M M 11111 M M 11111 M M 11111 M M 111111 M M 11111 M M 111111 M M 1111111 M M 111111 M M 1111111111		(0.0296)	-	(20)	Ξ
the 10^{-1}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} h_{\rm He} & & & & & & & & & & & & & & & & & & &$	ther ND (0.0361) [1] NO (0.0337) [1] NO (0.033		(0.0187)		(18)	Ξ
				M M M (0.0337) [1] M M M M M M M M M M M M M M M M M M M		(0,039)		273)	Ξ
00 01 (00200) 00 (1) (00200) 00 (1) (00200) 01 01 01 01 (0000) 00 (1) (0000) 00 (1) (0000) 01 01 01 01 01 (0000) 00 (1) (0000) 00 (1) (0000) 00 (1) (0000) 00 (1) (0000) 00 (1) (0000) 00 (1) (0000) 00 (1) (0000) 00 (1) (0000) 00 (1)				NO (0.0337) [1] NO (0.037) [1] NO (0.037) [1] NO (0.037) [1] N		(0.0284)		(66	Ξ
(6220-0) ON [1] (6220-0) ON [1] (6220-0) ON [1] (6220-0) ON .	Ma (I (1980.0) M (I (1980.0) M (I (1990.0) M (I (1990.0) M (1990.0	(cc27.0) M [1] (bc20.0) M [1] (cc30.0) M [1] (cc30.	(cont) (I (0.036) (I (ON (0.0337) (1)		(+020.0)			33
·						(0.0364)	_	fees	Ξ
·									
·	·								
·									

NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 24 January 1994

		AZ-HA-3-UI			A2-HA-3-02		A	AZ-HA-/			G162-28	
	E-NO	E-N0AA-09-05		ú	E-NOAA-09-06		E-NO	E-N0AA-13-01		E - N	E-N0AA-02-01	
PARAMETER		0 - 3			2.5 - 3		e E	3.5 - 4			0 - 3	
)rganics (mg/kg)	9)	8 8 8 8 8 8	1 1 1 1 1 1								
Ethanol	NA			NA			NA			ND	(0.831)	Ξ
Ethyl ether	NA			NA			NA			QN	(5.99)	Ξ
Methyl ethyl ketone	NA			NA			NA			QN	(5.79)	Ξ
Methyl isobutyl ketone	NA			NA			NA			QN	(1.71)	Ξ
SW8015MP Petroleum Hydrocarbons-Modified Purgeable	odified Purgeab	le (ng/kg)										
Benzene	NA			NA			NA			4.47 KJ	(1.39)	[20]
Ethyl benzene	NA			NA			NA			11.3 BP	(4.56)	[50]
Gasoline	NA			NA			NA			QN	(1050)	[50]
Toluene	NA			NA			NA			17.9 B	(5.87)	[20]
Xylene (total)	NA			N			NA			16.4 PJ	(19.6)	[50]
SW8240 - Volatile Organics (ug/kg)	(1											
1,1,1-Trichloroethane	QN	(3.06)	Ξ	QN	(2.75)	Ξ	QN	(3.03)	Ξ	QN	(1.39)	Ξ
1,1,2,2-Tetrachloroethane	QN	(2.25)	Ξ	Q	(2.03)	Ξ	QN	(2.24)	Ξ	QN	(1.37)	Ξ
1,1,2-Trichloroethane	QN	(2.95)	Ξ	QN	(2.65)	Ξ	QN	(2.93)	Ξ	QN	(1.21)	Ξ
1,1-Dichloroethane	QN	(2.32)	Ξ	QN	(2.09)	Ξ	QN	(2.31)	Ξ	QN	(1)	Ξ
1,1-Dichloroethene	QN	(4.42)	Ξ	QN	(3.97)	Ξ	QN	(4.38)	Ξ	QN	(1.28)	Ξ
1,2-Dichloroethane	ON	(2.3)	Ξ	QN	(2.07)	Ξ	QN	(2.28)	Ξ	QN	(0.864)	Ξ
1,2-Dichloropropane	QN	(3.65)	Ξ	QN	(3.28)	Ξ	ND	(3.62)	Ξ	QN	(0.689)	Ξ
2-Chloroethyl vinyl ether	QN	(3.02)	Ξ	Q	(2.72)	Ξ	QN	(3)	Ξ	QN	(2.92)	Ξ
2-Hexanone	QN	(4.52)	Ξ	QN	(4.07)	Ξ	Q	(4.49)	Ξ	QN	(3.45)	Ξ
4-Methyl-2-Pentanone(MIBK)	QN	(5.99)	Ξ	Q	(5.69)	Ξ		(5.96)	Ξ	QN	(3.97)	Ξ
Acetone	13.6 J	(30.1)	Ξ	8.45 J		Ξ	12.2 J	(59.9)	Ξ	Q	(14.2)	Ξ
Benzene	QN	(2.39)	Ξ	Q	(2.15)	Ξ	QX	(2.38)	Ξ	QN	(0.427)	Ξ
Bromodichloromethane	QN	(3.54)	Ξ	QN	(3.19)	Ξ	QN	(3.52)	Ξ	QN	(0.813)	Ξ
Bromomethane	QN	(4.15)	Ξ	Q	(3.73)	Ξ	QN	(4.12)	Ξ	QN	(1.15)	Ξ
Carbon disulfide	QN	(4.79)	Ξ	QN	(4.31)	Ξ	QN	(4.75)	Ξ	QN	(1.46)	Ξ
Carbon tetrachloride	QN	(1.28)	Ξ	QN	(1.15)	Ξ	ÛN	(1.27)	Ξ	QN	(1.52)	Ξ
Chlorobenzene	QN	(2.35)	Ξ	Q	(2.11)	Ξ	QN	(2.33)	Ξ	QN	(0.616)	Ξ
Chloroethane	QN	(2.16)	Ξ	Q	(4.64)	Ξ	QN	(2.12)	Ξ	QN	(3.62)	Ξ
Chloroform	QN	(2.14)	Ξ	Ņ	(1.92)	Ξ	QN	(2.12)	Ξ	QN	(0.962)	Ξ
Chloromethane	QN	(3.7)	Ξ	QN	(3.32)	Ξ	QN	(3.67)	Ξ	QN	(1.93)	Ξ
Dibromochloromethane	QN	(2.84)	Ξ	QN	(2.55)	Ξ	QN	(2.81)	Ξ	QN	(1.03)	Ξ
Ethyl benzene	QN	(2.12)	Ξ	QN	(1.9)	Ξ	QN	(2.1)	Ξ	QN	(0.93)	Ξ
Meta-&Para-Xylene	QN	(4.42)	IJ	QN	(3.97)	[1]	QN	(4.38)	Ξ	QN	(0 864)	Ξ

	A2-	A2-HA-3-01		-	A2-HA-3-02			A2-HA-7			A2-SS15	
	E-NC	E-NOAA-09-05		ىنى ا	E-N0AA-09-06		E-1	E-NDAA-13-01		ٺ	E-N0AA-02-01	
PARAMETER		0 - 3			2.5 - 3			3.5 - 4			0 - 3	
 SW8240 - Volatile Organics cont	(na/ka)			 	1	1	8 / 1 	 	1	4 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Methyl ethyl kethe	19.6 B	(13.1)	[1]	14.4 B	(11.8)	E	18.5 8	(13)	Ξ	QN	(4.29)	[1]
Methvlene Chloride		(2.03)	Ξ	.68	(4.53)	Ξ		(4.99)	Ξ	7.52	(1.54)	Ξ
Ortho-Xy]ene	QN	(2.23)	Ξ	QN	(2.01)	Ξ	QN	(2.21)	Ξ	QN	(0.62)	Ξ
Styrene	QN	(2.91)	Ξ	QN	(2.61)	Ξ	QN	(2.88)	Ξ	QN	(0.902)	Ξ
Tetrachloroethene	QN	(2.18)	Ξ	QN	(1.97)	Ξ	QN	(2.17)	Ξ	QN	(0.708)	Ξ
Toluene	QN	(3.01)	Ξ	QN	(2.71)	Ξ	QN	(5.99)	Ξ	QN	(0.381)	Ξ
Tribromomethane(Bromoform)	QN	(2.53)	Ξ	1.48 J	(2.28)	Ξ	QN	(2.51)	Ξ	QN	(1.77)	Ξ
[rich]oroethene	QN	(3.34)	Ξ	QN	(3)	Ξ	QN	(3.31)	Ξ	QN	(0.727)	Ξ
Trichlorofluoromethane	QN	(4.61)	Ξ	QN	(4.15)	Ξ	QN	(4.58)	Ξ	QN	(1.32)	Ξ
Viny) Chlaride	QN	(3.52)	[1]	QN	(3.17)	Ξ	QN	(3.49)	Ξ	QN	(1.46)	Ξ
Vinyl acetate	QN	(3.45)	Ξ	QN	(3.1)	Ξ	QN	(3.43)	Ξ	QN	(2.35)	Ξ
cis-1,2-Dichloroethene	QN	(1.94)	[1]	QN	(1.75)	Ξ	QN	(1.66)	Ξ	Q	(0.999)	Ξ
cis-1,3-Dichloropropene	QN	(1.72)	Ξ	Q	(1.55)	Ξ	QN	(1.71)	Ξ	QN	(0.678)	Ξ
trans-1,2-Dichloroethene	QN	(2)	Ξ	QN	(1.8)	Ξ	QN	(1.98)	Ξ	QN	(1.02)	Ξ
trans-1,3-Dichloropropene	QN	(1.16)	Ξ	QN	(1.05)	Ξ	QN	(1.15)	Ξ	QN	(0.768)	Ξ
SW8270 - Semivolatile Organics ((ɓ/ɓn)											
1,2,4,5-Tetrachlorobenzene	QN	(0.444)	Ξ	QN	(0.384)	Ξ	QN	(0.015)	Ξ	QN	(0,0141)	Ξ
1,2,4-Trichlorobenzene	QN	(0.67)	Ξ	QN	(0.579)	Ξ	QN	(0.0226)	Ξ	QN	(0.0212)	Ξ
1,2-Dichlorobenzene	QN	(0.724)	Ξ	QN	(0.625)	Ξ	QN	(0.0244)	Ξ	QN	(0.0229)	Ξ
1,3-Dicnlorobenzene	QN	(0.817)	Ξ	QN	(0.706)	Ξ	QN	(0.0275)	Ξ	QN	(0.0259)	Ξ
1,4-Dichlorobenzene	QN	(0.67)	Ē	QN	(0.579)	Ξ	QN	(0.0226)	Ξ	QN	(0.0212)	Ξ
2,4,5-Trichlorophenol	ND	(0.58)	Ξ	QN	(0.501)	Ξ	QN	(0.0195)	Ξ	QN	(0.0184)	Ξ
2,4,6-Trichlorophenol	QN	(0.577)	Ξ	QN	(0.498)	Ξ	QN	(0.0194)	Ξ	QN	(0.0183)	Ξ
2,4-Dichlorophenol	QN	(0.648)	Ξ	QN	(0.56)	Ξ	× ×	(0.0218)	Ξ	QN	(0.0205)	[1]
2,4-Dimethylphenol	QN	(1.48)	Ξ	QN	(1.28)	Ξ	QN	(0.0499)	Ξ	QN	(0.0469)	[1]
2.4-Dinitrophenol	QN	(4.76)	Ξ	QN	(4.12)	Ξ	QN	(0.16)	Ξ	QN	(0.151)	Ξ
2,4-Dinitrotoluene	QN	(0.673)	Ξ	QN	(0.582)	Ξ	QN	(0.0227)	Ξ	QN	(0.0213)	Ξ
2,6-Dinitrotoluene	QN	(0.981)	Ξ	QN	(0.848)	Ξ	QN	(0.0331)	Ξ	QN	(0.0311)	Ξ
2-Chloronaphthalene	QN	(0.447)	Ξ	QN	(0.386)	Ξ	QN	(0.015)	Ξ	QN	(0.0142)	(E)
2-Chlorophenol	QN	(0.724)	Ξ	Q	(0.625)	Ξ	QN	(0.0244)	Ξ	QN	(0.0229)	Ξ
2-Methylnaphthalene	QN	(0.415)	[1]	QN	(0.358)	Ξ	QN	(0.014)	Ξ	QN	(0.0131)	[1]
2-Methylphenol(o-cresol)	QN	(0.353)	Ξ	QN	(0.305)	Ξ	QN	(0.0119)	Ē	QN	(0.0112)	Ξ
2-Nitroaniline	QN	(0.756)	Ξ	QN	(0.653)	Ξ	QN	(0.0255)	Ξ	QN	(0.0239)	Ξ
2-Nitrophenol	QN	(0.595)	Ξ	QN	(0.514)	Ξ	QN	(0.02)	Ξ	QN	(0.0188)	Ξ
3 3'-Dichlorobenzidine	C N	(0 379)	Ξ	ģ	(000)	3	G	(0,0100)	:	UN	(0 010)	[1]

		F-NAAA-OG-OF		د ، س	F-NDAA-09-06		Ļ	F-N0AA-13-01			F-N0AA-02-01	
PARAMETER	2	0 - 3		د	2.5 - 3		J	3.5 - 4		1	0 - 3	
 SW8270 - Semivolatile Organics, cont.	(b/bn)	· · · ·		 	0 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1		r 1 1 1 1	6 6 1 1 1 1 1 1 1		5 7 6 8 1
3-Nitroaniline	QN	(0.448)	Ξ	QN	(0.387)	Ξ	QN	(0.0151)	Ξ	QN	(0.0142)	Ξ
4,6-Dinitro-2-methylphenol	QN	(0.49)	Ξ	QN	(0.423)	Ξ	QN	(0.0165)	Ξ	QN	(0.0155)	Ξ
4-Bromophenyl phenyl ether	QN	(0.552)	Ξ	Q	(0.477)	Ξ	QN	(0.0186)	Ξ	QN	(0.0175)	Ξ
4-Chloro-3-methylphenol	QN	(0.587)	Ξ	QN	(0.507)	Ξ	QN	(0.0198)	Ξ	QN	(0.0186)	Ξ
4-Chlorophenyl phenyl ether	QN	(0.48)	Ξ	QN	(0.415)	Ξ	QN	(0.0162)	Ξ	QN	(0.0152)	Ξ
4-Methylphenol(p-cresol)	QN	(0.523)	Ξ	QN	(0.452)	Ξ	QN	(0.0176)	Ξ	QN	(0.0166)	Ξ
4-Nitroaniline	QN	(0.691)	Ξ	QN	(0.597)	[1]	QN	(0.0233)	Ξ	0.13	(0.0219)	Ξ
4-Nitrophenol	QN	(1.07)	Ξ	QN	(0.923)	[1]	QN	(0.036)	Ξ	QN	(0.0338)	Ξ
Acenaphthene	QN	(0.31)	Ξ	QN	(0.268)	Ξ	QN	(0.0104)	Ξ	QN	(0.00982)	Ξ
Acenaphthylene	QN	(0.476)	[1]	QN	(0.412)	[1]	QN	(0.016)	Ξ	QN	(0.0151)	Ξ
Anthracene	NC	(0.419)	Ξ	Q	(0.362)	Ξ	QN	(0.0141)	Ξ	QN	(0.0133)	Ξ
Benzo(a)anthracene	QN	(0.512)	Ξ	QN	(0.442)	Ξ	QN	(0.0172)	Ξ	0.0121 J	(0.0162)	Ξ
Benzo(a)pyrene	QN	(0.59)	Ξ	QN	(0.51)	Ξ	QN	(0.0199)	Ξ		(0.0187)	Ξ
Benzo(b)fluoranthene	QN	(1.03)	[1]	QN	(0.894)	Ξ	QN	(0.0349)	Ξ	0.0347 F	(0.0328)	Ξ
Benzo(g,h,i)perylene	QN	(1.16)	Ξ	QN	Ξ	Ξ	QN	(0.0392)	Ξ	ON	(0.0368)	Ξ
Benzo(k)fluoranthene	QN	(1.14)	Ξ	QN	(0.984)	Ξ	QN	(0.0384)	Ξ	0.0347 FJ	(0.0361)	Ξ
Benzoic acid	QN	(44)	Ξ	QN	(38)	Ξ	QN	(1.48)	Ξ	QN	(1.39)	Ξ
Benzyl alcohol	QN	(0.695)	Ξ	QN	(0.601)	Ξ	ON	(0.0234)	Ξ	QN	(0.022)	Ξ
Butylbenzylphthalate	ON	(0.712)	Ξ	QN	(0.615)	Ξ	QN	(0.024)	Ξ	0.024	(0.0226)	Ξ
Chrysene	QN	(0.612)	[1]	QN	(0.529)	Ξ	QN	(0.0206)	Ξ	0.019 J	(0.0194)	Ξ
Di-n-octylphthalate	QN.	(0.401)	Ξ	QN	(0.347)	Ξ	QN	(0.0135)	Ξ	0.0784	(0.0127)	Ξ
Dibenz(a,h)anthracene	QN	(0.924)	Ξ	QN	(0.799)	Ξ	QN	(0.0311)	Ξ	Q	(0.0293)	Ξ
Dibenzofuran	QN	(0.612)	Ξ	DN	(0.529)	Ξ	QN	(0.0206)	Ξ	QN	(0.0194)	Ξ
Dibutylphthalate	QN	(0.369)	Ξ	0.32	(0.319)	Ξ	QN	(0.0124)	Ξ	0.325	(0.0117)	Ξ
Diethylphthalate	QN	(0.587)	Ξ	QN	(0.507)	Ξ	QN	(0.0198)	Ξ	0.0152 J	(0.0186)	Ξ
Dimethylphthalate	QN	(0.383)	Ξ	QN	(0.331)	Ξ	QN	(0.0129)	Ξ	QN	(0.0121)	Ξ
Fluoranthene	QN	(0.537)	Ξ	ON	(0.464)	Ξ	QN	(0.0181)	Ξ	0.0265	(0.017)	Ξ
Fluorene	QN	(0.433)	Ξ	QN	(0.374)	Ξ	QN	(0.0146)	Ξ	QN	(0.0137)	Ξ
Hexachlorobenzene	QN	(0.358)	Ξ	QN	(0.309)	Ξ	QN	(0.0121)	Ξ	QN	(0.0113)	Ξ
Hexachlorobutadiene	QN	(0.583)	Ξ	QN	(0.504)	Ξ	QN	(0.0197)	Ξ	QN	(0.0185)	Ξ
Hexachlorocyclopentadiene	QN	(6.71)	Ξ	QN	(5.8)	Ξ	QN	(0.226)	Ξ	QN	(0.213)	Ξ
Hexachloroethane	QN	(0.724)	[1]	QN	(0.625)	Ξ	QN	(0.0244)	Ξ	QN	(0.0229)	Ξ
Indeno(1,2,3-cd)pyrene	QN	(1.52)	Ξ	QN	(1.31)	Ξ	Q	(0.0511)	Ξ	QN	(0.048)	Ξ
I sophorone	QN	(0.702)	Ξ	QN	(0.607)	Ξ	QN	(0.0237)	Ξ	ND	(0.0222)	Ξ
N-Nitroso-Di-n-propylamine	Q	(0.745)	Ξ	QN	(0.644)	Ξ	GN	(0.0251)	Ξ	QN	(0.0236)	Ξ
N-Nitrosodiphenvlamine	QN	(0.307)	Ξ	QN	(0.265)	Ξ	QN	(0.0103)	Ξ	QN	(0.00971)	Ξ

,

												rage: 13
	Ϋ́Υ,	A2-HA-3-01		< ∟	2-HA-3-02		L	A2-HA-7		Ľ	A2-5515	
PARAMETER	1	E-NUAA-U9-U5 0 - 3		L L	E-MUAA-US-UD 2.5 - 3		<u>L</u>	E-NUAA-13-UI 3.5 - 4		Ĺ	E-RUMA-UC-UL 0 - 3	
SW8270 - Semivolatile Organics, cont.	(ug/g)	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 		• • • •	1 1 1 1 1 1 1 1 1 1 1 1 1	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		• • • • • • • • •	•	
Naphthalene	QN	(0.545)	Ξ	QN	(0.471)	[7]	QN	(0.0184)	Ξ	QN	(0.0173)	Ξ
Ni trobenzene	QN	(0.959)	Ξ	QN	(0.829)	Ξ	QN	(0.0323)	Ξ	Q	(0.0304)	Ξ
Pentachlorophenol	QN	(1.01)	Ξ	QN	(0.875)	Ξ	QN	(0.0341)	Ξ	0.0516	(0.0321)	Ξ
Phenanthrene	0.307 J	(0.533)	Ξ	QN	(0.461)	Ξ	QN	(0.018)	Ξ	0.0302	(0.0169)	Ξ
Phenol	QN	(1.01)	Ξ	QN	(0.869)	Ξ	QN	(0.0339)	Ξ	QN	(0.0319)	Ξ
Pyrene	QN	(0.465)	Ξ	QN	(0.402)	Ξ	Q	(0.0157)	Ξ	0.0227	(0.0147)	Ξ
bis(2-Chloroethoxy)methane	QN	(0.691)	Ξ	QN	(0.597)	Ξ	QN	(0.0233)	Ξ	QN	(0.0219)	Ξ
bis(2-Chloroethyl)ether	QN	(0.436)	Ξ	Q	(0.377)	Ξ	QN	(0.0147)	Ξ	QN	(0.0138)	Ξ
bis(2-Chloroisopropyl)ether	QN	(0.909)	Ξ	QN	(0.786)	Ξ	QN	(0.0306)	Ξ	QN	(0.0288)	Ξ
bis(2-Ethylhexyl)phthalate	53.7	(0.662)	Ξ	15.7	(0.572)	Ξ	QN	(0.0223)	Ξ	2.52	(0.021)	Ξ
p-Chloroaniline	QN	(0.849)	Ξ	QN	(0.734)	Ξ	QN	(0.0286)	Ξ	QN	(0.0269)	Ξ

٠

.

(

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

ł

		AZ-5510			1100-7H		-	1100-JH			0100-24	
PARAMETER	Ξ Ψ	E-NOAA-02-03 0 - 3		¥- ₩	E-NOAA-02-05 0 - 3	ш _.	-N0AA-02-08	E-NOAA-02-08 Dup of E-NOAA-02-05 0 - 3	-02-05		E-NOAA-02-06 0 - 3	
	Organics (mg/kg)	ka)				-	 		1 1 1 1 1 1 1			
Ethanol	~	(1.18)	Ξ	QN	(1.23)	Ξ	QN	(1.26)	Ξ	AN		
Ethyl ether	QN	(4.25)	Ξ	QN	(4.44)	Ξ	UN	(4.53)	Ξ	NA		
Methyl ethyl ketone	ND	(3.97)	Ξ	QN	(4.14)	Ξ	QN	(4.23)	Ξ	NA		
Methyl isobutyl ketone	ON	(2.43)	Ξ	QN	(2.54)	Ξ	QN	(2.6)	Ξ	AN		
SW8015MP Petroleum Hydrocarbons-Modified Purgeable	odified Purgea	ble (ug/kg)										
Benzene	NA			QN	(6.32)	[20]	3.49 KJ	(8.34)	[20]	5.24 KJ	(10)	[20]
Ethyl benzene	NA			QN	(98.9)	[20]	QN	(6.87)	[20]	QN	(1.36)	[20]
Gasoline	NA			QN	(1330)	[20]	QN	(1330)	[20]	QN	(1430)	[2(
Toluene	NA			18.3 8	(7.4)	[20]	16.1 B	(7.42)	[20]	17.5 8	(1.95)	<u>[</u> 2
Xylene (total)	NA			91.1	(19.2)	[50]	65.1	(19.2)	[50]	21 PJ	(26.5)	[5
SW8240 - Volatile Organics (ug/kg)	() (
1,1,1-Trichloroethane	QN	(1.68)	Ξ	QN	(1.72)	Ξ	QN	(1.77)	Ξ	QN	(1.86)	Ξ
1,1,2,2-Tetrachloroethane	DN	(1.65)	Ξ	QN	(1.69)	Ξ	QN	(1.74)	Ξ	QN	(1.83)	Ξ
l,l,2~Trichloroethane	QN	(1.47)	Ξ	QN	(1.5)	Ξ	QN	(1.55)	Ξ	QN	(1.63)	
1,1-Dichloroethane	QN	(1.21)	Ξ	QN	(1.24)	[1]	QN	(1.28)	Ξ	QN	(1.34)	_
1,1-Dichloroethene	QN	(1.55)	Ξ	QN	(1.58)	Ξ	QN	(1.63)	Ξ	QN	(17.1)	Ξ
1,2-Dichloroethane	QN	(1.04)	Ξ	QN	(1.07)	Ξ	QN	(1.1)	Ξ	QN	(1.16)	<u> </u>
l,2-Dichloropropane	QN	(0.832)	Ξ	QN	(0.851)	Ξ	QN	(0.879)	[1]	QN	(0.923)	
2-Chloroethyl vinyl ether	QN	(3.52)	Ξ	QN	(3.6)	Ξ	UN	(3.72)	Ξ	QN	(16.8)	-
2-Hexanone	QN	(4.17)	Ξ	QN	(4.26)	Ξ	QN	(4.4)	Ξ	QN	(4.62)	
4-Methyl-2-Pentanone(MIBK)	QN	(4.79)	Ξ	QN	(4.9)	Ξ	QN	(2.06)	Ξ	QN	(5.32)	
Acetone	UN	(17.2)	Ξ	13 J	(17.6)	Ξ	15.7 J	(18.1)	Ξ	QN	(19)	
Benzene	QN	(0.516)	Ξ	QN	(0.528)	Ξ	QN	(0.545)	Ξ	QN	(0.573)	
Bromodichloromethane	QN	(0.982)	Ξ	QN	(1.01)	Ξ	Q	(1.04)	Ξ	QN	(60.1)	Ξ
Bromomethane	QN	(1.39)	Ξ	QN	(1.42)	Ξ	QN	(1.47)	Ξ	QN	(1.54)	-
Carbon disulfide	QN	(1.77)	Ξ	QN	(1.81)	Ξ	QN	(1.87)	Ξ	QN	(1.96)	-
Carbon tetrachloride	QN	(1.83)	Ξ	QN	(1.88)	Ξ	QN	(1.94)	Ξ	QN	(2.03)	
Chl orobenzene	QN	(0.744)	Ξ	QN	(0.761)	Ξ	QN	(0.786)	[1]	QN	(0.825)	
Chloroethane	QN	(4.37)	Ξ	QN	(4.48)	Ξ	QN	(4.62)	Ξ	QN	(4.85)	-
Chloroform	QN	(1.16)	Ξ	QN	(1.19)	Ξ	QN	(1.23)	Ξ	QN	(1.29)	_
Chloromethane	QN	(2.33)	Ξ	QN	(2.39)	Ξ	UN	(2.46)	Ξ	QN	(2.59)	
Dibromochloromethane	ON	(1.24)	Ξ	QN	(1.27)	Ξ	QN	(1.31)	Ξ	QN	(1.38)	Ξ
Ethyl benzene	QN	(1.12)	Ξ	ND	(1.15)	Ξ	QN	(1.19)	Ξ	QN	(1.25)	ت ا
Meta-&Para-Xylene	ND	(1.04)	Ξ	QN	(1.07)	Ξ	QN	(1.1)	Ξ	QN	(1.16)	Ξ

		A2-SS16			A2-SS17			A2-SS17			A2-SS18	
PARAMETER	-	E-NOAA-02-03 0 - 3		ш	E-NDAA-02-05 0 - 3	L L	-N0AA-02-0£	E-NOAA-02-08 Dup of E-NDAA-02-05 0 - 3	-02-05	ٺ	E-NOAA-02-06 0 - 3	
1040 Volatilo Oranoico cont	(/b.c.)	9 4 7 6 9 9 9 7 8 6 7 9 9 9	1	• • •			, , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*	, , , , , , , , , , , , , , , , , , ,		1 1 1 1
300240 - VOIGULLE UTGANICS, CONC. Mathyl athyl katona	UN NU	(5 19)	[1]	44 . G	(2.31)	Ы	GN	(2.48)	[1]	ÛN	(2.72)	[1]
Methylane Chloride	18.2	(1.86)	ΞΞ	30.7	(1 0)	ΞΞ	8 2 by	(1.96)	Ξ	20.1	(2 06)	Ξ
netrijiene on olitat Artho-Yulana	UN ND	(00:1)	ΞΞ	ND N	(0.2) (0.767)	ΞΞ		(162.0)	ΞΞ	UN N	(0.831)	ΞΞ
		(00 1)	33			33	2	(1 15)	33		(101)	ΞΞ
otyrene	5	(0.11)	Ξ3	2 9	(11.1)	33	2 9	(01.1)	ΞΞ	2 9	(070 0)	ΞΞ
etrachioroethene	N N	(cc8.0)	Ξ	5	(3.0)	Ξ	Qu :	(0.304)	ΞΞ	Du :	(848.0)	Ξ
Ioluene	QN	(0.46)	Ξ	Ø	(0.47)	Ξ	QN	(0.486)	Ξ	ON	(0.51)	Ξ
Tribromomethane(Bromoform)	QN	(2.13)	Ξ	QN	(2.18)	Ξ	QN	(2.26)	Ξ	Q	(2.37)	Ξ
Trichloroethene	Q	(0.878)	Ξ	Q	(0.898)	Ξ	QN	(0.927)	Ξ	QN	(0.974)	Ξ
Trichlorofluoromethane	QN	(1.6)	Ξ	QN	(1.63)	Ξ	QN	(1.69)	Ξ	QN	(1.77)	Ξ
Vinvl Chloride	QN	(1.77)	Ξ	Q	(1.81)	Ξ	QN	(1.87)	Ξ	Q	(1.96)	Ξ
Vinvl acetate	ON	(2.84)	Ξ	QN	(2.91)	E	QN	(3)	Ξ	QN	(3.15)	E
cis-1 2-Dichloroethene	UN	(17.1)	Ξ	CN	(1.23)	Ξ	QN	(1.27)	Ξ	QN	(1.34)	Ξ
cis-1 3-Dichloropropene	UN N	(0.819)	ΞΞ	S	(0.838)	Ξ	QN	(0.865)	Ξ	QN	(808.0)	Ξ
trans.1 2-Dichlorosthene	C N	(1. 23)	ΞΞ	2	(1 25)	33	CN N	(13)	Ξ	ŝ	(1 36)	ΞΞ
	2		33	2 !	()	Ξ3	2 1	(0.1)	33	2 9	(00.1)	Ξ3
trans-1,3-Dichloropropene	QN	(0.927)	Ξ	Q	(0.949)	Ξ	Q	(0.98)	Ξ	QN	(1.03)	Ξ
SW8270 - Semivolatile Organics (u	(6/6n)											
	QN	(0.0173)	Ξ	ð	(0.0525)	Ξ	QN	(0.054)	[1]	QN	(0.0192)	[1]
1.2.4-Trichlorobenzene	QN	(0.0261)	Ξ	Q	(0.0791)	Ξ	QN	(0.0814)	Ξ	Q	(0.029)	Ξ
1.2-Dichlorobenzene	QN	(0.0282)	Ξ	Q	(0.0854)	Ξ	QN	(0.0879)	Ξ	Q	(0.0313)	Ξ
1.3-Dichlorobenzene	QN	(0.0318)	Ξ	QN	(0.0965)	Ξ	QN	(0.0992)	Ξ	QN	(0.0353)	Ξ
1.4-Dichlorobenzene	QN	(0.0261)	Ξ	Q	(0.0791)	Ξ	QN	(0.0814)	Ξ	QN	(0,029)	Ξ
2.4.5-Trichlorophenol	QN N	(0.0226)	33	QN	(0,0685)	Ξ	QN	(0.0704)	Ξ	Q	(0.0251)	Ξ
2 4 6-Trichloronhenol	ÛN	(0 0225)	Ξ	GN	(0.0681)	Ξ	CN	(0.07)	Ξ	ÛN	(0.0249)	Ξ
2.4-Dichlorophenol	QN	(0.0253)	Ξ	9	(0.0766)	Ξ	QN	(0.0787)	Ξ	QN	(0,028)	Ξ
2.4-Dimethv]bheno]	ÛN	(0.0577)	Ξ	QN	(0.175)	Ξ	QN	(0.18)	Ξ	QN	(0,064)	Ξ
2.4-Dinitrophenol	QN	(0.186)	Ξ	Q	(0.562)	Ξ	QN	(0.578)	Ξ	GN	(0.206)	Ξ
2.4-Dinitrotoluene	Q	(0.0262)	Ξ	Ş	(0,0795)	Ξ	QN	(0.0818)	Ξ	QN	(0.0291)	Ξ
0 6-Dinitrotoluene	ÛN	(0 0382)	Ξ	C N	(0 116)	Ξ	Ş	(0 119)	33	CN	(0 0424)	Ξ
z;o ziniziototacio 2∴Chloronanhthalene		(0.0174)	ΞΞ	e G	(0.0527)	ΞΞ	Q	(0.0542)	Ξ	9	(0.0193)	ΞΞ
2-Chloronhenol	CN N	(0.0282)	ΞΞ	Ş	(0.0854)	Ξ	Q	(0,0879)	Ξ	9	(0.0313)	Ξ
- Just bridge	0 0648	(0 0162)	ΞΞ	1 18	(0,0040)	ΞΞ	0 208	(0.0504)	Ξ	C N	(0.179)	ΞΞ
2-Methvlnhengl(o-cresol)	S	(0.0138)	Ξ	ŝ	(0.0417)	Ξ	QN	(0.0429)	Ξ	QN	(0.0153)	Ξ
2-Nitroaniline	GN N	(0.0294)	Ξ	CN N	(0.0892)	Ξ	QN	(2160.0)	Ξ	QN	(0.0327)	Ξ
2-Nitropheno]	CN N	(0.0232)	Ξ	S	(0.0702)	Ξ	QN	(0.0722)	Ξ	QN	(0.0257)	Ξ
3 3'_Dichlowchenzidine	CN N	(0 0148)	23	-	(0110)	22	4	(0 0461)	33	2		23

	- E	E-N0AA-02-03			E-NOAA	E-NOAA-02-05	u	E-NOAA-02-08 Dup of	8 Dup of E-NOAA-02-05	-02-05	ٺ	E-N0AA-02-06	
PARAMETER		0 - 3			0	- 3			0 - 3			0 - 3	
	ont. (ug/g)			, 1 1 1 1 1 1	2 1 2 1 1	1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			[]]]]]]]]]]]]]]]]]]]	- 1 1 1 1 1 1 1			
3-Nitroaniline		(0.0174)	Ξ	QN	Ū	0.0529)	Ξ	QN	(0.0544)	Ξ	QN	(0.0194)	Ξ
4,6-Dinitro-2-methy]pheno]	QN	(0.0191)	Ξ	QN	Ū	0.0579)	Ξ	Q	(0.0595)	Ξ	QN	(0.0212)	Ξ
4-Bromophenyl phenyl ether	QN	(0.0215)	Ξ	QN	Ţ	0.0651)	Ξ	QN	(0.067)	Ξ	QN	(0.0238)	Ξ
4-Chloro-3-methylphenol	QN	(0.0229)	Ξ	QN	Ţ	0.0693)	Ξ	ND	(0.0713)	Ξ	QN	(0.0254)	Ξ
4-Chlorophenyl phenyl ether	QN	(0.0187)	Ξ	QN	Ū	0.0566)	Ξ	QN	(0.0582)	Ξ	ND	(0.0207)	Ξ
4-Methylphenol(p-cresol)	QN	(0.0204)	Ξ	QN	Ŭ	0.0618)	Ξ	QN	(0.0635)	Ξ	QN	(0.0226)	Ξ
4-Nitroaniline	QN	(0.0269)	Ξ	QN	Ŭ	0.0815)	Ξ	QN	(0.0838)	Ξ	QN	(0.0299)	Ξ
4-Nitrophenol	QN	(0.0416)	Ξ	QN		(0.126)	Ξ	QN	(0.13)	Ξ	QN	(0.0462)	Ξ
Acenaphthene	QN	(0.0121)	Ξ	Q	-	r 1366)	Ξ	QN	(0.0376)	Ξ	QN	(0.0134)	Ξ
Acenaphthylene	0.0222	(0.0186)	Ξ	QN	-	J. 0562)	Ξ	QN	(0.0578)	Ξ	Q	(0.0206)	Ξ
Anthracene	0.0719	(0.0163)	Ξ	QN	Ĵ	0.0495)	Ξ	QN	(0.0509)	Ξ	Q	(0.0181)	Ξ
Benzo(a)anthracene	0.216	(0.0199)	Ξ	0.0599) L	(0.0604)	Ξ	0.0299 J	(0.0621)	Ξ	0.0184 J	(0.0221)	Ξ
Benzo(a)pyrene	0.327	(0.023)	Ξ	QN	Ĵ	0,0697)	Ξ	QN	(0.0717)	Ξ	Q	(0.0255)	[1]
Benzo(b)fluoranthene	0.945 F	(0.0403)	Ξ	0.0369	ſ	(0.122)	Ξ	QN	(0.126)	Ξ	QN	(0.0447)	Ξ
Benzo(g,h,i)perylene	0.0821	(0.0453)	Ξ	QN		(0.137)	Ξ	QN	(0.141)	Ξ	Q	(0.0502)	Ξ
Benzo(k)fluoranthene	0.945 F	(0.0443)	Ξ	0.0352	с Г	(0.134)	Ξ	QN	(0.138)	Ξ	Q	(0.0492)	Ξ
Benzoic acid	0.0954 J	(11.11)	Ξ	Q		(5.19)	Ξ	QN	(5.34)	Ξ	0.128 J	(1.9)	Ξ
Benzyl alcohol	QN	(0.0271)	Ξ	QN	Ū	0.0821)	Ξ	QN	(0.0844)	Ξ	QN	(0.03)	Ξ
Butylbenzylphthalate	0.0488	(0.0277)	Ξ	Q	~	0.0841)	Ξ	QN	(0.0865)	Ξ	QN	(0.0308)	Ξ
Chrysene	0.595	(0.0238)	Ξ	0.0752	Ĵ	0.0722)	Ξ	0.043 J	(0.0743)	Ξ	0.0102 J	(0.0265)	Ξ
Di-n-octylphthalate	0.0204	(0.0156)	Ξ	Q	J	0.0474)	Ξ	QN	(0.0487)	Ξ	QN	(0.0173)	Ξ
Dibenz(a,h)anthracene	0.047	(0.036)	Ξ	QN		(0.109)	Ξ	QN	(0.112)	Ξ	QN	(0.0399)	Ξ
Dibenzofuran	0.0218 J	(0.0238)	Ξ	QN	Ū	0.0722)	Ξ	QN	(0.0743)	Ξ	QN	(0.0265)	Ξ
Dibutylphthalate	0.124	(0.0144)	Ξ	Q	<u> </u>	0.0436)	Ξ	QN	(0.0448)	Ξ	QN	(0.016)	Ξ
Diethylphthalate	QN	(0.0229)	Ξ	Q	Ţ	0.0693)	Ξ	QN	(0.0713)	Ξ	QN	(0.0254)	Ξ
Dimethylphthalate	QN	(0.0149)	Ξ	ÛN	Ċ	0.0452)	Ξ	QN	(0.0465)	Ξ	Q	(0.0166)	Ξ
Fluoranthene	0.332	(0.0209)	Ξ	0.0324	с Г	0.0634)	Ξ	QN	(0.0652)	Ξ	0.0183 J	(0.0232)	Ξ
Fluorene	0.0113 J	(0.0169)	Ξ	Q	~	0.0511)	Ξ	QN	(0.0526)	Ξ	QN	(0.0187)	Ξ
Hexachlorobenzene	QN	(0.0139)	Ξ	QN)	0.0422)	Ξ	QN	(0.0434)	Ξ	QN	(0.0155)	Ξ
Hexachlorobutadiene	QN	(0.0227)	Ξ	QN	Ū	0.0689)	Ξ	QN	(0.0708)	Ξ	QN	(0.0252)	Ξ
Hexachlorocyclopentadiene	QN	(0.261)	Ξ	QN		(0.792)	Ξ	QN	(0.815)	Ξ	Q	(0.29)	Ξ
Hexachloroethane	QN	(0.0282)	Ξ	QN	Ţ	0.0854)	Ξ	QN	(0.0879)	Ξ	Q	(0.0313)	Ξ
Indeno(1,2,3-cd)pyrene	0.102	(0.059)	Ξ	Q		(0.179)	Ξ	QN	(0.184)	Ξ	QN	(0.0655)	Ξ
I sophorone	QN	(0.0273)	Ξ	QN	Ū	0.0829)	Ξ	QN	(0.0852)	Ξ	QN	(0.0303)	Ξ
N-Nitroso-Di-n-propylamine	QN	(0.029)	Ξ	Q		(0.088)	Ξ	QN	(0.0905)	Ξ	QN	(0.0322)	Ξ
N-Nitrosodinhenv]amine	UN	(0.0119)	[1]	QN	Ĵ	0.0362)	[1]	QN	(0.0372)	Ξ	QN	(0.0132)	[1]

•	
	17
	Page:
_	2

		A2-5			A2-SS17			A2-SS17				A2-SS18	
PARAMETER	Ļ	E-NOAA-02-03 0 - 3		- U	E-NOAA-02-05 0 - 3	-	E-NOAA-02-08 Dup of E-NOAA-02-05 0 - 3	3 Dup of E-I 0 - 3	N0AA-02-05		ய்	E-NOAA-02-06 0 - 3	
section of the		f 	-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 				
Naphthalene	0.0577	(0.0212)	Ξ	0.33	(0.0643)	Ξ	0.0642	(0.0661) []] 0.0(L 7780		Ξ
Nitrobenzene	QN	(0.0374)	[1]	QN	(0.113)	Ξ	QN	(0.117	-		QN		Ξ
Pentachlorophenol	0.182	(0.0395)	Ξ	QN	(0.12)	Ξ	QN	(0.123	(1)		. 229		Ξ
Phenanthrene	0.132	(0.0208)	Ξ	0.136	(0.063)	Ξ	0.0466 J	(0.0648)	-		0.0217 J	(0.0231)	Ξ
Phenol	QN	(0.0392)	Ξ	QN	(0.119)	Ξ	QN	(0.122			QN		Ξ
Pyrene	0.377	(0.0181)	Ξ	0.0716	(0.0549)	Ξ	0.0333 J	(0.0565			0161 J		Ξ
bis(2-Chloroethoxy)methane	QN	(0.0269)	Ξ	QN	(0.0815)	Ξ	QN	(0.0838			Q		Ξ
bis(2-Chloroethyl)ether	QN	(0.017)	Ξ	QN	(0.0515)	Ξ	QN	(0.053		-	QN	(0.0189)	Ξ
bis(2-Chloroisopropyl)ether	QN	(0.0354)	Ξ	QN	(0.107)	Ξ	QN	(0.11		-	QN	(0.0393)	Ξ
bis(2-Ethylhexyl)phthalate	0.808	(0.0258)	Ξ	0.0822 B	(0.0782)	Ξ	0.103 B	(0,0804	Ξ (Ŭ	0.0356 8	(0.0286)	Ξ
p-Chloroaniline	QN	(0.0331)	[1]	Q	(0.1)	Ξ	QN	(0.103)		_	ÛN	(0.0367)	[]]

I

	E-N0AA-02-07	E-NOAA-02-07 Dup of E-NOAA-02-06	-02-06	E-NC	E-N0AA-11-01		 	E-N0AA-09-07		E-NO	с-на-с E-NOAA-10-01	
PARAMETER		0 - 3		(7)	3.5 - 4			0 - 3		2	2.5 - 3	
SW8015MP Petroleum Hydrocarbons-Modified Purgeable		ble (ug/kg)	1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •	1 1 1 1 1 1 1		6 8 9 8 8 8 6 6 6 6	4 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 5 5 7 1 1	 	4 L L L L L L L L L L L L L L L L L L L	
Benzene	QN	(18.6)	[50]	QN	(3.68)	[50]	QN	(8.68)	[20]	QN	(3.64)	[20]
Ethyl benzene	Q	(7.22)	[50]	QN	(6.73)	[20]	QN	(6.38)	[50]	QN	(6.67)	[50]
Gasoline	QN	(1400)	[50]	QN	(2190)	[20]	QN	(1240)	[20]	QN	(2170)	[50]
Ioluene	7.81 8	(1.79)	[20]	QN	(12.2)	[20]	8.58 B	(6.89)	[20]	13.8	(12.1)	[50
Xylene (total)		(20.2)	[20]	QN	(18.9)	[50]		(17.9)	[20]	11.6 KJ	(18.7)	[20
SW8240 - Volatile Organics (t	(ug/kg)											
1,1,1-Trichloroethane	QN	(1.83)	Ξ	NA			QN	(3.41)	Ξ	NA		
1,1,2,2-Tetrachloroethane	QN	(1.8)	Ξ	NA			QN	(2.51)	Ξ	NA		
1,1,2-Trichloroethane	QN	(1.6)	Ξ	NA			QN	(3.29)	Ξ	NA		
1,1-Dichloroethane	QN	(1.32)	Ξ	NA			QN	(2.59)	Ξ	NA		
1,1-Dichloroethene	QN	(1.69)	[1]	NA			QN	(4.92)	Ξ	NA		
1,2-Dichloroethane	QN	(1.14)	Ξ	NA			QN	(2.56)	Ξ	NA		
l,2-Dichloropropane	QN	(206.0)	Ξ	NA			QN	(4.07)	Ξ	NA		
2-Chloroethyl vinyl ether	QN	(3.84)	Ξ	NA			QN	(3.37)	Ξ	NA		
2-Hexanone	QN	(4.54)	Ξ	NA			QN	(2.04)	Ξ	NA		
4-Methy]-2-Pentanone(MIBK)	QN	(5.23)	Ξ	NA			QN	(3.33)	Ξ	NA		
Acetone	28.5 B	(18.7)	Ξ	NA			13.7 J	(33.5)	Ξ	NA		
Benzene	QN	(0.563)	Ξ	NA			Q	(2.67)	Ξ	NA		
Bromodichloromethane	QN	(1.07)	Ξ	NA			QN	(3.95)	Ξ	NA		
Bromomethane	QN	(1.51)	Ξ	NA			QN	(4.62)	Ξ	NA		
Carbon disulfide	QN	(1.93)	Ξ	NA			QN	(5.34)	Ξ	NA		
Carbon tetrachloride	QN	(2)	Ξ	NA			QN	(1.42)	Ξ	NA		
Chlorobenzene	QN	(0.812)	Ξ	NA			QN	(2.62)	Ξ	NA		
Chloroethane	QN	(4.77)	Ξ	NA			QN	(5.75)	Ξ	NA		
Chloroform	QN	(1.27)	Ξ	NA			QN	(2.38)	Ξ	NA		
Chloromethane	QN	(2.54)	[1]	NA			QN	(4.12)	Ξ	NA		
Dibromochloromethane	QN	(1.36)	Ξ	NA			QN	(3.16)	Ξ	NA		
Ethyl benzene	QN	(1.23)	Ξ	NA			Q	(2.36)	Ξ	NA		
Meta-&Para-Xy]ene	QN	(1.14)	Ξ	NA			QN	(4.92)	Ξ	× NA		
Methyl ethyl ketone	QN	(2.66)	Ξ	NA			18.7 B	(14.6)	Ξ	NA		
Methylene Chloride	22.4 B	(2.03)	[]	NA			4.12 J	(2.61)	Ξ	NA		
Ortho-Xylene	QN	(0.817)	Ξ	NA			QN	(2.49)	Ξ	NA		
Styrene	UN	(1.19)	[1]	NA			QN	(3.24)	Ξ	AN		
Tetrachloroethene	QN	(0.933)	[1]	NA			QN	(2.44)	Ξ	NA		
Toluene	QN	(0.501)	[1]	NA			QN	(3.35)	[1]	NA		

		A2-SS18		A3-HA-4	•	A3-HA-4-01		A3-HA-5
	E-N0AA-02-0	E-NOAA-02-07 Dup of E-NOAA-02-06	-02-06	E-N0AA-11-01	ù	E-NOAA-09-07		E-NOAA-10-01
PARAMETER		0 - 3		3,5 - 4		0 - 3		2.5 - 3
current current of output of the output	(110/P2)			7 8 8 7 1 5 7 8 4 7 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8				8
Tribromomethane(Bromoform)		(2.33)	[1]	NA	QN	(2.82)	[1]	NA
Trichloroethene	QN	(0.957)	Ξ	NA	QN	(3.72)	Ξ	NA
Trichlorofluoromethane	QN	(1.74)		NA	QN	(5.14)	Ξ	NA
Vinvl Chloride	QN	(1.93)	11	NA	QN	(3.92)	Ξ	NA
Vinvl acetate	ÛN	(3.1)	Ξ	NA NA	QN	(3.85)	Ξ	NA
cis-1.2-Dichloroethene	Û	(1.32)	Ξ	NA NA	QN	(2.16)	Ξ	NA
cis_1_3_Dich]cronronene		(0 893)	33	NA NA	2	(1 92)	ΞΞ	NA
tis_1,0 bitchiculopiopene +****-1 0_Dicklowoothene		(000.0)	33			(2.25)	33	
trans-1,2 Dich Orcentate		(10 1)	33			(1 3)	ΞΞ	A M
trans-1,3-vicni oropropene		(10.1)	Ξ		UN	(c.1)	Ξ	
SW8270 - Semivolatile Organics ((na/a)							
	QN	(0.0187)	[1]	NA	QN	(0.0168)	[1]	NA
1 2 4-Trichlorohenzene	Ŷ	(0.0282)	Ξ	NA	GN	(0.0253)	13	NA
1 2-Dichlorohenzene		(0 0305)	33		CN N	(0 0273)	ΞΞ	đ
			33			(0,0200)	33	4 1
L, 3~UIGNIOrobenzene	2	(0.0344)	ΞЗ			(0.000)	ΞΞ	
1,4-Dichlorobenzene	QN	(0.0282)	Ξ	AN	QN .	(0.0253)	Ξ	A
2,4,5-Trichlorophenol	QN	(0.0244)	Ξ	NA	QN	(0.0219)	Ξ	NA
2,4,6-Trichlorophenol	QN	(0.0243)	Ξ	NA	QN	(0.0218)	Ξ	NA
2,4-Dichlorophenol	QN	(0.0273)	Ξ	NA	QN	(0.0245)	Ξ	NA
2,4-Dimethylphenol	QN	(0.0624)	Ξ	NA	QN	(0.056)	Ξ	NA
2,4~Dinitrophenol	QN	(0.201)	Ξ	NA	QN	(0.18)	Ξ	NA
2,4-Dinitrotoluene	ON	(0.0284)	Ξ	NA	QN	(0.0254)	Ξ	NA
2,6-Dinitrotoluene	QN	(0.0413)	Ξ	NA	QN	(0.0371)	Ξ	NA
2-Chloronaphthalene	QN	(0.0188)	Ξ	NA	QN	(0.0169)	Ξ	NA
2-Chlorophenol	QN	(0.0305)	Ξ	NA	QN	(0.0273)	Ξ	NA
2-Methylnaphthalene	QN	(0.0175)	[1]	NA	ON	(0.0157)	Ξ	NA
2-Methy]phenol(o-cresol)	ÛN	(0.0149)	Ξ	NA	QN	(0.0133)	Ξ	AM
2-Nitroaniline	QN	(0.0318)	Ξ	NA	QN	(0.0285)	Ξ	NA
2-Nitrophenol	QN	(0.025)	Ξ	NA	QN	(0.0225)	Ξ	NA
3,3'-Dichlorobenzidine	QN	(0.016)	Ξ	NA	QN	(0.0143)	Ξ	NA
3-Nitroaniline	ND	(0.0189)	Ξ	NA	QN	(0.0169)	Ξ	NA
4,6-Dinitro-2-methylphenol	QN	(0.0206)	[1]	NA	QN	(0.0185)	Ξ	NA
4-Bromophenyl phenyl ether	QN	(0.0232)	Ξ	NA	QN	(0.0208)	Ξ	NA
4-Chloro-3-methylphenol	QN	(0.0247)	Ξ	NA	QN	(0.0222)	Ξ	NA
4-Chlorophenyl phenyl ether	QN	(0.0202)	Ξ	NA	QN	(0.0181)	Ξ	NA
	4	(000)	Ξ	R N	CN	(0,010,0)	3	NA NA

	E-N0AA-02-07	E-NOAA-02-07 Dup of E-NOAA-02-06	A-02-06	E-N0AA-11-01	Ľ	E-NOAA-09-07		E-N0AA-10-01
PARAMETER		0 - 3		3.5 - 4		0 - 3		2.5 - 3
	cont. (ug/g)	0 9 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 3 1 1 1 4 3 1 1 1 1 1			
4-Nitroaniline		(0.0291)	Ξ	NA	QN	(0.0261)	Ξ	NA
4-Nitrophenol	QN	(0.045)	Ξ	NA	ON	(0.0403)	Ξ	NA
Acenaphthene	QN	(0.0131)	Ξ	NA	QN	(0.0117)	Ξ	NA
Acenaphthylene	ÛN	(0.0201)	Ξ	NA	QN	(0.018)	Ξ	NA
Anthracene	0.0132 J	(0.0177)	Ξ	NA	QN	(0.0158)	Ξ	NA
Benzo(a)anthracene	0.0384	(0.0215)	Ξ	NA	QN	(0.0193)	Ξ	NA
Benzo(a)pyrene	0.0403	(0.0249)	Ξ	NA	QN	(0.0223)	Ξ	NA
Benzo(b)fluoranthene	0.117 F	(0.0436)	[1]	NA	QN	(0.0391)	Ξ	NA
Benzo(g,h,i)perylene	QN	(0.0489)	Ξ	NA	QN	(0.0439)	Ξ	NA
Benzo(k)fluoranthene	0.117 F	(0.0479)	[1]	NA	QN	(0.043)	Ξ	NA
Benzoic acid	0.0965 J	(1.85)	Ξ	NA	QN	(1.66)	Ξ	NA
Benzyl alcohol	QN	(0.0293)	Ξ	NA	QN	(0.0263)	Ξ	NA
Butylbenzylphthalate	ÛN	(0.03)	Ξ	NA	QN	(0.0269)	Ξ	NA
Chrysene	0.0387	(0.0258)	Ξ	NA	QN	(0.0231)	Ξ	NA
Di-n-octylphthalate	QN	(0.0169)	Ξ	NA	QN	(0.0152)	Ξ	NA
Dibenz(a,h)anthracene	QN	(0.0389)	Ξ	NA	QN	(0.0349)	Ξ	NA
Dibenzofuran	QN	(0.0258)	Ξ	NA	Q	(0.0231)	Ξ	NA
Dibutylphthalate	0.0231	(0.0155)	Ξ	NA	QN	(0.0139)	Ξ	NA
Diethylphthalate	QN	(0.0247)	Ξ	NA	QN	(0.0222)	Ξ	NA
Dimethylphthalate	UN	(0.0161)	Ξ	NA	QN	(0.0145)	Ξ	NA
Fluoranthene	0.119	(0.0226)	Ξ	NA	QN	(0.0203)	Ξ	NA
Fluorene	QN	(0.0182)	Ξ	NA	QN	(0.0164)	Ξ	NA
Hexach) orobenzene	QN	(0.0151)	[1]	NA	QN	(0.0135)	Ξ	NA
Hexachl orobutadi ene	QN	(0.0246)	Ξ	NA	QN	(0.022)	Ξ	NA
Hexachlorocyclopentadiene	QN	(0.283)	Ξ	NA	QN	(0.254)	Ξ	NA
Hexach]oroethane	QN	(0.0305)	Ξ	NA	QN	(0.0273)	Ξ	NA
Indeno(1,2,3-cd)pyrene	QN	(0.0638)	Ξ	NA	QN	(0.0573)	Ξ	NA
I sophorone	QN	(0.0296)	Ξ	NA	QN	(0.0265)	Ξ	NA
N-Nitroso-Di∽n-propylamine	QN	(0.0314)	Ξ	NA	Q	(0.0282)	Ξ	NA
N-Nitrosodiphenylamine	QN	(0.0129)	Ξ	NA	QN	(0.0116)	Ξ	NA
Naphthalene	QN	(0.0229)	Ξ	NA	QN	(0.0206)	Ξ	NA
Ni trobenzene	QN	(0.0404)	Ξ	NA	QN	(0.0362)	Ξ	NA
Pentachlorophenol	QN	(0.0427)	Ξ	NA	QN	(0.0383)	Ξ	NA
Phenanthrene	0.0528	(0.0225)	Ξ	NA	Q	(0.0201)	Ξ	NA
Phenol	QN	(0.0424)	Ξ	NA	QN	(0.038)	Ξ	NA
Pyrene	0.0936	(0.0196)	Ξ	NA	QN	(0.0176)	Ξ	NA

PARAMETER	E-N0AA-02-07	A2-SS18 E-N0AA-02-07 Dup of E-N0AA-02-06 0 - 3	02-06	A3-HA-4 E-NOAA-11-01 3.5 - 4	L	A3-HA-4-01 E-NOAA-09-07 0 - 3		A3-HA-5 E-NOAA-10-01 2.5 ~ 3
						- !		
SW8270 - Semivolatile Organics, cont. (ug/g)	cont. (ug/g)							
bis(2-Chloroethoxy)methane	QN	(0.0291)	Ξ	NA	QN	(0.0261)	Ξ	NA
bis(2-Chloroethyl)ether	QN	(0.0184)	Ξ	NA	QN	(0.0165)	Ξ	NA
bis(2-Chloroisopropyl)ether	QN	(0.0383)	Ξ	NA	QN	(0.0344)	Ξ	NA
bis(2-Ethylhexyl)phthalate	QN	(0.0279)	Ξ	NA	QN	(0.025)	Ξ	NA
p-Chloroaniline	QN	(0.0358)	Ξ	NA	QN	(0.0321)	Ξ	NA

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

PARAMETER	E-NOAA-12-01 2.5 - 3	0 AA-12-01 2.5 - 3		L L	E-NOAA-03-01 4 - 6		ٺ	E-NOAA-03-02 14 - 16		ш́	E-NOAA-03-03 19 - 21	
 SW8015 - Nonhalogenated Volatile Organics	Organics (mg/kg)	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		5 9 9 9 9 9 9 9 9 9		i		, , , , , , , , , , , , , , , , , , ,			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 1 1 1 1
Ethanol	NA			Q	(0.764)	Ξ	AN			NA		
Ethyl ether	NA			Q	(2.75)	Ξ	NA			AN		
Methyl ethyl ketone	NA			QN	(2.57)	Ξ	NA			NA		
Methyl isobutyl ketone	NA			QN	(1.58)	Ξ	NA			N		
SW8015MP Petroleum Hydrocarbons-Modified Purgeable		(ug/kg)										
Benzene	\sim	(3.66)	[20]	NA			3.45 KJ	(6.87)	[20]	NA		
Ethv] benzene	15.9 (6	6.71)	[50]	NA			QN	(2.33)	[20]	NA		
Gasoline		(2180)	[50]	NA			QN	(2120)	[20]	NA		
Toluene	7.3 KJ (1	(12.2)	[50]	NA			נ <i>11.1</i>	(8.81)	[20]	AN		
Xylene (total)		(20.4)	[20]	N			ŊŊ	(4.3)	[20]	NA		
SW8240 - Volatile Organics (ug/kg)	kg)											
	NA			QN	(1.32)	Ξ	QN	(1.31)	Ξ	QN	(1.33)	Ξ
1,1,2,2-Tetrachloroethane	NA			QN	(1.3)	Ξ	QN	(1.29)	Ξ	QN	(1.31)	Ξ
1,1,2-Trichloroethane	NA			QN	(1.16)	Ξ	QN	(1.15)	Ξ	QN	(1.16)	Ξ
1,1-Dichloroethane	NA			QN	(0.953)	Ξ	QN	(0.947)	Ξ	Q	(0.959)	Ξ
1,1-Dichloroethene	NA			QN	(1.22)	Ξ	QN	(1.21)	Ξ	QN	(1.22)	Ξ
1.2-Dichloroethane	NA			QN	(0.822)	Ξ	Ŋ	(0.816)	Ξ	QN	(0.827)	Ξ
1,2-Dichloropropane	NA			QN	(0.655)	Ξ	QN	(0.651)	Ξ	QN	(0.659)	Ξ
2-Ch`oroethyl vinyl ether	NA			QN	(2:77)	Ξ	QN	(2.76)	Ξ	QN	(2.79)	Ξ
2-Heyanone	NA			QN	(3.28)	[1]	QN	(3.26)	Ξ	QN	(3.3)	Ξ
4-Methy]-2-Pentanone(MIBK)	NA			QN	(3.77)	Ξ	QN	(3.75)	Ξ	QN	(3.8)	Ξ
Acetone	NA			QN	(13.5)	Ξ	QN	(13.4)	Ξ	QN	(13.6)	Ξ
Benzene	NA			QN	(0.406)	Ξ	QN	(0.404)	Ξ	QN	(0.409)	Ξ
Bromodichloromethane	NA			QN	(0.773)	Ξ	QN	(0.768)	Ξ	QN	(0.778)	Ξ
Bromomethane	NA			QN	(1.09)	Ξ	Q	(1.09)	Ξ	QN	(1.1)	Ξ
Carbon disulfide	NA			QN	(1.39)	Ξ	Q	(1.38)	Ξ	Q	(1.4)	Ξ
Carbon tetrachloride	NA			QN	(1.44)	Ξ	QN	(1.43)	Ξ	QN	(1.45)	Ξ
Chlorobenzene	NA			QN	(0.586)	Ξ	QN	(0.582)	Ξ	QN	(0.589)	Ξ
Chloroethane	NA			QN	(3.44)	Ξ	Q	(3.42)	Ξ	QN	(3.47)	Ξ
Chloroform	NA			QN	(0.915)	Ξ	Q	(0.909)	[]	QN	(0.92)	Ξ
Chloromethane	NA			QN	(1.84)	Ξ	QN	(1.82)	Ξ	QN	(1.85)	Ξ
Dibromochloromethane	NA			QN	(0.979)	Ξ	QN	(0.972)	Ξ	Q	(0.985)	Ξ
Ethyl benzene	NA		0	0.678 J	(0.885)	Ξ	QN	(0.879)	Ξ	QN	(0.83)	Ξ
Meta-&Para-Xv]ene	NA			4.35	(0.822)	E	Q	(0.816)	[1]	Q	(0.827)	Ξ

NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 24 January 1994

•

		AG-N3	CN-CN	£	A3-56U1	
PARAMETER	E-NDAA-03-05 4 - 6	E-NOAA-03-06 14 - 16	E-NOAA-03-07 24 - 26	E - NO	E-NOAA-06-01 4 - 5	
	Organics (mg/kg)			8 8 9 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	L 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ethanol	_	NA	NA	QN	(0.826)	Ξ
Ethy] ether	NA	NA	NA	QN	(2.98)	1
Methyl ethyl ketone	NA	NA	NA	QN	(2.78)	Ξ
Methy] isobuty] ketone	NA	NA	NA	ÛN	(1.7)	ī
SW8015MP Petroleum Hydrocarbons-Modified Purgeable	odified Purgeable (ug/kg)					
Benzene		NA	NA	15.4 KJ	(35.6)	[250]
Ethyl benzene	NA	NA	NA	QN	(27.6)	[250]
Gasoline	NA	NA	NA	QN	(26500)	[250]
Toluene	NA	NA	NA	48.2	(45.6)	[250]
Xylene (total)	NA	NA	NA	115	(22.3)	[250]
SW8240 - Volatile Organics (ug/kg)	g)					
	NA	NA	NA	QN	(2.81)	Ξ
1,1,2,2-Tetrachloroethane	NA	NA	NA	QN	(2.07)	Ξ
l,l,2-Trichloroethane	NA	NA	NA	QN	(2.71)	Ξ
1,1-Dichloroethane	NA	NA	NA	QN	(2.14)	Ξ
l,l-Dichloroethene	NA	NA	NA	QN	(4.06)	Ξ
1,2-Dichloroethane	NA	NA	NA	QN	(11.2)	Ξ
1.2-Dichloropropane	NA	NA	NA	QN	(3.35)	Ξ
2-Chloroethyl vinyl ether	NA	NA	NA	QN	(2.78)	Ξ
2-Hexanone	NA	NA	NA	QN	(4.15)	Ξ
4-Methyl-2-Pentanone(MIBK)	NA	NA	NA	QN	(2.74)	Ξ
Acetone	NA	NA	NA	QN	(27.7)	Ξ
Benzene	NA	NA	NA	QN	(2.2)	Ξ
Bromodichloromethane	NA	NA	NA	QN	(3.26)	Ξ
Bromomethane	NA	NA	NA	QN	(3.81)	Ξ
Carbon disulfide	NA	NA	NA	QN	(4.4)	Ξ
Carbon tetrachloride	NA	NA	NA	QN	(1.17)	Ξ
Chlorobenzene	NA	NA	NA	QN	(2.16)	Ξ
Chloroethane	NA	NA	NA	QN	(4.74)	Ξ
Chloroform	NA	NA	NA	QN	(1.96)	Ξ
Chloromethane	NA	NA	NA	ON	(3.4)	Ξ
Dibromochloromethane	NA	NA	NA	QN	(2.61)	Ξ
Ethyl benzene	NA	NA	NA	QN	(1.94)	Ξ
Meta-&Para-Xylene	NA	NA	RA	QN	(4.06)	Ξ

	ι. L	A3-N3 F-N0AA-03-05		ů.	A3-N3 F-NDAA-D3-D6		ů.	A3-N3 E-NDAA-D3-D7		E-NC	A3-5801 E-N0AA-06-01	
PARAMETER	I	4 - 6		I	14 - 16		i	24 - 26			4 - 5	
	(ug/kg)	5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		F L L L L L L L L L L L L L L L L L L L	- - - - - - - - - - - - - - - - - - -							
	NA			NA			NA			QN	(12.1)	Ξ
Methylene Chloride	NA			AN			NA			18.3 B	(4.62)	Ξ
Ortho-Xylene	NA			NA			NA			QN	(2.05)	Ξ
Styrene	NA			NA			NA			QN	(2.67)	Ξ
Tetrachloroethene	NA			NA			NA			QN	(2.01)	Ξ
Toluene	NA			NA			NA			QN	(2.77)	Ξ
Tribromomethane(Bromoform)	NA			NA			NA			QN	(2.33)	Ξ
Trichloroethene	NA			NA			NA			QN	(3.06)	Ξ
Trichlorofluoromethane	NA			NA			NA			QN	(4.24)	Ξ
Vinyl Chloride	NA			NA			NA			QN	(3.24)	Ξ
Vinyl acetate	NA			AN			NA			QN	(3.17)	Ξ
cis-1,2-Dichloroethene	NA			NA			NA			QN	(1.78)	Ξ
cis-1,3-Dichloropropene	NA			AN			NA			ÛN	(1.58)	Ξ
trans-l,2-Dichloroethene	NA			NA			NA			QN	(1.84)	Ξ
trans-1,3-Dichloropropene	NA			NA			NA			QN	(1.07)	Ξ
SW8270 - Semivolatile Organics (ug/g)	(b)											
	QN	(0.0199)	[1]	ÛN	(0.0203)	[1]	QN	(0.02)	Ξ	NA		
1,2,4-Trichlorobenzene	QN	(0.0203)	Ξ	QN	(0.0208)	Ξ	QN	(0.0204)	Ξ	NA		
1,2-Dichlorobenzene	QN	(0.0268)	Ξ	QN	(0.0274)	Ξ	QN	(0.0269)	Ξ	MA		
1,3-Dichlorobenzene	QN	(0.0136)	Ξ	QN	(0.0139)	Ξ	ÛN	(0.0137)	Ξ	AN		
I,4-Dichlorobenzene	QN	(0.0278)	[1]	QN	(0.0284)	Ξ	QN	(0.0279)	Ξ	AN		
2,4,5-Trichlorophenol	QN	(0.0114)	Ξ	Q	(0.0116)	Ξ	QN	(0.0114)	Ξ	AN		
2.4.6-Trichlorophenol	QN	(0.012)	Ξ	QN	(0.0123)	Ξ	QN	(0.0121)	Ξ	AN		
2,4-Dichlorophenol	2	(0.0153)	Ξ	Q	(0.0156)	[]	Q	(0.0153)	Ξ	NA		
2,4-Dimethylphenol	ÛN	(0.0379)	Ξ	Ŷ	(0.0386)	Ξ	Q	(0.038)	Ξ	AN		
2,4-Dinitrophenol	2	(0.241)	Ξ	Q	(0.246)	Ξ	Q	(0.242)	Ξ	AN		
2,4-Dinitrotoluene	Q	(0.0189)	Ξ	Q	(0.0193)	Ξ	2	(0.019)	Ξ	NA		
2,6-Dinitrotoluene	QN	(0.0119)	Ξ	Q	(0.0122)	Ξ	QN	(0.012)	Ξ	NA		
2-Chloronaphthalene	QN	(0.0112)	Ξ	QN	(0.0114)	Ξ	QN	(0.0112)	Ξ	AN		
2-Chlorophenol	QN	(0.0263)	Ξ	Q	(0.0268)	Ξ	QN	(0.0264)	Ξ	AN		
2-Methylnaphthalene	QN	(0.0227)	[1]	Q	(0.0232)	Ξ	ÛN	(0.0228)	Ξ	AN		
2-Methylphenol(o-cresol)	QN	(0.0184)	Ξ	QN	(0.0188)	Ξ	Q	(0.0185)	Ξ	AN		
2-Nitroaniline	QN	(0.0138)	Ξ	Q	(0.0141)	Ξ	QN	(0.0139)	Ξ	AN		
2-Nitrophenol	Q	(0.0151)	Ξ	QN	(0.0155)	Ξ	QN	(0.0152)	Ξ	NA		
3.3'-Dichlorobenzidine	QN	(0.0169)	[1]	QN	(0.0172)	Ξ	QN	(0.0169)	Ξ	AN		

		A3-N3		ı	A3-N3		1	A3-N3		A3-5B01
PARAMETER	- -	E-NOAA-03-05 4 - 6		ن ن	E-NOAA-U3-U6 14 - 16		ц ц	t-NUAA-U3-U/ 24 - 26		E-NUAA-V6-V1 4 - 5
					!					
SW8270 - Semivolatile Organics, cont.	(ɓ/ɓn)									
3-Nitroaniline	QN	(0.0175)	Ξ	Q	(0.0179)	[]	Q	(0.0176)	Ξ	NA
4,6-Dinitro-2-methylphenol	QN	(0.0273)	Ξ	QN	(0.0278)	Ξ	QN	(0.0274)	Ξ	NA
4-Bromophenyl phenyl ether	QN	(0.0157)	Ξ	QN	(0.016)	[1]	QN	(0.0158)	[1]	NA
4-Chloro-3-methylphenol	QN	(0.0249)	Ξ	QN	(0.0254)	[1]	QN	(0.025)	Ξ	МА
4-Chlorophenyl phenyl ether	QN	(0.0182)	Ξ	QN	(0.0186)	[1]	QN	(0.0182)	Ξ	NA
4-Methylphenol(p~cresol)	QN	(0.0198)	Ξ	QN	(0.0202)	[1]	QN	(0.0199)	[1]	NA
4-Nitroaniline	QN	(0.0167)	Ξ	QN	(0.017)	Ξ	QN	(0.0167)	Ξ	NA
4-Nitrophenol	QN	(0.0238)	Ξ	QN	(0.0243)	Ξ	QN	(0.0239)	[1]	NA
Acenaphthene	QN	(0.0165)	Ξ	QN	(0.0168)	Ξ	Q	(0.0165)	[1]	NA
Acenaphthylene	QN	(0.00778)	[1]	QN	(0.00794)	Ξ	Q	(0.00781)	Ξ	NA
Anthracene	QN	(0.02)	[1]	QN	(0.0204)	[]	QN	(0.0201)	Ξ	NA
Benzo(a)anthracene	QN	(0.0177)	Ξ	QN	(0.0181)	Ξ	QN	(0.0178)	Ξ	NA
Benzo(a)pyrene	QN	(0.0132)	Ξ	QN	(0.0135)	Ξ	QN	(0.0132)	[1]	NA
Benzo(b)fluoranthene	QN	(0.0196)	Ξ	QN	(0.02)	[]	Q	(0.0197)	Ξ	NA
Benzo(g,h,i)perylene	QN	(0.0168)	Ξ	QN	(0.0171)	[1]	QN	(0.0168)	Ξ	NA
Benzo(k)fluoranthene	QN	(0.0333)	Ξ	QN	(0.034)	[1]	QN	(0.0335)	Ξ	NA
Benzoic acid	QN	(0.136)	Ξ	QN	(0.139)	[]	QN	(0.137)	Ξ	NA
Benzyl alcohol	QN	(0.0372)	[1]	Q	(0.0379)	Ξ	QN	(0.0373)	[1]	NA
Butylbenzylphthalate	QN	(0.0135)	Ξ	QN	(0.0138)	Ξ	QN	(0.0136)	Ξ	NA
Chrysene	QN	(0.023)	Ξ	QN	(0.0235)	[1]	QN	(0.0231)	Ξ	NA
Di-n-octylphthalate	QN	(0.0314)	Ξ	QN	(0.032)	[1]	QN	(0.0315)	[]	NA
Dibenz(a,h)anthracene	QN	(0.0163)	Ξ	QN	(0.0167)	Ξ	QN	(0.0164)	Ξ	NA
Dibenzofuran	QN	(0.014)	Ξ	QN	(0.0143)	Ξ	QN	(0.0141)	[1]	NA
Dibutylphthalate	QN	(0.017)	Ξ	QN	(0.0173)	Ξ	Q	(0.017)	Ξ	NA
Diethylphthalate	QN	(0.0116)	Ξ	QN	(0.0118)	Ξ	QN	(0.0116)	Ξ	NA
Dimethylphthalate	QN	(0.00964)	Ξ	Q	(0.00984)	[1]	QN	(0.00968)	Ξ	NA
Fluoranthene	QN	(0.022)	Ξ	Q	(0.0224)	Ξ	QN	(0.022)	Ξ	NA
Fluorene	QŅ	(0.0116)	Ξ	QN	(0.0118)	[1]	QN	(0.0116)	[1]	NA
Hexachlorobenzene	QN	(0.00806)	Ξ	QN	(0.00822)	[1]	QN	(0.00809)	Ξ	NA
<u>Hexachlorobutadiene</u>	QN	(0.024)	Ξ	Q	(0.0245)	Ξ	QN	(0.0241)	Ξ	NA
<u>Hexachlorocyclopentadiene</u>	QN	(0.307)	Ξ	QN	(0.313)	Ξ	Q	(0.308-)	Ξ	NA
Hexachloroethane	QN	(0.0204)	Ξ	QN	(0.0209)	Ξ	QN	(0.0205)	Ξ	NA
Indeno(1,2,3-cd)pyrene	QN	(0.0181)	Ξ	QN	(0.0184)	[1]	QN	(0.0181)	[1]	NA
l sophorone	QN	(0.00988)	Ξ	QN	(0.0101)	[1]	QN	(0.00992)	Ξ	NA
N-Nitroso-Di-n-propylamine	QN	(0.0259)	Ξ	QN	(0.0264)	Ξ	Q	(0.026)	Ξ	NA
N-Nitrosodiphenylamine	QN	(0.0195)	Ξ	QN	(0.0199)	[1]	QN	(0.0196)	[1]	NA

,

PARAMETER	E - A	A3-N3 E-NOAA-03-05 4 - 6		ц	A3-N3 E-N0AA-03-06 14 - 16		<u>ٺ</u>	A3-N3 E-NDAA-O3-O7 24 - 26		A3-SB01 E-NOAA-06-01 4 - 5
	(6/6n)			5 1 1 1 1 5 5 1 1		, 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1			:
Naphthalene	QN	(0.0251)	Ξ	QN	(0.0256)	Ξ	Q	(0.0252)	Ξ	AN
Nitrobenzene	QN	(0.0182)	Ξ	QN	(0.0186)	Ξ	QN	(0.0182)	Ξ	NA
Pentachlorophenol	QN	(0.0297)	Ξ	QN	(0.0304)	Ξ	QN	(0.0299)	Ξ	NA
Phenanthrene	QN	(0.0214)	Ξ	QN	(0.0219)	Ξ	QN	(0.0215)	[1]	NA
)	QN	(0.0137)	Ξ	QN	(0.014)	[1]	QN	(0.0138)	Ξ	NA
	QN	(0.0161)	Ξ	QN	(0.0164)	Ξ	QN	(0.0162)	Ξ	NA
bis(?-Chloroethoxv)methane	QN	(0.0193)	Ξ	QN	(0.0197)	Ξ	Q	(0.0194)	[1]	NA
bis(2-Chloroethv]]ether	QN	(0.0252)	Ξ	QN	(0.0257)	Ξ	QN	(0.0253)	Ξ	NA
bis(2-Ch)araisonronv])ether	QN	(0.025)	Ξ	QN	(0.0255)	Ξ	QN	(0.0251)	[1]	NA
bis[2-Fthv]hevv]]phthalate	QN	(0.063)	Ξ	QN	(0.0643)	Ξ	QN	(0.0632)	[7]	A A
ots(E Ectifyness) (prostantes) D-fhloroaniline	QN	(0.0192)	Ξ	Q	(0.0196)	Ξ	QN	(0.0193)	Ξ	NA

Compiled: 24 January 1994

	E-NO/	A3-SB01 E-NOAA-06-02	ىن	E-NOAA-06-03	A3-SB01 Dup of E-NOAA-06-02	06-02	A. E-NO/	A3-5801 E-NOAA-06-04		A3-SB01 E~NOAA-06-06
PARAMETER	1	14 - 16			14 - 16		21	20 - 22		14 - 16
	Modified Purgeab	le (ug/kg)	; ; ; ; ;) 	6 1 1 2 3 1 5 1 1 1 1 5 5 1 1 1 5 5 1 1 5 5 1 1 5 5 1 1 1 5 5 1 1 1 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 1	1 1 	0 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Benzene	3.18 KJ	(6.85)	[50]	3.55 KJ	(6.68)	[20]	NA			NA
Ethyl benzene	14.1	(2.32)	[20]	QN	(5.19)	[50]	NA			NA
Gasol ine	QN	(5110)	[50]	QN	(4990)	[50]	NA			NA
Toluene	11.5	(8.79)	[50]	10.8	(8.58)	[20]	NA			NA
Xylene {total)	31.2	(4.29)	[50]	24.7	(4.19)	[20]	NA			ИА
SW8240 - Volatile Organics (ug/kg)	kg)									
	QN	(2.73)	Ξ	QN	(2.72)	Ξ	QN	(2.7)	Ξ	NA
1,1,2,2-Tetrachloroethane	ON	(2.01)	Ξ	QN	(2.01)	Ξ	QN	(1.99)	Ξ	NA
1,1,2-Trichloroethane	QN	(2.63)	Ξ	QN	(2.63)	Ξ	QN	(2.6)	Ξ	NA
1,1-Dichloroethane	QN	(2.07)	Ξ	QN	(2.07)	Ξ	QN	(2.05)	Ξ	NA
1,1-Dichloroethene	, ON	(3.94)	Ξ	ON	(3.93)	Ξ	QN	(3.9)	Ξ	NA
l,2-Dichloroethane	ND	(2.05)	Ξ	QN	(2.05)	Ξ	QN	(2.03)	Ξ	NA
1,2-Dichloropropane	QN	(3.26)	Ξ	QN	(3.25)	Ξ	QN	(3.22)	Ξ	NA
2-Chloroethyl vinyl ether	ND	(2.7)	[1]	DN	(5.69)	Ξ	DN	(2.67)	Ξ	NA
2-Hexanone	QN	(4.04)	Ξ	QN	(4.03)	Ξ	QN	(3.99)	Ξ	NA
4-Methy1-2-Pentanone(MIBK)	ON	(2.67)	Ξ	ON	(2.66)	Ξ	QN	(2.63)	Ξ	NA
Acetone	QN	(26.9)	Ξ	QN	(26.8)	Ξ	QN	(26.6)	Ξ	NA
Benzene	QN	(2.14)	Ξ	QN	(2.13)	Ξ	QN	(2.11)	Ξ	NA
Bromodichloromethane	QN	(3.16)	Ξ	QN	(3.16)	Ξ	QN	(3.13)	Ξ	NA
Bromomethane	QN	(3.7)	Ξ	QN	(3.69)	Ξ	QN	(3.66)	Ξ	NA
Carbon disulfide	QN	(4.27)	Ξ	QN	(4.26)	Ξ	QN	(4.22)	Ξ	NA
Carbon tetrachloride	ND	(1.14)	Ξ	QN	(1.14)	Ξ	QN	(1.13)	Ξ	NA
Chlorobenzene	QN	(2.1)	Ξ	QN	(5.09)	Ξ	QN	(2.07)	Ξ	NA
Chloroethane	ND	(4.61)	Ξ	QN	(4.6)	Ξ	QN	(4.55)	Ξ	NA
Chloroform	QN	(1.91)	Ξ	QN	(1.9)	Ξ	QN	(1.89)	Ξ	NA
Chloromethane	QN	(3.3)	Ξ	QN	(3.29)	Ξ	QN	(3.26)	Ξ	NA
Dibromochloromethane	QN	(2.53)	Ξ	QN	(2.53)	Ξ	QN	(2.5)	Ξ	NA
Ethyl benzene	QN	(1.89)	Ξ	QN	(1.88)	Ξ	QN	(1.87)	Ξ	NA
Meta-&Para-Xylene	ON	(3.94)	Ξ	QN	(3.93)	Ξ	QN	(3.9)	Ξ	NA
Methyl ethyl ketone	QN	(11.7)	Ξ	QN	(11.7)	Ξ	QN	(11.6)	Ξ	NA
Methylene Chloride	15.8 B	(4.49)	Ξ	11.2 B	(4.48)	Ξ	8.8 B	(4.44)	Ξ	NA
Ortho-`v'ene	QN	(1.99)	Ξ	QN	(1.99)	Ξ	QN	(1.97)	Ξ	NA
Styrene	QN	(2.59)	Ξ	QN	(2.59)	Ξ	QN	(2.56)	Ξ	NA
Tetrachle ethene	QN	(1.95)	Ξ	QN	(1.95)	Ξ	QN	(1.93)	Ξ	NA
Toluene	QN	(2.69)	[]	ON	(2.68)	Ξ	QN	(2.66)	Ξ	NA

	A3-SB01			A3-SB01		-	A3-SB01			A3-5801	
PARAMETER	E-NOAA-06-02 14 - 16		E-N0AA-06-03	Dup of E-NOAA-06-02 14 - 16	06-02	Ξ- Ξ	E-NOAA-06-04 20 - 22		ц	E-NDAA-D6-D6 14 - 16	
 SW8240 - Volatile Organics. cont.	(ua/ka)		8 7 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		6 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	# 	*			
Tribromomethane(Bromoform)		U U1	QN	(2,26)	[1]	CN	(2.23)	[1]	NA		
			e ç	(202)	33	C N	(00.2)	ΞΞ	N.N.		
			2	(10.31)	ΞΞ	2 9	(101)	33			
Irichlorofluoromethane			0N	(4.11)	Ξ	0N	(4.0/)	Ξ	AN		
Vinyl Chloride	ND (3.14)		QN	(3.14)	Ξ	Q	(3.11)	Ξ	٨N		
Vinyl acetate	ND (3.08)	(1)	QN	(3.07)	Ξ	QN	(3.04)	Ξ	NA		
cis-1.2-Dichloroethene	-		QN	(1.73)	[1]	QN	(1.71)	[1]	NA		
cis_1 3_Dick]oronronene			CN	(1 53)	Ξ	Q	(1 52)	33	٨A		
					33		(1 75)	33			
trans-1,2-Dichloropene		EE	2 9	(1.03)	ΞΞ	2 2	(1.03)	ΞΞ	AN		
ics	(6/6n)								1		
1,2,4,5-Tetrachlorobenzene	AN		NA			NA			Q	(0.0202)	Ξ
1,2,4-Trichlorobenzene	NA		NA			NA			Q	(0.0206)	Ξ
1.2-Dichlorobenzene	NA		NA			NA			QN	(0.0272)	Ξ
1,3-Dichlorobenzene	NA		NA			NA			QN	(0.0138)	Ξ
1,4-Dichlorobenzene	NA		NA			NA			QN	(0.0282)	Ξ
2,4,5-Trichlorophenol	NA		NA			NA			QN	(0.0115)	Ξ
2,4,6-Trichlorophenol	NA		NA			NA			QN	(0.0122)	Ξ
2,4-Dichlorophenal	NA		NA			NA			QN	(0.0155)	Ξ
2,4-Dimethylphenol	NA		AN			NA			QN	(0.0384)	Ξ
2,4-Dinitrophenol	NA		NA			NA			QN	(0.244)	Ξ
2,4-Dinitrotoluene	NA		NA			NA			QN	(0.0192)	Ξ
2,6-Dinitrotoluene	NA		NA			NA			QN	(0.0121)	Ξ
2-Chloronaphthalene	NA		NA			NA			QN	(0.0113)	Ξ
2-Chlorophenol	NA		NA			NA			QN	(0.0267)	Ξ
2-Methylnaphthalene	NA		NA			NA			0.0176 J	(0.023)	Ξ
2-Methylphenol(o-cresol)	NA		NA			NA			Q	(0.0186)	Ξ
2-Nitroaniline	NA		NA			NA			QN	(0.014)	Ξ
2-Nitrophenol	NA		NA			NA			QN	(0.0154)	Ξ
3,3'-Dichlorobenzidine	NA		NA			NA			QN	(0.0171)	Ξ
3-Nitroaniline	NA		NA			NA			QN	(0.0178)	Ξ
.4,6-Dinitro-2-methylphenol	NA		NA			NA			QN	(0.0276)	Ξ
4-Bromopheny] pheny] ether	NA		NA			NA			QN	(0.0159)	Ξ
4-Chloro-3-methylphenol	NA		NA			NA			QN	(0.0252)	Ξ
4-Chlorophenyl phenyl ether	NA		NA			NA			QN	(0.0184)	Ξ
1 H-++-1-+1(1)	A M		414						-	1.000 01	:

				-	Ţ	
PAKAMEIEK	14 - 1b	14 - 16	27 - 22		14 - 1D	
SW8270 - Semivolatile Organics, cont.	(ng/g)			, 4 1 1 4 4 4 4 1 1 1 1 1 1 1		
4-Nitroaniline	NA	NA	NA	ŊŊ	(0.0169)	Ξ
4-Nitrophenol	NA	NA	NA	QN	(0.0241)	Ξ
Acenaphthene	NA	NA	NA	QN	(0.0167)	Ξ
Acenaphthy]ene	NA	NA	NA	QN	(0.00789)	Ξ
Anthracene	NA	NA	NA	QN	(0.0203)	Ξ
Benzo(a)anthracene	NA	NA	NA	QN	(0.018)	Ξ
Benzo(a)pyrene	NA	NA	NA	ON	(0.0134)	Ξ
Benzo(b)fluoranthene	NA	NA	NA	QN	(0.0199)	Ξ
Benzo(g,h,i)perylene	NA	NA	NA	QN	(0.017)	Ξ
Benzo(k)fluoranthene	NA	NA	NA	QN	(0.0338)	Ξ
Benzoic acid	NA	NA	NA	QN	(0.138)	Ξ
Benzyl alcohol	NA	NA	NA	QN	(0.0377)	Ξ
Butylbenzylphthalate	NA	NA	NA	0.0106 J	(0.0137)	Ξ
Chrysene	NA	NA	NA	Q	(0.0234)	Ξ
Di-n-octylphthalate	NA	МА	NA	QN	(0.0318)	Ξ
Dibenz(a,h)anthracene	NA	NA	NA	QN	(0.0165)	Ξ
Di benzofuran	NA	NA	. NA	QN	(0.0142)	Ξ
Dibutylphthalate	NA	NA	NA	QN	(0.0172)	Ξ
Diethylphthalate	NA	NA	NA	QN	(0.0117)	Ξ
Dimethylphthalate	NA	NA	NA	QN	(0.00977)	Ξ
Fluoranthene	NA	NA	NA	QN	(0.0223)	Ξ
Fluorene	NA	NA	NA	ŪN	(0.0117)	Ξ
Hexachlorobenzene	NA	NA	NA	QN	(0.00817)	Ξ
<u>Hexachlorobutadiene</u>	NA	NA	NA	QN	(0.0244)	Ξ
Hexachlorocyclopentadiene	NA	NA	NA	QN	(0.311)	Ξ
Hexachloroethane	NA	NA	NA	QN	(0.0207)	Ξ
Indeno(1,2,3-cd)pyrene	NA	NA	NA	QN	(0.0183)	Ξ
Isophorone	NA	NA	NA	QN	(0.01)	Ξ
N-Nitroso-Di-n-propylamine	NA	NA	NA	QN	(0.0262)	Ξ
N-Nitrosodiphenylamine	NA	NA	NA	QN	(0.0198)	Ξ
Naphthalene	NA	NA	NA	0.0188 J	(0.0254)	Ξ
Ni trobenzene	NA	NA	NA	QN	(0.0184)	Ξ
Pentachlorophenol	NA	NA	NA	ÛN	(0.000)	Ξ
Phenanthrene	NA	NA	NA	QN	(0.0217)	Ξ
Phenol	NA	NA	NA	QN	(0.0139)	Ξ
Purana	NA	NA	NA	QN	(0.0163)	Ξ

, Page: 31			[1]	Ξ	Ξ	Ξ	Ξ	
	A3-5801	с-мида-ио-ио 14 - 16	(0,0196)	(0.0255)	(0.0253)	(0.0639)	(0.0195)	
	Ľ			Q	QN	QN	QN	
	A3-SB01	E-NUAA-U5-04 20 - 22		A N	NA	NA	NA	NA = Not Applicable
	5	J6-02	1					
	A3-SB01	E-NUAA-US-03 UUP OT E-NUAA-UG-UZ 14 - 16						ND = Not Detected
		E-NUAA-U		AN N	NA	NA	NA	[] = Dilution Factor
	A3-5801	E-N0AA-06-02 14 - 16	(5/6n)	NA	NA	NA	NA	() = Detection Limit
		PARAMETER	<pre> SW8270 - Semivolatile Organics, cont. hic/2_fhloroothoculmethane</pre>	bis(2-Ch) proethy)) ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	p-Chloroaniline	Compiled: 24 January 1994 () =

				ć		
PARAMETER	E-NOAA-06-08A 5 - 7	E-NOAA-06-09 Dup of E-NOAA-06-08A 5 - 7	E-NOAA-06-10 7 - 9	E - NO	E-NOAA-07-01 0 - 3	
 SW8015MP Petroleum Hydrocarbons-Modified Purgeable (ug/kg)	-Modified Purgeable {ug/kg}		1 4 3 5 7 6 5 3 1 5 6 6 1 7 7 7 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- - - - - - - - - - - - - - - - - - -	5 3 4 1 5 6 6 6 6	
Benzene	NA	NA	NA	QN	(99.4)	[1000]
Ethyl benzene	NA	NA	NA	1220 P	(182)	[1000]
Gasoline	NA	NA	NA	QN	(59200)	[1000]
Ioluene	NA	NA	NA	123 KJ	(330)	[1000]
Xylene (total)	NA	NA	NA		(512)	[1000]
SW8240 - Volatile Organics (ug	(ug/kg)					
1,1,1-Trichloroethane	RA	NA	NA	QN	(3.87)	[1]
1,1,2,2-Tetrachloroethane	NA	NA	NA	QN	(2.85)	Ξ
1,1,2-Trichloroethane	AN	NA	NA	N	(3.73)	Ξ
1,1-Dichloroethane	NA	NA	NA	QN	(2.94)	Ξ
1,1-Dichloroethene	NA	NA	NA	QN	(5.59)	Ξ
l,2-Dichloroethane	NA	NA	NA	QN	(2.91)	Ξ
1,2-Dichloropropane	NA	NA	NA	QN	(4.62)	Ξ
2-Chloroethyl vinyl ether	NA	NĄ	NA	QN	(3.82)	Ξ
2-Hexanone	NA	NA	NA	QN	(2.72)	Ξ
4-Methyl-2-Pentanone(MIBK)	AN	NA	NA	ÛN	(3.78)	Ξ
Acetone	NA	NA	NA	QN	(38.1)	Ξ
Benzene	NA	NA	NA	ON	(3.03)	Ξ
Bromodichloromethane	NA	NA	NA	QN	(4.43)	Ξ
Bromomethane	NA	NA	NA	QN	(5.25)	Ξ
Carbon disulfide	NA	NA	NA	QN	(90.9)	Ξ
Carbon tetrachloride	NA	NA	NA	QN	(1.62)	Ξ
Chlorobenzene	NA	NA	NA	ND	(2.97)	Ξ
Chloroethane	NA	NA	NA	QN	(6.53)	Ξ
Chloroform	NA	NA	NA	QN	(2.7)	Ξ
Chloromethane	NA	NA	NA	N	(4.67)	Ξ
Dibromochloromethane	NA	NA	NA	QN	(3.59)	Ξ
Ethyl benzene	NA	NA	NA	QN	(2.68)	Ξ
Meta-&Para-Xy]ene	NA	NA	NA	QN	(2.59)	Ξ
Methyl ethyl ketone	NA	NA	NA	QN	(16.6)	Ξ
Methylene Chloride	NA	NA	NA	5.23 J	(6.36)	Ξ
Ortho-Xylene	NA	NA	NA	QN	(2.82)	Ξ
Styrene	NA	NA	NA	QN	(3.67)	Ξ
[etrach]oroethene	NA	NA	NA	QN	(2.76)	Ξ
foluene	NA	NA	NA	0N	(3.81)	Ξ

ĉ

		A3-SB01			A3-SB01			A3-SB01			A3-SS01	
PARAMETER	ĥ	E-NOAA-06-08A 5 - 7		E-N0AA-06-1	E-NOAA-06-09 Dup of E-NOAA-06-08A 5 - 7	06-08A	ليا ا	E-NOAA-06-10 7 - 9		Ē	E-NOAA-07-01 0 - 3	
	(ua/ka)		8 1 1 1 8				 	888888888888888888888888888888888888888		• • • • • • • • •	1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1
	NA NA			NA			NA			QN	(3.2)	Ξ
Trichloroethene	NA			NA			NA			QN	(4.22)	Ξ
Trichlorofluoromethane	NA			NA			NA			11.5	(5.84)	Ξ
Vinvl Chloride	NA			NA			NA			QN	(4.45)	
Vinvl acetate	NA			NA			NA			Q	(4.37)	Ξ
cis-1.2-Dichloroethene	NA			NA			NA			Q	(2.45)	Ξ
cis-1 3-Dichlorobry neme	NA			NA			MA			QN	(2.18)	Ξ
trans-1.2-Dichloroethene	NA			NA			NA			2	(2.53)	Ξ
trans-1,3-Dichloropropene	NA			NA			NA			QN	(1.47)	Ξ
SW8270 - Semivolatile Organics (ug	(6/6n)											
	ND	(0.0199)	Ξ	QN	(0.0591)	Ξ	QN	(0.0202)	Ξ	NA		
1,2,4-Trichlorobenzene	ND	(0.0204)	Ξ	QN	(0.0604)	Ξ	Q	(0.0206)	Ξ	NA		
1,2-Dichlorobenzene	QN	(0.0269)	Ξ	QN	(0.0796)	Ξ	QN	(0.0272)	Ξ	NA		
1,3-Dichlorobenzene	QN	(0.0137)	Ξ	QN	(0.0405)	Ξ	Q	(0.0138)	Ξ	NA		
1,4-Dichlorobenzene	QN	(0.0279)	Ξ	QN	(0.0826)	Ξ	QN	(0.0282)	Ξ	NA		
2,4,5-Trichlorophenol	QN	(0.0114)	Ξ	QN	(0.0337)	Ξ	Q	(0.0115)	Ξ	NA		
2,4,6-Trichlorophenol	Q	(0.012)	Ξ	Q	(0.0357)	Ξ	QN	(0.0122)	Ξ	NA		
2,4-Dichlorophenol	QN	(0.0153)	Ξ	ON .	(0.0453)	Ξ		(0.0155)	Ξ	A Z		
2,4-Dimethylphenol	QN	(0.038)	Ξ	Q	(0.112)	Ξ	Q	(0.0384)	Ξ	NA		
2,4-Dinitrophenol	QN	(0.242)	Ξ	Q	(0.716)	Ξ	Q	(0.244)	Ξ	NA		
2,4-Dinitrotoluene	QN	(0.019)	Ξ	QN	(0.0562)	Ξ	QN	(0.0192)	Ξ	NA		
2,6-Dinitrotoluene	QN	(0.0119)	Ξ	QN	(0.0354)	Ξ	QN	(0.0121)	Ξ	NA		
2-Chloronaphthalene	QN	(0.0112)	Ξ	Q	(0.0331)	Ξ	Ŷ	(0.0113)	Ξ	NA		
2-Chlorophenol		(0.0264)	Ξ		<u> </u>	Ξ	QN	(0.0267)	Ξ	NA		
2-Methylnaphthalene	0.0214 J	(0.0228)	Ξ		J (0.0675)	Ξ	Ŷ	(0.023)	Ξ	NA		
2-Methylphenol(o-cresol)	QN	(0.0184)	Ξ	QN	(0.0546)	Ξ	QN	(0.0186)	Ξ	NA		
2-Nitroaniline	QN	(0.0139)	Ξ	QN	(0.0411)	Ξ	QN	(0.014)	Ξ	NA		
2-Nitrophenol	QN	(0.0152)	Ξ	QN	(0.045)	Ξ	QN	(0.0154)	Ξ	AN		
3,3'-Dichlorobenzidine	QN	(0.0169)	Ξ	QN	(0.0501)	Ξ	QN	(0.0171)	Ξ	NA		
3-Nitroaniline	QN	(0.0176)	Ξ	QN	(0.052)	Ξ	Ŷ	(0.0178)	Ξ	NA		
4,6-Dinitro-2-methylphenol	QN	(0.0273)	Ξ	QN	(0.081)	Ξ	Q	(0.0277)	Ξ	NA		
4-Bromophenyl phenyl ether	QN	(0.0157)	Ξ	QN	(0.0466)	Ξ	QN	(0.0159)	Ξ	NA		
4-Chloro-3-methylphenol	QN	(0.025)	Ξ	QN	(0.0739)	Ξ	Q	(0.0252)	Ξ	NA		
4-Chlorophenyl phenyl ether	QN	(0.0182)	Ξ	QN	(0.054)	Ξ	QN	(0.0184)	Ξ	NA		
• • • • •				•								

	E - N	A3-5B01 E-NOAA-06-08A	LU L	E-N0AA-06-09	A3-SB01 9 Dup of E-NOAA-06-08A	-06-08A	ų	A3-5801 E-NOAA-06-10		A3-SS01 E-NOAA-07-01
PARAMETER		5 - 7						7 - 9		0 - 3
	(16/6n)		T 4 1 1 1 1	1 	1 	1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,			
4-Nitroaniline	QN	(0.0167)	Ξ	QN	(0.0495)	[1]	QN	(0.0169)	[1]	NA
4-Nitrophenol	QN	(0.0238)	Ξ	QN	(0.0706)	Ξ	QN	(0.0241)	[1]	NA
Acenaphthene	QN	(0.0165)	Ξ	QN	(0.0489)	Ξ	Q	(0.0167)	Ξ	NA
Acenaphthylene	QN	(0.0078)	Ξ	Q	(0.0231)	Ξ	Q	(0.00789)	Ξ	NA
Anthracene	QN	(0.0201)	Ξ	QN	(0.0594)	Ξ	QN	(0.0203)	[1]	NA
Benzo(a)anthracene	QN	(0.0178)	Ξ	QN	(0.0526)	Ξ	QN	(0.018)	Ξ	NA
Benzo(a)pyrene	QN	(0.0132)	Ξ	QN	(0.0391)	[1]	QN	(0.0134)	Ξ	NA
Benzo(b)fluoranthene	QN	(0.0196)	Ξ	QN	(0.0582)	Ξ	QN	(0.0199)	[1]	NA
Benzo(g,h,i)perylene	QN	(0.0168)	Ξ	QN	(0.0498)	[1]	QN	(0.017)	Ξ	NA
Benzo(k)fluoranthene	QN	(0.0334)	Ξ	QN	(0.0389)	Ξ	QN	(0.0338)	Ξ	NA
Benzoic acid	QN	(0.137)	Ξ	QN	(0.405)	Ξ	QN	(0.138)	Ξ	NA
Benzyl alcohol	QN	(0.0373)	Ξ	Q	(0.11)	[1]	QN	(0.0377)	Ξ	NA
Butylbenzylphthalate	QN	(0.0136)	Ξ	QN	(0.0402)	Ξ	QN	(0.0137)	[1]	NA
Chrysene	QN	(0.0231)	Ξ	QN	(0.0684)	[1]	QN	(0.0234)	[1]	NA
Di-n-octylphthalate	QN	(0.0314)	Ξ	QN	(0.0931)	[1]	QN	(0.0318)	Ξ	NA
Dibenz(a,h)anthracene	QN	(0.0164)	Ξ	QN	(0.0485)	Ξ	QN	(0.0165)	[2]	NA
Dibenzofuran	QN	(0.0141)	Ξ	QN	(0.0417)	Ξ	QN	(0.0142)	[1]	NA
Dibutylphthalate	QN	(0.017)	Ξ	QN	(0.0504)	Ξ	QN	(0.0172)	[2]	NA
Diethylphthalate	QN	(0.0116)	Ξ	QN	(0.0343)	Ξ	QN	(0.0117)	Ξ	NA
Dimethylphthalate	QN	(0.00966)	Ξ	QN	(C. 0286)	Ξ	QN	(0.00978)	Ξ	NA
Fluoranthene	QN	(0.022)	Ξ	Q	(0.0652)	Ξ	QN	(0.0223)	Ξ	NA
F] uorene	QN	(0.0116)	Ξ	QN	(0.0343)	Ξ	Q	(0.0117)	Ξ	NA
Hexach] orobenzene	QN	(0.00808)	Ξ	QN	(0.0239)	[1]	QN	(0.00817)	Ξ	NA
Hexachlorobutadiene	QN	(0.0241)	Ξ	QN	(0.0713)	Ξ	QN	(0.0244)	Ξ	NA
Hexachlorocyclopentadiene	QN	(0.308)	Ξ	QN	(0.912)	[1]	Q	(0.311)	[1]	NA
Hexachloroethane	QN	(0.0205)	Ξ	QN	(0.0607)	Ξ	QN	(0.0207)	[1]	NA
Indeno(1,2,3-cd)pyrene	Q	(0.0181)	Ξ	QN	(0.0537)	[1]	QN	(0.0183)	Ξ	NA
l sophorone	QN	(0.0099)	Ξ	QN	(0.0293)	Ξ	QN	(0.01)	Ξ	NA
N-Nitroso-Di-n-propylamine	QN	(0.0259)	Ξ	QN	(0.0768)	Ξ	QN	(0.0262)	[1]	NA
N-Nitrosodiphenylamine	QN	(0.0195)	Ξ	QN	(0.0579)	[1]	Q	(0.0198)	[1]	NA
Naphthalene 0.	0.0286	(0.0252)	Ξ	0.0433 J	(0.0745)	[1]	QN	(0.0255)	Ξ	NA
Ni trobenzene	QN	(0.0182)	Ξ	QN	(0.054)	Ξ	Q	(0.0184)	[1]	NA
Pentachlorophenol	QN	(0.0298)	Ξ	Q	(0,0883)	[1]	QN	(0.0302)	Ξ	NA
Phenanthrene	Q	(0.0215)	Ξ	QN	(0.0636)	Ξ	QN	(0.0217)	Ξ	NA
Phenol	Q	(0.0138)	Ξ	Q	(0.0408)	[1]	QN	(0.0139)	[1]	NA
Pyrene	QN	(0.0162)	Ξ	QN	(0.0478)	Ξ	QN	(0.0163)	Ξ	NA

•

10-	
A3-SS01 E-N0AA-07-01 0 - 3	A A A A A
	22222
A3-SB01 E-N0AA-06-10 7 - 9	(0.0196) (0.0256) (0.0253) (0.0539) (0.0195)
ш	<u>0</u> 0 0 0 0
16-08A	22222
A3-SB01 E-NOAA-06-09 Dup of E-NOAA-06-08A 5 - 7	(0.0574) (0.0748) (0.0742) (0.187) (0.0571)
10AA-06-09	0 0 0 0 0 0 0 0 0
ц Ш	22223
A3-SB01 E-NOAA-06-08A 5 - 7	(0.0194) (0.0253) (0.0251) (0.0632) (0.0193)
ц	QN QN QN QN QN QN QN
PARAMETER	SW8270 - Semivolatile Organics, cont. bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate p-Chloroaniline

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

			A3-SS02		A3-SS02	Ă	A4-5503	
	E-N0AA-07-05	ц	E-NOAA-07~02		E-N0AA-07-06	E-NO	E-NOAA-04-01	
PARAMETER	0 - 3		0 - 3		0 - 3		0 - 3	
SW8015MP Petroleum Hydrocarbons-Modified Purgeable (ug/kg)	Modified Purgeable (ug/kg)	C E D D D D D D D D D D D D D D D D D D						
Benzene	NA	UN	(3.65)	[20]	NA	QN	(3.45)	[20]
Ethyl benzene	NA	QN	(6.68)	[50]	NA	QN	(6.33)	[50]
Gasoline	NA	QN	(2170)	[20]	NA	ÛN	(2060)	[50]
Toluene	NA	QN	(12.1)	[50]	NA	5.12 KJ	(11.5)	[20]
Xylene (total)	NA	QN	(18.8)	[50]	NA	ON	(17.8)	[50]
SW8240 - Volatile Organics (ug/kg)	kg)							
1,1,1-Trichloroethane	NA	QN	(2.88)	Ξ	NA	QN	(2.82)	Ξ
1,1,2,2-Tetrachloroethane	NA	QN	(2.12)	Ξ	NA	QN	(2.08)	Ξ
l,l.2-Trichloroethane	NA	UN	(2.78)	Ξ	NA	QN	(2.73)	Ξ
l,1-Dichloroethane	NA	QN	(2.19)	Ξ	NA	QN	(2.15)	Ξ
l,1-Dichloroethene	NA	QN	(4.16)	Ξ	NA	QN	(4.08)	Ξ
l,2-Dichloroethane	NA	ON	(2.17)	Ξ	NA	QN	(2.12)	Ξ
1,2-Dichloropropane	NA	QN	(3.44)	Ξ	NA	QN	(3.37)	Ξ
2-Chloroethyl vinyl ether	NA	QN	(2.85)	Ξ	NA	QN	(2.79)	Ξ
2-Hexanone	A A	QN	(4.26)	Ξ	NA	QN	(4.17)	Ξ
4-Methyl-2-Pentanone(MIBK)	NA	QN	(2.81)	Ξ	NA	QN	(2.76)	Ξ
Acetone	NA	QN	(28.4)	[1]	NA	QN	(27.8)	Ξ
Benzene	NA	QN	(2.26)	Ξ	NA	ÛN	(2.21)	Ξ
Bromodichloromethane	NA	QN	(3.34)	Ξ	NA	QN	(3.27)	Ξ
Bromomethane	NA	QN	(3.91)	Ξ	NA	QN	(3.83)	Ξ
Carbon disulfide	NA	QN	(4.51)	Ξ	NA	QN	(4.42)	Ξ
Carbon tetrachloride	NA	QN	(1.2)	Ξ	NA	QN	(1.18)	Ξ
Chlorobenzene	NA	QN	(2.21)	Ξ	NA	QN	(2.17)	Ξ
Chloroethane	NA	QN	(4.86)	Ξ	NA	QN	(4.76)	Ξ
Chloroform	ИА	QN	(2.01)	Ξ	NA	CN .	(1.97)	Ξ
Chloromethane	NA	QN	(3.48)	Ξ	NA	QN	(3.41)	Ξ
Dibromoch]oromethane	NA	QN	(2.67)	Ξ	NA	QN	(2.62)	Ξ
Ethyl benzene	NA	DN	(1.99)	Ξ	NA	N	(1.95)	Ξ
Meta-&Para-Xylene	NA	QN	(4.16)	Ξ	NA	QN	(4.08)	Ξ
Methyl ethyl ketone	NA	QN	(12.4)	Ξ	NA	QN	(12.1)	Ξ
Methylene Chloride	NA	25.2	(4.74)	Ξ	NA	11.1 8	(4.65)	Ξ
Ortho-Xy]ene	AA	QN	(2.1)	Ξ	NA	QN	(2.06)	Ξ
Styrene	NA	QN	(2.74)	Ξ	NA	QN	(2.68)	Ξ
Tetrachloroethene	AN	QN	(2.06)	[1]	NA	QN	(2.02)	Ξ
Toluene	NA	QN	(2.84)	Ξ	NA	QN	(2.78)	Ξ

		A3-SS01		1	A3-SS02		ſ	A3-SS02		ſ	A4-5503	
PARAMETER		E-NOAA-07-05 0 - 3	·	<u>н</u>	E-NOAA-07-02 0 - 3		ليا ا	E-NOAA-07-06 0 - 3		<u>،</u>	E-NOAA-04-01 0 - 3	
*			-									
SW8240 - Volatile Organics, cont. Tribuomothing(Bromoform)	(ug/kg) NN			ÛN	(02 ()	[1]	A M			ÛN	(5 34)	E
					(0, 2)	33					(3 08)	33
I richioroethene	N			2	(9.14)	Ξ	ž				(00.0)	Ξ3
Trichlorofluoromethane	NA			QN	(4.35)	[1]	NA			QN	(4.26)	Ξ
Vinyl Chloride	NA			ND	(3.32)	Ξ	NA			QN	(3.25)	Ξ
Vinyl acetate	NA			QN	(3.25)	[1]	NA			QN	(3.19)	Ξ
cis-1.2-Dichloroethene	NA			ON	(1.83)	Ξ	NA			QN	(1.79)	Ξ
cis-1.3-Dichloropropene	NA			QN	(1.62)	[1]	NA			QN	(1.59)	[1]
trans-1.2-Dichloroethene	NA			QN	(1.88)	Ξ	NA			QN	(1.85)	Ξ
trans-1,3-Dichloropropene	NA			QN	(1.1)		NA			QN	(1.07)	Ξ
SW8220 - Semivolatile Organics (ug/g)	(D)											
	ÛN	(0,88)	[1]	NA			QN	(0.0205)	[1]	QN	(0.0206)	Ξ
1.2.4-Trichlorobenzene	Q	(0.9)	Ξ	NA			QN	(0.021)	Ξ	Q	(0.0211)	Ξ
1.2-Dichlorobenzene	QN	(1.19)	Ξ	NA			QN	(0.0276)	Ξ	QN	(0.0278)	Ξ
1,3-Dichlorobenzene	QN	(0.603)	Ξ	NA			QN	(0.014)	Ξ	QN	(0.0141)	Ξ
1,4-Dichlorobenzene	QN	(1.23)	Ξ	NA			QN	(0.0287)	Ξ	QN	(0.0288)	Ξ
2,4,5-Trichlorophenol	QN	(0.503)	Ξ	NA			QN	(0.0117)	Ξ	QN	(0.0118)	Ξ
2,4,6-Trichlorophenol	QN	(0.531)	Ξ	NA			QN	(0.0124)	Ξ	Q	(0.0124)	Ξ
2,4-Dichlorophenol	QN	(0.675)	Ξ	NA			QN	(0.0157)	Ξ	QN	(0.0158)	Ξ
2.4-Dimethylphenol	QN	(1.68)	Ξ	NA			Q	(0.039)	Ξ	QN	(0.0392)	Ξ
2,4-Dinitrophenol	QN	(10.7)	Ξ	NA			Q	(0.248)	Ξ	QN	(0.25)	Ξ
2,4-Dinitrotoluene	QN	(0.838)	Ξ	NA			QN	(0.0195)	Ξ	QN	(0.0196)	Ξ
2,6-Dinitrotoluene	Q	(0.527)	Ξ	NA			QN	(0.0123)	Ξ	QN	(0.0123)	Ξ
2-Chloronaphthalene	Q	(0.493)	[1]	NA			QN	(0.0115)	Ξ	Q	(0.0116)	Ξ
2-Chlorophenol	QN	(1.16)	Ξ	NA			QN	(0.0271)	Ξ		(0.0272)	Ξ
2-Methylnaphthalene	Q	(1.01)	[1]	NA			Q	(0.0234)	Ξ	0.0205 J	(0.0235)	Ξ
2-Methylphenol(o-cresol)	QN	(0.813)	Ξ	NA			Q	(0.0189)	Ξ	Q	(0.019)	Ξ
2-Nitroaniline	Q	(0.612)	[1]	NA			QN	(0.0143)	Ξ	QN	(0.0143)	Ξ
2-Nitrophenol	QN	(0.67)	Ξ	NA			QN	(0.0156)	Ξ	QN	(0.0157)	Ξ
3,3'-Dichlorobenzidine	QN	(0.746)	Ξ	AN			QN	(0.0174)	Ξ	QN	(0.0175)	Ξ
3-Nitroaniline	QN	(0.775)	[1]	NA			QN	(0.0181)	Ξ	QN	(0.0182)	Ξ
4,6-Dinitro-2-methylphenol	QN	(1.21)	Ξ	AN			QN	(0.0281)	Ξ	QN	(0.0282)	Ξ
4-Bromophenyl phenyl ether	QN	(0.694)	Ξ	AN			QN	(0.0162)	Ξ	Q	(0.0163)	Ξ
4-Chloro-3-methylphenol	Q	(1.1)	Ξ	AN			QN	(0.0257)	Ξ	QN	(0.0258)	Ξ
4-Chlorophenyl phenyl ether	QN	(0.804)	Ξ	AN			QN	(0.0187)	Ξ	QN	(0.0188)	Ξ
<u>4-Wethv]nhenn][n-cresn]]</u>	ÛN	(0 876)	[1]	NA			UN	(0 0204)	Ξ	QN	(0.0205)	[1]

	, N 7	A3-55U1 F-NNAA-07-05		A3-55U2 F-NDAA-07-02	E	43-3502 E-NDAA-07-06		ů.	E-NOAA-04-01	
PARAMETER	i I	0 - 3				0 - 3		,	0 - 3	
	t. (ug/g)		3 8 8 8 8 8 8 8 8			+ E E E E E E E E E E E E E E E E E E E		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
4-Nitroaniline	ON	(0.737)	Ξ	NA	ND	(0.0172)	[1]	0.244	(0.0173)	Ξ
4-Nitrophenol	QN	(1.05)	Ξ	NA	QN	(0.0245)	Ξ	QN	(0.0246)	Ξ
Acenaphthene	QN	(0.728)	Ξ	NA	QN	(0.017)	Ξ	Q	(0.017)	Ξ
Acenaphthylene	ON	(0.344)	Ξ	NA	QN	(0.00802)	Ξ	QN	(0.00806)	Ξ
Anthracene	QN	(0.885)	Ξ	NA	QN	(0.0206)	Ξ	QN	(0.0207)	Ξ
Benzo(a)anthracene	1.74	(0.784)	Ξ	NA	0.0103 J	(0.0183)	Ξ	0.0128 J	(0.0184)	Ξ
Benzo(a)pyrene	2.7	(0.583)	Ξ	NA	C 6010.0	(0.0136)	Ξ	0.0207	(0.0137)	Ξ
Benzo(b)fluoranthene	8.94 F	(0.867)	Ξ	NA	0.039 F	(0.0202)	Ξ	0.0421 F	(0.0203)	Ξ
Benzo(g,h,i)perylene	1.49	(0.742)	Ξ	NA	0.0111 J	(0.0173)	Ξ	0.0245	(0.0174)	Ξ
Benzo(k)fluoranthene	8.94 F	(1.47)	Ξ	NA	0.039 F	(0.0343)	[1]	0.0421 F	(0.0345)	Ξ
Benzoic acid	QN	(6.03)	Ξ	NA	QN	(0.14)	Ξ	QN	(0.141)	Ξ
Benzyl alcohol	QN	(1.64)	Ξ	NA	0.0387	(0.0383)	Ξ	QN	(0.0385)	Ξ
Butylbenzylphthalate	QN	(0.598)	Ξ	NA	QN	(0.0139)	Ξ	QN	(0.014)	Ξ
Chrysene	7.31	(1.02)	Ξ	NA	0.0199 J	(0.0237)	Ξ	0.0249	(0.0239)	Ξ
Di-n-octylphthalate	QN	(1.39)	Ξ	NA	QN	(0.0323)	Ξ	QN	(0.0325)	Ξ
Dibenz(a,h)anthracene	0.804	(0.722)	Ξ	NA	Q	(0.0168)	Ξ	QN	(0.0169)	Ξ
Dibenzofuran	QN	(0.621)	Ξ	NA	ÛN	(0.0145)	Ξ	QN	(0.0146)	Ξ
Dibutylphthalate	ND	(0.751)	Ξ	NA	QN	(0.0175)	Ξ	0.0703	(0.0176)	Ξ
Diethylphthalate	QN	(0.512)	Ξ	NA	QN	(0.0119)	Ξ	Q	(0.012)	Ξ
Dimethylphthalate	QN	(0.426)	Ξ	NA	QN	(0.00993)	Ξ	QN	(0.00999)	Ξ
Fluoranthene	7.84	(0.972)	Ξ	NA	0.0105 J	(0.0226)	Ξ	0.014 J	(0.0228)	Ξ
Fluorene	QN	(0.512)	Ξ	NA	QN	(0.0119)	Ξ	QN	(0.012)	Ξ
Hexachlorobenzene	QN	(0.356)	Ξ	NA	QN	(0.0083)	Ξ	QN	(0.00835)	Ξ
Hexachlorobutadiene	QN	(1.06)	Ξ	NA	QN	(0.0248)	Ξ	QN	(0,0249)	Ξ
Hexachlorocyclopentadiene	QN	(13.6)	Ξ	NA	QN	(0.316)	Ξ	QN	(0.318)	Ξ
Hexach] oroethane	QN	(0.905)	Ξ	NA	QN	(0.0211)	Ξ	QN	(0.0212)	Ξ
Indeno(1,2,3-cd)pyrene	1.08	(9.9)	Ξ	NA	0.0118 J	(0.0186)	Ξ	0.0127 J	(0.0187)	Ξ
Isopharone	QN	(0.437)	Ξ	NA	QN	(0.0102)	Ξ	QN	(0.0102)	Ξ
N-Nitroso-Di-n-propylamine	QN	(1.14)	Ξ	NA	QN	(0.0266)	Ξ	QN	(0.0268)	Ξ
N-Nitrosodiphenylamine	QN	(0.862)	Ξ	NA	QN	(0.0201)	Ξ	QN	(0.0202)	Ξ
Naphthalene	QN	(1.11)	Ξ	NA	QN	(0.0259)	Ξ	0.0239 J	(0.026)	Ξ
Ni trobenzene	QN	(0.804)	Ξ	NA	Q	(0.0187)	Ξ	QN	(0.0188)	Ξ
Pentachlorophenol	QN	(1.32)	Ξ	NA	QN	(0.0337)	Ξ	0.0421	(0.0308)	Ξ
Phenanthrene	QN	(0.947)	Ξ	NA	0.00536 J	(0.0221)	Ξ	0.0132 J	(0.0222)	Ξ
Phenol	QN	(0.608)	Ξ	NA	QN	(0.0142)	Ξ	QN	(0.0142)	Ξ
Pyrene	29	(0.713)	Ξ	NA	0.00699 J	(0.0166)	Ξ	0.0198	(0.0167)	Ξ

	A	A3-SS01		A3-SS02		A3-5502			A4-SS03	
	E-NC	E-NOAA-07-05		E-N0AA-07-02	E-1	40AA-07-06		ٺ	N0AA-04-01	
PARAMETER		0 - 3		0 - 3		0 - 3			0 - 3	
									r 	*
SW8270 - Semivolatile Organics, cont. (ug/g)	(6/6n)									
bis(2-Chloroethoxy)methane	QN	(0.856)	Ξ	NA	QN	(0.0199)	Ξ	QN	(0.02)	Ξ
bis(2-Chloroethyl)ether	QN	(11.11)	Ξ	NA	QN	(0.026)	Ξ	QN	(0.0261)	Ξ
bis(2-Chloroisopropyl)ether	QN	(11.11)	Ξ	NA	QN		Ξ	QN	(0.0259)	Ξ
bis(2-Ethylhexyl)phthalate	0.796 J	(2.79)	Ξ	NA	0.00745 J		Ξ	0.0845	(0.0653)	Ξ
p-Chloroaniline	QN	(0.851)	Ξ	NA	QN		Ξ	QN	(0.0199)	Ξ

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

3 (ug/kg) (3.46) [50] (6.33) [50] (2060) [50] (11.5) [50] (17.8) [50]	3 (ug/kg) (3.46)	0	, , , ,	- 0	0 - 3		2 - 4	
Petroleum Hydrocarbons-Modified Purgeable (ug/kg) NO (3.46) [50] NO (6.33) [50] NO (2060) [50] 6.17 KJ (11.5) [50] total) 13.8 KJ (17.8) [50]	(19/kg) (19/kg) (3.46) (50]	, 4 4 1 1 1						
(3.46) (6.33) (2060) (11.5) (17.8)	(3.46) [50] (6.33) [50]							8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ND (6.33) ND (2060) 6.17 KJ (11.5) 13.8 KJ (17.8)	נצטן		[20]	QN	(3.37)	[20] N		(8.18) [50]
ND (2060) 6.17 KJ (11.5) 13.8 KJ (17.8)	[nc]		[50]	QN	(6.17)			
6.17 KJ (11.5) 13.8 KJ (17.8)		Ξ		QN	(2010)		ND (61	
(17.8) (17.8)	(11.5) [50]	3		8.35 KJ	(11.2)	6	ر م	
	(17.8)				(17.3)		ND (5.	(5.13) [

•

cted NA = Not Applicable

() = Detection Limit [] = Dilution Factor ND = Not

1994

Compiled: 24 Jan

ł

	[50] [50] [50] [50]
A5-SS14 E-NOAA-04-05 0 - 3	(7.37) (5.42) (1050) (5.85) (15.2)
A5-SS14 E-NOAA-04-0 0 - 3	ND ND ND 9.14 B 31.1
	[50] [50] [50] [50]
A5-N1 E-NOAA-05-03 18 - 20	(1 (7.14) (5.25) (1020) (1020) (1020) (14.7)
A. E-NOA/ 18	4.41 KJ 4.41 KJ ND 8.4 B 16 B
	[50] [50] [50] [50]
A5-N1 E-NOAA-05-02 7 - 9	(ug/kg) (a.06) (5.93) (1150) (6.4) (21.3)
A5 E-NOAA	
PARAMETER	SWB015MP Petroleum Hydrocarbons-Modified Purgeable (ug/kg) Benzene 5.16 KJ (8.06) Benzene ND (5.93) Ethyl benzene ND (1150) Gasoline 8.68 B (6.4) Xvlene (total) 11.6 PJ (21.3)

{} = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

.

				1
			A1-5510 E-N0AA-01-05 0 - 3	(0)
			_	19.8
				[1]
ų. 1 4			A1-SS09 E-NOAA-01-04 0 - 3	(0)
F] team Cream				17
NOAD LCC		FI.)		Ξ
Province and very control white a filmendorf	-3 LON 3011 3441	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	A1-SS08 E-NOAA-01-03 0 - 3	(0)
	זר אוארו או	BEG. DEP	Ū.	12.5
	JF INUKUAN			Ξ
	ALL RESULIS L		A1-5507 E-NOAA-01-02 0 - 3	(0)
			ū	26.5
	TABLE C2		PARAMETER	Percent moisture

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable Compiled: 26 January 1994

PAKAME FK	E - N	E-NOAA-14-01		E-N(E-NOAA-01-01	ىن	-NOAA-01-07	0	10-10-	E-N	E-NOAA-01-06	
		u - 3	1 1 1 1 1		c - 0	-		c - 0			6 - 0	
Percent Solid (percent) Percent moisture	21.5	(0)	Ξ	20.9	(0)	[11]	28.6	(0)	Ξ	27.3	(0)	Ξ
SW6010 - Metals (mg/kg)												
Aluminum	22900	(7.07)	Ξ	AN			NA			NA		
Antimony	-12.4 J	(1.86)	Ξ	NA			NA			N		
Arsenic	9.08	(1.52)	Ξ	NA			NA			NA		
Barium	150	(0.0558)	Ξ	NA			NA			NA		
Beryllium	0.413	(0.0568)	Ξ	NA			NA			NA		
Cadmium	-0.165 J	(0.277)	Ξ	NA			NA			N		
Calcium	3650	(22.9)	Ξ	NA			NA			NA		
Chromium	28.5	(0.263)	[1]	NA			NA			NA		
Cobalt	11.6	(0.503)	Ξ	NA			NA			NA		
Copper	19.9	(0.238)	Ξ	NA			NA			NA		
Iron	29400	(30)	Ξ	NA			NA			NA		
Lead	10.5	(2.38)	Ξ	NA			NA			NA		
Magnesium	4470	(2.63)	Ξ	NA			AN			AN		
Manganese	466	(0.0114)	Ξ	NA			NA			NA		
Molybdenum	0.892	(0.253)	[1]	NA			NA			NA		
Nickel	25.3	(1.05)	Ξ	NA			NA			NA		
Potassium	638	(33.4)	Ξ	NA			NA			NA		
Selenium	10.4 8	(4.26)	Ξ	NA			NA			NA		
Silver	-0.817 J	(0.176)	Ξ	NA			AN			NA		
Sodium	121	(2.5)	Ξ	NA			NA			NA		
Thallium	-2.88 J	(6.69)	Ξ	NA			NA			NA		
Vanadium	66.5	(0.414)	Ξ	NA			NA			NA		
Zinc	62.9	(0.281)	[1]	NA			NA			NA		
SW7060 - Arsenic (mg/kg)												
Arsenic	9.1	(0.155)	[2]	NA			NA			NA		
SW7421 - Lead (mo/kg)												
tead	12.3	(0.366)	[4]	NA			NA			Ň		
SW7471 - Mercury (mg/kg) Mercury	0 0833 B	(0.0154)	5	NA			NA			NA		
			Ξ	Į								

A2-HA-1-OI A2-HA-	A2-H E-N0A - 4	A2 E-N	A2-HA-2-01		A2-HA-2-02	
26.3 (0) [1] 14.3 20100 (7.8) [1] 11.6 -10.4 J (2.05) [1] -11.6 1175 (0.6616) [1] 17.3 (1.60) 1175 (0.667) [1] 17.3 (1.60) 11.3 (1.60) [1] 17.3 (1.60) 11.3 (1.60) [1] 17.3 (1.60) 11.3 (1.60) [1] 17.3 (1.60) 40.6 (0.0627) [1] 11.2 (1) 490 $(2.5.3)$ $[1]$ 4.95 (1) 49.6 (0.263) $[1]$ 28.9 (1) 49.6 (0.263) $[1]$ 28.9 (1) 29400 (2.63) $[1]$ 28.9 (1) 235 (0.265) $[1]$ 28.9 (1) 235 (2.63) $[1]$ 28.9 (1) 23600 (1.16) (1.76) (1.76) (1) (1) <th>) </th> <th></th> <th>E-NDA-09-03</th> <th></th> <th>E-NOAA-09-04 4 - 4.5</th> <th></th>) 		E-NDA-09-03		E-NOAA-09-04 4 - 4.5	
20100 (7.8) $[1]$ 115900 -10.4 J (2.05) $[1]$ -11.6 J 11.3 (1.68) $[1]$ $J_{17.3}$ $J_{17.3}$ $J_{17.3}$ 175 (0.0616) $[1]$ $B_{4.7}$ J_{910} 0.387 (0.305) $[1]$ D_{434} J_{910} 0.387 (0.293) $[1]$ D_{434} J_{910} 4900 (25.3) $[1]$ D_{434} J_{910} 4900 (25.3) $[1]$ D_{434} J_{910} 4900 (25.3) $[1]$ D_{434} J_{910} 40.6 (0.229) $[1]$ 21.2 J_{910} 113.7 (0.299) $[1]$ 21.6 J_{910} 2340 (2.63) $[1]$ 21.6 J_{910} 2370 (2.9) $[1]$ 21.6 J_{910} 2360 J_{116} J_{126} J_{11} J_{126} J_{11} 2350 J_{126} J_{126} $J_$		[1] 31.9	(0)	[1] 3.38	(0)	[1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
-10.4 J (2.05) $[1]$ -11.6 J 175 (0.0616) $[1]$ 84.7 $(0$ 175 (0.0627) $[1]$ 84.7 $(0$ 0.485 (0.0627) $[1]$ 0.434 $(0$ 0.387 (0.0627) $[1]$ 0.434 $(0$ 0.387 (0.239) $[1]$ 0.466 (0.265) $[1]$ 4910 40.6 (0.263) $[1]$ 33.9 $(1]$ 33.9 $(1]$ 0.346 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.3666 0.3666	0 (6.13)	[1] 11900	(8.69)	[1] 16300	(2.93)	Ξ
11.3 (1.68) $[1]$ 17.3 175 (0.0616) $[1]$ 84.7 $[0.387]$ 0.387 (0.0627) $[1]$ 0.434 $[0]$ 0.387 (0.305) $[1]$ 0.346 $]$ 0.387 (0.305) $[1]$ 0.434 $]$ 0.387 (0.239) $[1]$ 0.346 $]$ 4910 (2553) $[1]$ 9.346 $]$ 40.6 (0.263) $[1]$ 33.9 $]$ 13.7 (0.263) $[1]$ 11.2 $]$ 29400 (2.63) $[1]$ 28.9 $]$ 113 (2.63) $[1]$ 28.9 $]$ $]$ 7270 (2.9) $[1]$ 28.9 $]$ $]$ $]$ 7270 (2.9) $[1]$ 2.13 $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ $]$ <t< td=""><td>ſ</td><td>[1] -8.02 J</td><td>(2.29)</td><td>[1] -10.2</td><td>J (1.56)</td><td>Ξ</td></t<>	ſ	[1] -8.02 J	(2.29)	[1] -10.2	J (1.56)	Ξ
175 (0.0616) $[1]$ 84.7 (0.385) 0.485 (0.0627) $[1]$ 0.4346 J 0.387 (0.305) $[1]$ 0.346 J 4900 (25.3) $[1]$ 0.346 J 40.6 (0.29) $[1]$ 4910 4910 40.6 (0.263) $[1]$ 33.1 11.2 13.7 (0.555) $[1]$ 28.9 0 113 (0.263) $[1]$ 28.9 0 113 (2.63) $[1]$ 28.9 0 113 (2.53) $[1]$ 28.9 0 113 (2.263) $[1]$ 27500 0 0.451 (2.0126) $[1]$ 27500 0 13.7 (2.63) $[1]$ 2730 0 0.456 $[1]$ 0.253 0.612 0 13.77 0.245 0.131 0.612 0.612 0.612 0.4560 0.131 0.1			(1.87)	[1] 8.16	(1.28)	Ξ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	[1] 99.5	(0.0687)	[1] 55.6	(0.0468)	Ξ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 (0.0493)	[1] 0.25	(0.0699)	[1] 0.366	(0.0476)	[1]
4900 (25.3) $[1]$ 4910 40.6 (0.29) $[1]$ 33.9 13.7 (0.555) $[1]$ 11.2 33.6 (0.263) $[1]$ 28.9 33.6 (0.263) $[1]$ 28.9 (13.7) (2.63) $[1]$ 28.9 (13.1) (2.63) $[1]$ 28.9 (13.1) (2.9) $[1]$ 2.950 (2.9) $[1]$ 2.950 $[1]$ (2.9) $[1]$ 8060 6060 504 (0.0126) $[1]$ 2.950 $[1]$ 35.2 (1.16) $[1]$ 9.61 $[0.279)$ $[1]$ 35.2 (1.16) $[1]$ 9.650 $[1]$ 9.650 $[1]$ 9.16 $[0.31)$ $[1]$ 9.16 $[0.31)$ $[1]$ 52.7 $[1]$ 9.16 $[0.195)$ $[1]$ 52.7 $[1]$ $[1]$ 52.7 $[1]$ $[1]$ $[1]$ $[1]$ $[1]$ $[1]$ $[1]$ $[1]$ $[1]$ <td></td> <td>[1] 0.142 J</td> <td>(0.34)</td> <td>[1] -0.238</td> <td>J (0.232)</td> <td>Ξ</td>		[1] 0.142 J	(0.34)	[1] -0.238	J (0.232)	Ξ
40.6 (0.29) $[1]$ 33.9 $[1]$ 33.9 13.7 (0.555) $[1]$ 11.2 33.6 $[0.263)$ $[1]$ 28.9 $[0]$ 33.6 (0.263) $[1]$ 21.3 $[1]$ 28.9 $[0]$ 29400 $(3.3.1)$ $[1]$ 27500 $[1]$ 28.9 $[0]$ 7270 (2.9) $[1]$ 2790 $[1]$ 2790 $[0]$ 604 (0.0126) $[1]$ 8060 $[0]$ 4.95 $[1]$ 4.95 7270 (2.9) $[1]$ 8060 $[1]$ 4.95 $[0]$ $[0]$ 6126 $[0]$ $[1]$ 2.99 $[0]$ $[0]$ $[0]$ $[1]$ <t< td=""><td>0 (19.9)</td><td>[1] 1780</td><td>(28.2)</td><td>[1] 6000</td><td>(19.2)</td><td>Ξ</td></t<>	0 (19.9)	[1] 1780	(28.2)	[1] 6000	(19.2)	Ξ
13.7 (0.555) $[1]$ 11.2 33.6 (0.263) $[1]$ 28.9 29400 (33.1) $[1]$ 28.9 113 (2.63) $[1]$ 27500 7270 (2.9) $[1]$ 2750 604 (0.0126) $[1]$ 8060 604 (0.0126) $[1]$ 8060 604 (0.0126) $[1]$ 8060 604 (0.0126) $[1]$ 8060 35.2 (1.16) $[1]$ 8060 35.2 (1.16) $[1]$ 900 35.2 (1.16) $[1]$ 930 13.7 (4.7) $[1]$ 930 173 (2.76) $[1]$ 126 173 (2.76) $[1]$ 126 173 (2.76) $[1]$ 123 12 9.16 (0.31) $[1]$ 52.7 12 9.16 (0.195) $[2]$ 7.72 12 9.16	9 (0.228)	[1] 12.2	(0.324)	[1] 30.8	(0.221)	Ξ
33.6 (0.263) $[1]$ 28.9 (0) 113 (2.63) $[1]$ 27500 113 (2.63) $[1]$ 27500 7270 (2.9) $[1]$ 8060 7270 (2.9) $[1]$ 8060 7270 (2.9) $[1]$ 8060 604 (0.0126) $[1]$ 8060 604 (0.279) $[1]$ 8060 35.2 (1.16) $[1]$ 8060 35.2 (1.16) $[1]$ 930 35.2 (1.16) $[1]$ 930 35.2 (1.16) $[1]$ 930 13.7 (4.7) $[1]$ 930 173 (2.76) $[1]$ 126 173 (2.76) $[1]$ 126 0.535 (7.38) $[1]$ 126 2.35 (0.31) $[1]$ 52.7 9.16 (0.195) $[2]$ 7.72 9.16 (0.195) $[2]$ <t< td=""><td>2 (0.437)</td><td>[1] 2.76</td><td>(0.619)</td><td>[1] 10.6</td><td>(0.422)</td><td>Ξ</td></t<>	2 (0.437)	[1] 2.76	(0.619)	[1] 10.6	(0.422)	Ξ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 (0.207)	[1] 39.8	(0.293)	[1] 20.7	(0.2)	Ξ
113 (2.63) $[1]$ 4.95 7270 (2.9) $[1]$ 8060 604 (0.0126) $[1]$ 8060 604 (0.0126) $[1]$ 8050 0.451 (0.279) $[1]$ 8050 35.2 (1.16) $[1]$ 911 35.2 (1.16) $[1]$ 911 35.2 (1.16) $[1]$ 911 35.2 (1.16) $[1]$ 930 35.2 (1.16) $[1]$ 930 13.7 (4.7) $[1]$ 930 13.7 (4.7) $[1]$ 930 173 (2.76) $[1]$ 126 0.505 J (7.38) $[1]$ 126 0.505 J (7.38) $[1]$ 126 235 (0.31) $[1]$ 52.7 9.16 9.16 (0.195) $[2]$ 7.72 $(1$ 9.16 (0.195) $[2]$ 7.72 $(1$		[1] 15000	(36.9)	[1] 26300	(22.2)	Ξ
7270 (2.9) $[1]$ 8060 604 (0.0126) $[1]$ 529 (0.612) 35.2 (1.16) $[1]$ 34.1 (1.13) 35.2 (1.16) $[1]$ 34.1 (1.13) 35.2 (1.16) $[1]$ 34.1 (1.13) 336 (36.8) $[1]$ 930 $[1]$ 930 13.7 (4.7) $[1]$ 930 $[1]$ 930 13.7 (4.7) $[1]$ 930 $[1]$ 126 173 (2.76) $[1]$ 126 $[1]$ 126 $[1]$ 123 J 0.505 J (7.38) $[1]$ 123 J $[1]$ 23.3 $[1]$ 23.3 $[1]$ 23.3 $[1]$ $[1]$ 52.7 $[1]$		Ĩ	(2.93)		(2)	Ξ
604 (0.0126) $[1]$ 529 $(0$ 0.451 (0.279) $[1]$ 0.612 35.2 (1.16) $[1]$ 0.612 35.2 (1.16) $[1]$ 34.1 35.2 (1.16) $[1]$ 34.1 336 (36.8) $[1]$ 930 13.7 (4.7) $[1]$ 930 13.7 (4.7) $[1]$ -0.695 J 173 (2.76) $[1]$ 126 173 (2.76) $[1]$ 126 -0.505 J (7.38) $[1]$ 1.23 0.505 J (7.38) $[1]$ 1.23 -0.505 J (7.38) $[1]$ 1.23 235 (0.31) $[1]$ 52.7 235 (0.31) $[1]$ 53.9 9.16 (0.195) $[2]$ 7.72 134 (4.61) $[40]$ 5.77	0 (2.28)	[1] 855	(3.24)	[1] 8770	(2.21)	Ξ
0.451 (0.279) [1] 0.612 35.2 (1.16) [1] 34.1 35.2 (1.16) [1] 34.1 35.2 (1.16) [1] 930 13.7 (4.7) [1] 930 13.7 (4.7) [1] 930 -0.697 J (0.195) [1] -0.695 J 173 (2.76) [1] 126 J 126 -0.505 J (7.38) [1] 126 J 52.7 J 61 (0.458) [1] 1.23 J 52.7 J J 52.7 J 235 (0.31) [1] 52.7 J J J J J J 9.16 (0.1955) [2] [2] 7.72 J </td <td>9 (0.00987)</td> <td>[1] 73.2</td> <td>(0.014)</td> <td></td> <td>(0.00954)</td> <td>Ξ</td>	9 (0.00987)	[1] 73.2	(0.014)		(0.00954)	Ξ
35.2 (1.16) [1] 34.1 336 (36.8) [1] 930 13.7 (4.7) [1] 930 13.7 (4.7) [1] 6.73 B -0.697 J (0.195) [1] -0.695 J 173 (2.76) [1] -0.695 J 173 (2.76) [1] 126 -0.505 J (7.38) [1] 126 -0.505 J (7.38) [1] 1.23 J 61 (0.458) [1] 1.23 J 23.9 235 (0.31) [1] 52.7 23.9 9.16 (0.195) [2] 7.72 1.72 9.14 (4.61) [40] 5.77 7.72	2 (0.219)	[1] -0.185 J	(0.311)	[1] 0.716	(0.212)	Ξ
336 (36.8) [1] 930 13.7 (4.7) [1] 6.73 B -0.697 J (0.195) [1] 6.73 B -0.505 J (2.76) [1] 1.23 J (-0.505 J (7.38) [1] 1.23 J (-0.505 J (7.38) [1] 1.23 J (61 (0.458) [1] 1.23 J (</td <td>1 (0.912)</td> <td>[1] 4.15</td> <td>(1.29)</td> <td>[1] 31.2</td> <td>(0.882)</td> <td>Ξ</td>	1 (0.912)	[1] 4.15	(1.29)	[1] 31.2	(0.882)	Ξ
13.7 (4.7) [1] 6.73 B -0.697 J (0.195) [1] -0.695 J (173 (2.76) [1] 126 J (126 -0.505 J (7.38) [1] 123 J (126 -0.505 J (7.38) [1] 123 J (126 J (J	0 (28.9)	[1] 507	(41)	[1] 714	(28)	Ξ
-0.697 J (0.195) [1] -0.695 J (173 (2.76) [1] 126 -0.505 J (7.38) [1] 1.23 J 61 (0.458) [1] 1.23 J 61 (0.458) [1] 52.7 J 235 (0.31) [1] 53.9 (9.16 (0.195) [2] 7.72 (134 (4.61) [40] 5.77 ([1] 2.51 J	(5.24)	96.6 [1]	B (3.57)	Ξ
173 (2.76) [1] 126 -0.505 J (7.38) [1] 1.23 J 61 (0.458) [1] 52.7 (1.23) J 235 (0.31) [1] 52.7 (1.23) J 9.16 (0.31) [1] 53.9 (1.23) J 9.16 (0.195) [2] 7.72 (1.13) J (1.13) J 134 (4.61) [40] 5.77 (1.13) J (1.13) J J J		[1] -0.574 J	(0.217)	-0.661	J (0.148)	Ξ
-0.505 J (7.38) [1] 1.23 J 61 (0.458) [1] 52.7 235 (0.31) [1] 53.9 9.16 (0.195) [2] 7.72 (134 (4.61) [40] 5.77 (6 (2.17)	[1] 137	(3.07)	[1] 76.3	(5.09)	Ξ
61 (0.458) [1] 52.7 235 (0.31) [1] 53.9 (9.16 (0.195) [2] 7.72 (134 (4.61) [40] 5.77 (Ŷ	(8.23)	-1.69	J (5.61)	Ξ
235 (0.31) [1] 53.9 (9.16 (0.195) [2] 7.72 (134 (4.61) [40] 5.77 (7 (0.36)	[1] 37.1	(0.51)		(0.348)	Ξ
9.16 (0.195) [2] 7.72 134 (4.61) [40] 5.77	9 (0.243)	[1] 61.1	(0.345)	[1] 61.5	(0.235)	Ξ
c 9.16 (0.195) [2] 7.72 - Lead (mg/kg) 134 (4.61) [40] 5.77 - Mercury (mn/ku)						
- Lead (mg/kg) 134 (4.61) [40] 5.77 - Mercury (mn/ku)	2 (0.154)	[2] 6.11	(0.214)	[2] 4.83	(0.152)	[2]
- Mercurv (mn/ku)	7 (0.181)	[2] 10.9	(0.253)	[2] 4.81	(0.179)	[2]
	8 (0.014)	[1] 0.0551	(0 0176)	[1] 0 0104	(0 0124)	[1]
						3

											2	Page: 4
	< .	A2-HA-3-01 F-NNAA-N9-N5		i.	A2-HA-3-02 F-NNAA-N9-D6		Ĩ	A2-HA-7 F-NDAA-13-D1		T LL	A2-SS15 F-NDAA-D2-D1	
PARAMETER	L	0 - 3			4 - 4.5		-	3.5 - 4		J	0 - 3	
 Percent Solid (percent) Percent moisture	14.8	(0)	Ξ	5.09	(0)	Ξ	13.3	(0)	Ξ	7.97	(0)	Ξ
SW6010 - Metals (mg/kg)												
Aluminum	6050	(6.58)	Ξ	12400	(5.52)	Ξ	16900	(6.24)	Ξ	14600	(6.32)	Ξ
Antimony	280	(1.73)	Ξ	-8.1 J	(1.45)	Ξ	-6.68 J	(1.64)	Ξ	-12.3 J	(1.66)	Ξ
Arsenic	26.8	(1.42)	Ξ	46.7	(1.19)	Ξ	6.15	(1.35)	Ξ	20.3	(1.36)	Ξ
Barium	516	(0.052)	Ξ	34.6	(0.0436)	Ξ	110	(0.0493)	Ξ	156	(0.0499)	Ξ
Beryllium	0.165	(0.0529)	Ξ	0.221	(0.0443)	Ξ	0.391	(0.0501)	Ξ	0.282	(0.0508)	Ξ
Cachnium	2.34	(0.258)	Ξ	-0.0617 J	(0.216)	Ξ	-0.355 J	(0.244)	Ē	0.14 J	(0.248)	Ξ
Calcium	3650	(21.4)	Ξ	4080	(17.9)	[1]	5040	(20.3)	Ξ	4850	(20.5)	Ξ
Chromium	9.76	(0.245)	Ξ	26.9	(0.205)	[1]	34.1	(0.232)	Ξ	40.5	(0.236)	Ξ
Cobalt	2.2	(0.469)	Ξ	6.59	(0.393)	Ξ	11.1	(0.444)	Ξ	7.9	(0.45)	Ξ
Copper	30.9	(0.222)	Ξ	24.8	(0.186)	Ξ	25.1	(0.21)	Ξ	47.2	(0.213)	Ξ
Iron	6230	(27.9)	Ξ	22200	(23.4)	Ξ	24000	(26.5)	Ξ	30700	(26.8)	Ξ
Lead	98.1	(2.22)	Ξ	17.5	(1.86)	Ξ	5.51	(2.1)	Ξ	234	(2.13)	Ξ
Magnesium	1180	(2.45)	Ξ	7440	(2.05)	Ξ	7680	(2.32)	Ξ	7840	(2.36)	Ξ
Manganese	55.2	(0.0106)	Ξ	303	(0.00888)	Ξ	511	(0.01)	Ξ	365	(0.0102)	Ξ
Molybdenum	2.53	(0.235)	Ξ	0.616	(0.197)	Ξ	0.484	(0.223)	Ξ	0.858	(0.226)	Ξ
Nickel	5.53	(0.979)	Ξ	22.7	(0.82)	Ξ	34.3	(0.928)	Ξ	29.6	(0.94)	Ξ
Potassium	1620	(31.1)	Ξ	697	(26)	Ξ	721	(29.5)	Ξ	759	(29.8)	Ξ
Selenium	1.43 J	(3.97)	Ξ	5.66 B	(3.33)	Ξ	3.36 J	(3.76)	Ξ	10.1 B	(3.81)	Ξ
Silver	107	(0.164)	Ξ	3.25	(0.138)	Ξ	-0.539 J	(0.156)	[2]	2.35	(0.158)	Ξ
Sodium	259	(2.33)	Ξ	66.7	(1.95)	Ξ	153	(2.21)	Ξ	107	(2.23)	Ξ
Thallium	-1.26 J	(6.23)	Ξ	-1.83 J	(5.22)	[]	1.51 J	(2.91)	Ξ	0.814 J	(2.99)	Ξ
Vanadium	17.6	(0.386)	Ξ	45.5	(0.324)	Ξ	49.6	(0.366)	Ξ	47.6	(0.371)	Ξ
Zinc	51.6	(0.261)	[1]	37.9	(0.219)	[1]	45.9	(0.248)	[1]	340	(0.251)	Ξ
SW7060 - Arsenic (mg/kg)												
Arsenic	26	(0.646)	8	70.4	(1.46)	[20]	6.53	(0.164)	[2]	12.4	(0.305)	[4]
(v)/vm/ proj = 100203												
AN 471 - LEOU (MU/KU)				1			1			:		
Lead	35.8	(0.19)	[2]	17.6	(0.343)	[4]	4.99	(0.215)	[2]	143	(3.6)	[40]
SW7471 - Mercury (mg/kg)												
Mercury	ſ O	(0.0141)	[1]	0.00527 J	(0.0126)	Ξ	0.069 8	(0.0138)	[]	0.34	(0.013)	Ξ
Compiled: 26 Jan 1994	() = Detection Limit		[] = Dilution F	actor	ND = Not		NA = Not Applicable	Ð				

TAXAMPLEX		A2-SS16 E-NOAA-02-03 0 - 3		Ĩ	A2-SS17 E-NOAA-02-05 0 - 3	نی ا	-N0AA-02-08	A2-SS17 E-N0AA-02-08 Dup of E-N0AA-02-05 0 - 3	-02-05	μ. Π	A2-SS18 E-NDAA-D2-D6 0 - 3	
 Percent Solid (percent) Percent moisture	25	(0)	Ξ	26.7	(0)	. Ξ	28.3	(0)	Ξ	32.4	(0)	[1]
SW6010 - Metals (mg/kg)												
Aluminum		(7.82)	Ξ		(7.84)	Ξ		(8.02)	Ξ		(8.42)	Ξ
Antimony	-10.4 J	(2.06)	ΞΞ	-14 J	(2.07)	Ξ	-10.4 J	(2.11)	Ξ	-14.3 J	(2.22)	Ξ
Arsenic	15.2 162	(1.69) (0.0618)	ΞΞ	6.98 120	(1.69)	ΞΞ	18	(1.73) (0.0622)	ΞΞ	1.71	(1.82) (0 0666)	ΞΞ
Barlum Bervilium	102	(0,0628)	ΞΞ	0.356	(0.063)	33	0.427	(0.0644)	33	0.332	(0,0677)	33
Cadmi um	2.08	(0.306)	Ξ	1.27	(0.307)	Ξ	0.428	(0.314)	ΞΞ	0.245 J	(0.33)	ΞΞ
Calcium	5540	(25.4)	Ξ	2980	(25.5)	Ξ	2750	(26)	Ξ	3850	(27.3)	Ξ
Chromium	37.2	(0.291)	Ξ	27.5	(0.292)	[1]	28.3	(0.299)	Ξ	24.4	(0.314)	[1]
Cobal t	10.7	(0.557)	[1]	10.4	(0.559)	[1]	11.9	(0.571)	Ξ	6	(0.6)	Ξ
Copper	177	(0.263)	Ξ	23.5	(0.264)	Ξ	20.9	(0.27)	Ξ	29.6	(0.284)	[1]
Iron	29000	(33.2)	Ξ	27300	(33.3)	Ξ	31000	(34)	Ξ	23600	(35.7)	Ξ
Lead	335	(2.63)	Ξ	114	(2.64)	Ξ	77.3	(2.7)	Ξ	25.7	(2.84)	Ξ
Magnesium	6820	(2.91)	Ξ	4410	(2.92)	Ξ	4420	(5.99)	Ξ	4360	(3.14)	Ξ
Manganese	420	(0.0126)	Ξ	421	(0.0126)	Ξ	480	(0.0129)	Ξ	406	(0.0136)	Ξ
Molybdenum	1.35	(0.279)	Ξ	0.628	(0.28)	Ξ	0.674	(0.287)	Ξ	0.224 J	(0.301)	Ξ
Nickel	34.4	(1.16)	Ξ	21.8	(1.17)	Ξ	23.7	(1.19)	Ξ	19.8	(1.25)	Ξ
Potassium	775	(36.9)	Ξ	722	(37)	Ξ	590	(37.8)	Ξ	630	(39.8)	Ξ
Selenium	1.14 J	(4.71)	Ξ		(4.73)	Ξ		(4.83)	Ξ		(2.08)	Ξ
Silver	101	(0.195)	Ξ	-0.684 J	(0.196)	Ξ	-0.753 J	(0.2)	Ξ	-0.545 J	(0.21)	Ξ
Sodium	203	(2.76)	Ξ	127	(2.77)	Ξ	104	(2.83)	Ξ	177	(2.98)	Ξ
Thallium	0.768 J	(7.4)	Ξ	-2.41 J	(2.43)	Ξ	-1.32 J	(7.59)	Ξ	-1.11 J	(7.97)	Ξ
Vanadium	52	(0.459)	Ξ	56	(0.46)	Ξ	69.7	(0.47)	Ξ	52.3	(0.494)	Ξ
Zinc	739	(0.31)	Ξ	898	(0.311)	Ξ	484	(0.318)	Ξ	106	(0.334)	Ξ
SW7060 - Arsenic (mg/kg)												
Arsenic	11.3	(0.188)	[2]	9.72	(0.206)	[2]	12	(0.199)	[2]	7.87	(0.202)	[2]
SW7421 - Lead (mg/kg) Lead	339	(8.8)	[80]	326	(6,72)	[80]	131	(8.4)	[80]	22.4	(1.19)	[10]
))	600.01				5						
SW7471 - Mercury (mg/kg) Mercury	0.537	(0.016)	[1]	0.199	(0.0164)	Ξ	0.187	(0.0167)	[1]	0.199	(0,0176)	Ξ
ς.			,			1		•	•		•	•

		E-NOAA-02-07 Dup of E-NOAA-02-06 0 - 3			E-NOAA-11-01 3.5 - 4		<u>ٺ</u>	E-NOAA-09-07 0 - 3			E-NOAA-10-01 2.5 - 3	
Percent Solid (percent) Percent moisture	30.7	(0)	[1]	8.66	(0)	E	22.8	(0)	Ξ	9.55	(0)	Ξ
SW6010 - Metals (mg/kg)												
	12600	(7.81)	[]	NA			26600	(7.93)	Ξ	NA		
Antimony	-7.54 J	(2.06)	3	NA			-12.7 J	(5.09)	Ξ	NA		
Arsenic	7.95	(1.68)	Ξ	NA			10.9	(1.71)	Ξ	NA		
Barium	128	(0.0617)	Ξ	NA			102	(0.0627)	Ξ	NA		
Beryllium	0.211	(0.0628)	Ξ	NA			0.433	(0.0637)	Ξ	NA		
Cadmi um	0.12 J	(0.306)	Ξ	NA			0.405	(0.311)	Ξ	NA		
Calcium	2690	(25.4)	Ξ	NA			1710	(25.8)	Ξ	NA		
Chromium	17.7	(0.291)	[1]	NA			23.3	(0.295)	Ξ	NA		
Cobal t	5.41	(0.556)	Ξ	NA			14.4	(0.565)	Ξ	NA		
Copper	15.5	(0.263)	Ξ	NA			16.5	(0.267)	Ξ	NA		
Iron	18600	(33.1)	Ξ	NA			29700	(33.7)	Ξ	NA		
Lead	12.5	(2.63)	Ξ	NA			8.06	(2.67)	Ξ	NA		
Magnesium	2370	(16.2)	Ξ	NA			1630	(2.95)	Ξ	NA		
Manganese	225	(0.0126)	Ξ	NA			755	(0.0128)	Ξ	NA		
Molybdenum	0.121 J	(0.279)	Ξ	NA			1.09	(0.284)	Ξ	NA		
Nickel	12.1	(1.16)	Ξ	NA			15.2	(1.18)	Ξ	NA		
Potassium	445	(36.9)	Ξ	NA			355	(37.4)	Ξ	NA		
Selenium	8.1 B	(4.71)	Ξ	NA			13.2	(4.78)	Ξ	NA		
Silver	-0.598 J	(0.195)	Ξ	NA			-0.629 J	(0.198)	Ξ	NA		
Sodium	150	(2.76)	Ξ	NA			124	(2.8)	Ξ	NA		
Thallium	-1.93 J	(7.4)	Ξ	NA			-1.39 J	(7.51)	Ξ	AN		
Vanadium	44.1	(0.458)	Ξ	NA			71.3	(0.465)	Ξ	NA		
Zinc	115	(0.31)	[1]	NA			60.5	(0.315)	[7]	NA		
SW7060 - Arsenic (mg/kg)												
Arsenic	7.88	(0.206)	[2]	NA			15.2	(0.397)	[4]	NA		
SW7421 - Lead (mg/kg)												
Lead	8.34	(0.243)	[2]	NA			14.2	(0.468)	[4]	NA		
SW7471 - Mercury (mg/kg)												
Mercury	0.174	(0.0174)	[1]	NA			0.0519	(0.0156)	Ξ	NA		

A3-HA-6 A3-HA-6 A3-H3 F-MOAR-12-01 E-MOAR-03-02 2.5 - 3 14 - 16 Percent solid (percent) 9.25 (0) (1) 4.34 (0) Percent moisture 9.25 (0) (1) 4.34 (0) Stolid Percent moisture 9.25 (0) (1) 4.34 (0) Atimony NA NA NA NA NA NA Atimony NA NA NA NA NA NA NA Atimony NA NA <t< th=""><th>A3-N3 E-NOAA-03-03 19 - 21 19 - 21 NA NA NA NA NA NA NA NA NA NA NA NA NA</th><th></th><th>A3-N3 E-NOAA-03-05 4 - 6 (5) (2) (1.31) (1.31) (1.31) (1.31) (1.07) (0.0393) (0.04) (0.04) (0.0393) (0.04) (0.195) (0.185) (0.168) (0.168) (0.168) (1.68) (1.68) (1.85)</th><th>2 2222222222222222222222222222222222222</th></t<>	A3-N3 E-NOAA-03-03 19 - 21 19 - 21 NA NA NA NA NA NA NA NA NA NA NA NA NA		A3-N3 E-NOAA-03-05 4 - 6 (5) (2) (1.31) (1.31) (1.31) (1.31) (1.07) (0.0393) (0.04) (0.04) (0.0393) (0.04) (0.195) (0.185) (0.168) (0.168) (0.168) (1.68) (1.68) (1.85)	2 2222222222222222222222222222222222222
<pre>- Metals (mg/kg) th moisture - Metals (mg/kg) tum tum tum tum tum tum tum tum tum tum</pre>	4 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.73 3.73 18200 -0.0869 12.1 69.1 0.33 6.33 0.278 61.70 35.3 11.2 61.6 61.6 11.2	 (5) (4.97) (1.31) (1.07) (0.0393) (0.04) (0.04) (0.04) (0.195) (16.2) (1.68) (1.85) 	2 2222222222222222
: Solid (percent) tronisture 9.25 (0) [1] 4.34 - Metals (mg/kg) MA MA MA - Metals (mg/kg) MA MA MA m MA MA MA MA ium NA MA MA m MA MA MA m MA MA MA MA MA MA MA MA MA MA MA MA MA	4 L ANNAANNAANAANAA ANNAANAANAANAA ANNAANAAN	3.73 18200 -0.0869 12.1 69.1 0.33 0.278 6170 6170 6170 35.3 11.2 11.2	(C) (1.31) (1.31) (1.07) (1.07) (1.07) (0.0393) (0.04) (0.04) (0.04) (0.04) (0.04) (0.195) (0.185) (0.168) (0.168) (0.168) (1.68) (1.85)	2 2222222222222222
- Metals (mg/kg) Num Num Na Na Na Na Na Na Na Na Na Na	A A A A A A A A A A A A A A A A A A A		(4.97) (1.31) (1.07) (1.07) (0.0393) (0.04) (0.195) (1.68) (0.168) (0.168) (1.68) (1.85)	222222222222222222
um Na	A A A A A A A A A A A A A A A A A A A		(4.97) (1.31) (1.07) (1.07) (0.0393) (0.04) (0.195) (16.2) (0.195) (0.168) (0.168) (0.168) (1.68) (1.85)	22222222222222222
real control of the second contrel of the second contrel of the second contrel of the se	A A A A A A A A A A A A A A A A A A A		(1.31) (1.07) (0.0393) (0.04) (0.195) (16.2) (1.168) (0.168) (0.168) (1.68) (1.85)	122222222222222222
ium NA ium NA mi NA mi NA NA NA NA NA NA NA NA NA NA NA NA NA N	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12.1 69.1 0.33 0.278 6170 35.3 35.3 11.2 61.6 11.2	(1.07) (0.0393) (0.04) (0.195) (16.2) (16.2) (0.185) (0.185) (0.168) (21.1) (1.68) (1.85)	222222222222222
lium NA Lium NA Lium NA Lium NA NA NA NA NA NA Benum NA NA MA NA MA MA MA MA MA MA MA MA MA MA MA MA MA	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	69.1 0.33 0.278 6170 35.3 31.2 61.6 61.6 11.2	(0.0393) (0.04) (0.195) (16.2) (16.2) (0.185) (0.185) (0.168) (21.1) (1.68) (1.85)	22222222222222
lium NA Ium NA Ium NA Ium NA Sium NA Sium NA Sium NA Sium NA Sium NA C C MA MA NA MA MA MA MA MA MA MA MA MA M	A N N N N N N N N N N N N N N N N N N N	0.33 0.278 6170 35.3 11.2 61.6 31200 11.2	(0.04) (0.195) (16.2) (0.185) (0.185) (0.185) (0.168) (21.1) (1.68) (1.85)	222222222222
In I	A A A A A A A A A A A A A A A A A A A	0.278 6170 35.3 11.2 61.6 31200 11.2	(0.195) (16.2) (0.185) (0.354) (0.354) (0.168) (21.1) (1.68) (1.85)	22222222222
Image	A N N N N N N N N N N N N N N N N N N N	6170 35.3 11.2 61.6 31200 11.2	(16.2) (0.185) (0.354) (0.168) (21.1) (1.68) (1.85)	2222222222
Lum NA NA NA NA NA NA NA Rese NA MA MA MA MA MA MA MA MA MA MA MA MA MA	A A A A A A A A A A A A A A A A A A A	35.3 11.2 61.6 31200 11.2	(0.185) (0.354) (0.168) (21.1) (1.68) (1.85)	8888888888888
t Arsenic (mg/kg) A NA N	A N A A A A A A A A A A A A A A A A A A	11.2 61.6 31200 11.2	(0.354) (0.168) (21.1) (1.68) (1.85)	2222222
A NA	A A A A A	61.6 31200 11.2	(0.168) (21.1) (1.68) (1.85)	3838888
Na Na Na Jenum Na Jenum Na Jenum Na Um Na Um Na Um Na Um Na Um Na C Arsenic (mg/kg) Na c Lead (mg/kg) Na	NA NA NA NA	31200 11.2	(21.1) (1.68) (1.85)	888888
sium NA Iese NA Jenum NA Jenum NA Lenum NA um NA um NA um NA um NA c Arsenic (mg/kg) NA c Lead (mg/kg) NA	NA NA NA	11.2	(1.68) (1.85)	<u> </u>
sium NA lese NA Jenum NA Jenum NA Lium NA Lum NA Lum NA Lum NA Lum NA Lum NA Lad (mg/kg) NA	NA		(1.85)	3333
lese NA Jenum NA Jenum NA Lium NA Lum NA Lum NA Lum NA Lum NA Lum NA Lead (mg/kg) NA c Lead (mg/kg) NA	N.A.	10400		333
Jenum NA Iaum NA um NA um NA um NA um NA um NA um NA - Arsenic (mg/kg) NA c Lead (mg/kg) NA		921	(0.00801)	ΞΞ
lium NA Lum NA Lum NA Lum NA Lum NA Lum NA Lum NA - Arsenic (mg/kg) NA c Lead (mg/kg) NA	NA	1.15	(0.178)	Ξ
ium NA um MA NA Um NA um NA um NA - Arsenic (mg/kg) NA c Lead (mg/kg) NA	NA	35.1	(0.74)	3
um NA NA NA Um NA Um NA Um A - Arsenic (mg/kg) NA c Lead (mg/kg) NA	NA	833	(23.5)	Ξ
- Lead (mg/kg) MA - Lead (mg/kg) MA	NA	12.8	(3)	Ξ
um MA um MA um . NA - Arsenic (mg/kg) A c Lead (mg/kg) NA	NA	-1.08 J	(0.124)	Ξ
um NA um . NA - Arsenic (mg/kg) A c Lead (mg/kg) NA	NA	117	(1.76)	Ξ
um . NA NA - Arsenic (mg/kg) c Lead (mg/kg) AA	NA	-0.701 J	(4.71)	Ξ
- Arsenic (mg/kg) c NA - Lead (mg/kg) NA	NA	59.7	(0.292)	Ξ
- Arsenic (mg/kg) c NA - Lead (mg/kg) NA	МА	76.8	(0.198)	Ξ
c NA - Lead (mg/kg) NA				
- Lead (mg/kg) NA	NA	8.06	(0.141)	[2]
NA				
£	NA	6.9 S	(0.167)	[2]
Mercury NA NA	NA	0.0208	(0.0125)	[1]
Compiled: 26 January 1994 () = Detection Limit [] = Dilution Factor ND = Not Detected	ted NA = Not Applicable			

										d.	Page: 8
PARAMETER	A3-N3 E-NOAA-03-D1 4 - 6	-01		A3-N3 E-NDAA-03-06 14 - 16		Ŀ	A3-N3 E-NoAA-03-07 24 - 26		Ŀ	A3-5801 E-N0AA-06-06 14 - 16	
Percent Solid (percent) Percent moisture	3.75	(0)	5.29	(0)	[1]	3.97	(0)	[1]	4.85	(0)	Ξ
SUGNIO - Metals (mg/bg)											
	NA		15600	(2.57)	[1]	14900	(2.3)	[1]	18300	(2, 77)	[1]
Antimony	NA		-3.72	J (1.47)	Ξ	-2.7 J	(1.4)	ΞΞ	-2.43 J	(1.52)	ΞΞ
Arsenic	NA		4.04	(1.2)	Ξ	8,44	(1.14)	Ξ		(1.24)	Ξ
Barium	NA		34.8	(0.044)	Ξ	37.7	(0.0419)	Ξ	53.8	(0.0456)	Ξ
Beryllium	NA		0.241	(0.0447)	Ξ	0.231	(0.0426)	Ξ	0.274	(0.0464)	Ξ
Cachn i um	NA		0.175	J (0.218)	Ξ	0.0969 J	(0.208)	Ξ	0.215 J	(0.226)	Ξ
Calcium	NA		6780	(18.1)	Ξ	6950	(17.2)	Ξ	8310	(18.7)	Ξ
Chroinium	NA		33	(0.207)	Ξ	27.3	(0.197)	Ξ	31	(0.215)	[1]
Cobalt	NA		10.1	(0.397)	Ξ	9.58	(0.378)	Ξ	11.8	(0.411)	[1]
Copper	NA		51	(0.188)	[1]	42.9	(0.179)	Ξ	44.3	(0.195)	[1]
Iron	NA		27700	(23.6)	Ξ	26600	(22.5)	Ξ	32700	(24.5)	Ξ
Lead	NA		80	(1.88)	Ξ	8.7	(1.79)	Ξ	8.87	(1.95)	Ξ
Magnesium	NA		9660	(2.07)	Ξ	9010	(1.97)	Ξ	11600	(2.15)	Ξ
Manganese	NA		502	(0.00896)	Ξ	530	(0.00854)	Ξ	663	(0.0093)	Ξ
Molybdenum	NA		0.315	B (0.199)	Ξ	1.04	(0.19)	Ξ	0.953	(0.206)	[7]
Nickel	NA		29.1	(0.828)	Ξ	27.6	(0.788)	Ξ	33.1	(0.859)	Ξ
Potassium	NA		735	(26.3)	Ξ	700	(25)	Ξ	928	(27.3)	Ξ
Selenium	NA.		10.4	(3.36)	Ξ	9.82	(3.2)	Ξ	13.8	(3.48)	Ξ
Silver	NA		-1.07	J (0.139)	Ξ	-1.01 J	(0.132)	Ξ	-1.29 J	(0.144)	Ξ
Sodium	NA		103	(1.97)	Ξ	125	(1.87)	Ξ	192	(2.04)	Ξ
Thallíum	NA		3.18	J (5.27)	Ξ	2.55 J	(2.02)	Ξ	1.59 J	(5.47)	Ξ
Vanadium	NA		55.9	(0.327)	Ξ	53.9	(0.311)	Ξ	70	(0.339)	Ξ
Zinc	NA		63.5	(0.221)	[1]	59.9	(0.211)	Ξ	69.9	(0.229)	Ξ
SW7060 - Arsenic (mg/kg)											
Arsenic	NA		7.05	(0.14)	[2]	7.1	(0.141)	[2]	8.05	(0.136)	[2]
SW7421 - Lead (mg/kg)											
Lead	NA		5.05	S (0.165)	[2]	5.09 S	(0.166)	[2]	6.91 S	(0.158)	[2]
547171 - Marcurv (ma/ba)											
Warding (1997)	N N		0 0423	(2010.0)	Ξ	2000 0	(0 0105)	[1]		(0 0100)	5
Mercury	2		0.0422	(1710.0)	Ξ	0970 · N	(6210.0)		U.U263	(0.0126)	[1]
Compiled: 26 Jan 1994	() = Detection Limit	[] = Dilution Fa	Factor	ND = Notcted	= N	Not Applicable	e				

PARAMETER Parameter Percent Solid (percent) Percent moisture SW5010 - Metals (mg/kg) Aluminum Antimony Arsenic Barium Barium Cadmium Calcium Calcium	A3-SB01 E-NDAA-06-01 4 - 5 4 - 5 7 .65 NA NA NA NA NA NA	01		A3-5801	1001					N 5	43-SB01	
.percent) e (mg/kg)	 2 2 3 4 4 4 4 4 1 1 1 1			E-NOAA-06-02 14 - 16	- 16 - 16		ц	A3-SB01 E-N0AA-06-04 20 - 22		ت د	E-NOAA-06-10 7 - 9	
	N N N N N N N N N N N N N N N N N N N	(0)) 1 1	4.55	(0)	Ξ	4.18	(0)	[1]	4.91	(0)	Ξ
lluminum Antimony Arsenic Barium Beryllium Calcium Chromium	и и и И и и И и и и и			:			:					2
intimony Arrium Seryllium Caromium Chromium	AN AN AN			NA A			NA			14300	(4.91)	Ξ3
barium Beryllium Cadmium Chromium	NA			NA			A N			-0.400 J 4.76	(1.06)	ΞΞ
Seryllium Cadmium Calcium Chromium				NA			NA			52.8	(0.0388)	Ξ
admium Jalcium Chromium	NA			NA			NA			0.233	(0.0394)	Ξ
alcium Chromium Achalt	NA			NA			NA			0.238	(0.192)	Ξ
chromium chalt	NA			NA			NA			5540	(15.9)	Ξ
chalt	NA			NA			NA			28.5	(0.183)	Ξ
	NA			NA			NA			11.7	(0.35)	Ξ
Copper	NA			NA			NA			62.3	(0.165)	Ξ
Iron	NA			NA			NA			28100	(20.8)	Ξ
Lead	NA			AN			NA			8.49	(1.65)	Ξ
Magnesium	NA			NA			NA			10200	(1.83)	Ξ
Manganese	NA			AN .			NA			944	(0.0079)	Ξ
Molybdenum	AN			AN			NA			0.745	(0.175)	Ξ
Nickel	NA			AN			NA			33.7	(0.73)	Ξ
Potassium	NA			AN			AA			760	(23.2)	Ξ
Selenium	NA			NA			NA			9.93	(5.96)	Ξ
Silver	NA			NA			NA			-1.05 J	(0.123)	Ξ
Sodium	NA			NA			NA				(1.73)	Ξ
Thallium	NA			NA			NA			0.956 J	(4.65)	Ξ
Vanadium	NA			NA			AN			53.8	(0.288)	Ξ
Zinc	NA			NA			NA			82.3	(0.195)	Ξ
SW7060 - Arsenic (mg/kg)												
Arsenic	NA			NA			AN			7.55	(0.125)	[2]
SW7421 - Lead (mg/kg)												
Lead	NA			NA			NA			6.53 S	(0.145)	[2]
SW7471 - Mercury (mg/kg)												
Mercury	A			NA			AN			0.0131	(0.0126)	Ξ
Compiled: 26 January 1994 () = [= Detection Limit	[] = Dilution Factor	on Facto	= QN	Not Detected	NA = No	= Not Applicable	e				

	Ă	A3-SB01		A3-5B01			A3-SB01			A3-SS01	
PARAMETER	E-NOAA-06-03 D	E-NOAA-06-03 Dup of E-NOAA-06-02 14 - 16	Ш	E-NOAA-06-05 5 - 7	L)	-N0AA-06-08	E-NOAA-06-08 Dup of E-NOAA-06-05 5 - 7	-06-05	- -	E-NOAA-07-05 0 - 3	
 Percent Solid (percent) Percent moisture	3.57	[] (0)	[1] 4.88	(0)	. []	3.14	(0)	Ξ	41.8	(0)	[1]
SW6010 - Metals (mg/kg)											
	NA		17500	(2.56)	Ξ	18500	(4.79)	Ξ	12300	(8.96)	Ξ
Antimony	NA		-0.343 J		Ξ	-2.45 J	(1.26)	Ξ	-3.6 J	(2.36)	Ξ
Arsenic	NA				Ξ		(1.03)	Ξ	8.11	(1.93)	Ξ
Barium	NA		71.8	(0.0439)	Ξ	55.8	(0.0378)	Ξ	123	(0.0708)	Ξ
Beryllium	NA		0.329	(0.0447)	Ξ	0.349	(0.0385)	Ξ	0.142	(0.072)	Ξ
Cadmium	NA		0.398	(0.218)	Ξ	0.253	(0.187)	Ξ	0.278 J	(0.351)	Ξ
Calcium	NA		6970	(18.1)	Ξ	6580	(15.5)	Ξ	2590	(1.62)	Ξ
Chromium	NA		32.2	(0.207)	Ξ	33	(0.178)	Ξ	16.2	(0.334)	Ξ
Cobalt	NA		10.4	(0.396)	Ξ	11.5	(0.341)	Ξ	3.74	(0.638)	Ξ
Copper	NA		50.9	(0.187)	Ξ	50.8	(0.161)	Ξ	11.3	(0.302)	Ξ
Iron	NA		28700	(23.6)	Ξ	30900	(20.3)	Ξ	17800	(38)	Ξ
Lead	NA		10.3	(1.87)	Ξ	10.1	(1.61)	Ξ	34.4	(3.02)	Ξ
Magnesium	NA		9510	(2.07)	Ξ	10200	(1.78)	Ξ	1690	(3.34)	Ξ
Manganese	NA		571	(0.00895)	Ξ	629	(0.00771)	Ξ	186	(0.0144)	Ξ
Molybdenum	NA		0.586 8	(0.199)	Ξ	1.08	(0.171)	Ξ	0.725 8	(0.32)	Ξ
Nickel	NA		29.8	(0.827)	Ξ	31.9	(0.712)	Ξ	5.88	(1.33)	Ξ
Potassium	NA		1010	(26.3)	Ξ	661	(22.6)	Ξ	776	(42.3)	Ξ
Selenium	NA		10.1	(3.35)	Ξ	13.1	(5.89)	Ξ	10.9	(2.4)	Ξ
Silver	NA		-1.12 J	~	Ξ	-1.23 J	(0.12)	Ξ	-0.714 J	(0.224)	Ξ
Sodium	NA		107	(1.97)	Ξ	114	(1.69)	Ξ	125	(3.17)	Ξ
Thallium	NA		-0.141 J		Ξ	0.939 J	(4.53)	Ξ	0.798 J	(8.49)	Ξ
Vanadium	NA		56.1	(0.326)	Ξ	60.3	(0.281)	Ξ	48.5	(0.526)	Ξ
Zinc	NA		69.1	(0.221)	Ξ	73.3	(0.19)	Ξ	48.1	(0.356)	Ξ
SW7060 - Arsenic (mg/kg)											
Arsenic	NA		11.9	(0.142)	[2]	8.85	(0.131)	[2]	3.24	(0.121)	Ξ
SW7421 - Lead (mg/kg)											
	NA		6.16 S	(0.166)	[2]	5.27 S	(0.156)	[2]	10.7 S	(0.285)	[2]
SW74/1 - Mercury (mg/kg)											
Mercury	NA		0.0158	(0.0126)	Ξ	0.013	(0.0125)	[1]	0.00431 J	(0.0207)	Ξ
Compiled: 26 Jan 1994	() = Detection Limit		= Dilution Factor N	ND = Not	NA = N	Not Applicable	le				•

PARAMETER	E-NC	A3-SSD1 E-NOAA-07-01 0 - 3		L.	A3-SS02 E-NOAA-07-02 0 - 3		ٺ	A3-SS02 E-NOAA-07-06 0 - 3		Ē	A4-SSO3 E-NDAA-04-01 0 - 3	
Percent Solid (percent)				0 76		: 3		(U)	. 5	80	(0)	
Percent moisture	36.1	(n)	[1]	9./0	(0)	[1]	05.0	(0)		0.30	(0)	Ξ
SW6010 - Metals (mg/kg)												
Aluminum	NA			NA				(6.17)	Ξ		(11.3)	Ξ
Antimony	NA			NA			-4.82 J	(1.62)	Ξ	-2.45 J	(1.61)	Ξ
Arsenic	NA			NA			4.37	(1.33)	Ξ	4.7	(1.32)	Ξ3
Barium	N			AN :			60	(0.048/)	ΞΞ	12.4	(0.0483)	ΞΞ
Beryllium	NA			NA			0 350	(0.0495)	ΞΞ	105.0	(0.0491)	Ξ3
Cadmium Coloitem	AN N			A N			0.302 5600	(0,241) (20)	ΞΞ	0.34/ 0340	(10.239) (10.8)	ΞΞ
Chromium Chromium	NA			AN N			29.6	(0.23)	ΞΞ	37.6	(0.228)	ΞΞ
Cobalt	NA			NA			10.1	(0.439)	Ξ	12.2	(0.435)	Ξ
Copper	NA			NA			22.4	(0.208)	Ξ	31.1	(0.206)	Ξ
Iron	NA			NA			28500	(26.2)	Ξ	30300	(25.9)	Ξ
Lead	NA			NA			12.5	(2.08)	Ξ	19.9	(2.06)	Ξ
Magnesium	NA			NA			6800	(2.3)	Ξ	9360	(2.28)	Ξ
Manganese	NA			NA			547	(0.00993)	Ξ	739	(0.00984)	Ξ
Molybdenum	NA			NA			1.23	(0.22)	Ξ	0.966	(0.218)	Ξ
Nickel	NA			NA			32.5	(0.917)	Ξ	34.1	(0.909)	Ξ
Potassium	NA			NA			800	(59.1)	Ξ	1040	(28.8)	Ξ
Selenium	NA			NA			13.5	(3.72)	Ξ	12.7	(3.68)	Ξ
Silver	NA			NA			-1.1 J	(0.154)	Ξ	-1.15 J	(0.153)	[1]
Sodium	NA			NA			109	(2.18)	Ξ	161	(2.16)	Ξ
Thallium	NA			NA			0.0597 J	(5.84)	Ξ	-2.63 J	(2.78)	Ξ
Vanadium	NA			NA			56.2	(0.362)	Ξ	61.5	(0.358)	Ξ
Zinc	NA			NA			57.1	(0.245)	Ξ	67	(0.243)	[1]
SW7060 - Arsenic (mg/kg)												
Arsenic	NA			AN			6.05	(0.081)	Ξ	8.67	(0.0825)	Ξ
SW7421 - Lead (mg/kg)												
Lead	NA			AN			13.7 S	(0.382)	[4]	37.6 S	(1.77)	[20]
SW7471 - Mercury (mg/kg)												
Mercury	NA			NA			0.0214	(0.0128)	5	0 086	(0 0129)	Ξ

PARAMETER 	E-N0	A4-SS04 E-NOAA-04-02 0 - 3		E-NC	A4-SSO5 E-NOAA-04-03 0 - 3		Ū U U	A4-SSO6 E-NOAA-04-04 0 - 3		3	A5-N1 E-N0AA-05-01 2 - 4	1 1 1
Percent Solid (percent) Percent moisture	4.8	(0)	[1]	1.39	(0)	[1]	[1] 4.15	(0)	[1]	7.71 [1]	(0)	[1]

cted NA = Not Applicable () = Detection Limit [] = Dilution Factor ND = Not 1994

Compiled: 26 Jan

.

Page: 13			
	Ξ		
A5-SS14 E-NOAA-05 0 - 3	(0)		
	7.3		NA = Not Applicable
	Ξ		
A5-N1 E-N0AA-05-03 18 - 20	(0)		ND = Not Detected
ٺ ·	4.72		
	Ξ		= Dilution Factor
A5-N1 E-NDAA-05-02 7 - 9	(0)		
E E	17.3		<pre>() = Detection Limit</pre>
PARAMETER	Percent Solid (percent) Percent moisture		Compiled: 26 January 1994

•

•

TABLE C3

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, NOAA at Elmendorf.

					SITE ID LOCATION ID SAMPLE ID							
DADAMETED	L.	A2-N2 E-N0AA-02-W1	<u>ن</u>	-N0AA-02-W2	A2-N2 E-N0AA-02-W2 Dup of E-N0AA-02-W1	-02- W 1	μ	A3-N3 E-N0AÅ-03-W1		Ę	A5-N1 E-N0AA-06-W1	
							E F G G G G G G		-	-		
SWBOI5 - Nonnalogenated Volatile Urganics (mg/L) Ethanol	Urganics (mg ND	/L) (0.301)	[1]	QN	(0.301)	[1]	QN	(0.301)	[1]	QN	(0.301)	Ξ
Ethyl ether	QN	(1.16)	Ξ	ON	(1.16)	Ξ	QN	(1.16)	Ξ	QN	(1.16)	Ξ
Methyl ethyl ketone			Ξ	QN	(2.38)	Ξ		(2.38)	Ξ	Q	(2.38)	Ξ
Methyl isobuty! ketone	0.669 KJ	(1.46)	[1]	1.98 8	(1.46)	Ξ	6.69 P	(1.46)	Ξ	Q	(1.46)	Ξ
SWB015ME - Petroleum Hydrocarbons-Modified Extractable (ug/L)	-Modified Ext	ractable (ug/L)										
Diesel	QN	(23)	Ξ	QN	(23.2)	Ξ	Q	(23.3)	Ξ	QN	(22.7)	Ξ
Jet fuel	QN	(46.3)	Ξ	QN	(46.7)	Ξ	QN	(47)	Ξ	QN	(45.8)	Ξ
Kerosene	QN	(42.5)	Ξ	QN	2.9)	Ξ	QN	(43.1)	Ξ	QN	(42)	Ξ
Unk compounds within Diesel range	e 35.6 I	(23)	[1]	37.5 1	(23.2)	Ξ	36.2 I	(23.3)	Ξ	37.3 I	(22.7)	Ξ
SW8015MP Petroleum Hydrocarbons-Modified Purgeable	odified Purge	able (ug/L)										
Benzene	QN	(0.0674)	Ξ	QN	(0.0674)	Ξ	QN	(0.0674)	Ξ	0.037 PJ		Ξ
Ethyl benzene	QN	(0.0517)	Ξ	Q	(0.0517)	Ξ	QN	(0.0517)	Ξ	QN	(0.0504)	Ξ
Gasoline	QN	(29.5)	Ξ	QN	(29.5)	Ξ	QN	(29.5)	Ξ	Q	(8.74)	Ξ
Toluene	0.0862 B	(0.0858)	Ξ	0.114 B	(0.0858)	Ξ	0.0533 J	(0.0858)	Ξ	1.04	(0.0538)	Ξ
Xylene (total)	0.0599 8	(0.0388)	Ξ	QN	(0.0388)	Ξ	QN	(0.0388)	Ξ	0.467	(0.141)	Ξ
SW8240 - Volatile Organics (ug/L)	(
1,1,1-Trichloroethane	QN	(1.68)	Ξ	QN	(1.68)	Ξ	QN	(1.68)	Ξ	QN	(1.68)	Ξ
<pre>1,1,2,2-Tetrachloroethane</pre>	QN	(2.92)	Ξ	QN	(2.92)	Ξ	ON	(2.92)	Ξ	Q	(2.92)	Ξ
<pre>1,1,2-Trichloroethane</pre>	QN	(1.41)	Ξ	QN	(1.41)	Ξ	QN	(1.41)	Ξ	Q	(1.41)	Ξ
1,1-Dichloroethane	QN	(2.05)	Ξ	QN	(2.05)	Ξ	QN	(2.05)	Ξ	QN	(2.05)	Ξ
1,1-Dichloroethene	QN	(1.89)	Ξ	QN	(1.89)	Ξ	QN	(1.89)	Ξ	QN	(1.89)	Ξ
1,2-Dichloroethane	QN	(1.9)	Ξ	QN	(1.9)	Ξ	Q	(1.9)	Ξ	QN	(1.9)	Ξ
1,2-Dichloropropane	QN	(1.81)	Ξ	QN	(1.81)	Ξ	QN	(1.81)	Ξ	QN	(18.1)	Ξ

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

PARAMEIER SW8240 - Volatile Organics, cont. (ug/L) 2-Chloroethyl vinyl ether 2-Hexanone M				A2-N2			A3-N3			A5-N1	
 - Volatile Organics, cont. (ug/L roethyl vinyl ether none vvl-2-Pentanone(MTRK)	E-N0AA-02-W1	<u>نن</u>	-N0AA-02-W2	E-NOAA-02-W2 Dup of E-NOAA-02-W1	2-W1	E -N	E-NOAA-03-W1		E-N	E-N0AA-06-W1	
 - Volatile Organics, cont. (ug/L roethyl vinyl ether none vvl-2-Pentanone(MIRK)											
	3 F J J J J J J J J J J J J J J J J J J	5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 1 1 <i>1</i> <i>1</i>	1 9 1 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
	(1.84) (1.84)	Ξ	QN	(1.84)	[1]	QN	(1.84)	Ξ	QN	(1.84)	Ξ
	ND (4.98)	Ξ	QN	(4.98)	Ξ	QN	(4.98)	[1]	QN	(4.98)	Ξ
	ND (2.4)	Ξ	QN	(2.4)	Ξ	QN	(2.4)	Ξ	QN	(2.4)	Ξ
Acetone	ND (30.1)	Ξ	Q	(30.1)	Ξ	QN	(30.1)	Ξ	QN	(30.1)	Ξ
Benzene	ND (1.08)	Ξ	QN	(1.08)	[1]	QN	(1.08)	Ξ	QN	(1.08)	Ξ
Bromodichloromethane	ND (1.02)	Ξ	Q	(1.02)	Ξ	ND	(1.02)	Ξ	QN	(1.02)	Ξ
Bromomethane	ND (1.87)	[1]	QN	(1.87)	Ξ	QN	(1.87)	Ξ	Q	(1.87)	Ξ
Carbon disulfide N	ND (4.43)	[1]	QN	(4.43)	Ξ	QN	(4.43)	Ξ	QN	(4.43)	Ξ
r i de	ND (2.9)	[1]	Q	(2.9)	Ξ	QN	(5.9)	Ξ	QN	(2.9)	Ξ
Chlorobenzene	ND (1.05)		QN	(1.05)	Ξ	QN	(1.05)	[1]	QN	(1.05)	Ξ
Chloroethane	ND (4.01)	Ξ	QN	(4.01)	Ξ	QN	(4.01)	Ξ	QN	(4.01)	Ξ
Chlorofo m	ND (1.54)	Ξ	QN	(1.54)	Ξ	QN	(1.54)	Ξ	QN	(1.54)	Ξ
Chloromethane	ND (3.15)		Q	(3.15)	Ξ	QN	(3.15)	Ξ	QN	(3 15)	Ξ
Dibromochloromethane	ND (1.38)	[1]	QN	(1.38)	Ξ	QN	(1.38)	Ξ	QN	(1.38)	Ξ
Ethyl benzene N	ND (0.768)		QN	(0.768)	Ξ	QN	(0.768)	Ξ	QN	(0.768)	Ξ
Meta-&Para-Xylene N	ND (2.64)	Ξ	QN	(2.64)	Ξ	QN	(2.64)	Ξ	QN	(2.64)	Ξ
â		Ξ	Q	(1.69)	Ξ	QN	(1.69)	Ξ	QN	(1.69)	Ξ
Methylene Chloride N		Ξ	1.16 J	(2.28)	Ξ	1.78 J	(2.28)	Ξ	0.504 J	(2.28)	Ξ
Ortho-Xylene N		[1]	QN	(1.39)	Ξ	QN	(1.39)	Ξ	QN	(1.39)	Ξ
Styrene N		[1]	QN	(1.11)	Ξ	QN	(11.11)	Ξ	Q	(11.11)	Ξ
Tetrachloroethene	ND (0.894)	Ξ	QN	(0.894)	Ξ	Q	(0.894)	Ξ	QN	(0.894)	Ξ
Toluene N	ND (1.53)	Ξ	QN	(1.53)	Ξ	Q	(1.53)	Ξ	Q	(1.53)	Ξ
Tribromomethane(Bromoform))	[1]	QN	(1.81)	Ξ	QN	(1.81)	Ξ	QN	(1.81)	Ξ
Trichloroethene	ND (2.6)	Ξ	QN	(2.E)	Ξ	QN	(2.6)	Ξ	QN	(2.6)	Ξ
Trichlorofluoromethane	ND (3.61)	Ξ	QN	(3.61)	Ξ	QN	(3.61)	Ξ	QN	(3.61)	Ξ
Vinyl Chloride N	-	Ξ	Q	(4.16)	Ξ	QN	(4.16)	Ξ	QN	(4.16)	Ξ
	ND (8.99)	Ξ	QN	(8.99)	Ξ	QN	(8.99)	Ξ	QN	(8.99)	Ξ
cis-1,2-Dichloroethene N	ND (1.18)	Ξ	QN	(1.18)	Ξ	QN	(1.18)	Ξ	QN	(1.18)	Ξ
cis-1,3-Dichloropropene N	ND (1.29)	[1]	QN	(1.29)	Ξ	QN	(1.29)	Ξ	QN	(1.29)	Ξ
trans-1,2-Dichloroethene	ND (1.2)	Ξ	QN	(1.2)	Ξ	QN	(1.2)	Ξ	QN	(1.2)	Ξ
trans-1,3-Dichloropropene	ND (10.2)	Ξ	QN	(10.2)	Ξ	QN	(10.2)	Ξ	QN	(10.2)	Ξ
SW8270 - Semivolatile Organics (ug/L)											
1,2,4,5-Tetrachlorobenzene N	ND (0.581)	Ξ	QN	(0.584)	Ξ	QN	(0.596)	Ξ	QN	(0.396)	Ξ
1,2,4-Trichiorobenzene	ND (0.594)	[1]	QN	(0.597)	Ξ	QN	(0.609)	Ξ	QN	(0.597)	Ξ
	ND (0.783)		ND	(0.787)	Ξ	QN	(0 803)	Ξ	UN	(0.645)	Ξ

		A2-N2			A2-N2			A3-N3			A5-N1	
PARAMETER	E-NI	E-NOAA-O2-W1	μ	E-NOAA-02-W2 Dup of	Dup of E-NOAA-02-W1	-02-W1	Ē	E-NOAA-03-W1		ٺ	E-N0AA-06-W1	
 SW8270 - Semivolatile Organics. cont.	(na/L)											
- ' 0	QN	(0.398)	[1]	QN	(0.4)	Ξ	QN	(0.408)	Ξ	QN	(0.728)	Ξ
1.4-Dichlorobenzene	QN	(0.812)	Ξ	QN	(0.816)	[1]	QN	(0.833)	Ξ	QN	(0.597)	Ξ
2.4.5-Trichlorophenol	QN	(0.332)	Ξ	QN	(0.333)	Ξ	QN	(0.34)	Ξ	QN	(0.517)	Ξ
2.4.6-Trichlorophenol	Q	(0.351)	E	QN	(0.353)	[1]	QN	(0.36)	Ξ	QN	(0.514)	Ξ
2.4-Dichloronhanol	QN	(0.445)	Ξ	GN	(0.447)	Ξ	QN	(0.457)	Ξ	QN	(0.578)	Ξ
2 4-Dimethylphenol	e G		ΞΞ	e G		ΞΞ	2	(1,13)	ΞΞ	Q	(1.32)	Ξ
A Distanton		(11.1)	ΞΞ		(11.1)	33	2	(22.2)	ΞΞ		(70.7)	ΞΞ
c,4-UINI tropnenol		(//) /a rro/	Ξ3	2		33	2 4	(22.7)	33		(2.0)	ΞΞ
2,4-Dinitroto!uene	0N	(0.553)	Ξ	ND	(0.556)		NN	(/95.0)	Ξ	D I	(a.u)	Ξ
2,6-Dinitrotoluene	ÛN	(0.348)	Ξ	QN	(0.349)	Ξ	QN	(0.357)	Ξ	Q	(0.874)	Ξ
2-Chloronaphthalene	QN	(0.326)	Ξ	QN	(0.327)	[1]	DN	(0.334)	Ξ	Q	(0.398)	Ξ
2-Chlorophenol	QN	(0.768)	Ξ	QN	(0.772)	[1]	QN	(0.788)	Ξ	Q	(0.645)	Ξ
2-Methylnaphthalene	QN	(0.663)	Ξ	QN	(0.667)	Ξ	QN	(0.68)	Ξ	Q	(0.37)	Ξ
2-Methylpheno((o-creso))	QN	(0.537)	Ξ	ON	(0.539)	Ξ	QN	(0.551)	Ξ	QN	(0.315)	Ξ
2-Nitroaniline	QN	(0.404)	[1]	QN	(0.400)	[1]	QN	(0.414)	Ξ	QN	(0.673)	Ξ
2-Nitropheno]	QN	(0.442)	Ξ	QN	(0.444)		QN	(0.454)	Ξ	QN	(0.53)	Ξ
3.3'-Dichlorohenzidine	QN	(0.492)		QN	(0.495)	Ξ	QN	(0.505)	Ξ	QN	(0.338)	Ξ
3-Nitroaniline	QN	(0.512)		QN	(0.514)	5	QN	(0.525)	Ξ	Q	(0.339)	Ξ
4.6-Dinitro-2-methylphenol	QN	(0.796)	Ξ	QŅ	(0.8)	Ξ	QN	(0.816)	Ξ	QN	(0.437)	Ξ
4-Bromophenv] phenv] ether	Q	(0.458)	Ξ	QN	(0.461)	[1]	QN	(0.47)	Ξ	QN	(0.491)	Ξ
4-Chloro-3-metnvlphenol	QN	(0.727)	Ξ	QN	(0.73)		QN	(0.745)	Ξ	Q	(0.523)	Ξ
4-Chlorophenv] phenv] ether	, Q	(0.531)	Ξ	QN	(0.533)	Ξ	QN	(0.544)	Ξ	QN	(0.427)	Ξ
4-Methvlpheno](p-creso])	QN	(0.578)		QN	(0.581)	Ξ	QN	(0.593)	Ξ	QN	(0.466)	Ξ
4-Nitroaniline	QN	(0.486)	Ξ	QN	(0.489)	Ξ	QN	(0.499)	Ξ	Q	(0.615)	Ξ
4-Nitrophenol	Q	(0.694)	[1]	Q	(0.698)	Ξ	QN	(0.712)	Ξ	QN	(0.951)	Ξ
Acenaphthene	QN	(0.48)	Ξ	QN	(0.483)	Ξ	QN	(0.493)	Ξ	QN	(0.276)	Ξ
Acenaphthylene	QN	(0.227)	Ξ	QN	(0.228)	Ξ	QN	(0.233)	Ξ	QN	(0.424)	Ξ
Anthracene	QN	(0.584)	[1]	QN	(0.587)	[1]	QX	(0.599)	Ξ	QN	(0.374)	Ξ
Benzo(a)anthracene	QN	(0.518)	Ξ	QN	(0.52)	Ξ	QN	(0.531)	Ξ	QN	(0.456)	[1]
Benzo(a)pyrene	QN	(0.385)	[1]	QN	(0.387)	[1]	QN	(0.395)	Ξ	QN	(0.526)	Ξ
Benzo(b)fluoranthene	QN	(0.572)	Ξ	QN	(0.575)	Ξ	QN	(0.587)	Ξ	QN	(0.922)	Ξ
Benzo(g,h,i) peryıene	QN	(0.489)	Ξ	ND	(0.492)	Ξ	QN	(0.502)	Ξ	QN	(1.04)	Ξ
Benzo(k)fluoranthene	QN	(0.973)	Ξ	QN	(0.978)	Ξ	QN	(866.0)	Ξ	QN	(10.1)	Ξ
Benzoic acid	Q	(3.98)	Ξ	QN	(4)	[1]	QN	(4.08)	Ξ	QN	(39.2)	Ξ
Benzyl alcohol	QN	(1.09)	Ξ	ÛN	(1.09)	Ξ	QN	(11.11)	Ξ	Q	(0.619)	Ξ
Butylbenzylphthalate	QN	(0.395)	[1]	QN	(0.397)	Ξ	QN	(0.405)	Ξ	QN	(0.635)	Ξ
Chrysene	QN	(0.672)	[1]	QN	(0,676)	[1]	UN	(0 69)	5	QN	(0.545)	Ξ

	1	A2-N2	L			ŝ	l	A3-N3		L	A5-N1	
PARAMETER	2 + -	E-NUAA-UZ-WI		IUAA-UZ-WZ	UUP OT E-NUAA-UZ-WI	TM-21		ENUAA-U3-WI			E-70044-00-W1	
	(ng/L)		1 1 1 1 1	4 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8) t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	L 			r 		
Di-n-octylphthalate	QN	(0.916)	Ξ	QN	(0.92)	Ξ	QN	(0.939)	Ξ	QN	(0.357)	Ξ
Dibenz(a,h)anthracene	QN	(0.476)	Ξ	QN	(0.479)	Ξ	QN	(0.489)	Ξ	ND	(0.823)	Ξ
Dibenzofuran	QN	(0.41)	Ξ	QN	(0.412)	Ξ	QN	(0.421)	Ξ	QN	(0.545)	Ξ
Dibutylphthalate	QN	(0.495)	Ξ	QN	(0.498)	Ξ	QN	(0.508)	Ξ	QN	(0.329)	Ξ
Diethylphthalate	QN	(0.338)	Ξ	QN	(0.339)	Ξ	QN	(0.346)	Ξ	QN	(0.523)	Ξ
Dimethylphthalate	QN	(0.281)	Ξ	QN	(0.283)	Ξ	QN	(0.289)	Ξ	QN	(0.341)	Ξ
F] uoranthene	QN	(0.641)	Ξ	QN	(0.644)	Ξ	QN	(0.658)	Ξ	QN	(0.478)	Ξ
Fluorene	QN	(0.338)	Ξ	QN	(0.339)	Ξ	QN	(0.346)	Ξ	QN	(0.386)	Ξ
Hexachlorobenzene	QN	(0.235)	Ξ	QN	(0.236)	Ξ	QN	(0.241)	Ξ	ON	(0.319)	Ξ
Hexachlorobutadiene	QN	(0.702)	Ξ	QN	(0.705)	Ξ	QN	(0.72)	Ξ	QN	(0.52)	Ξ
<u>Hexachlorocyclopentadiene</u>	QN	(8.96)	Ξ	QN	(0.01)	[]	QN	(3.2)	Ξ	QN	(2.98)	Ξ
Hexachloroethane	QN	(0.597)	Ξ	QN	(0.6)	Ξ	QN	(0.612)	Ξ	QN	(0.645)	Ξ
Indeno(1,2,3-cd)pyrene	QN	(0.528)	[1]	QN	(0.53)	Ξ	QN	(0.541)	Ξ	QN	(1.35)	Ξ
Isophorone	QN	(0.288)	Ξ	Q	(0.29)	Ξ	QN	(0.296)	Ξ	QN	(0.625)	Ξ
N-Nitroso-Di-n-propylamine	QN	(0.755)	Ξ	QN	(0.759)	Ξ	QN	(0.774)	Ξ	QN	(0.664)	Ξ
N-Nitrosodiphenylamine	QN	(0.569)	Ξ	QN	(0.572)	[1]	QN	(0.584)	Ξ	QN	(0.273)	Ξ
Naphthalene	QN	(0.733)	Ξ	QN	(0.736)	Ξ	QN	(0.752)	Ξ	QN	(0.485)	Ξ
Nitrobenzene	QN	(0.531)	Ξ	Q	(0.533)	Ξ	QN	(0.544)	Ξ	QN	(0.855)	Ξ
Pentachlorophenol	QN	(0.868)	Ξ	QN	(0.873)	Ξ	Q	(0.891)	Ξ	QN	(0.903)	Ξ
Phenanthrene	QN	(0.625)	Ξ	Q	(0.628)	Ξ	QN	(0.641)	Ξ	QN	(0.475)	Ξ
Phenol	QN	(0.401)	Ξ	QN	(0.403)	Ξ	Q	(0.411)	Ξ	QN	(0.896)	Ξ
Pyrene	QN	(0.47)	Ξ	QN	(0.473)	Ξ	Q	(0.482)	Ξ	Q	(0.414)	Ξ
bis(2-Chloroethoxy)methane	QN	(0.565)	Ξ	QN	(0.568)	Ξ	QN	(0.579)	Ξ	Q	(0.615)	Ξ
bis(2-Chloroethy1)ether	QN	(0.736)	Ξ	QN	(0.739)	Ξ	Q	(0.755)	Ξ	Q	(0.389)	Ξ
bis(2-Chloroisopropy))ether	QN	(0.73)	Ξ	Q	(0.733)	Ξ	QN	(0.748)	Ξ	Q	(0.81)	Ξ
bis(2-Ethylhexyl)hthalate	3.18	(1.84)	Ξ	ÛN	(1.85)	Ξ	QN	(1.89)	Ξ	QN	(0.59)	Ξ
p-Chloroaniline	QN	(0.562)	Ξ	QN	(0.565)	Ξ	QN	(0.576)	Ξ	QN	(0.756)	Ξ

NA = Not Applicable

ted

ND = Not

[] = Dilution Factor

() = Detection Limit

1994

Compiled: 24 Jan

Page: 4

NOAA at Elmendorf.
FOR WATER SAMPLES,
WATER
FOR
ANALYSES
INDRGANIC
οF
RESULTS OF I
ALL

	ш	A2-N2 E-NDAA-D2-W1		E-NOAA-02.	-W2 Du	A2-N2 N0AA-02-W2 Dup of E-N0AA-02-W1	5		E - N	A3-N3 E-NOAA-03-W1			A E-NOA	A5-N1 E-NOAA-O6-W1	
 - Residue, Filterable (TDS) (mg/L) dissolved solids 108	 (mg/L) 108	(8.67)	E	117	1 1 1 1	(8.67)	Ξ	107	1 	(8.67)	Ξ	117	2 9 1 1 4 1	(8.67)	Ξ
(mg/L)															
	0.0395	(0.0284)	Ξ	0.048		(0.0284)	Ξ	-0.0357	J	(0.0284)	Ξ	-0.0024	r	(0.0284)	Ξ
	-0.0323 J	(0.0241)	Ξ	-0.0328	r	(0.0241)	Ξ	-0.0465	ſ	(0.0241)	Ξ	-0.0192	r	(0.0241)	Ξ
	0.0231	(0.0225)	Ξ	0.0181	r	(0.0225)	Ξ	0.0064	ſ	(0.0225)	Ξ	0.0037	с Г	(0.0225)	Ξ
-	0.00565	(0.00053)	Ξ	0.00645	<u> </u>	(0.00053)	Ξ	0.0472		(0.00053)	Ξ	0.00486	_	(0.00053)	Ξ
Ĩ	-0.00022 J	(0.000554)	Ξ	0.00089	2	(0.000554)	Ξ	0.00041	ſ	(0.000554)	Ξ	-0.00056	о г	0.000554)	Ξ
	0.00186 B	(0.00172)	Ξ	0.00256	<u>ھ</u>	(0.00172)	Ξ	0.00091	ſ	(0.00172)	Ξ	-0.001) ר	(0.00172)	Ξ
	24	(0.148)	Ξ	23.8		(0.148)	Ξ	105		(0.148)	Ξ	23.3		(0.148)	Ξ
-	0.00497 B	(0.00249)	Ξ	0.00421	9	(0.00249)	Ξ	0.00159	J	(0.00249)	Ξ	0.0512	_	0.00249)	Ξ
-	0.00235 J	(0.0034)	Ξ	0.00163	ſ	(0.0034)	Ξ	0.00155	J	(0.0034)	Ξ	0.00081	ŗ	(0.0034)	Ξ
-	0.00003 J	(0.00381)	Ξ	0.002	с г	(0.00381)		-0.00107	ſ	(0.00381)	Ξ	-0.00056	с Г	0.00381)	Ξ
	0.0835	(0.00596)	Ξ	0.103	<u> </u>	(0.00596)	Ξ	1.2		(0.00596)	Ξ	0.551	-	(0.00596)	Ξ
	0.0236 J	(0.027)	Ξ	0.0296	8	(0.027)	Ξ	0.0041	ſ	(0.027)	Ξ	0.0211	ر م	(0.027)	Ξ
	4.7	(0.0228)	Ξ	4.65		(0.0228)	Ξ	50.8		(0.0228)	Ξ	4.61		(0.0228)	Ξ
	0.0141	(0.000395)	Ξ	0.0152	2	0.000395)	Ξ	2.1		(0.000395)	Ξ	0.0226	<u> </u>	0.000395)	Ξ
ĩ	-0.00132 J	(0.00463)	Ξ	0.00206) r	(0.00463)	Ξ	0.00468		(0.00463)	Ξ	0.0129	-	0.00463)	Ξ
-	0.00291 J	(0.00986)	Ξ	0.00212	ر م	0.00986)	Ξ	0.00491	IJ	(0.00986)	Ξ	0.0958	<u> </u>	0.00986)	Ξ
	0.699	(0.00287)	Ξ	0.722	_	0.00287)	Ξ	1.29		(0.00287)	Ξ	0.689	-	0.00287)	Ξ
	-0.0027 J	(0.0417)	Ξ	0.041	ſ	(0.0417)	Ξ	0.0156	ſ	(0.0417)	Ξ	0.0242	r	(0.0417)	Ξ
1	-0.00056 J	(0.00492)	Ξ	-0.00036) r	0.00492)	Ξ	0.00237	ŗ	(0.00492)	Ξ	-0.00208) ר	0.00492)	Ξ
	2.35	(0.0397)	Ξ	2.3		(0.0397)	Ξ	174		(0.0397)	Ξ	2.34		(0.0397)	Ξ
	0.0088 J	(0.0172)	Ξ	0.0138	ŗ	(0.0172)	Ξ	0.003	ſ	(0.0172)	Ξ	-0.007	ŗ	(0.0172)	Ξ
	0.0036 B	(0.00236)	Ξ	0.00267) 8	0.00236)	Ξ	-0.00019	J	(0.00236)	Ξ	0.00038) ר	0.00236)	[1]
															•

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 24 January 1994

TABLE C4

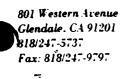
•

PARAMETER		A2-N2 E-N0AA-02-W1			A2-N2 N0AA-02-W2 Dup of E-N0AA-02-W1			A3-N3 E-N0AA-03-W1			A5-N1 E-NDAA-O6-W1	
SW7060 - Arsenic (mg/L) Arsenic	-0.0018	-0.0018 J (0.000657)	[1]	-0.0018	-0.0018 J (0.000657)	[1]	[1] 0.0072	(0.000657)	Ξ	-0.0016	[1] -0.0016 J (0.000657)	[1]
SW7421 - Lead (mg/L) Lead	0.021	(0.0008)	Ξ	0.019	(0.0008)	[1]	[1] 0.001	(0.0008)	Ξ	0.01	(0.0008)	[1]
SW7470 - Mercury (mg/L) Mercury	-0.00021	-0.00021 J (0.000048)	[1] -0	0.00021 J	.00021 J (0.000048)	- [1]	0.00019	[1] -0.00019 J (0.000048)	Ξ	-0.00017	[1] -0.00017 J (0.000048)	[1]

Page: 2

() = Detection Limit [] = Dilution Factor ND = Not reted NA = Not Applicable

,


.

Compiled: 24 Jan

1994

.

B C Analytical

Location: Depth: HA-1 0-0.25'

SAMPLE NO: 9307064*8

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO SAMPLE DESCRIPTION, SOIL	AMPLE		DATE SAMPLED
9307064*8 E-NOAA-09-01			07.03.93
PARAMETER	RESULT	ANALYZED	PREPARED
(Following results reported on the bas	s of 22.0% moisture)		
Moisture/TNFR (D2216), Percent SW3550/Mod SW8015 Dilution Factor, Times Diesel, mg/kg Fuel Hydrocarbons, as Diesel, mg/kg Jet Fuel, mg/kg Kerosene, mg/kg Napthalene reported, mg/kg Napthalene theoretical, mg/kg	22 - 1 0 ND 7.4 J 0 ND 0 ND 2.99 3.08		07.08.93

801 Western Avenue Glendale, CA 91201 818/247-5737 Fax: 818/247-9797

Location:	HA-1	SAMPLE NO: 9307064*9
Depth:	4-4.5'	Received: 07.07.93 Reported: 07.19.93

ANALYTICAL REPORT

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMP	.E		DATE SAMPLE
9307064*9	E-NOAA-09-02			07.03.9
PARAMETER		RESULT	ANALYZED	PREPARED
(Following	results reported on the basis o	f 13.0% moisture)		
Moisture/TN	FR (D2216), Percent	13	07.15.93	
SW3550/Mod	SW8015	-	07.11.93	07.08.93
	Factor, Times	1		{
Diesel, m	lg/kg	O ND		
Fuel Hydr	ocarbons, as Diesel, mg/kg	4.8 J		
Jet Fuel,		0 ND		
Kerosene,	mg/kg	O ND		
Napthalen	e reported, mg/kg	2.59		
Nanthaler	e theoretical, mg/kg	2.76		

B C Analytical

801 Western Avenue Glendale, CA 91201 818/247-5737 Fax: 818/247-9797

Location: SS-15 Depth: 0-0.25'

SAMPLE NO: 9307064*1

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLED
9307064*1	E-NOAA-02-01			07.02.93
PARAMETER		RESULT	ANALYZED	PREPARED
(Following re	esults reported on the basis of 7.3	% moisture)		
SW3550/Mod SU Dilution Fo Diesel, mg, Fuel Hydrod Jet Fuel, r Kerosene, r Napthalene	actor, Ti mes /kg carbons, as Diesel, mg/kg ng/kg	7.3 1 0 ND 26 J 0 ND 0 ND 2.58 2.59	07.15.93 07.10.93	07.08.93

801 Western Avenue Glendale, CA 91201 818/247-5737 Fax: 818/247-9797

-

Location: S Depth: 0

SS-16 0-0.25'

SAMPLE NO: 9307064*2

ANALYTICAL REPORT

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLE	D
9307064*2 E-NOAA-02-03			07.02.9	3
PARAMETER	RESULT	ANALYZED	PREPARED	-
(Following results reported on the basis of 24.)% moisture)			-
Moisture/TNFR (D2216), Percent SW3550/Mod SW8015 Dilution Factor, Times Diesel, mg/kg Fuel Hydrocarbons, as Diesel, mg/kg Jet Fuel, mg/kg Kerosene, mg/kg Napthalene reported, mg/kg Napthalene theoretical, mg/kg	24 0 ND 89 J 0 ND 0 ND 2.61 3.16	07.15.93 07.14.93	07.08.93	

-		rn Avenue CA 91201
\ 8	18/247-5 Fax: 818/1	737

ANALYTICAL REPOR	T
------------------	---

Location: Depth: SS-17 0-0.25'

SAMPLE NO: 9307064*3

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL	SAMPLE			DATE SAMPLED
9307064*3	E-NOAA-02-05	****			07.02.93
PARAMETER	•••••••••••••••••		RESULT	ANALYZED	PREPARED
(Following r	results reported on the bas	is of 27.0%	moisture)		
Moisture/TNF SW3550/Mod S	R (D2216), Percent 588015		27	07.15.93 07.14.93	07.0 8.93
	actor, Times	_ -	10		
Diesel, mg			O ND		
	carbons, as Diesel, mg/kg		8 80 J		
Jet Fuel,			0 ND		
Kerosene,	mg/kg		0 ND		
Napthalene	e reported, mg/kg		0 NC		
	e theoretical, mg/kg		3.29		

ANALYTICAL REPORT

801 Western Avenue Glendale. CA 91201 818/247-5737 Fax: 818/247-9797

Location:	SS-17
Depth:	0-0.25'

SAMPLE NO: 9307064*6

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

	DRY WEIGHT REPOR	T OF ANALYTIC	AL RESULTS		Page	1
SAMPLE NO	SAMPLE DESCRIPTION, SOIL SA	MPLE			DATE SAMPL	ED
9307064*6	E-NOAA-02-08				07.02.	93
PARAMETER			RESULT	ANALYZED	PREPARED	
(Following r	results reported on the basis	of 30.0% moi	sture)			
SW3550/Mod S Dilution F Diesel, mg Fuel Hydro Jet Fuel, Kerosene, Napthalene	Factor, Times g/kg ocarbons, as Diesel, mg/kg mg/kg		30 0 ND 630 J 0 ND 0 ND 0 NC 3.43	07.15.93 07.14.93	0 7.08.93	

ANALYTICAL REPORT

801 Western Avenue Glendale. CA 91201 818/247-5737 Fax: 818/247-9797

-

Location:	SS-18
Depth:	0-0.25'

SAMPLE NO: 9307064*4

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO SAMPLE DESCRIPTION, SOIL SAMP	DATE SAMPLED
9307064*4 E-NOAA-02-06	07.02.93
PARAMETER	RESULT ANALYZED PREPARED
(Following results reported on the basis of	of 24.0% moisture)
Moisture/TNFR (D2216), Percent SW3550/Mod SW8015 Dilution Factor, Times Diesel, mg/kg Fuel Hydrocarbons, as Diesel, mg/kg Jet Fuel, mg/kg Kerosene, mg/kg Napthalene reported, mg/kg Napthalene theoretical, mg/kg	24 07.15.93 07.11.93 07.08.93 1 0 ND 49 J 0 ND 0 ND 0 ND 3.32 3.16

ANALYTICAL REPORT

801 Western Avenue Glendale. CA 91201 818/247-5737 Fax: 818/247-9797

Location:	
Depth:	

SS-18 0.0-2.5'

SAMPLE NO: 9307064*5

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO SAMPLE DESCRIP	TION, SOIL SAMPLE	DATE SAMPLED
9307064*5 E-NOAA-02-07		07.02.93
PARAMETER	RESULT ANALYZE	D PREPARED
(Following results reported	on the basis of 26.0% moisture)	
Moisture/TNFR (D2216), Perc SW3550/Mod SW8015 Dilution Factor, Times Diesel, mg/kg Fuel Hydrocarbons, as Die Jet Fuel, mg/kg Kerosene, mg/kg Napthalene reported, mg/k Napthalene theoretical, m	g 07.11.9 0 ND 0 ND 0 ND 0 ND 0 ND 0 ND 0 ND 0 ND 0 ND	3 07.08.93

B C Analytical

 Western Avenue
ndale. CA 91201 247-5737
: 818/247-9797

-

Location:	
Depth:	

SS-01 0-0.25' SAMPLE NO: 9307044*5

Received: 07.06.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLED
9307044*5	E-NOAA-07-05			07.01.93
PARAMETER		RESULT	ANALYZED	PREPARED
(Following re	sults reported on the basis of 4	1.0% moisture)		
Moisture/TNFR SW3550/Mod SW	(D2216), Percent 8015	41	07.15.93 07.16.93	07.12.93
	ctor, Times	- 300 4 40 00		
Jet Fuel, m Kerosene, m		O ND O ND		
Napthalene	reported, mg/kg theoretical, mg/kg	0 NC 4.07		

801 Gle 818 Fa:

enu 8/2	Vestern Avenuu dale. CA 91201 147-5737 818/247-9797	-		Location: Depth:	SS-02 0-0.25'		Received:	: 9307044*6 07.06.93 07.19.93
		Radi P.O. 8501	Kelly Young an Corporation Box 201088 Mo-Pac Blvd. in, Texas 78720-1	088	·			
			DRY WEI	GHT REPORT OF	ANALYTICAL	RESULTS		Page 1
	SAMPLE NO	0	SAMPLE DESCRIPTION	I, SOIL SAMPLE				DATE SAMPLED
	9307044*6	5	E-NOAA-07-06					07.01.93
	PARAMETER	R		,		RESULT	ANALYZED	PREPARED
	(Followin	ng re	esults reported on	the basis of	5.1% moistu	ire)	*******	
	SW3550/Mo Dilutio Diesel Fuel Hy Jet Fue Keroser Naptha	od SV on Fa ydroc el, n lene	actor, Times 'kg carbons, as Diesel, ng/kg		-	5.1 1 0 ND 8.6 J 0 ND 0 ND 2.22 2.53	07.15.93 07.15.93	07.12.93

ANALYTICAL REPORT

ANALYTICAL REPORT . .

80] Western Avenue ple. CA 91201 47-5737, Fax: 818/247-9797 -

Location:	HA-5	
Depth:	2.5-3'	SAMPLE NO: 930

07122*1

Received: 07.10.93 Reported: 07.23.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAM	PLE		DATE SAMPLED
9307122*1	E-NOAA-10-01			07.08.93
PARAMETER		RESULT	ANALYZED	PREPARED
(Following	results reported on the basis	of 9.6% moisture)		
5W3550/Mod Dilution Diesel, m Fuel Hydro Jet Fuel, Kerosene, Napthaleno	Factor, Times g/kg ocarbons, as Diesel, mg/kg mg/kg	9.6 1 0 ND 3.1 J 0 ND 0 ND 2.29 2.65	07.22.93 07.21.93	07.19.93

B C Analytical

801 Western Avenue Glendale. CA 91201 818/247-5737 Fax: 818/247-9797

-

Location:	HA-4
Depth:	0-0.25'

SAMPLE NO: 9307064*10

Received: 07.07.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

	DRY WEIGHT REPORT OF	ANALYTICAL RESULTS		Page 1
SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLED
9307064*10	E-NOAA-09-07			07.03.93
PARAMETER		RESULT	ANALYZED	PREPARED
(we will be seen and an the basis of 2	1 0° moisture)		
(Following	results reported on the basis of 24			
Moisture/TN	FR (D2216), Percent	4.0% morscure) 24	07.15.93	
Moisture/TN SW3550/Mod	FR (D2216), Percent SW8015			07.08.93
Moisture/TN SW3550/Mod Dilution	FR (D2216), Percent SW8015 Factor, Times			07.08.93
Moisture/TN SW3550/Mod Dilution Diesel, m	FR (D2216), Percent SW8015 Factor, Times	24		07.08.93
Moisture/TN SW3550/Mod Dilution Diesel, m Fuel Hydr Jet Fuel,	FR (D2216), Percent SW8015 Factor, Times g/kg ocarbons, as Diesel, mg/kg mg/kg	24 1 0 ND 17 J 0 ND		07.08.93
Moisture/TN SW3550/Mod Dilution Diesel, m Fuel Hydr Jet Fuel, Kerosene,	FR (D2216), Percent SW8015 Factor, Times g/kg ocarbons, as Diesel, mg/kg mg/kg mg/kg	24 1 0 ND 17 J 0 ND 0 ND 0 ND		07.08.93
Moisture/TN SW3550/Mod Dilution Diesel, m Fuel Hydr Jet Fuel, Kerosene, Napthalen	FR (D2216), Percent SW8015 Factor, Times g/kg ocarbons, as Diesel, mg/kg mg/kg	24 1 0 ND 17 J 0 ND		07.08.93

Glendale, CA 91201 818/247-5737 Fax: 818/247-9797

801 Western Avenue

Location: HA-4 Depth: 3.5-4'

SAMPLE NO: 9307122*2

ANALYTICAL REPORT

Received: 07.10.93 Reported: 07.23.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SC	IL SAMPLE			DATE SAMPLED
9307122*2	E-NOAA-11-01				07.08.93
PARAMETER			RESULT	ANALYZED	PREPARED
(Following	results reported on the	basis of 9	9.0% moisture)		
Moisture/TN SW3550/Mod	FR (D2216), Percent SW8015		9.0	07.22.93 07.21.93	07.19.93
Dilution Diesel, m	Factor, Times		1 0 ND		
Fuel Hydr	ocarbons, as Diesel, mg/	'kg	4.2 J		
Jet Fuel,			O ND O ND		
Kerosene, Nanthalen	my/ky e reported, mg/kg		2.20		
	e theoretical, mg/kg		2.64		

I

• 80 6 81 81 81

C Analytic						
Western Avenue dale. CA 91201 247-5737 818/247-9797		Location: Depth:	HA-6 2.5-3'		SAMPLE NO Received: Reported:	
Rad P.0 850	Kelly Young ian Corporation . Box 201088 1 Mo-Pac Blvd. tin, Texas 78720-1	088				
	DRY WEI	GHT REPORT	OF ANALYTIC	AL RESULTS	5	Page 1
SAMPLE NO	SAMPLE DESCRIPTION	, SOIL SAMP	LE			DATE SAMPLE
9307122*3	E-NOAA-12-01					07.08.9
PARAMETER					ANALYZED	PREPARED
(Following r	esults reported on	the basis o	f 7.5% mois	ture)		
SW3550/Mod S Dilution F Diesel, mg Jet Fuel, Kerosene, Napthalene	actor, Times /kg mg/kg			7.5 50 790 0 ND 0 ND 0 NC 2.59	07.22.93 07.22.93	07.19.93

B C Analytical

801 Western Avenue
Glendale. CA 91201
818/247-5737
Fax: 818/247-9797
-

Location:	SB-01	
Depth:	4-5'	

SAMPLE NO: 9307027*1

Received: 07.02.93 Reported: 07.15.93

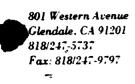
Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLED
9307027*1 E-NOAA-06-05			06.30.93
PARAMETER	RESULT	ANALYZED	PREPARED
(Following results reported on the basis of 5.0	0% moisture)		
Moisture/TNFR (D2216), Percent SW3550/Mod SW8015 Dilution Factor, Times Diesel, mg/kg Jet Fuel, mg/kg Kerosene, mg/kg Napthalene reported, mg/kg Napthalene theoretical, mg/kg	5.0 10 0 ND 0 ND 920 0 NC 2.53	07.15.93 07.11.93	07. 06.93

801 Gle 818 Fa:

Western Avenue dale. CA 91201 247-5737					
818/247-9797		Location:	SB-01	SAMPLE NO	: 9307064*7
		Depth:	5-7'		07.07.93 07.19.93
۱ ۱ ٤	Ms. Kelly Young Radian Corporation P.O. Box 201088 B501 Mo-Pac Blvd. Austin, Texas 78720-	1088			
	DRY WE	IGHT REPORT	OF ANALYTICAL RESULT	S	Page 1
SAMPLE NO	SAMPLE DESCRIPTIO	N, SOIL SAMP	LE		DATE SAMPLED
9307064*7	E-NOAA-06-08				07.02.93
PARAMETER				ANALYZED	PREPARED
(Following	g results reported on	the basis o	f 2.7% moisture)		
SW3550/Mod Dilution Diesel, Fuel Hyd Jet Fue Kerosend Napthald	n Factor, Times		2.7 - 1 0 ND 45 J 0 ND 0 ND 2.50 2.47	07.15.93 07.11.93	07.08.93


ANALYTICAL REPORT

h

B C Analytical

Location: Depth:

SB-01 14-16'

SAMPLE NO: 9307027*2

Received: 07.02.93 Reported: 07.15.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT	REPORT OF	ANALYTICAL	RESULTS		Page	1
SAMPLE NO SAMPLE DESCRIPTION, S	DIL SAMPLE				DATE SAMP	LED
9307027*2 E-NOAA-06-06				* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	06.30	.93
PARAMETER			RESULT	ANALYZED	PREPARED	• • •
(Following results reported on the	basis of	6.0% moistu	re)			• • •
Moisture/TNFR (D2216), Percent .SW3550/Mod SW8015 Dilution Factor, Times Diesel, mg/kg Jet Fuel, mg/kg Kerosene, mg/kg Napthalene reported, mg/kg Napthalene theoretical, mg/kg		-	6.0 1 0 ND 0 ND 37 2.89 2.55	07.15.93 07.09.93	07.06.93	

ANALYTICAL REPORT

801 Western Avenue Glendale. CA 91201 818/247-5737 Fax: 818/247-9797

Location: SB-01 Depth: 14-16'

SAMPLE NO: 9307027*3

Received: 07.02.93 Reported: 07.15.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

	DRY WEIGHT REPORT O	F ANALYTICAL RESUL	TS	Page 1
SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPL	E		DATE SAMPLED
) 307027*3	E-NOAA-06-07	*******************		06.30.93
PARAMETER		RESULT	ANALYZED	PREPARED
	results reported on the basis of		07 15 03	
Moisture/TN SW3550/Mod Dilution Diesel, m Jet Fuel, Kerosene, Napthalen	FR (D2216), Percent SW8015 Factor, Times Ig/kg mg/kg			07.06.93

•---

801 Western Avenue Glendale, CA 91201 818/247-5737 Fax: 818/247-9797

Location:	N-3
Depth:	7-9'

SAMPLE NO: 9307005*1

ANALYTICAL REPORT

Received: 07.01.93 Reported: 07.14.93

Ms. Kelly Young Radian Corporation P.O. Box 201098 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLED
9307005*1 E-NOAA-03-08		**	06.29.93
PARAMETER	RESULT	ANALYZED	PREPARED
(Following results reported on the basis of	7.8% moisture)		
Moisture/TNFP (D2216), Percent SW3550/Mod SW8015 Dilution Factor, Times Diesel, mg/kg Fuel Hydrocarbons, as Diesel, mg/kg Jet Fuel, mg/kg Kerosene, mg/kg Napthalene reported, mg/kg Napthalene theoretical, mg/kg	7.3 1 0 ND 9.0 J 0 ND 0 ND 2.32 2.60	07.12.93 07.08.93	07.06.93

ANALYTICAL REPORT

801 Western Avenue Glen 818/ Fax

endale. C.A 91201 8/247-5737					
ux: 818/247-9797	Location: SS	SS-03	SAMPLE NO: 9307044*1		
~		Depth:	0-0.25'		07.06.93 07.19.93
	Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-108	38			
	DRY WEIGH	HT REPORT OF	ANALYTICAL RESULTS		Page 1
SAMPLE NO	SAMPLE DESCRIPTION,				DATE SAMPLED
9307044*1	1 E-NOAA-04-01				07.01.93
PARAMETER	R			ANALYZED	PREPARED
(Followir	ng results reported on th	he basis of !	5.9% moisture)		
SW3550/Mo Dilutio Diesel, Fuel Hy Jet Fue Keroser Naptha	/TNFR (D2216), Percent od SW8015 on Factor, Times , mg/kg ydrocarbons, as Diesel, r el, mg/kg ne, mg/kg lene reported, mg/kg lene theoretical, mg/kg	ng/kg	5.9 1 0 ND 50 J 0 ND 0 ND 2.08 2.55	07.15.93 07.13.93	07.12.93

·B C Analyticul

801 Western Avenue Glendale. CA 91201 818/247-5737 Fax: 818/247-9797

-

Location: Depth: SS-04 0-0.25' SAMPLE NO: 9307044*2

Received: 07.06.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLED
9307044*2	E-NOAA-04-02			07.01.93
PARAMETER		RESULT	ANALYZED	PREPARED
(Following r	results reported on the basis of 4	4.7% moisture)		
Moisture/TNF SW3550/Mod S	R (D2216), Percent 5W8015	4.7	07.15.93 07.15.93	07.12.93
	Factor, Times	- 5 0 ND		
	ocarbons, as Diesel, mg/kg	130 J O ND		
Kerosene, Napthalene	mg/kg e reported, mg/kg	0 ND 0 NC		
	e theoretical, mg/kg	2.52		

B C Analytical

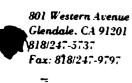
801 Western Avenue Glendale, CA 91201 818/247-5737 Fax: 818/247-9797

-

Location:	
Depth:	

SS-05 0-0.25' SAMPLE NO: 9307044*3

Received: 07.06.93 Reported: 07.19.93


Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLE
9307044*3	E-NOAA-04-03			07.01.9
PARAMETER	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RESULT	ANALYZED	PREPARED
(Following	results reported on the basis of 0.	7% moisture)		
SW3550/Mod Dilution Diesel, m Fuel Hydr Jet Fuel, Kerosene, Napthalen	Factor, Times g/kg ocarbons, as Diesel, mg/kg mg/kg	0.7 50 0 ND 4400 J 0 ND 0 ND 0 NC 2.42		07.12.93

•B C Analytical

Location: Depth: SS-06 0-0.25'

SAMPLE NO: 9307044*4

Received: 07.06.93 Reported: 07.19.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

DRY WEIGHT REPORT OF ANALYTICAL RESULTS

SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPLE			DATE SAMPLED
9307044*4	E-NOAA-04-04			07.01.93
PARAMETER		RESULT	ANALYZED	PREPARED
(Following	results reported on the basis of 3	.6% moisture)		*****
SW3550/Mod Dilution Diesel, m Fuel Hydro Jet Fuel, Kerosene, Napthaleno	Factor, Times g/kg ocarbons, as Diesel, mg/kg mg/kg	3.6 1 0 ND 45 J 0 ND 0 ND 2.14 2.49		07.12.93

ANALYTICAL REPORT

801 W G**len**a 81**8**/2-Fax:

--

~

'estern Avenue ale. CA 91201 17-5737 118/247-9797	-				 /
		Location: N-1 Depth: 2-4'	N-1	SAMPLE NO	: 9306454*1
			2-4'		06.29.93 07.13.93
	Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-10	88			
	DRY WEIG	HT REPORT OF	ANALYTICAL RESULTS		Page 1
SAMPLE NO	SAMPLE DESCRIPTION,	SOIL SAMPLE			DATE SAMPLE
2306454*1	1 E-NOAA-05-01				06.27.93
PARAMETER	R		RESULT	ANALYZED	PREPARED
(Foilowir	ng results reported on t	he basis of	9.0% moisture)		
SW3550/Mo Dilutio Diesel, Jet Fue Keroser	/TNFR (D2216), Percent cd SW8015 on Factor, Times , mg/kg el, mg/kg ne, mg/kg lene reported, mg/kg lene theoretical, mg/kg	-	9.0 1 0 ND 0 ND 0 ND 2.14 2.64	07.13.93 07.02.93	07.01.93

ANALYTICAL REPORT

801 Western Avenue Glendale. CA 91201 818/247-5737 Fax: 8<u>1</u>8/247-9797

Location:	N-1
Depth:	7-9'

SAMPLE NO: 9306454*2

Received: 06.29.93 Reported: 07.13.93

Ms. Kelly Young Radian Corporation P.O. Box 201088 8501 Mo-Pac Blvd. Austin, Texas 78720-1088

	DRY WEIGHT REPORT OF A	NALYTICAL RESULTS	Page 1
SAMPLE NO	SAMPLE DESCRIPTION, SOIL SAMPLE		DATE SAMPLED
9306454*2	E-NOAA-05-02		06.27.93
PARAMETER		RESULT AN	ALYZED PREPARED
-	results reported on the basis of 6. FR (D2216), Percent	7% moisture) 6.7 0 7	.13.93
SW3550/Mod S Dilution I Diesel, mo Jet Fuel,	SW8015 Factor, Times g/kg mg/kg	1 0 ND 0 ND	.03.93 07.01.93
	mg/kg e reported, mg/kg e theoretical, mg/kg	0 ND 1.89 2.57	

ANALYTICAL REPORT

801 Western Avenue Gler 81**8**/ Fax

lale, CA 91201 47-5737 &18/247-9797	-	Location: Depth:	N-1 18-20'	SAMPLE N	0: 9306454*3		
		2°			Received: 06.29.93 Reported: 07.13.93		
Radian P.O. B 8501 M	lly Young Corporation ox 201088 o-Pac Blvd. , Texas 78720-10	088	·				
	DRY WEI	GHT REPORT OF	ANALYTICAL RESU	ILTS	Page 1		
SAMPLE NO SA	MPLE DESCRIPTION				DATE SAMPLED		
9306454*3 E-					06.27.93		
PARAMETER				T ANALYZED	PREPARED		
(Following resu	lts reported on	the basis of	5.9% moisture)				
Moisture/TNFR (SW3550/Mod SW80 Dilution Fact Diesel, mg/kg Jet Fuel, mg/ Kerosene, mg/ Napthalene re Napthalene th	15 or, Times kg	-		1 1D 1D 1D 96	07.01.93		
ND ⁻ - Not Detected reporting detecti detection limit. were observed. L. Geddes 07/17/	on limit and the No out of contr	instrument	; ;				

James C. Hein, Laboratory Director

