
REPORT DOCUMENTATION PAGE IF~,m Aqwvsd

Public reporting burde 1w tha tiliaction of inlomillon iii GeastWU 1o G~r~ag I hour We rasons, MW~ing the time bf ' Wnt MtruflJ~f. 1116w-" 6419ting dala 5&awaf gatn"i
aird mfaintavining the data naeded. "a re~ng the GD11ae@.n of sn~tmaion S"i cwnuerits regaiding thes buida intimateral or eny othet Sape of the wildnt~. oftni onm.. iridang
auggesoie cooW reducing this burden, to Wasthington Iedusirlai'Servin ~daradue1*Wnw v Ytatos'0Miit4us and RPo.15. 121S5~~le D~mI qhaSUNO 1204."A1igon. VA
22202-4302. and to the Office of intomatioi ar" Regulatoryr Affairs. 094mm of hbnegmvw ari"d fidet.Wasn'lgon. aX 20503

-1. AGENCY USE (Leave T2.R3.RTREPORT TYPE AND DATES

4. TITLE AND 5. nUNDIN
AlsyCOMP_83, 5.5, Host: CompuAdd 466 under Microsoft Wno
NT, Version 3.1 +Threads

6. 9120W1.1334AD-A276 147
6.Authors: II111I INI I1V1 IN~ I111I11ll I!IV1 II II
Wright-PattersonAFB ______________

7. PERFORMING ORGANIZATION NAME(S) AND S. PERFORMING
Ada Validating Facility, Language Control Facility ASD/SCEL ORGAIZATION
Bldg. 676, Room 135
Wright Patterson AFB, Dayton OH 45433

9. SPONSOR ING/MON ITORING AGENCY NAME(S) AND I%-10. SPONSORING/MVONITORING

Ada Joint Program Office jAEC
The Pentagon, Rtm 3E 118 AI-
Washington, DC 20301-3080 i

12a. DISTRIBUTIOI`ýAVAILABILITY 12b. DISTRIBUTION

Approved for public release; distribution unlimited

13. (MAxirrtum 200

AlsyCOMP_-83, 5.5, Host: CompuAdd 466 under Microsoft Windows NT,
Version 3.1 + Threads
Target: Same As Host
931208W1. 11334

94-05673

14. SUBJECT 15. NUMBER OF

Ada programmning language, Ada Compiler Val. Summary Report, Ada Comp 16. PRICE
a9/AM-S4P19RA~yAJ81* Testing, Ada Val. Office, Ada Val. Facil, y

17. SECURITY I18. SECURITY 119. SECURITY 20, LIMITATION OF
CLASSIFICATION L CLASSIFIICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN Stancard Form 2i,(O~v. 2
PM~bs by ANSI Sid.

Best
Available

Copy

AVF Control Number: AVF-VSR-577.1093
Date VSR Completed: 21 December 1993

93-05-25-ALS

Ada COMPILER
VALIDATION StMWARY REPORT:

Certificate Number: 931208W1.11334
Alsys, Inc.

AlsyCOMP 083, 5.5
CompuAdd 466 under Microsoft Wijndows NT, Version 3.1 + Threads

(Final)

Prepared By:
Ada Validation Facility

645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

Accesion For
NTIS CRA&iT_
DTIC TAB
Un•, noUVwc•:d Ll
B - ---- ------------------

•Y '--C ;.,; }

Di .;i lb:t i iy ode I

Avd1i3btllity Codes

Avdfl J"), or
Dist Spuc113

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 8 December 1993.

Compiler Name and Version: AlsyCCOP083, 5.5

Host Computer System: CompuAdd 466 under Microsoft Windows NT,
Version 3.1 + Threads

Target Computer System: Same as host

Customer Agreement Number: 93-05-25-ALS

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 931208w1.11334
is awarded to Alsys, Inc. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation Facilityk

Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

V i t n organization
pietor Xupter and Software Engineering DivisionInstitute for Defense Analyses

Alexandria VA 22311

-Ada Joint Program Office
""ýl Dirk Rogers, Major, USAF

Acting Director
Department of Defense
Washington DC 20301

A*
DECLARATION OF CONFORMANCE

Customer: Alsys Inc.

Ada Validation Facility: Wright-Patterson Air Force Base
Ohio, 45433-6503

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name: AlsyCOMP_083

Version: 5.5

Host Computer System: CompuAdd 466
under Microsoft Windows NT
Version 3.1 + Threads

Target Computer System: CompuAdd 466
under Microsoft Windows NT
Version 3.1 + Threads

Customer's Declaration
I, the undersigned. representing Alsys Inc, declare that Alsys Inc has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-18 I15A in the
implementation listed in this declaration.

Pascal Cleve,
Vice President, Engineering
Alsys, Inc.
67 South Bedford Street
Burlington, MA 01803-5152

Alsys. inc. 67 Soutn Bedford Street. Burlington, MA 01803-5152
Tel. 617 270-0030 Fax: 617-270-6882

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPE2NDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MK)DIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3 . 1 TESTING ENVIPOMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92J against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERECES

(Ada83] Reference Manual for the Ada Proramming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UG89) Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRTI3, and the
procedure CHEtK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the -Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and (UG89J).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITICN OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses conmnon storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/AIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration (Pro921.

validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMMTICN DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C355083
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B830258 B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BD1BO6A
ADIBO8A BD2AO2A CD2A2lE CD2A23E CD2A32A CD2A4lA
cD2A41E CD2A87A CD2Bl5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPEND•NCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C2'ei3L..Y (14 tests) C35705L..Y (14 tests)
.35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LJONG INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LUGM FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is lesi than 47.

C45536A, C46013B, C46031B, C46033B, and C460348 contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal 'SMALLs. (See section 2.3.)

2-2

IMPLEDATION DEPENDENCIES

CD2A84A, CD2A84E, CD2AB4I..J (2 tests), and CD2AB40 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

BD8001A,. BD8003A, BD8004A..2 (2 tests), and ADB011A use machine code
insertions; this implementation provides no package MACHINECODE.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the glven combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INcUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT0-IO
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN-FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIALIO
CE2102Q RESET OUT -FILE SEQUENTIALIO
CE2102R OPEN INT_ FILE DIRECT 10
CE2102S RESET INOUT -FILE DIRECT-I0
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET I--FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-I0
CE2102W RESET OUT-FILE DIRECT-I0
CE3102F RESET Any-Mode TEXT i1
CE3102G DELETE TEXT-I0
CE3102I CREATE OUT FILE TXT--IO
CE3102J OPEN IN FILE TEXT-I0
CE3102K OPEN OUT FILE TEXT-IO.

The tests listed in the following table check the given file operations
for the given combination of mode and access method; this implementation
does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL 10
CE2105B CREATE IN-FILE DIRECT IO
CE3109A CREATE IN-FILE TEXT _1

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceededj this implementation cannot
restrict file capacity.

EE2401D and EE2401G use instantiations of DIRECT 10 with unconstrained
array and record types; this implementation raises USEERROR on the
attempt to create a file of such types.

2-3

IMPLEMENTATION DEPENDENCIES

CE2401H uses instantiations of DIRECT 10 with unconstrained record
types; this implementation raises USEERROR on the attempt to create a
file of such types.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this-implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LEN= and SET PAGE LEMTH raise USE ERROR
if they specify an inapproprTate value for the external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST; for this- implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 19 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B23007A B23009A B25002A B26005A B28003A
B32202A B32202B B32202C B37004A B61012A B95069A
B95069B BA1I01B BC2001D BC3009A BC3009C

BA2001E was graded passed by Evaluation Modification as directed by the AVO.
The test expects that duplicate names of subunits with a common ancestor will
be detected as compilation errors; this implementation detects the errors at
link time, and the AVO ruled that this behavior is acceptable.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as 'SMALL for
a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

2-4

CHAPTER 3

PROCESSING INFORMATICN

3.1 TESTING EN4VIRONMENT

The Ada implementation tested in this validation effort is described
adequat~ly by the information given in the initial pages of this report.

For technical and sales information about this Aea implementation, contact:

Pascal Cleve
67 South Bedford Street
Burlington, MA 01803
(617) 270-0030

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92j.

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system -- if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3786
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 79
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Numwer of Inapplicable Tests 280 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked and executed on the host computer system.
The results were captured on the computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options.

COMPILER OPTIONS EFFECT

CHECKS -> ALL Generate all execution checks.
GENERICS -> STUBS Do not inline generics.
TASKING -> YES Allow tasking.
MEMORY -> 500 Amount of internal buffers shared by

compile virtual memory.
STACK -> 20480 Boundary size determining whether an

dynamic object is allocated on the stack
or in the map.

INLINE > PRAGA Inlining of subprograms by pragma INLINE.
REDUCTION -> NONE No optimization of checks or loops.
EXPRESSIONS -> NONE No lowlevel optimization.

BINDER OPTIONS EFFECT

LEVEL -> LINK Bind and link.
OBJECT -> ATI70MATIC Object name is same as main procedure

(truncated to 8 characters).
UNCALLED -> REOVE Remove uncalled subprograms.
MAIN -> 100 Size of main program stack.
TASK -> 40 Size of explicit Ada task stacks.

3-2

PROCESSING INFORMATION

HISTORY -> YES Allow for stack traceback.
SIZE -> 1024 Size (in K bytes) of initial heap.
INCREET -> 0 Size (in K bytes) of increment to heap.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-3

APPENDIX A

MACO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN-LEN 255 - Value of V

$BIGIDI (l..V-l -> 'A', V -> '1')

$BIGID2 (1..V-1 -> 'A', V -> '2')

$BIGID3 (1..V/2-> 'A') & '3' &
(l..V-l-V/2 -> 'A')

$BIGID4 (1..V/2 -> 'A') & '4' &
(l..V-l-V/2 -> 'A')

$BIG INTLIT (l..V-3 -> '0') & "298"

SBIG REAL LIT (l..V-5-> '0') & "690.0"

$BIG STRING1 '"' & (1..V/2 -> 'A') & '"'

$BIG STRING2 '"' & (l..V-l-V/2 -> 'A') & '1' &

$BLANKS (l..V-20 -> '

SMAXLENINT BASED LITERAL
"2:" & (I..V-5-> '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (l..V-7-> '0') & "F.E:"

A-i

MACRO PARAMETERS

$MAXSTRINGLITERAL '"' & (1..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMET 4

$COUNT LAST 2147483647

$DEFAULT MEMSIZE 2**32

$DEFAULTSTORUNIT 8

$DEFAULT SYS NAME 180386

$DELTADOC 2#1.0#E-31

SENTRY ADDRESS FCNDECL.ENTRY ADDRESS

$ENTRY ADDRESS1 FCNDECL.ENTRY ADDRESS1

SENTRY ADDRESS2 FCNDECL.ENTRY ADDRESS2

$FIELDLAST 255

SFILETERMINATOR r 1

SFIXEDNAME NO SUCH-FIXED TYPE

$FLOAT NAME NO SUCH FLOAT TYPE

$FORMSTRING

$FORM STRING2 "CANNOTRESTRICT FILE-CAPACITY"

$GREATER THAN DURATION
75000.0

$GREATERTHANDURATION BASE LAST
131To73.0

$GREATER THAN FLOAT BASE LAST
-- -- l.0141E+38

$GREATER THAN FLOAT SAFE LARGE
1.'E308

A-2

MACRO PARAMETERS

$GREATERTHAI¶ISHORTFLAOAT SAFE LARGE
1.O-E308

SHIGHPRIORITY 7

$ILLEGA.L EXTERNAL FILE NAMEl

- \NODIRECTORY\FILENAME

$ ILLEGAkLEXTERNALFILENNIE2
FILE

S INAPPROPRIATELINELDENTH
-1

S INAPPROPRIATEPAGELENG1 TH
-1

SINCLUDEPRAGMAI PRAGMA INCLUDE ("A28006D1.TST")

$INCLUDEPRAGMA.2 PRAGMA INCLUDE ("B28006D1.TST")

SINTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLAS:_'PLUS_1 2147483648

$ INTERFACE 1JANCGIAGE WIN32

SLESSTHANDURATION -75000.0

SLESSTHAN DURATIOt4 BASE FIRST
- - -1'11073.0

SLINETERI1INATOR ASCII.CR & ASCII.LF

$L40WPRIORITY 1

SMACHINECODESTATEMENT
NULL;

SMACHINECODETYPE NOSUCHTYPE

$MANTISSADOC 31

$MAXDIGITS 15

$MAXINT 2147483647

$MAXINT PLUS 1 2147483648

SHININT -2147483648

SNAME SHORTSHORTINTEGER

A-3

MACRO PARAMETERS

$NAJIELIST 180X86, I80386,MC68OX0,S370,TRANSPUrER,VAX,
RS_6000gMIPSSPARC

SNAMESPECIFICATICO41 C:\&ACVC\,X2120A

SNAMESPECIFICATICN~2 C:\ACVC\X212OB

HAMESPECIFICA~TICt43 C:\,ACVC\X3119A

SNEGBASEDINT 160000000OE#

SNEW_ MEMSIZE 2**32

$NE.WSTOR UNIT 16

$NEWSYSNAME 180386

$PAGETERMINATOR ASCII .CR, & ASCII.LF & ASCII.FF

SRECORDDEFINITIOt4 NEW INTEGER;

$RECORD NAME NO SUCH-MACHINECODE-TYPE

STASKSIZE 32

$TASKSTORAGESIZE 1024

STICK 0.01

$VARIABLEADDRESS FCNDECL .VARIABLEADDRESS

$VARIABLEADDRESS 1 FCNDECL .VARIABLEADDRESS 1

$VARIABLEADDRESS2 FCNDECL .VARIABLE ADDRESS2

$YcURPRAtGiA. INTERFACE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

COMPILE (SOURCE -> source name I INSTANTIATION,
LIBRARY -> libraryname,
OPTIONS ->

(ANNTA•TE -> character string,
ERRORS => positive Tnteger,
LEVEL -> PARSE I SEMANTIC I CODE I UPDATE,
CHECKS -> ALL I STACK I NONE,
GENERICS -> STUBS i INLINE,
TASKING -> YES I NO,
MEMORY => numberofkbytes),

DISPLAY ->
(OTPUT -> SCREEN I NONE I AUromATIC I

file name,
WARNING => YES I NO,
TEXT > YES i NO,
SHOW > BAER I RECAP I ALL I NONE,
DETAIL > YES I NO,
ASSEMBLY > CODE I MAP I ALL I NONE),

ALLOCATION =>
(STACK > positiveinteger),

IMPROVE ->
(CALLS -> SUPPRESS I PRAGMA I AUTOMATIC,

REDUCTION -> NONEI PARTIAL EXTENSIVE,
EXPRESSIONS -> NONE I PARTIAL I EXTENSIVE,

KEEP ->
(COPY -> YES I NO,

DEBUG -> YES I NO,
TREE -> YES I NO
EDIT -> NONE j AUTOMATIC j file name,
OTI -> YES I NO));

B-i

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

BIND (PROGRAM -> unit name,
LIBRARY -> library name,
OPTIONS ->

(LEVEL -> CHECK I BIND I LINK,
OBJECT -> AUITMATIC I file name,
UNCALLED -> REMVE I KEEP,
APPTYPE -> CONSOLE I WINDOWS),

STACK ->
(MAIN -> positive integer,

TASK -> positive integer,
HISTRY -> YES i NOT,

HEAP ->
(SIZE -> positive integer,
INCREMENT-> natural number),

INTERFACE W>
(DIRECTIVES -> optionsfor linker,
MODULES -> file names,
SEARCH -> library names),

DISPLAY ->
(OUTPUT -> SCREEN I NONE I AturOMATIC I file name,

DATA -> BIND I LINK I ALL I NONE,
WARNING -> YES I NO),

KEEP ->
(DEBUG -> YES J NO,
SYMBOLS -> NONEI PARTIAL I EXTENSIVE));

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
.. o.......

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT_SHORTINTEGER is range -128 .. 127;

type SHORTFLOAT is digits 6 range -2#1.111 1111 1111 1111 1111 llll#E+127
.. 2#1.111-1111-11 71-11171111#E+127;

type FLOAT is digits 6 range -2#1.111 1111 Till T11 T111 1ll#E+127
.. 2#1.11in1_-nn11_-nn1nn1-1111#E+127;

type LCNG FLOAT is digits 15 range
-2#1.1111 l1T1 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 llll#EI023

2#i.iii1ii1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1lll#EI023;

type DURATION is delta 2#0.000 000 000 000 01#
range -13107270000 T 13T071.99994;

end STANDARD;

C-I

APPENDIX F OF THE Ada STANDARD

APPENDIX F

Version 5.5

Copyright 1993 by Alsys

All rights reserved. No part of this document may be reproduced in any form
or by any means without permission in writing from Alsys.

Alsys reserves the right to make changes in specifications and other
information contained in this publication without prior notice. Consult
Alsys to determine whether such changes have been made.

Alsys, AdaWorld AdaProbe, AdaXref, AdaReformat, and AdaMake are registered
trademarks of Alsys.

ABOUT THIS DOCUMENT

This document, Appendix F, summarizes the implementation-dependent
characteristics of the Aisys Ada Compilation System. Appendix F is a
required part of the Reference Manual for the Ada Programming Language
(called the RM in this document).

Structure of this document

Section I (Implementation-Dependent Pragmas) Specifies the form of
each implementation-dependent pragma and explains the use
and effect of each.

Section 2 (Implementation-Dependent Attributes) Specifies the name
and the type of each implementation-dependent attribute.

Section 3 (Specification of the package SYSTEM) Contains the
specification of package SYSTEM for this implementation.

Section 4 (Support for Representation Clauses) Describes how objects
are represented and allocated by the compiler and describes
applicable restrictions.

Section 5 (Conventions for Implementation-Generated Names) Lists all
implementation-generated names.

Section 6 (Address Clauses) Interprets expressions that appear in
address clauses, including those for interrupts.

Section 7 (Unchecked Conversions) Explains the restrictions on
unchecked conversions in this implementation.

Section 8 (Input-Output Packages) Specifies the implementation-

C-2

APPENDIX F OF THE Ada STANDARD

dependent characteristics of input-output packages.

Section 9 (Characteristics of Numeric Types) Defines the ranges and
attributes of numeric types in this implementation.

Section 10 (Other Implementation-Dependent Characteristics) Describes
implementation-dependent characteristics not covered in the
other chapters (such as that of the heap, tasks, and main
subprograms).

Section 11 (Limitations) Describes compiler- and hardware-related
limitations of this implementation.

Document conventions

The following list describes the typographical notations used in this

document.

Italics This font is used to designate:

File names; for example, MMIN.CUI

Prompts generated by a program; for example:

Library_Manager.NEW (LIBRARY -> "\GAMES");

(Library_Manager is the prompt.)

Full document titles; for example, Application
Developer's Guide.

Generic command parameters in syntax diagrams (where
the user must supply an actual value); for example,

DEFAULT. command

ERASE (FAMILY -> family_name);

Bold This font is used within text to designate:

Commands that must be keyed in by the user; for
example:

Use the command COMPILE (BINGO.ADA); to ...

Typewriter This font is used for file listings.

The following list shows examples of actual notations used in this manual
and explains how the format of the example is used to convey extra
information about it.

KEEP The underscore here indicates that KEEP is a default option.

C-3

APPENDIX F OF THE Ada STANDARD

YES I NO A vertical bar indicates two or more alternatives. In this
example, either YES or NO may be selected.

ZONE.MARK This notation is used to designate commands within the
Workbench set of tools. It may be used for either of the
following:

A command that can be typed in: ZCNE is the command
and MARK is an option.

A menu item and its option: MARK is an option that
can be selected from the ZONE menu.

Section 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported. The compiler option INLINE +
provides additional control over the inlining of subprograms.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other
languages through the use of the predefined pragma INTERFACE and the
implementation-defined pragma INTERFACE NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the
name of the programming language for which parameter passing conventions
will be generated. Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (languagename, subprogram name);

where,

language_name is ASSEMBLER, ADA, or WIN32.

subprogram name is the name used within the Ada program to refer to the
interfaceU subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
WIN32. The full implementation requirements for writing pragma INTERFACE
subprograms are described in the Application Developer's Guide.

The language name used in the pragma INTERFACE does not have to have any
relationship to the language actually used to write the interfaced
subprogram. It is used only to tell the Compiler how to generate
subprogram calls; that is, what kind of parameter passing techniques to
use. The prograummer can interface Ada programs with subroutines written in
any other (compiled) language by understanding the mechanisms used for

C-4

APPENDIX F OF THE Ada STANDARD

parameter passing by the Alsys Windows NT Ada Compiler and the corresponding
mechanisms of the chosen external language.

1.3 INTERFACENAME

Pragma INTERFACE NAME associates the name of the interfaced subprogram with
the external name of the interfaced subprogram. If pragma INTERFACE NAME
is not used, then the two names are assumed to be identical. This pragma
takes the form:

pragma INTERFACENAME (subprogram name, string_literal);

where,

subprogram name is the name used within the Ada program to refer to the
interfaceU subprogram.

string literal is the name by which the interfaced subprogram is
referred to at link time.

The pragma INTERFACE NAME is used to identify routines in other languages
that are not named wTth legal Ada identifiers. Ada identifiers can only
contain letters, digits, or underscores, whereas the Windows NT Linker LINK32
allows external names to contain other characters, for example, the dollar
sign ($) or commercial at sign (@). These characters can be specified in
the string_literal argument of the pragma INTERFACE NAME.

The pragma INTERFACE NAME is allowed at the same places of an Ada program
as the pragma INTERFACE. (Location restrictions can be found in section
13.9 of the RM.) However, the pragma INTERFACE NAME must always occur
after the pragma INTERFACE declaration for the Tnterfaced subprogram.

The stringliteral of the pragma INTERFACE NAME is passed through
unchanged, including case sensitivity, to the COFF object file. There is
no limit to the length of the name.

If INTERFACE NAME is not used, the default link name for the subprogram is
its Ada name converted to all upper case characters.

The user must be aware however, that some tools from other vendors do not
fully support the standard object file format and may restrict the length
or names of symbols. For example, most Windows NT debuggers only work with
alphanumeric identifier names.

The Runtime Executive contains several external identifiers. All such
identifiers begin with either the string "ADA " or the string "ADAS ".
Accordingly, names prefixed by "ADA " or "ADAm" should be avoided By the
user.

Example

C-5

APPENDIX F OF THE Ada STANDARD

package SAMPLE DATA is
function SAMPLE DEVICE (X: INTEGER) return INTEGER;
function PROCESSSAMPLE (X: INTEGER) return INTEGER;

private
pragma INTERFACE (ASSEMBLER, SAMPLE DEVICE);
pragma INTERFACE (ADA, PROCESS SAMPLE);
pragma INTERFACE-NAME (SAMPLE_DEVICE, "DEVIOSGET_SAMPLE");

end SAMPLEDATA;

1.4 INDENT

Pragma INDENT is only used with AdaReformat. AdaReformat is the Alsys
reformatter which offers the functionalities of a pretty-printer in an Ada
environment.

The pragma is placed in the source file and interpreted by the Reformatter.
The line

pragma INDENT(OFF);

causes AdaReformat not to modify the source lines after this pragma, while

pragma INDET(ON);

causes AdaReformat to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on
representation clauses and records (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from 1 to
96 (see the definition of the predefined package SYSTEM in Section 3 and
Chapter 7 of the Application Developer's Guide). Tasks with undefined
priority (no pragma PRIORITY) are assigned priority by Windows NT since Ada
tasks are Windows NT threads.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a
given compilation by the use of the Compiler option CHECKS. (See Chapter 4
of the User's Guide.)

Section 2

Implementation-Dependent Attributes

2.1 P'IS ARRAY

For a prefix P that denotes any type or subtype, this attribute yields the
value TRUE if P is an array type or an array subtype; otherwise, it yields
the value FALSE.

C-6

APPENDIX F OF THE Ada STANDARD

2.2 P'RECORDDESCRIPTOR, P'ARRAYDESCRIPTOR

These attributes are used to control the representation of implicit
components of a record. (See Section 4.8 for more details.)

2.3 E'EXCEPTI ONCODE

For a prefix E that denotes an exception name, this attribute yields a
value that represents the internal code of the exception. The value of
this attribute is of the type INTEGER.

2.4 Other Attributes

'OFFSET, 'RECORD SIZE, 'VARIANT INDEX, 'ARRAY DESCRIPTOR, and
'RECORDDESCRIPTOR are descibed-in detail in Section 4.

Section 3

Specification of the package SYSTEM

The implementation does not allow the recompilation of package SYSTEM.

3.1 Specification of the package SYSTEM

- This unpublished work is protected both as a proprietary work and under
- the Universal Copyright Convention and the US Copyright Act of 1976. Its
- distribution and access are limited only to authorized persons. Copyright
- (C) Alsys. Created 1990, initially licenced 1990. All rights reserved.
- Unauthorized use (including use to prepare other works), disclosure,
- reproduction or distribution may violate national criminal law.

- Check that all CPUs are covered.

- Check that all operating systems are covered

package SYSTEM is

type NAME is (180X86,
180386,
MC680X0,
S370,
TRANSPUTER,
VAX,
RS 6000,
MIPS,

C-7

APPEN4DIX F OF THE Ada STANDARD

SPARC);
- The order of the elements of this type is not significant.

SYSTEM-NAME : constant NAME :- 180386;

STORAGEUNIT : constant :- 8;

MAXINT : constant :- 2**31 - 1;

MIN INT : constant :-- (2**31);

MAXMANTISSA : constant :- 31;

FINEDELTA : constant :-2#1.0#E-31;

MAXDIGITS : constant :- 15;

MEMORY-SIZE : constant :- 2**32;

TICK : constant :- 0.01;

subtype PRIORITY is INTEGER range 1..7;

- Ada9X and the runtime system define an extension to the range for
- PRIORITY called INTERRUPT PRIORITY. For the runtime system, this subtype
- defines the range of priorities to be used by deferred handlers (tasks)
- for interrupts.

- Range of priority levels assigned to interrupts.

INTERRUPTLEVELS : constant :- 1;

subtype INTERRUPT PRIORITY is INTEGER range
PRIORITY'LAST + 1 .. PRIORITY'LAST + INTERRUPTLEVELS;

type ADDRESS is private;
NULL ADDRESS : constant ADDRESS;

- This constant defines the size of an object of type ADDRESS in s.u.'s.
ADDRESSSIZE : constant :- 4;

function VALUE (LEFT : in STRING) return ADDRESS;

- Converts a string to an address. The syntax of the string and its
- meaning are target dependent.

- For the 8086, 80186 and 80286 the syntax is:
- "SSSS:O000" where SSSS and 0000 are a 4 digit or less hexadecimal
-- number representing a segment value and an offset.
-- The physical address corresponding to SSSS:0000 depends

- on the execution mode. In real mode it is 16*SSSS+O000.
-- In protected mode the value SSSS represents a segment
-- aescriptor.

C-8

APPENDIX F OF THE Ada STANDARD

-- Example:
-- "0014:OOFO"

- For the other targets the syntax is:
- "00000000" where 00000000 is an 8 digit or less hexadecimal number.

For the 80386, this number represents an offset either in
the data segment or in the code segment.
For the MC680X0, 370 and Transputer, the number represents
a virtual address (physical address for bare machines).

- Example:
- "00000008"

- The exception CONSTRAINT ERROR is raised if the string has not the
- proper syntax.

subtype ADDRESSSTRING is STRING(l..8);

function IMAGE (LEFT : in ADDRESS) return ADDRESSSTRING;

- Converts an address to a string. The syntax of the returned string is
- described in the VALUE function.

- This function is used by ERROR 10 to output values of type ADDRESS.
- Do not attempt to output an ADD-RESS from within this subprogram.

type OFFSET is range -2**31 .. 2**31 -1;
- This type is used to measure a number of storage units (bytes). The type
- is logically unsigned: all operations on offsets have wrap-around
- semantics.

- On non-segmented machines, the function and exception are meaningless.

- The exception CONSTRAINT ERROR can be raised by "+" and "-".

function "+" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;
function "+" (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;
function "-" (LEFT : in ADDRESS; RIGHT in OFFSET) return ADDRESS;

- These routines provide support to perform address computations. The
- meaning of the "+" and "-" operators is architecture dependent. For
- example on a segmented machine the OFFSET parameter is added to, or
- subtracted from the offset part of the address, the segment remaining
- untouched.

C-9

APPENDIX F OF THE Ada STANDARD

function "-" (LEFT : in ADDRESS; RIGHT : in ADDRESS) return OFFSET;

- Returns the distance between the given addresses. The subtraction is
- unsigned: a negative result is equivalent to a very large positive
- result.
- The exception ADDRESS ERROR is raised on a segmented architecture if
- the two addresses do -not have the same segment value.

function "<-" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function "<" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function ">-" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

- Perform a comparison on addresses, or on the offset part of addresses
- for a segmented machine. The comparison is unsigned on all machines
- except the Transputer.

function "mood" (LEFT: in ADDRESS; RIGHT : in POSITIVE) return NATURAL;

- Returns the offset of LEFT relative to the memory block immediately
- below it starting at a multiple of RIGHT storage units. On a segmented
- machine, the segment part is ignored.

type ROUNDDIRECTION is (DOWN, UP);

function ROUND (VALUE : in ADDRESS;
DIRECTION : in ROUND DIRECTION;
MODULUS : in POSITIVE) return ADDRESS;

- Returns the given address rounded to a specific value.

generic
type TARGET is private;

function FETCHFROM ADDRESS (A : in ADDRESS) return TARGET;
generic

type TARGET is private;
procedure ASSI(GNTO ADDRESS (A : in ADDRESS; T : in TARGET);

- These routines are provided to perform READ/WRITE operations in memory.
- Warning: These routines will give unexpected results if used with
- unconstrained types.

type OBJECT-LENGTH is range 0 .. 2**31 -1;

C-10

APPENDIX F OF THE Ada STANDARD

- This type is used to designate the size of an object in storage units.

procedure MOVE (TO : in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECT-L•DGTH);

- Copies LENGTH storage units starting at the address FROM to the address
- TO. The source and destination may overlap.

private

pragma INLINE ("+-"

type ADDRESS is access STRING;
NULL ADDRESS : constant ADDRESS :- null;

end SYSTEM;

Section 4

Support for Representation Clauses

This section explains how objects are represented and allocated by the
Alsys Windows NT Ada compiler and how it is possible to control this using
representation clauses. Applicable restrictions on representation clauses
are also described.

The representation of an object is closely connected with its type. For
this reason this section addresses successively the representation of
enumeration, integer, floating point, fixed point, access, task, array and
record types. For each class of type the representation of the
corresponding objects is described.

Except in the case of array and record types, the description for each
class of type is independent of the others. To understand the
representation of array and record types it is necessary to understand
first the representation of their components.

Apart from implementation defined pragmas, Ada provides three means to
control the size of objects:

"a (predefined) pragma PACK, applicable to array types

"a record representation clause

"a size specification

For each class of types the effect of a size specification is described.
Interactions among size specifications, packing and record representation
clauses is described under the discussion of array and record types.

C-11

APPENDIX F OF THE Ada STANARD

Representation clauses on derived record types or derived tasks types are
not supported.

Size representation clauses on types derived from private types are not
supported when the derived type is declared outside the private part of the
defining package.

4.1 Enumeration Types

4.1.1 Enumeration Literal Encoding

When no enumeration representation clause applies to an enumeration type,
the internal code associated with an enumeration literal is the position
number of the enumeration literal. Then, for an enumeration type with n
elements, the internal codes are the integers 0, 1, 2, .. , n-i.

An enumeration representation clause can be provided to specify the value
of each internal code as described in RM 13.3. The Alsys compiler fully
implements enumeration representation clauses.

As internal codes must be machine integers the internal codes provided by
an enumeration representation clause must be in the range -231 .. 231 - 1.

An enumeration value is always represented by its internal code in the
program generated by the compiler.

4.1.2 Enumeration Types and Object Sizes

Minimum size of an enumeration subtype

The minimum possible size of an enumeration subtype is the minimum number
of bits that is necessary for representing the internal codes of the
subtype values in normal binary form.

A static subtype, with a null range has a minimum size of 1. Otherwise, if
m and M are the values of the internal codes associated with the first and
last enumeration values of the subtype, then its minimum size L is
determined as follows. For m >- 0, L is the smallest positive integer such
that M <- 2L - 1. For m < 0, L is the smallest positive integer such that -

2L-1 <- m and M <- 2L-1 - 1. For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
- The minimum size of COLOR is 3 bits.

subtype BLACK AND WHITE is COLOR range BLACK .. WHITE;
- The minimum size of BLACK AND WHITE is 2 bits.

subtype BLACK OR WHITE is BLACK AND WHITE range X .. X;
- Assuming tHat-X is not statiC, tHe minimum size of BLACK OR WHITE is
- 2 bits (the same as the minimum size of its type mark BLACK_AND WHITE).

C-12

APPEN4DIX F OF THE Ada STANDARD

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named
subtype, the objects of that type or first named subtype are represented as
signed machine integers. The machine provides 8, 16 and 32 bit integers,
and the compiler selects automatically the smallest signed machine integer
which can hold each of the internal codes of the enumeration type (or
subtype). The size of the enumeration type and of any of its subtypes is
thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this
enumeration type and each of its subtypes has the size specified by the
length clause. The same rule applies to a first named subtype. The size
specification must of course specify a value greater than or equal to the
minimum size of the type or subtype to which it applies:

type EXTNDED is
(- The usual ASCII character set.
NUL, SOH, STX, ETX, EDT, ENQ, ACK, BEL,

'x ' ' ' {$'' ')I, '"F DEL,

- Extended characters
C_CEDILLA_CAP, ULA , EATE, ... ;

for EXTENDED'SIZE use 8;
- The size of type EXTENDED will be one byte. Its objects will be
- represented as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as
enumeration values are coded using integers, the specified length cannot be
greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an enumeration subtype has the same size as its
subtype.

4.2 Integer Types

There are three predefined integer types in the Alsys implementation for
180386 machines:

type SHORT SHORT INTEGER is range -2**07 .. 2**07-1;
type SHORT INTEGER is range -2**15 .. 2**15-1;
type INTEGER is range -2**31 .. 2**31-1;

C-13

APPENDIX F OF THE Ada STANDARD

4.2.1 Integer Type Representation

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from a predefined integer type. The compiler
automatically selects the predefined integer type whose range is the
smallest that contains the values L to R inclusive.

Binary code is used to represent integer values. Negative numbers are
represented using two's complement.

4.2.2 Integer Type and Object Size

Minimum size of an integer subtype

The minimum possible size of an integer subtype is the minimum number of
bits that is necessary for representing the internal codes of the subtype
values in normal binary form.

For a static subtype, if it has a null range its minimum size is 1.
Otherwise, if m and M are the lower and upper bounds of the subtype, then
its minimum size L is determined as follows. For m >- 0, L is the
smallest positive integer such that M <- 2L-1. For
m < 0, L is the smallest positive integer that -2L-1 <- m and M <- 2L-1 -

1. For example:

subtype S is INTEGER range 0 .. 7;
- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
- Assuming that X and Y are not static, the minimum size of
- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT SHORT INTEGER,
SHORTINTEGER and INTEGER are respectively 8, l1 and 12 bits.

When no size specification is applied to an integer type or to its first
named subtype (if any), its size and the size of any of its subtypes is the
size of the predefined type from which it derives, directly or indirectly.
For example:

type S is range 80 .. 100;
- S is derived from SHORT SHORT INTEGER, its size is
- 8 bits.

type J is range 0 .. 255;

C-14

APPENDIX F OF THE Ada STANDA&

- J is derived from SHORTINTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
- N is indirectly derived from SHORTINTEGER, its size is
- 16 bits.

When a size specification is applied to an integer type, this integer type
and each of its subtypes has the size specified by the length clause. The
same rule applies to a first named subtype. The size specification must of
course specify a value greater than or equal to the minimum size of the
type or subtype to which it applies:

type S is range 80 .. 100;
for S'SIZE use 32;
- S is derived from SHORT SHORT INTEGER, but its size is
- 32 bits because of the iize specification.

type J is range 0 .. 255;
for J'SIZE use 8;
- J is derived from SHORT INTEGER, but its size is 8 bits
- because of the size specification.

type N is new J range 80 .. 100;
- N is indirectly derived from SHORT INTEGER, but its
- size is 8 bits because N inherits TEhe size specification
- of J.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an integer subtype has the same size as its
subtype.

4.3 Floating Point Types

There are two predefined floating point types in the Alsys implementation
for 180x86 machines:

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0**127 .. (2.0 - 2.0**(-
23))*2.0**127;

type LUMG FLOAT is
digits 15 range -(2.0 - 2.0**(-52))*2.0**1023 .. (2.0 - 2.0**(-
52))*2.0**1023;

4.3.1 Floating Point Type Representation

A floating point type declared by a declaration of the form:

C-15

APPENDIX F OF THE Ada STANDARD

type T is digits D (range L .. R];

is implicitly derived from a predefined floating point type. The compiler
automatically selects the smallest predefined floating point type whose
number of digits is greater than or equal to D and which contains the
values L to R inclusive.

In the program generated by the compiler, floating point values are
represented using the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single
float format. The values of the predefined type LUMG FLOAT are represented
using the double float format. The values of any other floating point type
are represented in the same way as the values of the predefined type from
which it derives, directly or indirectly.

4.3.2 Floating Point Type and Object Size

The minimum possible size of a floating point subtype is 32 bits if its
base type is FLOAT or a type derived from FLOAT; it is 64 bits if its base
type is LUNGFLOAT or a type derived from LCJG_FLOAT.

The sizes of the predefined floating point types FLOAT and LNG_FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is
the size of the predefined type from which it derives directly or
indirectly.

The only size that can be specified for a floating point type or first
named subtype using a size specification is its usual size (32 or 64 bits).

An object of a floating point subtype has the same size as its subtype.

4.4 Fixed Point Types

4.4.1 Fixed Point Type Representation

If no specification of small applies to a fixed point type, then the value
of small is determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value
of small is required to be a power of two.

To implement fixed point types, the Alsys compiler for 180x86 machines uses
a set of anonymous predefined types of the form:

type SHORT FIXED is delta D range (-2.0**7-I)*S .. 2.0**7*S;
for SHORT FIXED'SMALL use S;

type FIXED is delta D range (-2.0**15-i)*S .. 2.0**15*S;

C-16

APPEN~DIX F OF THE Ada SThMIC)AD

for FIXED'SMALL use S;

type LCNG FIXED is delta D range (-2.0**31-1)*S .. 2.0"'31"S;
for LONG FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The compiler
automatically selects the predefined fixed point type whose small and delta
are the same as the small and delta of T and whose range is the shortest
that includes the values L to R inclusive.

In the program generated by the compiler, a safe value V of a fixed point
subtype F is represented as the integer:

V / F'BASE'SMALL

4.4.2 Fixed Point Type and Object Size

Minimum size of a fixed point subtype

The minimum possible size of a fixed point subtype is the minimum number of
binary digits that is necessary for representing the values of the range of
the subtype using the small of the base type.

For a static subtype, if it has a null range its minimum size is 1.
Otherwise, s and S being the bounds of the subtype, if i and I are the
integer representations of m and M, the smallest and the greatest model
numbers of the base type such that s < m and M < S, then the minimum size L
is determined as follows. For i >- 0, L is the smallest positive integer
such that I <- 2L-1. For i < 0, L is the smallest positive integer
such that -2L-1 <- i and I <- 2L-1-1.

type F is delta 2.0 range 0.0 .. 500.0;
- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
- Assuming that X and Y are not static, the minimum size of D is 7 bits
- (the same as the minimum size of its type mark S).

C-17

1

APPENDIX F OF THE Ada STANDARD

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORTFIXED, FIXED and
LUNGFIXED are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first
named subtype, its size and the size of any of its subtypes is the size of
the predefined type from which it derives directly or indirectly. For
example:

type S is delta 0.01 range 0.8 .. 1.0;
- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.01 range 0.0 .. 2.0;
- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8 .. 1.0;
- N is indirectly derived from a 16 bit predefined fixed type, its size
- is 16 bits.

When a size specification is applied to a fixed point type, this fixed
point type and each of its subtypes has the size specified by the length
clause. The same rule applies to a first named subtype. The size
specification must of course specify a value greater than or equal to the
minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8 .. 1.0;
for S'SIZE use 32;
- S is derived from an 8 bit predefined fixed type, but its size is 32
- bits because of the size specification.

type F is delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 8;
- F is derived from a 16 bit predefined fixed type, but its size is 8
- bits because of the size specification.

type N is new F range 0.8 .. 1.0;
- N is indirectly derived from a 16 bit predefined fixed type, but its
- size is 8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as
fixed point objects are represented using machine integers, the specified
length cannot be greater than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a
pragma PACK, an object of a fixed point type has the same size as its
subtype.

4.5 Access Types and Collections

C-18

APPENDIX F OF THE Ada STANDARD

Access Types and Objects of Access Types

The only size that can be specified for an access type using a size
specification is its usual size (32 bits).

An object of an access subtype has the same size as its subtype, thus an
object of an access subtype is always 32 bits long.

Collection Size

As described in RM 13.2, a specification of collection size can be provided
in order to reserve storage space for the collection of an access type.

When no STORAGE SIZE specification applies to an access type, no storage
space is reserved for its collection, and the value of the attribute
STORAGESIZE is then 0.

The maximum size is limited by the amount of memory available.

4.6 Task Types

Storage for a task activation

As described in RM 13.2, a length clause can be used to specify the storage
space (that is, the stack size) for the activation of each of the tasks of
a given type. Alsys also allows the task stack size, for all tasks, to be
established using a Binder option. If a length clause is given for a task
type, the value indicated at bind time is ignored for this task type, and
the length clause is obeyed. When no length clause is used to specify the
storage space to be reserved for a task activation, the storage space
indicated at bind time is used for this activation.

A length clause may not be applied to a derived task type. The same storage
space is reserved for the activation of a task of a derived type as for the
activation of a task of the parent type.

The minimum size of a task subtype is 32 bits.

A size specification has no effect on a task type. The only size that can
be specified using such a length clause is its usual size (32 bits).

An object of a task subtype has the same size as its subtype. Thus an
object of a task subtype is always 32 bits long.

4.7 Array Types

Each array is allocated in a contiguous area of storage units. All the
components have the same size. A gap may exist between two consecutive
components (and after the last one). All the gaps have the same size.

C-19

APPENDIX F OF THE Ada STANDARD

4.7.1 Array Layout and Structure and Pragma PACK

If pragma PACK is not specified for an array, the size of the components is
the size of the subtype of the components:

type A is-array (1 .. 8) of BOOLEAN;
- The size of the components of A is the size of the type BOOLEAN: 8
- bits.

type DECIMAL DIGIT is range 0 .. 9;
for DECIMAL DIGIT'SIZE use 4;
type BINARY-CODED DECIMAL is

array (ITEGER-range o) of DECIMAL DIGIT;
- The size of the type DECIMAL DIGIT Ts 4 bits. Thus in an array of
- type BINARY CODED DECIMAL each component will be represented on
- 4 bits as iR the usual BCD representation.

If pragma PACK is specified for an array and its components are neither
records nor arrays, the size of the components is the minimum size of the
subtype of the components:

type A is array (1 .. 8) of BOOLEAN;
pragma PACK(A);
- The size of the components of A is the minimum size of the type
- BOOLEAN:
- 1 bit.

type DECIMAL DIGIT is range 0 .. 9;
for DECIMAL DIGIT'SIZE use 32;
type BINARY-CODED DECIMAL is

array (INTEGER--range <>) of DECIMALDIGIT;
pragma PACK(BINARY CODED DECIMAL);
- The size of the-type DECIMAL DIGIT is 32 bits, but, as
- BINARY CODED DECIMAL is packid, each component of an array of this
- type wTll be-represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the
components are records or arrays, since records and arrays may be assigned
addresses consistent with the alignment of their subtypes.

Gaps

If the components are records or arrays, no size specification applies to
the subtype of the components and the array is not packed, then the
compiler may choose a representation with a gap after each component; the
aim of the insertion of such gaps is to optimize access to the array
components and to their subcomponents. The size of the gap is chosen so
that the relative displacement of consecutive components is a multiple of
the alignment of the subtype of the components. This strategy allows each
component and subcomponent to have an address consistent with the alignment

C-20

APPENDIX F OF THE Ada STANDARD

of its subtype:

type R is
record

K : SHORT INTEGER;
B : BOOLEAN;

end record;
for R use

record
K at 0 range 0 .. 31;
B at 4 range 0 .. 0;

end record;
- Record type R is byte aligned. Its size is 33 bits.

type A is array (1 .. 10) of R;
- A gap of 7 bits is inserted after each component in order to respect
- the alignment of type R. The size of an array of type A will be 400 bits.

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the
array is packed, no gaps are inserted:

type R is
record

K : SHORT INTEGER;
B : BOOLEAN;

end record;

type A is array (1 .. 10) of R;
pragma PACK(A);
- There is no gap in an array of type A because A is packed.
- The size of an object of type A will be 330 bits.

type NR is new R;
for NR'SIZE use 24;

type B is array (1 .. 10) of NR;
- There is no gap in an array of type B because
- NR has a size specification.
- The size of an object of type B will be 240 bits.

4.7.2 Array Subtype and Object Size

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its
components by the sum of the size of the components and the size of the
gaps (if any). If the subtype is unconstrained, the maximum number of
components is considered.

C-21

APPENDIX F OF THE Ada STANDARD

The size of an array subtype cannot be computed at compile time

if it has non-static constraints or is an unconstrained array type with
non-static index subtypes (because the number of components can then
only be determined at run time).

if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the
size of the components and the size of the gaps can then only be
determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type
is to suppress the gaps. The consequence of packing an array type is thus
to reduce its size.

If the components of an array are records or arrays and their constraints
or the constraints of their subcomponents (if any) are not static, the
compiler ignores any pragma PACK applied to the array type but issues a
warning message. Apart from this limitation, array packing is fully
implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no
effect. The only size that can be specified using such a length clause is
its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of
the subtype of the object.

4.8 Record Types

4.8.1 Basic Record Structure

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of
a record component depends on its type.

The positions and the sizes of the components of a record type object can
be controlled using a record representation clause as described in RM 13.4.
In the Alsys implementation for 180x86 machines there is no restriction on
the position that can be specified for a component of a record. If a
component is not a record or an array, its size can be any size from the
minimum size to the size of its subtype. If a component is a record or an
array, its size must be the size of its subtype.

Pragma PACK has no effect on records. It is unnecessary because record

representation clauses provide full control over record layout.

C-22

APPENDIX F OF THE Ada STANDARD

A record representation clause need not specify the position and the size
for every component. If no component clause applies to a component of a
record, its size is the size of its subtype.

4.8.2 Indirect Components

If the offset of a component cannot be computed at compile time, this
offset is stored in the record objects at run time and used to access the
component. Such a component is said to be indirect while other components
are said to be direct.

If a record component is a record or an array, the size of its subtype may
be evaluated at run time and may even depend on the discriminants of the
record. We will call these components dynamic components:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range <>) of INTEGER;

type GRAPH (L : NATURAL) is
record

X : SERIES(l .. L); - The size of X depends on L
Y : SERIES(l .. L); - The size of Y depends on L

end record;

Q : POSITIVE;

type PICTURE (N : NATURAL; D : DEVICE) is
record

F : GRAPH(N); - The size of F depends on N
S : GRAPH(Q); - The size of S depends on Q
case D is

when SCREEN >
C : COLOR;

when PRINTER =>
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot
be evaluated at compile time and is thus indirect. In order to minimize the
number of indirect components, the compiler groups the dynamic components
together and places them at the end of the record:

The record type PICTURE: F and S are placed at the end of the record

Note that Ada does not allow representation clauses for record components
with non-static bounds [RM 13.4.7], so the compiler's grouping of dynamic
components does not conflict with the use of representation clauses.

C-23

APPENDIX F OF THE Ada STANDARD

Because of this approach, the only indirect components are dynamic
components. But not all dynamic components are necessarily indirect: if
there are dynamic components in a component list which is not followed by a
variant part, then exactly one dynamic component of this list is a direct
component because its offset can be computed at
compilation time (the only dynamic components that are direct components
are in this situation).

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large
enough to store the size of any value of the record type (the maximum
potential offset). The compiler evaluates an upper bound MS of this size
and treats an offset as a component having an anonymous integer type whose
range is 0 .. MS.

If C is the name of an indirect component, then the offset of this
component can be denoted in a component clause by the implementation
generated name C'OFFSET.

4.8.3 Implicit Components

In some circumstances, access to an object of a record type or to its
components involves computing infcrmation which only depends on the
discriminant values. To avoid recomputation (which would degrade
performance) the compiler stores this information in the record objects,
updates it when the values of the discriminants are modified and uses it
when the objects or its components are accessed. This information is stored
in special components called implicit components.

An implicit component may contain information which is used when the record
object cr several of its components are accessed. In this case the
component will be included in any record object (the implicit component is
considered to be declared before any variant part in the record type
declaration). There can be two components of this kind; one is called
RECORDSIZE and the other VARIANT INDEX.

On the other hand an implicit component may be used to access a given
record component. In that case the implicit component exists whenever the
record component exists (the implicit component is considered to be
declared at the same place as the record component). Components of this
kind are called ARRAYDESCRIPTORs or RECORDDESCRIPTORs.

RECORDSIZE

This implicit component is created by the compiler when the record type has
a variant part and its discriminants are defaulted. It contains the size of
the storage space necessary to store the current value of the record object

C-24

APPENDIX F OF THE Ada STANDARD

(note that the storage effectively allocated for the record object may be
more than this).

The value of a RECORD SIZE component may denote a number of bits or a
number of storage uniEs. In general it denotes a number of storage units,
but if any component clause specifies that a component of the record type
has an offset or a size which cannot be expressed using storage units, then
the value designates a number of bits.

The implicit component RECORD SIZE must be large enough to store the
maximum size of any value of the record type. The compiler evaluates an
upper bound MS of this size and then considers the implicit component as
having an anonymous integer type whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted
in a component clause by the implementation generated name R'RECORD SIZE.
This allows user control over the position of the implicit component in the
record.

VARIANTINDEX

This implicit component is created by the compiler when the record type has
a variant part. It indicates the set of components that are present in a
record value. It is used when a discriminant check is to be done.

Component lists in variant parts that themselves do not contain a variant
part are numbered. These numbers are the possible values of the implicit
component VARIANT INDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND VEHICLE :- CAR) is
record

SPEED : INTEGER;
case KIND is

when AIRCRAFTI CAR->
WHEELS : INTEGER;
case KIND is

when AIRCRAFT -> - 1
WINGSPAN : INTEGER;

when others -> - 2
null;

end case;
when BOAT => - 3

STEAM BOOLEAN;
when ROCKET -> - 4

STAGES : INTEGER;
end case;

end record;

The value of the variant index indicates the set of components that are

present in a record value.

C-25

APPENDIX F OF THE Ada STANDARD

A comparison between the variant index of a record value and the bounds of
an interval is enough to check that a given component is present in the
value.

The implicit component VARIANT INDEX must be large enough to store the
number V of component lists thit don't contain variant parts. The compiler
treats this implicit component as having an anonymous integer type whose
range is 1 .; V.

If R is the name of the record type, this implicit component can be denoted
in a component clause by the implementation generated name R'VARIANT INDEX.
This allows user control over the position of the implicit component-in the
record.

ARRAY-DESCRIPTOR

An implicit component of this kind is associated by the compiler with each
record component whose subtype is an anonymous array subtype that depends
on a discriminant of the record. It contains information about the
component subtype.

The structure of an implicit component of kind ARRAY DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is
interested in specifying the location of a component of this kind using a
component clause, size of the component may be obtained using the ASSEMBLY
parameter in the COMPILE command.

The compiler treats an implicit component of the kind ARRAY DESCRIPTOR as
having an anonymous array type. If C is the name of the record component
whose subtype is described by the array descriptor, then this implicit
component can be denoted in a component clause by the implementation
generated name C'ARRAY DESCRIPTOR. This allows user control over the
position of the implicTt component in the record.

RECORDDESCRIPTOR

An implicit component of this kind is associated by the compiler with each
record component whose subtype is an anonymous record subtype that depends
on a discriminant of the record. It contains information about the
component subtype.

The structure of an implicit component of kind RECORD DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is
interested in specifying the location of a component of this kind using a
component clause, the size of the component may be obtained using the
ASSEMBLY parameter in the COMPILE command.

The compiler treats an implicit component of the kind RECORD DESCRIPTOR as
having an anonymous array type. If C is the name of the record component
whose subtype is described by the record descriptor, then this implicit

C-26

APPE•2DIX F OF THE Ada STANDARD

component can be denoted in a component clause by the implementation
generated name C'RECORD DESCRIPTOR. This allows user control over the
position of the impliciE component in the record.

Suppression of Implicit Components

The Alsys implementation provides the capability of suppressing the
implicit components RECORD SIZE and/orVARIANT INDEX from a record type.
This can be done using an Tmplementation defined pragma called IMPROVE. The
syntax of this pragma is as follows:

pragma IMPROVE (TIME I SPACE [,ON ->1 simplename);

The first argument specifies whether TIME or SPACE is the primary criterion
for the choice of the representation of the record type that is denoted by
the second argument.

If TIME is specified, the compiler inserts implicit components as described
above. If on the other hand SPACE is specified, the compiler only inserts
a VARIANT INDEX or a RECORD SIZE component if this component appears in a
record representation clause that applies to the record type. A record
representation clause can thus be used to keep one implicit component while
suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere
that a representation clause is allowed for this type.

4.8.4 Size of Record Types and Objects

Size of a record subtype

Unless a component clause specifies that a component of a record type has
an offset or a size which cannot be expressed using storage units, the size
of a record subtype is rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of
its components and the sizes of its gaps (if any). This size is not
computed at compile time

when the record subtype has non-static constraints,

when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes
of the components and the sizes of the gaps (if any) of its largest
variant. If the size of a component or of a gap cannot be evaluated exactly
at compile time an upper bound of this size is used by the compiler to
compute the subtype size.

A size specification applied to a record type or first named subtype has no

C-27

APPENDIX F OF THE Ada STANDARD

effect. The only size that can be specified using such a length clause is
its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its
subtype if this size is less than or equal to 8 kb. If the size of the
subtype is greater than this, the object has the size necessary to store
its current value; storage space is allocated and released as the
discriminants of the record change.

Section 5

Conventions for Implementation-Generated Names

The Alsys Windows NT Ada Compiler may add fields to record objects and have
descriptors in memory for record or array objects. These fields are
accessible to the user through implementation-generated attributes (See
Section 2.3).

The following predefined packages are reserved to Alsys and cannot be
recompiled in Version 5.5:

system
calendar
internal_types
systemenvironment
interrupt_manager
unix types
unsigned
machine operations_386
get file number
alsyscoa3egen support
alsysrts extended ascii
alsys-traces
alsys~target integers
alsys rt types
alsys-tie types
alsys-machtne task types
alsys-stack extension
alsystcb__pckage
alsys assert
alsys-task lists
alsys-resource
al sys-synchronization
alsys-ada runtime
alsyserror io
alsysmachine

C-28

APPENDIX F OF THE Ada STANDARD

alsyssharedmessages
al sys target tmessages
alsys task control
alsys-confTguration
alsys -thread control
alsys-em code
alsysadaprobesupport
alsys~task-kernel_probe
alsys extant
alsys-interrupt manager
alsys-rts inter-rupt
alsys-interrupt rendezvous
alsys-cifo supporrt
alsys-bind-rts
alsys-io control
alsys-hasic io
alsys-io traces
alsys-binary io
alsys-buffer-io
alsysfile uiinagement

Section 6

Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as
described in RM 13.5. When such a clause applies to an object the compiler
does not cause storage to be allocated for the object. The program accesses
the object using the address specified in the clause. It is the
responsibility of the user therefore to make sure that a valid allocation
of storage has been done at the specified address.

An address clause is not allowed for task objects, for unconstrained
records whose size is greater than 8k bytes or for a constant.

There are a number of ways to compose a legal address expression for use in
an address clause. The most direct ways are:

For the case where the memory is defined in Ada as another object, use
the 'ADDRESS attribute to obtain the argument for the address clause for
the second object.

For the case where an absolute address is known to the programner, use
the function SYSTEM.IMAGE, whose specification is described in Section
3.

For the case where the desired location is memory defined in assembly or
another non-Ada language (is relocatable), an interfaced routine may be
used to obtain the appropriate address from referencing information
known to the other language.

C-29

APPENDIX F OF THE Ada STANDARD

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current
version of the compiler.

6.3 Address Clauses for Interrupt Entries

Interrupt entries are not supported.

Section 7

Unchecked Conversions

Unchecked conversions are allowed between any types provided the
instantiation of UNCHECKED CONVERSION is legal Ada. It is the progranmer's
responsibility to determine if the desired effect is achieved.

If the target type has a smaller size than the source type then the target
is made of the least significant bits of the source.

Section 8

Input-Output Packages

In this part of the Appendix the implementation-specific aspects of the
input-output system are described.

8.1 Introduction

In Ada, input-output operations (10) are considered to be performed on
objects of a certain file type rather than being performed directly on
external files. An external file is anything external to the program that
can produce a value to be read or receive a value to be written. Values
transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a
certain file type, whereas a physical manifestation is known as an external
file. An external file is characterized by

Its name, which is a string defining a legal path name under the current
version of the operating system.

Its form, which gives implementation-dependent information on file
characteristics.

Both the name and the form appear explicitly as parameters of the Ada
CREATE and OPEN procedures. Though a file is an object of a certain file

C-30

APPENDIX F OF THE Ada STANDARD

type, ultimately the object has to correspond to an external file. Both
CREATE and OPEN associate a NAME of an external file (of a certain FORM)
with a program file object.

Ada 10 operations are provided by means of standard packages [14].

SEIQUETIAL_1O A generic package for sequential files of a single element
type.

DIRECTIO A generic package for direct (random) access files.

TEXT IO A generic package for human readable (text, ASCII) files.

IOEXCEPTICNS A package which defines the exceptions needed by the above
three packages.

The generic package LOW LEVELIO is not implemented in this version.

The upper bound for index values in DIRECT IO and for line, column and page
numbers in TEXTIO is given by

COUNT'LAST - 2**31 -1

The upper bound for field widths in TEXT 10 is given by

FIELD'LAST - 255

8.2 The FORM Parameter

The FORM parameter of both the CREATE and OPEN procedures in Ada specifies
the characteristics of the external file involved. For the Windows MT
Compiler no specif FORM parameter is implemented.

Section 9

Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STADARD are as
follows:

SHORT SHORT INTEGER -128 .. 127 - 2**7 - 1

SHORT INTEGER -32768 .. 32767 - 2**15 - 1

INTEGER -2147483648 .. 2147483647 - 2**31 - 1

For the packages DIRECT 10 and TEXT_10, the range of values for types COUNT

and POSITIVE COUNT are as follows:

C-31

APPENDIX F OF THE Ada STANDARD

COUNT 0 2147483647 - 2**31 - 1

POSITIVECOUNT 1 2147483647 - 2**31 - 1

For the package TEXTIO, the range of values for the type FIELD is as
follows:

FIELD 0 .. 255 - 2**8 - 1

9.2 Floating Point Type Attributes

FLOAT LONGFLOAT

DIGITS 6 15

MANTISSA 21 51

EMAX 84 204

EPSILON 9.53674E-07 8.88178E-16

LARGE 1.93428E+25 2.57110E+61

SAFEEMAX 125 1021

SAFE SMALL 1.17549E-38 2.22507E-308

SAFELARGE 4.25353E+37 2.24712E+307

FIRST -3.40282E+38 -1.79769E+308

LAST 3.40282E+38 1.79769E+308

MACHINERADIX 2 2

MACHINEEMAX 128 1024

MACHINEEMIN -125 -1021

MACHINE ROUNDS true true

MACHINEOVERFLOWS false false

SIZE 32 64

9.3 Attributes of Type DURATION

DURATION'DELTA 2.0 ** (-14)

DURATION'SMALL 2.0 ** (-14)

C-32

APPEI•DIX F OF THE Ada STANDARD

DURATION'FIRST -131_072.0

DURATION' LAST 131 072.0

DURATICON'LARGE same as DURATION'LAST

Section 10

Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor

Floating point coprocessor instructions are used in programs that perform
arithmetic on floating point values in some fixed point operations and when
the FLOAT 10 or FIXED 10 packages of TEXT I0 are used. The mantissa of a
fixed point value may-be obtained through-a conversion to an appropriate
integer type. This conversion does not use floating point operations.

The windows NT kernel emulates floating point instructions in software, if no
coprocessor is present. However, the emulation does not seem 100%
compatible. The major area of incompatibility is in floating point
exceptions. Consequently floating point coprocessor is required for full
compatibility of the Ada runtime.

10.2 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the
Runtime Executive representation of task objects, including the task
stacks, are allocated in the heap.

UNCHECKED DEALLOCATION is implemented for all Ada access objects except
access objects to tasks. Use of UNCHECKED DEALLOCATION on a task object
will lead to unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block
have their storage reclaimed at exit, whether the exit is normal or due to
an exception. Effectively pragma CONTROLLED is automatically applied to
all access types. Moreover, all compiler temporaries on the heap
(generated by such operations as function calls returning unconstrained
arrays, or many concatenations) allocated in a scope are deallocated upon
leaving the scope.

Note that the programmer may force heap reclamation of temporaries
associated with any statements by enclosing the statement in a begin .. end
block. This is especially useful when complex concatenations or other
heap-intensive operations are performed in loops, and can reduce or
eliminate STORAGEERRORs that might otherwise occur.

The maximum size of the heap is limited only by available memory. This
includes the amount of physical memory (RAM) and the amount of virtual

C-33

APPENDIX F OF THE Ada STANDARD

memory (hard disk swap space).

10.3 Characteristics of Tasks

The default task stack size is 4K bytes (96K bytes for the environment
task), but by using the Binder option STACK.TASK the size for all task
stacks in a program may be set to a size from 1K bytes to 32767 bytes.

Preemption of Ada tasks are performed by Windows NT since they are Windows
NT threads. PRIORITY values are in the range 1..86. A task with undefined
priority (no pragma PRIORITY) will take the default priority given by
windows NT.

The accepter of a rendezvous executes the accept body code in its own
stack. Rendezvous with an empty accept body (for synchronization) does not
cause a context switch.

The main program waits for completion of all tasks dependent upon library
packages before terminating.

Abnormal completion of an aborted task takes place inmediately, except when
the abnormal task is the caller of an entry that is engaged in a
rendezvous, or if it is in the process of activating some tasks. Any such
task becomes abnormally completed as soon as the state in question is
exited.

The message

Deadlock in Ada program

is printed to STANDARD ERROR when the Runtime Executive detects that no
further progress is poisible for any task in the program. The execution of
the program is then abandoned.

10.4 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a
procedure that is not generic and that has no formal parameters.

10.5 Ordering of Compilation Units

The Alsys Windows NT Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language.

Section 11

Limitations

11.1 Compiler Limitations

C-34

APPEN4DIX F OF THE Ada STANDARD

The maximum identifier length is 255 characters.

The maximum line length is 255 characters.

The maximum number of unique identifiers per compilation unit is 2500.

The maximum number of compilation units in a library is 2000.

The maximum number of Ada libraries in a family is 2000.

11.2 Hardware Related Limitations

The maximum amount of data in the heap is limited only by available
memory.

If an unconstrained record type can exceed 8192 bytes, the type is not
permitted (unless constrained) as the element type in the definition of
an array or record type.

A dynamic object bigger than 8192 bytes will be indirectly allocated.
Refer to ALLOCATION parameter in the COMPILE command. (Section 4.2 of
the User's Guide.)

C-35

