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9.1 Executive Summary

The vision group at Rochester spent the year investigating several aspects of parallel and
real-time computer vision with the overall goal of implementing a set of basic sensory-motor
behaviors which could serve as a foundation for more sophisticated abilities, and integrating these
primary behaviors into multi-modal systems. The emphasis was on behaviors which had
relevance to, and could be implemented to work robustly in, a broad range of real-world environ-
ments since these are most likely to be useful as fundamental skills.

This work reflects the position that the way to make progress in computer vision is to inves-
tigate the sensory-motor coupling that is necessary to carry out specific tasks. Once a basic
behavioral repertoire is obtained, its components can be combined and modified to produce sys-
tems of increasing sophistication. This approach depends critically on the identification of
appropriate foundational abilities. Since organisms, including humans, presumably evolved their
present visual sophistication through a process akin to the proposed approach, one obvious source
of inspiration is in the primitive visual behaviors of animals. We have concentrated on two such
areas: gaze control and visual navigation.

This year's active vision work centered around commissioning the Rochester Robot, which
consists of a 3 degree of freedom, two-eyed robot head connected to a Puma 761 arm. The
camera-robot system is connected to a Datacube image processor, among other computational
hardware, which is fast enough to allow real-time visual motion control. The robot has proved to
be fruitful testbed, and a number of behaviors have been implemented, including a vestibulo-
ocular reflex (VOR), vergence, and target tracking.

Research also continued into various theoretical aspects of computer vision including paral-
lel evidence combination, parallel object recognition, principal view analysis, and adaptive Kal-
man filtering.

Individual activities were, briefly, as follows. Paul Chou completed his PhD and is now at
IBM T. J. Watson Research Center. Paul Cooper continued his work on parallel object recogni-
tion and will finish his thesis in 1989. The Rochester Robot was commissioned with much help
from Dave Tilley and Tim Becker. Ray Rimey and Rob Potter with help from Tilley and Tom
Olson implemented several gaze-control mechanisms on the roboL Randal Nelson joined the
faculty and the vision group this fall, coming from the University of Maryland where he worked
on problems in visual navigation. He expects to continue with related work here. Chris Brown's
work in 1988 divides into three phases that correspond with the calendar. From January through
June he concentrated on reconstruction and segmentation algorithms implemented with Markov
Random Fields and data fusion, and to a smaller extent on principle view (or aspect graph) calcu-
lations for non-convex polyhedral scenes; this work culminated in papers and the PhD thesis by
Paul Chou and the paper by Nancy Watts. From June through August he concentrated on robot-
ics and real-time vision, especially commissioning the Rochester Robot and implementing real-
time vision demonstrations; this work is reported in at least three technical reports, one of which
has been submitted for publication. From September through December he was at the University
of Oxford, where he implemented several versions of the Kalman filter for tracking and parameter
estimation, produced a technical report on the subject, implemented a simulator for the kinematic
and (to some degree) control behavior of the Rochester Robot, and has been learning about adap-
tive and optimal control theory.



9.2 Reconstruction and Segmentation in Parallel -- Data Fusion

Integrating disparate sources of information has been recognized as one of the keys to the
success of general purpose vision systems. In the work of P. Chou and C. Brown [Chou87,
Chou8ga, Cooug8b], data fusion is used to accomplish reliable segmentation and reconstruction
in parallel. The computation is formulated as a labeling problem. Local visual observations for
each image entity are reported as label likelihoods. They are combined consistently and
coherently in hierarchically structured label trees with a new, computationally simple procedure.
The pooled label likelihoods are fused with the a priori spatial knowledge encoded as Markov
Random Fields (MRFs). The a posteriori distribution of the labelings are thus derived in a Baye-
sian formalism. A new inference method, called Highest Confidence First (HCF) estimation, is
used to infer a unique labeling from the a posteriori distribution. HCF has the computational
advantages of efficiency and predictable running time. It degrades gracefully, and follows a
least-commitment strategy. ITs results are consistent with observable evidence and a priori
knowledge, and (not least) it out-performs other known methods. The comparative performance
of HCF and other methods has been empirically tested on synthetic and real scenes, using both
intensity and sparse depth data for sensor fusion experiments.

This work addressed four fundamental open questions, and provided an answer for each.

I. There was no formulation of a consistent and coherent scheme of integrating early visual
observations. The contribution here was a label tree that captures increasing levels of
abstraction, and a computationally simple procedure for keeping it updated as information
arrives. Rather than update a "marginal belief" as evidence accumulates, which requires
propagation of local belief to other sites, we maintain joint probability distributions at the
sites by decoupling the notions of external evidence and prior knowledge.

2. This work successfully incorporates a priori spatial knowledge, encoded as potential energy
functions that determine the MRF distribution. The results of the algorithm, i.e. the a pos-
teriori distributions, are derived by combining the pooled external observations and the a
priori information. MRFs are useful for image modeling because the prior knowledge about
spatial dependencies among the entities can often be adequately modeled by considering
neighborhoods that are small. Image entities like pixels are regularly structured and isotro-
pic, which makes the priori distributions easy to formulate. The results are much more
resistant to modeling error than are other methods.

3. Many algorithms for minimizing energy have been used to assign labels via MRFs: all are
either slow or unreliable. The contribution of this work was the HCF algorithm, which is a
quasi-deterministic steepest-descent search in an augmented label space, which includes the
label "uncommitted". The HCF algorithm assigns a label to that image entity which will,
when la&-led, decrease the global energy the most. Thus the algorithm can be implemented
with a priority queue data structure. While this is efficient on a sequential computer, tech-
niques for parallel implementations are of interest.

4. Reconstruction algorithms (e.g. "shape from X") presume the job of segmentation is com-
pleted, and segmentation algorithms would like to use information like that provided by
reconstruction. This work unifies the reconstruction and segmentation processes, using as
an experimental data set intensity and sparse depth. This work requires extending HCF to
deal with discrete and continuous labels (i.e. edge and depth information), and requires the
use of coupled MRFs.

Results from this work are gratifying and have been reported often throughout 1988 in vani-
ous locations. Included here are results for real scenes for finding boundaries (fig. 9.2.1) and for
information fusion (fig. 9.2.2).
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Figure 9.2.1: Boundary Detection Experiment
Data, boundary results, and resulting energy measures for labeling (the lower the better). (a)
Natural lOOx 124 image of four plastic blocks. (b) Thinned and thresholded output of Kirsch
operators. (c) TLR configuration: energy 4785 (d) Stochastic MAP estimate: energy -349. (e)
Stochastic MPM estimate: energy -503. (f) ICM (scan-line visiting order) estimate: energy -503.
(g) lCM (random visiting order) estimate: energy -513. (ii) HCF result: energy -629.
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Figure 9.2.2: Experiments with Stereo Disparity Data
a) 200 by 200 disparity image. b) Scene with projected structured light. c) Three disparity
images. d) Perspective view of the combined disparity image. e) Locations of the disparity meas-
urements overlaid with the TLR estimate of the intensity discontinuities.
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Figure 911 (Continued)
f) Reconstructed disparity map with p =0.95. g) Disparity discontinuities. h) Reconstructed
disparity map with p=0.9. i) Disparity discontinuities.
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9.3 Principal Views

During 1988, Nancy Watts pursued research leading to progress in the difficult problem of
daracgerizig the different views presented to an observer (in either perspective or orthographic
projection) by a non- convex polyhedron. This work was a continuation of her earlier work
which produced an algorithm for computing all views of a convex polyhedron. This research is
still in progress, but has resulted in a paper presented at ICPR [Watt88].

The usual approach to this problem is from the point of view of abstract computational
geometry, in which existence proofs and non- constructive techniques based on them abound.
Watts' work is distinguished by her desire to specify data structures and algorithms that will not
only enumerate views but will allow them to be used in applications. Her earlier work interfaced
nicely with a graphics program that produced sample images from any given view region for con-
vex polyhedra

To stand a chance of success in the violently combinatorial and geometrically complex
situation that arises with non-convex objects, Watts restricted her work to a large class of objects
that includes many every-day manufactured objects. She was able to catalog the incidence
phenomena that take place in the projective process, and use this information to design data
structures and algorithms for characterizing the aspect graph of objects in her class. The main
computational tool is "plane sweeping", which is a way to keep track of regions of 3-space as
their vertices are encountered by a plane sweeping through space.

Both the principal view work and the MRF work are of interest to us for their application to
matching structures. Previous work by Paul Cooper, supported by the NAIC, dealt with structure
matching as a recognition strategy. The work of Watts in the polyhedral domain opens the way
to making complete catalogs of opaque object structure for use by matchers such as that of
Cooper. Matching with a particular view gives information about the orientation, or pose, of the
object matched. The MRF work of Chou can lead to probabilistic and parallel strategies for rela-
tional structure matching if the MRFs are structured non-isotropically. Thus the MRF and prin-
cipal view technologies can be brought together for the eternal vision goals of object recognition
and pose detection.

9.4 Parallel Object Recognition

During 1988 Paul Cooper focussed on his thesis topic which involved the general problem
of parallel object recognition. The particular instance chosen for implementation was the recog-
nition of Tinker Toy objects from images.

One development was a solution to the Tinker Toy matching problem that accommodates
the geometric parameters of the object. That is, an object is recognized not just from its topol-
ogy, but also from the geometric characteristics such as the lengths of the pieces and the angles
between the pieces at the junction. The key to this solution was framing the labeling problem so
that the geometry of the junctions was implicitly encoded. When framed in this manner, the
labeling problem can be solved by the application of the massively parallel constraint satisfaction
network developed earlier by Swain and Cooper [Swai88]. The application of the network to the
Tinker Toy matching problem with geometry is reported in [Coop88b].

Another development was the use of domain specific information to generate optimized
constraint satisfaction nets. Implementing the general form of Swain and Cooper's [Swai88] net-
work to solve Tinker Toy matching proved infeasible due to resource requirements. But a way of
exploiting the characteristics of the Tinker Toy matching domain in order to optimize the general
network was developed, resulting in a smaller network that could be (and was) built. Later, a
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way of specifying domain characteristics for arbitrary domains, was discovered, allowing optim-
ized networks to be built, in an analogous manner, for any domain. This work is described in two
papers by Cooper and Swain [Coop88b, Coop88c].

The final and most important development was a method for matching Tinker Toys that
could incorporate inexact and uncertain information. The crux of this solution was the use of
coupled Markov Random Fields to solve, simultaneously, the segmentation and matching prob-
lems in the Tinker Toy domain. The architecture of the solution is essentially the same as that of
previous work (Coop88a, Coop88b], in that the problem is framed as a labeling problem in the
unit/value connectionist design style. However, instead of adopting discrete constraint satisfac-
tion [Coop88b] or discrete connectionist relaxation [Coop88a] as the formal machinery, Markov
Random Fields (MRFs) are used. With a MRF representation, priors are combined with
hypothesis likelihoods to yield a probability distribution of solutions with rigorous Bayesian
semantics. The result is a scheme that can recognize both occluded objects, and ones obscured by
noisy data.

A final report on the MRF project as well as everything else will be available in the thesis
[Coop891.

9.5 The Rochester Robot

During the summer of 1988 a team at the University of Rochester commissioned the roches-
ter robot, consisting of a Unimate PUMA 761 arm and a three-dof, two-eyed robot head
[Brow88a]. The results of that effort are reported in the technical report, and have to some extent
appeared elsewhere [Brow88b, Ball88, Olso881. Thus this discussion will be brief, simply listing
the accomplishments of the summer. The majority of the implementations of basic visual capa-
bilities mirror the capabilities discussed below in section 9.7; they are basic visual reflexes or
skills that we believe an active vision system can use to advantage as building blocks for
behavior. In every case our goal was to produce behavior in real-time.

9.5.1 Kinematics and Coordinate Systems

Brown and Rimey undertook to decipher the documentation accompanying the robot arm
and to produce a report on its semantics and syntax, and to solve some basic problems of inverse
kinematics and coordinate conversion to support elementary work with the robot. This effort is
documented in [Brow88b].

9.5.2 Communication between Sensing, Cognitive, Control, and Effecting Systems

Much software engineering and production effort was expended to produce basic interfaces
and to program the sensori-motor interfaces. These included the MaxVideo system from Data-
cube, which was the province of Dave Tilley, and the communication between the host Sun com-
puter and the Unimate, which was the province of Tim Becker.

The parallel pipelined MaxVideo system is the heart of our real-time vision capability, and
it is a very complex machine with many dependencies of functionality, timing, etc. We are
developing programming tools, standard configurations, and abstract models that make our life
easier as users.

The robot as delivered is directly controllable only from its terminal, though communica-
tion with other computer systems is possible. Imported software from another institution, to
allow control commands to be sent from the sun, proved inadequate. Tim Becker reengineered
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the entire system, and his code is the basis for our current work (though it will need to be changed
if we acquire a new VME-based controller).

9.5.3 Real-Time Adaptive Tracking

This capability mirrors the "smooth pursuit" system (see 9.7.). The idea here is to extract
an image patch and use it as a real-time correlation template. There are, however, a number of
engineering problems that give the problem a little spice. In our case there were issues of de-
interlacing the video, pre-processing the input to make it more likely that the linear correlation
(implemented by MaxVideo) would be adequate, and of getting the hardware to perform as it
should.

Dave Tilley and Dana Ballard, with occasional kibitzing by Chris Brown and others,
achieved a working system that successfully tracks moving objects. A useful capability we have
not implemented is to re-acquire the correlation template in each image, thus compensating for
small systematic variations of the target's appearance between frames as a consequence of its
motion.

9.5.4 Vergence

This capability implements a gross vergence system (see 9.7). Here vergence is based on a
global disparity calculated between subsampled left and right images. Thus it reflects large-scale
image phenomena, not high-resolution ones (in this it differs from the implementation in 9.7, but
the effect is the same). The work is reported in [Olso88].

The basic image-processing mechanism for implementing the global disparity calculation is
the cepstral filter, which is defined as the fourier transform of the logarithm of the power spec-
trum. This operation is equivalent to correlating the left and right images, using a nonlinear
operation to sharpen the correlation peaks. The computation leads to a measure of global dispar-
ity in image x and y, which is translated into radians of rotation via a small-angle approximation.
Applying the compensating rotation verges the camera.

This system was implemented on the Euclid Digital Signal Processing computer in the
MaxVideo system. It incorporates several engineering niceties, and it currently processes a pair
of 32x32 subsampled images in 40 ms. There are several ideas for further work here, including
using the cepstral filter in a distributed application and also producing a coarse depth map by
local cepstral computations.

9.5.5 Kinetic Depth

The object of this work is to produce a depth map in real time using optic flow produced by
head motions and knowledge about those hcad motions. The work is reported in [Ball88]. The
idea is simply that the retinal flow of a patch of image of a static 3-D scene induced by a head
motion depends on the depth of the scene producing the image patch and upon the head motion.
It also varies with the fixation of the eyes. If the eyes fixate a patch of scene during head motion
(using either tracking or vestibular feedback for example), optic flow is zero at that point. Thus
with fixation kinetic depth provides depth information relative to the fixation point.

The kinetic depth calculation is a combination of simple geometry and the Hom-Shunck
optic flow calculation, and results in an expression that can be implemented in lookup table. It
involves derivatives of image intensity through time and intensity across space. In our hardware
implementation, tracking was implemented by a loop in the MaxVideo that used hardware to
report the (xy) position of over-threshold image pixels. Derivatives were computed by
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convolution on the image-processing boards, and depth was computed by a lookup table. Ideally,
the system produces full-frame depth maps at pixel resolution at frame rates. Actually the
amount of depth information depends on the presence of temporal and spatial derivatives in the
image.

9.5.6 Vestibulo-Ocular Reflex (VOR) and Dynamic Segmentation

The VOR is a reflex that stabilizes images on the retina to compensate for head motion.
Stabilization aids low-level vision by keeping edges sharp, and reducing motion blur. We
noticed that motion blur could contribute positively to image segmentation if it could be used to
blur objects that were NOT to be attended. Thus it ,.- vuld reduce high-frequency image
phenomena such as edges and textures that are distracting to segmentation algorithms.

We implemented the functional equivalent of the VOR using a builtin facility of the VAL-Il
command language, and implemented a motion-blur amplifier in MaxVideo. The results are gra-
tifying -- the moving head causes severe blur of scene components that are not fixated, thus
throwing the fixated objects into strong relief. Of course an object may be approximately fixated
before it is completely recognized or even segmented from an image, on the basis of partial infor-
mation about the volume of 3-space it occupies. This work was done by Chris Brown and Ray
Rimey, on the suggestion of Dana Ballard.

9.5.7 The Integration Workbench

A flexible piece of software was written by Ray Rimey and used to integrate two binocular
stereo algorithms, the VOR-based segmentation tool, and to prove our understanding of the robot
kinematics and coordinate systems. Other capabilities have probably been added to it by now.

The code implements the behavior of first looking around the lab for black blobs in space
(these are squash balls hanging from the ceiling), and then locating them in left and right images
and calculating their 3-D locations. A catalog or map of 3-D blob positions is kept, and used to
perform operations on the balls such as touching them with a probe mounted to the head, or fixat-
ing them while moving and running the motion blur routine on the MaxVideo hardware, thus
separating them even more from the background.

This code represents our first attempt to integrate several visual and motor capabilities in
one program, and it is remarkably smooth and fast. It is the first piece of software we have writ-
ten that dynamicall) reconfigures the connectivity (and thus function) of the MaxVideo system as
a task progresses.

9.4.8 Color vision
Late in 1988 we acquired color vision capability in the form of a miniature color CCD cam-

era which can be mounted on the robot head. One of the first applications was a real-time color
histogrammer which was developed by Rob Potter. The color histogrammer runs on the MaxVi-
deo frame-rate image processing system. It takes input from an RGB color video camera, and
displays a two-dimensional projection (e.g. redness versus blueness) of the three dimensional
color histogram. The histogrammer is useful for developing insights about the way the colors of
a scene change as the illumination changes or as the observer moves about. The histograms
themselves are expected to be useful for solving the color constancy problem and for performing
fast candidate screening in multi-object recognition systems. Future research will involve train-
ing a neural net to determine and discount the illuminant in a scene from the data in the color his-
togram.

9



9.6 Kalman Filtering and Optimal Estimation Experiments

The EKF Utility software package is meant to support various aspects of current research,
and thus is an evolving entity. This repot is meant to give a brief snapshot of our recent work in
implementing and experimenting with Kalman filter techniques. The discussion section presents
opinions on the strengths and weaknesses of optimal estimation techniques in perceptual and con-
trol applications.

Kalman filtering is a form of optimal estimation characterized by recursive (i.e. incremen-
tal) evaluation, an internal model of the dynamics of the system being estimated, and a dynamic
weighting of incoming evidence with ongoing expectation that produces estimates of the state of
the observed system. Neither the technical details of Kalman filtering in general nor those of the
variants we have employed so far will be recapitulated here. This report does provide prose
descriptions, references, and examples. The primary reference is [Bar88].

9.6.1 Experiments
The basic Kalman filter is an iterative loop. Its input is the system measurements; its a

priori information is the system dynamics and noise properties of system and measurement; and
its useful outputs are the innovation (the difference between the predicted and observed meas-
urement, by which the filter's performance may be quantified), and the estimated system state.

Our first application of the Kalman filter was inspired by example 2.4.1 in [Bar88]. Here, a
target (whose state is its position and velocity) undergoes one-dimensional motion at a velocity
that is constant but perturbed by white noise. Measurements yield only positional information,
perturbed by an independent measurement noise process.

The (first order) Extended Kalman Filter (EKF) is a version of the Kalman filter that deals
with nonlinear dynamics or nonlinear measurement equations, or both. It linearizes the problem
around the predicted state (a second-order EKF makes a second-order approximation). The basic
filter control loop still applies, but measurements are predicted using the nonlinear measurement
equation h, and in the calculations for filter gain, state update, and covariance update, the
Jacobean of h is used. Likewise state prediction is accomplished using the nonlinear state equa-
tion f and the state prediction covariance is computed using the Jacobean off. These generaliza-
tions call for extensions to the EKF data structure in which functions (as opposed to matrices) are
attached to the fiter.

The sample application for the EKF was to track a moving target from a moving observer
(see example 3.3.1 in [Bar88]). Again the target position evolves under noisy constant-velocity
conditions. The observer travels on a course parallel to the target, but at a higher velocity, on a
platform whose position is perturbed randomly by some process. The observer measures the
look-down angle to the target in front, which gradually increases as the observer catches the tar-
get. The scalar angular measurement itself is noisy, and is used to estimate the target's state
(position and velocity.)

The difficulty with this application is the increasing equivalent noise variance of the meas-
urement caused by the platform perturbations, the highly leveraged positional uncertainty of the
target due to noisy, low-angle measurements, and the non-linearity of the equations. Our imple-
mentation demonstrates the increasingly bad performance through time that is expected as the
platform perturbations affect the measurement accuracy.

When targets maneuver, i.e. depart from the basic, steady-state, "normal" dynamic
behavior, a tracking filter must respond. To the filter, maneuvering is signaled by a rapid increase
in the normalized innovation. Recommended methods for dealing with this situation include the
following.
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1. Increase the process noise, or certain components of it, attributed to the target.

2. Use several filters with different assumptions in parallel, and combine their outputs proba-
bilistically.

3. Create new filters as needed, putruing a hypothesis tree of parallel hypotheses about target
state. This tree must be pruned rapidly lest its maintenance overwhelm the computational
resources.

4. Model maneuvers as colored (correlated) noise: in particular model target acceleration as a
zero-mean, first-order Markov process (one with exponential autocorrelation).

5. Perform input estimation, in which measurements based on the nonmaneuvering model are
used to detect and estimate the control input applied to the plant dynamics, and that control
input in turn is used to correct the state estimate.

6. Use variable dimension filtering (VD filtering), in which the maneuver is considered part of
the plant dynamics, not noise. Maneuver detection causes the substitution of a different,
higher-order dynamic model for the lower-order, "quiescent" model.

We chose to implement the VD filter, in the light of its relatively low computational cost
and relatively high efficacy (as shown by Bar-Shalom). Our illustrative application was to a tar-
get moving in two dimensions at constant velocity until some time at which it begins constant
acceleration in the same direction. The quiescent filter is simply the constant-velocity target
filter, the maneuvering filter is for a constant acceleration target. The example we implemented
involved a target that proceeds at constant velocity for a time, then begins accelerating. The
simulation demonstrates the significant improvement in tracking that accrues from switching the
filter characteristics when the target maneuvers.

Tracking an object in the presence of spurious measurements (clutter) can be done in
several ways. All assume a validation gate outside of which measurements are ignored: its size is
a function of the desired probability of including the true measurement, and can be derived from
a chi-squared calculation applied to the normalized innovation.

1. The optimal way to track a single target in clutter is the track-splitting approach, in which a
tree of possible tracks is maintained. This can be a combinatorially expensive method.

2. An obvious alternative to treating all measurements, as it were, in parallel, is to pick a sin-
gle candidate measurement and proceed as if it were the right one. The obvious candidate
is the one closest in measurement space (that one with smallest normalized innovation), so
this technique is called the nearest-neighbor standard filter (NNSF). The problem is that
the true measurement can be missed.

3. A third approach is the probabilistic data association filter ), or PDAF. In it, the measure-
ments within the validation gate are probabilistically blended to yield a combined innova-
tion which is input into the Kalman filtering process. The problem is that the result does
not correspond to that of any actual measurement.

General aspects of the behavior of the NNSF and PDAF filters may be predictable on
abstract grounds. For instance we might make the following predictions for uniformly distributed
clutter and high probability of detection (probability that the target is detected at all, either
inside or outside the validation gate.)

I. In the presence of clutter, both the NNSF and PDAF filters are increasingly likely to "lose
track" as time goes on (e.g. start tracking clutter, or have an estimate of target state outside
some fixed bound).

2. With a "non-maneuvering" NNSF filter, low and high clutter levels may be less immedi-
ately harmful than medium levels, since with low clutter the target is likely to be nearest the
predicted state, and with high clutter there is likely to be a clutter point near the predicted
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state. It would seem that at intermediate levels the clutter would be more likely to attract
the filter away from the target.

3. The NNSF filter would seem more likely to make serious errors by tracking clutter since it
does not weigh the evidence. The performance of the PDAF should degrade more grace-
fully as conditions get worse.

We implemented the NNSF and PDAF filters, and used them to provide individual output
tracks, as in the previous work. Also the programs were embedded in Monte Carlo simulations
to provide data over a number of runs in statistically similar situations. The results confirm the
above expectations but also provide some surprises.

We simulated individual tracking runs for situations with uniformly distributed clutter of
increasing density. The actual number of clutter points in the validation gate was determined by
rounding a normal variate of indicated mean (the clutter density) and standard deviation to the
nearest integer, and uniformly distributing the resulting number of clutter points throughout the
validation gate volume. In these runs the volume was close to unity.

In both cases, the basic filter is a constant-velocity (linear) Kalman filter. The plant noise is
modeled by an acceleration component which is white noise of mean 0.0 and variance q=O.2.
The clutter density standard deviation is 0.4. The validation gate size was chosen so that .99 of
the target measurements should fall within it initially (as time goes on this figure seems meaning-
less, since the filter may quite confidently be tracking clutter). The measurement noise has vari-
ance 0.2 for the x state component and 0.1 for the y. The validation gates are rectangular (in gen-
eral parallelepipedal) rather than ellipsoidal. These six figures illustrate indeed that lower clutter
levels can result in worse NNSF performance than higher levels, and that performance of both
filters falls off as time increases.

This work perhaps furnishes a mild surprise, viz. the ability of the PDAF to reacquire the
track. This happens for lower clutter levels, and presumably occurs when the "signal to noise"
ratio is high in the validation gate (e.g. there are few measurements in the validation gate, and at
least one of them is near the actual position of the target and correctly is accorded high weight).
The behavior of the PDAF in high clutter conditions is not as surprising --- it drifts, taking the
average of the random clutter.

We also did statistics to quantify the number of "lost tracks", and the average final error of
the estimates. The average final error function is meant to quantify the filter performance more
than the discrete "lost track" measure, illustrating a linear loss function corresponding to the
intuition that an estimate closer to the truth at the final timestep is better.

The results are perhaps surprising in that by this definition of lost track, the NNSF outper-
forms the PDAF fairly convincingly over a large range. These results are typical of many we
obtained, but it is occasionally possible to engineer situations where the PDAF loses track less
often. At least it seems fair to say that the situation is more complicated than it appears from Fig-
ure 6.1 of [Bar88], which indicates a marked superiority of PDAF along axes whose semantics
are not clear from the text (perhaps the original paper gives more details).

The results are perhaps not surprising in that they accord with our prediction of graceful
degradation of the PDAF in terms of the average error metric, using which it convincingly out-
performs the NNSF. The higher sensitivity of NNSF to intermediate clutter leve!s is again
demonstrated.
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9.62 Conclusions
Optimal estimation techniques have at least three distinct roles to play in real-time sensori-

motor systems.

1. They can be used as the basic paradigm for estimating the state of systems internal to the
observer. Estimating external states is akin to perception.

2. They can be used to estimate the state of sytems internal to the observer. Estimating inter-
nal state involves aspects of proprioception (using information from internal sensors), but
can also involve sensing the outside world, especially to determine dynamic observer
parameters such as location and velocity.

3. They can be used as low-level utilities in service of several aspects of perception or action.
The aim of our work is to examine the characteristics of optimal estimation algorithms,

including varieties of the Kalman filter, relative to the demands of a paradigm for perception and
internal state estimation. The conclusion is that algorithms of the Kalman filter style are better
matched to roles in internal state estimation than to paradigms of perception. Their performance
as technical utilities to subserve basic sensorimotor tasks must be evaluated on a case-by-case
basis.

One important role of perception is to cope with the unexpected. This seeming truism is
often ignored, and has deep implications for computational perceptual models. In particular it
implies that top-down control strategies are inadequate. Top-down (expectation-driven,
hypothesis-verification) methods cope with the inherent underdetermined and computationally
intensive nature of perception by using a priori knowledge to constrain the space of interpreta-
tions for perceptual data. A historic example is Shirai's polyhedral edge-following program,
which "feels" its way around a polyhedral scene efficiently tracking edges it expects, but ignoring
those arising from phenomena (such as holes in faces) not in its model of the polyhedral domain.

The opposite control strategy is bottom-up , or data-driven: Here the style is often a fixed
order of processing of input data (say by successive levels of feature detection and extraction)
leading to increasingly abstract levels of description of the input. As technology improves it is
becoming possible to achieve the massive data-processing effort in real time, and the practical
considerations that have partially motivated the top-down approach are vanishing (see, e.g.
[Brow88a).

In one sense, the Kalman filter is an example of expectation-driven perception. In particu-
lar, the Kalman filter by definition explicitly incorporates a model of the dynamics of the plant
producing the data to be interpreted. Also, faithful models of noise processes in the plant and
sensor are needed if the filter is to produce optimal results. The strength of the Y iman filter for
estimation is that it has these models at its disposal, but requiring them limits the sorts of percep-
tual jobs that the Kalman filter can reasonably be expected to perform. The problems with a strict
top-down approach can be mitigated to some extent, and at some cost, by such measures as run-
ning several different filters embodying different assumptions in parallel, switching between
filters when lack of fit motivates such a switch, allowing the filter to estimate control inputs to the
plant, etc., as we have seen in earlier sections.

Despite such seemingly sophisticated adaptive capabilities, the extensive literature on Kal-
man filtering applications reveals that the perceptual tasks most often attempted are those in
which the plant (often target ) follows well-known and rather simple (e.g. ballistic) dynamic
laws, and in which the target is modeled as a point in space. The typical perceptual task is track-
ing the target, perhaps as it maneuvers or is immersed in "clutter" (false targets). Thus the per-
ceptual task consists of the twofold problem of linking measurements together into tracks and
ignoring spurious data. In the tracking literature this is known as the data association problem.
The basic Kalman fiter mechanism provides help in the way of quantified measures of
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uncertainty, surprise, information, expectation, etc. but provides nothing directly to cope with the
familiar problems of controlling search in interpretation space.

Thus we see that in its role in the data association problem, which is known in computer
vision as the segmentation problem, the Kalman filter operates in a local and bottom-up way,
providing incremental datapoints to a higher-level algorithm responsible for grouping the points
into coherent, semantically meaningful sets. As a result the control mechanisms in perceptual
algorithms that manage the filters have a character in computer vision applications. The track-
splitting, NNSF, PDAF, etc. approaches all have analogs in the edge-linking problem in computer
vision, for example.

Finally, even in the constrained perceptual tasks to which they are applied, Optimal estima-
tion schemes need a rich flow of data. Kalman filters in the literature often take on the order of
tens of measurements to converge.

9.7 Robot Head and Gaze Control

Behaving, actively intelligent systems, whether mechanical or biological, must manage
their computational and physical resources in appropriate ways in order to survive and to accom-
plish tasks. At Rochester we are building an integrated actively intelligent system that incor-
porates abstract reasoning (planning), sensing, and acting. The "active vision" paradigm we shall
exploit incorporates the following ideas.

1. A hierarchy of control, so that the highest cognitive levels can reason in terms of "what"
they want done rather than "how" to do it in detail. This hierarchy should extend
throughout the system.

2. At the lower levels, the control hierarchy ends with quasi-reflexive, visual and motor capa-
bilities or "skills". These capabilities are cooperative but to some extent independently con-
trollable. Some are always running, and they form the building blocks on which more com-
plex behavior is built. Examples are nulling out retinal slip to minimize motion blur,
redirecting gaze as a result of attentional shifts, etc.

3. Part of the job of low-level visual capabilities is to present perceptual data, such as flow
fields or depth maps, to higher-level visual processes. These processes can often benefit
from knowledge of self-initiated motion on the part of the sensing entity. They can often be
built on the low-level control capabilities.

The work undertaken in the latter part of 1988 was directed at the control aspects of the
lower-level visual processes. In the work reported above in section 9.5, certain of these control
capabilities (e.g. tracking) were implemented and used as the foundation of real-time visual
skills. For instance, the ability to track was used in an algorithm that computed relative depth at
frame rates [Ball88]. In the work reported below, a simulation of the robot head and eyes is used
to examine the effects of different styles of interaction between certain control capabilities that
are found in primates. This report simply outlines the simulation and indicates the results of the
most simple possible interaction between the control loops -- no interaction at all until their out-
puts are summed at the effectors.

The simulation software is based on the robot kinematics derived over the summer
[Brow88b], and provides a flexible tool for investigating the interaction of different ontrol philo-
sophies, methods, and algorithms. As of now the simulation reflects the true degree of dynamic
control we can exercise over the robot: not very much. We hope, as funding permits, to imple-
ment more sophisticated controllers that give us more precise control over the robot. At that
point the value of a simulator will be questionable, since it may be easier to use the device
directly rather than try to simulate it at the required level of detail.
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9.7.1 The Mechanism and the Imaging
The simulated mechanism is massless; this mirrors the effective behavior of our current

hardware system when viewed from its high-level control operations. Its geometry captures all
the essentials of the head and eye system at the U. Rochester. The robot arm is not modeled:
rather the model incorporates a single head that can be positioned arbitrarily in space (six
degrees of freedom: three in position, three in orientation). The model incorporates a tilt capabil-
ity that affects both cameras, and a separate pan capability for each camera. The geometry of the
offsets of the various axes in these links are variable, and incorporate the geometrical complexity
of the real system. The independent control of the camera pans allows us to model modem
theories of saccadic and vergence systems; heads with mechanical vergence capability (such as
those at Harvard and Boston University) must use older models of these systems.

The system parameters assumed to controllable correspond to one set of VAL robot control
parameters (corresponding to the VAL "tool coordinate system") for the head: its X,YZ position
and A.B.C orientation. Control over the natural pans (left and right) and tilt (common) of the
cameras is also assumed.

The camera models incorporate point projection with fixed focal length, as well as a
"foveal-peripheral" distinction by which the location of imaged points is less certain, outside a
small foveal region, depending on the off-axis angle of the target being imaged. The target itself
is a single point in 3-D space, moving under dynamical laws. The experiments below were car-
ried out with the target point in elliptical orbit about an invisible "black hole" -- thus the target
followed an elliptical path.

It is assumed that the imaging system knows the distance to the target (in real life, this dis-
tance may be derived from binocular stereo, a priori knowledge, any of a number of monocular
distance cues, kinetic depth calculations, etc.). It is assumed that, for each eye, the instantaneous
retinal velocity of the target is known (i.e. the vector difference between its position in the current
image and its position in the last image). Other than that, the system only knows the left and
right image (x,y) location of the target's image. Of course the target's image position and hence
image velocity is perturbed by uncertainties arising from the blurriness of peripheral vision,
should the target not be foveated.

9.7.2 The Control Loops

The basic control loops that manage the system are inspired by the primate visual system.
They include the following capabilities. Although not described in detail here, much is known
about these control systems in animals and, to some extent, in man. Two good references are
[Bert85, Pete88].

It is worth saying that the implementation of each of these control loops requires only a
page of C code or so, and that at this stage most assumptions and technical decisions have been
for the sake of simplicity rather than for the sake of faithfully modeling known biological systems
or optimal mechanical systems. One of the major design goals, however, is that the system have
enough richness to incorporate more detailed control models.

Most of the loops have several parameters, such as the proportional, integral, and derivative
constants of their controllers, and their delays and latencies. Delay here means the amount of
time after a commanded motion before it commences. This is often called latency in the litera-
ture. Latency refers to the time required to execute a command: it is a time constant that indi-
cates both how soon another command can be accepted and how long the command will be
affecting the controlled (velocity) variables. In the robot system the delay corresponds to how
long it takes the mechanical system to respond to a motion ordered from a high software level,
and the latency reflects how long it takes to complete a command. I assume that "sensors"
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(actually robot and eye-control motor states read from their controllers) are available to the sys-

tem immediately, without delay, and thus reflect the "true" state of the world.

There are five separate control systems.

1. Saccade:
This is a fast slewing of cameras to point in commanded direction, during which visual pro-
cessing is usually considered turned off. The command to the eyes is modeled as open
loop, though there are such things as "secondary" saccades that correct errors in initial sac-
cades. The saccadic system tries to foveate the target and to match eye rotations to the tar-
get velocity so as to be tracking the target as soon as the saccade is completed. Current
opinion is that the saccadic system is aware of the 3-D location of the target, not just the
location of ifs retinal image. In the implementation used for the experiments below, it
operates with retinal locations and velocities, not 3-D locations or distance. The left eye is
dominant in the system. The saccade aims to center the target image on the fovea of the left
eye; the right eye is panned by the same amount (and of course tilted by the same amount
for mechanical reasons). Thus the saccade maintains the current vergence angle. It is
implemented as a constant-speed slewing of all three pan and tilt axes, with one of them
attaining a system constant maximum velocity. The slewing continues until the target
should be foveated (it my not be due to peripheral blurring), at which time the system is
left with eye velocities that match the perceived target motion before the saccade. The sac-
cadic system is characterized by its maximum velocity and its delay.

2. Smooth Pursuit:
The eyes track a moving target, using retinal slip as a control input. The error here is target
position in each eye, (which should be (0,0)), and the commands (here sent to both eyes
independently: neither eye is dominant) are pan and tilt velocities. The pursuit system has
delay, latency, and PID control.

3. Vergence:
The vergence system measures disparity between the target position in the left and right
eyes, and pans the right eye to reduce it. The vergence system has delay, latency, and PID
control.

4. Vestibulo-Ocular System:
The VOR system is open loop in the sense that its inputs come from the head positioning
system and its outputs go to the eye positioning system. Its purpose is to stabilize eyes
against head motion, and its inputs are thus derivatives of head position (XYZ velocities,
ABC angular velocities). It also uses the distance of the target, since the appropriate
response to a close target is different from that to a far target. Actually the VOR should be
implemented by inverse kinematics, to which the current implementation (and presumably
the neural one) is an approximation. Its output is commands to the pans and tilt controls to
null out the apparent target motion caused by head motion. It is characterized by delay,
latency, and open loop proportional gain.

5. Platform Compensation:
This system is a head-control, not gaze-control system. These systems are known to
interact in subtle and complex ways, but this particular reflex simply attempts to keep the
eyes "centered in the head", so that the camera pans or tilts are kept within "comfortable"
mechanical ranges. The "comfort function" is a nonlinear one x/((x-xmax)Y2), where x is
either the average pan angle or the tilt angle, and in either case xmax is the physically
imposed limit of the system. This reflex is open loop (eye position affects head position),
with delay, latency, and open loop proportional gain.

The system operates in two modes: smooth pursuit and saccade. During saccades, the ver-
gence and saccade reflexes are running. While this particular disparity-driven implementation of
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vergence is presumably not implemented by primates, they do have the "near triad" reflex which
includes both vergence and pupil diameter reduction in saccades between near and far targets.
My inclusion of the vergence during saccades is a way to implement 2/3 of the near triad. In
smooth pursuit mode, the VOR, platform compensatio pursuit, and vergence systems are run-

The delays and latencies are implemented with a command pipeline, in which the com-
manded changes in velocities are entered opposite the time in the future they are to take effect.
Thme is discretized to some level. Delays result in later entry of commands. Latencies are
implemented by dividing the commanded change between as many discrete time periods as
necessary to spread the effect over the latency. The pipeline thus is indexed by (future) time
instant, and it has entries that hold the commanded velocities for the six head degrees of freedom
and three camera degrees of freedom. Each instant also has an entry corresponding to its mode
(saccadic or pursuit). The pipeline has finite length, and is in fact implemented as a ring buffer.

For the experiments carried out below, the combination of control effects takes place when
a reflex (say VOR) increments or decrements a velocity term in the pipeline. The increment or
decrement is made to the current value which may be nonzero because of input from another
reflex (say tracking). Thus the control commands are summed in the simplest possible way, as if
each control system's output was a D.C. voltage and all the outputs were soldered together at the
effector motor's input.

The saccadic system shuts down the pursuit system in the sense that, for the duration of the
saccade (which is computed from the image distance it must move the fovea and the maximum
velocity it can move), all other commands in the pipeline ame overwritten, and the mode is
changed to "saccade". Further commands trying to affect these instants are ignored. If the sys-
tem is in pursuit mode, command velocities are summed as mentioned in the previous paragraph.
The system is diagramed in the flow chart shown in figure 9.7.1.

9.7.3 An Experiment on Control Interactions

The following sequence of graphs illustrates the cumulative effect of adding control capa-
bilities in the manner outlined above: they operate independently and their outputs are simply
summed at the effectors. For this run the delays and latencies were both set to constant low
values. Large delays would have a very serious effect on the performance of the system, and is a
serious issue. In the work at Harvard it is addressed by positive feedback, which reduces the
delay effects (and is also good for putting actions into "head frame" instead of "retinal frame").

In each case, the system is tracking (or acquiring and tracking) a target moving around in an
ellipse whose plane is parallel to the image plane. Each graph plots tracking error in x and y as a
function of time for the left and right eye. Since the goal is to foveate the target at (0,0), the
graphs also show the image coordinates of the target through time. There are actually four graphs
per figure, but often the left and right y errors are identical because both cameras have the same
tilt. Basically, figures 9.7.2 - 9.7.7 illustrate the increasingly effective final behavior of the sys-
tem as reflexes are added.

9.7.4 Learning and Adaptation

The simulated system can support other relevant aspects of the control problem, including
the important one of adapting to changes in the plant. The one application here that I have imple-
mented involves using "the MIT rule", which is a gradient descent method similar to back-
propagation learning in neural nets, to learn pait of the robot head geometry. In a way this sys-
tem acts like another control system, which inputs the discrepancies between expected and
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Figure 9J.1: The five control loops in the robot head simulation.
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Figure 9.7.2: Tracking only
Cameras are assuming mechanically impossible pans and tilts for which I am not checking expli-
citly. If I were modeling maximum excursion, tracking error would at some point rapidly
increase as they cameras hit their stops.

TRACKING ERROR vs TIME: Compemtllon without VOR

0.3

0.2

0.1

-0.1

-0.2

-0.3

Figure 9.7.3: Head compensation added
To keep the eyes centered in the head, this reflex moves the head in the same direction the eyes

are moving. Unfortunately in this case such a move amplifies the tracking corrections, overcom-
pensates, and renders the system unstable.
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TRACKING ERROR vs TIME: Compensation with VOR
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Figure 9.7A: VOR added
VOR's function is to compensate for head motion. In this case the head motion was engendered
by the head compensation reflex, which itself was driven by the tracking motions of the eyes.
VOR effectively stabilizes the system, which may now be imagined as moving both its eyes and
head to track the object.

SACCADE + TRACKING vs TIME: Moving Target. L Eye Dominant
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Figure 9.7.5:
Here the system makes an initial saccade to place the target on the fovea and match its velocity.
The left eye dominance and the implementation that preserves vergence during saccades (the R
eye gets the same pan velocity signal) means that the right eye is slewed off target as the left eye
is slewed on target
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SACCADE + TRACKING vs TIME: Moving Target. Peripheral Blur
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Figure 9.7.6:
For this experiment the effects of peripheral blurring were increased, so the saccade is actually

made to an inaccurate location.

S-A CADE + TRACKING+VERGENCE: Moving Target. Peripheral Blur
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Figure 9.7.7:

Here, conditions were as for Fig. 9.5.6 but the vergence system was turned on. It tries to drive
the target image's disparity between the left and right eyes to zero, and results in improved per-
formance.
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observed target motions given eye motions, and outputs are parameters to the modeled plant (in
this case, lengths of links in the head kinematic chain).

9.8 Visual Navigation

In fall 1988 Randal Nelson joined the faculty and the vision group at Rochester having
completed his PhD at the University of Maryland. The dissertation research involved the descrip-
tion and implementation of a set of foundational abilities for visual navigation. In particular,
visual methods were described for performing passive navigation, obstacle avoidance, and hom-
ing in general, real-world environments [Nels88d]. This work fits nicely within the framework of
active vision which the group is currently pursuing and, since he intends to continue work along
similar lines, a summary of the dissertation results follows.

Passive navigation is a process by which a system obtains information about its rotation and
translational motion. This information is useful in navigation to stabilize and direct the motion of
the system. Visual methods attempt to obtain the motion parameters from a time-series of images
[Gibs5O, Praz80, Horn8l, Hild83, Lawt83, Long84, Koen86]. The problem is hard because solu-
tion methods tend to be extremely sensitive to small errors in the input, while accurate image
flow or point correspondence information is difficult to obtain [Tsai8l, Adiv85, Anan85, Nage86,
Verr87]. The dissertation shows how accurate motion parameters can be obtained from inaccu-
rate flow data by utilizing image information over the entire visual sphere [Nels88a]. Essentially
global topological constraints are used to stabilize the process. It is interesting to note that such
spherical images are available to flying insects such as bees and dragonflies, so there is a biologi-
cal precedent

Obstacle avoidance refers to the ability of a system to move about in the environment
without striking the objects in it. This is a fundamental navigational behavior. It is shown that
computation of divergence-like properties of the visual flow field provides qualitative cues which
are invariant under rotation of the system and which are sufficient to permit the system to avoid
collisions. The method is applicable in general environments, the only requirement being the
presence of sufficient visual texture to allow the image flow to be roughly approximated. Empiri-
cal measurements show that sufficient texture is present in ordinary objects such as stones, trees,
and faces. The method was implemented and used successfully to control the motion of a camera
in various environments.

Homing is the process by which an autonomous system guides itself to a particular location
on the basis of sensory input. This is a slightly more sophisticated, but still fundamental naviga-
tional ability. In the dissertation, a method of visual homing using an associative memory
[Hint8l, Ack185, Rume86, Smol86,] based on a simple pattern classifier is described [Nels88c].
Homing is accomplished without the use of an explicit world model by utilizing direct associa-
tions between learned visual patterns and system motor commands. The technique is analyzed in
terms of a pattern space and conditions obtained which allow the system performance to be
predicted on the basis of statistical measurements on the environment. The method was imple-
mented and used to guide a robot-mounted camera in a three-dimensional environment.
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