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1. Introduction

This thesis examines the performance of coherent phase-shift-keyed (PSK)

direct-sequence spread-spectrum (DS/SS) communications in a specular mul-

tipath fading environment. In a previous discussion of this particular topic

[1], the authors derived an expression for the average probability of error of

a correlation receiver, based on the characteristic-function of the multipath

interference, given an arbitrary number of paths with both deterministic or

random gain coefficients. The channel model considered here is a direct

extension of that presented in [1] with some important constraints and mod-

ifications. First, there always exists a nonfaded component in the zeroth

path signal, i.e., the direct path plus multipath interference with relatively

small delay in comparison to the direct path. Second, the range of the path

delays is restricted such that intersymbol interference is due to the same pair

of adjacent data bits for each of the reflected paths (case(i)-in [1]). Third,

for the sake of brevity, only deterministic gain coefficients are considered.

Finally, the assumption that the path delay must be at least one chip period

is removed and consideration is given to delays less than a chip.

As in [1], the average probability of error is approximated using the

characteristic-function method. Specifically, the characteristic function of

the multipath interference is numerically integrated using Simpson's method.

This technique is extended also to compute the probability mass function of

the receiver output.



The thesis is presented in the following fashion. Section 2 discusses the

system and channel models. Section 3 provides a derivational analysis of

the average probability of error for any desired range of path delays withirL

model constraints. In Section 4, an analysis is provided for the performance

of channel coding applications. Then, the models are numerically evaluated

for the PSK DS/SS system in Section 5. Finally, the conclusions of these

results are presented in Section 6. Following the text are two appendices.

Appendix A links the characteristic-function method to an expression for

the average probability of error. Appendix B contains the computer code

used to produce the numerical results.
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2. System and Channel Models

Transmitter

As presented in [1]. a channel user starts with a data signal b(t). a se-

quence of rectangular pulses. each of duration T . where the l-th pulse has

amplitude b, for IT < t < (I + 1)T. The data (b1 ) is viewed as a sequence of

mutually independent random variables, each with equal probability of being

+1 or -1. The signal is then spread by the waveform x It). given by

x (t) = x it.,!(t - IT,). IT-:< t< (1'+1)T,(

where xi is the binary signature sequence and L.,(s) is a rectangular chip

waveform satisfying tv(s) = 1 for 0 < s < T, and u'(s) = 0 otherwise [2].

T. represents the chip duration for the transmitted signal. The processing

gain N is defined as the ratio between the period of the data signal and the

chipping period: i.e.. N = TIT,. Thus. the signature sequence (xi) has a

period of N also. Considering the transmitter power P and the phase angle

of the PSK modulator 0. the created spread-spectrum signal u(t) can be

expressed as

u(t) = v'/Pb(t)x(t)exp(jO). (2)

Thus. with carrier frequency fc . the transmitted signal for a PSK DS/SS

system is given by

s(t) = Re[u(t)exp(j2-rfct)]. (3)

:3



Channel

The output signal y(t) produced by the specular multipath channel con-

sists of one direct path and L delayed paths and may be modeled as the sum

of attenuated. phase-shifted. and delayed versions of the input signal s(t).

Thus, as in [1], it may be expressed as

L

y(t) = E Re{gu(t- r-,)exp[j2f:(t - -r)]} (4)

where the complex gain coefficients g, are given as

go = 3 +- 0A0 exp(j9O) and gL = ?y, An exp(j9,O). 1 < n < L (5)

for the nth delayed path. Here. ýA,• and 0,, represent the attenuation and

phase shift incurred from the reflection of the delayed paths. respectively.

while -r, is the nth path delay relative to the zeroth. or direct path., assuming

that r0 = 0. The parameter 3 signifies the gain coefficient for the nonfaded

component of the direct path. Throughout the analysis. it is assumed that

3 = 1 and the random variables A, are normalized to have second-order

moments equal to 1. Also. -2, may be interpreted as the relative power of

the nth delayed path as compared to the nonfaded component of the direct

path.

As previously mentioned, the zeroth channel consists of a direct path

plus the combination of all multipath interference with small relative de-

lays in comparison. The nth component channel (n > 0) then represents

multipath interference combinations with relative delay of approximately

4



r. The variables A,. 0,. and -,, are modeled as mutually independent

random vectors with mutually independent components as well. That is.

A = (A.4..42...AL). 9 = (09 . . . L). and 7 = krl.72 ..... 7L). It is also

assumed that these quantities are independent of Ao and 00.

In general. the range of the path delays is 0 < 7,, < T. To allow resolvable

demodulation of the transmitted signal. this rang, is normally limited such

that T_ < -, < T - T_. That is. the delays are at least one chipping period

away from zero, to provide necessary receiver rejection of the delayed paths.

and at least one chipping period away from T. so that the receiver will

not demodulate the delayed paths as direct paths with one-period delay.

However. for analytical purposes, this paper considers situations in which

0 < r-, _< T - T,: the upper limit is preserved to model practical applications.

Receiver

The output of the channel y(t) is combined with additive white Gaussian

noise n(t) ,- N (0. •), producing the received signal r(t). The receiver, in

turn. correlates this signal with 2/Tx(t) cos(27rft) and integrates from 0

to T. Thus. the receiver output becomes

r27th r(t)x(t) cos(2i' It)dt. (6)

Making the necessary substitutions. (6) becomes

5



171{0~ + V/7~(f b(t )a2 (t)[3 cos(2irf~t) + TOAo cos(27rf~t + Oo)] cos(2w'7-fct)dt

+ -1 T -,,.A,4b(t - - 7,)x(t) cos[2irf,(t -7) + 0,1] cos(2irfct)dt

where qo -- N (0, N.T). Because f, is much larger than lIT in practical

systems, the double-frequency terms above may be ignored. Thus, the inte-

grated output becomes

Z - 77{ + [bo (3 + oAocos(9o))jT dt

L T 1
+ 1 -i rt)x(t- -,.)x(t)cos(on)dt (7)

n=1 foI

where 3, = On - 2-rfr,. Both On and 00 are assumed to be uniformly

distributed in [0, 27r]. Similarly, because of the size of f, in comparison to 7,,

the modulo-2-, form for o,. -, U[0, 27r]. Defining the multipath interference

component for the zeroth path F0 = A0 b0 cos(Oo) and splitting the range of

the integrand into the ranges [0, ,3 and [r7, T], (7) becomes

770 + (bo +() cos(o,.) b(t- -,.)x(t - -,.)x(t)dt

nIT b(t - -,)x(t - rn)x(t)dt)]}

From [3]. the continuous partial autocorrelation functions of x(t) are defined

by

6



R j x(t - m-,)x(t)dt. 0 < 7, < T and ( ,) = R(T -r,).

Thus, making these substitutions,

z=0 ,+ F (3bo+-loFo)T -+,4 co (o)(_IS)(y)+boi. i

The L other multipath interference components are given by

F,ý = T-1 An[biRz(Tr,n) + bo0](7,)]cos(o,). (9)

Thus, it follows from (8),

Z = {7o + (3bo + yoFo)T + Y, FlT}.

Finally, defining Eb = PT as the energy per information bit of the transmit-

ted signal, the integrated output reduces to

L
Z = 7, + V•E 3bob. + _ Fn) (10)

n=O

where r7' - N(0, v).

7



3. Average Probability of Error

The method applied in evaluating the average probability of error for the

DS/SS system is the charact, -stic-function method. as employed in [1]. Here.

the approximation is based on the integration of the characteristic-functions

of the noise and multipath interference components of the correlated receiver.

The analysis which follows considers deterministic gain coefficients g,.

The gain coefficients are normalized such that 3 = 1 and A, does actually

equal 1 for 0 < n < L. From (10), define the following:

0= rI Lb (11)

LE -),.F,. (12)
n=O

This., in turn, implies that

z = V6(? + b + I). (13)

Since the decision of the receiver is based on comparing the output Z with a

zero threshold, the average probability of error conditioned on bo is written

as

-P(Z < 01bo = +1)+ -P(z > 01bo -1)
[e7= - + 1 -1)+ P(77 + I > 1)]

I- 1 P(-1 <77+ I•< (14)
28

8



As demonstrated in Appendix A, this expression becomes

Pe = Q(o"-') + - sinc(u/7r)o,,(u)[1 - ol(u)]du (15)

where Q() f exp(-t 2/2)dt, c,2 = (2E6/No)- 1 is the variance of 77.

and o. and o, are the respective characteristic functions of r7 and I. Since 77

is a Gaussian random variable, its characteristic function is given by

0,()= exp j - I u2a2)

= exp (.u2a2) (16)

recalling that ri is zero mean. The characteristic function of the interference

sum I, can be expressed as the product

I = 00(U)0(u) (17)

where ;0o(u) represents the characteristic function of the direct-path faded

component -yoFo and O(u) denotes the characteristic function-for the inter-

ference components EL=.1 -yF,•. For the direct-path,

0o(u) = E[exp(j'u-yoFo)]

_ 1 27 exp(ju-yobo cos O)dO

_ 1 2 cos(u -yobo cos O)dO

_ 2 j"/2cos( you cos O)dO (18)
7r 10r

where the sine component of the complex exponential integrates to zero.

From (10), there are two cases to consider in evaluating o(u): b-1 = b0 and

9



b-1 0 bo, both of which are equally likely to occur. Also. as opposed to

the path delay restriction of [1]. r is assumed to be uniformly distributed in

[M1T, M2T,], where M1 and A12 are integers and I-A < .112. Thus.

L L(U) E exp + E exp ,, F, (b- bo)bo)=1) IIex n=
2 i L \ i
= I E[exp(ju',FF(b_- = bo))] + - 11 E [expj uF,(b- I o)

= 2 r=

= iHMj 1T exp [jinf (R.(7)±R+ ( Cr))Tjdrdo

L -M 2 Tc
± r.fMj exp Uýn R (-R~r) + R?,(-r) cos 1 d7-do (19)

where the constant M is defined by

1
M =

27((M2 - AM)T,

Because I has symmetric distribution. the characteristic functions oo and o

must be real and even; i.e., 6(u) = 0(-u). The autocorrelation functions R.

and R?. are defined in [3] in terms of the discrete aperiodic autocorrelation

function C, of the signature sequence (xi). and the chip waveform partial

autocorrelation functions Rv,, and i.,. That is.

R,(7) = CX(N - l),(-r - IT,) + C,(N - I - i)R,.(' - lT)

and

R},('-) = C.(l)~k,(T - IlT) + C,(l + 1)R,,(7 - flTý)

10



where I denotes the integer part of r/T,. R.(s) = ffc (t),(t - s)dt. and

R,,(s) = ffc v(t)v(t + T, - s)dt for 0 < s < T,. Thus. (19) becomes

=t 1 2L j2 fM 2 Trcostrln(C'(\¥-1- l) + C:(1+ l))Rv(T- I1c)

M cos(u-(r+[(C-C.(N - I - 1) + Cc(l + 1))R,,-r - IT,)

n=l d J0 m TC

Cos 0+ dd

S +( c-C( - 1) + C((-)) (I- - +To) +S-Idrdo.

From [4], the periodic (even) and odd autocorrelation functions for the chip

waveform are respectively defined by

() = C•(I) + C,(l- N), 0 < -< N1- 1

and

6•(l) = C.()-C,(l- N), 0<l<N-1.

Making these substitutions,

[- [ M 2 Tc ' +n, - + -- do

+ ,o(I + 1)Rco7- -- IT) + 9.(l)k(7- - IT,) dr&&

for 0 < I < N - 2. Considering the variable substitution s = 7 - IT,,

11



(u) - 2 L M 2 s T. Co dsd

J • M cos U-,, +)R,(s) +u,- T,.2=1 I=Mj

- 21- 4M j27f 2 [ T, cos {-U, [b-(l + 1)R,(s) + cos _ } dsdo

+ l 1
L 4 M 2 -1 /2 cos uT,7,. )R s . 1 S o ds do

"= {fl[1 [ -M f( ±11.O 2) + - f(•nu:l.Ox)} (20)

where
fv 1h Lcos {v [h- , + 1)Ro(s) + h(l s)R +(s])J CO} ddo.- (21)

For the chip waveform described in (1), the partial autocorrelation functions

become R•(s) = s and Re(s) = Tc- s, 0 < s < T0 [2]. So. for the BPSK

system, the function in (21) becomes

f~: , ) --_ cos {v[h(l + 1)s + h(l)(Tc - .s)] • dsdo

2 (4/2 sin [vh(l + 1)T•T-1 coso]- sin [vh(l)T•T-1 cos o]d.- 7+T• Jo v[h(l + 1)- h(l)4M E -cos d.

Applying the trigonometric identity

sin(2A) - sin(2B) = 2 sin(A - B) cos(A + B),

this expression reduces to

12



1f.) = 2 2 sin {v [h(1 + 1) - h(l)] coo cos {, [h (1 + 1) + h(1)] I-°}f(vl.'h) = _ - 2N, do
14 v[h(l+ 1)-h(l)] "do

2 f"sinc v[h(lI+ 1) - h(l)] cos jcos t [h(l + 1) + h(l)] c do (22)7 " ,. 2-YJ

which is the form obtained in (14) of [2].

For comparative analysis, the Gaussian approximation of the probability

of error is derived by applying the average signal-to-noise ratio at the receiver

output when there is no power in the faded component of the zeroth path

(i.e.. yo = 0). As in [3], SNRo is defined by

SNRo = E[Zjbo = +l]{Var[Zjbo =+]}-'I'

L -1/2

_

= Vfj Var(r7') + EbVar [YnFnJ . (23)

Since E _ - = 0, Var n= ,• 2yE(F), where

E(Fn) = E{T-2 [b_,R(r,() + R•(r)] 2 cos2(0b)}

= T- 2 E{[biR•(-r) + R(r)] 2 }
2

-2 1TE[Rx X

1_ T-2 _M2 [LR'(7) + Rk-()]d,.
=22 M 2 TMi M/T• JMI Tc

Making this substitution, (23) becomes

13



L %M2 TC
SýN'Ro V/E6 ITT~M -ý M1 ) $I 1,I'Vl + E6 (7jd

2 T T (- 2- n= ,T C [R- 1/2

.'V I L IfT

= A Ma)=2 j [R2(r)+ +•(r)]dr•

~2Eb+2 T2Tc AlVl JM1 Tc

- 0 + - -'1 L M, f2 RTe-1/ 
2

I\No _ ý1 1] iE _22 7) + 2 -~ d(24)

Substituting the expressions for R. and R. the sum within the integral

becomes

R�-(7) + R(.r) = [C,(N - - lro) + CZ(N - 1- 1)R,(T -

+- lr) + C.(l + 1)R&(7 - IT)],

= c- lT)IC2(N - 1) + C2(l)j

+2R4(7- IT)Rn,(r - IT)[C,(N - I)C,(N - I - 1) + C,(1)C.(l + 1)]

+'(,r- lT,)[C,(N - I - 1) + C.(l + 1)].

Again, letting s = - IT, and realizing the expressions for R•(s) and R,(s),

]M2Tc [R2(7) + ±R?()]dr

E f{(T. - s) ' [C.(N - 1) + C2(1)] + 2(T. - s)(s)[C.(N 1 )C. (N I 1)
1=M 1 0

+C.(1)Cx(l + 1)] + s2 [C(N - I - 1) + C2(l + 1)]}

= -1 {[C(,N - 1) + Cx2(l)(T: - S)3

+2[C,(N - l)C,(N - I - 1) + C.(l)C.(l + 1)] s 3

14



+~ [_(xl 1) + C2(1 + 1)]3T o
+ }

{2 (i-) [C,(N -)C,(N 1) + C,(l)C(1 + 1)]
+ [c-(. I - 1) + C2(l + 1)+ +2- 1)+

Thus, the signal-to-noise ratio reduces to

-1E - L M 2 -IsNo (=,,o + 1- M[ TW)]- T,11 1 T 1 E[cx( -_ )C.(N - 1 -I )
2 n=l 1 =M,3

"+ C•(1)C.(l + 1) + C.(N- - 1) + C.(l + 1) + C.(N - 1) + CI(1)]}-/2

(/2Eb\- Lyn2 M%2 -i

[C.(N - 1)Cr(N - I - 1) +- C,(1)C,(I + 1).70. + I =M,

+C(N - l- 1) + C(l + 1) + C.(N 1) + (C Nc()]T2  1 Tc - }L-1/2
(2ET6 -M1T- M-1

2 ' + 6N2(M 2 N- M1 ) -{CX(N-l)C2(N - I - 1) + C,(l)C,(l + 1)
I=M1

+ C.(N - l-1) + C.(l + 1) + C.(N - 1) + C.(t)]1-112. (25)

When consideration is given to the case 7yo # 0. the Gaussian approximation

to the probability of error must be conditioned on the phase shift 0o, as seen

in the expression for F0 . Thus, as in [1], the approximation becomes

PG 1 J= Q[SNRo(1±+ ocosO)]dO. (26)

27 -

(26)1

15



4. Coded Performance Analysis

The performance of the spread-spectrum system is enhanced with the

addition of channel coding, as one may anticipate. Due to the hardware

constraints for physical application of such systems, it becomes necessary to

quantize the continuous receiver output Z in order to examine the effects of

coding. We start by defining W as a quantization function of Z: that is,

W = wj for a, < Z < aj+,. j' = 1.2,..., J

where a, = -oc and aj = +oc. Here, aj represents the lower quantization

threshold for quantization level 3j and we assume perfect interleaving. For

coding with soft decisions there are many levels j, while with hard decisions.

j is only as high as two. It follows from (13) then that the probability mass

function (pmf) for W is given by

P{W = wj} = P(a, < Z < aj+,)

= P[aj < VE-P(I + bo + I) < aj+l]. (27)

Here, Eb is replaced by E, the energy per code symbol: in general, for rate-r

coding, E = rEb. Letting o represent the characteristic function for the sum

ij + I, and noting that o is an even function,

a"1 b o.
P(aj < Z < aj+lIbo) = - _o (u)cos(gu)dudg. (28)

As shown in Appendix A, one may replace p(u) = 0,(u)Oi(u) with op(u) -

O, (u)[1- b1 (u)] to avoid subtracting numbers large relative to their difference.
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Thus, (28) becomes

P(a, • Z < aj+11bo) -1 u'1d(u)oj(u)du

1 j _r1d(u)o,(u)[1 - oi(u)]du (29)

where o,, and ol are given in (16)-(20) and the function d(u) is defined by

d~~u)E = i[~b )u] -sin [( a3  -b)uj

For channel coding, an upper bound to the probability of error may be de-

termined using D-parameter analysis. Denoting the conditional probability

mass function by p(wjIbo), the distance measure is approximated by

J .

D = • p(w3t+1)p(w'-1) (30)
3=l

for J quantization levels. The probability error bound is then expressed

as a polynomial function of D. For example, for a channel with rate-1/2

convolutional code,

P, < 36D10 + 211D 12 + 1404D 14 + 11633D 16 + 77433D"s + 502690D 20  (31)

while for convolutional coding with rate 1/3,

P, !< 11D's + 32D 2° + 195D 2 2 + 564D 24 + 1473D 26 , (32)

where the weight enumerator polynomials are constructed from Tables I and

II of [6].
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5. Numerical Results

For all of the following examples. the signature sequences were gener-

ated.from the method for auto-optimal (AO) / least-sidelobe-energy (LSE)

maximal-length (m) sequences. as described in [4]. Specifically. the parame-

ters listed in Figure A.1 [4] (or [5] when necessary) were applied to a linear

feedback shift register to produce the desired binary chipping code (i.e.. +1

and -1 values). These sequences were chosen for their structure simplicity

and good correlation properties [4]. As in [1]. it is assumed that the relative

power in the nth path - = .2 for 1 < n < L. but the faded component

power in the zeroth path, -ý. does not necessarily equal ),. In fact. for many

instances -"y will assume a zero value (i.e.. no faded component in the ze-

roth path). All of the numerical results were evaluated using the computer

programs listed in Appendix B.

The first example considers the effect on the average probability of er-

ror, determined from the characteristic-function method (15). when the path

delay is less than a chipping period. Figure 1 shows a comparison in er-

ror probability between two PSK DS/SS systems. each multipath channel

with L = 5 reflected paths. individually having relative power = 0.4. and

10 _ 0.1. The signature sequence used is the N = 31 sequence taken from the

first line of Figure A.1 [4]. In the first system. the path delay 7 is uniformly

distributed in [T,, T - Tj, while in the second, the delay ranges uniformly in

[0oT-Tj.
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Figure 1: Probability of error for varied path delay uniformity (N 31./L =

5.' = 0.4, %2 = 0.1).
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According to the figure. the system performs well when the path delay

is at least one chipping period: the probability of error quickly decreases

for increasing Eq/.o values. However. when 7 - U[0, T - TI, the error

probability decreases at a much slower rate and eventually levels off at about

10'. This demonstrates the fact that in the second system the multipath

interference component arrives too close to the zeroth path signal. As a

result. the receiver is unable to reject the delayed path effects.

The second example is a comparison between narrowband and broad-

band spread-spectrum systems. In the first case (narrowband), a signature

sequence of length N = 127 is created using shift register polynomial param-

eter N = 301 and initial register loading Q0 = 0010010 1.5'. The multipath

channel has 5 delayed paths. each with 7 - U[40. 10T. For the broadband

case. a sequence of length N = 1023 is generated using 'H = 2201 and

a0 = 0111011010 .5. Here. each of the 5 paths is uniformly distributed in

[0. SOT-I. This corresponds to the same delay spread if the data rate is as in

the N = 127 case. In both cases. the faded component of the zeroth path is

removed (i.e.. ' = 0). and each path has relative power ,.2 = 0.4. Figure 2

shows the probability of error for each application.

As one might expect. the broadband application outperforms the narrow-

band one for higher values of E,/N\o. Clearly. as N increases, the chipping

period T: must decrease. assuming constant data pulse length T: thus. provid-

ing greater multipath rejection capability for the receiver and. hence. lower
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Figure 2: Probability of error for narrowband and broadband applications
(L = 5,-2= 0.4. yO2 = 0).
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error probability. However, such performance comes at the expense of in-

creased bandwidth and system complexity (more shift registers are required

for sequence generation).

In the next example, the average probability of error is analyzed for the

two systems of Figure 2 as a function of the number of reflected, or delayed,

paths L. For a fixed Eb/No value of 10 dB, Figure 3 demonstrates that this

measure of performance increases as more paths are added to the channel.

For the fourth example, the narrowband and broadband spread-spectrum

systems are examined for a particular multipath environment. There are a

total of L = 12 delayed paths, divided into four groups of three paths, each

group with a particular relative power for the individual paths, and -2 = 0.

For the narrowband (N = 127 chips/data bit), there are:

3 paths: r - U[O, 4T,], 72 = 1
3 paths: r ,- U[24Tc, 28T]. _y2 

= 0.1
3 paths: r -, U[48T,,52Tj], 7 2 

= 0.1
3 paths: r -, U[96T0 , 100T,], -y2 = 0.03

For the broadband (N = 1023 chips/data bit), the length of each data pulse

T is maintained from the narrowband case. Thus, the 12 paths for this

system are divided as follows:

3 paths: r -, U[0, 33T,], 2 = 1
3 paths: r U[194T•,226T,], 72 = 0.1
3 paths: r -, U[387T,.419T,], 72 = 0.1
3 paths: 7 -, U[774T,,806T,], -y2 = 0.03
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Figure 3: Probability of error for increasing number of delayed paths
(Eb/.Vo = 10 dB, -y2 = 0.4, -y02 = 0).
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Figure 4: Probability of error for a particular multipath environment (L = 12
total paths, -j02 = 0).
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As shown by Figure 4, while the probabilities of error for both cases are

fairly close at low Eb/.No values (0-3 dB), their relative difference does in-

crease for higher Eb/NO. Notice, though, that these systems perform rather

poorly in comparison to previous situations; P, lies above 10- even at

Eb/NVo = 16dB. This is due to several factors. First, the path delay re-

gion in which a portion of multipath rejection is unattainable (i.e., r < T,)

also has the greatest amount of relative power for each path (-Y2 = 1). As

a result, this interference component receives the most emphasis of the four.

Second, the high number of paths in total (12) should generally imply higher

error probability, as proven from Figure 3.

Figure 5 compares three different systems for the length N.= 31 signature

sequence in which path delay is uniformly distributed in (0. To|, 0 = 0, and

the sum of the multipath relative powers is constant for each system (i.e.,

n•=1 ^, - Dy 2 = 0.2). The total number of paths L increases from 2 to 100.

as shown. The L = 100 curve coincidesthe Gaussian approximation to the

error probability, expressed in (26), which depends only on 1 _ ,2In.

The impact of the multipath interference is demonstrated by the signif-

icant difference between the L = 2 data and that of L = 10 and 100 for

Eb/No > 11 dB. More importantly, the figure shows that the performance of

the characteristic-function method approaches that of the Gaussian model

for high values of L. In the case of L = 10, the characteristic-function model

appears Gaussian up to about Eb/No = 13 dB, while for L = 100, the ab-
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Figure 5: Probability of error for characteristic-function method approaching
Gaussian approximation in performance (N = 31, 7 - U[0, T,] = 0).
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solute difference in error probability is less than 2 x 10-8. From the Central

Limit Theorem, one would expect that for sufficiently high L the distribu-

tion of the multipath interference is indeed approximated by the Gaussian

distribution.

The last two examples examine the performance of DS/SS systems with

and without channel coding. In the first. rate-1/2 and 1/3 convolutional

coding is applied to a system with N = 31 chips/data bit signature sequence

and path delay r - U[T,, T-TJ]; thus, the demodulating sequence has length

N = 62 or 93 chips/ coded symbol, depending upon the chosen rate. Figure 6

compares the probability of error bounds (31,32) for the coded systems with

the average error probabilities of uncoded systems with effectively similar

chipping sequence lengths. That is, the rate-1/2 system is plotted against an

uncoded one having sequence length N = 63 chips/data bit (W€ = 103 and

a0 = 000010 [4]) and r -, U[3T,, 61T,], while the counterpart for the rate-

1/3 system has N = 127 chips/data bit and 7r U[5TC, i23T,], assuming

the same data bit duration T of the original system. Both cases of soft

and hard decisions are included, using (31)-(32). For soft decisions, a large

number (>100) of quantization levels was chosen. The figure also shows the

error probability for the system prior to any channel coding as a matter of

reference. Comparisons of coded and uncoded systems is somewhat biased

because the performance of the coded system is based on an upper bound,

while the uncoded system is based on an exact calculation.
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Figure 6: Probability of error for DS/SS systems, with and without channel
coding (L = 5, -2 = 0.4. 7y2 = 0).
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As expected, the coded systems achieve lower error probabilities for high

Eb/•,O than those of the comparison models. However. at •b/1O less than

about 5.5 dB, the rate-1/2 coded system with hard decisions starts to perform

worse. When Eb/NVo is as low as about 1.2 dB. even soft derisions with the

rate-1/3 coded system fail to perform effectively. This is du(: ,o the fact that

at sufficiently low input signal-to-noise ratios, channel coding exploits the

weak energy of the data signal and introduces further errors to the system.

As a result. it is not uncommon to even find error probabilities greater than

one (e.g., rate-1/2 coding (hard decision) at Eb/NVo = 0 dB). For the most

part. the systems with soft decisions perform about 3 dB better than hard

decision schemes.

Finally, the channel coding schemes above are applied to the fourth ex-

ample situation in which there is a particular multipath environment for each

system. Figures 7 and 8 show the same type of probability of error data as

in the previous example for the narrowband and broadband spread-spectrum

systems. respectively.

For the narrowband case (N = 127), an uncoded system with chipping

sequence length N = 255(H = 455 and ao = 01101111 [41) is compared with

a rate-1/2 coded system (N = 254 chips/information bit). Coding with soft

decisions perform better after Eb/N• = 3.8 dB. while hard decisions pro-

duce lower error probability only after EbINo = 7.3 dB. The rate-1/3 coded

systems (N = 381 chips/information bit) are analyzed against an uncoded
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system with signature sequence N = 511(R = 1041 and a0 = 010101001

[5]). Here. for Eb/N'o > 1.7 dB, the soft-decision coding outperforms the

uncoded system. while hard decisions take effect only after Eb/No = 4.7 dB.

The threshold distinguishing the effectiveness of soft decisions over hard de-

cisions is at Eb/NVo = 2.4 dB, prior to which the rate-1/3, hard-decision code

does better than that with rate-1/2 soft decisions.

For the broadband case (.V = 1023), the rate-1/2 coded system (N -

2046 chips/information bit) is compared with an uncoded system with chip-

ping sequence length N = 2047(7" = 5001 and ao = 11000001000 [5]). At

Eb/No = 2.8 dB, soft decisions begin to produce lower error probability, while

the same is true for hard decisions at Eb/No > 5.5 dB. The rate-1/3 coded

system has bandwidth comparable to an uncoded system with N = 4095(h"

= 14501 and a0 = 101111000001). In this case., for Eb/N-o > 1.2 dB, the

coded system with soft decisions performs better than the uncoded compar-

ison, while hard decisions do not take effect until after Eb/No = 3.9 dB. For

this particular system, the rate-1/3 code with hard decisions is more effective

than the rate-1/2 code with soft decisions for Eb/.No < 1.1 dB.
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6. Conclusions

From Figure 1. it is clear that the DS/SS system is only effective at reject-

ing multipath when the path delays are at least oie chip period. One method

of reducing the average probability of error is to increase the processing gain

V. However, this comes at the expense of bandwidth and transmitter com-

plexity (i.e.. more shift registers required for signature sequence generation).

When more delayed paths are added to the system, the multipa-h interference

increases and system performance degrades rapidly. For a sufficiently high

number of paths. the performance obtained via the characteristic-function

method approaches that of the Gaussian approximation. as expected from

the Central Limit Theorem.

The DS/SS system is significantly enhanced with the application of chan-

nel coding. In fact, according to Figure 6. the probability of error drops to

10-1' at about Eb/No = 6.3 dB for a system with rate-1/3 -convolutional

coding and soft decisions applied. For the spread-spectrum systems with a

particular multipath environment, there is a significant difference between

the narrowband and broadband cases at low error probability (high Eb/NVo).

However, for relatively higher probability of error (low Eb/No), the broad-

band system provides a 1-2 dB improvement over the narrowband counter-

part.
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Appendix A

Characteristic-Function Approach To Probability of Error

In this appendix, for purposes of completeness, we derive the expression

in [1] for the average probability of error, given in terms of the characteristic

functions of the multipath interference and noise. From (14) of the text, the

error probability is expressed as

1 1(33)
- P(¼l< 77+I•< 1). (3

2 2

Letting G = q + I, and denoting the probability density of G by fG(g).

(33) becomes

jfG(g)dg. (34)

Since the random variables 77 and I are mutually independent and have

symmetric distributions, their characteristic functions, as well as that of their

sum, must be real and even. Denoting the characteristic functions of 77, 1.

and 77 + I by 0,, 61, and 0, respectively, fG(g) is given by

fG (g) e_= Le(u)du
_1 [0 (u) cos(gu)du

since fG(g) must also be real-valued. Substituting into (34),

S !!1J1jo(u3 cos(gu)dudg
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1 - jo(u) cos(gu)dgdu2 r,1011

1 ± j o(u)u- 1 sin(u)du.
2 7

To a-void s,-btracting very large numbers relative to their difference, one may

replace 6(u) = 0,6i with p,, - 6,[1 - 0j]. Thus.

1 1 u-1 sin(u)Oj(u)duPe=- -

2 7r Jo1 u_0
+ - u' sin(u)¢n(u)[1 - 6i(u)]du. (35)

7 J

In the absence of interference (i.e., I = 0), I = 1 and error is due only to

the presence of Gaussian noise. Denoting this noise error probability by Pn,

( 3 4 ) b e c o m e s 00

= P17 + 7r-1 I u- sin(u)0,7(u)[1 - Oi(u)ldu. (36)

Since 77 is Gaussian, P. is given by Q( 1-'), where a2 is defined as the

variance of i?. The result is (15) of the text.
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Appendix B

Computer Programs For Characteristic-Function Method

The following programs provide simulations for the average probability

of error (15), the Gaussian approximation (26), and error bounds for cod-

ing (31,32). The computer code is written in MATLAB version 4.0 and all

integrations are approximated applying Simpson's method.

The first program, PROBERROR.m, computes the average probabil-

ity of error for both the characteristic-function method and the Gaussian ap-

proximation. The user is able to select the desired signature sequence from a

menu; the program assumes existing data files containing the sequence itself

and all the appropriate autocorrelation functions. The user may also create

one or more multipath environments, each with a desired range for the path

delay. The following function files are called within the main program:

SIMP.m - A Simpson's approximation to the 00 integral.

PHI.m - Computes 0; calls function file FF.m which provides Simpson's

method for function f(v; 1, h).

The second program, PROBMASS.m, first determines the probability

mass function for the quantized receiver output (29). This is then used to

compute the distance parameter D (30), which is applied in approximating

upper probability bounds for channel coding purposes; the program considers
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convolutional coding with rates 1/2 and 1/3. The pmf data is calculated from

the same two function files of the previous program.
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% PROBERROR.m

% A program to compute the average probability of error of a DS/SS system with
% multipath fading and BPSK modulation, using both the characteristic-function
% method and the Gaussian approximation. Path delay is uniform from one
% multiple of Tc to another for a given number of paths within each multipath
% environment. User selects desired chipping sequence from a menu.

% Input: gamma0^2 (assumed constant); for each path delay situation -- number of
% paths L, gamma^2, uniform range for path delay; Eb/No, upper limit and
% number of points of integration for Simpson's method.

% Output: for each Eb/No, average probability of error for both characteristic-
% function method and Gaussian approximation.

clear; format long e;
k = menu('Choose sequence length','N=31','N=63','N=127','N=255','N=511',...

,N=1023','N=2047','N=4095');
if k == 1,

load code_31 % each signature sequence file contains the actual
% sequence (code) and all autocorrelation functions:

elseif k == 2, % aperiodic: R periodic(even): theta
load code_63 % odd: thetahat

elseif k == 3,
load code_127

elseif k == 4,
load code_255

elseif k == 5,
load code_511

elseif k == 6,
load code_1023

elseif k == 7,
load code_2047

else
load code_4095

end
disp('Enter the requested data:')
gamma0sq = input('gamma_0-squared = '); % assumed to be constant for all

% multipath environments.
gamma0 = sqrt(gamma0sq);
sit = input('How many different delay situations are there? ');
for j = l:sit

disp('situation #'); disp(j);
L(j) = input('no. of paths L =
gammasq(j) = input('gamma-squared = ');
disp('Path delay tau - U[Ml*Tc, M2*Tc]:')
MI(j) = input('constant multiple M1 = ');
M2(j) = input('constant multiple M2 = ');
gamma(j) = sqrt(gammasq(j));

end;
N = length(code); % length of sequence

data = input('How many Eb/No data values? ');
ssuml = zeros(l,data); ssum2 = zeros(l,data);
for d = l:data

EbNO0dB(d) = input('Enter Eb/NO value (dB):');
b = input('upper-limit of integration =
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n = input('no. of pts. (must be even) for integration=
h = b/n; EbNO(d) = 1O^(EbN0_dB(d)/l0);
sigmasq(d) = 1/(2*EbNO(d)); sigmainv(d) = 1/sqrt(sigmasq(d));

Q(d) = Qfunct(sigmainv(d)); % compute the Q-function of sigma-
% inverse.

i = [O:n]; % Simpson's method starts here, done using vector form.
u = 1E-100 + i*h;
phi eta= exp(-(u.'^2) * (sigmasq(d))/2);
phi~tilde-O = 2/pi * simp(gamnxaO*u, pi/2, 20); % SIMP.m is a function

% which performs
% Simpson's method for
% phi tilde_0.

phi-tilde = phi(gamma'*u,L,M1,M2,N,theta,thetahat); % see separate
% listing for
% function PHI.m.

phi_I = phi tilde 0 .~phi tilde;
g = ones(J.,n+1)./ii . sin(u) ** (1-phi_I) .'* phi-eta;

coeff = 2 *(rem(i,2)+1); % coefficients for Simpson's summation.
coeff(l) =1; coeff(n+1) = 1;
ssuin(d) =sum(coeff .* g);
simpson(d) = h/3 * ssum(d);
proberr(d) = 0(d) + 1/pi * simpson(d); % this is eq. (15) of text.

%This section computes the Gaussian approximation
sum2 =0;

for j = :sit
sumi1 = 0;
for ig = Ml(j):M2(j)-l

suml = suml + R(2*N+1-lg)*R(2*N-1g) + R(N+l+lg)*R(N+2+lg) ...
+ R(2*N+1-lg)^2 + R(2*N-1g)^'2 + R(N+14-lg)^2 +

R(N+2+lg) -2;
end
sum2 = sum2 + 1/6 * L(j)*gammasq(j)/(N^2*(M2(j)-Ml(j))) * sumi1;

end
SNR-O =1 / sqrt(sigmasq(d) + sum2);

ng = 500; % choose 500 points for Simpson's method integration.

ig = £0:ng]; hg = pi/ng; % may use pi as an upper limit since function
% for integration is even

thetag = ig*hg;
g = Qfunct(SNR_0*(1 + gammao*cos(thetag)));
coeffg = 2 *(rem(ig,2)+l);

coeffg(l) =1; coeffg(ng+1) = 1;
ssumg(d) =suin(coeffg .* g);
simpsong(d) = hg/3 * ssumg(d);
proberrg(d) = 1/pi * simpsong(d); % 1/pi factor instead of l/(2pi)

% since integrating only to pi; this
% is eq. (26).

disp('ave. prob. of error for char-f unct method = ); disp(proberr(d))
disp('Gaussian approximation to prob. of error = ); disp(proberrg(d))

end
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function simpson = simp(const,b,n)

% SIMP Simpson's rule for phitilde_0 characteristic function.

% Input: gamma O*u (const), upper-limit (b) and number of points for

% integration (n).

% Output: Simpson's approximation to the integral.

h = b/n; ssum = 0;
i = [O:n];
theta = i*h;
g = cos(const' * cos(theta)); % function for inegration.

coeff = 2 * (rem(i,2)+l); % coefficients for approximation.
coeff(l) = 1; coeff(n+l) = 1;
ssum = coeff *g;
simpson = h/3 * ssum; % Simpson's approximation
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function out = phi(var,L,M1,M2,N,theta,thetahat)

% PHI Characteristic function phitilde(u). Function f for theta and thetahat
is called by FF.m.

% Input: variable (var), no. of reflected paths (L), constant multiples of
% Tc (MI,M2), length of signature sequence (N), and autocorrelation
% vectors theta and thetahat.

% Output: the value of the characteristic function.

s = length(L); % number of multipath environments.

prodl = 1; prod2 = 1;
for j = l:s

ssuml = 0; ssum2 = 0;
for 1 = Ml(j):M2(j)-l

f = ff(var(j,:),l,theta,N); % compute f for theta and
% thetahat

f_hat = ff(var(j,:),l,thetahat,N);

ssuml = ssuml + f;
ssum2 = ssum2 + f hat;

end
outl = (I/(M2(j)-MI(j)) * ssuml) L(j);
out2 = (I/(M2(j)-MI(j)) * ssum2) .^ L(j);
prodl = prodl .* outl;
prod2 = prod2 .* out2;

end
out = 0.5 * (prodl + prod2); % this corresponds to phitilde(u).
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function f = ff(v,k,t,N)

% FF Function f for vectors theta and thetahat. Considers zeroeth index for
% autocorrelation vectors. Input is real variable (v), index (k),
% autocorrelation vector (t), and length of code sequence (N). Output is
% Simpson's formula approximation.

b = pi/2; n = 20; % only 20 points are necessary for good approximation.
h = b/n;
i = (O:n]; 1 = k+l;
theta = i*h;
gl = sinc(v'*(t(l+1)-t(l))*cos(theta)/(2*pi*N)); % SINC.m simply performs the

% sinc function for given
% variable.

g2 = cos(v'*(t(l+1)+t(l))*cos(theta)/(2*N));
g = gl .* g2;
coeff = 2 * (rem(i,2)+l);
coeff(1) = 1; coeff(n+l) = 1;
ssum = coeff *g;
simpson = h/3 * ssum; f = 2/pi * simpson; % this is the function f.
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SPROBMASS.m

k A program to compute the probability mass function of Z, P(a<Z<blbO), of a
k multipath DS/SS system with BPSK modulation. Path delay is uniform from one
k multiple of Tc to another, for a given number of multipath environments. User
b selects desired chipping sequence from a menu. Here, gamma0-squared(gamma0sq)
b is assumed to be zero, but may be reset to constant for all delay situations.
SThe pmf is used, in turn, to determine the Hamming D-parameter and apply
k toward computing the probability error bounds for specific channel coding.

k Input: for each delay invironment -- number of paths (L), gamma-squared
6 (gammasq), Tc multiples (MI,M2);
k total number of ranges for receiver output Z, epsilon increment, Eb/No,
k upper limit and no. of points for integration using Simpson's method.

k Output: probability error bounds for rate-l/2 and 1/3 convolutional codes

:lear; format long e;
S= menu('Choose sequence length','N=31','N=127','N=1023')

if k == 1,
load code_31

elseif k == 2,
load code_127

else
load code_1023

end
disp('Enter the requested data:')

sit = input('How many different delay situations are there? ');

for j = 1:sit % same data requested as in PROBERROR.m

disp('situation #'); disp(j);
L(j) = input('no. of paths L =
gammasq(j) = input('gamma-squared = ');

disp('Path delay tau - U[Ml*Tc, M2*Tc]:')
M1(j) = input('constant multiple Ml = ');
M2(j) = input('constant multiple M2 = ');

gamma0sq=0; % assume gammaO-squared is zero throughout.

gamma(j) = sqrt(gammasq(j)); gammaO = sqrt(gamma0sq);
end;
N = length(code);
num = input('How many Eb/No values?');
for g = l:num

EbNOdB(g) = input('Enter Eb/NO (dB):');
eps = input('Enter increment epsilon:'); % increment used in mapping

% out the discrete Z values.

data = input('How many total ranges for Z (even)? ');

p = [-data/2:data/2]; % split the desired ranges into positive and
% negative regions.

Eb(g) = 10^(EbNO_dB(g)/10); NO(g) = 1; % the energy per information bit
% Eb, is needed specifically.
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E2(g) = Eb(g)/2; E3(g) = Eb(g)/3; % this is the energy per coded
% symbol for rates-1/2 and 1/3
% codes.

ENO2(g) = (Eb(g)/NO(g))/2; ENO3(g) = (Eb(g)/NO(g))/3;
bb =input('upper-limit of integration = )
n =input('no. of pts. (must be even) for integration
h =bb/n;

sigrnasq2(g) =1/(2*ENO2(g)); sigmasq3(g) = 1/(2*EN03(g));
sigmainv2(g) =1/sqrt(sigmasq2(g)); sigmainv3(g) = 1/sqrt(sigmasq3(g));

d2 = eps*p*sqrt(E2(g)); d3 = eps*p*sqrt(E3(g)); % these are the actual
% values for Z.

a2 = d2(l:data); a3 = d3(1:data); % a and b the range limits for
b2 = d2(2:data+1); b3 = d3(2:data+1); % the Z values. Throughout, a

% 2-suffix refers to a variable
% for rate-1/2 code, while a
% 3-suffix refers to that for
% rate-l/3 code.

1 = [0:n];
u = 1E-100 + i*h;
uinv = ones(1,n+1)./u; uinvd = uinv;
phi_eta2 = exp(-(u.-2) * sigmasq2(g)/2);
phi_eta3 = exp(-(u.^2) * sigmasq3(g)/2);
phi_etad2 = phi eta2; phi -etad.3 = phi Ieta3;
phi_tilde -0 = 27pi * simp(gammaO*u, pi/2, 20);
phi_tilde = phi(ganima'*u,L,M1,M2,N,theta,thetahat);
philI = phi tilde_0 .* phi tilde; phiId = phiI;

for m = 1:data-1 % generates data-length column vectors for
% u-inverse, phi-eta, and philI.

uinvd = [uinvd; uinv);
phi etad2 =(phi -etad2; phi eta2];
phi etad3 = [phi -etad3; phi eta3];
phiId = [phiId; phi_I];

end

% computes functions for Simpson's method, considering both bO=+l (pos)
% and bO=-1 (neg).

sindiff2pos = sin((b21/sqrt(E2(g))-l)*u) - sin((a2'/sqrt(E2(g))-1)*u);
sindiff3pos = sin((b31/sqrt(E3(g))-1)*u) - sin((a3'/sqrt(E3(g))-1)*u);
sindiff2neg = sin((b21/sqrt(E2(g))+1)*u) - sin((a21/sqrt(E2(g))+1)*u);
sindiff3neg = sin((b31/sqrt(E3(g))+I)*u) - sin((a31/sqrt(E3(g))+I)*u);
gl2pos = uinvd .~sindiff2pos .~phi_etad2;

gl3pos = uinvd .*sindiff3pos .~phi_etad3;

g22pos = uinvd .*sindiff2pos ."(1-phiId) . phi_etad2;
g23pos = uinvd .~sindiff3pos .*(1-phiId) .~phi_etad3;

gl2neg = uinvd .~sindiff2neg .~phi_etad2;

gl3neg = uinvd .~sindiff3neg .~phi_etad3;

g22neg = uinvd .~sindiff2neg .'(.L-phiId) .~phi etad2;
g23neg = uinvd .~sindiff3neg .~(1-phiId) .~phi_etad3;

coeff = 2 *(rem(i,2)+l);

coeff(l) =1; coeff(n+1) = 1;
ssuml2pos =coeff * gl2pos'; ssuml3pos = coeff * gl3pos';
ssum22pos =coeff * g22pos'; ssum23pos = coeff * g23pos';
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ssuml2neg = coeff * gl2neg'; ssuml3neg = coeff * gl3neg';
ssum22neg = coeff * g22neg'; ssum23neg = coeff * g23neg';
simpsonl2pos = h/3 * ssuml2pos; simpsonl3pos = h/3 * ssuml3pos;
simpson22pos = h/3 * ssum22pos; simpson23pos = h/3 * ssum23pos;
simpsonl2neg = h/3 * ssuml2neg; simpsonl3neg = h/3 * ssuml3neg;
simpson22neg =h/3 * ssum22neg; simpson23neg = h/3 * ssum23neg;
probznass2pos = I/pi*simpsonl2pos - l/pi*simpson22pos;
probmass3pos = 1/pi*simpsonl3pos - 1/pi*simpson23pos;

% the probability mass function is assumed to be zero for the final
% value of Z and thereafter; probmass ... is eq. (29) for a anu' b values
% above.

probmass2pos(data4-1) = 0; probmass3pos(data+1) = 0;
probmass2neg = 1/pi*simpsonl2neg - I/pj*simpson22neg;
probmass3neg =1/pi*simpsonl3neg - l/pi*simpson23neg;
probmass2neg(data-$1) = 0; probmass3neg(data+l) = 0;

% this shows how close the sum of the pmfs is to 1.

disp('summation error (1/2) pos = '); disp(1-sum(probmass2pos));
disp('suinmation error (1/3) pos = '); disp(1-sum(probmass3pos));
disp('suinmation error (1/2) neg ='); disp(l-sum(probmass2neg));
disp('suxnmation error (1/3) neg = '); disp(1-sum(probmass3neg));

stairs(d2,probmass2pos); pause % plot the pmf in stairs mode.
stairs(d2,probmass2neg); pause
stairs(d3,probmass3pos); pause
stairs(d3,probmass3neg);
D2(g) = sum(sqrt(probmass2pos .~probmass2neg)); % this is the

% D-parameter
D3(g) = sum(sqrt(probmass3pos . probmass3neg)); % eq. (30).

% the following formulas are approximations to the probability error
% bounds for rate-1/2 and rate-l/3 convolutional codes -- eqs. (31,32).

bound2(g) = 36*D2(g)AlO + 211*D2(g)^12 + 1404*D2(g)-l4 ..

+ l1633*D2(g)'^16 + 77433*D2(g)^18 + 502690*D2(g)^20;

bound3(g) = ll*D3(g)"18 + 32*D3(g)^'20 + 195*D3(g)^22 + 564*D3(g)^24 ...

+ 1473*D3(g)^26;
disp('error bound for rate-l/2 code = '); disp(bound2(g));
disp('error bound for rate-l/3 code = '); disp(bound3(g));

!nd
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