
WL-TR-93-1173

ANALYSIS OF THE EFFECT OF ROUTING
STRATEGIES FOR PARALLEL IMPLEMENTATIONS OF
A SELECTED AVIONICS APPLICATION

AD-A276 069
iII ~iI I�I HI liI I ll ~ItHI •

JASON L. CARTER
STEPHEN L. HARY

DECEMBER 1993

INTERIM REPORT FOR 02/01/92-09/01/93

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

-.1• -94-06042

Ii 1W 111 i II' I I IIB Illl u i II
AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7409

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

/,'ASON L. CARTER (JE;RXY -C ERT, Chief
Data & Signal Processing Section 'l-Tnformation Processing
Information Processing Technology Branch
Technology Branch Systems Avionics Division
Systems Avionics Division

CHARLES H. KRUEGER, Chieff
System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAT , WPAFB, OH 43433-7301 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

s. a Ts* ma~ c- z~- . t-.'SCs C -- r' ý,ý ,0 "-c

- ~ ~ ~ _-32 ýC.A -C -c:-p 0 -e Ce a-V-' ;- 'z en -~t- ~ ce-. :e-ýCeo c 7 3 . C 2.5Zý

Dec 93 Interim report for Feb 92 - Sept 93

Analysis of the Effect of Routing Strategies for Parallel PE: 62204F
Implementations of a Selected Avionics Application PR: 2003

TA: 04
WU: 24

Jason L. Carter
Stephen L. Hary

Avionics Directorate, Wright Laboratory ._-7-.

Air Force Materiel Command WL-TR-93-1173
Wright-Patterson AFB, OH 45433-7301
WL/AAAT-2 (Carter) 513-255-7709

"A o Ics -D ire'cto'rtYe;, o Wright.:Laboratory .:c:'::'Z" :
Air Force Materiel Command WL-TR-93-1173
Wright-Patterson AFB, OH 45433-7301

Approved for public release; distribution is unlimited

The purpose of this study is to evaluate the Texas Instruments TMS320C40 (C40)
digital signal processor for a selected avionics application. In this effort,
the C40's on-chip communication ports are benchmarked to give indications of
the amount of overhead involved in initiating a message transfer and the data
throughput rates of the network. A network of C40s is compared to an iWarp
parallel processor to compare the processing capabilities between the C40's
store-and-forward router and the iWarp's wormhole router. Several network
topologies that can easily be constructed from C40s are described, along with
ways of partitioning an image processing task across each of them.
Performance msasurements of both the C40's and iWarp's performance on
parallelized implementations of the image processing algorithm are detailed,
along with estimated measurements for large-scale arrays of C40s. Finally,
the C40's computing power is compared with an avionics hardware program being
developed at Wright Laboratories, System Avionics Division, Information
Processing Technology Branch.

Parallel Processing, Digital Signal Processing, Routing 66
Methods, Embedded Computer Systems.

Unclassified Unclassified Unclassified UL
,,.7.."-E--------------------------------------::---22 •. -•

Table of Contents

List of Figures ... v
List of Tables .. vi
Acknowledgments ... vii
1.0 Introduction ... 1
2.0 Testing Equipment .. 2

2.1 Hardware ... 2
2.J.l The Parallel Processing Development System 2
2.1.2 The XDS510 Emulator 2
2.1.3 TMS320C40 Internal Architecture 2

2.1.3.1 Communication Ports 3
2.1.3.2 Direct Memory Access Coprocessor (DMA)... 6
2.1.3.3 Local and Global Busses 8
2.1.3.4 Miscellaneous Features of the
TMS320C40 .. 9

2.1.4 iWarp Architecture 9
2.1.4.1 Wor.mhole Routing 10
2.1.4.2 Virtual to Physical Mapping 12
2.1.4.3 Systolic Processing 13

2.1.5 Configurable Hardware Algorithm Mappable
Preprocesor (CHAMP) 14

2.2 Software ... 14
2.2.1 EMU4X Emulator 15
2.2.2 TMS320C3X/40 C Compiler, Assembler, and Linker... 15
2.2.3 iWarp Software 16

2.2.3.1 iWarp C Compiler 16
2.2.3.2 iWarp Program Communication Service
(PCS) ... 16

3.0 Performance Measurements of Hardware Components 17
3.1 C40 Network .. 17

3.1.1 Direct vs. DMA Data Transfers 17
3.1.1.1 Direct Data Transfers 17
3.1.1.2 DMA Data Transfers 21

3.1.2 C40s as Systolic Processors 22
3.1.3 C40 Observations 24

3.2 iWarp Network ... 24
3.2.1 Streaming vs. Spoolin; 25
3.2.2 Multi-Hop Messages 27
3.2.3 iWarp Observations 28

3.3 Comparison of C40 and iWarp network 29
4.0 Performance Measurements of Avionics Capability 31

4.1 Description of Algorithm Suite Four 31
4.1.1 Median Subtraction Filter 31
4.1.2 Correlation Spectral Filter...................... 32
4.1.3 Background Normalizer and Thresholder 32
4.1.4 Handling of Edge Pixels 32

4.2 Description of Topologies 33
4.2.1 Fully-Connected Mesh 33
4.2.2 Four Nearest Neighbor Mesh 34
4.2.3 Ring-Based Network 34
4.2.4 Global Shared Bus 34
4.2.5 Other Topologies 35

4.2.5.1 Hexagonal Mesh 35
4.2.5.2 Hypercube 35
4.2.5.3 Pipelined Topology 36
4.2.5.4 CHAMP Topology 36

4.3 Mapping AS4 Onto the Various Topologies 36

iii

4.3.1 Four Nearest Neighbor Mesh 37
4.3.2 Fuilly-Connected Mesh 37
4.3.4 Hexagonal Mesh 38
4.3.4 Three-Dimensional Hypercube 39
4.3.5 Four-Dimensional Hypercube 40
4.3.6 Pipelined Topology 40
4.3.7 Ring Network 42
4.3.8 Global Shared Memory 42
4.3.9 Mapping AS4 onto CHAMP 43

4.4 Performance Measurements of AS4 on the PPDS 43
4.4.1 Original Version of AS4 45
4.4.2 Optimized Version One of AS4 46
4.4.3 Optimized Version Two of AS4 47
4.4.4 Ring-Based Implementations of Optimized Version
Two of AS4 .. 47

4.5 Performance Measurements of AS4 on iWarp 50
4.6 C40/iWarp Comparison 51
4.7 Performance of AS4 on CHAMP 52

4.7.1 CHAMP Baseline Specification 52
4.7.2 C40 Scalability With AS4 53

4.8 C40/CHAMP Comparisons 54
4.8.1 Hardware Considerations 55
4.8.2 Software Considerations 56

5.0 Future Work .. 58
5.1 Flow-Through Routing 58
5.2 Hexagonal Me3h Study 58
5.3 Global Memory Version of AS4 and RAS4 59
5.4 Revised Algorithm Suite Four (RAS4) 59
5.5 Implementing AS4 on a 4NNM of C403 59

6.0 Conclusions .. 61
7.0 References ... 63
Appendix .. 64

iv

List of riguxes

Figure 1. Communication Ports and Memory Architecture of the PPDS... 3
Figure 2. Details of Communication Port Hardware.................... 3
Figure 3. Timing Diagrams Used to Derive Equations I 6
Figure 4. C40 Memory Map .. 9
Figure 5. iWarp Component ... 10
Figure 6. Non-Nearest Neighbor Connection 11
Figure 7. Timing Diagrams Used to Derive Equations 2 12
Figure 8. Virtual to Physical Mapping 13
Figure 9. Timing Diagrams Used to Derive Equation 3 18
Figure 10. Data Flow for Alcorithm Suite 4 31
Figure 11. Topologies Realizable from PPDS Configuration 33
Figure 12. One-Dimensional Ring with Wraparound 34
Figure 13. Hexagonal Mesh ... 35
Figure 14. Three-Dimensional Hypercube 36
Figure 15. Pipelined Topology 36
Figure 16. CHAMP Topology ... 36
Figure 17. Image Partitioning Scheme for 4NNM and 8NNM 37
Figure 18. Image Partitioning and Extra Processor Overlap 38
Figure 19. Mapping a Square Image onto a 3D Hypercube 40
Figure 20. Mapping a Square Image onto a 4D Hypercube 41
Figure 21. Mapping Images Onto a Pipelined Topology 41
Figure 22. Mapping AS4 onto a Ring Network 42
Figure 23. Mapping ASK onto CHAMP 43
Figure 24. Partitioning Schemes Used on PPDS 45
Figure 25. CHAMP Programming Process Overview 57

LooeESsion ?or ~m &

SI -,iA. Laud/OX

I;ist Sge

List of Tables

Table 1. Message Transfer Times for Near Neighbor C40s 20

Table 2. Systolic Operation Times for C40s 23

Table 3. Per-Word Systolic Operation Times for C40s 23

Table 4. Times to Send Streaming Messages on iWarp 26

Table 5. Comparison of Streaming and Spooling Setup Times on
iWarp ... 27

Table 6. Results of Multi-Hop Latency Benchmark on iWarp 28

Table 7. Per-word Transfer Time for the Multi-Hop Latency
Benchmark on iWarp .. 28

Tdble 8. Comparison of iWarp and C40 Point-to-Point Transfer Times
in Microseconds ... 29

Table 9. Results of AS4 Benchmark for Three Versions of AS4 (I
Frame of 64 x 64 Pixel Data) .. 46

Table 10. Results of AS4 Benchmark on C40 Ring Networks Using
Direct Message Passing (Timee to Process 100 Frames of 128 x 128
Pixel Data) ... 48

Table 11. Results of AS4 Benchmark on C40 Ring Networks Using
Overlapped Communication and Computation (Times to Process 100
Frames of 128 x 128 Pixel Data) 49

Table 12. Computation Times for Each Algorithm Component in AS4 49

Table 13. Computation Times for Each Algorithm Component in AS4
with the Optimized Median Filter 49

Table 14. Projected Proce3sing Times in Seconds for :00 Frames of
128 x 128 Pixel Data .. 50

Table 15. Results of AS4 Benchmark on iWarp Ring Networks (100
Frames of 128 x 128 Pixel Data) 51

Table 16. Processing Times in Seconds for AS4 on the C40 and
iWarp ... 52

Table 17. Projected Processing Times in Seconds and Frame Rates in
Frames/Second fo. 100 Frames of Data 54

Table 18. Comparison of CHAMP and C40 VME board characteristics 55

Table 19. Comparison of processing required to process AS4 at 200
frames per second ... 56

vi

Acknowledgments
TMS320C40, TMS320C4x, and TI are Trademarks of Texas Instruments, Inc.

OS/2 and IBM are Trademarks of International Business Machines
Corporation.

Intel, i860, and iWarp are Trademarks of Intel Corporation.

vii

1.0 Introduction
The Texas Instruments TMS320C40 (C40) Digital Signal Processor (DSP) is
one of the first microprocessors available for embedded applications
with extensive on-chip support for parallel processing. With six on-
chip ports for direct point-to-point communication with other C40s and
two independent busses, the C40 is ideally configured for parallel
processing. The goal of the In-House Multiprocessor (IMP) Research
Effort is to determine the u.efulness of this parallel hardware in an
avionics environment. This goal was not intended to be an exhaustive
test of the processor's computing and communicating abilities in
avionics programs but to be an evaluation of the capabilities and
operating characteristics of the parallel hardware that the C40 provides
in view of avionics processing requirements.

Section 2 describes the equipment used during the tests. Section 3
describes the tests that weze made at the hardware level--generally
small test programs that exercised one or two particular components of
the C40's suite of parallel hardware, Section 4 details the tests that
were made with an avionics application, which provided information on
the capabilities of the processor while running a real application
instead of stub programs and benchmarks. Section 5 presents future work
and Section 6 presents the conclusions drawn as a result of this effort.

2.0 Testing Equipment
Several different hardware and software evaluation systems are available
that are built around the C40. Most of them interface with VME bus-
based workstations; the evaluation system available from TI, however,
interfaces with ISA bus-based PCs. The TI evaluation system was chosen
for that reason, since it made the setup and test of the processor
simpler. For comparison with the C40, tests were also run on an iWarp
parallel processor. The iWarp system used for testing is the iWarp
machine located at Carnegie-Mellon University (CMU), Pittsburgh, PA.
Section 2.1 discusses the hardware chosen for the evaluation, and
Section 2.2 discusses the software used.

2.1 Hardware
TI's hardware for the evaluation system consists of a parallel
processing development system (PPDS) and an ISA bus-based emulator
(XDS510). Both of these devices will be described, along with a
description of the internal hardware features of the C40.

The iWarp at CMU was accessed via the internet, and only the basic
hardware configuration of the iWarp was used for these evaluations. The
internal hardware features of the iWarp will be described in later
sections.

2.1.1 The Parallel Processing Development System
The PPDS has four C40s on board, each connected by at least one
communication port link to each of the other three processors. Two
communication ports from each processor are brought to the edge of the
board which allows connection to any of several types of devices. Each
processor has 64 Kwords of Local Memory (LM) accessible through a local
bus and all four processors share 128 Kwords of Global Memory (GM)
accessible through a shared global bus. Figure 1 shows the connections
on the PPDS.

2.1.2 The XDS510 Emulator
The PPDS is host-independent; in order to interface with it, a host-
specific controller board is needed. The XDS510 is an emiulator card
made for the PC that gives the user access to the Joint Test Action
Group (JTAG--IEEE Std. 1149.1) test port built onto the PPDS board.
With the emu4z software discussed in Section 2.2.1, the user can control
all four C40s independently through this JTAG port.

2.1.3 TMS320C40 Internal Architecture
The C40 has a number of internal devices that support parallel
processing, including: six on-chip communication ports for direct
point-to-point communication, a direct memory access (DMA) coprocessor
for transferring data from place to place with minimal CPU intervention,
two identical external busses, and a host of other features which will
be discussed below.

2

in SRA [PROMMSEPRO

CPgUr 1A Cowncto ot adMmr.rhtctr ftePD

o.ut. Cordcto S2rts
The ~ LST5 320 comes0 eqipe wit sixR8 comuiatnp rts aho hc a
Ceitraed drPlUwt nte C Qcommni cain pr wt o gu

logic, as shvwn in iyur~e 2. Each pcrt is aal o nhrnul

Th out iStrfCoo isM copoe ofm 12wrsC ataadil orpr

conrol Te wresr laele i Figure 2 &acodn tote ov4to

co nsiee an activ lo sinl. Tu CRE*M CA CSomo* and RD

fogur sigal ae usedbth~ ~to contro themr Alowhofedtar acofs the link[1

2.1..1 ommuicaion or 3

and to control which port is the sending port and which port is the
receiving port.

The process for controlling data flow across the link is as follows.
Assume without loss of generality that CPU A has the sending port and
CPU B has the receiving ?ort. Also assume for brevity that CPU A's
output FIFO is full and CPU A is ready to place the first byte of the
first word to be sent on the data lines (CxD(7-0)). The data transfer
sequence occurs as follows: 1) CPU A places the first byte of the data
on the data lines at the first available rising edge of the internal
clock; 2) CPU A brings CSTRB* low on the next rising edge of the
internal clock; 3) CPU B recognizes the CSTRB* low signal and latches
the data into i:s port; 4) CPU B brings CRDY* low to indicate that it
has latched the data and that CPU A can place the next byte of the word
on the data lines; 5) CPU A cecognizes the CRDY* low signal and places
the second byte on tne data lines; 6) CPUs A and B repeat steps three
through five f:'r the remaining bytes. In this sequence, only steps one
and tho ae synchronized to the internal clock, so the last three bytes
of each word are transmitted asynchronously. This becomes significant
in the benchmarking tests discussed in Section 3.1.1.1.

Each p, t can function as either an `.,put or an output port, depending
on how it is configured. The port's state as either a sender or a
receiver 's determined by ownership of a tcken, which is passed between
the two port.• as needed. (i.e. If only one port needs to send data,
then no token transfers are performed, but if both ports need to send
data, tho token will be passed between them on a word-by-word basis.)
Assume that CPU A cuxrently has the token, and therefore is the sender.
The sequence to transfer the token is as follows: 1) CPU B requests the
token by bringing CREQ* low; 2) CPU A acknowledges the request by
bringing CACK* low; 3) noth CPUs bring their signals high and change the
status of the port direction bits in their respective port control
registers.

The ports are accessed by the CPU or DMA via a memory-mapped address:
to send a word, the word is written to a particular memory address that
corresponds to the output port to be used; to receive a word, the word
is read from another address that corresponds to the input port to be
used. The output port address is a write-only address and the input
port address is a read-only address. The output port corresponds to the
tail of the output FIFO (described below) and the input port corresponds
to the head of the input FIFO (also described below).

Each port has two independent 32-bit 8-position FIFOs for message
storage--one for the output port and one for the input port. When FIFO
position 0 of the output port holds a word to be sent, it is removed
from the FIFO and placed in the buffer register. It is then moved to
the data shifter/multiplexer to be split into four bytes before being
sent one byte at a time across the link. When the first byte arrives at
the receiver, the receiver buffers it and buffers each succeeding byte
until all four bytes have arrived. Once the fourth byte arrives, they
are combined into a single 32-bit word and sent to the input FIFO, where
it can be read by the CPU or DMA. Since there are 8 positions in the
sending FIFO and 8 positions in the receiving FIFO, the two FIFOs
together can act as a 16-position FIFO (see Figure 2).

Systolic operations are a type of fine-grained approach to parallel
processing, as will be discussed in Section 2.1.4.3. The approach used

4

in systolic operations is to read data from a communication port,
perform some operation on the data, and then write the result to memory.
This saves time in that no extra reads from or writes to memory are
required to perform a particular operation. The ability to place the
data that arrives on the port directly into a CPU register is crucial to
systolic operations. Since the input ports on the C40 are memory-
mapped, this is a trivial operation for it. Systolic operations will be
discussed in more detail in Sections 2.1.4.3 and 3.1.2.

The C40s have no innate hardware capability to automatically route data
on a path from one C40 to another non-near neighbor, unless the routing
was determined at compile-time (i.e., the programmer included code in
the program to perform message routing). Thus, in general, the C40 is
required to perform a type of message routing called store-and-forward
(SAF) (However, an alternative method using software is proposed in
Section 3.1.3). With SAF routing, the entire message being sent has to
be stored at each intermediate C40 before it can be sent on to the next
C40 along the path from source to destination. Thus it can be
determined for SAF routing that the time to send a message from one C40
to the next can be expressed as:

tms = ts + n*tr + n*l*tw + 2 n*tr/w + tb, (la)
(if tw is sufficiently larger than tr/w so that all previously
received words have been stored in memory by the time the last
word arrives)

or
tms = ts + n*tr + n*l*tw + n*tr/w + n(tw + t5i + tr) + tb, (lb)
(if tw is approximately equal to tr/w)

where
tms is the transfer time of a store-and-forward message (the time from

startup on the source node to the time when the last word is
stored in memory at the destination),

ts is the setup time of the message at the source node,
n is the number of nodes a:ter the source (including the

destination),
tr is the time a word spends in the router (after being retrieved

fzom memory),
1 is the length of the message (in words),
tw is the time to transfer a word across a physical link,

tr/w is the time to read or write a word to memory (read and write
times assumed identical for simplicity) (includes time to transfer
from memory to router and vice versa),

tb is the Mlocking time in the network, and
tsi is the setup time for the message at each intermediate node.

Figure 3 shows timing diagrams to demonstrate the derivation of these
equations. (For all the timing diagrams used in this report, the time
being measured is the time from when setup begins on the sending
processor until the time when the last word is stored to memory on the
receiving processor. Solid lines show time elapsed on each node, and
dashed lines reference timelines above or below. Read/write terms in
brackets represent items that are stored into memory before the next
word arrives--thus only the last word to arrive has to be explicitly
accountsd for in the timing. Although the diagrams only show a small
number of processors, the equations extrapolate the timings to include a
set of n nodes.)

A Itsl 11owIrI rt I

liii iitr Ito ,Lt r *t

twl tsii trl [trlw] I
C I I I I

tms = ts + nltr + f rt. + 2l*trw + to if tw > t/w (I a)

Artw + tsi + tr

A
ANtwtrl +r

w
+ i.___.~ ~ _ tWlI ,r I r trtw 6M• rI tw i._.• • s+

C L5Y tttr/w I twc~ ,.lI rI I 'r I

tms ts+n+'tr+nlrtw+nftr/w+n+(tw+tsI+tr)+ , iftw tr/w (Ib)

Increasing time

Figure 3. Timing Diagrams Used to Derive Equations I

Store-and-forward routing will be discussed further in Section 2.1.4.1.

Since the ports can be directly connected together, and since the six
ports are identical in operation, a large number of homogeneous parallel
processing networks can be constructed, including rings, trees,
hypercubes, two-dimensional meshes, and three-dimensional rectangular
grids. Some of these topologies will be analyzed later in Section 4.2.

2.1.3.2 Direct Memory Access Coprocessor (DMA)
A six-channel DMA coprocessor is available for overlapped CPU and I/O
operations (only one port can be used at a time, however, which will be
discussed later). The DMA can transfer an arbitrary amount of
information from any place in the memory map to any other place in the
memory map, all without CPU intervention, except to set up the DMA and
start it.

The DMA has nine registers per channel that are used to perform a data
transfer. The registers are: 1) DMA Channel Control Register, 2) Source
Address Register, 3) Source Address index Register, 4) Transfer Counter
Register, 5) Destination Address Register, 6) Destination Address Index
Register, 7) Link Pointer Register, 8) Auxiliary Transfer Counter
Register, and 9) Auxiliary Link Pointer Register. For any DMA action,

6

at le-pt the first six registers have to be set up by the CPU. The Link
Pointer Register and the Auxiliary Registers are used only for specific
functions of the DMA (the Link Pointer Register will be discussed
further; the Auxiliary Registers are not crucial to the discussion at
hand, therefore they will not be discussed further).

In order to start the DMA, the CPU must establish a data structure that
holds the information that will be used to program the DMA. This
information must include the Control Register configuration, the source
address, the index value used to increment the source address, the
destination address, the index value used to increment the destination
address, and the number of words to be transferred (held in the Transfer
Counter Register). If so desired, the other three registers may be
defined also. To start DMA operation, the CPU writes the Control
Register configuration into the Control Register, and the DMA begins its
operation at that point.

The Link Pointer Register is used in the process of autoinitialization,
which allows the DMA to follow a chain of pointers to data structures
that contain the register values that tell the DMA what to do. In this
way, the DMA can operate independently of the CPU, once started, and
transfer an arbitrarily large amount of data without requiring any
assistance whatsoever from the CPU, which allows the CPU to enjoy
maximum sustained computing performance. To autoinitialize, the CPU
must set up the chain of register data structures and connect them with
link pointers, then tell the DMA where the first data structure is.
This autoinitialization capability really shows its worth when data can
be moved between locations on-chip (e.g., on-chip RAM, comm ports,
etc.), since the DMA and CPU do not share a common internal bus. The
two independent CPU and DMA busses allow both to operate in a
cooperative rather than competitive manner. If the CPU and DMA both
need data that is contained in an off-chip location, however, they will
have to compete for bus access, but the user can define one of three
priority schemes for arbitration: 1) CPU always has priority; 2) CPU and
DMA share access to the bus equally; or 3) DMA always has priority.

The setup time for autoinitialized DMA operations can be significant for
the CPU--often in the multiple hundreds of clock cycles. For simple
data transfers without autoinitialization, the DMA setup time can be in
the range of 150 clock cycles (see Section 3.1.1.2). Most of this setup
time cannot be significantly reduced, since it is concerned with setting
up the data structures to program the DMA. When autoinitialized
transactions are initiated, a separate data structure must be set up for
each transaction in the autoinitialization sequence, thus setup times
can become very large for this type of transaction.

Each of the DMA channels can be assigned to a communication port to
allow for the maximum transfer of data to and from the processor via the
communication ports. The DMA channels are assigned one-to-one with the
communication ports to keep things simple (i.e., DMA channel 0 is
assigned to communication port 0, DMA channel 1 is assigned to
communication port 1, etc.) In this way, all communication ports can
interact with the DMA, if required. Again, the DMA does not require CPU
intervention to interface with the communication ports, (once
programmed) which allows the maximum amount of both computation and
communication to occur concurrently.

7

Since the DMA can only use one channel at a time, there are two internal
channel service priority schemes: fixed and rotating. Under the fixed
priority scheme, DMA channel 0 is assigned the highest priority and DMA
channel 5 is assigned the lowest priority. In this mode, the highest
priority channel requesting service will be serviced first, regardless
of how long the lower priority channels have been waiting. Under the
rotating priority scheme, after reset DMA channel 0 has highest priority
and DMA channel 5 has lowest priority. When a channel requests service,
the highest priority channel will be serviced first. After it has
completed its transaction, the highest priority channel will then be the
channel immediately below the just-serviced channel (i.e., if DMA
channel 2 has just been serviced, then DMA channel 3 is now the highest
priority channel). The priority scheme rotates in this manner until no
services are requested. All services are either one read access or one
write access. Due to this characteristic, for the rotating priority
scheme, if several channels are requesting both reads and writes, the
highest priority channel will perform its read, then move to the bottom
of the priority list while the next-highest priority channel performs
its read. When all channels have finished reading, then the first
channel may perform a write operation, and then move once again to the
bottom of the priority list. Then the other channels may perform their
write operations. This process will continue until all channels
requesting service have completed their transactions.

2.1.3.3 Local and Global Busses
The C40 has two identical busses (except for notation), one for local
memory access and one for global memory access. Each processor can
access up to four Gwords of memory, the bottom half of which (addresses
OxOOOOOOOOh to Ox7FFFFFFFh) map to on-chip locations and local memory,
the top half of which (addresses Ox80000000h to OxFFFFFFFFh) map to
global memory (see Figure 4). Each processor can have its own local
memory and can have its global bus connected to other processors' global
busses, thereby allowing access to a global shared memory, as shown in
Figure 1. Access to the global shared memory is controlled by a
separate global bus controller.
Both busses have the capability of simulating atomic operations by using
a locked-bus transaction. In these transactions, the bus is locked by
an interlocked read and continues to be locked until an interlocked
store occurs. In these cases, any number of operations can be performed
on information held in global memory without the chance of intervention
by other processors. Interlocked instructions are vital to the
performance of shared-memory parallel processors, since they are used
for synchronization and lockouts. When several processors have to share
data or wait until a particular event occurs, often either a barrier
synchronization primitive or a variant of a test-and-set primitive is
used [3]. These types of primitives depend upon atomic operations so
that race conditions do not develop and so that incorrect data are not
accessed. For the C40s, atomic operations can be effectively
implemented by locking the bus so that only one processor has access to
the bus at a time.

q ! 8

DW0 =0 BM Loads ROM1moo iooc.

000M e"u Perohwa
00100oo0

0020 000
1K RAMO

002F FCO. iKRAMi
00D OM,

LoaW Oka (ExlsmaO

GkW Bus (Extsmm

FFFF FFFFI

Figure 4. C40 Memory Map [2]

2.1.3.4 Miscellaneous Features of the TMS320C40
The C40 has a 512-byte on-chip instruction cache for quick access to
program data. No data cache is provided, presumably to avoid cache
coherency problems. Each C40 has two l-Kword on-chip RAM spaces where
programs, data, stacks, or other program essentials can be kept for
quick access (see Figure 4). The C40 has three separate internal
address/data bus sets: one set for instruction accesses, one set for
data accesses, and one set for DMA operation. The C40 has a register-
based CPU that is composed of the following components: 1) a floating-
point/integer multiplier, 2) an ALU for floating-point and integer
arithmetic and logica. operations, 3) four internal busses (CPUl/CPU2
and REG1/REG2), 4) auxiliary register arithmetic units (ARAUs), and 5) a
register file composed of 20 32-bit registers and 12 40-bit extended-
precision registers which can be used for either integer or floating
point calculations. The multiplier can perform single-cycle
multiplications on either 32-bit integer or 40-bit floating-point
operands. The ALU can also perform single-cycle operations on 32-bit
integer, 32-bit logical, and 40-bit floating-point operands. The
internal busses are capable of carrying two operands from (on-chip)
memory and two operands from the register file concurrently for parallel
operation of the functional units. The ARAUs generate up to two
addresses in a single cycle, and they are used to support addressing
with displacements, index registers, and circular and bit-reversed
addressing. For more information about any of the features of the C40,
see the TMS320C4x User's Guide [2].

2.1.4 iWarp Architecture
The iWarp architecture was developed at Carnegie Mellon University (CMU)
and was built by Intel Corporation. The iWarp computer located at CMU
consists of a 64-node systolic array. Each iWarp node contains an iWarp
component and local memory (LM). The iWarp component cunsists of a
communication agent and a computation agent that are independently
controlled. The iWarp component is shown in Figure 5. Because each
agent is independent, the processor does not always have to participate
in the communication process, allowing communication to proceed without

9

disturbing computation. The computation agent is a 32-bit processor
with floating point and integer/logic units. The communication agent is
connected to each of its four nearest neighbors by two unidirectional
physical links that are eight bits wide. The comaunication agent and
computation agent are connected through the Streaming/Spooling Unit
(SSU). The gate is used for systolic processing operations (see Section
2.1.4.3) [4].

SComputation Agent

LM N_"e gt

XLeft in Xý ,N ight out
8 8

XLeft out MXRight in
Communication Agent8

YLeft in % c YRight out
8 8

YLeft out N YRight in
8

Figure 5. iWarp Component (4]

2.1.4.1 Wormhole Routing
The iWarp network is connected as a two-dimensional mesh with point-to-
point links. The communication agent uses wormhole routing to transfer
messages. Wormhole routing allows any node in the network to be
connected to any other node even if they are not near neighbors. Figure
6 shows a connection between a source node (0,0) and a destination node
(1,3) that are non-nearest neighbors and do not have a direct connection
between them. In order to achieve this connection, the intermediate
nodes (0,1), (l,l), and (1,2) need the capability to allow messages to
flow through the node without being consumed. The iWarp communication
agent has special hardware that reads header words from an incoming
message and determines what to do with the message. For example, if a
message is coming in the XLeft in link in Figure 5 then there are five
possible destinations for this message: Xight out, XLeft out, YL.Et
out, YRight out, and the node itself. iWarp allows all of these
connections to be made [5).

Once all the connections for a message have been set up from source to
destination, the body of the message can be sent. Wormhole routers
break messages into pieces called flits (6]. The size of a flit is
implementation-dependent, but is often one word or less. The flits are
sent one-by-one through the connections that have been established for
the route. In this way, the set of connections forming the route can be
thought of as a pipeline, where each link is a stage in the pipeline and
each stage contains one flit. After a message has been set up and the
pipeline from source to destination is full, words are transferred at a

10

rate equal to the rate for a near neighbor connection regardless of the
distance between source and destination.

9 r-1- 1 r0--- r

L - -- i L - -.-

r - - "- r - r ""

, ~ ~ 1, . ,
L - - -.i I L - . I L - .1

Figure 6. Non-Nearest Neighbor Connection

Wormhole routing is significantly different from older store-and-forward
techniques. For SAF routing, the entire message needs to be buffered in
memory on each node along the path from source to destination. There is
no pipeline, therefore transfer time from source to destination is a
function of the number of nodes the message needs to traverse, as shown
in Equation 1.

In contrast, the transfer time between source and destination for a
wormhole routed message is:

tmw = ts + tr + l*tw + (n-l) (tw + t3i + tr) + 2 tr/w + tb, (2a)
(if tw is sufficiently larger than tr/w s0 that all previously
received words have been stored in memory by the time the last
word arrives)

or
tmw = ts + tr/w + tr + I*tw + n(tw + tsi + tr) + tb, (2b)
(if tw is approximately equal to tr/w)

and the time to transfer an SAF message (from Section 2.1.3.1) is

tms = ts + n*tr + n*l*tw + 2 n*tr/w + tb, (la)
tins - ts + n*tr + n*l*tw + n*tr/w + n(tw + tsi + tr) + tb, (lb)

where
tmw is the transfer time of a wormhole routed message (the time from

startup on the source node to the time when the last word is
stored in memory at the destination),

tms is the transfer time of a store-and-forward message (the time from
startup on the source node to the time when the last word is
stored in memory at the destination),

ts is the setup time of the message at the source node,
tr/w is the time to read or write a word to memory (assumed identical

for simplicity) (includes time to transfer from memory to router
and vice versa),

tr is the time a word spends in the router (after being retrieved
from memory),

1 is the length of the message (in words),
tw is the time to transfer a word across a physical link,
n is the number of nodes after the source (including the

destination),
tsi is the setup time for the message at each intermediate node, and
tb is the blocking time in the network.

11

Figure 7 shows timing diagrams to demonstrate the derivation of these
equations.

~II*#hiIF-iI + ki+
A I tsg trAm tr I tw

B tvJ]Sýj ~1*;t
i I I I

trnw -ts +tr +l'tw +(H)(tw +tsi + k) +Str/w + f to w > rW (1la)
A I4--- + tsr + t

tsm- 00 ,* tsi +r

Atwtsl tr rtw .,

B + -- I I .
Btw tsi itr i rtrw

C awI I 1 I

tMW = s + trow + tr + tw+ ntw + tsi + 0r + 6 tw -N tr/w (1Ib)

Increasing time

Figure 7. Timing Diagrams Used to Derive Equations 2

The two routing methods should perform nearly equally for a nearest
neighbor comnnunication (n=l). Assuming sufficiently long messages and
no blocking, the setup times should become negligible compared to the
word transfer times and the transfer time for a wormhole routed message
becomes dominated by the l*tw component while the transfer time for an
SAF routed message becomes dominated by the n*l*tw component. Clearly,
wormhole routing should outperform SAF routing when sending messages to
non-nearest neighbors.

2.1.4.2 Virtual to Physical Mapping
One of the shortfalls of wormhole routing is that a single message needs
control of all the physical links between its source and destination.
This can cause other messages to block and may even cause deadlock in
the system. Blocking can be reduced by introducing virtual channels.
Each physical link can have multiple virtual channels associated with
it. Each virtual channel requires its own queue, generally in the form
of a FIFO buffer. As an example, Figure 8 shows links between two nodes
with two virtual channels for each physical channel. Each message is
assigned a virtual channel for each physical link it requires. The
physical link is multiplexed between the virtual channels on an equal

12

basis. Thus, virtual channels increase the degree of connectivity of a
network without dramatically increasing hardware. For iWarp, 20 virtual
channels are available in a pool for use by any link that needs them.
The use of virtual channels gives wormhole routing an advantage over
circuit switched routing. In circuit switched routing, the entire path
from source to destination is secured before any data are sent. Once
data begins transferring there is no need to buffer data at intermediate
nodes, so transfer is very fast. However, circuit switching requires
that a message have complete control of all links it uses which
increases the probability that other messages will block.

FIFOS FIFOs
~channel 1

channel1 channel 0

channel10F

FIFOs FIFOS
channel 1

channel1 % channel 0

channel 8

Figure 8. Virtual to Physical Mapping

2.1.4.3 Systolic Processing
Another important part of the iWarp architecture is its support for
systolic processing. Systolic processing is a very fine-grained
approach to parallel processing, where, rather than just transferring an
incoming message directly to memory, systolic processing allows
computations to be performed on the incoming data before the data are
stored to memory. In this way, systolic operations can reduce the
number of costly reads and writes to local memory.

iwarp supports two modes of communication, streaming and spooling.
Spooling is very much like traditional message passing, in that the
communication agent sends incoming data directly to the local memory of
its node. This can be thought of as a DMA-like operation. The CPU sets
up the communication agent to send data to or receive data from local
memory and then the communication agent performs the transfer.

In streaming, the communication agent sends incoming messages directly
to a stream gate in the computation agent. The stream gate is read like
a CPU register. There are two input stream gates and two output stream
gates on each iWarp CPU. The input gates are read-only and the output
gates are write-only. streaming can be very efficient because data do
not have to be buffered in local memory before they are accessed.
However, streaming requires a very tightly-coupled algorithm. If an
incoming data element is not present on the stream gate when the CPU
requires it, then the CPU spin-waits until the data are present. Also,
if the CPU does not read the data soon after it appears on an input
stream gate, the input FIFO on the receiving node and the output FIFO on
the sending node could fill up, causing the message transfer to be
halted for that message (i.e., if message A fills up its FIFOs, then
message A will block, but message A's blocking does not inhibit the

13

progress of message B, unless there are no virtual channels available
for message B's use).

The two stream gates can be thought of as "consumption" and "injection"
channels. A consumption channel is an interface between the router and
the CPU, and an injection channel is an interface between the CPU and
the router. Each stream gate can be configured as either a consumption
or an injection channel. The iWarp therefcre has two
consumption/injection channels that can be appropriately mapped to any
of the eight physical I/O channels (four input and four output).

The iWarp communication agent and the C40 communication ports have many
similarities. The DMA associated with the communication ports on the
C40 can be thought of as the spooling unit of the iWarp communication
agent. Both the i':arp and the C40 can also read incoming messages
directly into CPU registers. Although the C40s are not advertised as
systolic processors, they are certainly capable of performing systolic
operations.

2.1.5 Configurable Hardware Algozithm Mappable Preprocesor (CRAMP)
Wright Laboratory's Data and Signal Processing Section (WL/AAAT-2), in
conjunction with Lockheed-Sanders, is building a reconfigurable special-
purpose processor that can be used for a variety of purposes. The
original design criteria call for CHAMP to execute one of the Infrared
Missile Warning (IRMW) algorithm suites (a representative suite is
described in Section 4.1) at a frame rate of between 200 and 1000 frames
per second. Since an array of C40s can be used to perform image
processing tasks, and all of the IRMW algorithm suites are composed of
image processing tasks, it is of interest to compare the CHAMP's
performance to the C40's. Since the CHAMP prototype is still in
development at the time of this writing, and since the architectural
design of CHAMP differs markedly from the architectures of the C40 and
iWarp, many of the analyses conducted below will not be applicable to
the CHAMP system, but CHAMP will be discussed where appropriate.

CHAMP owes its reconfigurability to the fact that it will- be composed
of Field Programmable Gate Arrays (FPGAs), which have two virtual
layers: 1) a gate array layer, and 2) a static-RAM-like layer that is
used to configure the gate array layer. The devices are programmed by
loading configuration information onto the RAM-like layer, which sets up
the Configurable Logic Blocks (CLBs) and interconnects of the gate array
layer according to the design the user specifies. In this way, a device
can be built that performs many of the same functions that an
Application Specific Integrated Circuit (ASIC) can perform, but at a
lower cost, since FPGAs are commercial off-the-shelf (COTS) devices and
are reprogrammable.

Since the devices are reprogrammable, and since the RAM-like layer takes
silicon area on the device, FPGAs have both lower speed and lower gate
density than ASICs, but for many functions, the difference in cost and
the advantage of reprogrammability can easily outweigh the extra board
space required and the comparatively lower speed achievable by the
FPGAs. For more information about FPGAs, see The Programmable Gate
Array Data Book (7].

2.2 Software
All the software used for testing the C40s was supplied by Texas
Instruments, with the exception of the operating system for the PC that

14

hosted the XDS510 Emulator. TI's PC software can run under either DOS
or IBM's OS/2. With DOS, only one emulator can be run on the host PC,
and thus only one processor on the PPDS can be examined at a time.
However, OS/2's multitasking capability allows multiple emulators to be
run concurrently, thus all four processors on the PPDS can be examined
in parallel. For this reason, OS/2 was chosen as the operating system
for the host PC. The software used for testing the iWirp is the
software made available on the iWarp at CMU [51.

2.2.1 DIU4X Emulator
The main interface between the programmer and the PPDS is the 1mu4z
emulator software (release 2.20 was used for the experiments performed
here), along with the parallel debug manager (pd). The emulator
software runs in an OS/2 window and uses its own window-based interface
which can be set b7 the user to any desired configuration. With this
windowing interface, the user can examine C code, assembly code, the
register file, a set of memory locations (anywhere in the memory map
that is accessible), the program call stack, and a command window where
the user enters input. Up to three windows to memory can be open
concurrently, as well as up to three windows for displaying the status
of watch variables.

The pd is a program separate from the emuf4 emulator that can interact
with one or multiple emulator sessions. In this way, the user can
direct several processors to perform specific tasks concurrently,
without having to reissue each individual instruction to each emulator
session. The number of processors affected and the order in which the
commands are sent to the processors is fully configurable by the user.
For more information, consult the TMS320C4x C Source Debugger User's
Guide [8] and the Parallel Debug Manager Addendum [9].

2.2.2 TXS320C3X/40 C Compiler, Assembler, and Linker
The C compiler used was a fully ANSI-standard C compiler that translates
C code into C3x or C40 assembly code, depending upon the switches used.
The compiler has three levels of optimization, plus a no-optimization
level in which no optimizations are performed on the code and extra
debugging information is included in the symbol table. In order to
allow the emu4z debugger access to the symbol table so that variables
can be accurately represented, all programs run through the emulator
must be compiled with no optimizations, and thus all the programs used
in this research effort have been compiled that way. For more
information, consult the TMS320 Floating-Point DSP Optimizing C Compiler
User's Guide (10).

The assembler translates TMS320C3x or C40 assembly code into machine
language object files, ready for the linker. The assembler's object
files are in a format called Common Object File Format (COFF) . COFF
files are designed to be broken into blocks, which gives the programmer
a great amount of flexibility when deciding how to write code for the
TMS320 devices. This block-structured approach allows for simple
integration of C source files with assembly source files. This allows
the programmer the ability to write the bulk of the program in a high-
level language like C and only write the hardware-specific functions or
time-critical functions in assembly language for optimal performance.
For more details on the assembler and the COFF format, refer to the
TMS320 Floating-Point DSP Assembly Language Tools User's Guide [11].

15

The linker takes specified COFF object files and joins them together
into a single executable file. The assembler and the linker work
together in that they define and place sections of code. A section is a
part of the executable code that can be placed (as a unit) practically
anywhere in the memory map that is accessible as RAM, subject to memory
space limitations. Some of the sections are: .text, which contains the
program code; .data, which contains initialized data; .bss, which
reserves space for uninitialized variables; and .cinit, which stores
absolute addresses, constants, and immediate-mode operands that are
greater than 16 bits. The user also has the ability to define new
sections for any particular use.

The linker accepts a large number of arguments, so it is often best to
use a linker command file to specify the arguments. In this file all
the necessary input file names, output file names, switches, and usable
memory locations can be specified, along with information relating to
where the user would like the sections placed. For more information
about sections, the linker, or linker command files, see the TMS320
Floating-Point DSP Assembly Language Tools User's Guide [11]. The
release of the C compiler, assembler, and linker used was version 4.50.

2.2.3 iWarp Software
All the software tools used to test the iWarp were developed by CMU and
are supported by Intel.

2.2.3.1 iWarp C Compiler
The iWarp C compiler is an ANSI C compiler with some extensions that
support direct access of the systolic gates and assembly language
inlining. The compiler allows for five levels of optimization. For all
the iWarp tests no optimization was used in order to present a fair
comparison with the C40.

2.2.3.2 iWarp Program Comunication Service (PCS)
The PCS is a collection of tools and library routines for writing iWarp
programs. An iWarp program consists of an array program and cell
program(s). The array program defines the way in which nodes are
connected. A cell program is the program that actually runs on an iWarp
node. The array and cell program(s) are written in C. For more
information on the PCS, see the External Product Specification for the
iWarp Programmed Communication Services (PCS) Array Combiner (5].

16

3.0 Performanae Meaazuzwnts of Hardware Comonents
Network performance can be measured using two criteria, bandwidth and
latency. Bandwidth is defined as the number of bits per second that a
communication system can transfer. The maximum attainable bandwidth is
limited by physics (type of wires used, physical distance traveled,
etc.). The effective bandwidth will be limited by other system issues,
including clock speed, contention, and the like. The C40 links have a
maximum attainable bandwidth of 20 MBytes/sec per link and are
bidirectional (i.e., the link can transmit 20 MBytes/sec if no token
swapping is requested). The iWarp links have a maximum attainable
bandwidth of 40 MBytes/sec per link and are unidirectional (i.e., the
two links in one direction (e.g., output to west and input from west)
can transmit 80 MBytes/sec if both are used).

Latency is defined as the delay between the request for information and
the time the information is supplied to the requester. Latency can
include but is not limited to: overhead for handshaking protocols,
overhead due to software setup routines, and contention in the network.

Section 3.1 discusses bandwidth and latency issues for the C40 network,
Section 3.2 discusses bandwidth and latency issues for the iWarp
network, and Section 3.3 presents a summary of the findings for both
networks.

3.1 C40 Netwozk
Benchmarks were devised to test the capabilities of the C40 network.
The benchmark described in Section 3.1.1 tested direct and DMA message
passing between two near neighbor C40s for messages of varying length
(1, 8, 16, 64, 128, 256, 512, 1024, and 4096 words). Message passing
routines provided with the TMS320C40 C compiler were used for this
benchmark. The benchmark described in Section 3.1.2 tests the C40's
capabilities for systolic processing.

3.1.1 Direct vs. DNA Data Transfers
The C40s allow for two kinds of message transfers, direct and DMA. For
direct transfers, the CPU has control of the communication ports and
passes data through them. For DMA transfers, the CPU sets up the DMA
and then the DMA has control of the communication port and performs the
data transfer.

3.1.1.1 Direct Data Transfers
Equation 3 is a modification of Equation la (Equation 2a will also
reduce to Equation 3) to represent the direct message passing benchmark.
There is no blocking in the network for this benchmark so the tb term
drops out. There are no intermediate nodes, so n equals 1, and thus the
transfer time for a direct message is:

17

tmdirect - ts + tr + 1*tw + 2tr/w, (3)

where
trdirect is the time to send a direct message,
ts is the time to set up a direct message,

tr is the timb a word spends in the router (after being retrieved
from memory),

I is the length of the message,
tw is the per word transfer time, and
tz/w is the time to read or write a word to memory (assumed

identical for simplicity) (includes time to transfer from
memory to router and vice versa).

Figure 9 shows timing diagrams to demonstrate the derivation of these
equations.

LrZ-wEt

B I I I I I~L

tmdiret - % + 2 tr,,w * N + tr (3)

Figure 9. Timing Diagxama Used to Derivw, Equatiun 3

The C40 communication port links have a maximum attainable bandwidth of
20 MEyte/sec when the ratad internal clock speed of 40 ns is used. The
C40s on the PPDS have an internal clock speed of 62.5 ns. The
discrepancy between the rated clock speed and the PPDS clock speed will
affect the attainable bandwidth of the PPDS C40 communication ports.
The C40 communicatiou ports are only synchronized t, the internal clock
for token transfers and for the transfer of the first byte of each word
transferred during a message, as explained in Section 2.1.3.1. After
the first byte of each word is sent, the communication ports transfer
the remaining three bytes in an asynchronous fashion (2).

For this benchmark, the time it takes to send one continuous message
from one node to another was measured. AS a result, there is at most
one token transfer. For long messages the token transfer can be ignored
since it happens at most once. According to the TMS320C4x User's Guide,
the "type two" synchronization delay between the last byte of word n of
a message and the first byte of word n+l of the same message is a
minimum of 1.5 machine clocks and a maximum of 2.5 machine clocks. The
transfer times for best case and worst case delay are:

18

tw = tbyte*3 + 1.5*tclk (4)
and

tw = tbyte*3 + 2 .5*tclk, (5)

where
tw is the per-word transfer time,
tbyte is the time to asynchronously transfer one byte, and
tclk is the internal clock speed of the C40.

The TMS320C4x User's Guide states the bandwidth to be 5 Mword/sec (tw
200 ns/word) for a 40 ns tolk. Making these substitutions into
Equations 4 and 5 and solving for tbyte yields:

33.3 ns < tbyte < 46.66 ns. (6)

tbyte is not only a function of the switching speed of the gates on each
C40, but also a function of the physical distance between adjacent
nodes. The longer the communication port data and control wires are the
greater tbyte will be.

Assuming from Equation 6 that the average tbyte is 40 ns then the
expected best and worst case word transfer times for the PPDS clock
speed (62.5 ns) are:

twbest = 40 ns*3 bytes + 1.5*62.5 ns = 217.5 ns (7)
and

twworst = 40 ns*3 bytes + 2.5*62.5 ns = 276.25 ns. (8)

From Equation 7 the best case bandwidth (1/twbest) is 4.5 18 Mword/sec
and from Equation 8 the worst case bandwidth (1/twworst) is 3.62
Mwords/sec. Taking the average of the best and worst case word transfer
times we get a "best guess" average word transfer time of tw = 246.875
ns which translates into 4.05 Mwords/sec for the PPDS board.
Returning to the benchmark of the direct message passing function, the
time to transfer a message is given in Equation 3. The value of tw
derived from Equations 7 and 8 is only an estimate; a better measure
would be more useful. Table 1 shows the time it took to send word
arrays of various sizes (1, 8, 16, 64, 128, 256, 512, 1024, and 4096
words) between two adjacent C40s using direct message passing. All of
the message transfer equations discussed above assume that the sending
and receiving nodes can access their data faster than the communication
ports can transfer it (i.e., the sending node can read a word out of
memory faster than the communication link can transfer it, and the
receiving node can store a word to memory faster than the communication
link can transfer it). Under full-speed conditions, this would be a
reasonable assumption; however, it was discovered that for the PPDS
system used in this test, the C40 communication ports can actually
transfer data faster than the CPU can access LM. Obviously, if faster
LM was used this would not be the case.

19

Table 1. Message Transfer Times for Near Neighbor C40s

Using LM Using RAM1 Using LM Using RAM1
Type of message (cycles) (cycles) (c cles/word) (cycles/word)
1 word send 62 60 62.000 60.000
1 word receive 60 58 60.000 58.000
8 word send 82 74 10.250 9.250
8 word receive 92 72 11.500 9.000
16 word send 212 188 13.250 11.750
16 word receive 128 88 8.000 5.500
64 word send 400 314 6.250 4.906
64 word receive 344 254 5.375 3.969
128 word send 666 544 5.203 4.250
128 word receive 632 478 4.938 3.734
256 word send 1242 992 4.852 3.875
256 word receive 1208 926 4.719 3.617
512 word send 2394 1888 4.676 3.688
512 word receive 2360 1822 4.609 3.559
1024 word send 4698 4.588
1024 word receive 4664 4.555
4096 word send 18522 4.522
4096 word receive 18488 4.514

Because the speed of the memory on the nodes affects transfer time,
messages sent to and from both LM and on-chip RAM (RAMl) were
benchmarked. RAM1 is very fast and can be read from and written to in
one machine cycle (no wait states). Reading or writing to LM on the
PPDS takes three cycles. Because of this, the messages sent to RAM1 are
a better test of the communication port bandwidth and latency.

For long messages using RAM1 on the PPDS (128, 256, and 512 words), the
per-word message transfer time (tw) approaches 3.5 cycles (218.75 ns).
This per-word message transfer time was calculated by measuring the time
to set up the port and to send the entire message, then dividing that
measured time by the number of words sent. The longer a message is, the
more the setup times tssend and tsrec become a negligible component of
the per-word transfer time. Thus, when an asymptotic limit for the per-
word transfer time is determined, it can be safely assumed that words
are transferred at that per-word rate for any length message. Given the
per-word message transfer rate and the total time taken to set up and
send a message, the setup time can be caiculated. Rewriting Equation 3
to solve for ts gives:

ts = tmdirect - 1*tw - 2tr/w - tr. (3)

Solving for ts using values for tmdirect from the second column of Table
1 gives an approximate setup time for sending a message of tssend = 96
cycles, and an approximate setup time for receiving a message of tsrec =

30 cycles.

The benchmark was written to call the receive function and to begin
timing it after the first data word appears on the input FIFO. This
helps to explain the large difference between tssend and tsrec. It is
likely that the input FIFO on the receiving processor is already full by
the time the receive routine finishes setting up. This implies that the
first several words can be read from the port and stored to on-chip RAM
at the rate of two cycles per word. This will make the setup time tsrec

20

appear smaller than it ought to be; nevertheless, tsrec is constant for
long messages. Similarly, it is likely that the send function will fill
up the output FIFO on the sending processor and the input FIFO on the
receiving processor before the receiving processor begins to read in
data. This will cause the send function to spin-wait, making tssend
appear larger than it ought to be; again, similar to tsrec, tssend is
constant for long messages.

For short messages (one to eight words), the sending processor can fill
up its own output FIFO and finish processing the sending routine
instructions before the communication port sends the first word across
its link. This occurs because the CPU instructions in the sending
routine simply read data from on-chip RAM, store it in a register, then
write it to the output FIFO, which only takes two cycles per word. As a
result, it only takes 14 more cycles to send an eight-word message than
it does to send a one-word message. Similarly, by the time the receive
message is set up all of the incoming words are already on the input
FIFO and it only takes two cycles to write each word to RAM1 (one to
load the incoming word into a register and one to store it to memory).

As soon as a message exceeds 16 words (8 words each for the sending and
receiving FIFO), the sending routine has to wait for the receiving node
to start consuming words in order to continue transmitting. Also, the
message functions provided with the C40 C compiler actually send 1+1
words for a message of length 1, because the first word sent across a
link is the length of the message in words. After this extra word is
sent, the body of the message is sent. The time to send this extra word
is included in the calculation of tssend and the time to receive this
extra word is included in the calculation of tsrec, because the extra
word is considered part of the message setup routines.

For long messages the PPDS board achieved a tw of 218.7 ns which gives a
bandwidth of about 4.57 Mwords/sec. This is closer to the best-case
bandwidth calculated in Equation 7 than it is to the worst-case
bandwidth calculated in Equation 8. This is not surprising, since the
C40s are rated for 5 Mwords/sec at the 40 ns clock. On .the PPDS board
the communication ports of the four C40s are physically very close to
one another and Printed Circuit Board (PCB) wires are used for the
communication port links, therefore the asynchronous portion of a word
transfer should occur as fast as the C40 chip can drive it, since there
should be no propagation delays due to the links (such as if the links
had to travel through connectors from one PCB to another). Also it was
assumed that the probability of incurring either a best-case or a worst-
case "type two" delay was equal. If the best case delay occurs more
often, then the tbyte shown in Equation 6 would be less than the 40 ns
average assumed above.

3.1.1.2 DMA Data Transfers
The setup times for a DMA send and a DMA receive were measured as tsdsend
= 146 cycles and tsdrec = 154 cycles. These times are independent of
message length; however, it should be noted that the message transfer
time is not independent of message length, as shown in Section 3.1.1.1
above. The DMA transfer time for a message of a specific length was
identical to the direct transfeL time for sending the same message, so
the only time difference between direct and DMA transfers is their
respective setup times. It is assumed for these DMA benchmarks, similar
to the benchmarks discussed in Section 3.1.1.1, that there is enough
overlap of computation and communication that when the receiving CPU

21

needs data that was sent by another CPU, data will already be in the
receiver's input FIFO.

It should be noted that if the DMA is used to transfer data, it is the
responsibility of the programmer to ensure that the correct data are
transferred. For example, the sending processor could set up the DMA to
transfer a long word array and then, after the DMA has begun sending
data, have the CPU change some values in that array before those values
are sent. In this case the receiver would get some data that was
partially stale. The C40 C compiler comes with functions to check the
status of a DMA transfer (i.e., if the transfer has been completed or
not). These functions should be used to check the status of any DMA
transfers before data are updated.

3.1.2 C40s as Systolic Processors
As discussed in Section 2.1.3.1, C40s could be used for systolic
processing. It was shown previously that it takes 3.5 cycles to
transfer a word for long messages. As discussed in Section 3.1.1, the
read and write operation from the communication port to memory could
take as few as two cycles (if on-chip RAM is used). If it takes 3.5
cycles for each word to appear on a communication port's input FIFO and
it only takes two cycles to read and store a word, then for long
messages, the input routine will have to wait an average of 1.5 cycles
per incoming word. These are wasted cycles that could be used for some
other computation.

Systolic message routines were created to test the C40's capabilities
for this type of processing. Only incoming message routines were
developed for this benchmark; similar functions could be developed for
outgoing messages. There are two C functions included with the
TMS320C40 C compiler for reading in word-length messages, inmg and
receivemsg. The receive__sg function sets up the DMA to asynchronously
write data from a communication channel to memory. Use of the DMA
implies that the CPU gives up control of the data transfer; systolic
operations require that the CPU has control of the data transfer. It
follows, therefore, that using the DMA for systolic operations is not
feasible. The in msg function reads an incoming array word by word from
the input FIFO buffer into a CPU register and writes each word into an
array in memory. The in._msg function is the best candidate function for
implementing systolic operations; therefore, inmag was modified to add
them. Four new systolic message reading functions were created, a
scalar add (in mesa), a scalar multiply (in mesm), a vector add
(in, esva), and a vector multiply (in Mesvm). These functions are
described below:

in_msg(int chno, void *mess, int step);
Reads data from communication port ch no, to a word array
that is pointed to by *mess, with a step size of step.

inmesa(int ch__no, void *mess, int step, int soadd);
Reads data from communication port chno, adds a scalar
value (sac_add) to each data element and writes the result to
a word array that is pointed to by *mess, with a step size
of step.

in mesm(int ch_no, void *mess, int step, int sc MUlt);
Reads data from communication port ch.no, multiplies each
data element by a scalar value (s3_czut) and writes the

22

result to a word array that is pointed to by *mess, with a
step size of step.

in_mesva(int ch_no, void *mess, int step, int *vey, int vstep);
Reads data from communication port ohno, adds elements of
an array pointed to by *vec, with a step size of vatep, to
each incoming data element and writes the result to a word
array that is pointed to by ftess, with a step size of step.

in_mesam(int oh_no, void *mess, int step, int *vec, int vatep);
Reads data from communication port ch..no, multiplies
elements of an array pointed to by *vec, with a step size
of vstep, with each incoming data element and writes the
result to a word array that is pointed to by *tess, with a
step size of step.

These functions were used to transfer arrays of length 1, 16, 128, 256,
1024, and 4096 words to LM and RAMI.

Table 2 shows the number of cycles it took to perform each function for
different message lengths and different destinations (LM or RAM1).
Table 3 shows the number of cycles/word it took to perform the functions
in Table 2. These benchmarks began timing after data first appeared on
the input FIFO. Therefore, they include the time required to set up and
call the function.

Table 2. Systolic Operation Times for C40s

Receive Receive with Receive with Receive with Receive with
Type of message message scalar add scalar mult vector add vector mult
I word to LM 60 64 64 74 74
1 word to RAM1 58 62 62 70 70
16 words to LM 128 154 154 194 194
16 words to RAM1 88 106 106 130 130
128 words to LM 632 826 826 1090 1090
128 words to RAM1 478 482 482 578 578
256 words to LM 1208 1594 1594 .2114 2114
256 words to RAM1 926 930 930 1090 1090
1024 words to LM 4664 6202 6202 8258 8258
4096 words to LM 18488 24634 24634 32834 32834

Table 3. Per-Word Systolic Operation Times for C40s

Receive Receive with Receive with Receive with Receive with
Type of message message scalar add scalar mult vector add vector mult
1 word to LM 60.000 64.000 64.000 74.000 74.000
1 word to RAM1 58.000 62.000 62.000 70.000 70.000
16 words to LM 8.000 9.625 9.625 12.125 12.125
16 words to RAMI 5.500 6.625 6.625 8.125 8.125
128 words to LM 4.938 6.4V3 6.453 8.516 8.516
128 words to RAM1 3.734 3.766 3.766 4.516 4.516
256 words to LM 4.719 6.227 6.227 8.258 8.258
256 words to RAMi 3.617 3.633 3.633 4.258 4.258
1024 words to LM 4.555 6.057 6.057 8.064 8.064
4096 words to LM 4.514 6.014 6.014 8.016 8.016

When writing to RAMI, the scalar add and multiply can be performed with
no penalty. The vector add and multiply take an extra 0.5 cycles when
writing to RAM1. This is because it takes 2 extra cycles to perform the

23

vector operations, one to get the operand out of RAMI and one to perform
the operation, and there are only 1.5 cycles for systolic operation.
When storing to LM, scalar operations add 1.5 cycles. This occurs
because it takes a total of 5 cycles to perform these operations (four
get the data out of the input FIFO and store it to LM plus one cycle to
perform the scalar operation). Vector operations to LM add 3.5 cycles.
This is because it takes a total of 7 cycles to perform these operations
tfour get the data out of the input FIFO and store it to LM, plus three
cycles to get the operand out of memory and perform the operation).

For systems running at the rated clock speed (40 ns), a message transfer
would take 5 cycles/word rather than 3.5 cycles/word. For this type of
system, systolic operations would be even more useful, because there
would be more unutilized cycles with which to perform systolic
operations. Also, internal clock cycle times for microprocessors are
continuing to drop. The C40s rated cycle time of 40 ns is not
excessively fast by today's standards. It seems more likely that the
on-chip clock speed of the C40 will increase than it is that the
communication port transfer speed will increase. In light of this, it
is possible that the number of CPU cycles needed to transfer a word will
be greater than five in the future, allowing even more cycles for use in
systolic operations.

3.1.3 C40 Observations
The C40s have a high bandwidth (160 Mbits/sec for a 40 ns clock), and
relatively low latency for sending point-to-point messages (roughly 100
cycles for message function setup). The low latency for point-to-point
messages is partially a result of the fact that each communication port
has its own memory-mapped registers and DMA channel, and thus resources
do not need to be dynamically allocated to perform communications.

One major thing lacking in the design of the C40 is support for flow-
though messages. In order to send a message to a non-nearest neighbor
node, the message would have to be stored and forwarded at each
intermediate node. This increases latency dramatically. One possible
solution is to have the intermediate processor perform the store and
forward in a systolic fashion. That is, the intermediate node(s) could
read data from an incoming FIFO into a register and write the data to
the appropriate outgoing FIFO without buffering the data in memory, thus
reducing latency to near zero. This would require a significant amount
of software design to generate the proper functions, and would have the
drawback of using up the intermediate nodes' CPU resources for
communication instead of computation. This type of routing software is
mentioned in Section 5.1 as future work.

3.2 iWarp Network
Two benchmarks similar to the C40 benchmarks were also devised for the
iWarp Network. The benchmark described in Section 3.2.1 tested the
streaming and spooling message functions for sending messages of varying
length (1, 8, 16, 64, 128, 256, 512, 1024, and 4096 words) between near-
neighbor nodes. The second iWarp benchmark described in Section 3.2.2
was created to test the latency of the wormhole router at each node.
The benchmark routine sends messages of varying length (1, 16, 128, 512,
1024, and 4096 words) between nodes that were 1 hop (near neighbors), 2
hops, 3 hops, 4 hops, 5 hops, and 6 hops from each other.

24

3.2.1 Streaming vs. Spooling
The first benchmark was designed to compare streaming and spooling.
Messages of varying length (1, 8, 16, 64, 128, 256, 512, 1024, and 4096
words) were sent between two near neighbor nodes using both streaming
and spooling. Each iWarp node CPU has two stream gates that can read in
data directly from the communication unit. These gates need to be bound
to the proper network connection in order for data to be transferred to
the proper place. The number of network connections any node can have
is not limited. Therefore, each node could be logically connected to
every other node in the network; however, because there are only two
stream gates, only two of these connections can be bound at any one
time. The network cornections to be used during program execution must
be defined at compile time. Any of these predefined network connections
can be bound during execution to either stream gate in a given iWarp
node, allowing the desired communication to take place.

The time required to send a message using streaming is a modification of
Equation 2a, given in Equation 9. For this example there is no
blocking, so the tb term drops out, and the message is being sent to a
near neighbor (n=l), so the (n-l) (tw + tai + tr) term drops out. The
setup time has been partitioned into the time to bind a stream gate
(tbind), the time to unbind a stream gate (tunbind) and the time to set
up the stream message (ts3t).

The time required to send a message using spooling is given in Equation
10. As in the streaming case described above, there is no blocking and
the messages are being transferred between near neighbors. Because
spooling is performed in the background by the communication agent, the
time to set up a spool message is independent of the message length 1.
There is additional setup time for spooling (tssp), however. Not only
do the stream gates need to be bound (tbind) and unbound (tunbind), but
also the spool gates need to be bound (tbsp) and unbound (tubsp). The
transfer times for a stream message and a spool message, then, are:

tstream tbind t tunbind + Lsst + 2tr/w + tr + l*tw (9)
and
tspool tbind + tunbind + tbsp + tubsp + tssp + 2 tr/w + tr + 1*tw, (10)

where

tstream is the time required to send a stream message,
tspool is the time required to send a spool message,
tbind is the time required to bind a stream gate and open a message,
tunbind is the time required to close a message and unbind a stream gate,
tsst is the time required to set up a stream message,
1 is the length of the message,
tw is the time required to send a word across a physical link,
tbsp is the time required to bind a spool gate,
tubsp is the time required to unbind a spool gate, and
tSSP is the time required to set up a spooling message.

Table 4 shows the number of cycles required to send and receive messages
of varying length using streaming. From Table 4, it takes about 300
cycles to bind a stream gate and about 240 cycles to unbind a stream
gate. Table 4 also shows the per-word transfer time for each message
length. Two per-word times are given: one that includes the overhead
time to bind the gates, and one that only includes the time to set up

25

the messages. This is because once a network connection has been bound
to gates on the CPU any number of messages can be sent along that
connection.

Table 4. Times to Send Streaming Messages on iWarp

Transfer Transfer time
Bind and Release Transfer time per per word inc.

Type of message open gates gates time word setup
Send I word 302 240 149 149.0000 691.0000
Receive 1 word 328 238 138 138.0000 704.0000
Send 8 words 302 240 134 16.7500 84.5000
Receive 8 words 328 238 126 15.7500 86.5000
Send 16 words 302 240 146 9.1250 43.0000
Receive 16 words 328 238 142 8.8750 44.2500
Send 64 words 302 240 243 3.7969 12.2656
Receive 64 words 328 238 238 3.7188 12.5625
Send 128 words 302 240 370 2.8906 7.1250
Receive 128 words 328 238 370 2.8906 7.3125
Send 256 words 302 240 648 2.5313 4.6484
Receive 256 words 328 238 650 2.5391 4.7500
Send 512 words 302 240 1154 2.2539 3.3125
Receive 512 words 328 238 1174 2.2930 3.3984
Send 1024 words 302 240 2166 2.1152 2.6445
Receive 1024 words 328 238 2162 2.1113 2.2658
Send 4096 words 302 240 8310 2.0288 2.1611
Receive 4096 words 328 238 8306 2.0278 2.1660

Each iWarp link has a bandwidth of 40 MBytes/sec, and each iWarp CPU
runs at 20 MHz. Therefore, a link can transfer a four-byte word in two
cycles (tw = 2). The time required to set up a send message using
streaming can be calculated using Equation 11 below. This equation is
simply the total time it takes to send a message minus the amount of
time it takes to send the data across the links (2*1 because tw = 2).
The total time required to send several messages is shown in Table 4.
Since the total time and length of each of these messages is known, the
setup time can be calculated. Equation 12 is a similar equation to
calculate the time to set up a receive message using streaming. For
long message lengths, the time to set up a send message using streaming
was about 120 cycles. The time to set up a receive message using
streaming was about 115 cycles for long messages. The setup times are,
therefore:

tssend tsend - 2*1 (11)
and

tsrec t trec - 2*1, (12)

where

tssend is the time required to send a message using streaming,
tsrec is the time required to receive a message using streaming,
tsend is the total time to send a message,
1 is the length of the message, and
trec is the total time to receive a message.

Table 5 compares the setup times for messages that use streaming and
spooling (the setup times for the stream messages were calculated using
Equations 11 and 12; all other times were measured). For spooling, it
takes about 350 cycles to bind a spool gate and about 430 cycles to

26

unbind a gate. It also takes longer to set up a spool message than it
does to set up a stream message. If gate binding times are factored in,
it takes about 1000 more cycles to set up a spool message than it does
to set up a stream message. It is worth noting that although the setup
time is independent of the length of the message for spooling, the
actual amount of time it takes before the data reaches its destination
is a function of the message length. It is assumed for these benchmarks
that if streaming is used, there is enough overlap of computation and
communication that when the receiving CPU needs the data that was sent,
the transfer will be complete. For the spooling benchmark program a
long loop was inserted between the time each message was sent and
received on each node to ensure that there was enough time to complete
the background transfer.

Table 5. Comparison of Streaming and Spooling Setup Times on iWarp

Bind and Release
open Bind spool spool Release Setup Total

Type of message gates gates ga2tes Cates time overhead

Send using streaming 302 240 120 662Send using spooling 320 347 434 240 355 1696

Receive using streaming 328 238 115 681
Receive using spooling 328 338 432 238 315 1651

From Table 5 it is clear that it takes considerably more time to set up
a transfer using spooling than it does to set up a transfer using
streaming. Therefore, in order to effectively use streaming, longer
messages need to be used in order to overcome the setup times. When
sending messages of less than 128 words it is always better to use
streaming because it takes as long to set up a spool transfer of 128
words as it does to actually transfer 128 words using streaming. When
the gate binding overhead is factored in, it is faster to use streaming
for all messages that are 512 words or smaller. This is, of course,
assuming no blocking in the network and that the sending and receiving
nodes are reasonably synchronized. If there are many messages in the
network that can cause blocking or the sending and receiving nodes are
not synchronized, then either the sending or receiving node could be
forced to wait when transferring data using streaming. This could
potentially be a great waste of CPU resources.

3.2.2 Multi-Hop Messages
The second iWarp benchmark was created to test the latency of the
wormhole router at each node. A benchmark routine was created to send
data of varying length (1, 8, 16, 64, 128, 256, 512, 1024, and 4096
words) between nodes that were 1 hop (near neighbors), 2 hops, 3 hops, 4
hops, 5 hops, and 6 hops from each other. Streaming was used for all of
these benchmarks. The iWarp uses wormhole routing, therefore it should
follow the data transfer model given in Equation 2a. For this
benchmark, there is no blocking and the tw term is known to be two
cycles. Making these substitutions into Equation 2a yields:

t, = t, + tr + 21 + (n-l) (2 + tsi + tr)+ 2 tr/w. (13)

Table 6 shows the message transfer time for the sending and receiving
node. Table 7 shows the per-word average transfer time for each
message. All of the times in Table 7 only include setup and transfer
time; the overhead associated with binding a connection i3 not included.
Therefore, the ts term in Equation 13 only includes the time to set up a

27

i LM

message and not the binding overhead. As expected, the message times
were almost completely independent of distance traveled (since this
benchmark had no network blocking). One can conclude from this that the
tsi term in Equation 13 is negligible for the iWarp router. Another
conclusion that can be made is that the advertised iWarp bandwidth of 40
MBytes/sec per link is correct, because for long messages the per-word
transfer time approaches two cycles per word.

Table 6. Results of Multi-Hop Latency Benchmark on iWarp

Type of message 1 hop 2 hops 3 hops 4 hops S hops 6 hops
Send open connection 408 405 406 406 406 406
Receive open connection 609 603 597 598 594 591
Send 1 word 144 141 141 141 140 138
Receive 1 word 136 141 139 139 140 141
Send 16 words 201 158 158 158 158 158
Receive 16 words 144 145 143 143 143 142
Send 128 words 512 561 554 555 544 542
Receive 128 words 368 370 371 371 373 371
Send 512 words 1152 1160 1166 1166 1166 1166
Receive 512 words 1144 1149 1153 1158 1150 1151
Send 1024 words 2168 2189 2191 2190 2200 2196
Receive 1024 words 2160 2186 2194 2188 2196 2191
Send 4096 words 8336 8426 8428 8455 8441 8446
Receive 4096 words 8344 8426 8430 8452 8445 8448
Send close connection 232 232 232 232 232 232
Receive close connection 248 246 246 245 247 247

Table 7. Per-word Transfer Time for the Multi-Hop Latency Benchmark on
iWarp

Type of message 1 hop 2 hops 3 hops 4 hops, hops 6 hops
Send 1 word 144.000 141.000 141.000 141.000 140.000 138.000
Receive 1 word 136.000 141.000 139.000 139.000 140.000 141.000
Send 16 words 12.563 9.875 9.875 9.875 9.875 9.875
Receive 16 words 9.000 9.063 8.938 8.938 8.938 8.875
Send 128 words 4.000 4.383 4.328 4.336 4.250 4.234
Receive 128 words 2.875 2.891 2.898 2.898 2.914 2.898
Send 512 words 2.250 2.266 2.277 2.277 2.277 2.277
Receive 512 words 2.234 2.244 2.252 2.262 2.246 2.248
Send 1024 words 2.117 2.138 2.140 2.139 2.148 2.145
Receive 1024 words 2.109 2.135 2.143 2.137 2.145 2.140
Send 4096 words 2.035 2.057 2.058 2.064 2.061 2.062
Receive 4096 words 2.037 2.057 2.058 2.063 2.062 2.063

3.2.3 iWazp Observations
The iWarp communication links have a very high bandwidth (320 Mbits per
second), and the wormhole router has very low latency for pass-through
messages. However, the large overhead associated with binding the CPU's
stream gates to network connections increases latency and makes the two
stream gates a potential bottleneck. For algorithms that require each
node to access multiple network connections, the overhead associated
with switching from one connection to another will have a serious impact
on performance. One possible solution to this problem is to recode the
software binding and unbinding routines in a more efficient manner. For
all of these benchmarks the routines provided by CMU were used, and it
is not known how efficient they are and thus how much room for
improvement there is. Another possible solution is to build more stream

28

gates on the iWarp CPU (perhaps eight, one per external link). This of
course would require extra hardware that cannot be added to the current
iWarp, but could be incorporated into the next generation iWarp.
Studies have shown that the addition of multiple consumption channels to
wormhole routed networks can improve performance [12].

3.3 Comparison of C40 and iWazp network
Both the C40 and the iWarp networks have a high bandwidth and low
latency for point-to-point messages. Table 8 compares the C40 and iWnrp
transfer times for point-to-point messages. These are the same results
shown in Table I and Table 4 with the times converted to microseconds.
The times are shown in microseconds because the tested iWarp and C40 had
different cycle times.

Table 8. Comparison of iWarp and C40 Point-to-Point Transfer Times in
Microseconds

iWarp iWarp transfer
C40 using transfer time including

Type of message RAM1 C40 using LM time bind time
Send I word 3.75 3.88 7.45 34.55
Receive 1 word 3.63 3.75 6.90 35.20
Send 8 words 4.63 5.13 6.70 33.80
Receive 8 words 4.50 5.75 6.30 34.60
Send 16 words 11.75 13.25 7.30 34.40
Receive 16 words 5.50 8.00 7.10 35.40
Send 64 words 19.63 25.00 12.15 39.25
Receive 64 words 15.88 21.50 11.90 40.20
Send 128 words 34.00 41.63 18.50 45.60
Receive 128 words 29.88 39.50 18.50 46.80
Send 256 words 62.00 77.63 32.40 59.50
Receive 256 words 57.88 75.50 32.50 60.80
Send 512 words 118.00 149.63 57.70 84.80
Receive 512 words 113.88 147.50 58.70 86.00
Send 1024 words 293.63 108.30 135.40
Receive 1024 word_ 291.50 108.10 136.40
Send 4096 words 1157.63 415.50 442.60
Receive 4096 wordi 1155.50 415.30 443.60

The iWarp unidirectional links have a bandwidth of 40 MBytes/sec
compared to the C40 bidirectional link's bandwidth of 20 MBytes/sec. As
expected, for longer messages (greater than 128 words) the setup times
become more negligible, and the iWarp links can transfer the same amount
of data as the C40 links in about half the time. For short messages
(less than 16 words), however, the setup time is not a negligible
component of overall transfer time.

Since the time needed to set up an iWarp message is longer than the time
required to set up a C40 message, the C40s can transfer short messages
faster than the iWarp even though the C40 links have half the bandwidth
of the iWarp links. If the gate binding time is included in the iWarp
setup time, then the iWarp setup time is no longer negligible, and the
iWarp can only transfer very long messages (greater than 256 words)
faster than the C40s. It can then be concluded that even though the
iWarp network has a greater bandwidth than the C40 network, for near-
neighbor messages the C40s have a lower latency.

As shown in Section 3.2.2, the iWarp has very low (negligible) latency
for multi-hop messages. This is due to the extra hardware on the iWarp

29

to support wormhole routing. As explained in Section 2.1.3.1 the C40s
do not have any special hardware to support multi-hop messages, thus
store-and-forward transfer methods must be used (unless the alternate
method proposed in Section 3.1.3 is used). The wormhole routing
hardware on the iWarp makes multi-hop message latency much lower on the
iWarp network than on the C40 network.

The iWarp network has more dedicated hardware to support message passing
than the C40 network; therefore, the iWarp network can handle more types
of messages more efficiently than the C40s. However, the C40 message
passing hardware is quite good for point-to-point conmnunication. Also,
as will be seen in Section 4.6, the C40 CPU is more powerful than the
iWarp CPU. Even running at a slower internal clock speed (16 MHz vs. 20
MHz) the C40 was able to complete a benchmark algorithm faster than the
iWarp.

30

4.0 Performnance Measurmnents of Avionics Capability
In keeping with current opinion of the ineffectiveness of benchmarks for
evaluating computer systems, it was decided to test the C40s by running
an application program in both uniprocessor and parallel implementations
(13). Section 4.1 describes this application program, Section 4.2
describes several candidate topologies that were considered for a
parallel implementation of the program, Section 4.3 describes the
mapping strategies that were employed to map the program to the
previously identified topologies, Section 4.4 details the performance
measurements that were made on the PPDS, Section 4.5 details the
performance of the program on iWarp, Section 4.6 compares the
performance of the C40 and iWarp, Section 4.7 gives the CHAMP
specifications, and Section 4.8 compares the C40 and CHAMP.

4.1 Description of Algorithm Suite Four
Figure 10 shows the data flow for algorithm suite four (AS4). AS4 is
one of the Infrared Missile Warning (IRMW) algorithm suites evaluated by
WL/AAAT-2 during the time period of April 1992-February 1993 [14). This
algorithm accepts data from two infrared bands, which represent sampled
image data. Band Two (B2) is the primary band (the band in which
burning C02--missile exhaust--appears brightest) and Band One (BI) is
the secondary band (for reference use in the spectral filter). First, a
median subtraction filter (MSF) is run on each frame of each band. The
output of the two MSFs is then input into a correlation spectral filter
(CSF), which in turn feeds the background normalizer and thresholder
(BNT). The output of the BNT is a list of pixel locations the algorithm
has identified as potentially being missiles.

MSSBFF

Figure 10. Data Flow for Algorithm Suite 4 [141

4.1.1 Median Subtraction Filter
The MSF rank orders the eight nearest neighbors of the input pixel
P(x,y) by sorting them from smallest to largest. The ordered pixels are
then labeled x 0 , xj, x2,...,x7. For any band of data, the value of the
output pixel from the MSF, B(x,y), is defined as:

B(x,y) = F(x,y) - M(x,y), (14)

where M(x,y) is defined as:

M(x,y) = (x 3+x 4)/2.
The output pixel value is the median value of the eight nearest
neighbors of the center pixel subtracted from the value of the center
pixel.

31

4.1.2 Correlation Spectral Filter
This spectral filter algorithm uses a 5 x 5 pixel window around each
pixel in multiple bands to generate a correlation factor, a(x,y), which
is an estimate of the correlation between the background data in the
primary and secondary bands. After i(x,y) has been generated, the value
of the center pixel in the secondary band, Bj(x,y), is multiplied by
W(x,y) and the result is subtracted from the center pixel in the primary
band, B2 (x,y). If the center pixel, S(x,y), contains a potential
target, the result will be a pixel value much larger than zero.
Conversely, if the center pixel S(x,y) of the 5 x 5 window is part of
the clutter, the output value should be near zero. Thus, the value of
the center pixel, S(x,y), after filtering is:

S(x,y) = B2(x,y) - c(x,y) *B(xy), (15)

where
< BiB2 >a(x,y) = < 2

< 1 2 >

x+2 y+2

"< BiB2 >= F (m'n))(B2(Mn)),
msux-2 fty-2

m=x-2 nmy-2
and the sums do not include the terms where m-x and n-y.

4.1.3 Background Normalizer and Thresholder
The BNT compares the center pixel of a ýx7 window to the average
background energy, /Jb(x,y), of the remaining 48 pixels around the
center. The resulting contrast metric, C(x,y), is defined as:

C(x,y) - S(x,y) / /O(x,y), (16)

where S(x,y) is the value of the center pixel and Mb(x,Y) is defined as:

1 x+3 y+3

1b = Y S(m.n)I.

Note that the term where mrx and n=y is not included in the background
mean calculation. The contrast metric for each pixel is then compared
to a threshold provided by a tracking algorithm or by the user. Pixels
whose contrast metric exceeds the threshold are declared exceedances and
their intensity values S(x,y) and their average background energy are
output to a tracking process (not included in this algorithm).

4.1.4 Handling of Edge Pixels
If a pixel in an image falls sufficiently close to one of the edges of
the image, it becomes impossible to center a filtering window on that
pixel (i.e., assuming a square image of N pixels on a side, none of the
pixels in column 0, column N, row 0, and row N of an image can be
filtered using the 3x3 filtering window used in the MSF routine, or any
other window used in AS4). Thus, a determination must be made about how
to treat these so-called edge pixels. For the purposes of this study,
it was decided to include only pixels known to be valid for further

32

filtering (i.e., the entire image can be used for the MSF, the entire
image minus column 0, column N, row 0, and row N can be used for the
CSF, etc.). In this way the size of the image was reduced from an N x N
image before the MSF to an N-2 x N-2 image after the MSF, and was
similarly reduced for the CSF and BNT stages. Thus, after the entire
algorithm has completed, the image dimensions were N-6 x N-6. The
amount of reduction in the size of the image was constant across all
processing platforms, so it will not affect the results of the tests
made in this effort.

4.2 Description of Topologies
Since the PPDS has four C40s configured as a fuLly-connected mesh (FCM),
several topologies become immediately apparent ror implementing AS4,
namely a four nearest neighbor mesh (4NNM), a ring, a linear array, and
a shared memory global bus array. These topologies are shown in Figure
11, where the layout on the PPDS is shown in Figure 11(a), and the C40s
are labeled accordingly on the other topologies.

N B
A

B
A

C D c D

(a) PPDS Configuration (b) 4NNM
and FCM

B A

n (d) Linear Array

(c) Unidirectional Ring

(e) Shared Memory Global Bus Array

Figure 11. Topologies Realizable from PPDS Configuration

4.2.1 Fully-Connected Mesh
For a two-dimensional data set (i.e., an image), most filtering
operations require information from the surrounding pixels in all
directions. In the uniprocessor case, there is never any problem with
these filtering operations, since the entire data set is available to
the processor. However, for a parallel case, only certain portions of
the data set will be available to any specific processor, which means
that it will have to receive data from its neighbors. Due to the

33

windowing operations of AS4, data from the neighbors to the north,
south, east, and west are needed, along with data from the neighbors to
the northeast, northwest, southeast, and southwest. Thus, an FCM seems
the optimal connection strategy. Given the configuration of the PPDS,
it is simple to implement a four-chip FCM (see Figures 1 and 11(a)). In
this topology, the data from one processor can be sent to all three of
its neighbors in one hop, where a hop is the number of distinct
communication port links the data traverse before reaching their
destination.

4.2.2 Four Nearest Neighbor Mesh
The four nearest neighbor mesh is very like the FCM, except for the
missing northeast, northwest, southeast, and southwest diagonal
connections (see Figure 11(a) and (b)). Due to the similarity between
the two, it should be apparent that they would operate along
fundamentally similar lines, except that sending from one processor to
another processor that is diagonally next to it will now take two hops
instead of one (one horizontal and one vertical).

On certain machines, like the iWarp, multiple-hop routing can be handled
quite efficiently by the wormhole routing technique described in Section
2.1.4.1. Because the C40 uses SAF routing (see Section 2.1.3.1), direct
intervention by the CPU will be required in order to route messages to
their correct destinations (assuming a complex or non-deterministic
communication scheme that precludes use of the DMA's autoinitialization
capability or systolic message routing discussed in Section 3.1.3), so
it becomes vitally important to keep the number of hops required to send
a message to as small a number as possible.

4.2.3 Ring-Based Network
Figure 11(c) shows a unidirectional ring, and Figure 12 shows a
bidirectional ring. Ring networks are perhaps the simplest non-bus-
based network topologies. Each node is connected to its left and right
neighbor, therefore each node has two nearest neighbors. The two end
nodes can have wraparound links as shown in Figure 12 to complete the
ring, or they could have no wraparound in which case the network would
reduce to the linear array shown in Figure 11(d). Figure 12 shows two
unidirectional links, one sending to the right and one sending to the
left, connecting each pair of nearest neighbor nodes. These could be
substituted with a single bidirectional link, but bidirectional links
can reduce throughput if they are constructed as half-duplex links.

Node0

Figure 12. One-Dimensional Ring with Wraparound

4.2.4 Global Shared Bus
The most straightforward and least hardware-intensive approach to
parallel processing is to connect several processors together by sharing
a common global bus, as shown in Figure 11(e). This provides equal
access to data stored in global memory to all processors. Coupled with
a local memory for each processor, the global memory can be used for
communication and synchronization.

34

A specific algorithm can be partitioned in practically any manner with
the global shared bus topology, but instead of using the point-to-point
communication links, all shared data are written to and rt ad from the
global memory. GM writes should be atomic to ensure that if a given
processor attempts to read a data structure currently bei, g written to
by another processor, there will be no chance of the reading processor
accessing incomplete or partially stale data. Also, if the processors
on the bus have data caches, it becomes imperative to avoid stale data
in the caches. Some processors, like the C40, avoid the problem by not
caching data. Others, like the Intel i860, use a version of MESI
(Modified, Exclusive, Shared, Invalid) protocols for ensuring cache

coherency (15).

4.2.5 Other Topologies
Given the limited number of processors on the PPDS, only a small subset
of the total number of possible interconnection networks can be formed,
since many of the topologies reduce to others when the number of
processors is small. For instance, a two-dimensional hypercube is
indistinguishable from a four-processor four-nearest-neighbor mesh.
However, if one were to assume an unlimited amount of processors were
available, several other connection strategies become apparent.

4.2.5.1 Hexagonal Mesh
Using all six of the C40's communication ports, a hexagonal mesh can be
formed, like the one shown in Figure 13. This topology has the
advantage of being able to reach all neighboring processors in all
directions in one hop.

0

1 11

Figure 13. Hexagonal Mesh

4.2.5.2 Hypercube
An array of C40s can be arranged in a hypercube topology (Figure 14
shows a three-dimensional hypercube), for low-dimensional hypercubes
(dimension 5 6). With three- and four-dimensional hypercubes, an

35

interesting variation can be applied, which will be discussed in
Sections 4.3.4 and 4.3.5.

E F

B

GH

C D

Figure 14. Three-Dimensional Hypercube

4.2.5.3 Pipelined Topology
Since AS4 (discussed in Section 4.1 above) follows a pipelined
configuration, a pipelined topology like the one shown in Figure 15 can
be explored. More will be discussed on this topology in Section 4.3.6.

Input Data A C D Output Data

Input Data

Figure 15. Pipelined Topology

4.2.5.4 CHAMP Topology
CHAMP uses a hybrid topology, incorporating both the bidirectional ring
and fully-connected topologies (using a crossbar) as shown in Figure 16.
This mixing of topologies gives several advantages, namely that all
processors have the expediency of two nearest neighbor point-to-point
connections, but also have the ability to send information to any given
processor through the crossbar.

Figure 16. CHAMP Topology

4.3 Mapping AS4 Onto the Various Topologies
In general, for computation-bound algorithms (i.e., algorithms that
require more computation tinLe than communication time), the higher the
communication/computation ratio, the worse the algorithm's performance.
Thus, for these types of algorithms, it becomes imperative to reduce the
amount of communication as a whole and optimize the required
communication in order to ensure the fastest performance.

36

Investigations into the behavior of AS4 show it to be a computation-
bound algorithm, but as will be shown in Sections 4.4.4 and 4.5.1, the
communication/computation ratio is very low (on the order of 0.017:1).
Thus, for this particular algorithm, the communication patterns of AS4
do not require an extensive effort to reduce the amount of
communication. However, as discussed in Section 4.2.2, since the C40
must route data using the SAF method, it is beneficial to minimize the
amount of non-nearest neighbor communication required to perform this
algorithm in parallel.

Therefore, all mappings described in this section were made with the
goal of reducing the number of hops required to send data from one
processor to another. In most topologies, all data can be transferred
in one hop; in others, in no more than two hops, although in certain
topologies some modifications were made to these multiple-hop topologies
to achieve the goal of single-hop routing. For the purposes of this
study, it will be assumed that all images processed by AS4 are square
with an edge size of N pixels, for a total of N2 pixels per image.

4.3.1 Four Nearest Neighbor Mesh
This is perhaps the most straightforward of the mappings. If the 4NNM
follows a square pattern (i.e., the same number of processors on all
edges), then for an array of processors with edge size n it becomes a

problem of simply dividing the image into n 2 pieces of N 2 /n2 pixels, as
shown in Figure 17, where the regions of the image covered by a
particular processor are labeled "PE i" (PE stands for processing
element). In this topology, all horizontal and vertical data transfers
can be done in one hop, and all diagonal data transfers will take two
hops.

N pixels

PE PE 0* E

PE PE *0* PE
n W. 2fl-i

N pixels * *

FE PE 00 En I. 2 -n.1 I °

Figure 17. Image Partitioning Scheme for 4NN0 and 8N01

4.3.2 Fully-Connected Mesh
In cases where n is relatively large (i.e., n Ž 9), if the FCM
connection pattern shown in Figure 11(a) is extrapolated (e.g., two
horizontal links, two vertical links, and four diagonal links) it
becomes an eight nearest neighbor mesh (8NNM). In the same manner as

the 4NNM, mapping AS4 to an 8NNM will entail dividing the image into n2

pieces of N2 /n 2 pixels, as shown in Figure 17. In this topology, all
horizontal, vertical, and diagonal transfers can be done in one hop.
Since the C40 has only six communication ports, an 8NNM cannot be formed
with more than four processors, unless a custom hardware design is
implemented to allow greater connectivity in the network.

37

An FCM, in contrast to an 8N4NM, can be constructed with up to seven C40s
(or perhaps more with specialized interface hardware), but the
communication patterns of AS4 (see Section 4.3 above) do not warrant
mapping it onto this type of topology, since the high degree of
connectivity given by an FCM network is not required for this
algorithm.

4.3.3 Hexagonal Mesh
Since the C40 has six communication ports and a 4NNM only uses four of
them, an attempt was made to map AS4 into a topology that would make
better use of the existing C40 hardware. One such topology is the
hexagonal mesh shown in Figure 18. In this mesh, each processor can
send data to all of its neighbors in one hop, thus eliminating some of
the communication bottleneck incurred in mapping AS4 into a 4NNM. By
dividing the image to be processed into nonoverlapping square pieces of
size N2 /n 2 , similar to that shown in Figure 18(a), only a small portion
of the image, represented by the darkened areas in Figure 18(a), remains
unprocessed. By using extra processors, labeled with letters in Figure
18(b), the entire image can be covered.

N pixels PE- -I

PEA 11 EFPE F PE I - PE e6e -- -
o n-1 0 P

P E PPEPE _FE 0n 2n-2 v 23-2
PE Em PE ,E FEE '

E1 FE 312 Pn1
4n-3 4313 plF

pF _ PE FE PE PE PE1.3

S 4r,2 PE 4-i 511- 4n2n-I E 5-
N pixel PEE PE E

Su-2 Sm2. 64432
PE PE FE PE PE FE

6ir3 n2] 7l-A &03 fn-2 7ri.4

2-4n-

PE PE F0 EPEFE

.+ P 2- .; le _2.e

24.3E jn O0n 2• n-3i. oee3n 2,.2..

PE FI : I

(a) (b)

Figure 18. Image Partitioning and Extra Processor Overlap

Each of the extra processors will have half the number of pixels
(N2 /2n 2) of the other processors. This implies that some of the
computational capacity of the extra processors will be idle during part
of the algorithm, so a more detailed tradeoff study would have to be
made before it could be determined whether using the extra processors to
improve communication speed outweighs the extra cost involved and the
idle time incurred with the extra processors. Such a study is beyond
the scope of this report, and is mentioned as future work in Section
5.2.

For an array of processors with edge size n, the number of processors
required for full coverage of the image with a hexagonal mesh can be
calculated as follows: if n is even, then n/2 long columns and n/2
short columns of processors will be required (see Figure 18, where a

38

L M1II III?

long column is a column of tiles that has no unprocessed regions, and a
short column is a column of tiles that has two unprocessed regions, one
on the top of the column and one on the bottom). Each long column will
have n processors. Each short column will have n-i processors. The
number of extra processors required will be n (one each on the top and
bottom ends of the short columns). Therefore, for n even, the total
number of processors required, ntot, is:

not n-- + (n - 1)(1) + n
2 2

n2 n2
+fl. (17)

2 2

2
2

Similarly, for n odd, the number of long columns required will be
(n+1)/2, the number of short columns will be (n-2)/2, and the number of
extra processors required will be n-1. Therefore, for n odd, the total
number of processors required, ntot, is:

.n+l ..- -
nto =n(---+)+(n-1)()+n- n--

2 2
Sn2 + n n2 - 2n + 1- + +n-1 (18) -_

2 2
n-i .

2

Since the number of processors required for a 4NNM or an 8NNM is n2,
then it can easily be seen that the number of extra processors required
to implement a hexagonal mesh is approximately n/2, depending on whether
n is even or odd. For small values of n, it may prove worth the
increase in cost to use the extra processors, since higher bandwidth
communication rates can be sustained. However, for large values of n,
the increased expense of including the extra processors may outweigh the
benefits of the increased communication bandwidth.

4.3.4 Three-Dimensional Hypercube
Eight processors are required for a three-dimensional hypercube. Figure
19 shows one possible mapping of an image onto the hypercube. With this
mapping, any processor can send to any neighboring processor (on the
image partition shown in Figure 19(a)) in no more than two hops. This
is true because there is no need, for example, for PE A to send data to
PE F. However, if diagonal connections are made on the front and back
faces of the hypercube, as shown in Figure 19(c), then each processor
can send data to its neighbors in only one hop.

39

N pixels E F E F

PEA PEB

N pixels PEC PED ,,

PEG PEH G H %a H

PEE PEF I

C D C D

(a) (b) (c)

Figure 19. Mapping a Square Image onto a 3D Hypercube

While the topology shown in Figure 19(c) achieves the objective of
single-hop communication, it still has two communication ports per
processor remaining unused. However, like the 4NNM, 8NNM, and FCM
topologies, it does make better use of computational resources than the
hexagonal mesh, since no extra processors are required to completely
cover an image. The biggest detriment of the hypercube architecture is
that it does not scale well. For hypercube dimensions of greater than
four, it becomes impossible for the C40 to form diagonal links like
those used in Figure 19(c) due to the limited number of communication
ports available, leading to multiple-hop communication. Hypercube
dimensions of greater than six cannot be attained with the C40, since
only six ports are available, unless special interface hardware is
constructed for that purpose.

4.3.5 Four-Dimensional Hypercube
Similar to the three-dimensional hypercube, the four-dimensional
hypercube can easily attain a worst case communication scheme of two
hops (t Figure 20(a) and (b)). Again, similar to the three-
dimensiunal case, adding extra connections between processors on the
front, bottom, and back faces of the three-dimensional suboubes and
moving many of the links in the fourth dimension as shown in Figure
20(c) allows the objective of single-hop communication for all
processors.

Since several links in the fourth dimension were removed (as shown in
Figure 20(c)), this topology can no longer strictly be called a four-
dimensional hypercube, but since that is what it resembles most, it
shall be called a modified four-dimensional hypercube. Several
variati-'s of s type of modified four-dimensional hypercube can be
corn :ced, ._ of which will allow single-hop communication, but will
not be shown here for reasons of space.

4.3.6 Pipelined Topology
Since AS4 follows a pipelined algorithm (i.e., BNT follows the CSF which
follows MSF--se- Section 4.1) a logical topology to implement would be a
pipelined apprr, similar to those shown in Figure 21. In one
implementation, aach stage (MSF, CSF, BNT) would be one processor, and
the entire image would be passed from processor to processor. This
would most likely be a poor implementation, since the amount of
communication between processors could easily overwhelm the amount of
computation performed in each stage.

40

PEAN pixels P

PE C PE D
PE G PEHE F K

PE E PE F
N pixels PE I P

PE K PE LG
PEO0 PE P

PE M PE N

CVI D b

Figure~~~0 20e.pn asur maeot 4 yec

Fiur 2..MppngImge nt aPielredToolg

hardwreiwuldre re.Mauired fo eqach processornto implemyent theCS

41 CF N

stage, since it would require seven commuunication links--four for the
4NNM, two for inputs, and one for output.

4.3.7 Ring Network
Mapping AS4 onto a ring network is a straightforward operation. One
approach is to divide the image into stripes (rectangular sections of N
x N/n pixels), as shown in Figure 22. One particular feature of this
approach is that the number of pixels that must be sent from processor
to processor remains constant regardless of the number of processors
used (assuming that each processor has at least the amount of data that
has to be communicated to its neighboring processors). The advantage of
this feature is that predicting the scalability of this approach becomes
a trivial problem, since the amount of communication required by each
processor remains constant. The disadvantage of this feature is that as
more processors are added, the communication/computation ratio
increases.

_.4 N pixels

PE 0

PE 1

N pixels

PE n

(a) (b)

Figure 22. Mapping AS4 onto a Ring Network

4.3.8 Global Shared Memory
Mapping AS4 onto a global shared memory topology can be accomplished in
several different ways. Just about any partitioning scheme can be used,
with the required communication occurring through the global shared
memory, as mentioned in Section 4.2.4.

Possibly the most straightforward (but worst performing) approach would
be to store the entire image in global memory and let the individual
processors contend for the bus to access the data. This would be a poor
approach, because to ensure that any given processor could complete its
write of processed data back to global memory without getting
interrupted, a locked bus transaction would have to take place, as
described in Section 2.1.3.3, which would severely limit the ability of
other processors to continue computation without having to spin wait on
the bus.

A better approach would be to store each processor's data in local
memory and have small arrays reserved in global memory for the exchange
of data. In this scheme, each processor could in turn access the global
bus, lock it, then write only the data from its image that need to be
shared into the previously reserved arrays. After completing the write,
it would unlock the bus and spin-wait on a barrier until all processors
had completed their writes to the shared arrays. After all processors
had finished writing, then each processor could pass the barrier, access

42

the shared data, load the data into its local memory, and proceed with
processing.

While this approach seems relatively straightforward, the inherent
delays in spin-waiting will severely impact the performance of this type
of system, especially as the number of processors sharing the bus
increases. Since all data updates must be performed atomically, the
amount of time the bus is free for reads will decrease dramatically as
the number of processors grows. For this type of data sharing, even the
addition of data caches for the C40s would not significantly improve
performance, since the computing delays are chiefly caused by the
locked-bus transactions and the required barrier synchronizations.

4.3.9 Mapping AS4 onto CRM
Mapping AS4 onto CHAMP is a more complex problem than those mentioned
previously, due to the architecture of the FPGAs used in constructing
CHAMP. Because of the FPGA's structure, it is possible to incorporate
more than one particular function (e.g., adder, multiplier, etc.) on any
particular FPGA. Thus, to map an algorithm onto CHAMP, the design
should be done in such a manner that it leads to optimal utilization of
the available number of FPGAs on a given board.

Lockheed Sanders partitioned AS4 across the CHAMP architecture in a
pipelined fashion, shown in Figure 23. In this pipelined architecture,
data are processed in clusters of FPGAs (the crossbar is composed of
FPGAs as well), and it is routed between FPGAs via either point-to-point
links or the crossbar. In this manner, then, CHAMP resembles a special-
purpose design optimized for this particular algorithm, rather than a
parallel array of DSPs or general-purpose processors (e.g., C40s or
iWarp). More specific details of the partitioning will not be discussed
here, since it is beyond the scope of this discussion, and since the
final design has not been completed at the time of this writing.

FPA PG FGA FPGA FPGA FPGA FPOA "' PGA "

CSF

Figure 23. Mapping AS4 onto CHAMP

4.4 Performance Mdeasuremnents of AS4 on the PPDS
Several network topologies have been presented in the last few sections.
These topologies range from a simple xnultidrop linear bus to a fully
interconnected network. One of the presumptions of this study was that
bus-based architectures will not be able to handle future avionics
processing needs because there is a limit to the number of processors
that can be effectively used in a linear bus topology, as discussed in

43

Section 4.3.8. A fully-connected network would seem to be an ideal
solution, then; however, the amount of hardware required to fully
connect a large set of processors would be expensive and would not scale
well. Implementing a global shared memory version of AS4 would be
useful, however, in order to compare it to multidrop linear bus
architectures in current use. Such a comparison is discussed in Section
5.3 as future work.

Having ruled out the extremes of multidrop linear busses and fully-
connected meshes as legitimate possibilities for future processor
interconnection topologies, the other topologies need to be examined.
These topologies include rings, toroidal meshes, hypercubes, and
pipelined architectures. The ring, 4NNM, and hypercube networks fall
into the category of k-ary n-cubes, where k is the number of nodes along
each dimension and n is the number of dimensions. A significant amount
of research has gone into the design of optimal k-ary n-cube networks
[6] [16]. There are several design tradeoffs involved in the design of
a network, which include, but are not limited to: the dimensionality of
the network, the type of router to be used (wormhole, store-and-forward,
circuit-switched, etc.), the number of virtual channels to map to each
physical link if wormhole routing is used, and the number of I/O
channels.

It has been shown that VLSI communication networks are wire-limited [6].
That is, the cost of a network is not a function of the number of
switches required, but rather a function of the wiring density required
to construct the network. This is especially true in avionics, since
the strict space requirements associated with putting electronics on an
aircraft make it very costly to run wires between modules and line
replaceable units.

Analyses have shown that for a constant wire bisection, low dimensional
networks (e.g., tori) outperform high-dimensional networks (e.g.,
hypercubes) (6]. Therefore, based upon these results, this study
focused on low-dimensional k-ary n-cube networks and networks that have
structures similar to low-dimensional k-ary n-cube networks. In
particular, one-dimensional rings and a four-processor eight nearest
neighbor-like (8NN-like) mesh (see Figure 11(a)) were examined.

AS4 was partitioned in two different ways for placement on the PPDS, as
shown in Figure 24. The areas between the dashed and solid lines in
Figure 24 represent the areas of the image that had to be communicated
between processors to allow each processor to properly execute the
filtering operations of AS4. The partitioning used in Figure 24(a) was
mapped onto a four-processor 8NN-like mesh (shown in Figure 11(a)) so
that the diagonal connections could be used. This decreased the
complexity of communication required to perform. the filtering operations
of AS4, but increased the complexity of coding, since each processor had
to have a slightly different version of the program.

The partitioning used in Figure 24(b) was mapped onto a bidirectional
ring (see Figure 12). In this mapping, the amount of communication
between processors constant, which allows all processors to have
identical code.

44

64 pixels 128 pixels

II AIt
B gg A

I I B

6 4 p ix e ls . I - - -. 1 2 8 p ix e s - -

C

C D
II I I D

(a) (b)

Figure 24. Partitioning Schemes Used on PPDS

The two image sizes shown in Figure 24 arose from operational concerns
at the beginning of the benchmarking tests. The amount of LM on the
PPDS is very limited, so it was advantageous to use a smaller image size
to ensure correct operation of the program when the testing began. Once
the program was verified correct, and when the scalability studies began
in earnest, discussed in Section 4.4.4, it was decided to move to a
larger image size in order to keep comparisons with CHAMP on a more
equal footing.

The program code written to implement AS4 and perform the timing tests
is included in the Appendix. The specific details of implementation are
not crucial to the discussion at hand; the reader should refer to the
Appendix to see the details of the optimizations described below.

4.4.1 Original Version of AS4
In the implementations of the original version of AS4, due to the memory
model used by the C40, all arrays were dynamically allocated with a
calloo() statement, which reserves space in memory for an array of a
predefined length. Arrays defined in this manner are often more easily
addressed as one-dimensional arrays, even if they are intended to hold
multi-dimensional data. Thus, all of the array references in this
implementation were made in an easily readable format that made it
obvious the row and column of the element being accessed (i.e.,
rownumber*number of elements per row + column number). Unfortunately,
this required many additions and multiplies to evaluate the correct
array position, which made the executable code perform more slowly than
was strictly necessary.

A uniprocessor version and an 8NN-like parallel version of this
algorithm were implemented. The uniprocessor version stored the entire
data set and program in local memory, keeping only the processor stack,
the constant initialization section (.cinit), and the uninitialized
variables section (.bss) in on-chip RAM.

The 8NN-like version also stored each processor's data in local memory,
with the stack, .cinit, and .bss in on-chip RAM. The 8NN-like version
had all the processors working together in a Multiple Instruction
Multiple Data (MIMD) mode, in which the communication mechanism was used
to synchronize the processors. In this version, each processor had the
same algorithm, with different boundary conditions on the image (due to
the location of edge pixels) and different communication patterns.

45

The processors performed the following steps in sequence to transfer
data: 1) processors A and D sent to processors B and C, respectively;
2) processors B and C sent to processors A and D, respectively; 3)
processors A and B sent to processors D and C, respectively; 4)
processors D and C sent to processors A and B, respectively; 5)
processors A and B sent to processors C and D, respectively; and 6)
processors C and D sent to processors A and B, respectively (see Figures
I and 11(a) for the layout of the C40s on the PPDS). In this way, all
data transfers could be completed in such a way that no time was wasted
in competing for control of the communication port until an entire
message had been sent from one processor to another. The speedup gained
by parallelizing in an 8NN-like topology is shown in Table 9, in the
rows labeled "Uniproc. OV" and "Multiproc. OV." The different values
for communication time, computation time, and speedup in the
multiprocessor versions are due to the fact that each processor had a
slightly different version of the program used to implement AS4.

Table 9. Results of AS4 Benchmark for Three Versions of AS4 (1 Frame of
64 x 64 Pixel Data)

Comm. time Comp. time Total time
AS4 version Node (Keycles) (Kcycles) (Kettles) Speedup
Uniproc. OV A 0 10534.0 10534.0 1.00
Uniproc. OVI A 0 8960.0 8960.0 1.18
Uniproc. OV2 A 0 3506.0 3506.0 2.56
Multiproc. OV A 70.3 2687.4 2757.7 3.82

B 524.7 2586.6 3111.3 3.39
C 336.7 2681.0 3017.7 3.49
D 152.9 2785.8 2938.7 3.58

Multiproc. 0Vl A 60.4 2308.8 2369.2 3.78
B 274.6 2221.4 2496.0 3.59
C 168.9 2302.6 2471.5 3.63
D 68.1 2393.2 2461.3 3.64

Multiproc. OV2 A 40.0 861.8 901.8 3.89
B 229.8 830.5 1060.3 3.31
C 146.4 858.8 1005.2 3.49
D 68.2 891.2 959.4 - 3.65

4.4.2 Optimized Version One of AS4
The optimized version one of AS4 modified the array references so that
they would be easier for the compiler to evaluate and would save time
during execution. It also made some changes to index variables in loops
such that if a certain array reference was calculated (via the
row/column approach described in Section 4.4.1 above) more than once per
loop, the calculation was removed from each individual array reference
and placed in a location at the top of the loop. The result of the
calculation was stored in an index variable, and that index variable was
used to resolve array references. In most cases, these optimizations
offered about an 18 percent speedup (see Table 9 in rows labeled
"Uniproc. OV" and "Uniproc. OV1.")

Like the original version of AS4, a uniprocessor version and an 8NN-like
version were implemented. Both versions had the same optimizations in
the filtering functions (MSF, CSF, and BNT) and the parallel versions
used the array reference simplification optimizations in the message
passing routines also. The 8NN-like version was partitioned in the same
way the 8NN-like original version was, and the corresponding speedup is
shown in Table 9, in rows labeled "Uniproc. OV1" and "Multiproc. OVl"
(for calculating multiprocessor speedup, the uniprocessor optimized

46

version one is considered to have a speedup of 1.0; the multiprocessor
speedups are calculated relative to that).

4.4.3 Optimized Version Two of AS4
The optimized version two of AS4 kept the array referexice modifications
made in optimized version one of AS4 described in Section 4.4.2 above
and reduced the amount of redundant computations performed during
filtering. In the original version and in the optimized version one of
AS4, the code for the CSF and BNT filters (algorithms described in
Sections 4.1.2 and 4.1.3 above) unnecessarily recalculated certain
computations each time the filtering window moved. The optimized
version two added small arrays to store the results of these
calculations so that they could be used in more than one window. This
brought a speedup on the order of five times for the CSF and BNT
routines (not shown in Table 9), and a speedup on the order of 2.5 times
for the entire program, shown in Table 9 in rows labeled "Uniproc. OVI"
and "Uniproc OV2' (for calculating uniprocessor speedup, the
uniprocessor optimized version one is considered to have a speedup of
1.0; the speedup for the uniprocessor optimized version two is
calculated relative to that).

As in the original version and the optimized version one, a uniprocessor
version and an 8NN-like version were implemented. Again, both versions
retained the optimizations made in optimized version one and added the
optimizations of optimized version two. Since the enhancements of
optimized version two wpre limited to the CSF and BNT stages, there was
no change in the message passing routines as there was in optimized
version one. The speedups obtained from optimized version two are shown
in Table 9 in rows labeled "Uniproc. OV2" and "Multiproc. OV2' (for
calculating multiprocessor speedups, the uniprocessor optimized version
two is considered to have a speedup of 1.0; the speedups for the
multiprocessor versions are calculated relative to that).

Overall, speedups for the multiprocessor versions, relative to their
respective uniprocessor versions, averaged around 3.6. This average
will almost certainly never be obtained; even though some processors
finish before others, due to AS4's pipelined structure all processors
must complete their computations before the next image can be processed.
Therefore, the expected speedup is limited by the slowest processor.
Thus, the expected speedups are: for the original version, a speedup of
3.39; for optimized version one, a speedup of 3.59, and for optimized
version two, a speedup of 3.31. It is interesting to note that both the
average speedup and the expected speedup for optimized version one are
higher than either the original version or optimized version two. This
agrees with intuition--since all array references were sped up, the
program would be capable of finishing its task quicker. However, for
optimized version two, the expected speedup is lower than the expected
speedup for both the original version and optimized version one. This
seems at first to be counterintuitive--however, due to the optimizations
made, the amount of computation time decreased dramatically, while the
amount of communication time did not change as drastically (see Table
9). Thus, the communication-to-computat3on ratio has risen, which
impacts algorithm speedup (as discussed in Section 4.3).

4.4.4 Ring-Based Iuplementations of Optimized Version Two of AS4
The ring implementation of AS4 was run on the PPDS system for one- and
four-node networks. A 128 x 128 pixel image was used, and 100 frames of
identical data were processed, due to the memory limitations of the

47

PPDS. For the ring implementation, each node has an identical program,
and the interprocessor communication remains constant regardless of size
of the ring. For these reasons, larger ring networks (8-node, 16-node,
etc.) can be simulated accurately even though the PPDS only has four
processors. For example, an eight-node ring can be simulated by placing
one eighth of.the image on each of the four processors (each node gets a
16 x 128 pixel stripe). Each node still needs to communicate up to
three border rows with each of its two near neighbors. For this
example, the four nodes combined only process a 64 x 128 pixel array,
but each processor does the same amount of work as a processor in an
eight-node system processing a full 128 x 128 pixel image. Eight- and
16-node rings were simulated, along with one- and four-node
implementations. Table 10 shows the communication and computation times
in Kcycles for each processor in the different array sizes as well as
the total time in Kcycles and seconds. The speed-up of the
multiprocessor versions is also shown compared to the uniprocessor
version.

Table 10. Results of AS4 Benchmark on C4U Ring Networks Using Direct
Message Passing (Times to Process 100 Frames of 128 x 128 Pixel Data)

Array Comm. time Comp. time Total time Total time
size Node (KWeales) (Kcyeles) (Koycles) (sea) Speedup
1 A e 1452153 1452153 90.76 1.00
4 A 1593 376835 378428 23.65 3.82

B 1593 376835 378428 23.65
C 1593 376835 378428 23.65
D 1593 376835 378428 23.65

8 A 1588 188845 3.90433 11.90 7.59
B 1588 188845 190433 11.90
C 1588 188845 190433 11.90
D 1588 188845 190433 11.90

16 A 1589 94850 96439 6.03 14.89
B 1588 94850 96438 6.03
C 1588 94850 96438 6.03
D 1588 94850 96438 6.03

The network benchmarks described in Sections 3.1.1 and 3.2.1 showed that
a C40 network takes much less overhead to set up a DMA transfer than the
iWarp takes to set up a spooling transfer. For this reason it may be
useful to use the DMA to overlap communication and computation for this
algorithm. A ring implementation that overlaps communication and
computation was created and run on a four-processor ring, and simulated
on an eight-node and 16-node ring. Table 11 shows the results of this
implementation compared to the uniprocessor version. From Table 11,
overlapping communication and computation only made a slight improvement
for the overall algorithm (about 0.2%) for each size ring. The
communication time was greatly reduced (from 1590 Kcycles down to 970
Kcycles) for each node; however, this was nearly offset by a slight
increase in computation time due to recoding to allow for DMA transfers.
The communication-to-computation ratio for this problem is too low for
overlapping communication and computation to be very effective.

48

Table 11. Results of AS4 Benchmark on C40 Ring Networks Using Overlapped
Communication and Computation (Times to Process 100 Frames of 128 x 128
Pixel Data)

Array Comm. time Comp. time Total time Total time
size Node (Kcycles) (Kcycles) (Kcycles) (sec) Speedup
1 A 0 1452153 14521533 90.76 1.00
4 A 972 376907 377879 23.62 3.82

B 972 376907 377879 23.62
C 972 376907 377879 23.62
D 972 376907 377879 23.62
A 972 189148 190120 11.88 7.59
B 972 189148 190120 11.88
C 972 189148 190120 11.88
D 972 189148 190120 11.88

16 A 971 95269 96240 6.02 14.89
B 971 95269 96240 6.02
C 971 95269 96240 6.02
_ D 971 95269 96240 6.021

As discussed in Sections 4.4.1-4.4.3, many software optimizations were
used to reduce the computation time of the algorithm. Still, the
algorithm remains computation-bound. Table 12 shows the amount of time
each algorithm component took for a uniprocessor implementation of
optimized version two of AS4 (the percentages are the same for any size
image). From Table 12 it is clear that the algorithm spends most of its
time processing the median filter for the two bands. In an attempt to
reduce the time spent computing the median filter, a hand-coded
assembly version of the median filter was created. This hand-coded
version used some simple optimizations (such as assigning variables to
registers) that most optimizers would do. The results of the
uniprocessor version run with the optimized median filter are shown in
Table 13. The assembly-optimized median filter ran about 25* faster
than the C-coded filter. It is likely that if the spectral and BNT
filters were optimized that they would show a similar improvement. The
assembly optimizations were coded by a hardware engineer; had they been
coded by a software engineer or a finely tuned optimizer,- it is likely
that they would show an even greater improvement.

Table 12. Computation Times for Each Algorithm Component in AS4

Percent of
Type of filter Time (Keycles) total time
Median filter 1041790 71-73
Spectral filter 231713 15.95
BNT 178844 12.31

Table 13. Computation Times for Each Algorithm Component in AS4 with the
Optimized Median Filter

Percent of
Type of filter Time (Kcycles) total time
Median filter 783021 65.60
Spectral filter 231713 19.41
BNT 178844 14.98

The algorithms were benchmarked on a 32 MHz development board. It is
likely that a fielded system would run at the rated 50 MHz speed.
Equation 19 is an approximation of how the algorithms would run with a
50 MHz clock. The communication time would actually increase (in terms

49

of cycles) because it would take 5 cycles/word to transfer data rather
than the 4.5 cycles/word it takes to transfer words to LM on the PPDS
shown in Table 1 and Table 3. Equation 20 is similar to Equation 19
except that it calculates the effect of using an optimizer with an
efficiency of eff on this coding of AS4. The total times to process AS4
are:

ttot = (teomm*5/ 4 .5 + tcomp)/ 2 5,000 (19)
and

ttot = (tcomm*5/4.5 + tcomp*eff)/ 2 5 ,000, (20)

where
ttot is the estimated time for a 50 MHz system (25 MHz internal clock)

(in seconds),
tcomm is the communication time on the PPDS (in Kcycles),
tcomp is the computation time on the PPDS (in Kcycles), and
eff is the average efficiency of an optimizer.

Table 14 shows projected times in seconds for processing 100 frames of
data at a 50 MHz clock speed. The first column shows the measured
results on the PPDS system. The second column estimates the time for
the 50 MHz clock using Equation 19. The third column assumes an
optimizer was used that produces a conservative 25% improvement on the
AS4 code. Equation 20 with an eff of 0.75 was used to calculate the
optimizer time.

Table 14. Projected Processing Times in Seconds for 100 Frames of 128 x
128 Pixel Data

AS4 at 50 MHz and
Number of nodes AS4 at 32 MHz AS4 at 50 MHz 25% optimizer
1 90.76 58.09 43.56
4 23.65 15.14 11.38
8 11.90 7.62 5.74
16 6.03 3.92 2.96

4.5 Performance Measurements of AS4 on iWarp
Since the goal of implementing AS4 on iWarp was to give a comparison to
the implementation of AS4 on the C40s both in speedup and scalability,
it was decided to implement only the ring implementation of AS4. This
implementation of AS4 was run on the iWarp at CMU on 1-, 4-, 8-, and 16-
node networks. A 128 x 128 pixel array was used, and 100 frames of
identical data were processed, in order to be consistent with the C40
benchmarks described in Section 4.4.4 above. Table 15 shows the
communication and computation times in Kcycles for each processor in the
different array sizes as well as the total time in Kcycles and seconds.
The speed-up of the multiprocessor versions is also shown compared to
the uniprocessor version.

50

Table 15. Results of AS4 Benchmark on iWarp Ring Networks (100 Frames
of 128 x 128 Pixel Data)

Array Node Comm. time Comp. time Total time Total time
size no. (Kcycles) (Kcycles) (Kcycles) (sec) Speedup
1 1 0 3032279 3032279 151.61 1.00
4 1 1695 792664 794359 39.72 3.82

2 1695 792664 794359 39.72
3 1695 792664 794359 39.72
4 1695 792664 794359 39.72

8 1 1692 397662 399354 19.97 7.59
2 1692 397663 399355 19.97
3 1692 397663 399355 19.97
4 1693 397663 399356 19.97
5 1692 397663 399355 19.97
6 1693 397663 399356 19.97
7 1693 397663 399356 19.97
8 1693 397662 399355 19.97

16 1 3350 200259 203609 10.18 14.89
2 3350 200257 203607 10.18
3 3351 200258 203609 10.18
4 3349 200258 203607 10.18
5 3349 200259 203608 10.18
6 3350 200258 203608 10.18
7 3349 200258 203607 10.18
8 3350 200258 203608 10.18
9 3349 200259 203608 10.18

10 3350 200259 203609 10.18
11 3349 200258 203607 10.18
12 3350 200259 203609 10.18
13 3349 200259 203608 10.18
14 3349 200258 203607 10.18
15 3350 200259 203609 10.18

J 16 3350 200259 203609 10.18

Streaming was used for message passing in this benchmark. For this
implementation, each node needs to make two connections with each of its
two nearest neighbors. This is a total of four connections, and with
only two stream gates, this means that the gates will have to be bound
and unbound to change which communication channel is being used, which
adds extra overhead. As discussed in Section 3.2.1, if binding times
are included, messages have to be very long for spooling to be
advantageous. The messages sent in AS4 are not long enough to make
spooling efficient.

The algorithm scales well, with nearly linear speed-up. This can be
attributed to the low communication to computation ratio of this
algorithm. Even with 16 processors, each node spent about 98.4% of its
time computing and only 1.6% of its time communicating. For 16 nodes
the iWarp processed 100 frames in 10.18 seconds (about 10 frames/sec).
Again, this is with the optimizer off and all the code written in C (no
assembly hand tuning).

4.6 C40/iWarp Comparison
Since AS4 is a computation-bound algorithm, the effects of the iWarp's
faster communication links are likely to have a small impact on the
speed of processing an image. Therefore, the advantage in speed will go
to the processor with the more powerful ALU. In Table 16, the C40 is
the unqualified winner in terms of processing speed. It should be noted
that even though these measurements were made with a 32 MHz external
clock for the C40s, the internal clock speed is only 16 MHz. The

51

iWarp's internal and external clocks run at the same speed, 20 MHz.
Thus, even though the C40's internal cycle time is slower than the
internal cycle time of the iWarp, the C40 still turns in better
performance measurements than iWarp. If the C40 was evaluated at its
rated external clock speed of 50 MHz, the difference would be even
greater.

Table 16. Processing Times in Seconds for AS4 on the C40 and iWarp

Array size C40 at iWarp at
32 MHz 20 MHz

1 90.76 151.61
4 23.65 39.72
8 11.90 19.97
16 6.03 10.18

For this implementation of AS4, then, the C40s can deliver a higher
number of frames processed per unit time than the iWarp. It is likely,
given the overhead imposed by gate binding on the iWarp, that for almost
any implementation of AS4, the C40 will outperform the iWarp. Since the
communication patterns of AS4 are not conducive to the use of wormhole
routing on a large scale, and since data must be passed between more
than two neighboring processors in most of the mappings discussed in
Section 4.3, the gate binding overhead incurred by the iWarp when it
changes destinations is likely to seriously impact its performance. In
contrast, the C40 can communicate with up to six near neighbor
processors with much lower overhead, as mentioned in Section 3.3. As
the number of processors in an array grows, the number of image pixels
in a specific IRMW algorithm that must be shared between processors
decreases, making the C40's advantage even more dramatic.

4.7 Performance of AS4 on CHAMP
Since CHAMP has not been fully constructed at the time of this writing,
and since the mapping of AS4 onto CHAMP was abandoned in favor of a more
computationally complex algorithm, no performance measurements will be
available for direct comparison between CHAMP, the C40, and iWarp.
However, the baseline specifications for CHAMP in terms of the number of
FPGAs required to process AS4 and the number of images to be processed
per unit time will be used for comparison between the three types of
processors. An implementation of the more computationally complex
algorithm mentioned above on both the C40s and iWarp will be considered
in the future, and is mentioned as future work in Section 5.4.

4.7.1 CHAMP Baseline Specification
The primary purpose of the IRMW algorithms is to process infrared
imagery in such a way that hostile aircraft and missiles can be
identified while an airplane containing CHAMP is in flight. Since a
given aircraft can be expected to fly at different speeds and altitudes
during the course of its travel, it is advantageous to attempt to remove
as much of the effects of aircraft motion as possible from the images
being processed. One way of removing the effects of aircraft motion is
to capture images at a high frame rate (i.e., much faster than standard
video rates of 30 frames per second). Thus, CHAMP is to be capable of
processing anywhere between 200 and 1000 frames (128 x 128 pixels per
frame) of infrared image data per second.

CHAMP would use 20 FPGAs to process AS4, not including the FPGAs used
for interfacing CHAMP to a host and the FPGAs used to supply data to and

52

remove data from CHAMP while in operation. These FPGA3 were not
included since they are not strictly involved in the computation itself,
merely in support functions. For all comparisons to follow, then, the
figures of merit will be the number of frames processed per second and
the number of processors required for processing images at that rate.

4.7.2 C40 Scalability With AS4
Large ring networks of C40s can be hypothesized, using the equations and
data presented in Section 4.4.4. As mentioned previously, the
communication time per node will remain constant regardless of the
network size, and the computation time can be estimated. With the
optimizations described in Section 4.4.3, each node processes the first
row of its partition and then uses previously processed information to
process the remaining rows. Therefore, the first row will take a
little longer to process than the remaining rows. Equation 21 is an
estimate of the computation time per node for this algorithm. For these
calculations, 128 x 128 pixel images were used; therefore, all rows are
128 pixels wide and each node gets 128/n rows (where n is the number of
nodes in the ring). The total time to process a given image, therefore,
is:

ttot = tcomm + tri+ (r-1)*tr (21)

where
ttot is the total computation time for a node,
tcomm is the communication time for a node,
tri is the time needed to process the first row of data,
r is the number of rows assigned to a node, and
tr is the time needed to process the remaining rows of data.

The per-node computation times for a 4-node, 8-node, and 16-node ring
have been calculated in Table 10. Using these results and Equation 21,
tzl and tr can be calculated. The times calculated for the 4-node, 8-
node, and 16-node rings were plugged into Equation 21 and the resulting
equations are:

1593 + tri + tr*3 1 - 378428, (22)
1588 + tri + tr*15 - 190433, and
1589 + trI + tr* 7 = 96439.

By solving Equations 22, tri was found to be approximately 12604 Kcycles
and tr was found to be approximately 11749 Kcycles, where tcom was
approximately 1590 Kcycles. Using these three values and Equation 21,
the computation time for virtually any size ring can be estimated.
Table 16 presents the time in seconds for processing 100 frames for a
ring of a given size (the data for ring sizes between 1 and 16 nodes are
from Table 14) and the estimated number of frames per second that can be
processed with a ring of the same size for both a 50 MHz clocx and a 50
MHz clock with the previously assumed 25% optimization.

53

Table 17. Projected Processing Times in Seconds and Frame Rates in
Frames/Second for 100 Frames of Data

Frames/sec at
AS4 at 50 MHz Frames/sec 50 MHz with

Number of nodes AS4 at 50 MHz with 25% opt., at 50 MHz 25% opt.
1 58.09 43.56 1.72 2.30
4 15.14 11.38 6.61 8.79
8 7.62 5.74 13.12 17.42
16 3.92 2.96 25.51 33.78
32 1.98 1.51 50.50 66.23
64 1.04 0.80 96.15 125.00

Based on the projections shown in Table 16, an array of 64 C40s could
conceivably process as many as 125 frames/sec of data. Using any more
processors would not be feasible, since the number of rows of data per
processor cannot be less than one (i.e., if the ring has more than 128
nodes) and even the usefulness of having only one row of data per
processor is highly debatable. This frame rate of 125 frames/sec is
only slightly more than half of CHAMP's lower bound of 200 frames/sec
and far from its upper bound of 1000 frames/sec. Thus, it can be
concluded that with a ring-based partitioning scheme and a 128 x 128
pixel image, 125 frames/sec can be consideree the absolute maximum frame
rate.

Thus, in order for an array of C40s to achieve a frame rate equal to
that of CHAMP, a mapping strategy different from the ring implementation
must be used. Equations 21 and 22 cannot be used with the data
presented in Table 9 (the data from the 8NN-like mesh) in the same way
they were used with the data from Table 10, in part because the
communication times vary so widely from processor to processor, and in
part because the amount of communication performed per processor changes
as the number of processors changes. In any case, an 8NN-like mesh of
C40s would not be the best topology for comparison, since extra hardware
would be required to implement an 8NNM (as discussed in Section 4.3.2),
and the purpose of this study was to evaluate the on-chip parallel
hardware of the C40. Thus, another alternative must be found. The
topology most likely to be scalable to the degree required is the 4NNM.
Since no studies were performed in this effort on the 4NNM, a discussion
of that topology's properties will be completed at a later date, and
that discussion is mentioned as future work in Section 5.5. Regardless
of the results of that study, it is certain that at least 64 C40s (and
quite possibly more) will be required to achieve the frame rate of
CHAMP.

4.8 C40/CHAMP Co=arisons
Since iWarp was never intended to be used in an embedded environment,
comparisons with CHAMP will be limited to the C40. Lockheed Sanders
have designed CHAMP to fit on one double-sided 6U VME card, and to have
a sustained processing capability in excess of one billion operations
per second (BOPS). A few vendors are marketing 6U VME card
implementations of an array of C40s, typically with either one, two, or
four C40s per card. An average of performance statistics across those
boards with four processors will be used for comparison with CHAMP.

As mentioned in the previous section, neither the data from Table 9 nor
the data from Table 17 will be completely accurate in terms of
predicting the performance of an array of C40s, but some rough estimates

54

can be made. Table 18 shows a comparison of some of the characteristics

of both the CHAMP and the C40 boards.

Table 18. Comparison of CHAMP and C40 VME board characteristics

Characteristics CHAMP C40
Supply voltage (volts) 5 5
(nominal)

Power requirement (watts) 35 15
(typical) .

Operating temperature (0C) 0 - 55 0 - 85
Storage temperature (OC). -40 - 85 -55 - 150
Number of processing 16 4
elements per board
Approximate cost of board 40,000 17,000
(1993 dollars)

4.8.1 Hardware Considerations
CHAMP was designed to be capable of processing AS4 at a frame rate of at
least 200 frames per second (128 x 128 pixel frame size) with only one
board. Therefore, the comparisons made in this section will focus upon
how many C40 VME boards will be required to match the performance of
CHAMP, and how many watts of power will be required to operate at that
level.

The data from Table 9 are for frames of 64 x 64 pixels, which is one-
quarter of the size of a frame that has 128 x 128 pixels. The initial
computations will be made based upon this 64 x 64 pixel frame size, but
computations for the full 128 x 128 pixel frame size will be estimated
later.

The per-pixel operation count of AS4 is 205 operations per pixel. For a
four-processor C40 VME card operating at 25 MHz (internal clock speed),
the frame rate for 64 x 64 pixel frames is (from Table 9):

25 MHz / 1060300 cycles/frame = 23.58 frames/sec (23)

However, the data presented in Table 9 were recorded from programs that
were not compiled with an optimizer. Using the 25% performance
improvement gained by optimization assumed in Section 4.4.4, a new frame
rate can be estimated:

23.58 fm/sec * 1.25 = 29.48 fm/sec. (24)

With this frame rate, a MOPS rating can be calculated:

205 ops/pix * 642 pix/fm * 29.48 fm/sec = 24.8 MOPS, (25)

and the number of MOPS per C40 is then:

24.8 MOPS / 4 = 6.20 MOPS/C40. (26)

Holding the number of MOPS per C40 constant, an estimate of the frame
rate can be calculated for various array sizes. It will be assumed for
these calculations that the image is partitioned in a regular fashion
(i.e., all the tiles of the image are the same size) for the sake of
programming simplicity. For brevity, only the first estimate whose

55

frame rate exceeds 200 frames/sec will be shown. The estimated frame

rate is, therefore:

6.20 MOPS / (205 ops/pix * (16*8) pix/fm) - 236.28 fm/sec, (27)

where all the tiles are 16 x 8 pixels in extent. This size of tile
requires 32 processors to completely cover the image. Thus, in order to
meet the minimum frame rate of CHAMP, a minimum of eight C40 boards will
be required, requiring 120 watts of power, 85 watts more than the single
CHAMP board. There will not be an appreciable amount of additional
overhead incurred by scaling the array size up, since with the
commercially available boards it is possible to construct a 4NNM without
any additional hardware (aside from the wires required to connect the
communication ports together).

In order to obtain some rough estimates for the number of cards required
for frames of 128 x 128 pixels, it can easily be verified (proof is left
to the reader) that the number of MOPS/C40 will not change, and thus the
number of cards required to process 128 x 128 pixel frames will be at
least four times the number used to process 64 x 64 pixel frames. Thus,
in order to meet the minimum frame rate of CHAMP, a minimum of 32 C40
boards will be required. Table 19 shows that based only upon hardware
cost, CHAMP is the unqualified winner in terms of cost/performance
tradeoffs.

Table 19. Comparison of processing required to process AS4 at 200 frames
per second

Metric 64 x 64 64 x 64 128 x 128 128 x 128
CHAMP C40 CHAMP C40

Number of cards 1 8 1 32
Power required 35 120 35 480
(watts)
Total number
processing 20 32 20 128
elements
Total cost of $40,000 $136,000 $40,000 $544,000
boards

At the time of this writing, simulations of the CHAMP system reveal that
it will be capable of sustaining a frame rate of greater than 1000 128 x
128 pixel frames per second. In order for an array of C40s to achieve
this rate, it would require at least five times the number of CPUs
listed in the final column of Table 19, with approximately five times
that cost.

4.8.2 Software Considerations
C40s and CHAMP are programmed in very different ways: the C40 is capable
of being programmed in a high-level language (C and Ada are the most
common), while CHAMP must be reconfigured via a hardware design process.

Programming a C40 is just as straightforward an operation as programming
any other CPU of similar complexity, with the additional difficulty of
having to include the multiprocessor communication (via the
communication ports) in the program. For nearest neighbor
communication, this operation is trivial (using the message passing
routines provided with the compiler), but for multi-hop communication,
the task can become more difficult, depending upon how the programmer

56

chooses to implement the communication algorithm and how far the message
must travel before it reaches its destination.

However, to program CHAMP, a designer must understand significantly more
detail about the CHAMP hardware itself and hardware design methods in
general. This is in marked contrast to the C40, which only requires
that the programmer understand the register-level design of the
processor. The CHAMP design process is shown in an overview format in
Figure 25.

Algorithm

Data Algorithm
Test Vfictors "-| verification

Firm Macro Library : ______.__

CHAMP Architecture

J 'PE Mapping I j• JIInterconnect Mapping

/ • •!' ontrol Mappingf

I• PE Control InterconnectI
SFPGA [Design FPGA Design FPADsgI

!LCA File V • LCA File

' - Board
Board Schematic Verification

Download File

Figure 25. CHAMP Progranmning Process Overview

In a later phase of the CHAMP project, this design process will be
integrated into a more automated procedure such that the amount of
information required about the CHAMP board and hardware design in
general will be reduced, which implies that the time to design a new
configuration will be considerably less. Nor,' Leless, it will be some
time before the CHAMP design process becomes automated and efficient to
the point where it can compare favorably with the complexity of a C or
Ada compiler for the C40. Due to the fact that the CHAMP design is
still under development, it is difficult to quantify the exact amount of
time involved in reprogramming CHAMP for an alternate algorithm. It is
safe to say, however, that it would involve a considerable amount of
time (up to several months), depending upon the skills of the people
involved in its programming, the amount of the design actually being
changed, and the number of macros that must be defined for the synthesis
step.

57

5.0 Future Work
Several areas that merit further investigation have been previously
identified in this document and are discussed here. Section 5.1
discusses software implementations of flow-through routing, Section 5.2
discusses a tradeoff study for the hexagonal mesh, Section 5.3 discusses
the need for a global shared memory implementation of AS4, Section 5.4
describes timing both the C40 and iWarp with a more computationally
complex version of AS4, and Section 5.5 details implementing AS4 in a
4NNM topology.

5.1 Flow-Through Routing
As mentioned previously, AS4 does not require extensive use of multi-hop
routing, so the usefulness of a flow-through routing mechanism for
implementing AS4 is limited. However, many algorithms suited to
implementation in parallel will require far more use of multi-hop
routing (e.g., one- and two-dimensional fast Fourier transforms,
recursive doubling algorithms, histogramming algorithms, etc.), and the
usefulness of flow-through routing will quickly become apparent.

In order to implement a flow-through routing scheme, such as the one
mentioned in Section 3.1.3, each processor must have knowledge not only
of its position in the mesh and the positions of its neighbors, but each
processor must also have a deterministic routing mechanism, such that
when a message arrives at a given processor, the processor will be able
to decide which link the message should be sent out upon in order to
minimize the length of the path taken by the message between source and
destination. Several schemes exist which will allow this type of
routing, but further research needs to be done to determine whether
these routing schemes can avoid deadlock, blocking, or other undesirable
results.

While the implementation of flow-through routing on the C40 would be
beneficial in its own right, it would be even more useful if it were
made part of a parallel operating system designed to operate on a
network of C40s. Such an operating system would allow the user to write
code at a higher level and let the operating system handle message
routing between non-nearest neighbor processors. Ideally, such an
operating system would work hand-in-hand with a compiler capable of
extracting parallelism from a serial program, further reducing the
workload of the programmer. Unfortunately, an operating system like
this would severely impact the raw performance of the parallel machine,
due to the amount of processing overhead that such an operating system
would surely require.

5.2 Hexagonal Mesh Study
In Section 4.3.3, it was observed that a square image cannot be
completely covered by a hexagonal mesh, leaving several areas of the
image unprocessed. one approach to solving the problem is to add extra
processors to the mesh, allowing each processor in the mesh to have an
identical number of pixels to process (except for the extra processors).
Studies need to be performed to determine how much of an increase in
processing speed the extra processors add, compared to distributing the
leftover pixels among the original processors. This data will then have
to be coordinated with cost data to determine where a break-even point
exists (i.e. where the benefit of having extra processors is outweighed
by the increase in cost).

58

5.3 Global Memory Version of AS4 and RKS4
Even though the global shared memory architecture was determined to be a
poor implementation for AS4 in Section 4.4, it would be useful to have
data for such an implementation on hand for comparisons with existing
avionics multidrop linear busses, such as MIL-STD-1553B, PI-Bus, etc.
Code was written to implement a global shared memory version of AS4, but
due to difficulties that proved intractable in the time allotted for
this effort, no useful results were obtained. Future tuning of the
programs may allow timing measurements to be taken in the future,
however.

5.4 Revised Algoritha Suite Four (RAS4)
After the initial studies of IRMW algorithms conducted by WL/AAAT-2 were
complete, it was clear that AS4 was one of the better performing
algorithm suites tested [14]. Nevertheless, it was decided that
modifications were required in order to improve AS4's ability to detect
hostile missiles. Essentially, the modifications consisted of adding
extra processing stages to the pipelined structure of AS4; each extra
stage made the following stage's processing more accurate. For
instance, in one of the extra stages (prerejection), all pixels that
exceeded a normalized value of background intensity were removed from
the image. This allows the CSF and BNT stages to compute their
background statistical measurements for non-missile pixels without the
interference of missile pixels that happen to fall within the window
centered around the non-missile pixel.

These extra stages increased the amount of computing power required to
process images substantially. It was found that the CHAMP architecture
designed for AS4 would be capable of supporting RAS4 without the need
for extra FPGAs, so AS4 was replaced by RAS4 in the CHAMP development.
RAS4 also has high data storage requirements, and because of this, it
was decided to put off coding RAS4 on the C40s until it was determined
if the LM on the PPDS would be capable of storing all the required data.
Even if the amount of memory is too limited on the PPOS, the actual
number of operations required to perform RAS4 can be simulated by
reusing image data (i.e., instead of adding four distinct numbers
together, adding one number to itself three times will produce the same
amount of computation, although the result will be different.) This
technique can be applied here because there are no data conditional
computations performed until the thresholding stage.

5.5 ImplemQnting AS4 on a 4NNM of C40s
As mentioned in Section 4.7, the implementations of AS4 studied to date
in this effort have proven inadequate to match CHAMP in terms of
processing speed. Thus, it will be useful to implement AS4 in a 4NNM
configuration so that large networks of C40s can be postulated and that
their projected performance levels can be compared with CHAMP's baseline
specifications. Early studies have determined ways to improve the
amount of communication required (i.e., how to get diagonal transfers
without sending a separate message that must be routed via a two-hop
approach), which will make the coding more efficient and easier to
troubleshoot.

It will have to be determined by implementation, however, whether the
communication times will vary as widely as they did for the data
presented in Table 9. If not, then it is conceivable that projections
can be made about scaling the number of processors, and thus reasonably

59

accurate predictions can be made about how many C40s will be required to
process images at the same speed as CHAMP.

60

6.0 Conclusions
Texas Instruments' TMS320C40 digital signal processing CPU breaks new
ground in the signal and data processing arenas by including on-chip
multiprocessing support for embedded microprocessors. This has allowed
not only RISC-like high-speed computing (from the high performance CPU
core) but the ability to partition a task across a set of processors in
such a way that the problem can be solved more efficiently (and thus
more quickly)

It was shown in this report that the setup overhead for the C40
communication ports is small (often in the range of only 100 cycles),
especially when compared to other microprocessors with parallel
processing capability (like iWarp). Because of this, for nearest-
neighbor communication, messages can be sent rapidly, with a linearly
decreasing amount of overhead included in the per-word message
transmission time (i.e., the amount of overhead is constant for any
length message, and thus the percentage of overhead included in a per-
word message transmission time decreases linearly with message length).
However, the C40 has no capability to automatically route messages on a
multi-hop path, thus non-nearest neighbor communication becomes a rather
more difficult problem to manage. For non-nearest neighbor
corununication, the programmer must include routines for such
communication directly into the program ,limiting flexibility) or must
include the provision for having the program call an interrupt service
routine to handle the message routing (which also must be created by the
programmer). Because of this, the usefulness of a large array of C40s
for general-purpose processing must be evaluated carefully, because the
ease of programming will decrease rapidly with increasing the size of
the array.

However, for ceruain applications, such as image processing, where
communication is generally limited to nearest neighbors over the entire
scope of the algorithm, a large array of C40s can be used quite
efficiently. It was shown in this report that image processing tasks
can easily be partitioned over a large variety of topologies constructed
from C40s, and the speedups obtained from these partitionings were, in
fact, close to linear.

in order to evaluate an array of C40s with a planned avionics system,
comparisons were made with the Configurable Hardware Algorithm Mappable
Preprocessor (CHAMP) program being run from Wright Laboratories, System
Avionics Division, Information Processing Technology Branch. It was
shown that CHAMP is capable of a higher data throughput than an array of
C40s on a per-chip, per-dollar, and per-watt basis. However, the level
of effort required to reprogram CHAMP is considerably more than that
required to program the C40s, so a user must make a decision based upon
the intended application as to whether the increased cost, power, and
chip count of the C40 is worth the ease of programming.

As mentioned in the Introduction, the goal of this report was not to
perform an exhaustive evaluation of the C40 in avionics programs, since
there is such a large variety of avionics applications that it would
have been . zssible to test them all. The goal was to evaluate the
C40s computi.ag and zommunicating capabilities in light of certain
avionics requirements, and it has been demonstrated that the C40 is
capable of avionics processing to a high degree of efficiency. While
the C40 cannot compete equally with custom hardware designs like CHAMP,
its built-in capability for parallel networking can be a significant

61

asset in avionics, as long as the algorithms being implemented can make
proper use of its computing and communicating capacity.

62

7.0 References

(I] Texas Instruments, Inc. TMS320C4x Parallel Processing
Development System Technical Reference. Texas Instruments, 1992.

[2] Texas Instruments, Inc. TMS320C4x User's Guide. Texas
Instruments, 1991.

[3] G. Almasi, A. Gottlieb. Highly Parallel Computing, pp. 162-
170. Benjamin/Cummings, 1989.

[4] H. Kung, et. al. "iWarp Macroarchitecture Specifications,"
Version 3.0 CMU and Intel Corporation, 1990.

[5] T. Gross, S. Hinrichs. External Product Specification for
the iWarp Programmed Communication Services (PCS) Array Combiner.
Version 2.0, CMHU. August 1991.

[6] W. Dally. "Performance of k-ary n-cube interconnection
networks," IEEE Transactions on Computers, 39(6):775-785, June 1990.

[7] Xilinx, Inc. The Programmable Gate Array Data Book. Xilinx,
1991.

(8] Texas Instruments, Inc. TMS320C4x C Source Debugger User's
Guide. Texas Instruments, 1992.

[9) Texas Instruments, Inc. Parallel Debug Manager Addendum.
Texas Instruments, 1993.

(10] Texas InstrumentE, Inc. TMS320 Floating-Point DSP Optimizing
C Compiler User's Guide. Texas Instruments, 1991.

(11] Texas Instruments, Inc. TMS320 Floating-Point DSP Assembly
Language Tools User's Guide. Texas Instruments, 1991.

[12] S. Balakrishnan, D. Panda. "Impact of Multiple Consumption
Channels on Wormhole Routed k-ary n-cube Networks," in Proc. Seventh
Int. Parallel Proc. Symp., pp. 163-169, 1993.

[13] J. Hennesy, D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kauffman, 1990.

£14] S. Hary, J. McKeeman, D. Van Cleave. "Evaluation of Infrared
Missile Warning Suites". in Proc. IEEE National Aerospace & Electronics
Conference (NAECON), 1993, pp. 1060-1066.

[15] Intel Corp. i860XP Microprocessor Data Book. Intel, 1991.

[16) L. Ni, and P. McKinley. "A Survey of Wormhole Routing
Techniques in Direct Networks," IEEE Computer, Feb. 1993, pp. 62-76.

63

Appendix
Listings of Program Code Used in Testing

A.0 Release Information
The program code presented in this appendix has not been cleared for
release outside the Department of Defense. The authors may be contacted
regarding this policy at Wright Laboratories, Avionics Directorate,
System Avionics Division, Information Processing Technology Branch:

WL/AAAT BLDG 635
2185 Avionics Circle
Wright-Patterson AFB, OH 45433-7301
(513) 255-4949

64

